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Local Unitary Quantum Cellular Automata

Carlos A. Pérez-Delgado and Donny Cheung
Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada

In this paper we present a quantization of Cellular Automata. Our formalism is based on a lattice ofqudits,
and an update rule consisting of local unitary operators that commute with their own lattice translations. One
purpose of this model is to act as a theoretical model of quantum computation, similar to the quantum circuit
model. It is also shown to be an appropriate abstraction for space-homogeneous quantum phenomena, such as
quantum lattice gases, spin chains and others. Some resultsthat show the benefits of basing the model on local
unitary operators are shown: universality, strong connections to the circuit model, simple implementation on
quantum hardware, and a wealth of applications.

PACS numbers: 03.67.Lx

I. INTRODUCTION

The Cellular Automaton (CA) is a computational model
that has been studied for many decades [1, 2]. It is a sim-
ple yet powerful model of computation that has been shown
to be Turing complete [2]. It is based on massive parallelism
and simple, locally constrained instructions, making it ideal
for various applications. In particular, CA are very effective
at simulating many classical physical systems, including gas
dispersion, fluids dynamics, ice formation, and even biolog-
ical colony growth [3]. Although usually simulated in soft-
ware, CA hardware implementations have also been devel-
oped. All of these characteristics make CA a strong tool for
moving from a physical system in nature, to a mathematical
model, to an implemented physical simulation.

More recently, the idea ofQuantumCellular Automata
(QCA) has emerged. Several theoretical mathematical mod-
els have been proposed [4, 5, 6, 7, 8]. However, there is a
lack of applications developed within these models. On the
other hand,ad hocmodels for specific applications like quan-
tum lattice gases [9, 10], among others [11], have been de-
veloped. Several proposals for scalable quantum computation
(QC) have been developed that use ideas and tools related to
QCA [12, 13, 14, 15, 16]. Some of these have been shown
to be capable of universal computation [17, 18]. Other QCA
tools have been used to solve, or propose solutions to, partic-
ular problems in physics [19, 20, 21, 22, 23].

However, there does not exist a comprehensive model of
QCA that encompasses these different views and techniques.
Rather, each set of authors defines QCA in their own partic-
ular fashion. In short, there is a lack of a generally accepted
QCA model that has all the attributes of the CA model men-
tioned above: simple to describe; computationally powerful
and expressive; efficiently implemented in quantum software
and hardware; and able to efficiently and effectively model
appropriate physical phenomena.

The purpose of this paper is to propose such a model.
The model we present here is based on intuitive and well-
established ideas: qudits as the basic building blocks (cells),
and local unitary operators as the basic evolution method (lo-
cal update rule).

The choice of local unitary operators as the basic evolu-
tion operator ensures that the model is simple and easily ex-

plained to anyone familiar with the field of quantum infor-
mation. However, the choice is not made merely for sake of
simplicity: it provides us with anefficient implementationof
QCA on quantum hardware, while still enjoying an expressive
richness strong enough to simulate any appropriate physical
system.

Formally, what we mean by efficient implementation is that
there exists a uniform family of quantum circuits that can
each simulate the evolution of a finite region of the QCA,
for a specified number of steps. Furthermore, we require that
the depthof each circuit be strictly linear in the number of
steps, and constant on the size of the region being simulated.
This last requirement is to ensure that the QCA retains the
quintessential quality of CA:massive parallelism.

We will refer to this formalization as the Local Unitary
Quantum Cellular Automata (LUQCA) model, when we need
to make the distinction from other formal definitions of QCA.

In Section IV we will see howanyQCA properly defined
in the model presented here can be efficiently implemented.
The fact that there is such a guarantee, without any further
restraints, is one of the strongest features of the model herein
presented. In Section VIII we will see that in general, previous
models cannot make such a guarantee. We will also discuss
what methods can be used to translate QCA in these models
into the LUQCA model.

We will see in Sections IV and V how insisting on efficient
implementations does not at all limit the expressive power of
our QCA model. Section V will also show how most, if not all,
physical systems of interest with the proper characteristics—
time and space homogeneity—can be modeled using local
unitary QCA. We will also prove computational completeness
in section IV. Section VIII discusses how valid QCA pre-
sented in other models can be rephrased in the local unitary
QCA scheme.

We begin in Section II by briefly describing classical CA
in detail. Following that, we will endeavor to quantize this
model in the most natural way possible. The rest of the paper
presents results pertaining to the strengths of this model.

II. CELLULAR AUTOMATA

In the classical model of cellular automata, we begin with
a finite set of statesΣ and an infinite lattice ofcells, each of
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which is in one of the states inΣ. We have discrete time steps,
and at each time stept, the state of the lattice evolves accord-
ing to some rule. This rule gives the state of each cell at time
t + 1 as a function of the states of the cells in itsneighbor-
hood, which is simply a finite set of cells corresponding to a
particular cell.

Definition 1 (CA). A Cellular Automaton is a 4-tuple
(L,Σ,N , f) consisting of ad-dimensional lattice of cells in-
dexed by integers,L = Z

d, a finite setΣ of cell states, a finite
neighborhood schemeN ⊆ Zd, and a local transition func-
tion f : ΣN → Σ.

The transition functionf simply takes, for each lattice cell
positionx ∈ L, the states of the neighbors ofx, which are
the cells indexed by the setx + N at the current time step
t ∈ Z to determine the state of cellx at time t + 1. There
are two important properties of cellular automata that should
be noted. First, cellular automata arespace-homogeneous, in
that the local transition function performs the same function at
each cell. Also, cellular automata aretime-homogeneous, in
that the local transition function does not depend on the time
stept.

We may also view the transition function as one which acts
on the entire lattice, rather than on individual cells. In this
view, we denote the state of the entire CA as aconfiguration
C ∈ ΣL which gives the state of each individual cell. This
gives us aglobaltransition function which is simply a function
that mapsF : ΣL → ΣL.

A. Reversible and Partitioned CA

As a first step towards developing a theory of unitary CA
we will revisit the theory of classical reversible automata.

A CA is reversible if for any configurationC ∈ ΣL, and
time stept ∈ Z there exists a unique predecessor configura-
tion C′ such thatC = F (C′, t). It is known that any Turing
machine can be simulated using a reversible CA [24], so no
computational power is lost by this restriction.

One method that is used to construct reversible cellular au-
tomata ispartitioning. In a partitioned CA, the transition func-
tion is composed of local, reversible operations on individual
units of a partition of the lattice.

In order to formally define partitioned CA, we must expand
the definition of cellular automata, as partitioned CA are nei-
ther time-homogeneous nor space-homogeneous in general.
They are, however, periodic in both space and time, and thus
we set both a time periodT ≥ 1 and a space period, given
as ad-dimensional sublatticeS of L = Zd. The sublatticeS
can be defined using a set{vk : k = 1, . . . , d} of d linearly
independent vectors fromL = Zd as:

S =

{
d∑

k=1

akvk : ak ∈ Z

}

.

Definition 2. For a given fixed sublatticeS ⊆ Z
d, we define

a blockB ⊆ Zd as a finite subset ofZd such that(B + s1) ∩

Reversible
Update Rule

Reversible
Update Rule

f

g g g

f f

FIG. 1: Partitioned Cellular Automaton

(B + s2) = ∅ for anys1, s2 ∈ S with s1 6= s2, and such that

⋃

s∈S

(B + s) = Z
d.

The main idea of the partitioned CA is that at different time
steps, we act on a different block partition of the lattice. We
are now ready to formally define the partitioned CA.

Definition 3. A Partitioned CA is a 6-tuple(L, S, T,Σ,B,F)
consisting of

1. ad-dimensional lattice of cells indexed by integers,L =
Zd;

2. ad-dimensional sublatticeS ⊆ L;

3. a time periodT ≥ 1;

4. a finite setΣ of cell states;

5. a block scheme B, which is a sequence
{B0, B1, . . . , BT−1} consisting of T blocks rela-
tive to the sublatticeS; and

6. a local transition function schemeF , which is a set
{f0, f1, . . . , fT−1} of reversible local transition func-
tions which mapft : ΣBt → ΣBt .

At time stept+ kT for 0 ≤ t < T andk ∈ Z, we perform
ft on every blockBt + s, wheres ∈ S. In order to find the
reverse of a partitioned CA, we simply give the reverse block
scheme,B = {BT−1, . . . , B1, B0}, and the reverse function
scheme,F = {f−1

T−1, . . . , f
−1
1 , f−1

0 }.
Although the partitioned CA is not time- or space-

homogeneous, it can be converted into a regular CA, on the
lattice S (which is isomorphic toZd), with cell statesΣB,
where the new local transition function simulatesT time steps
of the partitioned CA in one time step.

