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Abstract Retrospective sampling can be useful in epidemiological research
for its convenience to explore an etiological association. One particular ret-
rospective sampling is that disease outcomes of the time-to-event type are
collected subject to right truncation, along with other covariates of interest.
For regression analysis of the right-truncated time-to-event data, the so-called
proportional reverse-time hazards model has been proposed, but the inter-
pretation of its regression parameters tends to be cumbersome, which has
greatly hampered its application in practice. In this paper, we instead con-
sider the proportional odds model, an appealing alternative to the popular
proportional hazards model. Under the proportional odds model, there is an
embedded relationship between the reverse-time hazard function and the usual
hazard function. Building on this relationship, we provide a simple procedure
to estimate the regression parameters in the proportional odds model for the
right truncated data. Weighted estimations are also studied.
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1 Introduction

Truncation is common in survival analysis where the incomplete nature of the
observations is due to a systematic biased selection process originated in the
study design. Right truncated data arise naturally when an incubation period
(i.e., the time between disease incidence and the onset of clinical symptoms)
cannot be observed completely in a retrospective study. In survival analysis,
right truncation will lead to biased sampling in which shorter observations
will be oversampled (Giirler, 1996). For example, to study AIDS caused by
blood transfusion (Lagakos et al., 1988), the incubation period is the time
from a contaminated blood transfusion to the time when symptoms and signs
of AIDS are first apparent. However, in those studies, the following-up period
are usually limited. Therefore, only those developed AIDS before the end of
study can be identified.

Many authors have studied right truncated data: Woodroofe (1985) and
Wang et al. (1986) focused on the asymptotic properties the product limit es-
timator under random truncation. Keiding and Gill (1990) studied asymptotic
properties of random left truncation estimator by a reparametrization of the
left truncation model as a three-state Markov process. Lagakos et al. (1988)
considered nonparametric estimation and inference of right truncated data
by treating the process in reverse time, they showed that AZ(t) = (7 — t),
where 7 is the study duration, AP(¢) and A(t) are reverse-time hazard and
forward-time hazard, respectively. The authors also discussed the implications
and limitations of introducing reverse time hazard to analyze right truncated
data. Gross and Huber-Carol (1992) further explained the necessity of reverse
time hazard in the Cox model setting.

However, in most of the current literature, researchers study right trun-
cated data in nonparametric setting, fairly few studied semiparametric mod-
els, among them, Kalbfleisch and Lawless (1989) formulating the Cox model
on the reverse time hazard (or retro hazard, Lagakos et al., 1988, Keiding
and Gill, 1990). For other related work on reverse time hazard, please refer to
Gross and Huber-Carol (1992), Chen et al. (2004), among others.

In this paper, we study right truncated data under a semiparametric pro-
portional odds model. Different from a proportional hazards model, the reverse-
time hazard in proportional odds model has a simple log-linear relationship
with the forward-time hazard, which leads to an intuitive estimator. While
Sundaram (2009)’s method can also be adapted to proportional odds model
for right truncated data, she focused on applying a reversed-time argument
to an estimator for left truncated data. Our estimator, on the other hand,
utilize a direct relationship between the reverse-time hazard, the forward-time
hazard and the baseline odds function, so that we obtain a simpler estima-
tor. Weighted functions are also being inserted into the estimating equation
to obtain more efficient estimates.

The rest of the paper is organized as follows. Section 2 describes the infer-
ence procedure as well as asymptotic results, Section 3 shows simulation and
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real data results, Section 5 provides some discussion. Proof of theorems are
left into the Appendix part.

