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Abstract. The Fuzzy Integral (FI) is a non-linear aggregation oper-
ator which enables the fusion of information from multiple sources in
respect to a Fuzzy Measure (FM) which captures the worth of both
the individual sources and all their possible combinations. Based on the
expected potential of non-linear aggregation offered by the FI, its ap-
plication to decision-level fusion in ensemble classifiers, i.e. to fuse mul-
tiple classifiers outputs towards one superior decision level output, has
recently been explored. A key example of such a FI-FM ensemble clas-
sification method is the Decision-level Fuzzy Integral Multiple Kernel
Learning (DeFIMKL) algorithm, which aggregates the outputs of kernel
based classifiers through the use of the Choquet FI with respect to a FM
learned through a regularised quadratic programming approach. While
the approach has been validated against a number of classifiers based
on multiple kernel learning, it has thus far not been compared to the
state-of-the-art in ensemble classification. Thus, this paper puts forward
a detailed comparison of FI-FM based ensemble methods, specifically the
DeFIMKL algorithm, with state-of-the art ensemble methods including
Adaboost, Bagging, Random Forest and Majority Voting over 20 public
datasets from the UCI machine learning repository. The results on the
selected datasets suggest that the FI based ensemble classifier performs
both well and efficiently, indicating that it is a viable alternative when
selecting ensemble classifiers and indicating that the non-linear fusion of
decision level outputs offered by the FI provides expected potential and
warrants further study.

Keywords: Ensemble Classification Comparison, Fuzzy Measures, Fuzzy Inte-
grals, Adaboost, Bagging, Majority Voting and Random Forest

1 Introduction

Ensemble classifiers are a set of classification algorithms with the objective of
classifying data objects by combining the outcome of each individual classifier,



Table 1: Acronyms and Notation
FM Fuzzy Measure

FI Fuzzy Integral
CFI Choquet Fuzzy Integral

RAV Recursive Weighted Power Mean Aggregation Operator
SSE Sum of squared error

SVM Support Vector Machines
nf number of features in each dataset

DeFIMKL Decision-level Fuzzy Integral Multiple Kernel Learning
MJSVM Majority Voting with Support Vector Machines ensemble classifier

X set of information sources i.e. X = {x1, ..., xn} ⊂ Rd

h(xi) support of the question for the source xi

g Fuzzy Measure
g(A) Fuzzy Measure for subset A
fk(x) output by the kth classifier in the ensemble
fg(x) final decision by the ensemble using CFI with respect to the FM g

generally using weights. Many combination techniques exist in the literature
including Boosting, Bagging, Random Forest, Majority Voting, etc. [1]. These
ensemble methods have been very popular in the machine learning community
due to their ability of producing more accurate results than individual classi-
fiers [2] in a very wide range of application areas [3].

Another approach to obtain ensemble classification is the use of the Fuzzy
Integral (FI) aggregation defined with respect to a Fuzzy Measure (FM) [4–8].
The FI is a non-linear aggregation operator to fuse weighted information from
multiple sources, where the weights are captured by a FM. The FM not only
captures the worth of the individual sources, but also the weights of all subset
of sources. Recently, a FM-FI based ensemble classification algorithm Decision-
level Fuzzy Integral Multiple Kernel Learning (DeFIMKL) [4] was introduced,
which aggregates the results of kernel-SVMs through the use of Choquet Fuzzy
Integral (CFI) with respect to a FM learned by a regularised quadratic program-
ming approach. Upon initial investigation in [4], [9], the accuracy of FI-FM based
ensemble classification method were found to be better than classifiers based on
multiple kernel learning. These works further concluded that DeFIMKL was the
best among decision level fusion based FI-FM based ensemble classifiers and thus
it has been selected in the work as representative of the FI-FM based ensemble
classifier family. However, no in-depth comparison of the FI-FM based ensemble
classifier with other ensemble methods have been found in the literature [4–9]
(discussed in detail in section 2.3). Thus, the motivation of this study is to de-
termine the performance of FM-FI based ensemble methods for the purpose of
ensemble classification. We therefore compare DeFIMKL (FI-FM based ensem-
ble classifier) with the state-of-the art ensemble methods including Adaboost,
Bagging, Random Forest and Majority Voting on 20 datasets from UCI machine
learning repository.

