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Local Unitary Quantum Cellular Automata

Carlos A. Pérez-Delgado and Donny Cheung
Institute for Quantum Computing, University of Waterloat¥loo, ON N2L 3G1, Canada

In this paper we present a quantization of Cellular Autom@&ar formalism is based on a lattice gfidits
and an update rule consisting of local unitary operatorsdbmmute with their own lattice translations. One
purpose of this model is to act as a theoretical model of quardomputation, similar to the quantum circuit
model. Itis also shown to be an appropriate abstractionfaces-homogeneous quantum phenomena, such as
guantum lattice gases, spin chains and others. Some rdsatltshow the benefits of basing the model on local
unitary operators are shown: universality, strong conaestto the circuit model, simple implementation on
guantum hardware, and a wealth of applications.

PACS numbers: 03.67.Lx

I. INTRODUCTION plained to anyone familiar with the field of quantum infor-
mation. However, the choice is not made merely for sake of
Isimplicity: it provides us with arfficient implementationf

The Cellular Automaton (CA) is a computational mode ) ) o F .
that has been studied for many decades [1, 2]. Itis a simQCA on quantum hardware, while still enjoying an expressive

ple yet powerful model of computation that has been showﬁiChneSS strong enough to simulate any appropriate pfysica

to be Turing complete [2]. It is based on massive parallelisrT?yStem' L L

and simple, locally constrained instructions, making éaH Forma_lly, what Wwe mean b_y efficient |mplen_1ent_at|on is that
for various applications. In particular, CA are very effeet there exists a uniform fa_m||y of quantum circuits that can
at simulating many classical physical systems, includiag g ;aach smq}latg the gvoluftlon of ?:ﬁn;]te region of the QC’?\
dispersion, fluids dynamics, ice formation, and even biologtﬁr %spgehm;e nrt:m_ er_(t) bstep;s_. f u:t erm_orethwe reql;ure tf at
ical colony growth|[3]. Although usually simulated in soft- € depthot €ach circuit be strictly finear In the numpoer o
ware, CA hardware implementations have also been deve teps, and constant on the size of the region being S|mu|ated
oped. All of these characteristics make CA a strong tool for his last requirement is to ensure that the QCA retains the

moving from a physical system in nature, to a mathematicagu\';\}tess_ﬁnt""f‘l ql:allttz_offCAna}_ssnt/_e paralltillsr.:j | Unit
model, to an implemented physical simulation. e WITL reter 1o this tormafization as the Local Unitary

. antum Cellular Automata (LUQCA) model, when we need
More recently, the idea oQuantumcCellular Automata Quantu " " (LUQCA) W ¥

(QCA) has emerged. Several theoretical mathematical mocfp make the distinction from other formal definitions of QCA.
els have been proposed (4,5, 6,17, 8]. However, there is In SectiortIV we will see hovany QCA properly defined

fh the model presented here can be efficiently implemented.

lack of applications developed W'.th'n the_se mOde.IS' On therhe fact that there is such a guarantee, without any further
other handad hocmodels for specific applications like quan- restraints, is one of the strongest features of the modeirer

tum lattice gases [9, 10], among others|[11], have been d_eﬁresented. In Sectign V11l we will see that in general, poersi
veloped. Several proposals for scalable quantum compatati models cannot make such a guarantee. We will also discuss

(QC) have been developed that use ideas and tools related -
QCA [12,113, 14) 15, 16]. Some of these have been Showgh%:ihmeetzcgég?:o%zlused to translate QCA in these models

to be capable of universal computation|[17, 18]. Other QCA We will see in SectiorSTV ardV how insisting on efficient

tools have bee_n USEd_tO_ gqlve, or’!orqpose solutions togparti implementations does not at all limit the expressive pover o

ular problems in physics [18, 20 alj22 23]. ) our QCA model. SectidnlV will also show how most, if not all,
However, there does not exist a comprehensive model Qhhysical systems of interest with the proper charactesisti

QCA that encompasses these different views and techniqu&gme and space homogeneity—can be modeled using local

Rather, each set of authors defines QCA in their own particnitary QCA. We will also prove computational completeness

ular fashion. In short, there is a lack of a generally acaeptejy section V. Sectiofi VIl discusses how valid QCA pre-

QCA model that has all the attributes of the CA model men-sented in other models can be rephrased in the local unitary

tioned above: simple to describe; computationally powerfuQca scheme.

and expressive; efficiently implemented in quantum soféwar  \we begin in Sectiofllll by briefly describing classical CA

and hardware; and able to efficiently and effectively modeljn detail. Following that, we will endeavor to quantize this

appropriate physical phenomena. model in the most natural way possible. The rest of the paper
The purpose of this paper is to propose such a modepresents results pertaining to the strengths of this model.

The model we present here is based on intuitive and well-

established ideas: qudits as the basic building blockssjcel

and local unitary operators as the basic evolution methmad (| Il. CELLULAR AUTOMATA

cal update rule).

The choice of local unitary operators as the basic evolu- In the classical model of cellular automata, we begin with
tion operator ensures that the model is simple and easily ex finite set of state® and an infinite lattice o€ells each of
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which is in one of the states . We have discrete time steps,
and at each time stepthe state of the lattice evolves accord-
ing to some rule. This rule gives the state of each cell at time S p——— . et sible

t + 1 as a function of the states of the cells inrisighbor- f f f

hood which is simply a finite set of cells corresponding to a ~——~ —— —— Update Rule
particular cell.

Definition 1 (CA). A Cellular Automaton is a 4-tuple Reversible “6—’ T T
(L, %, N, f) consisting of ai-dimensional lattice of cells in- Update Rule X X X
dexed by integerd, = Z<, a finite se® of cell states, a finite P
neighborhood schem&” C Z?, and a local transition func-
tion f: =N — %,

The transition functiorf simply takes, for each lattice cell
positionz € L, the states of the neighbors of which are
the cells indexed by the set+ A at the current time step
t € Z to determine the state of cefl at timet + 1. There
are two important properties of cellular automata that fhou
be noted. First, cellular automata agace-homogeneaus
that the local transition function performs the same florct U (B+s) = 74d
each cell. Also, cellular automata arme-homogeneous '
that the local transition function does not depend on the tim

stept. _ N _ _ The main idea of the partitioned CA is that at different time
We may also view the transition function as one which actssteps, we act on a different block partition of the latticee W

on the entire |attice, rather than on individual cells. Iisth are now ready to forma”y define the partitioned CA.
view, we denote the state of the entire CA asoafiguration

C € © which gives the state of each individual cell. This Definition 3. A Partitioned CAis a 6-tupleL, S, T, X, B, F)
gives us aylobaltransition function which is simply a function consisting of
that maps : 5 — =L,

FIG. 1: Partitioned Cellular Automaton

(B + s2) = (foranysy, so € S with s; # s5, and such that

seS

1. ad-dimensional lattice of cells indexed by integdrs=
74

A. Reversible and Partitioned CA 2. ad-dimensional sublatticé C -

As a first step towards developing a theory of unitary CA 3. atime period’ > 1;
we will revisit the theory of classical reversible automata

A CA is reversible if for any configuration’ € ©*, and
time stept € Z there exists a unique predecessor configura- 5 5 plock scheme B, which is a sequence
tion C” such thatC' = F/(C", ). Itis known that any Turing {By,By,...,Br_1} consisting of T blocks rela-
machine can be simulated using a reversible CA [24], so no tive to the sublattice; and
computational power is lost by this restriction.

One method that is used to construct reversible cellular au- 6. a local transition function schemg&, which is a set
tomata igpartitioning. In a partitioned CA, the transition func- {fo, f1,--., fr—1} of reversible local transition func-
tion is composed of local, reversible operations on indiaid tions which magy; : ¥8 — %5,
units of a partition of the lattice. )

In order to formally define partitioned CA, we must expand _ Attime stept + kT for 0 < ¢ < T'andk € Z, we perform
the definition of cellular automata, as partitioned CA are ne J: On every blockB, + s, wheres € S. In order to find the
ther time-homogeneous nor space-homogeneous in generdfVerse of a partitioned CA, we simply give the reverse block
They are, however, periodic in both space and time, and thuichemeB = {B_:11_1, e f_g}v BQ%’ and the reverse function
we set both a time perio@f > 1 and a space period, given SChemeF ={fr. ..., fi ", fo " }.

as ad-dimensional sublatticé of L = Z¢. The sublatticeS Although the partitioned CA is not time- or space-
can be defined using a spty, : k = 1,...,d} of d linearly homogeneous, it can be converted into a regular CA, on the

independent vectors frot — Z¢ as: lattice S (which is isomorphic taZ?), with cell states:?,
where the new local transition function simulafetime steps
d of the partitioned CA in one time step.
S = {Zak“k cay € Z}. In the original partitioned CA scheme as described by
=1 Margolus [25], the sublattice was fixed & = 27Z¢, and
the block scheme was fixed with two partitiond3, =
Definition 2. For a given fixed sublattic§ C Z¢, we define  {(z1,22...,24): 0 < z; <1}andB; = {(z1,22...,2q) :
ablockB C Z% as a finite subset &? such that B + s1) N~ 1< z; < 2}.