2 Inference Procedure

Assume that the failure time of interest T follows the semiparametric propor-
tional odds model:

1Og{l—S(tZ)

—a T
o =+ 275 m

and the observed failure time is subject to a right truncation time variable
R. The observed data is (T;,R;), ¢ = 1,...,n, where T; < R;. Let 7 be
the study duration, which is greater than max{7y,75,...,T,}. An (observed)
reverse-time sample, (T, RY), ¢ = 1,...,n can be constructed, where T* =
7—T, R* =71 — R, so that T* is left truncated by the variable R*. Denote
(T*, R*) as the reverse-time sample (potentially truncated). Then the hazard
function of T* is a quantity originated in 7 and counts backward in time. The
reverse hazard and cumulative reverse hazard function of backward recurrence
time is defined as

. Pr{Tre(t—ALt|T*<t,Z} f(t]|Z2)
B . 9 9 .
AL 2) = fimg At T F(t]2)

AB(t| ) = / B (s | Z)ds.
t
We would like to mention that a similar definition of the reverse hazard can

also be found in Kalbfleisch and Lawless (1989) and Jiang (2011). Denote
v(t) = exp(a(t)), and A(t) = f(t)/S(t) as the forward-time hazard, then

log\(t | Z) —log\B(t | Z) = a(t) + ZTB,\B(t| Z) = 700 GX;(ZTB)}W) dz(tt)

Consider the counting process
Ni(t) =1t <T; < Ry),Y;(t) = [(T; <t < Ry),

and denote
1
{exp(Z] B)v(s) + 1}u(s)

Then M;(t,B) is a martingale with respect to the self-exciting (canonical)
filtration (Keiding and Gill, 1990, Stralkowska-Kominiak and Stute, 2009) and

Mi(t, B) = Ni(t) — /;Y;(s) du(s).

1
{exp(Z B)v(t) + 1}o(t)

M;(dt, B) = dN;(t) + Y;(t) du(t). (2)
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Multiply both sides of (2) by {exp(Z, 8)v(t) + 1} and summing over n
observations,

n

> {exp(Z] B)o(t) + 1}dN;(t +ZY

i=1

= Z{exp(ZiTﬂ)U(t) + 1} M;(dt, ).

3)

Divide both left-hand side and right-hand side by >, Y;(¢), we obtain:
Li{exp(Z] fo(t) + JdNi(t) | dv(t) _ i, {exp(Z] B)o(d) + 1} Mi(dt, B)

>im1 Yi(t) o(t) >im1 Yi(t)
which is equivalent to:
o(f) iz exp(Z; B)dNi(t) | Yo7, dNi(t) | do(t)
OETTI e TTLve W

= exp(Z B)u(t) +1 _
- ; i1 nYi(t) Mitdt, B).

Denote the left-hand side of (4) as

U(B, dt) = Ciq’((tt)) T pa(t)dt — gut, B)u(t)dt,
where
puttyt = 2D o gy iz SO DN,

2= Y() 251 V()

From standard counting process arguments (Anderson and Gill, 1982; Aalen
et al., 2010), we know that the stochastic integral with respect to the counting
process martingale M;(dt, 3) is also a martingale, motivate by the following
equation

_ 1 < exp(Z] B)o(t) +1
- ﬁ; > o nYi(?) M;(dt, B)

We construct the following estimating equation

B EU(ﬁ, dt)}

~U(B,dt) = 0. (5)

Only v(t) is unknown in (5), let the estimate of v(t) be 9,(¢, 8). Denote

_ 2 iy ANi(s) >ic1 exp(Z] B)dNi(s)
Pn(t)exp{t 2311 ]<)} / 1Zj ~ 7
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then

P,(t)

on(t, B) = (6)

Multiply (2) by Z;{exp(Z,' 8)v(t)+1}/n and summing over n observations,
we obtain

vz [{expwi B)o(t) + 1}dNi(t) + Yi(t) 2

_ % S Zifexp(Z] B)o(t) + 1} M;(dt, B).

i=1

By virtue of the same idea of (5), take integration on both sides of (7), we can
also construct another equation:

dv(t)] 0 ()

*Z/ [{exp Z B)v(t) + 1}dN;(t) + Yi(t)

Substituting (6) into (8), we can obtain the estimate of 8 by solving the
following equation:

;zn:/(: Z; [{exp(ZiTﬂ)@n(t,ﬂ) + 1}dN¢( Yt )Un(dt ﬁ)} o

O (t, B)
Moreover, since

() Zk lexp(ZTﬁ)de( ) .

