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Abstract

With the growth of mobile technologies and internet transactions, privacy issues

and identity check became a hot topic in the past decades. Mobile biometrics

provided a new level of security in addition to passwords and PIN, with a multi-

tude of modalities to authenticate subjects. This thesis explores the verification

performance of behavioural biometric modalities, as previous studies in literature

proved them to be effective in identifying individual behaviours and guarantee

robust continuous authentication. In addition, it addresses open issues such as

single sample authentication, quality measurements for behavioural data, and fast

electrocardiogram capture and biometric verification. The scope of this project

is to assess the performance and stability of authentication models for mobile

and wearable devices, with ceremony based tasks and a framework that includes

behavioural and electrocardiogram biometrics.

The results from the experiments suggest that a fast verification, appliable on real

life scenarios (e.g. login or transaction request), with a single sample request and

the considered modalities (Swipe gestures, PIN dynamics and electrocardiogram

recording) can be performed with a stable performance. In addition, the novel

fusion method implemented greatly reduced the authentication error.

As additional contribution, this thesis introduces to a novel pre-processing algo-

rithm for faulty Swipe data removal. Lastly, a theoretical framework comprised of

three different modalities is proposed, based on the results of the various experi-

ments conducted in this study. It’s reasonable to state that the findings presented

in this thesis will contribute to the enhancement of identity verification on mobile

and wearable technologies.
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Chapter 1

Introduction

1.1 Introduction to the thesis

This research was motivated by the increasing demands of security measures in

the last decades, especially considering the growth of mobile technologies, online

transactions, and biometric modalities. We wanted to explore biometric verifica-

tion performance through behavioural modalities with a fast and reliable approach.

We addressed unsolved challenges in literature and proposed our own framework

for a novel approach on mobile verification.

Each Chapter will describe and resolve a separate issue, starting from a general

introduction to biometrics and moving forward to each modality, to finally com-

bine all the information, experiments, and findings to a complete assessment of the

aforementioned framework. We present novelties in terms of the pre-processing,

pipeline, fusion methods, and device experimentation. We are confident in think-

ing that this thesis can provide an insight on the direction and development that

mobile and wearable biometrics will follow in the near future.
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1.2 Introduction to biometrics

Over the centuries, identity has always been a matter of study from various per-

spective (e.g. ontological, social, philosophical, and legal); personal identity is

not just something that defines us as people and person, but from a non self-

deterministic point of view it also has severe implications on a daily basis in

society. For every document signed, every award, every action claimed, there’s

a connection with personal identity. Therefore, considering how valuable iden-

tity is, the existence of identity theft is not surprising. Especially in the recent

decades, with the growth of technology, media, and globalisation, more measures

are required to secure and verify identity.

In this context, biometrics provide a solid way to verify identity. It is defined

by ISO as “the automated recognition of humans based on their biological and

behavioural characteristics”[7] and, as the definition suggests, it comprises of sys-

tems, sensors, and algorithms meant to extract and evaluate unique features de-

scriptive of an individual, either physical or behavioural. With such features, bio-

metric systems are built to either identify a specific subject amongst a database

comparing the given sample(s) to a list of templates (1 vs all) or to verify the

claimed identity of an individual comparing the given sample(s) to their own en-

rolled template (1 vs 1).

Biometric systems are historically implemented for security reasons and forensic

applications (e.g. face recognition or fingerprints) but, with the growth in the last

decades of mobile devices, online trading, IoT, and mobile applications [8], mobile

biometrics [9] have started to be a common trend and are gradually accepted, to

the point that now every mobile device is expected to have at least one biometric

system embedded.

In parallel with the diffusion of biometric modalities to safeguard identity or secure

transactions/activity on a device, the number of techniques to exploit biometric

systems vulnerabilities has also risen. To improve biometric system performances
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and reduce errors due to attacks and forgeries, especially on mobile devices, re-

search continues to explore solid models and modalities that can provide safety

for the user, occasionally by combining multiple modalities at once.