4. afinite set of cell states;
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lll. LOCAL UNITARY QCA 2. The operator must commute with lattice translations of
itself. Precisely, we require th@/,, U,] = 0 for all

Now, with a formal notion of CA, we can proceed to give a T,y € L™

guantization As mentioned earlier, we will have very specific

goals in mind. The first condition is an immediate condition for any rule,

guantum or otherwise, to qualify as a CA update rule. The
second condition allows the operatdrg for x € Z" to be
applied in parallel without the need to consider any spewial
A. Model Requirements particular ordering of the operators.
It should be clear that any evolution defined in such manner
First, we want to develop an intuitive model that is both represents a valid quantum evolution which can be ascribed t
simple to work with, and to develop algorithms for. At the some physical system. The global evolution of the lattice ca
same time, we want this model to be an obviexsension be described as
of classical CA and to reduce to classical CA behavior under
reasonable limits. U= H Uz,
Second, we want to keep our model grounded in physical x

realities. Th'ﬁ‘ gis a couplle of st:ocr:lg consequet?ces. Namﬁv/hich is well-defined, due to the two conditions given above.
We approac » Even classica , hot as abstract mathe- 1, question that remains is whether this model properly

matical structures, but as models representing real pddy_sm escribes what we intuitively would regard as QCA. Properly
systems. As a consequence, we expect our model to reliab Mere are two questions:

model quantum systems with appropriate behaway, spin
chains. Also, an algorithm described in our model should be
easy to translate to an actual physical implementation oh su
guantum systems. We show in Secfion VI that this is so.

1. Can all entities described by the model above be prop-
erly classified as QCA?

2. Can all systems that are identified as QCA be properly
described in the model above?
B. AFirst Approach i o )
The answer to the first questionyies since the update rules

The fi . L fCA h h are local and can be applied in unison throughout the lattice

e first step In our quantization o Is to change the 55, the global unitary operator for the evolution of thitite

state space of a cell to .reflect a quantum system. There ajg properly defined and space-homogeneous, as desired.

several methods for doing so, however we believe that the 11 o onswer to the second question is, unfortunatelywe

most natural way to approach this is to convert the alphabet, . present a simple system that one might consider to be a

Ofl_tnﬁ csllular automFatonZ,”mto orthogl?bnal lL)‘?_‘S'S st_atesdof valid QCA, but cannot be described in the above model.
a Hilbert space?ty. Formally, every cel € L Is assigne The counterexample is as follows. We start with a one-

aqudit |z) € Hs. This gives us a strong intuitive tool, as dimensional lattice of qudits. For each lattice celle L,

the E_otm_n of a If\tncg ]f’f qut!tS StEOUId be familiar to anyon€y e associate with it a quantum state.) € Hx. Although in
working in quantum information theory. i eneral, the configuration of a QCA may not be separable with
As we shall see, our approach is also physically groundedegpect to each cell, the configuration can still be desdriibe

inthatit is possible to describe this model in terms of a quan(e;ms of a linear superposition of these separable configura
tum system evolving according to a Hamiltonian. As an ex+jons. Thus, it suffices to consider such configurations.
ample, spin chains can be directly described by such math- 5¢ a5ch time step we wish to have every value shifted one

ematical (_:onst.ructions. Lattice gases,.though not orlyina ¢l g the right. In other words, after the first update easdh ¢
modeled in this way, can also be easily described by such <, 5u1d now store the state,_,). After k steps each cell

mathema_tical construct_s. Perhaps the most obvious physicg, should contain the state),_4). In fact, such a transition
example is the pulse-driven quantum computer. function cannot be implemented lyylocal unitary process.
We also wish to quantize the standard clas_,smal CA update To see why this is so, suppose that we had a transition func-
rule. However, this process cannot necessarily procedtein t ion £ which is the product of a finite number of operations,
most obvious manner. Ina cIaSS|caI_ CA, every cell is mstan- = fufn_1... f1, such that each operatgy is the (poten-
taneously updated |n.parallel. We wish to replace this tlass tially infinite) product of local unitary operators over st
cal cell update rule with a quantum analogue that acts apprseighborhoods. Note that this gives us the most general de-
priately on the qudit lattice described above. For a quantundcription possible of a depth-guantum circuit implementa-
unitary operation to act as a quantum cell update rule, thiggn of this linear QCA using only local unitary operators.
operator needs to fulfill the following two restrictions: Now, consider an individual celi;y. By analyzing the depen-
dencies of the individual local unitary operators which mak
1. The operator must act on a finite subset of the latticeup the transition functiorf, it is possible to find a range of
PreciselyU, : H(N;) — H(N,) whereN, = N+ cells,P = {z : a < = < b} for somea,b € Z such that
x C L is the finite neighborhood about the cell xo € P, and the value of the quantum state at agllafter
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the application of the transition function depends only os t The intuition is as follows: in our physical model, instedd o
cells of P. having separate lattices for thead andupdatefunctions, we

We now divide the transition functiofiinto two functions, expand each lattice cell to also contain any space resources
f = hg, whereg applies sufficiently many local unitary oper- necessary for computing the updated value of the cell. The
ators fromf over the cells ofP so that the new value of the operatorU, reads the values of the neighborhatf, per-
guantum state at celty is computed, without violating any forms a computation, and stores the new value in such a way
of the dependency relations frofn Then,h simply applies that does not prevent neighboring operatdygrom correctly
the remainder of the local unitary operators, as appranriat reading its own input values. This allows each cell to be oper
Note that sincg necessarily contains any local unitary opera-ated upon independently, in parallel, without any undegyi
tors from f which operate on the celly, the operatiorh does  assumptions of synchronization. After all the operatibhs
not. Sinceh does not perform any operation between cellshave been performed, the second unitégyperforms the ac-

x < xo and cellsr > x, in order to implement the shift-right tual update of the lattice cell.

transition function, the cell§z : o < = < b} must contain With this new model for the update operation, we can again
enough quantum information afterhas been applied to re- approach the two questions given above as to whether this
construct the information in the cel{s: : zp < = < b}. This  model adequately describes what we might intuitively rdgar
is clearly impossible. as QCA.

In order to resolve this issue, we need to analyze the classi- First, it is clear that all entities described by this update
cal CA parallel update rules more closely. In the classi@al C model can still be properly classified as QCA. The local up-
the local update rule for a given cell reads the value of tie ce date ruleR, = V, U, is still a valid quantum unitary opera-
and the values of its neighboring cells. It performs a compution, and the global update rule
tation based on these values, and then updates the cells val
accordingly. Herein lies the problenmmread and updateare
modeled in a classical CA as a single atomic action that can R=VU = <® Vm) <H Uz)
be applied throughout the lattice in parallel simultanépus x z

However, in a physical setting, these two operations cannaqt both well-defined and h
be implemented in this manner. When simulating CA in clas-S POth well-defined and space-homogeneous. _
Now, in order to properly investigate whether all physical

sical computer architectures, the canonical solution isse® : ) :
two lattices in memory: one to store the current value, andYStéms which can be described as QCA can be described
one to store the computed updated value. Even if we considdfithin this new model, itis necessary to verify the follogin

hardware implementations of CA, these need to keep the val- We must first compare our model to existing CA models,
ues of the inputs to the transition function while this fiast ~ POth classical and quantum, in order to ensure that our model

is being calculated. subsumes all proper CA described in these models. Secondly,

The formal CA model does not need to consider this im-We Must also show that any known physical system which be-
plementation detail, as it is a mathematical constructioh a h@ves according to quantum mechanics and satisfies the CA
has no claims to directly model a physical system implementPreconditions of being driven by a local, space-homogeseou
ing a CA. When developing a QCA model, one cannot takdnteraction can be described by our model. _
the same liberty. The name itself, QCA, includes reference AS an example, the qubit shift-right QCA mentioned above
to an underlyingyuantumphysical reality. It is our intention Can now be described in this model, by including ancillary
that this model faithfully, if abstractly, represents rphlys- ~ computation space with each lattice cell.
ical systems. Although there is some value in mathematical Ve will tackle this question in more depth in the upcoming
constructions which do not correspond directly to any physi sections. First, we present a formal definition of the QCA
cal systems, this is not the goal of the constructions ptesen model which we will adopt, as described in this section.