O (dt, B) _Zzzl AN,
n(t8) XL M) R0 in(t, B),
then
Ly~ [ Z T oy
n Z/o {Zi - Z(t)} {exp(Zi B)on(t, 8) + 1} AN (t) =
where

Finally, let
= 22/07 {2 — Z(t)} {exp(Z] B)on(t, B) + 1} dNi(1),  (9)

and denote the solution of S,,(3) = 0 be £, we have the following theorem:
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Theorem 1 Under assumptions A1-A4 in the Appendiz, \/ﬁ(Bn — Bo) con-
verges weakly to a mean-zero normal distribution, with covariance matriz U=V (U™1)

where V' is the covariance matriz of v/nSn(Bo),
U = limy—00{05n(8)/08} |p=p,- The kth row of U is:

w25 [ a2

X {Zik exp(Z; Bo)on(t, Bo) + exp(Z; Bo)

T

’

din(t, B)

0P

Remark: For proportional odds model with the normal logit link:

log{lf(;gtz)z)} =at)+ 278 (10)

|ﬂ—ﬁo} dN;(t).

Define

. T exp(ZT
N(4.5) = Nt~ [ Vilo) e T dol)

we claim that M;(t, 3) is a martingale. Recall that v(t) = exp(a(t)), following
(10), we have

B exp(a(t) + ZTﬁ)
S(t|z) = 1+ exp(ZTB)v(t)’

as a result, we can obtain

exp(Z7 B (1) ) |
At ez a2 - 1) = Tren@ B

Following the definition of reverse hazard in Section 2, we can write the reverse
hazard as

ft12) =

B _fMZ)  exp(ZTB)V(1)
N2 = Fai2) = TrexpZ Ao

From the general definition of martingale in Fleming and Harrington (1991)
(pp- 25), we can easily show that M;(t, 8) is a martingale. While for model
(1),
v'(t)
N (t2) =
(t12) 1+exp(ZTB)v(t)’

and N;(t) — [ Yi(s)AP(t|Z)dt is the martingale.
The corresponding estimating equation under model (10) has the following
form

SB)=> /0 ' (Z; — Z(t,8)} {exp(Z; B)in(t, B) + 1} dNy(t), (1)
=1
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where

S ZYi(t) exp(Z] B)
Z(t,B) = S Yit)exp(Z) B)

Equation (11) also can be used to estimate §, however, comparing with (9),
(11) is more complicated and more computational intensive, while the deriva-
tive of (9) with respect to 8 can be easily obtained. As a result, (9) can be
easily solved by the newton raphson algorithm. In the following simulations,
we will use estimating equation (9).

In addition to the unweighted object function (9), weighted object function
can also being included to obtain a class of weighted estimators of By. This
procedure is often used to minimize the sandwich estimate as well as improve
the efficiency. The weighted version of object function is

Sn,W(ﬁ)

= % > /OT Wi (t) {Zi = Z(t) } {exp(Z] B)on(t, B) + 1} dN;(t) = 0, (12)

here W, (¢) is a predictable weight function with respect to the canonical fil-
tration which converges to a non-random function w(t). One of the common
used weight function is the Prentice-Wilcoxon type function Wi, (t) = S15(t),
where S 5(-) is the Lynden Bell estimate of the baseline survival function for
right truncated failure time data. Denote the corresponding estimate of 5 as
Bmw. Then we have the following theorem:

Theorem 2 Under the same assumptions as Theorem 1, when n — oo, for a
prespecified weight function W, (-) — w(-), v/n(Bnw — Bo) converges weakly to
a mean-zero normal distribution, with covariance matriz U1V, (Us1) T, where

Vi 18 the covariance matriz of \/nSp (Bo), Uw = limy,—0c {05y, (8)/08} |p=3, -
The kth row of Uy, is:

lim * Z /OT W (t){Zi — Z(t)} [Zir exp(Z; Bo)in(t, Bo)

n—oo N, 4

+exp(Z]' Bo) {00, (t, B)/0Bk} |p=p,] ANi(2).