In the original partitioned CA scheme as described by
Margolus [25], the sublattice was fixed asS = 2Zd, and
the block scheme was fixed with two partitions:B0 =
{(x1, x2 . . . , xd) : 0 ≤ xj ≤ 1} andB1 = {(x1, x2 . . . , xd) :
1 ≤ xj ≤ 2}.
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III. LOCAL UNITARY QCA

Now, with a formal notion of CA, we can proceed to give a
quantization. As mentioned earlier, we will have very specific
goals in mind.

A. Model Requirements

First, we want to develop an intuitive model that is both
simple to work with, and to develop algorithms for. At the
same time, we want this model to be an obviousextension
of classical CA and to reduce to classical CA behavior under
reasonable limits.

Second, we want to keep our model grounded in physical
realities. This has a couple of strong consequences. Namely,
we approach CA, even classical CA, not as abstract mathe-
matical structures, but as models representing real physical
systems. As a consequence, we expect our model to reliably
model quantum systems with appropriate behavior,e.g., spin
chains. Also, an algorithm described in our model should be
easy to translate to an actual physical implementation on such
quantum systems. We show in Section VI that this is so.

B. A First Approach

The first step in our quantization of CA is to change the
state space of a cell to reflect a quantum system. There are
several methods for doing so, however we believe that the
most natural way to approach this is to convert the alphabet
of the cellular automaton,Σ, into orthogonal basis states of
a Hilbert space,HΣ. Formally, every cellx ∈ L is assigned
a qudit, |x〉 ∈ HΣ. This gives us a strong intuitive tool, as
the notion of a lattice of qudits should be familiar to anyone
working in quantum information theory.

As we shall see, our approach is also physically grounded,
in that it is possible to describe this model in terms of a quan-
tum system evolving according to a Hamiltonian. As an ex-
ample, spin chains can be directly described by such math-
ematical constructions. Lattice gases, though not originally
modeled in this way, can also be easily described by such
mathematical constructs. Perhaps the most obvious physical
example is the pulse-driven quantum computer.

We also wish to quantize the standard classical CA update
rule. However, this process cannot necessarily proceed in the
most obvious manner. In a classical CA, every cell is instan-
taneously updated in parallel. We wish to replace this classi-
cal cell update rule with a quantum analogue that acts appro-
priately on the qudit lattice described above. For a quantum
unitary operation to act as a quantum cell update rule, this
operator needs to fulfill the following two restrictions:

1. The operator must act on a finite subset of the lattice.
PreciselyUx : H(Nx) → H(Nx) whereNx = N +
x ⊆ L is the finite neighborhood about the cellx.

2. The operator must commute with lattice translations of
itself. Precisely, we require that[Ux, Uy] = 0 for all
x, y ∈ Zn.

The first condition is an immediate condition for any rule,
quantum or otherwise, to qualify as a CA update rule. The
second condition allows the operatorsUx for x ∈ Zn to be
applied in parallel without the need to consider any specialor
particular ordering of the operators.

It should be clear that any evolution defined in such manner
represents a valid quantum evolution which can be ascribed to
some physical system. The global evolution of the lattice can
be described as

U =
∏

x

Ux,

which is well-defined, due to the two conditions given above.
The question that remains is whether this model properly

describes what we intuitively would regard as QCA. Properly,
there are two questions:

1. Can all entities described by the model above be prop-
erly classified as QCA?

2. Can all systems that are identified as QCA be properly
described in the model above?

The answer to the first question isyes, since the update rules
are local and can be applied in unison throughout the lattice.
Also, the global unitary operator for the evolution of the lattice
is properly defined and space-homogeneous, as desired.

The answer to the second question is, unfortunately,no. We
now present a simple system that one might consider to be a
valid QCA, but cannot be described in the above model.

The counterexample is as follows. We start with a one-
dimensional lattice of qudits. For each lattice cellx ∈ L,
we associate with it a quantum state|ψx〉 ∈ HΣ. Although in
general, the configuration of a QCA may not be separable with
respect to each cell, the configuration can still be described in
terms of a linear superposition of these separable configura-
tions. Thus, it suffices to consider such configurations.

At each time step we wish to have every value shifted one
cell to the right. In other words, after the first update each cell
x should now store the state|ψx−1〉. After k steps each cell
x should contain the state|ψx−k〉. In fact, such a transition
function cannot be implemented byanylocal unitary process.

To see why this is so, suppose that we had a transition func-
tion f , which is the product of a finite number of operations,
f = fnfn−1 . . . f1, such that each operatorfj is the (poten-
tially infinite) product of local unitary operators over disjoint
neighborhoods. Note that this gives us the most general de-
scription possible of a depth-n quantum circuit implementa-
tion of this linear QCA using only local unitary operators.
Now, consider an individual cell,x0. By analyzing the depen-
dencies of the individual local unitary operators which make
up the transition functionf , it is possible to find a range of
cells,P = {x : a ≤ x ≤ b} for somea, b ∈ Z such that
x0 ∈ P , and the value of the quantum state at cellx0 after
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the application of the transition function depends only on the
cells ofP .

We now divide the transition functionf into two functions,
f = hg, whereg applies sufficiently many local unitary oper-
ators fromf over the cells ofP so that the new value of the
quantum state at cellx0 is computed, without violating any
of the dependency relations fromf . Then,h simply applies
the remainder of the local unitary operators, as appropriate.
Note that sinceg necessarily contains any local unitary opera-
tors fromf which operate on the cellx0, the operationh does
not. Sinceh does not perform any operation between cells
x < x0 and cellsx > x0, in order to implement the shift-right
transition function, the cells{x : x0 < x ≤ b} must contain
enough quantum information afterg has been applied to re-
construct the information in the cells{x : x0 ≤ x ≤ b}. This
is clearly impossible.

In order to resolve this issue, we need to analyze the classi-
cal CA parallel update rules more closely. In the classical CA,
the local update rule for a given cell reads the value of the cell,
and the values of its neighboring cells. It performs a compu-
tation based on these values, and then updates the cell’s value
accordingly. Herein lies the problem:read and updateare
modeled in a classical CA as a single atomic action that can
be applied throughout the lattice in parallel simultaneously.
However, in a physical setting, these two operations cannot
be implemented in this manner. When simulating CA in clas-
sical computer architectures, the canonical solution is touse
two lattices in memory: one to store the current value, and
one to store the computed updated value. Even if we consider
hardware implementations of CA, these need to keep the val-
ues of the inputs to the transition function while this function
is being calculated.

The formal CA model does not need to consider this im-
plementation detail, as it is a mathematical construction and
has no claims to directly model a physical system implement-
ing a CA. When developing a QCA model, one cannot take
the same liberty. The name itself, QCA, includes reference
to an underlyingquantumphysical reality. It is our intention
that this model faithfully, if abstractly, represents realphys-
ical systems. Although there is some value in mathematical
constructions which do not correspond directly to any physi-
cal systems, this is not the goal of the constructions presented
in this paper.

C. A New Approach

We now make an adjustment to our QCA model, given the
importance of maintaining independentread andupdateop-
erations. Instead of having one unitary operator replacingthe
single atomic operation in the CA model, we define our QCA
update rule as consisting of two unitary operators. The first
operator, corresponding to theread operation, will be as de-
fined above: a unitary operatorUx, x ∈ L acting on the neigh-
borhoodNx, which commutes with all lattice translations of
itself, Uy, y ∈ L. The second operator,Vx, x ∈ L, corre-
sponds to theupdateoperation, and will only act on the single
cell x itself.

The intuition is as follows: in our physical model, instead of
having separate lattices for thereadandupdatefunctions, we
expand each lattice cell to also contain any space resources
necessary for computing the updated value of the cell. The
operatorUx reads the values of the neighborhoodNx, per-
forms a computation, and stores the new value in such a way
that does not prevent neighboring operatorsUy from correctly
reading its own input values. This allows each cell to be oper-
ated upon independently, in parallel, without any underlying
assumptions of synchronization. After all the operationsUx

have been performed, the second unitaryVx performs the ac-
tual update of the lattice cell.

With this new model for the update operation, we can again
approach the two questions given above as to whether this
model adequately describes what we might intuitively regard
as QCA.

First, it is clear that all entities described by this updated
model can still be properly classified as QCA. The local up-
date ruleRx = VxUx is still a valid quantum unitary opera-
tion, and the global update rule

R = V U =

(
⊗

x

Vx

)(
∏

x

Ux

)

is both well-defined and space-homogeneous.
Now, in order to properly investigate whether all physical

systems which can be described as QCA can be described
within this new model, it is necessary to verify the following:

We must first compare our model to existing CA models,
both classical and quantum, in order to ensure that our model
subsumes all proper CA described in these models. Secondly,
we must also show that any known physical system which be-
haves according to quantum mechanics and satisfies the CA
preconditions of being driven by a local, space-homogeneous
interaction can be described by our model.