in this paper. o )
Definition 4 (QCA). A Quantum Cellular Automaton is a 5-

tuple (L, %, NV, Uy, Vi) consisting of
C. ANew Approach 1. ag—dimensional lattice of cells indexed by integdrs-
z,
We now make an adjustment to our QCA model, given the
importance of maintaining independeatd and updateop- 2. afinite sef of orthogonal basis states,
erations. Instead of having one unitary operator replatting
single atomic operation in the CA model, we define our QCA 3. a finite neighborhood schemé C Z¢,
update rule as consisting of two unitary operators. The first
operator, corresponding to thead operation, will be as de- 4. alocal read functior/;, : (Hg)®N N (Hg)®N, and
fined above: a unitary operatbt,, « € L acting on the neigh-
borhoodV\,,, which commutes with all lattice translations of 5. a local update functiof, : Xy, — Hs.
itself, Uy, y € L. The second operatoV,, x € L, corre-
sponds to thepdateoperation, and will only act on the single Thereadoperation carries the further restriction that any two
cell z itself. lattice translationd/,, andU,, must commute for alt, y € L.



Each cell has a finite Hilbert space associated wittsit=
span({|z)}.ex). The reduced state of each cellis a density | |
operator over this Hilbert space.

The initial state of the QCA is defined in the following
way. Let f be any computable function that maps lattice vec-

tors to pure quantum states @Wz)®kd, whered is the di-
mension of the QCA lattice, anklis the length of a side of

a d-dimensional hypercube, which we use to define blocks
that are initialized to particular states. Then for anyidatt

vectorz = (z1k, 2k, ...,2qk) € Z¢ the initial state of — —

Unitary Evolution

the lattice hypercube delimited b %, 22k, . . ., 24k) and Trace out Trace out
((z1+1)k—1, (z2+1Dk—1,...,(z¢+1)k—1)is setto
f(2).

Intuitively, each block represents a volume of the QCA thatrig, 2: past lightcone of a regions: This represents a one-
is initialized to a particular pure state. Each block isiaht  dimensional local unitary QCA. In order to obtain the statehe
ized independently. In particulaf, can have a block size of region of interest, the dark region at the bottom, one mussicer
one cell, initializing every cell to the same statedin It can  not just the region itself, but anything that might affeat ttate of
also have more complicated forms such as having every paihe region with the course of the simulation: its past lighte. One
of cells in a one dimensional QCA initialized to some maxi- may then trace out the unneeded regions.
mally entangled state. Particularly useful are functigribat
initialize a finite region about the origin to some interegti o ] o
state—the input of the QCA—and the rest of the lattice toParticle in a given cell position in the statg¢1 + o.) and
some quiescent state (see below). %(]l — o) respectively. A third state, labeléd) denotes the

The local update rule acting on a celconsists of the op- absence of any particle in that cell location. One then need
erationU, followed by the single-cell operatiori,. Both 7, ~ Only ensure that the update rule correctly acts on states
andV, are restricted to being computable unitary operatorsand|—1), while leaving stat¢0) unaffected.

The global evolution operatd is as previously defined. ~Quiescent states are also very useful for the purposes of
simulation and physical implementation. Normally, if one is

interested in the state of a regiénof the lattice aftef steps

of the QCA update rule, one would need to look at plaest

lightconeof S. If the local update rule has a neighborhood

of radiusr, then one needs to include additional cells in
Our QCA definition follows the classical CA convention in each direction beyond the border §f This is because any

defining the model over ainfinite lattice. However, we will  information in the past lightcone ¢f has the ability to affect

often be concerned only with finite regions of the QCA. Onecells within S, as shown in Figurgl2. Note that since the size

reason, for example, is that any physical implementation obf the region needed by the simulation is determined by the

a QCA using quantum hardware will, by necessity, simulatenumber of time steps of the QCA we wish to simulate, one

only a finite region of the QCA. Another reason is for simulat- needs to fix the number of steps in the simulation beforehand.

ing physical phenomena. For instance, in Sedfibn V, we wilHowever, if a given QCA has a quiescent state, and all cells

be interested in simulatinfinite sizechains of spin% parti-  outside the finite region under consideration are initalizo

cles. this quiescent state, then the simulation of this QCA nedy on
Sometimes, it can be appropriate to simply use finite QCANclude this region for any number of simulated time steps.

with cyclic boundary conditions. In this case, we envisioa t

lattice as a closed torus. This is a standard and well-known

practice with CA. For example, we can use this technique V. QUANTUM CIRCUITS AND UNIVERSALITY

if the spin chain we wish to simulate @dosed that is, it it-

self wraps around. For other applications, this willnotpe a  |n this section we explore two important aspects of the QCA
propriate, for example, when trying to simulate@wenspin  model we introduced in Sectidnllll. These aspects relate to
chain. This is a chain which doestwrap around, but rather QCA as a model of computation. First, it is important to show

has two distinct end pOintS. Another example will be the Spin that QCA are Capab|e of universal quantum Computation_ We
signal amplification algorithm in Sectidn VII, which uses a demonstrate this using a simulation of an arbitrary quantum
finite size cube ancilla system. circuit using a two-dimensional QCA.

In such cases, the most appropriate way to proceed is to We also show that any QCA can be simulated using families
make use of guiescenstate, which is a cell state that is guar- of quantum circuits. A quantum circuitis defined as a finite se
anteed to remain invariant under the update rule, regardlesf gates acting on a finite input. One can then defingigorm
of the states of its neighbors. For instance, in the caseeof thfamily of quantum circuits, with paramete$sandt, such that
finite spin-% chains, we can use three state cells. We use theach circuit simulates the finite regidgh of the QCA fort
state label$+1) and|—1) to refer to the presence of a sp%n- update steps. By uniformity we mean that that there exists an

D. Quiescent States
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[ — U [ @_ FIG. 4: Decomposition of general qudit gates

v L Vi

| U ]V}

-] L Ur— v} is simply acting on three qubits. Still this operatéreeds

My ] ' @_ to be decomposed into a series of one and two qubit gates
[ — - :

A U 1 @_ U=U,U,_1...UyU; taken from a set of universal gates.
L v b—{vi— In order to extend the construction to allow cells with gadit
| — | of arbitrary dimensiown, we first replace the single qubit wires
C — @_ in Figure[3 with qudit wires as in Figuié 4. Then each date

andV, are decomposed into one and two qubit gates as in
FIG. 3: Quantum circuit simulation of a QCA update stéfhe dot- the afqrementioned ﬁgl_”e' The same Con_struction technique
ted area represents the read phase. A read opdvatoust be ap- WOrks in order to deal with arbitrary dimensions, and astpitr
plied to each qubit, and its two neighbors. Siiceommutes with ~ Cell neighborhood sizes.

its translations, we are at liberty to apply tHeoperators in any or- Note thatm andn are constants, determined by the struc-
der. The update phase consists of the operttdieing applied to  ture of the QCA. For very complicated QCA these constants
every qubit. can be potentially large. However, once the QCA has been

defined these parameters are set, and hence do not asymptoti-

cally affect the complexity of simulating a region of the QCA
effective procedure, such as a Turing machine, that on inpubr a particular length of time.
(S,t) outputs the correct circulit. As our simulation above does not set a region size to be

We will show that our simulation isfficient as defined in  simulated, any region size can be simulated with an appropri

Sectioril. Specifically, in order to simulate a QCA on a givenate construction. An arbitrary number of time steps can be
region, for a fixed number of time steps, we give a quantunsimulated by simply iterating the above construction. With
circuit simulation with a depth which is linear with respézt  this in mind, as well as the previous lemma, we can now state
the number of time steps, and constant with respect to tee sizhe following:

of the simulated region.
Theorem 1. For every QCAQ there exists a family of

quantum circuits, parameterized Wy, ¢), each acting on
A. Simulation of QCA by Quantum Circuits O(mlog |X]) inputs, and with circuit deptl®(¢) which simu-
lates a finite region of of @ consisting ofn = | S| cells, for

We begin by showing the latter of the two results described UMe Steps
above. We proceed incrementally, showing first how to pro-
duce a quantum circuit that can simulate a single update stqp
of a simple QCA.