We focus on the FI-FM ensembles as FIs are powerful non-linear aggrega-
tion functions (unlike most of the ensemble methods which perform linear com-



binations) which are capable of exploiting interactions between the models in
the ensemble (through FM). FI-FM based ensembles have found applications in
numerous domains including software defect prediction [10], Multi-Criteria De-
cision Making (MCDM) [11], Brain Computer Interface (BCI) [12], Face Recog-
nition in Computer Vision [13, 14], Forensic science [15], Explosive Hazard De-
tection [16].

In the following section (Section 2) we discuss the literature on FI-FM based
ensemble classification methods. In this section we also discuss the background
of Adaboost, Bagging, Majority Voting and Random Forest ensemble classifi-
cation methods. In Section 3 the UCI datasets are described along with the
experimental settings of the selected algorithms. Section 4 presents the results
and discussion followed by conclusions and future works in section 5. Table 1
lists the most commonly used acronyms in the paper.

2 Background

2.1 Fuzzy Measure

Fuzzy Measure (FM) captures the worth of each information source and all their
possible combinations i.e. every subset in a power set [4], [17].

Let X = {x1, ..., xn} be a discrete and finite set of information sources and
g : 2X → [0, 1] be a FM having the following properties:

P1: Boundary condition, i.e., g(∅) = 0, g(X) = 1, and
P2: Monotonic and non-decreasing, i.e., g(A) ≤ g(B) ≤ 1, if A ⊆ B ⊆ X.

For an infinite domain X there is an additional property to ensure continuity;
however, it is not applicable in this paper as X is finite and discrete. In the
context of multi-source data fusion, g(A) represents the weight or importance
of subset A. The FM values of the singletons i.e. g(xi) are commonly called
the densities. Three major approaches have been used to determine FMs: a)
Experts: FMs could be specified by the experts, although it would be virtually
impossible to specify FM for large collection of sources. b) Algorithms: Several
algorithmic methods including Sugeno λ -measure and S-decomposable measure
have been proposed in the literature [18, 19]. This method needs the weights of
the individual sources to be defined in advance i.e. this method builds FMs from
given source densities. c) Optimisation: Various methods including evolutionary
algorithms and quadratic programming have been used to generate FMs. [17].
FMs derived using optimisation methods have been used in this work (described
in Section 2.4) as they extract weights from the training data, where the worth of
the sources are not known in advance. The information quantified by these FMs
are combined using the aggregation operators, defined in the next subsection.

2.2 Fuzzy Integral

Fuzzy Integrals (FIs) are often used as non-linear aggregation functions which
combine information from multiple sources using the worth of each subset of



sources (provided by a FM ‘g’) and the support of the question (the evidence) [4,
17]. In the context of ensemble classifiers, FIs together with FMs extend the
concept of weighted average ensembles and are able to capture the interactions
among the classifiers in the ensemble, resulting in a non-linear ensemble classi-
fier. The two most commonly used FIs in the literature include Choquet Fuzzy
Integral (CFI) and Sugeno Fuzzy Integral (SFI) [20], although in this work CFI
is in focus which is defined as follows:

Choquet Fuzzy Integral : Let h : X → [0,∞) be a real valued function
that represents the evidence or support of a hypothesis. The discrete Choquet
Fuzzy Integral (CFI) [4, 5, 17,20] can be defined as:∫

CFI

h ◦ g = CFIg(h) =

n∑
i=1

h(xπ(i))[g(Ai)− g(Ai−1)] (1)

where π is a permutation of X such that h(xπ(1)) ≥ h(xπ(2)) ≥ ... ≥ h(xπ(n)),
Ai = [xπ(1), ..., xπ(n)] and g(A0) = 0. More detail on the property of FIs and the
CFI can be found in [21]. The next subsection discusses the literature on FI-FM
based ensemble. It also presents the gap and motivation of the current study.

2.3 Related Work

In the past decade, researchers have turned their attention towards FI-FM based
ensemble classifiers, and proposed a number of FI-FM ensembles generating FM
from fuzzy densities i.e. algorithmic FM [14,18,19]. For example, Wang et al. [19]
proposed the use of posterior probabilities to obtain the fuzzy densities from the
ensemble of heterogeneous classifiers. Subsequently, the λ−measure was used to
obtain the FM from the densities followed by aggregation using the CFI. The
ensemble model was compared with five individual classifiers on the Satimage
dataset. In another work, Fakhar et al. [18] proposed the use of the training
accuracy and the fuzzy entropy (the reliability of information provided by each
information source) to generate fuzzy densities followed by aggregation using
the CFI. The proposed FI-FM based ensemble model was compared with seven
fuzzy set theory based fusions, all of which are multibiometric identification
systems [22]. The accuracy of the proposed FI-FM based ensemble outperformed
the previously used classification models on the NIST database. Similarly, Wang
et al [14] proposed a FI-FM ensemble where the fuzzy densities are generated
using the accuracy rate, error distance and the failure extent of the Neural
Network models. The model was tested on the JAFFE facial expression database
and compared with five Neural Network models.