As an example, the qubit shift-right QCA mentioned above
can now be described in this model, by including ancillary
computation space with each lattice cell.

We will tackle this question in more depth in the upcoming
sections. First, we present a formal definition of the QCA
model which we will adopt, as described in this section.

Definition 4 (QCA). A Quantum Cellular Automaton is a 5-
tuple(L,Σ,N , U0, V0) consisting of

1. ad-dimensional lattice of cells indexed by integers,L =
Zd,

2. a finite setΣ of orthogonal basis states,

3. a finite neighborhood schemeN ⊆ Zd,

4. a local read functionU0 : (HΣ)
⊗N → (HΣ)

⊗N , and

5. a local update functionV0 : HΣ → HΣ.

Thereadoperation carries the further restriction that any two
lattice translationsUx andUy must commute for allx, y ∈ L.
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Each cell has a finite Hilbert space associated with itHΣ =
span({|x〉}x∈Σ). The reduced state of each cellρx is a density
operator over this Hilbert space.

The initial state of the QCA is defined in the following
way. Letf be any computable function that maps lattice vec-

tors to pure quantum states in(HΣ)
⊗kd

, whered is the di-
mension of the QCA lattice, andk is the length of a side of
a d-dimensional hypercube, which we use to define blocks
that are initialized to particular states. Then for any lattice
vector z = (z1k, z2k, . . . , zdk) ∈ Zd the initial state of
the lattice hypercube delimited by(z1k, z2k, . . . , zdk) and
((z1 + 1)k − 1, (z2 + 1)k − 1, . . . , (zd + 1)k − 1) is set to
f(z).

Intuitively, each block represents a volume of the QCA that
is initialized to a particular pure state. Each block is initial-
ized independently. In particular,f can have a block size of
one cell, initializing every cell to the same state inΣ. It can
also have more complicated forms such as having every pair
of cells in a one dimensional QCA initialized to some maxi-
mally entangled state. Particularly useful are functionsf that
initialize a finite region about the origin to some interesting
state—the input of the QCA—and the rest of the lattice to
some quiescent state (see below).

The local update rule acting on a cellx consists of the op-
erationUx followed by the single-cell operationVx. BothUx

andVx are restricted to being computable unitary operators.
The global evolution operatorR is as previously defined.

D. Quiescent States

Our QCA definition follows the classical CA convention in
defining the model over aninfinite lattice. However, we will
often be concerned only with finite regions of the QCA. One
reason, for example, is that any physical implementation of
a QCA using quantum hardware will, by necessity, simulate
only a finite region of the QCA. Another reason is for simulat-
ing physical phenomena. For instance, in Section V, we will
be interested in simulatingfinite sizechains of spin-12 parti-
cles.

Sometimes, it can be appropriate to simply use finite QCA
with cyclic boundary conditions. In this case, we envision the
lattice as a closed torus. This is a standard and well-known
practice with CA. For example, we can use this technique
if the spin chain we wish to simulate isclosed, that is, it it-
self wraps around. For other applications, this will not be ap-
propriate, for example, when trying to simulate anopenspin
chain. This is a chain which doesnot wrap around, but rather
has two distinct end points. Another example will be the spin-
signal amplification algorithm in Section VII, which uses a
finite size cube ancilla system.

In such cases, the most appropriate way to proceed is to
make use of aquiescentstate, which is a cell state that is guar-
anteed to remain invariant under the update rule, regardless
of the states of its neighbors. For instance, in the case of the
finite spin-12 chains, we can use three state cells. We use the
state labels|+1〉 and|−1〉 to refer to the presence of a spin-1

2

Unitary Evolution

Trace out Trace out

FIG. 2: Past lightcone of a regionS: This represents a one-
dimensional local unitary QCA. In order to obtain the state of the
region of interest, the dark region at the bottom, one must consider
not just the region itself, but anything that might affect the state of
the region with the course of the simulation: its past lightcone. One
may then trace out the unneeded regions.

particle in a given cell position in the states12 (1 + σz) and
1
2 (1 − σz) respectively. A third state, labeled|0〉 denotes the
absence of any particle in that cell location. One then need
only ensure that the update rule correctly acts on states|+1〉
and|−1〉, while leaving state|0〉 unaffected.

Quiescent states are also very useful for the purposes of
simulation, and physical implementation. Normally, if one is
interested in the state of a regionS of the lattice afterk steps
of the QCA update rule, one would need to look at thepast
lightconeof S. If the local update rule has a neighborhood
of radiusr, then one needs to includekr additional cells in
each direction beyond the border ofS. This is because any
information in the past lightcone ofS has the ability to affect
cells withinS, as shown in Figure 2. Note that since the size
of the region needed by the simulation is determined by the
number of time steps of the QCA we wish to simulate, one
needs to fix the number of steps in the simulation beforehand.
However, if a given QCA has a quiescent state, and all cells
outside the finite region under consideration are initialized to
this quiescent state, then the simulation of this QCA need only
include this region for any number of simulated time steps.

IV. QUANTUM CIRCUITS AND UNIVERSALITY

In this section we explore two important aspects of the QCA
model we introduced in Section III. These aspects relate to
QCA as a model of computation. First, it is important to show
that QCA are capable of universal quantum computation. We
demonstrate this using a simulation of an arbitrary quantum
circuit using a two-dimensional QCA.

We also show that any QCA can be simulated using families
of quantum circuits. A quantum circuit is defined as a finite set
of gates acting on a finite input. One can then define auniform
family of quantum circuits, with parametersS andt, such that
each circuit simulates the finite regionS of the QCA for t
update steps. By uniformity we mean that that there exists an
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FIG. 3: Quantum circuit simulation of a QCA update step:The dot-
ted area represents the read phase. A read operatorU must be ap-
plied to each qubit, and its two neighbors. SinceU commutes with
its translations, we are at liberty to apply theU operators in any or-
der. The update phase consists of the operatorV being applied to
every qubit.

effective procedure, such as a Turing machine, that on input
(S, t) outputs the correct circuit.

We will show that our simulation isefficient, as defined in
Section I. Specifically, in order to simulate a QCA on a given
region, for a fixed number of time steps, we give a quantum
circuit simulation with a depth which is linear with respectto
the number of time steps, and constant with respect to the size
of the simulated region.

A. Simulation of QCA by Quantum Circuits

We begin by showing the latter of the two results described
above. We proceed incrementally, showing first how to pro-
duce a quantum circuit that can simulate a single update step
of a simple QCA.

Lemma 1. Any finite region of a one-dimensional QCA with
a symmetric neighborhood of radius one, where cells are in-
dividual qubits, can be simulated by a quantum circuit.

Proof. The simulation of an individual update step of this
QCA is simple. Recall that the operatorsUx, each acting on
3 qubits, all commute with each other. Therefore, theUx op-
erators may be applied in an arbitrary order. The operatorsVx
can all be applied to their respective qubits once allUx opera-
tors have been applied. Figure 3 gives a visual representation
of this construction. In order to simulate an arbitrary number
of steps, we simply need to repeatedly apply the above con-
struction. Finally, although we represented the operatorsU in
our diagram as single, three-qubit operators, to complete the
simulation we decomposeU into an appropriate series of one
and two qubit gates from a universal gate set.

In the case of one-dimensional QCA with a nearest neigh-
bor scheme, and cells consisting of one qubit, the operatorU

/

U

/ V
. . . / / V

/ / V

U = UnUn−1 . . . U2U1

V = VmVm−1 . . . V2V1

FIG. 4: Decomposition of general qudit gates.

is simply acting on three qubits. Still this operatorU needs
to be decomposed into a series of one and two qubit gates
U = UnUn−1 . . . U2U1 taken from a set of universal gates.

In order to extend the construction to allow cells with qudits
of arbitrary dimensiond, we first replace the single qubit wires
in Figure 3 with qudit wires as in Figure 4. Then each gateUx

andVx are decomposed into one and two qubit gates as in
the aforementioned figure. The same construction technique
works in order to deal with arbitrary dimensions, and arbitrary
cell neighborhood sizes.

Note thatm andn are constants, determined by the struc-
ture of the QCA. For very complicated QCA these constants
can be potentially large. However, once the QCA has been
defined these parameters are set, and hence do not asymptoti-
cally affect the complexity of simulating a region of the QCA
for a particular length of time.