This is a very important result, as it demonstrates that the
cal unitary QCA model does not admit automata which are
somehow “not physical’. More precisely, any behavior that

Lemma 1. Any finite region of a one-dimensional QCA with ¢an be described by a QCA can be described by the more tra-
a symmetric neighborhood of radius one, where cells are inditional quantum circuit model. Furthermore, such descrip

dividual qubits, can be simulated by a quantum circuit. tions retain the high parallelism inherent to QCA.

Proof. The simulation of an individual update step of this

QCA is simple. Recall that the operatdrs, each acting on B. Simulation of Quantum Circuits by QCA

3 qubits, all commute with each other. Therefore, theop-

erators may be applied in an arbitrary order. The operdfprs ~ Next, we show the converse result from the one above, thus
can all be applied to their respective qubits oncé/albpera-  showing that local unitary QCA are capable of efficient uni-
tors have been applied. Figlire 3 gives a visual representati yersal quantum computation.

of this construction. In order to simulate an arbitrary nemb

of steps, we simply need to repeatedly apply the above conFheorem 2. There exists a universal QC&,, that can sim-
struction. Finally, although we represented the operdfors  ulate any quantum circuit with at most a linear slowdown, by
our diagram as single, three-qubit operators, to complete t using an appropriately encoded initial state.

simulation we decompodé into an appropriate series of one

and two qubit gates from a universal gate set. O  Proof. We proceed by constructing the QQA, over a two-
dimensional lattice. We will basicallgiraw’ the circuit onto

In the case of one-dimensional QCA with a nearest neighthe lattice. The qubits will be arranged top to bottom, ared th
bor scheme, and cells consisting of one qubit, the opetator wires will be visualized as going from left to right.



Each cell will consist of a number of fields, or registers. The

cell itself can be thought of as the tensor product of quantum l,l' |_ |_
systems corresponding to these registers.
The first register, the state register, consists of a singbét g |_ ® |_ H@l_ >e|— _Xl_

the quantum circuit at a particular point in the computation
This value will be shifted towards the right as time moves for Apply Gate to State Register(s

which corresponds directly to the value on one of the wires of —;\ /7*‘ T

gwap State Registers

ward. Dependant on Gate Register
Next is the gate register. This register will be initializech
value corresponding to a gate that is to be applied to the stat If Clock Register =1 and
register, at the appropriate time. Active Register = 0
There is also a clock register, which will keep track of the If Clock Register = 0 and Active Register
current time step of the simulation. There are two phases to and Active Register =1 of left neighbor = 1

the simulation, arpperate’and a'carry’ step.

There is finally a single qubit active register, that keeps a y ol .
record of which cells are currently actively involved in the = // State Clock Register
computation. This register is either setttoe or false . ’ Registe ol Active Register

The local read operatdr, proceeds as follows. The neigh- |_ |_
borhood scheme is the von Neumann neighborhood of radius Gate Registey

—— - S ——

one,i.e. the cells directly above, below and to either side of
the cell. The read operator acts non-trivially only on the on
cell directly above, and the one directly to the left. Howeve
the bigger neighborhoodis needed to ensure unitary evoluti FIG. 5: Universal QCA update rule.
and translation invariance.

If the clock register is set toperate then a quantum gate
is applied to the state register of the current cell (andipbss
the state register of the upwards neighbor). For this, we fix a The previous result is important in that it proves that the
finite set of universal gates consisting of the controlledggh QCA model is computationally complete. It also gives a
gate and some set of single-qubit operators. The choice decipe for implementing quantum circuit algorithms on two-
the controlled phase gate, as opposed to say controlledsnot, dimensional QCA. It is important to mention that it is also
to ensure that/, commutes with translations of itself. Any possible to show that one-dimensional LUQCA are universal
one-qubit unitary gates that form a universal set will work. ~ for quantum computing. For a complete proof see [26].

If the clock register is set toarry, then the state register In the f0||owing sections, by Showing how physica| sys-
will be swapped with the state register of the left neightbor i tems can implement QCA, we complete a formula for imple-
and only if the following conditions occur: the active régis  menting quantum algorithms on physical systems using QCA
is set tatrueon the left neighbor, and set to false on the currenimethods. We will see, however, that the strongest virtukisf t
cell, and the clock register is set to carry on all the neighbo QCA model lies notin its ability to simulate quantum cireuit

(above, below, and to either side). These extra checks are rRather, it lies in the algorithms that take natural advaeiaig
quired to ensure the operatol, commutes with translations the QCA structure.

of itself.

Figure[® gives a visual representation of the update rule op-
eratorU,.. OperatorV,, simply updates the clock register, ap-
plying aNOT gate at each time step.

Finally, the initial state is set as follows. There is oneihor V. MODELLING PHYSICAL SYSTEMS
zontal row for each wire in the quantum circuit. Every column
represents a time step in the quantum circuit. The cellswre i . )
tialized to have their gate registers set to the appropgate, We stated before that one of our goals in developing a QCA
if there is a gate, in the wire corresponding to its row, and iniormalismis to create a useful modeling tool for quantum sys
the time step corresponding to its column. The clock registe!®Ms: Classical CA are used for simulating various phenom-
is set to operate, and the state register is®ehitially on all ~ €na based on classical information, such as sea ice fonmatio
cells. The first column of the quantum circuit is set to active fUid dynamics, or voter systems [3./125]. Similarly, we ex-
all other cells are set to inactive. pect QCA to be able to model different types of physical sys-
h tems based on quantum information, with dynamics which are

This construction can only natively simulate circuits wit ; ) :
based on time and space homogeneous local interactions.

nearest-neighbor gates. In order to encode arbitraryitsau
is necessary to translate the circuit into one using onlyesta Physical systems that fall in this category include Ising
neighbor gates by adding swap gates where needed. Thisasd Heisenberg interaction spin chains, solid state NMR, an
the cause of the worst-case linear slowdown, mentionectin thquantum lattice gases. We will be looking at some of these
statement of this theorem. 0  systems in this section.



A. Spin Chains
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A QCA simulation of the Heisenberg spin chain presented
above is still possible, however, with the help of two powérf

Spin chains are perhaps the most obvious candidate fdPols: Trotterization andcell coloring The first technique
physical systems being modeled with QCA. Indeed, Ising inJS Well known in physics, the second is a tool developed for
teraction spin chains, and in general, any spin chain with £CA. Together, they allow for simulation of complicated and

coupling Hamiltonian which commutes with its own lattice
translations can be implemented easily.

Suppose we have a linear spin chain of lenythindexed
by n € Z. Each spimn is coupled to its nearest neighbor
n + 1, with a coupling Hamiltoniaw’o{™ o{" ™) where J is
the coupling strength constant. Note that the coupling Hami
tonian does commute with its lattice translations. The Hami
tonian for the entire spin chain is:

N-1
H = Z Jo Mg+,
n=1

It is a simple matter to give a discrete time approximation

to such a spin chain. First, we fix a time step interal Our
QCA model will allow for simulation of the spin chain for
time steps in multiples oA¢. Hence, while the choice akt

is arbitrary, it is important in determining the resolutiofithe
simulation.

For a simulation of the Ising spin chain, the QCA lattice
consists of a one-dimensional array, where each cell isgesin
gubit. The neighborhood of each celsimply consists of the
cell and its right neighbor + 1. The local rule operatdv,,
is given as:

U 7€7iJai7l)a'£"’+])At
n = )

The operatorV,, is simply the identity operator. Note
that the operatot/,, commutes with its translations, that is,

[Un,Un] = 0, for all n,m € Z. Furthermore, the global
operator

N-—1
U:HUn

=1

3

satisfies
U — €_iHlAt.
Hence, the QCA construction faithfully simulates the Ising
spin chain for times that are integer multiples&f, as de-
sired.
A more complicated endeavor is to construct a QCA sim

ulation of a spin chain whose coupling Hamiltonians do not

elqimensional, and the neighbor set of each cell includes both

commute with each other. In particular we examine th
Heisenberg spin chain as an example. Let the coupling Hami
tonian between spinsandn + 1 be

H(n,nJrl)

G0 = Jool 4 of gl

+oMem*D) _ 19 1)
Here, note that[""") does not commute with its trans-

lations 7™ ™). The Hamiltonian of the total system is

N-—1
Hy= Y HY"

n=1

almost arbitrary Hamiltonians by QCA.