In another set of studies, Anderson et al. [23] proposed the use of Genetic
Algorithm (GA) (optimisation method) to learn FMs. This study indicated that
FI-FM based ensemble classifiers could learn the FMs from the training dataset,
leading to efficient data-driven FMs. Hu et al. [9] extended the work and proposed
a Fuzzy Integral-Genetic Algorithm (FIGA) ensemble classifier which aggregates
results of SVM classifiers using the CFI w.r.t. FM learned through the hybrid
of Sugeno λ-measure and GA. FIGA generated the initial measure through the
use of Sugeno λ-measure followed by GA to search for an optimal FM through



the error optimisation. The resultant ensemble was compared with the Multiple
Kernel Learning Group Lasso (MKLGL) ensemble classifier on three datasets.
FIGA performed better than MKLGL on all the three datasets.

Pinar and colleagues [4–8] built upon the previous works on data-driven
FMs and proposed Decision-level Fuzzy Integral Multiple Kernel Learning (De-
FIMKL) algorithm as an alternative to algorithmic and algorithm-optimisation
hybrid FMs, which aggregates the outputs of SVM classifiers through the use of
CFI with respect to a FM learned through a regularised quadratic programming
approach. DeFIMKL was compared to FIGA, MKGL and other FI-FM based
ensemble classifiers for six datasets. FIGA and DeFIMKL were best among the
feature level fusion classifiers and decision level fusion classifiers respectively.

The researchers in all the above works concluded that FI-FM ensemble per-
formed better than individual classifiers, but they left two important questions
unanswered. First the comparison of FI-FM based ensemble with other state-of-
the-art ensemble methods and secondly the performance on multiple datasets.
In this paper we aim to answer these two questions and thus, compare FI-FM
ensemble classifiers with other state-of-the-art ensemble classifiers. Since De-
FIMKL was best among the FM-FI based ensemble classifier family for decision
level fusion, it was selected as the representative of the FI-FM based ensemble
classifiers, described in the next subsection.

2.4 Non-linear FM-FI ensemble classifier: DeFIMKL

Let fk(xi) be the normalised output generated by the kth classifier in an en-
semble on a feature vector xi. The overall decision of the ensemble is computed
by the Choquet Integral, where g encodes the relative worth of each classifier
in the ensemble. Thus, the output of the ensemble with respect to the FM g on
feature-vector xi is produced by fg(xi), mathematically described as follows,

fg(xi) =

m∑
k=1

fπ(k)(xi)[g(Ak)− g(Ak−1)], (2)

where Ak = fπ(1)(xi), ..., fπ(k)(xi), such that fπ(1)(xi) ≥ fπ(2)(xi) ≥ ... ≥
fπ(m)(xi). It can be shown that (2) can be reformulated as

fg(xi) =

m∑
k=1

[fπ(k)(xi)− fπ(k+1)(xi)]g(Ak). (3)

where fπ(m+1) = 0. Pinar et al. [4] proposed to learn FM g using a regularised
sum of squared error (SSE) optimisation, described as follows,

E2 =

n∑
i=1

(fg(xi)− yi)2 + v(u), (4)

where yi is the class label for xi and v(u) is a regularisation function. Equation
(4) can be further expanded as

E2 =

n∑
i=1

(HT
xi
∗ u− yi)2 + v(u), (5)



where yi is the actual class label for xi, u is lexicographically ordered FM g i.e.
u = (g{x1}, g{x2}, ..., g{x1 ∪ x2}, g{x1 ∪ x3}, ..., g{x1 ∪ x2 ∪ ... ∪ xm}), and

Hxi
=



.
fπ(1)(xi)− fπ(2)(xi)

.