Recently, many people considered problem of finding the optimal weight in
a weighted estimating equation, including Chen and Cheng (2005), Chen and
Wang (2000) and Chen et al. (2012), among others. To achieve this goal, we
only need to find the w(t) such that Uy (80) ™ Vi (Bo)Uw(Bo) ™! achieves the
minimum. Since both the empirical weight function W, (¢) and its limit w(t)
do not rely on unknown parameter g, it is reasonable to set Sy = 0. Another
explanation for letting Sy = 0 is that it represents the baseline distribution.
Therefore, let 5y = 0, then we have:

n—o00 N

Uw(Bo) = lim 12/07 W (t){Z; — Z(t)} Zi exp(Z;' Bo)v(t)dN;(t)
i=1
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~ lim 72/ Wi () {Zi — Z(6)} 2% exp(Z Bo)o(t) AN (1) (13)

~ lim L ®2 exp(Z; Bo)v' (t)
—,LMZ/ W) {2 = 20}V ST e + 1
T R @2y YO
nlgr;on;/o Wo(t){Zi— Z(t)} E(t)v(t)+1dt.
Vw(ﬁ()) = nh—>r20 - Z /T Wn(t)2 {Zz Z(t)}®2
n <= Jo
x {exp(Z] Boyo(t) + 1} Yi(t) ! o ()t (14)

{exp(Z Bo)v(t) + 1} v(t

:nlinéoﬁz/ W ()% {Z; — Z()Y 22 Yi(t) {exp(Z] Bo)o(t Z/éf;dt
:JL“;OEZ/ W ()2 {Zi — Z()} ¥ Vi) {(t)+1}1;/((:))dt

Apply the Cauchy-Schwarz inequality to Uy (80) ™ Vi (B0)Uw (Bo) ~* and let
Bo = 0, then it follows that the optimal weight is proportional to

=SM{1-5@)}, (15)

2y, ) LV (0

(o) —J;%Z/ (= 20} 05t
. 2y, () L0

Va(f) = fim / (A= 20y Y et

which means when 3y = 0, given w(t) = S(t){1-5(t)}, we have Uy, (80) ™ Vaw (Bo) U (Bo) ~*
achieves the minimum value U, (8p) ™t (or equivalently V,,(8p)~1).

In simulation, let Wy (t) = Spp(t) 41 — S‘LB(t)}, the results are shown in

Table 1, it can be seen that the weight W,2(t) achieve the minimal variance
among the three estimators.

3 Simulation and Real Data
We perform simulation studies to evaluate the finite sample properties of the

proposed estimator. In simulation, let a(t) = 3logt, By = (1,0.5)7, Z; is a
continuous variable follows a uniform distribution from 0 to 2, Zs is a discrete
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variable follows a Bernoulli distribution with probability 0.5. The failure time
variable is generated from model (1). The right truncation variable follows a
uniform distribution from 0 to 4. This makes the truncation rate equals to
20%. For each simulation, 1000 datasets are generated, in each dataset, there
are n observations, n = 300, 400, 500, 600, respectively. W, (t) and W,2(t) are
chosen as the weight functions in weighted estimating equations. As is shown in
Table 1, three estimation equations yield unbiased estimates and the empirical
coverage probability is around nominal level 95%, when weighted function is
incorporated into the estimation equation, the efficiency is greatly improved,
and the variance achieve minimal for W2 (¢) under three estimates.

As pointed out by one of the referees and the associate editor, Shen et al.
(2017) also studied right truncated data under linear transformation models,
and we know that when the error term in the linear transformation model
follows logistic distribution (Fine et al., 1998), the model becomes the propor-
tional odds model. Let