As our simulation above does not set a region size to be
simulated, any region size can be simulated with an appropri-
ate construction. An arbitrary number of time steps can be
simulated by simply iterating the above construction. With
this in mind, as well as the previous lemma, we can now state
the following:

Theorem 1. For every QCAQ there exists a family of
quantum circuits, parameterized by(S, t), each acting on
O(m log |Σ|) inputs, and with circuit depthO(t) which simu-
lates a finite region ofS ofQ consisting ofm = |S| cells, for
t time steps

This is a very important result, as it demonstrates that the
local unitary QCA model does not admit automata which are
somehow “not physical”. More precisely, any behavior that
can be described by a QCA can be described by the more tra-
ditional quantum circuit model. Furthermore, such descrip-
tions retain the high parallelism inherent to QCA.

B. Simulation of Quantum Circuits by QCA

Next, we show the converse result from the one above, thus
showing that local unitary QCA are capable of efficient uni-
versal quantum computation.

Theorem 2. There exists a universal QCAQu that can sim-
ulate any quantum circuit with at most a linear slowdown, by
using an appropriately encoded initial state.

Proof. We proceed by constructing the QCAQu over a two-
dimensional lattice. We will basically‘draw’ the circuit onto
the lattice. The qubits will be arranged top to bottom, and the
wires will be visualized as going from left to right.
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Each cell will consist of a number of fields, or registers. The
cell itself can be thought of as the tensor product of quantum
systems corresponding to these registers.

The first register, the state register, consists of a single qubit
which corresponds directly to the value on one of the wires of
the quantum circuit at a particular point in the computation.
This value will be shifted towards the right as time moves for-
ward.

Next is the gate register. This register will be initializedto a
value corresponding to a gate that is to be applied to the state
register, at the appropriate time.

There is also a clock register, which will keep track of the
current time step of the simulation. There are two phases to
the simulation, an‘operate’and a‘carry’ step.

There is finally a single qubit active register, that keeps a
record of which cells are currently actively involved in the
computation. This register is either set totrueor false.

The local read operatorUx proceeds as follows. The neigh-
borhood scheme is the von Neumann neighborhood of radius
one,i.e. the cells directly above, below and to either side of
the cell. The read operator acts non-trivially only on the one
cell directly above, and the one directly to the left. However,
the bigger neighborhood is needed to ensure unitary evolution,
and translation invariance.

If the clock register is set tooperate, then a quantum gate
is applied to the state register of the current cell (and possibly
the state register of the upwards neighbor). For this, we fix a
finite set of universal gates consisting of the controlled phase
gate and some set of single-qubit operators. The choice of
the controlled phase gate, as opposed to say controlled not,is
to ensure thatUx commutes with translations of itself. Any
one-qubit unitary gates that form a universal set will work.

If the clock register is set tocarry, then the state register
will be swapped with the state register of the left neighbor if
and only if the following conditions occur: the active register
is set totrueon the left neighbor, and set to false on the current
cell, and the clock register is set to carry on all the neighbors
(above, below, and to either side). These extra checks are re-
quired to ensure the operatorUx commutes with translations
of itself.

Figure 5 gives a visual representation of the update rule op-
eratorUx. OperatorVx simply updates the clock register, ap-
plying aNOT gate at each time step.

Finally, the initial state is set as follows. There is one hori-
zontal row for each wire in the quantum circuit. Every column
represents a time step in the quantum circuit. The cells are ini-
tialized to have their gate registers set to the appropriategate,
if there is a gate, in the wire corresponding to its row, and in
the time step corresponding to its column. The clock register
is set to operate, and the state register is set|0〉 initially on all
cells. The first column of the quantum circuit is set to active,
all other cells are set to inactive.

This construction can only natively simulate circuits with
nearest-neighbor gates. In order to encode arbitrary circuits, it
is necessary to translate the circuit into one using only nearest-
neighbor gates by adding swap gates where needed. This is
the cause of the worst-case linear slowdown, mentioned in the
statement of this theorem.

Clock Register

Active Register

Gate Register

State
Register

If Clock Register = 0
and Active Register = 1

Apply Gate to State Register(s)
Dependant on Gate Register

If Clock Register =1 and 
Active Register = 0
and Active Register 
of left neighbor = 1

  Swap State Registers

X XU

FIG. 5: Universal QCA update rule.

The previous result is important in that it proves that the
QCA model is computationally complete. It also gives a
recipe for implementing quantum circuit algorithms on two-
dimensional QCA. It is important to mention that it is also
possible to show that one-dimensional LUQCA are universal
for quantum computing. For a complete proof see [26].

In the following sections, by showing how physical sys-
tems can implement QCA, we complete a formula for imple-
menting quantum algorithms on physical systems using QCA
methods. We will see, however, that the strongest virtue of this
QCA model lies not in its ability to simulate quantum circuits.
Rather, it lies in the algorithms that take natural advantage of
the QCA structure.

V. MODELLING PHYSICAL SYSTEMS

We stated before that one of our goals in developing a QCA
formalism is to create a useful modeling tool for quantum sys-
tems. Classical CA are used for simulating various phenom-
ena based on classical information, such as sea ice formation,
fluid dynamics, or voter systems [3, 25]. Similarly, we ex-
pect QCA to be able to model different types of physical sys-
tems based on quantum information, with dynamics which are
based on time and space homogeneous local interactions.

Physical systems that fall in this category include Ising
and Heisenberg interaction spin chains, solid state NMR, and
quantum lattice gases. We will be looking at some of these
systems in this section.
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A. Spin Chains

Spin chains are perhaps the most obvious candidate for
physical systems being modeled with QCA. Indeed, Ising in-
teraction spin chains, and in general, any spin chain with a
coupling Hamiltonian which commutes with its own lattice
translations can be implemented easily.

Suppose we have a linear spin chain of lengthN , indexed
by n ∈ Z. Each spinn is coupled to its nearest neighbor
n+ 1, with a coupling HamiltonianJσ(n)

z σ
(n+1)
z , whereJ is

the coupling strength constant. Note that the coupling Hamil-
tonian does commute with its lattice translations. The Hamil-
tonian for the entire spin chain is:

HI =
N−1∑

n=1

Jσ(n)
z σ(n+1)

z .

It is a simple matter to give a discrete time approximation
to such a spin chain. First, we fix a time step interval∆t. Our
QCA model will allow for simulation of the spin chain for
time steps in multiples of∆t. Hence, while the choice of∆t
is arbitrary, it is important in determining the resolutionof the
simulation.

For a simulation of the Ising spin chain, the QCA lattice
consists of a one-dimensional array, where each cell is a single
qubit. The neighborhood of each celln simply consists of the
cell and its right neighborn + 1. The local rule operatorUn

is given as:

Un = e−iJσ(n)
z σ(n+1)

z ∆t.

The operatorVn is simply the identity operator. Note
that the operatorUn commutes with its translations, that is,
[Un, Um] = 0, for all n,m ∈ Z. Furthermore, the global
operator

U =

N−1∏

n=1

Un

satisfies

U = e−iHI∆t.

Hence, the QCA construction faithfully simulates the Ising
spin chain for times that are integer multiples of∆t, as de-
sired.

A more complicated endeavor is to construct a QCA sim-
ulation of a spin chain whose coupling Hamiltonians do not
commute with each other. In particular we examine the
Heisenberg spin chain as an example. Let the coupling Hamil-
tonian between spinsn andn+ 1 be

H
(n,n+1)
H = J(σ(n)

x σ(n+1)
x + σ(n)

y σ(n+1)
y

+σ(n)
z σ(n+1)

z − 1⊗ 1)

Here, note thatH(n,n+1)
H does not commute with its trans-

lationsH(m,m+1)
H . The Hamiltonian of the total system is

HH =

N−1∑

n=1

H
(n,n+1)
H

A QCA simulation of the Heisenberg spin chain presented
above is still possible, however, with the help of two powerful
tools: Trotterization, andcell coloring. The first technique
is well known in physics, the second is a tool developed for
QCA. Together, they allow for simulation of complicated and
almost arbitrary Hamiltonians by QCA.

Trotterization is a technique by which a Hamiltonian is ap-
proximated using a combination of non-commuting Hamil-
tonians whose sum adds up to the original Hamiltonian. In
other words, it is possible to approximate with bounded error
the evolution due to the HamiltonianH = Ha + Hb by al-
ternately evolving the system under the HamiltoniansHa and
Hb even if these two do not commute. Precisely, we can give
a first-order approximation

e−i(Ha+Hb)∆t =
(

e−iHa∆t/ke−iHb∆t/k
)k

+ δ.