This study focuses on exploring biometric performance on mobile and wearable

devices, proposing a novel framework with three different modalities (PIN and

Swipe as behavioural modality, plus electrocardiogram biometric as third modal-

ity) for verification purposes, with the the objective to minimise the amount of

recorded data requested to perform an authentication.

1.3 Aims and objectives

The aim of this study is to address some open challenges regarding mobile au-

thentication through behavioural biometrics, such as reducing to the minimum

the amount of data required for the enrollment and the authentication (for the

latter, ideally one single sample). In particular, for the considered modalities, pre-

vious studies have either considered mostly continuous authentication, or proposed

models that required a large amount of training data.

Another objective of this thesis was to provide generalised models, that would

not need to be retrained on every subject. Further considerations about gap

in literature, open issues, reasoning for this study , and research questions are

presented in Chapter 2.

1.4 Research methodology

All the experiments of the project have been designed following the same method-

ology. For each biometric modality, the related studies and state of the art were

reviewed, addressing the open challenges and gaps in literature. Then, it’s pre-

sented a description of the datasets used, comprised of demographic information

(when possible) and details on data capture.
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This was followed by an in-depth description of the models and related algorithms

proposed for biometric authentication, and the reasoning behind the choice of

different methodologies. The training and testing criteria were defined, as well as

parameters optimisation.

Lastly, results on experiments were presented and commented, with comparison

to previous studies and relating to the research questions.

1.5 Key contributions

The major contribution of this thesis can be listed in the following points:

- The Introduction of new, fast, and light (in terms of computational cost)

deep learning authentication models for the three biometric modalities ex-

plored (Swipe, PIN and ECG).

- The introduction of an algorithm to measure quality (for both user and

samples) of a Swipe.

- The development of a pre-processing algorithm for data cleaning and faulty

sample removal.

- A fusion algorithm on score Level for multi-modality purposes, which relies

on contextual information.

- The proposal of a theoretical framework for three-factors authentication,

based on the finding of the experiments conducted on the aforementioned

modalities (Swipe, PIN and ECG).

In particular, the work in this thesis addresses the issues of quick data recording

and authentication with behavioural data. Especially considering Swipe and ECG

biometrics, for which the presented models perform authentication on a single

sample basis.
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Another strong contribution is given by the quality experiments, being the first

study conducted on Swipe quality. The novelty of the fusion method resides in

its specific design based on the contextual information of the framework; more

specifically, it takes into consideration the dependency of the two modalities, and

the authentication error on the first modality.

1.6 Thesis Structure

This thesis is composed of six chapters and one appendix that follow our proposed

framework for multimodal biometric authentication. Chapter 2 explores the state

of the art of all the methodologies, algorithms, and devices used in this study

or that appear in the related works. It provides insights on artificial intelligence

in general, with a focus on models applied to biometric authentication, pattern

recognition, and clustering. In addition, we discuss the hardware requirements

for electrocardiogram recording devices in order to justify the decision making

when exploring wearable or mobile possibilities for biometric authentication. We

summarise the recent works in the field for all the considered modalities and we

provide an overview on multimodal fusion. Lastly, we define the research questions

and the framework. The appendix (see Appendix A) reports the section of the

contract with Callsign involving use of Materials (comprised of production data).

The following three chapters describe in details the methodology, experiments, and

results for each modality assessed in this study. Chapter 3 introduces behavioural

interactions on mobile devices with hand gestures and Swipe dynamics; it gives a

description of the recorded data from used datasets and adds in depth information

on the theory behind the evaluated models and algorithms. This Chapter is further

divided in two sub-chapters, the first part assessing Swipe authentication and the

second part discussing Swipe quality and its effects on authentication performance.

Chapter 4 is also dedicated to behavioural biometrics from a PIN perspective. As

in the previous Chapter, a general introduction to PIN and keystroke on mobile

devices is provided, followed by data description and model assessment. The last
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section of the Chapter describes our proposed fusion model for Swipe and PIN

authentication.

Chapter 5 explores electrocardiogram as a biometric modality. We first define

the idea behind user authentication with ECG recordings, then we proceed de-

scribing the data from a physiological and a biometric perspective. We describe

the datasets used, our experimental setup and the models that we evaluated for

biometric verification. Results and conclusion are presented in the last section of

the Chapter.

