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Abstract

Introduction: Recent studies have reported that HbA1c and lipid variability is useful for risk stratification in diabetes
mellitus. The present study evaluated the predictive value of the baseline, subsequent mean of at least three
measurements and variability of HbA1c and lipids for adverse outcomes.

Methods: This retrospective cohort study consists of type 1 and type 2 diabetic patients who were prescribed
insulin at outpatient clinics of Hong Kong public hospitals, from 1st January to 31st December 2009. Standard
deviation (SD) and coefficient of variation were used to measure the variability of HbA1c, total cholesterol, low-
density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglyceride. The primary
outcome is all-cause mortality. Secondary outcomes were diabetes-related complications.

Result: The study consists of 25,186 patients (mean age = 63.0, interquartile range [IQR] of age = 15.1 years, male =
50%). HbA1c and lipid value and variability were significant predictors of all-cause mortality. Higher HbA1c and lipid
variability measures were associated with increased risks of neurological, ophthalmological and renal complications,
as well as incident dementia, osteoporosis, peripheral vascular disease, ischemic heart disease, atrial fibrillation and
heart failure (p < 0.05). Significant association was found between hypoglycemic frequency (p < 0.0001), HbA1c
(p < 0.0001) and lipid variability against baseline neutrophil-lymphocyte ratio (NLR).

Conclusion: Raised variability in HbA1c and lipid parameters are associated with an elevated risk in both diabetic
complications and all-cause mortality. The association between hypoglycemic frequency, baseline NLR, and both
HbA1c and lipid variability implicate a role for inflammation in mediating adverse outcomes in diabetes, but this
should be explored further in future studies.
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Introduction
There is an increasing global prevalence of diabetes
mellitus, with over 400 million people around the world
currently suffering from the disease [1]. Diabetes
mellitus can lead to a variety of complications affecting
the cardiovascular, neurological, renal and other systems,
placing significant burdens on healthcare systems glo-
bally [2–4]. Given the aging population, an increasing
proportion of diabetic patients are elderly with multiple
comorbidities, leading to a call for a more personalized
and patient-centered approach in diabetic management
over recent years [5–7]. This raises the need for new
parameters for monitoring diabetes, other than blood
glucose, to improve the sensitivity towards the disease
progression across different organ systems [8–12].
Diabetic patients who are on insulin are more advanced
in the disease life course, and as such are at a higher risk
of complications and death. Recently, HbA1c and lipid
variability have attracted attention in its potential use for
diabetic monitoring and risk stratification for adverse
outcomes. However, existing studies focused on cardio-
vascular events and mortality [13–15]. Although the
exact pathways of pathogenesis by HbA1c and different
lipid variability are unclear and appear to be divergent,
the resulting chronic inflammation and endothelial dys-
function may have led to the presentation of systemic
complications in diabetes [16–18]. Other suggest that
raised variability in biomarkers reflects lifestyle changes,
incomplete treatment adherence, pharmacotherapy pre-
scribed, and generalized frailty [19–21]. Random survival
forest (RSF) is a class of machine learning algorithms for
survival analysis [22]. The advantage of RSF is that it can
reduce the variance and bias within the input variables
and automatically consider nonlinear effects and high-
level interactions among these variables. Thus, RSF can
be applied to select and rank variables based on their
importance. In this study, we aim to evaluate the pre-
dictive value of glycemic and lipid variability towards a
wide range of adverse outcomes in diabetes and that risk
prediction is more accurate using RSF.

Methods
Study population
The present study is a territory-wide observational study
that collects data from 43 public hospitals in Hong
Kong. The study was approved by The Joint Chinese
University of Hong Kong – New Territories East Cluster
Clinical Research Ethics Committee. It was performed in
accordance with the Declaration of Helsinki as well as
relevant guidelines and regulations. The cohort consists
of diabetic patients who have been prescribed insulin
from outpatient clinics of any public hospitals managed
by the Hong Kong Hospital Authority between January
1st to December 31st, 2009. Patients were not required

to be on insulin for a minimum period. Through the
Clinical Data Analysis and Reporting System (CDARS), a
healthcare database that integrates patient information
across all publicly-funded hospitals and their associated
ambulatory and primary care clinics in Hong Kong to
establish holistic medical records, the cohort was
identified, and the data was extracted. The system has
been utilized for epidemiological research by multiple
research teams, including our team, in the past [23–26].

Patient data
Clinical outcomes, patient characteristics and pharmaco-
logical treatment details were extracted. The patient out-
comes from January 1st, 2009 to December 31st, 2019 were
extracted. Patients were followed up from January 1st, 2009
to either death, or December 31st, 2019. The primary out-
come is all-cause mortality, and the secondary outcomes, as
defined by their International Classification of Disease,
Ninth Edition (ICD-9) codes (Supplementary Table 1), in-
clude: 1) neurological, ophthalmological and renal diabetic
complications, 2) dementia, 3) osteoporosis, 4) peripheral
vascular disease (PVD), 5) intracranial hemorrhage, 6)
ischemic stroke and transient ischemic attack (TIA), 7)
ischemic heart disease (IHD), acute myocardial infarction
(AMI) and heart failure (HF), 8) atrial fibrillation (AF).
The extracted parameters of patient details were