Ni@)=I(r=T; <t) = I(T; > 7 — 1),
Vit)=I(r—R <t<7-T)=I(T; <7 —t<Ry),

K2

then the estimating equations (3) and (4) in Shen et al. (2017) can be written
as

exp(Z; B+ ot — 1)) _
L+exp(Z B+ alr — t)))} =90,

an [dzvi(w ~ Yi(t)d (10% il et m))ﬂ -

1+exp(Z/B+a(r—t

We recognize that Shen et al. (2017)’s methodology is general and works for
all the linear transformation models, including the proportional odds model.
However, our approach will be more convenient compared with Shen et al.
(2017)’s under the proportional odds model, since our approach has a simpler
form, and the estimation of the intercept a(t) can be done beforehand and
plugged in the final estimating equation, while Shen et al. (2017) can not
achieve this and their estimation produce involves a complicated iteration
which increases the risk of non-convergence. Besides, Shen et al. (2017) only
deal with the reverse time but not the reverse hazard function, and we utilize
the relationship between the reverse hazard function and the forward-time
hazard function and produced a more intuitive estimator.

We conduct simulations for Shen et al. (2017)’s method and the results
are reported in Table 1. The code was obtained from the authors via per-
sonal communication. However, one of the authors, Prof. Pao-Sheng Shen
mentioned that they were unable to calculate the asymptotic variance and
coverage probabilities, the existing results in their paper contain some er-
rors, and their current code only consists of bias and standard error. As a
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Table 1 Simulation Results

5(1) 5(2)
n n
n Biasx102 SSEx10% SEEx10® Cov(%) Biasx102 SSEx10% SEEx10® Cov(%)
300 unweight 31 329 342 96 8 319 338 97
Prentice-Wilcoxon 30 249 277 95 18 268 278 95
Wia(t) 23 227 258 93 8 254 261 93
Shen et al. (2017) -2 271 NA NA 39 274 NA NA
400 unweight 20 278 289 96 7 271 288 96
Prentice-Wilcoxon 12 213 240 96 12 227 241 95
Wha(t) 8 194 222 94 5 211 225 94
Shen et al. (2017) -9 210 NA NA 7 251 NA NA
500 unweight 14 247 254 96 5 247 255 96
Prentice-Wilcoxon 8 188 214 96 7 205 215 95
Wa(t) -1 172 198 94 -3 188 200 94
Shen et al. (2017) -21 187 NA NA 9 235 NA NA
600 unweight 11 222 229 96 7 227 232 96
Prentice-Wilcoxon 5 173 195 96 5 186 196 95
Wha(t) -4 155 180 95 -4 172 182 95
Shen et al. (2017) -20 164 NA NA -5 180 NA NA

SSE, the sampling standard deviation; SEE, the sampling standard error; Cov, the empirical
coverage of approximate 95% confidence intervals.

result, we only report bias and standard error of Shen et al. (2017)’s method.
All the simulations were conducted under the same model as ours. We also
want to mention that we found the computation speed is very slow for Shen
et al. (2017)’s method, though asymptotic variance and coverage probabil-
ity were not calculated, their method is still more than 3 times slower than
ours under the same model setting and the sample size. The SSE of Shen et
al. (2017)’s method is smaller than our unweighted estimator, but is bigger
than the two weighted estimators. For the second approach in their paper,
i.e. the conditional maximum-likelihood approach, since the bias is large, we
did not perform further comparisons here. We would like to mention that the
large bias of the conditional maximum-likelihood approach is also confirmed
in Vakulenko-Lagun et al. (2020).

As suggested by one of the reviewers, we also perform simulations without
accounting for the truncation, and the results are shown in Table 2. We choose
the truncation distribution as uniform distributions from 0 to 4, 2 and 1,
respectively, which corresponds to 20% truncation rate (mild truncation), 40%
truncation rate (moderate truncation) as well as 70% truncation rate (heavy
truncation). As we can see from Table 2, all the estimators are biased, and a
larger truncation rate will lead to a bigger bias and variance, though for the
same truncation, variances will decrease when the sample sizes increase. These
results also coincide with Table 2.1 (pp. 20) in Rennert (2018) and Table 1 in
Rennert and Xie (2018), though the two articles deal with the doubly truncated
data under the Cox model.