Chapter 6 summarises the content of the thesis, with respect to the aim of this

study, addressing each research question from Chapter 2. It highlights the novelty

and the contribution of this research, while also assessing the open challenges and

the possible follow-up studies that can be inspired by our work. This Chapter also

cover theoretical formulations that could not be assessed in this research due to

COVID-19 impediments.

1.7 SARS COVID-19 related issues

On December 2019 several cases of pneumonia were identified in Wuhan, China

which resulted later as direct effects of a new coronavirus branch that has not been

previously identified in humans (later named as COVID-19). In the early months of

2020 the virus spread globally, starting from central Europe, with high infection

and mortality rates. By March 2020, the World Health Organisation (WHO)

acknowledged the outbreak as a pandemic and gradually all countries, including

U.K., adopted emergency measures such as work from home and lockdown.

Over the next two years, the NHS and the government were forced to apply strict

regulations for workplaces, educational institutions and general life, in order to

mitigate the spread of the virus while waiting for an effective vaccine. Access

to facilities was prohibited, as well as social interactions with the exception of
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social bubbles, people living in the same households, and people with special

circumstances (health related, childcare, etc.).

Restrictions became gradually lighter with the spread decay and the increase of

the number of vaccinated people, occasionally becoming strict again with new

virus variants and peaks in spread (usually after social breakouts during summer).

Currently, even if the virus is still active in the majority of the countries, in U.K.

and other European countries almost all regulations decayed.

Nevertheless, during 2020 and 2021 COVID-19 had a strong impact on people lives

[10], both job and mental health related. In the specific case of this study, due to

the inability to fully access facilities and devices nor to interact with other individ-

uals, a considerable part of the research could not be performed. In particular, all

the evaluations on electrocardiogram data and models were slowed down, a data

collection could not be performed due to the impossibility of interacting with the

participants. Moreover, the sensors for electrocardiogram recording need to be in

direct contact with the skin and this was considered a threat for contamination

during the pandemic.

The absence of a data collection for electrocardiogram data not only forced us to

rely on public dataset, but also precluded the experiments on three factors fusion,

due to the lack of paired data. However, we still provide an insight of the original

idea and theoretical solutions for multimodal authentication with PIN, Swipe and

electrocardiogram.



Chapter 2

Mobile and wearable biometrics:

state of the art

2.1 Introduction

This Chapter is a review of the latest biometrical studies and machine learning

advancements over the years, related to the work in this thesis. We will first intro-

duce the reader to mobile biometrics and wearable technologies, with an insight

on biometric performance and how to measure it. Then we will review different

methodologies of machine learning and deep learning architectures that are used

or led to decision making in our framework. Then we will compare state of the art

authentication models for swipe, PIN, and electrocardiogram biometrics and high-

light the issues in the previous studies or the follow-up analysis that we conducted

based on other studies. We included a brief review of sensors used to collect the

data. We then explore the common fusion methods for multimodal biometrics.

Finally, we highlight open challenges and trade offs of the current authentication

systems, and declare the research question and the proposed framework.

12
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2.2 Mobile biometrics and wearable technologies

Mobile biometrics refers to any implemented technology for authentication or iden-

tification purpose through biometric modalities on a mobile device (e.g. smart-

phone, smartwatch, tablet). In the last decades there’s been a wide shift from

biometrics used in supervised environment for security control (e.g. airport bor-

der control) to mobile biometric on personal devices in unsupervised environments.

Mobile transactions, login to personal accounts or even unlocking the device itself

were the main reasons for this growth. The most common biometric modalities

found on mobile devices are face, iris, fingerprint,and voice recognition, with later

appearances of hand gestures and keystroke. In addition, with the increase in

popularity of wearable devices such as wrist or chest bands for health monitoring

during physical exercises, other biometric modalities began to appear (not neces-

sarily connected to user authentication). But before reviewing the past studies on

mobile biometrics, it’s necessary to define the biometric performance of a model

and how to measure it.