.
0
.
.

fπ(m)(xi)− 0


, (6)

where Hxi
is of size (2m − 1) and contains all the difference terms fπ(k)(xi) −

fπ(k+1)(xi) at the corresponding locations of Ak in u. We can fold out the square
terms from (5), producing

E2 =

n∑
i=1

(uTHxiH
T
xi
u− 2yiH

T
xi
u+ y2i ) + v(u)

= (uTDu+ fTu+

n∑
i=1

y2i ) + v(u), (7)

where D and f are

D =

n∑
i=1

HxiH
T
xi
, f = −

n∑
i=1

2yiHxi

Equation (7) is a quadratic function and thus we can add the constraints on
u such that it represents a FM, producing a constraint QP. We can add the
monotonicity constraint on u according to the properties P1 and P2 as Cu ≤ 0,
such that

C =



MT
1

MT
2

.

.
MT
n+1

.

.
MT
m(2m−1−1)


, (8)

where MT
1 ..M

T
m(2m−1−1) are vectors representing monotonicity constraint such

as the one used in this work i.e. g{x1}− g{x1 ∪ x2} ≤ 0 (see [5] for more details
on C). Thus, the full QP to learn FM u is

minu 0.5uT D̂u+ fTu+ v(u), Cu ≤ 0, (0, 1)T ≤ u ≤ 1, (9)

where D̂ = 2D. We test the performance using `1 regularisation, i.e.

minu 0.5uT D̂u+ fTu+ λ||u||1, (10)



where λ is the regularisation weight. The QPs at (9) and (10) provide a method
to learn the FM u (i.e. g) from the training data. A new feature vector x′, from
a test set, can thus be classified using the following steps:

1. Compute the normalised SVM decision value fk(x′),
2. Apply the CFI at equation 1 with respect to the learned FM g,
3. Compute the class label using sign(fk(x′)).

2.5 State-of-the-art ensemble methods

Adaboost: Adaboost was introduced by Freund et al. [24] in 1997 which uses
training sets to serially train each classifier and accords higher weight to the
instances which are difficult to classify, with the objective of correctly classifying
these in the next iteration [25]. Hence, after each iteration the weights of the
misclassified instances are increased (which was initially equal for all instances)
and the weights of the correctly classified instances are decreased. Moreover
depending upon the overall accuracy, an additional weight (higher weight is
assigned to more accurate classifiers) is assigned to each individual classifier,
which is further used in the test phase. The sum of the weighted predictions is
the final output of the ensemble model. The experimental settings and the base
algorithm for the Adaboost are further discussed in the section 3.2

Bagging: Bagging (Bootstrap Aggregation) is an ensemble method introduced
by Breiman et al. in 1996 [26], which aims to increase accuracy by combining the
outputs of the classifiers in the ensemble. Sampling with replacement is used to
train all the classifiers in the ensemble and thus some of the instances may appear
more than once in the training set. Each classifier returns the class predictions
for the test instances, and combines them using majority voting over all the
class labels. Bagging is effective on unstable learning algorithms such as neural
networks and decision trees [27] and thus we have chosen decision trees as the
base classifier, discussed later in section 3.2.

Majority Voting with SVM (MJSVM): Let x be an instance and Si (where
i = 1, 2, ...k) be a set of base classifiers (Support Vector Machines) that output
class labels mi(x, cj) for each class label cj (where j = 1...n). The output of the
final classifier y(x) for instance x is given by

y(x) = maxcj

k∑
i=1

mi(x, cj). (11)

More details on the MJSVM are described in the Experimental settings sec-
tion 3.2.

Random Forest: A random forest is a collection of randomised decision trees
where each decision tree is learned from different subsets of samples. The random
forest classifier, in particular, needs two parameters: the number of classification
trees (k), and the number of prediction variables to grow the trees (m) [28]. To



Table 2: Comparison of ensemble classification methods
Dataset Name Binary Classes No. of Features No. of Instances

Dermatology {1,2,3} vs {5,6,7} 33 366
Wine {1} vs {2,3} 13 178
Ecoli {1,2,5,8} vs {3,4,6,7} 7 336
Glass {1,2,3} vs {5,6,7} 9 214
Sonar {1} vs {2} 60 208

Ionosphere {0} vs {1} 34 351
SPECTF Heart {0} vs {1} 44 267

Bupa {1} vs {2} 6 345
WDBC {M} vs {B} 30 569

Haberman {+} vs {-} 3 306
Pima {+} vs {-} 8 768

Australian {0} vs {1} 14 690
SA Heart {0} vs {1} 9 462
Satimage {1,2,3} vs {4,5,6,7} 36 6,435

Segmentation {1,2,3,4} vs {5,6,7} 19 2,310
Mammographic {0} vs {1} 5 830
Credit-approval {+} vs {-} 15 653

Ozone {0} vs {1} 72 1,848
Tic-tac-toe {+} vs {-} 9 958

Ilpd {1} vs {2} 7 583

classify a test sample each tree is traversed and a vote is assigned to the class
based on the probability score. The output is selected by choosing the mode i.e.
the output with most votes, of all the ’k’ classification outputs. Reducing the
number of predictive variables ’m’ reduces the correlation between trees, which
stops ensemble model from converging to similar generalisation error and in turn
helps in increasing the accuracy. Thus, ’m’ needs to optimised to minimise the
generalisation error.