Trotterization is a technique by which a Hamiltonian is ap-
proximated using a combination of non-commuting Hamil-
tonians whose sum adds up to the original Hamiltonian. In
other words, it is possible to approximate with boundedrerro
the evolution due to the Hamiltoniai = H, + H, by al-
ternately evolving the system under the Hamiltoniadhsand
H, even if these two do not commute. Precisely, we can give
a first-order approximation

. ) , k
o—i(Ha+Hy) At _ (e—zHQAt/ke—szAt/k) i

In the case that|[H,, H,]| At> < 1, the error§ is
O(At?/k). Higher order techniques can achieve error rates
of O(At™ +1/k™) at the cost of usin@(2™) gates. Though
the number of gates increases exponentially, the time redjui
for each gatelecreasegxponentially as well.

In the case of our QCA simulation of the Heisenberg spin
chain HamiltonianZ above, we have:

N

[ ]
H, = Z H&Qn—l,Qn)

=1

and
Lz ( )
Hb: Z HHQn.,QnJrl.
n=1

Note thatHy = H, + H,. The HamiltoniansH, and
H,, consist of the couplings from the even spins to their right
neighbors and left neighbors respectively.

Our QCA evolution will consist of alternately evolving the
lattice cells undeid, and H;, using a technique called cell
coloring. Each cell will have two fields. The first field is
a state register, consisting of one qubit, which will hold th
state of the spin represented by the cell. The second field,
called the active color register, will also consist of a &ng
qubit. Initially, the color register of each cellis set to the

valuen mod 2.
The QCA lattice used in this simulation is also one-

the cell to the immediate right, and the immediate left of the
given cell. Let, U/ be the Trotter step acting on the current
cell state register and the right neighbor state registemgJ
the first order approximation, we have
U — o~ tH™ " At/k
n

for an appropriate valug. It is also possible to use higher
order approximations.

The local update rule operatb¥, then consists of applying
the operatoU), if and only if the current cell’s active color



register is set to one, and both left and right neighbors have X-3 X-2 x-1 X Xx+1 x+2 x+3 x+4
their color registers set to zero. The operdtgrsimply tog- ~ ..__.
gles the active color register. :

It should be clear that this QCA construction simulates the
Heisenberg spin chain. Moreover, by using an appropriate
operatorU’, it is possible to simulate any Hamiltonian with
nearest neighbor couplings with this technique. pa— i

It is appropriate here to mention that one-dimensional spin Up Register  Down Register
structures such as these can be efficiently simulated using
classical computers [27]. There are also efficient ways to
calculate the lowest energy eigenstates and eigenvalues us
ing classical numerical techniques such as the Density Ma-
trix Renormalization Group (DMRG) method [28]. This, of

course, also implies that the QCA presented in this sectio o .
b Q P The construction is as follows. The QCA&, is one-

can be efficiently solved and simulated classically. . ) : ) .
However, this conclusion cannot be easily generalized t imensional. Each cell .has two single-qubit registerdedal
' p andDown Each register will represent the presence of a

larger classes of QCA. First, we note that we have use ticle in the latti i ith th iat : .
one-dimensional spin networks here for expository purpose particie in the fatlice site, wi € appropriate spin, leyriy .
in the statg1), and the absence of the corresponding particle

From our constructions, it should be clear that these QCA simIO being in the stat
ulations generalize easily to higher dimensions. On theroth y being in the statD). .
The local update operatdf, acts on the down register of

hand, no efficient classical simulation is known for spin-net . . .
P the current cell, and up register of the right neighbor, swap

works of dimension higher than one. . ;
Also, it is not known whether arbitrary one-dimensional P9 the two values. Operatdf operates on both fields of the
i cell with operator

LUQCA can be simulated efficiently classically. In fact, due
to the universality of one-dimensional LUQCA [26], this Wil

-

.

FIG. 6: Quantum walk on a lattice.

hattice can have any number of particles in total.

. ' . 1000
not be the case unless classical computers can efficiently si 0gpo0
ulate quantum system®BFPP = BQP), which is generally Ve = 0pgqgo |
regarded as unlikely. 000 ¢

_ wherep, ¢ € C satisfying|p|? + |¢|?> = 1, pg + pg = 0 and
B. Quantum Lattice Gases |¢|? = 1. The update rule is summarized in FigQte 6.
The dynamics of this QCA are the same as the lattice gas
Quantum lattice gases have been studied for over a decadescribed by Boghosian and Taylor in/[10].
now [9,110, 29| 30, 31, 32]. In essence, they are the quantum Let ¥, (x,t) and¥,(x, t) be the amplitude corresponding
analog of classical lattice gases. The basic principleshere to the presence of a particle with spin up and spin down re-
same in both the classical and quantum cases: one starts wipectively in cell position:;, at timet. Let ¥'(«, ¢) be the total
a discrete CA-based model that describes particles onthe laamplitude corresponding to the presence of a particle in cel
tice, and their movement. One can then takedbetinuous =z at timet, that is¥(z,t) = U, (z,t) + ¥4(z,t). Then, we
limit of such CA and show that in this limit, the behavior of have that
the CA mimics a well-known differential equation.
Taking the continuous limit of a classical CA is a well ~ Vu(z,t + At) = qVy(z — Az, t) + p¥a(z + Az, 1)
known procedure. It involves giving the lattice a physical i
terpretation, where each cell is thought to represent a poin  an
space. The distance between two adjacent cells is taken to be
Az and each time step of the CA is assumed to tAkéime.
One then takes the limit, in a well prescribed manner, where
Az — 0 andAt — 0. There exist classical CA whose con-
tinuous limits represent gas diffusion, as well as variahgio

Uy(x,t + At) = qUq(x + Az, t) + p¥y(z — Az, t).

We can proceed according to Boghosian and Taylar [10],
and take the continuous limit of our QCAz?> — 0 and
At — 0, using the Chapman-Enskog method [3]. Doing so

fluid dynamics|[3]. | L
Ny . that (z,t) obeys th tion:
In the quantum case, Meyel [9], and Boghosian and TayloFeveas at(z, t) obeys the equation
[10] give a construction of guantumlattice gas whose con- P i 02
tinuous limit is the Schrodinger equation for a freely nmayi 2V (2,t) = 5= 55 V(2,1),
; . ot 2m Ox
particle. We now show how any type of lattice gas can be
represented under the local unitary QCA model. which is the equation for a freely moving particle of mass

We begin by introducing the Quantum Walk QQ%y,.  m = ip/q in one dimension.
This QCA models multi-particle quantum walks on a lattice. Using the same construction techniques, we can also de-
Each cell is allowed to hawvgvo particles, in orthogonal states scribe a freely moving particle in two or three dimensiong. W
(these two states can be thought of as orthogonal spins). Thean construct QCA that simulate other quantum lattice gases
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like the ones proposed inl[9]. Most, if not all, quantum lat- CA, in which the transition function depends only on the to-
tice gases, whether single or multi-particle, can be deedri tal number of neighboring cells in each of the possible cell
as local unitary QCA. states. Essentially, a transition update function is sytrime

This concludes our discussion on the expressive powers ofhen it affects only the value of the target cell in a manner
the QCA model presented here. In the next section we corwhich depends only on how many of the cell's neighbors are
tinue with a discussion of how to take these mathematicain particular states, rather than on which state any pdaticu
models and implement them in quantum hardware. neighbor is in.

Definition 5. Given a QCAQ = (L, X, N, Uy, V), we call

the update functiod/ : (H2)®N — (Hg)®N symmetric if

it can be expressed as a collection of single-cell operation

on cell 0 controlled by the computational basis states of the
In previous sections, we discussed how our unitary QCAneighborhoodV'\ {0}, andU, commutes with every operator

can be used to model physical systems, and how universgli’ AP, ,, which simply swaps the contents of cellandy,

quantum computation can be accomplished using only QCAvherez,y € N\ {0}. If Q has a symmetric update function,

primitives. In this section we will look into bridging the ga  then we calkQ a symmetric QCA.

by using QCA as a theoretical framework for implementing . ) )

guantum computation. Next, we wish to formalize the notion of a colored QCA.
A clear advantage of working in the QCA model overquan—For this model, we W!|| fix the nelghborhood schemedto in-

tum circuits, in regards to physical implementations ofmgua ¢lude only directly adjacent cells. That 87 = {z € 2% :

tum computation, is that QCA make considerably fewer dellzll; < 1_}. However, first we will define the set of permissi-

mands on the underlying hardware. In particular, as opposedf€ colorings of a lattice.

to direct implementations of quantum circuits, the glob@-e  pefinition 6. Given a latticel, = Z¢ and a neighborhood

lution of the lattice in the QCA model does not assume i”de'scheme/\/, we define aorrectk-coloring for a lattice as a

pendent control ovequdits Rather, all qudits are to be ad- periodic mapping” : L — {0,1,...,k — 1}, such that no

dressed collectively in parallel. However,_it sh_ould_ beeabt 0 neighboring cells i, are assigned the same color.
that the models of cellular automata described in this pdper

not explicitly address the issue of initialization. Any posed We may think of cell color as an inherent property of each
physical realization of the QCA must also describe the set o€ell. However, it may also be helpful to consider cell color
initial states which are constructible. This may requirmeo as classical information which is being stored with each cel
degree of non-global control over a physical apparatud) sucin such a way that the local transition function does not al-
as having individual cells initialized to a certain bas&etor  ter this information. We can now finally give a definition for
it may require some interaction with the environment, sueh athe colored QCA. Recall that the neighborhood schaévis
having the lattice cooled to a ground state. fixed.