2.2.1 Biometric performance

The biometric performance of an authentication model is the likelihood to provide

the correct prediction on a verification or identification task, therefore the ability to

predict the correct class given unseen data. A verification task, in which a subject

is asked to confirm their identity, can be considered a binary classification problem:

accept if the system evaluates the data as belonging to the genuine subject or reject

in the opposite case. An identification task is a multiclass problem, in which the

biometric system compares the given sample with a list of existing templates and

returns the class with the maximum likelihood. In both cases, if the prediction of

the class is correct, we will talk about True Positive (TP) if the data was provided

by the genuine subject, or True Negative (TN) in case of forgeries. As opposite, in

case of misclassification, we talk about False Positives (FP) and False Negatives

(FN).
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Given these premises, there are various metrics to assess the performance of a

biometric system, such as Accuracy,False Positive Rate (FPR),True Positive Rate

(TPR),False Negative Rate(FNR) and Equal Error Rate. If we consider P and N

the total number of data from genuine and forgeries respectively in the test set,

we can calculate the accuracy, the FPR, the TPR,and the FNR of the system as

follows:

Accuracy[%] = 100× TP + TN

P +N

FPR[%] = 100× FP

N

TPR[%] = 100× TP

P

FNR[%] = 100× FN

P

(2.1)

These metrics are based on a direct prediction, but biometric systems returns a

probability of the given sample to belong to a class. This probability is usually ex-

pressed as a similarity (or dissimilarity score) between the sample and a template.

The prediction of the class is based on the aforementioned score and a threshold

that should minimise the classification error.

Figure 2.1 shows an example with two synthetic distributions of scores from gen-

uine samples and forgeries. In an ideal scenario, the classifier should be able to

perfectly separate the two distributions, but in reality there will be overlapping.

Depending on the selected threshold, the tails of the distributions crossing it will

provide classification errors: type 1 error (false positive) for the forgeries distribu-

tion, type 2 error (false negative) for the genuine distribution.

The optimal threshold should minimise the errors and it’s found where FPR and

FNR are equal. That point can be usually found at the intersection of the two

distributions and it’s defined as Equal Error Rate.
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Figure 2.1: An example of scores distribution from genuine and forgery sam-
ples. Blue and orange filled areas represent the classification errors of the sys-

tem, given the optimal threshold.

2.3 State of the art for machine learning

2.3.1 Brief history of machine learning

Machine learning is a term to describe algorithms that, in a very simplistic defini-

tion, after training on a set of data can provide predictions on unseen data. Such

prediction or scores can be used for classification, comparison, reconstruction, and

more. The origin of machine learning is not clearly defined and it depends on the

definition or the context, but it’s usually associated to the studies on the human

nervous system and the development of a device that imitates the behaviour of

a neuron cell to compute a decision [11]. Such a device was the first perceptron

machine, developed by Frank Rosenblatt et al. in 1957 [12].

From that study, artificial intelligence and machine learning followed an exponen-

tial progression in terms of proposed models and applications in many fields; in the
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60s, thanks to the first appearance of the nearest neighbor algorithm, there was

the beginning of pattern recognition and the studies on artificial intelligence be-

gan to separate and focus on specific tasks or training techniques. Support vector

machines and multilayer perceptrons appeared in the 70s alongside new optimi-

sation criteria and cost functions. At the same time, researches involving neural

networks slowed down for a decade when Minsky et al. addressed its limitations

in 1969 [13], diverging over probabilistic approaches.

In 1985 with Ackley et al.’s backpropagation algorithm [14] and later in 1998 with

LeCun’s convolutional neural network LeNet [15], interest in neural networks arose

again and a new subset of artificial intelligence referred to as deep learning was

born[16]. Amongst the first applications, it’s relevant to cite speech recognition

through recurrent neural networks [17] and in 2012 face recognition with AlexNet

[18].

2.3.2 Machine learning categories

As stated previously, Artificial Intelligence can be divided in macro categories.