summarized in Supplementary Table 2. The duration of
diabetes at baseline was extracted based on the following
three criteria, selected based on whichever is earlier: 1)
earliest ICD-9 coding of diabetes mellitus; 2) earliest
HbA1c > 6.5 mmol/L; 3) earliest fasting blood glucose >
7 mmol/L. The mean daily dose of anti-diabetic and
cardiovascular medications drug classes was reported.
The mean daily dose is derived from multiplying the
daily dose frequency against the drug dose, then
averaged by all patients that were prescribed drugs of
the specific drug class. In terms of biochemical data,
baseline neutrophil-lymphocyte ratio (NLR) was derived
from dividing the baseline absolute neutrophil count by
the lymphocyte count. To assess glycemic and lipid vari-
ability, data for the following variables between January
1st, 2004 and December 31st, 2008 were obtained: 1)
HbA1c, 2) total cholesterol, 3) high-density lipoprotein
cholesterol (HDL-C), 4) low-density lipoprotein choles-
terol (LDL-C), 5) total triglyceride. LDL-C includes both
findings from direct and calculated measurements.
Furthermore, the frequency of hypoglycemic episodes
across the entire follow-up period from laboratory tests
taken during outpatient, inpatient and accident and
emergency settings was extracted. Each episode is
defined by random or fasting blood glucose < 3.9 mg/
mmol. Additionally, the presence of anemia, defined by
hemoglobin < 13 g/dL and < 12 g/dL for male and female
patients respectively, were extracted. The presence of
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iron deficiency, defined by ferritin < 67.4 pmol/L, was
also extracted. Only patients with three or more mea-
surements for the specific parameter were included for
the variability analysis of the respective parameter.

Statistical analysis
Temporal variability was examined using the derivation
of standard deviation (SD) and coefficient of variation
(CV). CV was given by the temporal SD divided by the
temporal mean, then multiplied by 100. Univariate Cox
regression was applied to identify significant predictors
from demographic variables, biochemical parameters,
and anti-diabetic agents prescribed for the various
adverse outcomes. GLP agonists and meglitinide were
excluded from the analysis due to the limited number of
patients prescribed with the drugs. The hazard ratio
(HR) and 95% confidence interval (CI) were presented
for each predictor. Patients with missing data were
excluded from the analysis for that particular variable.
Predictors with P-value < 0.10 under univariate analysis
for all-cause mortality is then selected to undergo multi-
variate Cox regression. Patients were excluded from the
multivariate analysis if they do not have at least three
measurements for the assessment of variability, or if
there are missing data in any of the significant predictors
found under univariate cox analysis.
To examine the inter-relationship between HbA1c

variability, intermittent hypoglycemia, and chronic in-
flammation, Gaussian, and Poisson regression were used
to assess the correlations of HbA1c variability against
baseline NLR and hypoglycemia frequency respectively.
Gaussian regression was also used to assess the association
between the lipid parameters, and lipid indices against
baseline NLR. Gaussian regression is a non-parametric
method to assess the association between two continuous
variables, hence suitable to assess the inter-relationship
between HbA1c/ lipid variability and baseline NLR.
Poisson regression is a model that allows the assessment
between a count variable, in this case hypoglycemic
frequency, and continuous variables. Odds ratio (OR) is
reported for both Poisson and Gaussian regression. Statis-
tical significance is defined as P-value < 0.05. Statistical
analyses were performed using RStudio software (Version:
1.1.456) and Python (Version: 3.6).

Development of a regularized and weighted random
survival forests model
Random survival forests (RSF) [22] is machine-learning
modelling technique that can capture complex survival
data structures and overcome the restrictive assumption
of Cox proportional model to better uncover the nonlin-
ear relationships between covariates and the time of
event outcome. In contrast, assumptions about special-
ized basis functions in Cox models are not efficient for

assessing the nonlinear effects by transformations or
expanding the design matrix. The RSF model is con-
structed with an ensemble tree method for the analysis
of right-censored survival data, extended from Breiman’s
random forests. It is an efficient ensemble learning
method by injecting randomization into base learning
processes and has become one of the most efficient
models in survival analysis.
In this study, the time for RSF survival learning is

defined as the duration from baseline date to event
presentation or mortality/study end date if no event
presentation before mortality and study end. More
specifically, as shown in Fig. 1 for the workflow of
regularized and weighted random survival forests model
that we developed to predict mortality and complication
outcomes, the regularized and weighted RSF model can
estimate the forest hazard survival function with an aver-
aging procedure through tree ensembling approach. The
ensembling procedure assigns equal weights on different
survival decision trees. In this study, we consider the
heterogeneity among the multiple ensembled survival
decision trees to give their predictions [27] and propose
to fill this gap by adopting a weighted averaging strategy
as shown in Fig. 1 to assign different weights to different
survival trees. The assigned weights for different survival
trees were learned with the objective of minimizing
the overall loss function (e.g., log likelihood we used in
this study). To avoid the problem of overfitting, we
adopted a L2 regularization strategy and the optimal
regularization strength parameter for the log likelihood
loss function in the model. The regularization parameters
were determined by five-fold cross validation on the train-
ing set (80% patients in the cohort). Different values for
the weighting and regularization parameters were tested,
and we selected those with the best results. In this way, we
obtain a regularized and weighted RSFs which consider
heterogeneity among those survival decision trees by
weighting strategy and avoid overfitting by adding L2
regularization to predict the outcomes of mortality and
different complications.
In addition, with the developed RSF machine learning