To better illustrate how to employ the proposed method in real situation,
we analyze the Centers for Disease Control’s blood-transfusion data, this data



On a Simple Estimation of the Proportional Odds Model under Right Truncation 11

Table 2 Simulation Results when ignoring truncation

5(1) 5(2)
n n
n Truncation Biasx10® SSEx10? SEEx10% Cov(%) Biasx 102 SSEx103 SEEx102 Cov(%)
300 Mild -39 284 309 95 -35 267 310 99
300 Moderate -134 307 305 86 -74 297 308 96
300 Heavy -306 555 629 91 -106 555 601 98
400 Mild -67 229 260 95 -46 225 263 98
400 Moderate -128 254 261 89 -71 265 264 96
400 Heavy -379 245 251 70 -157 236 261 93
500 Mild -66 200 229 96 -26 222 235 96
500 Moderate -125 215 230 91 72 227 234 96
500 Heavy -398 215 222 55 -170 224 231 89
600 Mild -53 173 209 96 -20 206 214 98
600  Moderate -129 184 208 93 72 213 212 93
600 Heavy -406 223 202 45 -165 202 210 87

SSE, the sampling standard deviation; SEE, the sampling standard error; Cov, the empirical
coverage of approximate 95% confidence intervals.

was used by Kalbfleisch and Lawless (1989) and Wang (1989). The data in-
clude 494 cases reported to the Center of Disease Control prior January, 1,
1987, and diagnosed before July, 1, 1986. Only 295 of the 494 has consistent
data, and they got infection by a single blood transfusion or a short series
of transfusions, analyse is restricted to this subset. We obtain the raw ob-
servation data via personal communication, Thomas Peterman, Centers for
Disease Control and Prevention. The data contains three variables: T is the
time from blood transfusion to the diagnosis of AIDS (in months), R is the
time from blood transfusion to the end of the study (July, 1986, in months),
Age is the age of the person when transfusing blood (in years). Comparing
the data with Kalbfleisch and Lawless (1989)’s as well as Wang (1989)’s, the
observation (X=16, T=33, Age=34) cannot be found in the raw data, thus is
being deleted and the final sample size is 294, and a few fractions of the data
are also corrected because these entries are not correct compared to the raw
data.

We apply the proposed method to this data and treat Age as the covariate
in regression. In Wang (1989)’s paper, the data are categorized into three age
groups: ‘children’ aged 1-4, ‘adults’ aged 5-59, and ‘elderly patients’ aged 60
and older because of different patterns of survivorship, the survivor behaviour
of groups ‘adults’ and ‘elderly patients’ are similar except for the right tail
while there is an evident distinction compared with ‘children’; in current anal-
ysis, we delete the data from ‘children’, and focus on a combined sample of
‘adults’ and ‘elderly patients’ with a sample size equal to 260. Finally, the range
of T is from 0 to 89, and the range of R is from 0 to 99. For all ¢ € {1,...,260},
we have T; < R;. As a result, our dataset will not have the identifiability is-
sue as mentioned in Seaman et al. (2022). We also applied Shen et al. (2017)’s
method and the result is similar. All the results are shown in Table 3, where the
weights are chosen as Wy,1(t) and W,s(t), the estimated parameter between
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Table 3 Age effect for blood transfusion data

Age SSE
unweighted -0.0128  0.0153
Prentice-Wilcoxon  -0.0120 0.0143
Wha(t) -0.0122  0.0122

Shen et al. (2017)  -0.0125  0.0150

unweighted and weighted estimation equation does not show much difference,
but the variance is reduced when weights are considered. In both situations
mentioned above, Age has a very weakening positive effect on the odds ratio,
but the effect is not significant.

4 Discussion

Directly consider the right truncated data in normal time order can be failed
because ‘at risk’ process is not adapt to the history of the process (Gross and
Huber-Carol, 1992). Retro hazard solves this problem which transform right
truncated data to left truncated in reverse time (Woodroofe, 1985). Statistical
modelling is even more flexible by incorporating the nature structure of pro-
portional odds model. The usual form of proportional odds model can also be
utilized but the theoretical and computational burden for the estimator will
be increased, employ (1) can substantially improve the situation.
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Appendix 1

Assumptions:

Al: By € RP is the interior point of a compact set B.