Machine learning and deep learning are two subsets (see Figure 2.2), but it’s

useful to mention four additional subsets of learning approaches categorised as

follows: supervised, semi-supervised, unsupervised, and reinforcement. These four

categories describe the approaches of ML techniques depending on the training

data and/or the environment in which they are deployed.

• Supervised learning comprises of all the models, algorithms and scenarios

that require training with labeled data [19]. Such labels describe both the

input features and the target to forecast (also known as ground truth), even

when there’s a mismatch (in case of event prediction, segmentation or con-

textual classification).

• Unsupervised learning, as the name suggests, is the opposite of supervised

learning. This approach is employed when data are unlabeled or unclas-

sified, and it’s not possible to manually provide such information. This
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Figure 2.2: Hierarchy of AI.

is usually the case for behavioural data or quality estimation. The model

needs to understand data by context and discover similar patterns in the raw

data. Usually clustering algorithms and reconstruction models that directly

compute the differences between raw inputs and reconstructed outputs are

employed in this category.

• Semi-supervised learning explores the case of label and unlabeled data, ei-

ther when just a small percentage of the available data are provided with

labels and when the labels are not descriptive of the actual class, but define

some common conditions for a set of samples [20]. Compared to a fully un-

supervised scenario, the ground truth information provided from the small

amount of data can be helpful to fine tune unsupervised algorithms, tweaking

the decision boundaries for the generated clusters.

• Reinforcement learning (RL) [21] relies entirely on the environment and the

task. Compared to the previous approaches, the final goal is not a single

static prediction, but a change in the environment (or the machine inter-

acting with it). Usually RL models are based on the Markovian decision
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process [22], which requires an Agent performing an action that will change

the environmental state, based on the previous state and a reward system.

Those models (e.g. Hidden Markov Model) and the various deep learning

implementations of the last decade are used to replicate the human decision

process for sequence of actions (e.g. chess games, car driving, etc.).

In this study we explored biometric authentication only, with various modalities,

therefore we will provide a review exclusively on the latest supervised and unsu-

pervised approaches.

2.3.3 Supervised and semi-supervised models

Classic supervised machine learning models are widely used in a multitude of

situations for their ease-to-implement and generally fast training times, such as

the decision tree [23] and the Naive Bayes classifier [24].

The decision tree is a logic-based algorithm that splits the data in nodes and leaves,

providing a partial decision at each node. To overcame issues such as uncertainty

about the size of the model and likelihood to over-fit to training data, two follow

up algorithms were proposed: the random forest in 2001 by Leo Breiman [25],

and the isolation forest by Liu et al. [26] in 2008. While random forest reduces

generalisation and prediction error compared to a single decision tree, the isolation

forest is used to clean data, catch outliers, identify anomalies, or rearrange the data

in subsets based on the isolation criteria. Due to its functionality, it’s closer to a

semi-supervised or unsupervised approach.

The Gaussian Naive Bayes (GNB) classifier is based on the maximum likelihood

estimation theorem and assumes that all the features from the observed data are

independent. This classifier can be used both for binary and multiclass prediction,

but needs to be retrained each time a new class is presented. An extension of the

GNB is the Gaussian infinite mixture model, which estimates a mixture of Gaus-

sian distributions for data clustering [27][28]. Mixture weights prior distribution
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can be estimated through a Dirichlet process. Considering the clustering potential

on unseen classes, it can be considered a semi-supervised model.

Regarding Deep learning architectures, most models can be interchanged between

supervised and unsupervised depending on the last layers and cost functions (e.g.

a same structure for a convolutional network may have a softmax/sigmoid output

and cross-entropy loss or a reconstructive layer with a distance metric based loss).

2.3.4 Unsupervised models

As previously mentioned, unsupervised learning models find their use with unla-

beled data; such models employ clustering algorithms in order to group and classify

the aforementioned data, usually basing the decision on distance criteria [29]. The

easiest model to implement is the k-means algorithm, with k corresponding to

the number of classes, or centroids, in which the model will learn to separate the

training data. The k value is a hyperparameter representing the number of cluster.