model, we can provide interpretations about the learning
results by estimating the relative importance and min-
imal depth approaches in the learned survival trees for
predicting the mortality and complication outcomes. A
variable importance approach was adopted based on
standard bootstrap theory to investigate the predictive
strength of the associated risk factors. The importance
value for the variable of interest is the prediction error
for the original ensemble event-specific cumulative
probability function (obtained when each out-of-bag in-
stance is just dropped down its in-bag competing risks
tree) subtracted from the prediction error for the new
ensemble obtained using randomizing assignments of
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the variable [28, 29]. The prediction errors are computed
using squared loss. Larger importance value indicates
higher predictive strength of the variable, whereas zero
or negative values identify nonpredictive variables.
Minimal depth approach [30] is an alternative method
to measure the predictive strength of variables in
random survival forests model, which ranks variables
through the inspection of the forest construction process

since in tree structured models’ variables with high im-
pact on the prediction are those that most frequently
split nodes nearest to the root node where they partition
the largest samples (higher impact). Minimal depth
approach identifies important variables by averaging the
depth of the first split for each variable over all trees
within the final forest to predict the mortality and differ-
ent complication outcomes.

Fig. 1 Workflow of regularized and weighted random survival forests model
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Significant variables from univariate Cox regression
were used as inputs into the regularized and weighted
RSF model. The performance of the model is compared
with several baseline models, including the RSF and the
Cox model. Missing values are “-1” padded. The model
is trained on the training set with a five-fold cross valid-
ation approach. Model’s discrimination performance is
accessed by Harrell’s C-index, which is a generalization
of the area under the receiver operating characteristic
curve (AUC) that can handle right-censored data to esti-
mate the efficiency of the model at ranking survival
times. Comparisons on the performance of the model
with several baselines including RSF and Cox regression
model were also provided. The codes have been
uploaded to Github (https://github.com/jadonzhou/
Glycemic-and-lipid-variability-for-DM-prediction.git).

Results
Clinical and biochemical characteristics
The study cohort consists of 25,186 patients (mean age =
63.0, interquartile range [IQR] of age = 15.1 years, male =
50.4%, type 1 diabetes mellitus = 7.37%, baseline diabetes
duration = 2.84 ± 2.54 years, total duration = 69,332 patient-
years, daily insulin dosage: 20.2 ± 12.6 units). A graphical
illustration of the methodology is shown in Fig. 1. Tables 1
and 2 displays the discrete and continuous baseline charac-
teristics of the study cohort respectively. The most preva-
lent pre-existing comorbidity is hypertension (35.6%),
followed by ophthalmological conditions (32.2%), and IHD
(16.2%). Other baseline details include drug descriptions
are shown in the Supplementary Appendix.

Anti-diabetic drug classes and outcomes
Different classes of anti-diabetic agents are associated
with adverse outcomes differently. Thiazolidinedione
lowers the risk of neurological complications (HR =
0.718, 95% CI = [0.539, 0.956], p = 0.023) and HF (HR =
0.72, 95% CI = [0.54, 0.96], p < 0.0001), whilst biguanide
only lowers the risk of HF (HR = 0.62, 95% CI = [0.56,
0.68], p < 0.0001). The risk for adverse cardiovascular
events were raised by sulphonylurea, biguanide, and
alpha-glucosidase inhibitor. Sulphonylurea is associated
with an increased risk of renal complications (HR = 1.29,
95% CI = [1.22, 1.36], p < 0.0001) and dementia (HR =
1.22, 95% CI = [1.08, 1.39], p = 0.002), whilst biguanide is
related to ophthalmological complications (HR = 1.09,
95% CI = [0.937, 1.26], p < 0.0001).

Adverse outcome and predictors
The characteristics of the adverse outcomes and
biochemical predictors are detailed in Tables 3 and 4
respectively. Anemia occurred in 39.1% (n = 9848) of the
cohort, with iron deficiency presented in 9.76% of the
2100 patients with ferritin measured. Throughout the

study period, 12,372 incidences of death took place
(male = 52.6%, age of death = 69.7 ± 12.0). The most
common adverse outcomes were death (49.1%), renal
(21.4%), and ophthalmological diabetic complications
(18.7%). Ophthalmological (onset age = 62.8 ± 11.9),
neurological (onset age = 64.2 ± 11.9) and renal diabetic
complications (onset age = 66.5 ± 12.2) had the earliest
onset, whilst osteoporosis (onset age = 72.1 ± 11.3) and
dementia (onset age = 74.4 ± 8.30) occurred latest on
average, patients in the present cohort experience 1.74 ±
1.72 adverse outcomes.
Multivariate Cox regression analysis was applied to

7913 patients from the study cohort. The multivariate
Cox regression for all-cause mortality is presented in
Table 5. Mean HbA1c was found to be protective against
mortality in univariate analysis (HR = 0.964, p < 0.0001),
but became predictive on multivariate analysis. However,
after adjusting for hematological malignancies, iron

Table 1 Discrete Baseline Characteristics

Patient
Percentage (%)

Demographic

Male 50.4

Type 1 Diabetes Mellitus 7.37

Comorbidities

Hypertension 35.6

Ophthalmological Complications 32.2

Ischemic Heart Disease 16.2

Ischemic Stroke and Transient Ischemic Attack 11.8

Heart Failure 9.8

Chronic Renal Disease 8.8

Chronic Liver Disease 5.8

Acute Myocardial Infarction 5.1

Chronic Obstructive Pulmonary Disease 3.5

Anti-diabetic Medication

Biguanide 57.6

Sulphonylurea 41.5

Thiazolidinedione 3.5

Alpha-Glucosidase 3.0

Dipeptidyl Peptidase-4 Inhibitor 0.4

Glucagon-Like Peptide-1 Receptor Agonist < 0.1

Cardiovascular medication

Angiotensinogen-Converting Enzyme
Inhibitor/ Angiotensin-Receptor Blocker

59.8

Calcium Channel Blocker 43.6

Lipid-Lowering Agents 42.4

Aspirin 36.2

Diuretic 29.2

Beta-Adrenergic Receptor Blocker 28.1
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Table 2 Continuous Baseline Characteristics