The QCA mode;l also more closely resembles what 'S CUlbefinition 7 (CQCA). A Colored QCA or CQCA is a 5-tuple
rently achievable in several current quantum computerémpl - . P

X . . L,C XU, c) consisting of a lattice. = Z¢, a correctk-
mentations. For example, if qudits are represented by physg ; -
: S : coloring C, a finite setX of cell states, a sequence ®f

cal spins, and the control of such spins is achieved thrdugh t . i ©) (1) (T-1)
use of magnetic pulses, as is the case in NMR or ESR, thepyMmetric unitary operatoid = (Uo U755 Ug )
it is more reasonable to consider all spins as t_>eing suhﬂgctqmth Uéj) L (Hs)®N — (Hs)®V, and a sequence @f colors
to the same pu_Ise_ sequences, rather than havm_g the ability |. _ (cosc1, .-, cir_1)), labeled by integers < ¢; < k.
address spins individually. The same can be said about many '
other physical quantum computer proposals.

In this section we will concentrate on implementing QCA
on NMR, since most of the groundwork for this implementa-
tion has already been laid out. Note that since is a correck-coloring, any two operators

UJEJ) acting non-trivially on two cells of the same color at the
same time will commute.

A. Colored QCA CQCA can be simply considered as a shorthand for the cell
coloring technique we introduced in Sectloh V. As such, it

In Sectior[V, we considered cell coloring as a useful QCAshould be clear that CQCA are a subset of unitary QCA.
programmingtechnique. As with other computation models, Theorem 3. For every CQCAQ there is a QCAY’ that sim-
where a programming technique can be formalized into it%lates the same evolution exactly.
own subset model and then shown to be equivalent to the gen-
eral model (such as multi-track Turing machines), we can d@roof. We may incorporate the color information of each cell
the same with colored QCA. of the CQCAQ within an additional color register for each

First, we will define the notion of aymmetrictransition  cell of the QCAQ’. Now, it suffices to add one extra clock
function for QCA. It is the quantum analog of symmetric register to each cell, initialized t@ The update operatdr,

VI. QUANTUM COMPUTATION

The local transition operation consists of applyiUéj) to
each cellz with color C(z) = ¢; at time stept = j + nT,
where0 < j < T andn € Z.
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simply appIiesUéj) conditional on bothC'(z) and the clock VIl. ALGORITHMS
register of cellz being set toj. In order to ensure thdf,
commutes with its translations, we must ensure that the€olo  \we have seen two practical applications that can be

of all the neighbors of are consistent with the colorifgbe-  achieved with an implementation of QCA in the laboratory.
fore applying the appropriate operator. Otherwigeshould  First, there are numerous physical systems that can be natu-
act as the identity operator. The read operafpsimply in-  rally simulated using the QCA model. Second, one can also
crements the clock register, modulo O achieve universal quantum computation by simulating quan-
What is more surprising is the converse result: that all uni'tur\r;\/ﬁ“glily:z:g;gg:{h interesting and important application
tary QCA can be rephrased in the CQCA formalism. of QCA, a very important application in the future of QCA
Theorem 4. For every QCAQ) there is a CQCAY’ that sim-  will be the development and implementation of troative
ulates the same evolution exactly. QCA algorithms.

We saw in Sectiof IV how a quantum circuit can simulate

Proof. Given the QCAQ = (L, %, N, Uy, Vo), we will use 5 ocA; and how a QCA can simulate any quantum circuit.
the same latticé and alphabeX. The neighborhood scheme yGever, these simulations come at a cost of a linear-time

for the CQCA,\" is fixed by definition. We also need to qj4vqown going in either direction. While this slowdown is

provide a cor_reck-coloring of the lattice. To this end, it suf- [t 55 important a concern in terms of asymptotic complexity
fices to provide a coloring” with the property that that no i, o\,rrent laboratory conditionanysource of slowdown is to
neighborhoodV, of @ or \V; of Q' contains two cells with |4 auoided.

the same color. Now, we need to construct a sequahoé In the next section we analyze a problem that is particularly
update operators. Note that single-qudit operations and \yg||.suited to a natural solution using QCA, and we show how
the controlledVOT operation targeting are Symmetric Op-  yhe tools that we have developed thus far can be used effec-

erations, sinqe any two cells belonging to the same n_eighboEive|y to provide an optimal solution to the problem.
hood have different colors, by construction. Now, given an

implementation of the unitary update operatidn of Q us-
ing single-qudit and nearest-neighbor controlléd*T" oper- A. Spin Signal Amplification Algorithm
ations, we can give a sequence of symmetric operations which

performUp on a ne_nghborhopdfz of a cell z of a spe_cmc We present a description of the problem in simple abstract
color. By performing a similar sequence of operations for

each color in our coloring’, we effectively perforni/, for tserlrrr:_sl ?rjtliocﬁ)gs'err\:\; ? i\;vax;?g\%zt;i slggg}l frgmc?esggtlje
each cellz. Since each update operatibh commutes with pin=; P ) ' 9 P '

the other update operations, we have effectively simultted we want to create a large ensemble of spins whose bulk an-

" . . gular momentum resembles the original spin in a particular
update transition operation ¢f. Finally, we can perform the ' - ; ' .
! . . basis. Note that this is not cloning, since a basis needs to be
single-qudit operationg, on each cell. O

set beforehand. Succinctly, we want a unitary procedure

This last result is of major importance as it allows us to im-that maps the state
plement any unitary QCA algorithm onpailse-driven quan-
tum computeras proposed by Lloyd [16], and further devel- (a]0) + B11)) @ )
oped by Benjamin [14, 15] and others[[33]. The scheme in- e
volves using large molecules comprised of two or more dif-
ferent species of spig-particles, arranged in repetitive struc- to the state
tures, such as crystals or polymers, to store the quantusm dat
It then evolves the system using series of magnetic pulses th a|0)ENT 4 g @D
address all spins of any one particular species.

To implement a given QCA in the pulse-driven computationwhere |0) and |1) form the basis in which we wish tam-
model, we first convert the QCA into one which uses a two-plify. The main application of such an algorithm is to per-
state alphabet. This can be done by expanding each cell inform a measurement in situations where bulk magnetization
[log |X|] cells to encode the states®fwvith a binary alphabet, is needed in order to achieve a detectable signal, such hs wit
then adjusting the neighborhood scheMeaccordingly. We  NMR. Hence, the algorithm needs to be extremely efficient:
then apply the construction in Theoréin 4. With this, and thehe whole procedure needs to be completed before decoher-
techniques of Lloydkt. al, it would be possible to implement ence can destroy the desired value. The valusvill also
any QCA algorithm using NMR and an appropriate moleculeneed to be reasonably large, on the ordei@f or 102, in

We choose NMR and pulse driven quantum computingorder to get a reasonable signal in NMR.
devices to show a physical implementation of local unitary Figure[T shows a simple quantum circuit solution. How-
QCA. However, this should not be taken to be the only posever, this circuit approach does have several shortcomings
sible implementation of QCA. There are many other physicaFirst and foremost, it requires individually addressixglif-
systems, like optical lattices [34], cavity QED, among othe ferent spins. For larg&/, in most laboratory conditions, this
[35,136], that seem better suited to implementing QCA, natheis not feasible. Supposing that one could get around this firs
than the more traditional quantum circuits. hurdle, one would still need to perforii independent gates

Amplified Spin  Ancilla
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lations. For a full description of this algorithm, inclugim

||¢; I discussion on physical implementation see [21] 25, 37].

0) —&
|0)
|0) 4 VIIl. PREVIOUS QCA MODELS
0 S . . .
10) ) In this section, we will present a number of other models of
10) N QCA that have been developed, and we will relate them to our
0) proposed model.