3 Materials and Methods

3.1 Datasets and Pre-processing

20 benchmark datasets from the UCI machine learning repository [29] were se-
lected to compare the performance of the selected algorithms, as shown in Ta-
ble 2. These selected datasets contain different range of number of instances with
different type of datasets. Not all the UCI datasets are binary and thus in some
cases multiple classes are joined together for the purpose of binary classifica-
tion [30].

The next step is data pre-processing to standardise the datasets for an unbi-
ased comparison. All the data which had missing values were deleted and made
homogeneous, i.e. all numeric. This might also help to locate inconsistencies
among the data. Each dataset was processed using z-score [31] normalisation i.e.
zero mean and unit standard-deviation. No further processing techniques were
used as: 1) the aim of this work is not to report the best possible result for each



dataset, but to compare the performance of the classifiers. 2) to improve the clas-
sification results, further processing specific to each dataset wold be required,
leading to more challenging comparison [30].

3.2 Experiments

The results were produced by running each dataset for 100 trials. In each trial,
80% of the data were randomly used for training the classifiers and the remaining
20% for testing. Subsequently, the accuracies were statistically compared using
a two-sample t-test.

The Adaboost ensemble was run with 200 decision trees, Bagging also with
200 but Random Forest ensemble method with 100 decision trees. The De-
FIMKL and the MJSVM ensemble methods used the Support Vector Machine
(SVM) algorithms with Radial Basis Function (RBF) kernels as their base clas-
sifiers. Five RBF kernels with their width (σ) evenly spaced between 0.5 −
1.5/(number of features) were used for both the ensemble methods. Addi-
tionally, L1 regularisation with λ = 0.5 was used for all the datasets. The focus
of this work is to show the effect on the final output with change in the aggrega-
tion models (DeFIMKL and MJSVM), and thus the settings for the RBF kernels
and other ensemble methods were kept the same for all the datasets.

An underlying issue with ensemble classification algorithms is determining
the size of ensemble. Not much discussion is given to this parameter selection as
they are not in the scope of the paper.

4 Results and Discussions

Table 3 reports the average accuracies of the DeFIMKL, MJSVM, Adaboost,
Bagging and Random Forest ensemble classification algorithms with standard
deviations over 100 runs. A series of two-sample t-tests were conducted, which
compared the accuracy of each algorithm against that of the highest performing
algorithm for each dataset. To illustrate the results of these tests, both the
absolute highest performing algorithm, along with any further algorithms that
were found not to have a significantly lower (at p<.05) accuracy, are highlighted
in bold. Thus, the values highlighted in bold should represent the algorithm(s)
with the highest accuracy for each dataset, and will include all values that were
not found to significantly differ from the best-performing model.

The results for the comparison of FM-FI based ensemble classification algo-
rithm DeFIMKL show promising results on the selected UCI datasets. It can be
observed that DeFIMKL has good performance in 16 out of 20, whereas MJSVM,
Adaboost, Bagging and Random Forest were best in 15, 6, 10 and 7 datasets
respectively. DeFIMKL can more closely be compared with MJSVM ensemble
classification algorithm as the difference between the two algorithms is in the
decision level fusion. MJSVM was one of the best algorithm in 15 out of the
20 selected datasets, one less than DeFIMKL. However, MJSVM has an advan-
tage since it simply takes a majority vote rather than learning a (typically) very
large FM whose length scales exponentially with the number of classifiers. It can



Table 3: Accuracy comparison of ensemble classification methods for the bench-
mark datasets*

Datasets DeFIMKL MJSVM Adaboost Bagging Random
with trees Forest

Dermatology 97.35 (1.86) 97.47 (1.75) 96.69 (2.05) 97.31 (1.77) 95.47 (2.65)
Wine 99.44 (1.18) 99.42 (1.44) 96.81 (2.91) 97.78 (2.68) 96.44 (3.14)
Ecoli 96.77 (1.84) 96.84 (1.85) 95.57 (2.01) 96.34 (2.36) 95.82 (2.29)
Glass 94 (3.8) 94.16 (3.73) 93.91 (3.92) 94.28 (3.13) 92.72 (3.78)
Sonar 84.57 (4.7) 83.76 (5.4) 83.17 (5.89) 83.21 (6.2) 79.31 (6.2)