Mean Standard Deviation

Urinalysis

Albumin/Creatinine Ratio (mg/mmol) 38.1 121

Creatinine Clearance (ml/min) 54.1 35.9

Spot Protein (g/d) 1.17 1.96

Spot Albumin (mg/L) 170 545

Spot Glucose (mmol/L) 12.5 6.68

24-h Total Protein (g/d) 1.17 1.97

24-h Total Albumin (mg/d) 271 695

Baseline Blood Test

Fasting Glucose (mmol/L) 8.96 3.75

Random Glucose (mmol/L) 12.3 7.47

HbA1c (%) 8.56 1.94

Total Cholesterol (mmol/L) 4.74 1.12

High Density Lipoprotein (HDL) Cholesterol (mmol/L) 1.24 0.403

Calculated Low Density Lipoprotein (LDL) Cholesterol (mmol/L) 2.74 0.927

Direct LDL Cholesterol (mmol/L) 2.80 0.925

Triglyceride (mmol/L) 1.80 1.72

Renal Function Test

Creatinine (umol/L) 144 159

Sodium (mmol/L) 139 3.33

Potassium (mmol/L) 4.31 0.506

Urate (umol/L) 0.408 0.129

Urea (mmol/L) 8.82 6.04

Liver Function Test

Albumin (g/L) 39.2 5.56

Alanine Aminotransferase (ALT) (U/L) 24.3 21.6

Alkaline Phosphatase (ALP) (U/L) 85.2 47.0

Total Bilirubin (umol/L) 11.3 8.98

Total Protein (g/L) 74.4 7.13

Complete Blood Count

Hemoglobin (g/dL) 12.5 1.99

Mean Corpuscular Hemoglobin (MCH) (pg) 29.7 2.95

Mean Corpuscular Hemoglobin Concentration (MCHC) (g/dL) 34.0 0.952

Mean Corpuscular Volume (MCV) (fL) 87.2 7.44

Hematocrit (L/L) 0.376 0.539

Basophil (×109/L) 0.029 0.042

Eosinophil (×109/L) 0.223 0.235

Lymphocyte (×109/L) 1.87 0.867

Monocyte (×109/L) 0.538 0.266

Neutrophil (×109/L) 5.47 2.79

Platelet (×109/L) 256 83.3

Red Blood Cell (× 1012/L) 4.26 0.740

White Blood Cell (×109/L) 8.09 2.91
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deficiency status and lipid-lowering drug use (n = 652),
HbA1c mean and variability did not remain significant
predictors. Amongst the lipid predictors (n = 7913), only
HDL-C mean (HR = 0.60, 95% CI = [0.51, 0.71], p < 0.0001)
and SD (HR= 2.18, 95% CI = [1.51, 3.14], p < 0.0001)
remained significant after adjusting for cancer status and
lipid-lowering agent use.
In terms of prediction of secondary outcomes, the

predictors were similar to those for all-cause mortality and
are summarized in Supplementary Table 3. HbA1c variabil-
ity is predictive of the adverse outcomes besides osteopor-
osis, ischemic stroke, and AMI. HbA1c CV is mildly
protective of IHD (HR= 0.996, 95% CI = [0.993, 1.00], p =
0.046). In terms of lipid predictors, elevated mean total
cholesterol is predictive of most adverse outcomes, except
for AF (HR= 0.889, 95% CI = [0.838, 0.943], p < 0.0001).
Increased mean HDL-C lowers the risk for adverse out-
comes, except for osteoporosis (HR = 1.78, 95% CI = [1.29,
2.44], p < 0.001). Heterogenous predictions were noted for
HDL-C variability and mean LDL-C. By contrast, increased
LDL-C variability predicts an increased risk for various
adverse outcomes. In terms of the predictiveness of trigly-
ceride level, both its value and variability were found to be
predictive of different adverse outcomes, except for CV of
triglyceride being protective against osteoporosis (HR =
0.990, 95% CI = [0.981, 0.998], p = 0.020). Baseline NLR and
frequency of hypoglycemic episodes were predictive for a
similar set of adverse outcomes, where they increase the
risk for PVD), HF, and all-cause mortality, but were associ-
ated with a lower risk for ophthalmological complications.

The relationship between NLR, frequency of
hypoglycemic episodes and glycemic variability
The average number of hypoglycemic episodes experienced
is 0.54 ± 1.38, and the mean baseline NLR is 3.80 ± 4.16.