FIG. 7: A simple quantum circuit that implemerifs A. Watrous-van Dam QCA

) o ) The first attempt to define a quantized version of cellular
before decoherence destroys the data. Again, thisis r@ylik 5,(omata was made by Watrolis [6], whose ideas were further
to be feasible in most experimental settings. _ _explored by van Dani [5], and by Durr, L&Thanh and Santha

~The QCA approach is simple, elegant, and optimally effi-j39 [39]. The model considers a one-dimensional lattice of
cient. In order to develop the algorithm we will make use of cg||s and a finite set of basis statégor each individual cell,
the colored QCA developed earlier. We will use a two-coloranq features a transition function which maps a neighbathoo
(black and white), three-dimensional QCA. Since we are dept celis to a single quantum state instantaneously and &mul
scribing an algorithm that has to be implemented in an actuglggysly. Watrous also introduces a model of partitioned QCA
physical setting, we will be using a finite-sized workspace i, which each cell contains a triplet of quantum states, and a

In order to describe this workspace, we will use three-stat@ermuytation is applied to each cell neighborhood before the
qudits for our cells: the logical stat¢s 1) and|—1) willbe  tansition function is applied.

used to denote the presence and the spin of a%‘,nn'aFticle
in the corresponding state, while the stitewill denote the  Definition 8. A Watrous-van Dam QCA, acting on a one-
absence of any particle. This stdt® will be quiescentas  dimensional lattice indexed b¥, consists of a 3-tuple
defined in Sectiofll. (3, N, f) consisting of a finite seb of cell states, a fi-
Every cell in the QCA is initialized to a stat@) except for  nite neighborhood scheru€, and a local transition function
a perfectly cubic region of volume roughty. The cubewill  f: ¥V — Hsy.
have its cells initialized to the value-1), except for the top-
front-left corner of the cube, whose value will be initigdto
the statgy) which we wish to amplify. We will use this top,
front, left portion of the cube as an ancilla system.

This model can be viewed as a direct quantization of the
classical cellular automata model, where the set of passibl
configurations of the CA is extended to include all linear su-

As we are using a colored QCA, the neighborhood of eadperpositions of the classical cell configurations, and tieall
cell is fixed to be the set of cells with Manhattan distance 17anstion function now maps the cell configurations of agiv

from that cell. Hence, each cell has only neighbors of the Opneighborhood to a quantum state. In the case that a neighbor-

posing color. We also need to provide an update rule whicﬁ‘OOd.iS in a linear superpos!tion_of configuratioyissi_mply
is color-symmetric. For both colors, the update rule is &s fo acts linearly. Also note that in this model, at each time ,step

lows. We apply aVOT gate (which mapst1) to |—1), |—1) each cell is updated with its new value simultaneously, as in

to |[+1) and leaves the quiescent stdt¢ untouched) if and the classical model.

only if the set of neighbors of a cell have values which sumh U.nfor;ctmately, .tgl's tdegn;pontallovyt:?‘ fo; nortl_-physur:]f_;lclmbi-
to —2, —1, or 0. It can be shown that this update rule, when avior. 1t1S possibie 1o detine transition functions whi

_ R _ . ) not represent unitary evolution of the cell tape, either fayp
applied repeatedly foD (\/N) time steps, will achieve the 4, cing superpositions of configurations which do not have
desired result. norm 1, or by inducing a global transition function which is
We can make a few simple observations about the algorot injective, and therefore not unitary. In order to help re
rithm. First, as a native QCA algorithm, it does not requiresolve this problem, Watrous restricts the set of permissibl

individual spin addressability. The algorithm is optinyadf-  local transition functions by introducing the notion well-
ficient, if we allow only the use of local operations, in at mos formedQCA. A local transition function is well-formed sim-
three dimensions. ply if it maps any configuration to a properly normalized lin-

It should also be noted that the problem of single-spin meaear superposition of configurations. Because the set ofgzonfi
surementin NMR is generally considered to be a difficult oneurations is infinite, this condition is usually expressetkims
the fact that the exposition of the algorithm presented f&ere of the/, norm of the complex amplitudes associated with each
simple and succinct is due to the development of the theoretconfiguration.
cal tools earlier in this work. In order to describe QCA which perform unitary evolution,
It is important to add that it is possible to implement this Watrous also introduces the idea ofjaiescenttate, which
algorithm in solid state NMR by adapting some of the tech-is a distinguished elemente ¥ which has the property that
niques presented above, and applying some clever manipy-: ¢V — V. We can then define a quiescent QCA as a
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FIG. 8: Watrous Partitioned QCA.
QCA with a distinguished quiescent state acting onlyioite FIG. 9: Watrous QCA expressed as a Local Unitary QCA.

configurations, which consist of finitely many non-quiegcen

states. It can be shown that a quiescent QCA which is well-

formed and injective represents unitary evolution on the la B. Schumacher-Werner QCA
tice. Also, note that this notion of a quiescent state ishslyg

different than the one introduced in Section Ill. Schumacher and Wernérl [4] take a different approach in
In order to construct examples of valid QCA in this model, the definition of their model of QCA, working in the Heisen-

Watrous also introduces a model of partitioned QCA, in whichberg picture rather than the Schrodinger picture. Thapint

each cell consists of three quantum states, so that the set dfice a comprehensive model of QCA in which they consider

finite states can be subdividedds= ¥; x ¥, x ¥,.. Given  only the evolution of the algebra of observables on the lat-

a configuration in which each cell, indexed bye Z, isin  tice, rather than states of the cell lattice itself. By extiag

the State((J;(cl)aCI;(f)a q](:>), the transition function of the QCA local observables of the cell lattice into a closed obsdevab

in one time step first consists of a permutation which bringglgebra, the Schumacher-Werner model has a number of use-

the state of celk to (ql(clzlaql(f)v q](;zl) for eachk € Z, then ful algebraic properties. In this model, the transitiondtion

performs a local unitary operatidn, on each cell. is simply a homomorphism of the observable algebra which
satisfies a locality condition. Schumacher and Werner also i

Watrous shows that this model of partitioned QCA can b&qqyce a model of partitioned QCA called tfeeneralized
used to simulate a universal quantum Turing machine with\1argolus Partitioned QCAin which the observable algebra
polynomial overhead. is partitioned into subalgebras. This generalizes the Magy

The partitioned QCA model given by Watrous can also bescheme, as described in Sectiah Il, in which the cell lattice
expressed in the Local Unitary QCA model. First, supposétself is partitioned.
|~;| = |2,]. If this is not the case, we can pad the smaller In order to avoid problematic issues dealing with observ-
set with unused symbols so that both sets are of the same siz#hles over infinite lattices, Schumacher and Werner make use
Then, we separate the permutation into an operdtiomhich  of the quasi-localalgebra. In order to construct this algebra,

operates on two consecutive cells, mapping we first start with the set of all observables on finite subsets
S C L of the lattice, denotedl(.S), and extend them appro-
O © D () () priately into observables of the entire lattice by takingrasor
Pro(ayay @)y (@hins Qhins Qoi) product with the identity operator over the rest of the ¢atti
l c l r c r i i i-
— (ql(C )’ ql(C )7 q](cll)’ (ql(C )’ q;ilp qz(ﬁzﬂ The completion of this set forms the quasi-local algebra.

In this setting, the global transition operator of a QCA is
. . _ simply defined as a homomorphish: A(L) — A(L) over
followed by an operatiot, which operates on a single cell, the quasi-local algebra which satisfies two specific proper-
mapping ties. First, a locality condition must be satisfied(.A(S)) C
A(S + N) for all finite S C L. Secondly,l” must commute
with lattice translation operators, so that the QCA is space
homogeneous. Now, the QCA can be defined in terms of the
lattice L, the neighborhood schemé, the single-cell observ-
Note thatP, P, performs the desired permutation, and alsoable algebra Ay, which takes the place of the alphabet, and
that P, commutes with any lattice translation Bf. Now, we  the global transition operatdr.
can express the Watrous partitioned QCA in our QCA model The local transition operator of a QCA is simply a homo-
by settingU’ = P, andV’ = V P, as shown in Figurel 9. morphismTy : Ay — A(N) from the observable algebra of

l c T T c l
Py (@, a7 0) = (0,0, a).
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a single distinguished cell € L to the observable algebra of Note that sincd} andT; are isomorphisms between observ-
the neighborhood of that cell. Schumacher and Werner showable algebras of equal dimension, with an appropriate ehoic
that a local homomorphisffy, will correspond uniquely to a of basis, they can be represented by unitary operafpend
global transition operatdf if and only if for eachz € L, U, which map vectors from a complex vector space to another
the algebragy(Ay) and,(To(Ap)) commute elementwise. complex vector space of equal dimension. However, they do
Here, 7, is a lattice translation by. The global transition notrepresentlocal unitary evolution, since these comydex

operatofT’ given byTy is defined by tor spaces are used to describe two different quantum sgstem
For example, the Shift-Right QCA, which was shown in Sec-