It usually corrensponds the number of classes in which the data need to be sepa-

rated; if such number is not known a-priori, there are criteria for determining the

optimal value (examples are X-means through Bayesian Information Criterion,

minimum descriptor length framework to reduce k, G-means algorithm to grow

the number of clusters starting from a low value of k) [30] [31].

Other unsupervised algorithms are singular value decomposition (SVD)[32], inde-

pendent component analysis (ICA)[33], and principal component analysis (PCA)[34];

the three of them have a strict relation to one another [35]. The underlying idea for

these three methodologies is to apply a transformation to a set of data S defined

in Rn, with n ≥ 2, in order to obtain a new set S ′ that contains all the informa-

tion from the previous set but projected in a space that maximises the differences.

The dimension of the new set can be equal or smaller than the original set. The

transformation and the new components/vectors are estimated just by looking at

the data distributions in the original set and with prior assumptions (e.g. in the

case of ICA, the set should contain n mixtures from n independent components).



20

Unsupervised deep learning architectures are usually distance-metric-based mod-

els, comparing the input with the output in case of autoencoders or variational

autoencoders [36]. In other cases, the loss metrics can be learned by context, as

in the case of the Loc2Vec study [37] which employed a triplet loss in a convolu-

tional model with assigned labels on mined triplets on distance criteria during the

training process.

2.4 Behavioral biometrics

2.4.1 Behavioural systems on mobile devices

Biometric systems can be classified based on the characteristics observed to com-

pute the recognition; such characteristics can be physical, behavioural, or miscel-

laneous traits as shown in Figure 2.3. Compared to physical traits, behavioural

biometric modalities are far less intrusive and in many cases the user is unaware

of the capturing and recognition processes happening during the authentication

attempt.

The technology improvements of the recent years, with the spread of wearable

and mobile devices with embedded sensors, facilitate the growth of behavioural

biometric systems implementation, mostly due to the usability and the ease-to-

collect behavioural data. Behavioural biometrics on mobile devices also proved to

attain the characteristics of standard biometric systems [38][39], such as univer-

sality, uniqueness, usability, acceptance, collectability, invariance and aversity to

circumvention. The aforementioned characteristics are defined as follows:

- Universality : Ideally, a biometric feature should be obtainable by every in-

dividual. Biometric systems should utilize data that can be collected by the

widest population as possible.

- Uniqueness : Biometric properties should be distinctive of each individual.
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Figure 2.3: Different kinds of biometric modalities.

- Usability : The capture of biometric data should not generate discomfort to

the user, nor be intrusive, nor slow down the flow of action.

- Acceptance: The extent of which the population (or diverse sets of popula-

tions) is willing to adopt the biometric system.

- Collectability : The ability to collect and measure biometric data.

- Invariance: Consistence of the biometric features and/or the system perfor-

mance over extended periods of time.

- Aversity to circumvention: The ability of the system to not be vulnerable

to spoofing or forgeries.
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2.4.2 Capture and interaction: ceremony vs continuous

authentication

Due to the dynamic nature of behavioural data, the capture process is not im-

mediate or static, as it would be for face or fingerprint data. This implies the

existence of sampling time and the possibility to record more than one sample per

session or to have multiple samples of variable length. The sampling frequency

and sampling time is directly connected to the sensor and the required task (e.g.

for voice recognition it depends by the length of the sentence), but it’s also af-

fected by the kind of authentication the system is set to perform: continuous or

ceremony-based authentication.

In the first case, the device is constantly monitoring the behaviour of the user in

the background, collecting behavioural data and analysing them sample by sample

or in batches. From this perspective, the biometric system can be portrayed as an

anomaly detector.

In the case of a ceremony-based authentication, the user is prompted to provide a

fixed number of samples (it could be one or more) to confirm their identity. This

kind of authentication is usuallyperformed during a login attempt to a service, or

as part of a two-factors authentication system for any kind of transactions. In

these cases, the user may not even be aware of the underlying data capturing

and biometric authentication (e.g. the task prompted could be a PIN request,

during which behavioural data could be collected). Compared to the continuous

authentication method, this requires the least possible amount of data and the

verification model must provide a fast and sharp decision.