Baseline mean value of HbA1c was 8.56 ± 1.94%. Variabil-
ity, represented by SD and CV, are 1.28 ± 0.851 and 14.5 ±
8.76 respectively. HbA1c and lipid variability were signifi-
cantly associated with baseline NLR with cancer status and
aspirin use adjusted, and the associations were summarized
in Table 6. Similarly, HbA1c variability was also found to
be positively correlated with hypoglycemic frequency (SD:
OR = 1.13, 95% CI = [1.12, 1.16], p < 0.0001; CV: OR = 1.02,
95% CI = [1.02, 1.02], p < 0.0001). Additionally, triglyceride
SD is positively correlated with both LDL-C (SD: OR =
1.86, 95% CI = [1.78, 1.93], p < 0.0001; CV: OR = 1.02, 95%
CI = [1.02, 1.02], p < 0.0001) and HDL-C (OR = 2.92, 95%
CI = [2.48, 3.43], p < 0.0001) variability. After exclusion of
calculated LDL-C measurements, the significant associ-
ation between LDL-C variability and triglyceride SD
remains (SD: OR = 1.90, 95% CI = [1.79, 2.02], p < 0.0001;
CV: OR = 1.02, 95% CI = [1.02, 1.02], p < 0.0001).

Survival learning results
A regularized and weighted RSF model was devised, with
significant variables identified from univariate Cox re-
gression inputted. This yielded the importance ranking
and minimal depth of each variable in the tree structure
of the model, as shown in Fig. 2 a for mortality, renal,
PVD, and neurological complications, Fig. 2 b for oph-
thalmological, ischemic stroke, AF, and HF complica-
tions, and Fig. 2 c for ICH, IHD, AMI, and osteoporosis
complications. The corresponding decision rules derived
by using the regularized and weighted random survival
forests model were generated based on the out-of-bag
validation dataset (N = 5037; Fig. 3 a, b and c). The
minimal depth assumes that variables with high impact
on the prediction are those that most frequently split
nodes nearest to the root node, where they partition the
largest samples of the population. Minimal depth

Table 3 Adverse Outcome Characteristics

Outcome Number of events Incidence rate Age of onset Number of pre-existing
comorbidities

Mean onset in
follow-up (days)

Mortality 12,372 49.12% 69.7 ± 12.0 2.71 ± 1.66 3056 ± 1396

Renal 5389 21.40% 66.5 ± 12.2 3.51 ± 1.67 3500 ± 1367

Ophthalmological 4705 18.68% 62.8 ± 11.9 3.11 ± 1.81 3590 ± 1296

Ischemic Heart Disease 4532 17.99% 66.8 ± 11.6 3.70 ± 1.74 3700 ± 1119

Acute myocardial infarction 3178 12.62% 68.3 ± 11.1 4.15 ± 1.59 3882 ± 859

Neurological 1861 7.39% 64.2 ± 11.9 4.03 ± 1.77 3952 ± 835

Atrial Fibrillation 1846 7.33% 70.4 ± 10.3 3.75 ± 1.74 3993 ± 715

Heart Failure 1810 7.19% 68.9 ± 11.4 4.61 ± 1.45 3993 ± 711

Ischemic Stroke 1350 5.36% 69.2 ± 10.9 3.55 ± 1.79 4037 ± 634

Intracranial Hemorrhage 1049 4.17% 68.4 ± 11.7 3.45 ± 1.67 4075 ± 530

Dementia 952 3.78% 74.4 ± 8.30 3.37 ± 1.68 4077 ± 535

Peripheral vascular disease 711 2.82% 66.6 ± 12.4 4.39 ± 1.85 4094 ± 505

Osteoporosis 275 1.09% 72.1 ± 11.3 3.01 ± 1.68 4146 ± 299
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measures important risk factors by averaging the depth
of the first split for each variable over all trees within the
forest. Smaller minimal depth values indicate that the
variable separates large groups of observations, and
therefore has a large impact on the prediction.
The performance of the model for survival analysis of

each complication outcome is compared with baselines
including RSF and Cox models, based on a five-fold
cross-validation approach (Table 7). According to the
evaluation metric of Harrell’s C-index, our model out-
performs both RSF and Cox for survival analysis of all-
cause mortality, renal complications, PVD, ischemic
stroke, AF, HF, ICH, IHD, AMI, and osteoporosis com-
plications, and almost the same for dementia, neuro-
logical, ophthalmological, and complications. The model

also shows higher prediction accuracy according to
evaluation metrics of precision, recall, and AUC.

Discussion
There are several major findings of the present study: 1)
HbA1c and lipid variability can be used to evaluate the
risk for a diverse range of adverse outcomes in diabetes;
2) HbA1c variability is positively associated with in-
creased NLR and frequency of hypoglycemia episode; 3)
there are interactions present between the value and
variability of different lipid parameters.
Although HbA1c and lipid indices were assumed to

show a positive linear correlation with mortality risk,
there is emerging evidence suggesting that the mortality
risk increases at the extreme ends of the parameters.
Currie et al. first demonstrated the increase in cardiovas-
cular event incidence and all-cause mortality under both
low and high mean HbA1c in 2010, which explained the
increased mortality under aggressive glycemic control in
clinical trials [31, 32]. Subsequent cohort studies pro-
vided further evidence for the J-shaped association be-
tween mean HbA1c and all-cause mortality [33–35].
Furthermore, recent studies have found that similar to
HbA1c, a U-shaped relationship is demonstrated be-
tween the lipid indices and adverse outcomes [36–38].
These findings explain the “reverse epidemiology” ob-
served in both the present study and existing studies,
where risk factors for the outcome lower the event risk
instead, such as the lowering of intracranial hemorrhage
and AF risk under raised mean LDL-C in this cohort
[39]. Overall, the J-shaped associations justify the
heterogenous predictions by mean HbA1c and lipid
indices.
Heterogeneity is also demonstrated in the prediction