A2: Z is a bounded process.

A3: V(Bo) is non-negative.

A4: f(t) is continuous.

Assumption Al is also used by Chen et al. (2012), A2 is a standard assumption to
ensure martingale properties holds (Fleming and Harrington, 1991), A3 is also a standard
assumption to avoid theoretical discussion, it is also being used in Huang and Qin (2013),
A4 is being used in prove the martingale representation of on (¢, Bo) — v(t). Besides that, we
also need an condition to ensure that the truncated distribution to be correctly identified,
let F'(-) and G(t) be the distribution function of T and R, define (ap,br) and (ag, bg) be
the support of F(-) and G(:) of T and R under the meaning that ay = inf{z : W(z) >
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0}, by = sup{z : W(z) < 1}, where W is a distribution function. Under right truncation,
actually, only conditional distribution P(T < z|T < bg) and P(R < z|R > ap) can be
estimated, thus we assume arp = ag = 0, bg = o0, so that the conditional distribution
will be the actual distribution of T and R, we also assume P(T <Y) = a > 0 to ensure
that there exist observations satisfy our condition, similar assumption and discussion also
appeared in Woodroofe (1985), Wang (1989), and Sundaram (2009), among others.

Proof (Proof of Theorem 1)
_ To prove the theorem 1, the first step is to derive the martingale representation of
Sn(Bo). To do this, we need the martingale representation of ¥y, (¢, 80) — vo(t). Notice that

dvo

Z{exp (Z] Bo)vo(t) + 1}dNy(t) + ZY Z{exp(Z Bo)vo(t) + 1} M; (dt{f86)

i=1 i=1 i=1

S {exp(Z] BoYin(t. fo) + 1N + Y Yi(t)%ﬁﬂ") oY

i=1 i=1
Denote wo(t) = 1/vo(t) and wn (¢, 8) = 1/0x(t, B), then (17) and (16) becomes:

n

=0. (17)

Z{exp 2] Bo) + wo(t) }dN, (¢ ZY(t)dUJo(t) —Z{exp 71 Bo) + wo(t)} M; (dt, £b8)

i=1 =1 i=1
Z{exp(ZiTBO) + W (¢, Bo) YN (t) — Z Y (£)tn (dt, Bo) = 0. (19)
i=1 i=1

(19)-(18) and divide both side by —> "  Yi(t):

At (t, Bo) — wo(t)} Yo {exp(Z] Bo) + wo ()} M (dt, Bo)

— Pn (t)dt{ﬁ}n (t7 50) — Wo (t)} =

ot Qi Vi)
Then
1 n T {exp(ZiTﬁo) + wo(s)}
n(t, — = — Py, n M;(ds, .
Wn(t, Bo) — wo(t) Pl ;/t (s) S0 (ds, Bo)
In the interval (0,7), since 0 < vg(t) < oo, by delta method,
a8, 60) = v0(6) = = —— {1 (t, Bo) — wo(1)} (20)

Wq ()

2(1) vo(s EXp(ZTﬁo)
Pn B Z/ Y(s)vo(s) Mi(ds, Bo)-

At the point 0, (20) holds without condition because 9, (0, 8) = vo(t) = 0. At the point T,
if denote 0 X co = 0, then (20) also holds.
By using (20), for Sy (8o):

Sn(Bo) = / {Z —Z(t)} {exp (Z; Bo)on(t, Bo) +1}dN (t)
= %Z/ {zi—2®)} {exp(Z] Bo)on (t, B0) + 1} Mi(dt, Bo)
i=1 70

7%2/7 {Zi fZ(t)}}Q(t):Xp(Z;BO)@n(tﬂO)+1dyo(t)
i=170

xp(Z;T Bo)vg (t) + vo(t)
=I+1I
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In the following, we will show that the second part can also be represented as a summation
of integral with respect to martingale.