Ionosphere 94.61 (2.71) 94.34 (2.59) 90.41 (3.72) 92.76 (2.74) 91.15 (3.57)
SPECTF Heart 79.19 (4.4) 79.48 (4.18) 79.78 (4.98) 81.85 (5.01) 80.81 (4.23)

Bupa 69.88 (4.95) 69.77 (4.71) 70.93 (5.32) 70.43 (5.02) 69.77 (5.65)
WDBC 97.22 (1.64) 97.28 (1.62) 96.59 (2.03) 95.51 (1.94) 95.11 (2.15)

Haberman 73.77 (4.84) 73.92 (4.88) 73.4 (4.25) 69.34 (4.99) 69.24 (4.52)
Pima 76.12 (3.17) 76.49 (3.14) 75.97 (3.22) 76.61 (3.16) 75.97 (3.21)

Australian 85.75 (2.42) 85.85 (2.35) 85.94 (2.79) 86.96 (2.68) 86.37 (2.81)
SA Heart 71.16 (4.04) 71.66 (3.89) 69.31 (4.23) 69.39 (4.23) 68.63 (4.07)
Satimage 95.69 (0.58) 95.53 (0.56) 94.09 (0.6) 95.6 (0.47) 95.17 (0.69)

Segmentation 91.81 (1.15) 91.46 (1.08) 92.86 (1.53) 96.03 (1.1) 96.29 (1.26)
Mammographic 82.16 (3.65) 82.88 (4.02) 81.8 (5.71) 78.6 (5.39) 77.21 (5.02)
Credit-approval 86.89 (2.38) 86.66 (2.73) 86.47 (2.84) 87.4 (3.15) 87.02 (2.83)

Ozone 97.12 (0.79) 97.1 (0.8) 96.76 (0.77) 96.85 (0.85) 96.64 (0.83)
Tic-tac-toe 89.64 (2.25) 88.54 (2.39) 84.34 (2.5) 94.38 (1.85) 95.35 (1.95)

Ilpd 72.18 (3.58) 71.79 (3.58) 68.18 (4.49) 68.01 (4.38) 67.77 (4.15)

*The numbers report the average accuracies with standard deviations over 100 runs

thus be inferred that the non-linear CFI aggregation can squeeze out a better
performance at the cost of additional memory complexity, although a detailed
comparison is need to fully answer this question.

5 Conclusions and Future Works

FIs are aggregation operators which are capable of exploiting all the possible
interactions among the inputs through the use of FMs. Thus, in the context of
ensemble classification FI-FM based ensemble classifiers not only consider indi-
vidual classifier in the ensemble but all the possible combinations of classifiers
in the ensemble. FI-FM ensemble classifiers have been used in various applica-
tions over the past decade, yet in most papers, a dataset oriented comparison
with state-of-the-art ensemble classification has been made. Thus, in this paper
we addressed this gap and compared a FI-FM based ensemble classification al-
gorithm DeFIMKL with the state-of-the-art ensemble classification algorithms
Adaboost, Bagging, MJSVM and Random Forest over 20 datasets.

DeFIMKL was one of the best algorithms among 16 out of 20 selected
datasets and fell very close to the best in the remaining datasets, with the excep-
tion of the Segmentation and tic-tac-toe dataset. On comparing the accuracies,
it can be observed that DeFIMKL is either equivalent or better in performance
than MJSVM. However, MJSVM has an advantage as it reduces the memory



complexity without having to learn the huge 2n FM vector i.e. taking the ma-
jority voting of the SVMs results in similar performance to the non-linear CFI
aggregation of the SVMs.

It is important to note that the DeFIMKL and the MJSVM are only com-
pared for one base classifier i.e. SVM. Thus, in future, we aim to include different
base classifiers such as Neural Networks, Decision Trees, etc, to fully answer the
question raised in the paper. The results suggest that DeFIMKL achieves good
accuracy over a number of datasets, although a time complexity comparison is
also needed to to answer the effect of base classifiers on the FI-FM ensemble
methods. Thus, in future we also aim to compare the time complexity among
the selected ensemble classifiers.
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