In the case that‖[Ha, Hb]‖∆t2 ≪ 1, the error δ is
O(∆t2/k). Higher order techniques can achieve error rates
ofO(∆tm+1/km) at the cost of usingO(2m) gates. Though
the number of gates increases exponentially, the time required
for each gatedecreasesexponentially as well.

In the case of our QCA simulation of the Heisenberg spin
chain HamiltonianHH above, we have:

Ha =

⌈N−1
2 ⌉
∑

n=1

H
(2n−1,2n)
H ,

and

Hb =

⌊N−1
2 ⌋
∑

n=1

H
(2n,2n+1)
H .

Note thatHH = Ha + Hb. The HamiltoniansHa and
Hb consist of the couplings from the even spins to their right
neighbors and left neighbors respectively.

Our QCA evolution will consist of alternately evolving the
lattice cells underHa andHb, using a technique called cell
coloring. Each cell will have two fields. The first field is
a state register, consisting of one qubit, which will hold the
state of the spin represented by the cell. The second field,
called the active color register, will also consist of a single
qubit. Initially, the color register of each celln is set to the
valuen mod 2.

The QCA lattice used in this simulation is also one-
dimensional, and the neighbor set of each cell includes both
the cell to the immediate right, and the immediate left of the
given cell. Let,U ′

n be the Trotter step acting on the current
cell state register and the right neighbor state register. Using
the first order approximation, we have

U ′
n = e−iH(n,n+1)∆t/k

for an appropriate valuek. It is also possible to use higher
order approximations.

The local update rule operatorUn then consists of applying
the operatorU ′

n if and only if the current cell’s active color
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register is set to one, and both left and right neighbors have
their color registers set to zero. The operatorVn simply tog-
gles the active color register.

It should be clear that this QCA construction simulates the
Heisenberg spin chain. Moreover, by using an appropriate
operatorU ′

n, it is possible to simulate any Hamiltonian with
nearest neighbor couplings with this technique.

It is appropriate here to mention that one-dimensional spin
structures such as these can be efficiently simulated using
classical computers [27]. There are also efficient ways to
calculate the lowest energy eigenstates and eigenvalues us-
ing classical numerical techniques such as the Density Ma-
trix Renormalization Group (DMRG) method [28]. This, of
course, also implies that the QCA presented in this section
can be efficiently solved and simulated classically.

However, this conclusion cannot be easily generalized to
larger classes of QCA. First, we note that we have used
one-dimensional spin networks here for expository purposes.
From our constructions, it should be clear that these QCA sim-
ulations generalize easily to higher dimensions. On the other
hand, no efficient classical simulation is known for spin net-
works of dimension higher than one.

Also, it is not known whether arbitrary one-dimensional
LUQCA can be simulated efficiently classically. In fact, due
to the universality of one-dimensional LUQCA [26], this will
not be the case unless classical computers can efficiently sim-
ulate quantum systems (BPP = BQP ), which is generally
regarded as unlikely.

B. Quantum Lattice Gases

Quantum lattice gases have been studied for over a decade
now [9, 10, 29, 30, 31, 32]. In essence, they are the quantum
analog of classical lattice gases. The basic principles arethe
same in both the classical and quantum cases: one starts with
a discrete CA-based model that describes particles on the lat-
tice, and their movement. One can then take thecontinuous
limit of such CA and show that in this limit, the behavior of
the CA mimics a well-known differential equation.

Taking the continuous limit of a classical CA is a well
known procedure. It involves giving the lattice a physical in-
terpretation, where each cell is thought to represent a point in
space. The distance between two adjacent cells is taken to be
∆x and each time step of the CA is assumed to take∆t time.
One then takes the limit, in a well prescribed manner, where
∆x → 0 and∆t → 0. There exist classical CA whose con-
tinuous limits represent gas diffusion, as well as various other
fluid dynamics [3].

In the quantum case, Meyer [9], and Boghosian and Taylor
[10] give a construction of aquantumlattice gas whose con-
tinuous limit is the Schrödinger equation for a freely moving
particle. We now show how any type of lattice gas can be
represented under the local unitary QCA model.

We begin by introducing the Quantum Walk QCAQW .
This QCA models multi-particle quantum walks on a lattice.
Each cell is allowed to havetwoparticles, in orthogonal states
(these two states can be thought of as orthogonal spins). The

V U

x x+1 x+2 x+3 x+4x-1x-2x-3

Up Register Down Register

FIG. 6: Quantum walk on a lattice.

lattice can have any number of particles in total.
The construction is as follows. The QCAQW is one-

dimensional. Each cell has two single-qubit registers, called
Up andDown. Each register will represent the presence of a
particle in the lattice site, with the appropriate spin, by being
in the state|1〉, and the absence of the corresponding particle
by being in the state|0〉.

The local update operatorUx acts on the down register of
the current cell, and up register of the right neighbor, swap-
ping the two values. OperatorV operates on both fields of the
cell with operator

Vx =






1 0 0 0
0 q p 0
0 p q 0
0 0 0 φ




 ,

wherep, q ∈ C satisfying|p|2 + |q|2 = 1, pq̄ + p̄q = 0 and
|φ|2 = 1. The update rule is summarized in Figure 6.

The dynamics of this QCA are the same as the lattice gas
described by Boghosian and Taylor in [10].

Let Ψu(x, t) andΨd(x, t) be the amplitude corresponding
to the presence of a particle with spin up and spin down re-
spectively in cell positionx, at timet. LetΨ(x, t) be the total
amplitude corresponding to the presence of a particle in cell
x at timet, that isΨ(x, t) = Ψu(x, t) + Ψd(x, t). Then, we
have that

Ψu(x, t+∆t) = qΨu(x−∆x, t) + pΨd(x +∆x, t)

and

Ψd(x, t+∆t) = qΨd(x+∆x, t) + pΨu(x −∆x, t).

We can proceed according to Boghosian and Taylor [10],
and take the continuous limit of our QCA∆x2 → 0 and
∆t → 0, using the Chapman-Enskog method [3]. Doing so
reveals thatΨ(x, t) obeys the equation:

∂

∂t
Ψ(x, t) =

i

2m

∂2

∂x2
Ψ(x, t),

which is the equation for a freely moving particle of mass
m = ip/q in one dimension.

Using the same construction techniques, we can also de-
scribe a freely moving particle in two or three dimensions. We
can construct QCA that simulate other quantum lattice gases
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like the ones proposed in [9]. Most, if not all, quantum lat-
tice gases, whether single or multi-particle, can be described
as local unitary QCA.

This concludes our discussion on the expressive powers of
the QCA model presented here. In the next section we con-
tinue with a discussion of how to take these mathematical
models and implement them in quantum hardware.

VI. QUANTUM COMPUTATION

In previous sections, we discussed how our unitary QCA
can be used to model physical systems, and how universal
quantum computation can be accomplished using only QCA
primitives. In this section we will look into bridging the gap
by using QCA as a theoretical framework for implementing
quantum computation.

A clear advantage of working in the QCA model over quan-
tum circuits, in regards to physical implementations of quan-
tum computation, is that QCA make considerably fewer de-
mands on the underlying hardware. In particular, as opposed
to direct implementations of quantum circuits, the global evo-
lution of the lattice in the QCA model does not assume inde-
pendent control overqudits. Rather, all qudits are to be ad-
dressed collectively in parallel. However, it should be noted
that the models of cellular automata described in this paperdo
not explicitly address the issue of initialization. Any proposed
physical realization of the QCA must also describe the set of
initial states which are constructible. This may require some
degree of non-global control over a physical apparatus, such
as having individual cells initialized to a certain basis state, or
it may require some interaction with the environment, such as
having the lattice cooled to a ground state.

The QCA model also more closely resembles what is cur-
rently achievable in several current quantum computer imple-
mentations. For example, if qudits are represented by physi-
cal spins, and the control of such spins is achieved through the
use of magnetic pulses, as is the case in NMR or ESR, then
it is more reasonable to consider all spins as being subjected
to the same pulse sequences, rather than having the ability to
address spins individually. The same can be said about many
other physical quantum computer proposals.

In this section we will concentrate on implementing QCA
on NMR, since most of the groundwork for this implementa-
tion has already been laid out.

A. Colored QCA

In Section V, we considered cell coloring as a useful QCA
programmingtechnique. As with other computation models,
where a programming technique can be formalized into its
own subset model and then shown to be equivalent to the gen-
eral model (such as multi-track Turing machines), we can do
the same with colored QCA.