i [T oo [ exp(Z] Bo)in(t, Bo) + 1 — exp(Z] Bo)wo(t) —1 1
H—n;/o {Zl—Z(t)}Yz(t){ oxp(ZT o) (1) + vo(t) +v0(t)}d”°(t)

I [7 _ exp(Z; Bo) N
- ;/0 {Z; — Z(t)}n(t)exp(ZiT,Bo)vg(t) 500 {n(t, Bo) — vo(t)} dvo(t). (21)

Substitute (20) into (21) and change the integration order, then
] — T exp(ZjTBO)vg(t) +1
== Z Pu(t)
n “=Jo Zk:l Yk (t)vo (¢)

nop exp(Z] fo)uo(s) 1 |
z—;/o W 2O ZT o) +1 PG dm(s)} e

Denote

00 = {51~ 20} {0 +1)
exp(Z; Bo)vo(t) + 1
>y Ye(®vo(t)
n t exp(Z] Bo)vo(s) 1
> :

2~ J, 1Z; — Z(s)}Y;(s) P (Z] fo)oo(s) + 1 Pals)

+Pn(t)

dvo(s).

Then the martingale representation of Sy (5o) is
I [T
Sn(Bo) ==Y / &i(t, Bo) Mi(dt, Bo). (22)
"o

Through (22), it is obvious to prove that Sy (8p) converges to zero 0 in probability by the
weak law of large numbers.
Let

u(t) = lim ﬁ,v(tﬂ): lim on(t, 8).
n—r00 . 7 n—oo

Denote
sn(B) = %Z / {Zi — (1)} {exp(2Z, B)on(t, B) — exp(Z, Bo)in(t, Bo) } dNi(1).
i=1 0

The derivative of Sy, (8) and s, (8) are

Sn(8) = % > {2 = Z()} {exp(Z] B)Zivn(t, B) + exp(Z] B){00n(t, 8)/08} } dNi(1),

i=1

51, (B) = % > {2 - w®)} {exp(Z] B)Zitn(t, B) + exp(Z] B){00n(t, 8)/08} } dNi(2).
=1
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Notice spn(B80) = 0. Assume that there exists ¢ > 0 such that (A5): P{| Z; — u(¢¥) |> &,i =
1,2,---,n} > 0, which means covariate can not be identical for all individuals. Together
with the assumption (A6):

| E{exp(27 Bo)Zin(t, B0) } + E [exp(Z 7 Bo){0in(t, B)/0B} |p=p,] |> 0.

we have | limy, s},(Bo) |> 0. Without loss of generality, let limy, s/,(80) > 0, then there exist
a neighborhood of By such that s,(8) is strictly increasing. Further notice that S, (8) =
sn(B) + op(1), SL(B) = sl,(B) + op(1), then Sy (B) is strictly increasing in a neighborhood

of Bo, thus prove the consistency of 3.
By martingale central limit theorem, the variance of Sy (o) is

V(Bo) = lim Vp, = lim <n '29,(80),n /25, (80) > (7)

~ lim / D it Bo)®2d / ~Yi(s){exp(Z] Bo)v>(s) + v(s)} ~Ldu(s)
(ON— t
= lim = / D €ilt, B0)Z2Vi(O){exp(Z] Bo)o? (1) + v(t)}du(t).

0 =1
Further using the delta method will complete the proof of theorem 1.

Proof (Proof of Theorem 2) Since theorem 1 and 2 are quite similar, in this part, we will
omit the proof detail and only give the detailed expression of V.

Vw(ﬁo) = nh—>moo % / Zgl‘w (t7 60)®2Yi(t){exp(zi—rﬁ0)yz(t) + ’U(t)}*ldv(t).
0 =1

where
€1t B0) = Wa(t) {Zi — Z(t) } {exp(Z] Bo)on(t, Bo) + 1}

exp(ZiT,Bo)vo(t) +1
D opes Ye(Hvo(t)

n ¢ _ exp(Z.] Bo)vo(s
> / Wa(6)12) — 2y ()i Zs PO (),
j=170

+Pn(t)

exp(Z].Tﬁo)vo (s)+1
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