T(A(S)) = H T.(A). tion[[lllto be impossible to implement using local unitary-op
z€S erators, can be constructed in the Generalized Margoltis Par

Next, we will describe the Generalized Margolus Parti-tlonlng QCA model,

tioned QCA. Schumacher and Werner present this partitioned FortunaFe_)Iy, .it is possible to sirnglate the Gener.alized-Mar
scheme as a method of producing valid reversible QCA irgolus Partitioning QCA model within the Local Unitary QCA

Y )
their general model. In order to describe this scheme, wie wilTodel by adding memory registers to each cell correspond-

proceed according to the definition of a classical partétbn Ing to the _subalgebrdﬁv in addition to a CIOCk. T89i3ter "?di'_
CA, as given in Sectiofll| cating which of the two stages of the transition function is

being performed. The transition function of the Local Uni-
tary QCA simply swaps the contents of the data registers of
each cell with the appropriate memory registers beforeyappl
ing the unitary operations corresponding to the desired iso

We start with thei-dimensional latticd, = Z<, and we fix
the sublatticeS = 2Z¢ as the set of cells of. with all even
co-ordinates. We also fix the time period&as= 2. The block
schemeB is given as{ By, B; }, which is given as

morphisms.
BOZ{(Ithv"'v'rd) ELOSI] < 131§j§d}7
which is simply a cube of siz&? with corners at cell® =
(0,0,...,0)and1 = (1,1,...,1),and C. Other Models

Bi=Bo+1, Meyer [9, [40], Boghosian and Taylor [10], Love and
which is simply a translation of the culi®,. Boghosiani[311], among others explored the idea of using QCA

Now, as in the regular Schumacher-Werner QCA model, wés & model for simulating quantum lattice gases. As classica
proceed in the Heisenberg picture. For any bl&gkt s, s €~ CA are used to model classma_l physical systems, it is natu-
S, we have2? intersecting blocks from the partitiaB; + 5.  al to develop QCA models which are capable of modelling
For each blockB; + s’ which intersects withB, + s, there ~ quantum physical systems. In order to simulate lattice gase
is a vector € Z? representing the translation takidty + s ~ Meyer uses a model of QCA in which each lattice cell is rep-
to By + &', so thatB; + s’ = By + s + v. Indeed, thesg? ~ resented by a computational basis state in a Hilbert spade, a
intersecting blocks may be indexed by the vectomshichare  the set of states which a given cell can take is replaced with a

simply all vectors ofZ¢ whose entries are eachl. Hence, ~COmplex number representing the amplitude of the basie stat
(s) corresponding to that cell. In this regard, Meyer's QCA mod-

we will setB;”’ = By + s + v. . X :
For each blockz® we will fix an observable algebm(,o) elling of Ia_ttlce gases greatly dlffer_s from the one presdnt
v here, and is not suitable as the basis for a more general model

as a subalgebra of the observable algeb(&!”’) for the en- of QCA.
tire block. Then, for each blocBS®, the observable algebra Lloyd [1€] introduced a model of physical computation
B is simply the appropriate translation8§”’. Note that,in  based on a chain consisting of a repeating sequence of a fixed

particular, the observable algebra for the bldtkt-s = Bgs)’ number of distinguishable nuclear species. In this model,
A(B{), contains each of the observable algelss™* . pulses are programmed which are capable of distinguish-
In order for an assignment of subalgebras to be considered9 the species and performing nearest-neighbor unitary op

. (s+1—v) erations. This model has been further developed by others
valld(,s)these.subalget?ra& _must commute and _span [14,41)472]. It has been shown that this model is sufficient fo
A(By”). This occurs if and only if the product of the dimen- jjplementing universal quantum computation.

. d
sions of these algebras|s|* . _ _ _ The model, sometimes referred to ‘psilse-driven quan-
The transition function then consists first of an isomor-yym computers’ or Globally Controlled Quantum Arrays
phism (GCQA), is different from QCA in that it allows for time-
) ) ) dependent evolution. Still, they are closely related inrthe
3" A(By ") — H By, use of only space-homogeneous update rules. For the sake of
v applying results pertaining to one model to the other, itss a
followed by the isomorphism possible to argue that a pulse-driven quantum computer is a

degenerate case of a QCA where the update rule is applied
Tl(s) : HB(us) S A (Bis)) ' once Also, this physical scheme provides a natural platform
sl for implementing QCA.
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D. Comparison and Discussion IX. CONCLUSIONS

In this section we have gone through a brief discussion of In this paper, we have presented a model of quantum cellu-
the major QCA models already in the literature today. While|ar automata based on local unitary operators. We have shown
each has its own strengths, it is also true that each has weaffat it has distinct advantages over previous cellularraata
nesses that are addressed by the LUQCA model. quantizations. In particular, we have shown that given any

We have seen how general Watrous-van Dam QCA havguUQCA it is always possible to give an efficient, low-depth
the problem of permitting ill-defined QCA. It is tempting to quantum circuit that faithfully represents it. This leadgtie
simply restrict attention to well-defined QCA in these madel conclusion that any universal quantum computer could imple
However, deciding whether a given QCA is well-defined orment an LUQCA efficiently.
notis a hard problem. More importantly, however, we have also shown that it is

Even when a QCA is guaranteed to be well defined, as iEossible to implement LUQCA in experimental setups that
the case for the partitioned Watrous-Van dam QCA, these alare arguably simpler than traditional quantum circuit base
low for evolution that is not unitary and loca,g. shift-right  algorithms: for instance, globally addressing spins in NMR
automata as described in Section Ill B. This same criticismpr ESR. At the same time, we have shown that our model
applies to the Schumacher-Werner model of QCA. is universal for quantum computation. We gave an explicit

Fortunately, it is possible to simulate any valid QCA in proof of an efficient simulation of quantum circuits using a
these models with local unitary QCA by adding ancillary two-dimensional QCA and mentioned that a proof of univer-
space to each cell, in order to perform the necessary evolisality for one-dimensional LUQCA exists as well [26]. We
tion in a unitary fashion. also showcased the LUQCA as a modelling and simulation

Meyer's definition of QCA, while being suitable for his pur- tgql.
poses, is not general enough to allow for all the behavidr tha Finally, we have shown that QCA in previous models can

is possible with local unitary QCA,e. universal computa- g efficiently translated into QCA within the model preseite
tion. Again, QCA in this model can easily be simulated by hare  For example, a universal QCA in previous models

LUQ.CA' [6, 18] can easily become a universal QCA within the local
Finally, we address globally-controlled quantum arrays. nitary model (sed [26] for an explicit construction). Afl o

There are many similarities and connections between QCA acefacts suggest that the LUQCA is a very strong model.
and this model of computation. One important connection Th £ thi has b ¢ tivate. devel

is how globally-controlled arrays can be used to implement € purpose of this paper has been to motivate, develop
QCA. However, these two models are quite distinct. A GCQAand showcase a mOdEI. of q”a”t“”.‘ ceIIuI_ar automata based
is centered around the idea of doing computation on large al! strictly _Iocal, translatlon—commupng, unitary opet It

rays of simple quantum systems, without locally addressin%s our conjecture that the construction given here is thetmos
them. GCQA divide their lattice of cells, or qudits, irgab- ene_ral of th|§ form. ] ]
setseach of which can be addressed collectively. Ultimately, it is our hope that this paper serves to helpwn_ﬁ

The first major distinction with QCA comes from the fact the several methods, results, and views surrounding QG@A int
that sequences of pulses applied to these subsets of qredits £N€ Single, cohesive paradigm.
arbitrary, and do not necessarily follow a time-homogenous
pattern. The second, is that although Lloyd’s construdon
space homogenous, GCQA are not constrained in such a fash-
ion. More recently, GCQA have been proposed that have less
spatially homogenous structures|[43].

As a model of computation one can say that QCA are more The authors would like to thank Niel de Beaudrap and John
restricted than GCQA. At the same time, QCA are more tharWatrous for their invaluable comments on preliminary ver-
just a model of computation; they serve also as models ofions of this paper. Research for this paper was supported
physical phenomena. It can be argued that QCA are, in @ part by DTO-ARO, ORDCF, Ontario-MRI, CFI, MITACS,
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