First, we will define the notion of asymmetrictransition
function for QCA. It is the quantum analog of symmetric

CA, in which the transition function depends only on the to-
tal number of neighboring cells in each of the possible cell
states. Essentially, a transition update function is symmetric
when it affects only the value of the target cell in a manner
which depends only on how many of the cell’s neighbors are
in particular states, rather than on which state any particular
neighbor is in.

Definition 5. Given a QCAQ = (L,Σ,N , U0, V0), we call
the update functionU0 : (HΣ)

⊗N → (HΣ)
⊗N symmetric if

it can be expressed as a collection of single-cell operations
on cell 0 controlled by the computational basis states of the
neighborhoodN \{0}, andU0 commutes with every operator
SWAP x,y, which simply swaps the contents of cellsx andy,
wherex, y ∈ N \ {0}. If Q has a symmetric update function,
then we callQ a symmetric QCA.

Next, we wish to formalize the notion of a colored QCA.
For this model, we will fix the neighborhood scheme to in-
clude only directly adjacent cells. That is,N = {x ∈ Zd :
‖x‖1 ≤ 1}. However, first we will define the set of permissi-
ble colorings of a lattice.

Definition 6. Given a latticeL = Zd and a neighborhood
schemeN , we define acorrectk-coloring for a lattice as a
periodic mappingC : L → {0, 1, . . . , k − 1}, such that no
two neighboring cells inL are assigned the same color.

We may think of cell color as an inherent property of each
cell. However, it may also be helpful to consider cell color
as classical information which is being stored with each cell
in such a way that the local transition function does not al-
ter this information. We can now finally give a definition for
the colored QCA. Recall that the neighborhood schemeN is
fixed.

Definition 7 (CQCA). A Colored QCA or CQCA is a 5-tuple
(L,C,Σ,U , c) consisting of a latticeL = Zd, a correctk-
coloring C, a finite setΣ of cell states, a sequence ofT

symmetric unitary operatorsU =
(

U
(0)
0 , U

(1)
0 , . . . , U

(T−1)
0

)

,

withU (j)
0 : (HΣ)

⊗N → (HΣ)
⊗N , and a sequence ofT colors

c = (c0, c1, . . . , c(T−1)), labeled by integers0 ≤ cj < k.

The local transition operation consists of applyingU (j)
x to

each cellx with colorC(x) = cj at time stept = j + nT ,
where0 ≤ j < T andn ∈ Z.

Note that sinceC is a correctk-coloring, any two operators
U

(j)
x acting non-trivially on two cells of the same color at the

same time will commute.
CQCA can be simply considered as a shorthand for the cell

coloring technique we introduced in Section V. As such, it
should be clear that CQCA are a subset of unitary QCA.

Theorem 3. For every CQCAQ there is a QCAQ′ that sim-
ulates the same evolution exactly.

Proof. We may incorporate the color information of each cell
of the CQCAQ within an additional color register for each
cell of the QCAQ′. Now, it suffices to add one extra clock
register to each cell, initialized to0. The update operatorUx



11

simply appliesU (j)
x conditional on bothC(x) and the clock

register of cellx being set toj. In order to ensure thatUx

commutes with its translations, we must ensure that the colors
of all the neighbors ofx are consistent with the coloringC be-
fore applying the appropriate operator. Otherwise,Ux should
act as the identity operator. The read operatorVx simply in-
crements the clock register, moduloT .

What is more surprising is the converse result: that all uni-
tary QCA can be rephrased in the CQCA formalism.

Theorem 4. For every QCAQ there is a CQCAQ′ that sim-
ulates the same evolution exactly.

Proof. Given the QCAQ = (L,Σ,N , U0, V0), we will use
the same latticeL and alphabetΣ. The neighborhood scheme
for the CQCA,N ′ is fixed by definition. We also need to
provide a correctk-coloring of the lattice. To this end, it suf-
fices to provide a coloringC with the property that that no
neighborhoodNx of Q or N ′

x of Q′ contains two cells with
the same color. Now, we need to construct a sequenceU of
update operators. Note that single-qudit operations onx and
the controlled-NOT operation targetingx are symmetric op-
erations, since any two cells belonging to the same neighbor-
hood have different colors, by construction. Now, given an
implementation of the unitary update operationU0 of Q us-
ing single-qudit and nearest-neighbor controlled-NOT oper-
ations, we can give a sequence of symmetric operations which
performU0 on a neighborhoodNx of a cell x of a specific
color. By performing a similar sequence of operations for
each color in our coloringC, we effectively performUx for
each cellx. Since each update operationUx commutes with
the other update operations, we have effectively simulatedthe
update transition operation ofQ. Finally, we can perform the
single-qudit operationsVx on each cell.

This last result is of major importance as it allows us to im-
plement any unitary QCA algorithm on apulse-driven quan-
tum computer, as proposed by Lloyd [16], and further devel-
oped by Benjamin [14, 15] and others [33]. The scheme in-
volves using large molecules comprised of two or more dif-
ferent species of spin-12 particles, arranged in repetitive struc-
tures, such as crystals or polymers, to store the quantum data.
It then evolves the system using series of magnetic pulses that
address all spins of any one particular species.

To implement a given QCA in the pulse-driven computation
model, we first convert the QCA into one which uses a two-
state alphabet. This can be done by expanding each cell into
⌈log |Σ|⌉ cells to encode the states ofΣwith a binary alphabet,
then adjusting the neighborhood schemeN accordingly. We
then apply the construction in Theorem 4. With this, and the
techniques of Lloydet. al., it would be possible to implement
any QCA algorithm using NMR and an appropriate molecule.

We choose NMR and pulse driven quantum computing
devices to show a physical implementation of local unitary
QCA. However, this should not be taken to be the only pos-
sible implementation of QCA. There are many other physical
systems, like optical lattices [34], cavity QED, among others
[35, 36], that seem better suited to implementing QCA, rather
than the more traditional quantum circuits.

VII. ALGORITHMS

We have seen two practical applications that can be
achieved with an implementation of QCA in the laboratory.
First, there are numerous physical systems that can be natu-
rally simulated using the QCA model. Second, one can also
achieve universal quantum computation by simulating quan-
tum circuits on a QCA.

While these are both interesting and important applications
of QCA, a very important application in the future of QCA
will be the development and implementation of true,native,
QCA algorithms.

We saw in Section IV how a quantum circuit can simulate
any QCA, and how a QCA can simulate any quantum circuit.
However, these simulations come at a cost of a linear-time
slowdown going in either direction. While this slowdown is
not as important a concern in terms of asymptotic complexity,
in current laboratory conditions,anysource of slowdown is to
be avoided.

In the next section we analyze a problem that is particularly
well-suited to a natural solution using QCA, and we show how
the tools that we have developed thus far can be used effec-
tively to provide an optimal solution to the problem.

A. Spin Signal Amplification Algorithm

We present a description of the problem in simple abstract
terms. Suppose we want toamplify the signal from a single
spin-12 particle. That is, we have a single spin-1

2 particle, and
we want to create a large ensemble of spins whose bulk an-
gular momentum resembles the original spin in a particular
basis. Note that this is not cloning, since a basis needs to be
set beforehand. Succinctly, we want a unitary procedureU
that maps the state

(α |0〉+ β |1〉)
︸ ︷︷ ︸

Amplified Spin

⊗ |0〉⊗N

︸ ︷︷ ︸

Ancilla

to the state

α |0〉⊗(N+1)
+ β |1〉⊗(N+1)

,

where|0〉 and |1〉 form the basis in which we wish toam-
plify. The main application of such an algorithm is to per-
form a measurement in situations where bulk magnetization
is needed in order to achieve a detectable signal, such as with
NMR. Hence, the algorithm needs to be extremely efficient:
the whole procedure needs to be completed before decoher-
ence can destroy the desired value. The valueN will also
need to be reasonably large, on the order of107 or 108, in
order to get a reasonable signal in NMR.

Figure 7 shows a simple quantum circuit solution. How-
ever, this circuit approach does have several shortcomings.
First and foremost, it requires individually addressingN dif-
ferent spins. For largeN , in most laboratory conditions, this
is not feasible. Supposing that one could get around this first
hurdle, one would still need to performN independent gates
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|ψ〉 • • • • • . . . •
|0〉 �������� . . .

|0〉 �������� . . .

|0〉 �������� . . .

|0〉 �������� . . .

|0〉 �������� . . .
...

...
...

...
|0〉 . . . ��������

FIG. 7: A simple quantum circuit that implementsU .

before decoherence destroys the data. Again, this is not likely
to be feasible in most experimental settings.