findings of HDL-C variability. Currently, research on the
predictive value of HDL-C variability is limited and
yields conflicting findings. Whilst some studies report
greater risk for adverse events under increased HDL-C
variability, others reported insignificant findings [40–44].
Furthermore, as suggested by prior studies, the reflection
of lifestyle changes by HDL-C variability may be a con-
tributing factor, where the difference in the effect of
interaction between lifestyle factors such as smoking, al-
coholism, and physical activity lead to the varied predict-
ive value of HDL-C variability across different outcomes
[44, 45]. Since SD is positively correlated to the mean,
given the value and variability of HDL-C yields opposite
effects, the effects of variability may be reduced when
SD is used as a measure of variability [40]. The
standardization of variability measures can encourage
the application of parameters of variability into clinical
practice.
Although the mechanism behind HbA1c and lipid

variability is unclear, several hypotheses were raised and

Table 4 Biochemical Predictor Characteristics

Predictors Mean Standard Deviation

HbA1c

Baseline (%, n = 24,064) 8.56 1.94

Mean (%, n = 22,625) 8.64 1.36

Standard Deviation 1.28 0.851

Coefficient of Variation 14.5 8.76

Total Cholesterol (TC)

Baseline (mmol/L, n = 23,532) 4.74 1.12

Mean (mmol/L, n = 20,445) 4.82 0.871

Standard Deviation 0.663 0.459

Coefficient of Variation 13.5 7.95

High Density Lipoprotein-Cholesterol (HDL-C)

Baseline (mmol/L, n = 23,178) 1.24 0.402

Mean (mmol/L, n = 19,303) 1.25 0.362

Standard Deviation 0.161 0.100

Coefficient of Variation 1.24 0.403

Low Density Lipoprotein-Cholesterol (LDL-C)

Baseline (mmol/L, n = 32,075) 1.24 0.913

Mean (mmol/L, n = 18,803) 2.78 0.734

Standard Deviation 0.553 0.359

Coefficient of Variation 20.3 12.5

Triglyceride

Baseline (mmol/L, n = 23,518) 1.80 1.72

Mean (mmol/L, n = 20,398) 1.86 1.43

Standard Deviation 6.90 1.15

Coefficient of Variation 30.8 17.8

Other Tests

Baseline NLR 3.80 4.16

Baseline Hemoglobin Count (g/dL) 12.5 1.99

Hypoglycemia Frequency 0.537 1.38

The number of patients included for the calculation of mean is the same as
the number of patients included for the calculation of standard deviation and
coefficient of variation
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Table 5 Multivariate Cox Regression of All-Cause Mortality

Predictor Hazard Ratio (HR) 95% Confidence Interval (CI) P-Value

Age 1.04 [1.03, 1.04] < 0.0001

Male 1.18 [1.11, 1.27] < 0.0001

Diabetes Duration 0.956 [0.943, 0.970] < 0.0001

HbA1c

Mean 1.09 [1.04, 1.15] < 0.001

Standard Deviation 1.10 [0.825, 1.47] 0.511

Coefficient of Variation 0.998 [0.973, 1.02] 0.869

Total Cholesterol (TC)

Mean 1.14 [0.994, 1.30] 0.061

Standard Deviation 0.787 [0.501, 1.24] 0.299

Coefficient of Variation 1.02 [1.00, 1.05] 0.050

High Density Lipoprotein-Cholesterol (HDL-C)

Mean 0.603 [0.513, 0.708] < 0.0001

Standard Deviation 2.19 [1.52, 3.14] < 0.0001

Low Density Lipoprotein-Cholesterol

Mean 0.916 [0.811, 1.03] 0.157

Standard Deviation 1.19 [0.866, 1.64] 0.281

Coefficient of Variation 0.992 [0.983, 1.00] 0.062

Triglyceride (TG)

Baseline 0.996 [0.979, 1.01] 0.694

Mean 1.06 [0.993, 1.14] 0.080

Standard Deviation 0.932 [0.851, 1.02] 0.126

Coefficient of Variation 0.998 [0.995, 1.00] 0.190

Other Tests

Baseline Neutrophil-Lymphocyte Ratio 1.01 [1.01, 1.02] < 0.001

Baseline Hemoglobin Count 0.911 [0.889, 0.934] < 0.0001

Baseline Anemia 1.08 [0.981, 1.19] 0.119

Hypoglycemia Frequency 1.03 [1.01, 1.05] 0.002

Anti-Diabetic Agent

Sulphonylurea 1.08 [1.02, 1.16] 0.015

Biguanide 0.616 [0.575, 0.660] < 0.0001

Dipeptidyl peptidase-4 Inhibitor 0.706 [0.424, 1.18] 0.181

Thiazolidinedione 0.885 [0.761, 1.03] 0.110

Table 6 Significant associations between HbA1c/ lipid variability with baseline neutrophil-lymphocyte ratio