The QCA approach is simple, elegant, and optimally effi-
cient. In order to develop the algorithm we will make use of
the colored QCA developed earlier. We will use a two-color
(black and white), three-dimensional QCA. Since we are de-
scribing an algorithm that has to be implemented in an actual
physical setting, we will be using a finite-sized workspace.
In order to describe this workspace, we will use three-state
qudits for our cells: the logical states|+1〉 and|−1〉 will be
used to denote the presence and the spin of a spin-1

2 particle
in the corresponding state, while the state|0〉 will denote the
absence of any particle. This state|0〉 will be quiescent, as
defined in Section III.

Every cell in the QCA is initialized to a state|0〉 except for
a perfectly cubic region of volume roughly2N . The cube will
have its cells initialized to the value|−1〉, except for the top-
front-left corner of the cube, whose value will be initialized to
the state|ψ〉 which we wish to amplify. We will use this top,
front, left portion of the cube as an ancilla system.

As we are using a colored QCA, the neighborhood of each
cell is fixed to be the set of cells with Manhattan distance 1
from that cell. Hence, each cell has only neighbors of the op-
posing color. We also need to provide an update rule which
is color-symmetric. For both colors, the update rule is as fol-
lows. We apply aNOT gate (which maps|+1〉 to |−1〉, |−1〉
to |+1〉 and leaves the quiescent state|0〉 untouched) if and
only if the set of neighbors of a cell have values which sum
to −2, −1, or 0. It can be shown that this update rule, when

applied repeatedly forO
(

3
√
N
)

time steps, will achieve the

desired result.
We can make a few simple observations about the algo-

rithm. First, as a native QCA algorithm, it does not require
individual spin addressability. The algorithm is optimally ef-
ficient, if we allow only the use of local operations, in at most
three dimensions.

It should also be noted that the problem of single-spin mea-
surement in NMR is generally considered to be a difficult one;
the fact that the exposition of the algorithm presented hereis
simple and succinct is due to the development of the theoreti-
cal tools earlier in this work.

It is important to add that it is possible to implement this
algorithm in solid state NMR by adapting some of the tech-
niques presented above, and applying some clever manipu-

lations. For a full description of this algorithm, including a
discussion on physical implementation see [21, 26, 37].

VIII. PREVIOUS QCA MODELS

In this section, we will present a number of other models of
QCA that have been developed, and we will relate them to our
proposed model.

A. Watrous-van Dam QCA

The first attempt to define a quantized version of cellular
automata was made by Watrous [6], whose ideas were further
explored by van Dam [5], and by Dürr, LêThanh and Santha
[38, 39]. The model considers a one-dimensional lattice of
cells and a finite set of basis statesΣ for each individual cell,
and features a transition function which maps a neighborhood
of cells to a single quantum state instantaneously and simulta-
neously. Watrous also introduces a model of partitioned QCA
in which each cell contains a triplet of quantum states, and a
permutation is applied to each cell neighborhood before the
transition function is applied.

Definition 8. A Watrous-van Dam QCA, acting on a one-
dimensional lattice indexed byZ, consists of a 3-tuple
(Σ,N , f) consisting of a finite setΣ of cell states, a fi-
nite neighborhood schemeN , and a local transition function
f : ΣN → HΣ.

This model can be viewed as a direct quantization of the
classical cellular automata model, where the set of possible
configurations of the CA is extended to include all linear su-
perpositions of the classical cell configurations, and the local
transition function now maps the cell configurations of a given
neighborhood to a quantum state. In the case that a neighbor-
hood is in a linear superposition of configurations,f simply
acts linearly. Also note that in this model, at each time step,
each cell is updated with its new value simultaneously, as in
the classical model.

Unfortunately, this definition allows for non-physical be-
havior. It is possible to define transition functions which do
not represent unitary evolution of the cell tape, either by pro-
ducing superpositions of configurations which do not have
norm 1, or by inducing a global transition function which is
not injective, and therefore not unitary. In order to help re-
solve this problem, Watrous restricts the set of permissible
local transition functions by introducing the notion ofwell-
formedQCA. A local transition function is well-formed sim-
ply if it maps any configuration to a properly normalized lin-
ear superposition of configurations. Because the set of config-
urations is infinite, this condition is usually expressed interms
of theℓ2 norm of the complex amplitudes associated with each
configuration.

In order to describe QCA which perform unitary evolution,
Watrous also introduces the idea of aquiescentstate, which
is a distinguished elementǫ ∈ Σ which has the property that
f : ǫN 7→ ǫN . We can then define a quiescent QCA as a
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V V V

FIG. 8: Watrous Partitioned QCA.

QCA with a distinguished quiescent state acting only onfinite
configurations, which consist of finitely many non-quiescent
states. It can be shown that a quiescent QCA which is well-
formed and injective represents unitary evolution on the lat-
tice. Also, note that this notion of a quiescent state is slightly
different than the one introduced in Section III.

In order to construct examples of valid QCA in this model,
Watrous also introduces a model of partitioned QCA, in which
each cell consists of three quantum states, so that the set of
finite states can be subdivided asΣ = Σl × Σc × Σr. Given
a configuration in which each cell, indexed byk ∈ Z, is in
the state(q(l)k , q

(c)
k , q

(r)
k ), the transition function of the QCA

in one time step first consists of a permutation which brings
the state of cellk to (q

(l)
k−1, q

(c)
k , q

(r)
k+1) for eachk ∈ Z, then

performs a local unitary operationVk on each cell.

Watrous shows that this model of partitioned QCA can be
used to simulate a universal quantum Turing machine with
polynomial overhead.

The partitioned QCA model given by Watrous can also be
expressed in the Local Unitary QCA model. First, suppose
|Σl| = |Σr|. If this is not the case, we can pad the smaller
set with unused symbols so that both sets are of the same size.
Then, we separate the permutation into an operationP1 which
operates on two consecutive cells, mapping

P1 : (q
(l)
k , q

(c)
k , q

(r)
k ), (q

(l)
k+1, q

(c)
k+1, q

(r)
k+1)

7→ (q
(l)
k , q

(c)
k , q

(l)
k+1), (q

(r)
k , q

(c)
k+1, q

(r)
k+1)

followed by an operationP2 which operates on a single cell,
mapping

P2 : (q
(l)
k , q

(c)
k , q

(r)
k ) 7→ (q

(r)
k , q

(c)
k , q

(l)
k ).

Note thatP2P1 performs the desired permutation, and also
thatP1 commutes with any lattice translation ofP1. Now, we
can express the Watrous partitioned QCA in our QCA model
by settingU ′ = P1 andV ′ = V P2, as shown in Figure 9.

U'

V'

V V V

FIG. 9: Watrous QCA expressed as a Local Unitary QCA.

B. Schumacher-Werner QCA

Schumacher and Werner [4] take a different approach in
the definition of their model of QCA, working in the Heisen-
berg picture rather than the Schrödinger picture. They intro-
duce a comprehensive model of QCA in which they consider
only the evolution of the algebra of observables on the lat-
tice, rather than states of the cell lattice itself. By extending
local observables of the cell lattice into a closed observable
algebra, the Schumacher-Werner model has a number of use-
ful algebraic properties. In this model, the transition function
is simply a homomorphism of the observable algebra which
satisfies a locality condition. Schumacher and Werner also in-
troduce a model of partitioned QCA called theGeneralized
Margolus Partitioned QCA, in which the observable algebra
is partitioned into subalgebras. This generalizes the Margolus
scheme, as described in Section II, in which the cell lattice
itself is partitioned.

In order to avoid problematic issues dealing with observ-
ables over infinite lattices, Schumacher and Werner make use
of thequasi-localalgebra. In order to construct this algebra,
we first start with the set of all observables on finite subsets
S ⊆ L of the lattice, denotedA(S), and extend them appro-
priately into observables of the entire lattice by taking a tensor
product with the identity operator over the rest of the lattice.
The completion of this set forms the quasi-local algebra.

In this setting, the global transition operator of a QCA is
simply defined as a homomorphismT : A(L) → A(L) over
the quasi-local algebra which satisfies two specific proper-
ties. First, a locality condition must be satisfied:T (A(S)) ⊆
A(S + N ) for all finite S ⊆ L. Secondly,T must commute
with lattice translation operators, so that the QCA is space-
homogeneous. Now, the QCA can be defined in terms of the
latticeL, the neighborhood schemeN , the single-cell observ-
able algebra,A0, which takes the place of the alphabet, and
the global transition operatorT .

The local transition operator of a QCA is simply a homo-
morphismT0 : A0 → A(N ) from the observable algebra of
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a single distinguished cell0 ∈ L to the observable algebra of
the neighborhood of that cell. Schumacher and Werner show
that a local homomorphismT0 will correspond uniquely to a
global transition operatorT if and only if for eachx ∈ L,
the algebrasT0(A0) andτx(T0(A0)) commute elementwise.
Here, τx is a lattice translation byx. The global transition
operatorT given byT0 is defined by

T (A(S)) =
∏

x∈S

Tx(Ax).