HbA1c/ Lipid Variability Hazard ratio [95% Confidence Interval] P-Value

HbA1c: SD 1.01 [1.01, 1.01] < 0.0001

HbA1c: CV 1.13 [1.10, 1.17] < 0.0001

HDL-C: SD 1.00 [1.00, 1.00] < 0.0001

HDL-C: CV 1.19 [1.15, 1.23] < 0.0001

Triglyceride: CV 1.08 [1.01, 1.16] 0.019

Total Cholesterol: SD 1.01 [1.00, 1.01] < 0.0001

Total Cholesterol: CV 1.10 [1.07, 1.13] < 0.0001

The analysis was adjusted to cancer status and aspirin use
SD Standard deviation, CV Coefficient of variation, HDL-C High density lipoprotein-cholesterol
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explored. Large scale cohort studies have demonstrated
the association between HbA1c variability with all-cause
mortality and other adverse outcomes [46–48]. In
terms of HbA1c variability, it is proposed that its
relationship to intermittent hypoglycemia underlies the
increased mortality risk. Indeed, our team recently re-
ported a significant relationship between the frequency
of hypoglycemia episodes and HbA1c variability, with
the latter predicting all-cause mortality, cardiovascular-
specific mortality and various diabetic-related compli-
cations [49]. Besides mortality due to hypoglycemia, a
common and lethal complication in diabetes, intermit-
tent hypoglycemia induces a higher level of oxidative
stress [50, 51], causing endothelial dysfunction and
chronic inflammation, ultimately leading to increased
mortality risk [52–54]. It has been reported that both
acute and chronic glycemic variability can induce oxi-
dative stress and lead to chronic inflammation [55]. In-
deed, increased metabolic variability can induce
damage to different organs, leading to complications
such as heart failure [56]. The present study provides
supporting evidence for the hypothesis by demonstrat-
ing a significant association between HbA1c variability,
hypoglycemic frequency, and baseline NLR. Other than
NLR, further inflammatory markers such as C-reactive
protein were found to be associated with HbA1c vari-
ability [57]. Similar to HbA1c, the mechanism for lipid
variability to increase mortality risk is speculated to be
associated with induced oxidative stress. It is speculated
that large fluctuations in both LDL-C and HDL-C can

lead to plaque instability, therefore releases atherogenic
substances and therefore increase mortality risk [19,
58]. The significant association between baseline NLR
and variability across different lipid indices provide in-
sights towards the proposed underlying mechanisms
between lipid variability and chronic inflammation.
Additionally, the increased variability across biomarkers
may reflect generalized frailty [19].
The effects of anti-diabetic agents on the risk of

adverse events in diabetic patients have been well stud-
ied [59]. In agreement with the present study, sulphony-
lurea use has been reported to raise the risk of mortality,
cardiovascular events, and renal impairment significantly
[60–62]. It should be noted that the use of add-on therapy
to insulin may indicate more severe diabetes or used to
slow the progression of complications. Hence the drug-use
is the effect, rather than the cause of the adverse outcome.
This may explain the increased ophthalmological complica-
tion and cardiovascular event risk in biguanide and alpha-
glucosidase inhibitors in the present study, contrary to the
cardiovascular protective effects reported by existing studies
[63–65]. Additionally, the insignificant effect of DPP4
inhibitors and thiazolidinedione may be attributed to the
fewer number of patients prescribed with these drugs in the
present cohort. Previously, thiazolidinediones have been as-
sociated with a greater risk of heart failure. In our study,
this was associated with a lower risk of heart failure on
univariate Cox regression, but not after propensity score
matching for other antidiabetic drugs (unpublished results).
Nevertheless, thiazolidinedione has been associated with

Fig. 2 a Importance ranking and minimal depth of significant univariable variables to predict mortality, renal, PVD, and neurological
complications using regularized and weighted random survival forests model. b Importance ranking and minimal depth of significant univariable
variables to predict ophthalmological, ischemic stroke, AF, and HF complications using regularized and weighted random survival forests model. c
Importance ranking and minimal depth of significant univariable variables to predict ICH, IHD, AMI, and osteoporosis complications using
regularized and weighted random survival forests model
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beneficial effects such as reducing the incidence of atrial
fibrillation [66], which are explicable by reverse remodeling
[67–70]. Finally, the annualized mortality rate in our study
was 5.87% in our cohort, compared to 3.4% in another local
study [71]. The reason is that our study cohort included
only diabetic patients who received insulin therapy, which
would invariably include those at the highest risk. More-
over, the inclusion of patients who were already on insulin
therapy in 2009 meant that few patients benefited from
newer anti-diabetic drug classes such as SGLT2 inhibitors,
which have been associated with lower mortality [72].

Statistical methods such as classification and regression
trees are commonly used and is familiar for clinicians but
are limited by high variance and poor performance [73, 74].
These can be overcome by RSF, which builds hundreds of
tree branches and outputs the results by voting [28]. RSF
reduces variance and bias by using all the collected vari-
ables, then automatically assess the nonlinear effects and
complex interactions amongst them [22]. RSF is fully non-
parametric, including the effects of the treatments and
predictor variables, whereas traditional methods such as
Cox model utilize a linear combination of attributes [75].

CKDNo Yes BiguaindeYes No

Yes No
Yes No

Mortality

Renal complications

IHDNo Yes

Yes No

Peripheral vascular disease

Neurological complications

Ophthalmological complications Ischaemic stroke

Atrial fibrillation

CKDNo Yes

Heart failure

Intracerebral haemorrhage Ischaemic heart disease

IHD

NoYes

NoYes

IHD

NoYes

NoYes

Acute myocardial infarction

Male

Yes No
HTN

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Biguinide

Yes No

Osteoporosis

Fig. 3 a Main tree based decision rules to predict mortality, renal, PVD, and neurological complications using regularized and weighted random
survival forests model. b Main tree based decision rules to predict ophthalmological, ischemic stroke, AF, and HF complications using regularized
and weighted random survival forests model. c Main tree based decision rules to predict ICH, IHD, AMI, and osteoporosis complications using
regularized and weighted random survival forests model
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RSF has been applied in serval risk stratification
models for different diseases [76–82], and has been
shown to outperform classical statistical methods,
such as the Cox-proportional hazards models [76, 83].
Our study demonstrates the principle that machine

learning algorithms can further improve risk prediction of
time-to-event (mortality and complications) in diabetic
patients receiving insulin therapy. The generated import-
ance rankings and minimal depths of prognostic risk vari-
ables can be applied in clinical practice as an easy-for-use
complication score for early survival risk identification.
Through complication-specific risk stratification amongst
diabetic patients, a personalized management approach
with close monitoring for specific complications that indi-
vidual patients are high risk of can be adopted.

Strengths and limitations
The major strengths of the present study include: 1) the
effects of clinical and biochemical parameters on adverse
effects were assessed using a large population-based data-
set; 2) the risk for a diverse range of adverse events in dia-
betes is evaluated; 3) interrelations between chronic
inflammation and both HbA1c and lipid variability is ex-
plored to provide insights on the underlying mechanisms
in the pathogenesis; 4) variability is examined by more
than one measure to limit the effects of inherent bias; 5)
long follow-up period allows for the capture of serial vari-
ability and long term adverse outcome.
Several limitations should be noted for the present

study. Firstly, similar to other observational studies, there
is potential under-coding, missing data, and coding error.
Moreover, observational studies can only establish correl-
ation, not causation. Furthermore, the duration of diabetes

was not accounted for. However, given that all patients in
the study cohort were prescribed insulin for glycemic con-
trol, an advanced stage of diabetes can be inferred. More-
over, there is a large change in the management
guidelines, therapeutic options, and treatment targets
throughout follow-up. Additionally, there is a lack of data
on the patient’s body mass index and lifestyle factors, such
as smoking, alcoholism, and diet, from the database. These
variables may affect the lipid levels, in particular HDL-C.
The analysis of all-cause mortality is especially affected,
given the wide range of contributing factors and influen-
tial effect of lifestyle choices. Finally, as the main aim of
this study was to examine the predictive values of HbA1c
or lipid variability for adverse outcomes, the initial ana-
lyses on the relationships between these variability indices,
NLR and hypoglycemia were exploratory. The inter-
relationships between these variables, including the use of
mediation analysis, will be explored in future studies.

Conclusion
In conclusion, the present study demonstrates that high
HbA1c and lipid variability is associated with an increased
risk for adverse outcomes in diabetes across different
organ systems. The association between hypoglycemic fre-
quency and baseline NLR with HbA1c and lipid variability
suggests that intermittent hypoglycemia and chronic
inflammation contribute to the mechanism underlying the
pathogenic effect of fluctuating glycated hemoglobin and
lipid levels. Future studies on the interactions between
lipid variability can help to facilitate the application of
variability measures in clinical risk stratification. The
effects of the sequence of diabetic adverse outcomes on
the ultimate patient survival can be explored to gain
insights on the systemic pathogenesis of diabetes.

Table 7 Model performance comparison analyses with five-fold cross validation

Our model RSF Cox

Precision Recall AUC C-index Precision Recall AUC C-index Precision Recall AUC C-index

Mortality 0.9212 0.8663 0.8986 0.8804 0.8468 0.8962 0.8377 0.8178 0.7576 0.8025 0.7221 0.7676

Renal 0.9237 0.9180 0.8763 0.8269 0.8855 0.8563 0.8577 0.8194 0.7625 0.7803 0.8008 0.7470

PVD 0.8913 0.8565 0.8880 0.8701 0.8922 0.8617 0.8517 0.7701 0.7779 0.7289 0.7517 0.7848

Neurological 0.9104 0.9252 0.9111 0.8318 0.8842 0.8223 0.8480 0.8511 0.7874 0.7434 0.7969 0.7706

Ophthalmological 0.8902 0.8766 0.9065 0.8208 0.8557 0.8234 0.8643 0.8237 0.7671 0.7522 0.7814 0.7517

Ischemic stroke 0.8998 0.9010 0.8885 0.8527 0.8367 0.8983 0.8634 0.8484 0.7925 0.7752 0.7884 0.7538

AF 0.9352 0.8641 0.8998 0.8740 0.8194 0.8733 0.8523 0.8125 0.7747 0.7571 0.7742 0.7647

HF 0.8963 0.9175 0.8947 0.8943 0.8700 0.8533 0.8330 0.7767 0.8047 0.7708 0.7585 0.7749

ICH 0.7893 0.7992 0.7156 0.7154 0.7918 0.7796 0.7034 0.7070 0.6405 0.6590 0.6857 0.6414

IHD 0.8829 0.8948 0.9108 0.8528 0.8775 0.8375 0.8328 0.87964 0.7720 0.7579 0.7985 0.7738

AMI 0.9073 0.9077 0.8861 0.8386 0.8689 0.8455 0.8246 0.7782 0.7815 0.7640 0.7499 0.7845

Osteoporosis 0.7341 0.7142 0.7014 0.6372 0.6565 0.7487 0.7372 0.6244 0.6760 0.6717 0.6890 0.5857

Dementia 0.8837 0.8651 0.8660 0.8784 0.8354 0.8594 0.8549 0.8790 0.7566 0.7575 0.7345 0.7772

PVD Peripheral vascular disease, AF Atrial fibrillation, HF Heart failure, ICH Intracranial hemorrhage, IHD Ischemic heart disease, AMI Acute myocardial infarction
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