Next, we will describe the Generalized Margolus Parti-
tioned QCA. Schumacher and Werner present this partitioned
scheme as a method of producing valid reversible QCA in
their general model. In order to describe this scheme, we will
proceed according to the definition of a classical partitioned
CA, as given in Section II.

We start with thed-dimensional latticeL = Zd, and we fix
the sublatticeS = 2Zd as the set of cells ofL with all even
co-ordinates. We also fix the time period asT = 2. The block
scheme,B is given as{B0, B1}, which is given as

B0 = {(x1, x2, . . . , xd) ∈ L : 0 ≤ xj ≤ 1, 1 ≤ j ≤ d},

which is simply a cube of size2d with corners at cells0 =
(0, 0, . . . , 0) and1 = (1, 1, . . . , 1), and

B1 = B0 + 1,

which is simply a translation of the cubeB0.
Now, as in the regular Schumacher-Werner QCA model, we

proceed in the Heisenberg picture. For any blockB0 + s, s ∈
S, we have2d intersecting blocks from the partitionB1 + S.
For each blockB1 + s′ which intersects withB0 + s, there
is a vectorv ∈ Zd representing the translation takingB0 + s
to B1 + s′, so thatB1 + s′ = B0 + s + v. Indeed, these2d

intersecting blocks may be indexed by the vectorsv, which are
simply all vectors ofZd whose entries are each±1. Hence,
we will setB(s)

v = B0 + s+ v.
For each blockB(0)

v , we will fix an observable algebraB(0)
v

as a subalgebra of the observable algebraA(B
(0)
v ) for the en-

tire block. Then, for each blockB(s)
v , the observable algebra

B(s)
v is simply the appropriate translation ofB(0)

v . Note that, in
particular, the observable algebra for the blockB1+s = B

(s)
1

,

A(B
(s)
1

), contains each of the observable algebrasB(s+1−v)
v .

In order for an assignment of subalgebras to be considered
valid, these subalgebrasB(s+1−v)

v must commute and span
A(B

(s)
1

). This occurs if and only if the product of the dimen-
sions of these algebras is|Σ|2d .

The transition function then consists first of an isomor-
phism

T
(s)
0 : A(B

(s)
0

) →
∏

v

B(s)
v ,

followed by the isomorphism

T
(s)
1 :

∏

v

B(s+1−v)
v → A

(

B
(s)
1

)

.

Note that sinceT0 andT1 are isomorphisms between observ-
able algebras of equal dimension, with an appropriate choice
of basis, they can be represented by unitary operatorsU0 and
U1 which map vectors from a complex vector space to another
complex vector space of equal dimension. However, they do
not represent local unitary evolution, since these complexvec-
tor spaces are used to describe two different quantum systems.
For example, the Shift-Right QCA, which was shown in Sec-
tion III to be impossible to implement using local unitary op-
erators, can be constructed in the Generalized Margolus Parti-
tioning QCA model.

Fortunately, it is possible to simulate the Generalized Mar-
golus Partitioning QCA model within the Local Unitary QCA
model by adding2d memory registers to each cell correspond-
ing to the subalgebrasBv in addition to a clock register indi-
cating which of the two stages of the transition function is
being performed. The transition function of the Local Uni-
tary QCA simply swaps the contents of the data registers of
each cell with the appropriate memory registers before apply-
ing the unitary operations corresponding to the desired iso-
morphisms.

C. Other Models

Meyer [9, 40], Boghosian and Taylor [10], Love and
Boghosian [31], among others explored the idea of using QCA
as a model for simulating quantum lattice gases. As classical
CA are used to model classical physical systems, it is natu-
ral to develop QCA models which are capable of modelling
quantum physical systems. In order to simulate lattice gases,
Meyer uses a model of QCA in which each lattice cell is rep-
resented by a computational basis state in a Hilbert space, and
the set of states which a given cell can take is replaced with a
complex number representing the amplitude of the basis state
corresponding to that cell. In this regard, Meyer’s QCA mod-
elling of lattice gases greatly differs from the one presented
here, and is not suitable as the basis for a more general model
of QCA.

Lloyd [16] introduced a model of physical computation
based on a chain consisting of a repeating sequence of a fixed
number of distinguishable nuclear species. In this model,
pulses are programmed which are capable of distinguish-
ing the species and performing nearest-neighbor unitary op-
erations. This model has been further developed by others
[14, 41, 42]. It has been shown that this model is sufficient for
implementing universal quantum computation.

The model, sometimes referred to as‘pulse-driven quan-
tum computers’, or Globally Controlled Quantum Arrays
(GCQA), is different from QCA in that it allows for time-
dependent evolution. Still, they are closely related in their
use of only space-homogeneous update rules. For the sake of
applying results pertaining to one model to the other, it is also
possible to argue that a pulse-driven quantum computer is a
degenerate case of a QCA where the update rule is applied
once. Also, this physical scheme provides a natural platform
for implementing QCA.
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D. Comparison and Discussion

In this section we have gone through a brief discussion of
the major QCA models already in the literature today. While
each has its own strengths, it is also true that each has weak-
nesses that are addressed by the LUQCA model.

We have seen how general Watrous-van Dam QCA have
the problem of permitting ill-defined QCA. It is tempting to
simply restrict attention to well-defined QCA in these models.
However, deciding whether a given QCA is well-defined or
not is a hard problem.

Even when a QCA is guaranteed to be well defined, as is
the case for the partitioned Watrous-Van dam QCA, these al-
low for evolution that is not unitary and local,e.g. shift-right
automata as described in Section III B. This same criticism
applies to the Schumacher-Werner model of QCA.

Fortunately, it is possible to simulate any valid QCA in
these models with local unitary QCA by adding ancillary
space to each cell, in order to perform the necessary evolu-
tion in a unitary fashion.

Meyer’s definition of QCA, while being suitable for his pur-
poses, is not general enough to allow for all the behavior that
is possible with local unitary QCA,i.e. universal computa-
tion. Again, QCA in this model can easily be simulated by
LUQCA.

Finally, we address globally-controlled quantum arrays.
There are many similarities and connections between QCA
and this model of computation. One important connection
is how globally-controlled arrays can be used to implement
QCA. However, these two models are quite distinct. A GCQA
is centered around the idea of doing computation on large ar-
rays of simple quantum systems, without locally addressing
them. GCQA divide their lattice of cells, or qudits, intosub-
setseach of which can be addressed collectively.

The first major distinction with QCA comes from the fact
that sequences of pulses applied to these subsets of qudits are
arbitrary, and do not necessarily follow a time-homogenous
pattern. The second, is that although Lloyd’s constructionis
space homogenous, GCQA are not constrained in such a fash-
ion. More recently, GCQA have been proposed that have less
spatially homogenous structures [43].

As a model of computation one can say that QCA are more
restricted than GCQA. At the same time, QCA are more than
just a model of computation; they serve also as models of
physical phenomena. It can be argued that QCA are, in a
sense, a morefundamentalconstruct.

IX. CONCLUSIONS

In this paper, we have presented a model of quantum cellu-
lar automata based on local unitary operators. We have shown
that it has distinct advantages over previous cellular automata
quantizations. In particular, we have shown that given any
LUQCA it is always possible to give an efficient, low-depth
quantum circuit that faithfully represents it. This leads to the
conclusion that any universal quantum computer could imple-
ment an LUQCA efficiently.

More importantly, however, we have also shown that it is
possible to implement LUQCA in experimental setups that
are arguably simpler than traditional quantum circuit based
algorithms: for instance, globally addressing spins in NMR
or ESR. At the same time, we have shown that our model
is universal for quantum computation. We gave an explicit
proof of an efficient simulation of quantum circuits using a
two-dimensional QCA and mentioned that a proof of univer-
sality for one-dimensional LUQCA exists as well [26]. We
also showcased the LUQCA as a modelling and simulation
tool.

Finally, we have shown that QCA in previous models can
be efficiently translated into QCA within the model presented
here. For example, a universal QCA in previous models
[6, 18] can easily become a universal QCA within the local
unitary model (see [26] for an explicit construction). All of
these facts suggest that the LUQCA is a very strong model.

The purpose of this paper has been to motivate, develop
and showcase a model of quantum cellular automata based
on strictly local, translation-commuting, unitary operators. It
is our conjecture that the construction given here is the most
general of this form.

Ultimately, it is our hope that this paper serves to help unify
the several methods, results, and views surrounding QCA into
one single, cohesive paradigm.
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