This study addresses the issue and challenges related to ceremony-based authen-

tication for Swipe, PIN and Electrocardiogram.
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2.4.3 Swipe biometrics

With the advent of touch screen mobile devices, many biometric studies have

been conducted in relation to touch behaviors, considering different implemen-

tation factors and analyzing performance from different classifiers. Most of the

swipe-related publications explored continuous authentication only, or evaluated

models that require a large amount of training data (quantifiable in many dozens

of samples) from the enrolling user, or else algorithms that solve an identification

task (which can be applied on a narrow set of individuals).

In 2013 Frank et al. [40] conducted a study on continuous authentication with

swipe dynamics, training a SVM and a k-NN classifier, reaching 13% Equal Error

Rate (EER) for single strokes and 3% for combined strokes. Also Serwadda et

al. [41] studied the performance of various algorithms for active authentication

with a large dataset collected during two sessions from 190 subjects, reaching

a 15% EER performance with random forest, SVM and logistic regression. Li

et al. [42] assessed the performance of an SVM classifier with Gaussian radial

basis kernel for continuous authentication on smartphones with 75 participants,

achieving a maximum of 95.78% accuracy. Xu et al.[43] recorded touch data

(slides, pinch and keystroke) from 30 participants, using a binary non-linear SVM

for continuous authentication, varying the number of imposters in the train and

test set. Best results were obtained with just one imposter with an average EER

of 0.75% for slide and 3.33% for pinch. Feng et al. in 2014 [44] also conducted a

study on continuous authentication through touch gestures in different scenarios

using mobile devices. With a model based on dynamic time warping (DTW), they

achieved 90% accuracy over 123 participants. In 2015 Antal et al. [45] collected

swipe gestures constrained on horizontal movement and evaluated the performance

of the classifiers based on the number of swipes used for authentication, reaching

0.2% EER with 2- class random forest classifier and 5 swipes.

Miguel-Hurtado et al. [46] in 2016 conducted an analysis on sex prediction based

on swipe gestures, extracting 14 features from every swipe and using linear SVM,
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logistic, Näıve Bayes and decision tree as classifiers; results showed a 78% accu-

racy when fusing the different methods. Swipe authentication through pattern

recognition with discriminative and statistical methods using SVMs and GMMs

has been studied by Fierrez et al. [47], evaluating over different datasets and ob-

taining a best value of EER equal to 2.6% fusing the 2 modalities. In 2020 Lamb

et al. [48] evaluated the biometric performance of three different models (shrunk

covariance, Bayesian Gaussian and infinite mixture of Gaussians) considering two

kind of attackers. Results are shown in terms of EER over all the genuine and im-

poster verification attempts across the 32 subject templates, reaching a 4.54% EER

considering only blind imposter and 15.7% EER in the case of over-the-shoulder

(OTS) attackers.

Table 2.1 summarises the reported studies. As previously mentioned, most of the

studies have some underlying issues regarding amount of data required to train

the algorithms, authentication time, and generalisation power of the model. The

study presented in this thesis addresses these issues and propose new models and

perspectives for swipe authentication on mobile devices.

Table 2.1: Recent studies on Swipe for biometric authentication on mobile
devices, with focus on number of subjects in the datasets and classification

methods.

Studies # Subjects Classification Performance Results

Frank et al.[2013] 41 SVM and K-NN
13% EER (single stroke)

3% EER (combined strokes)
Li et al.[2013] 75 Gaussian radial SVM 95.78%
Xu et al.[2013] 30 SVM RBF 0.75% EER (slide) - 3.33% EER (pinch)
Serwadda et al.[2013] 190 SVM and logistic regression 15% EER
Feng et al.[2014] 123 DTW 90% Accuracy
Antal et al.[2015] 71 Random forest 0.2% EER

Miguel-Hurtado et al.[2016] 116
NB, logistic regression,
decision tree, and SVM

78% Accuracy

Fierrez et al.[2018] vary SVM and GMM 2.6% EER

Lamb et al.[2020] 32
Shrunk covariance, Bayesian Gaussian,

infinite mixture model
4.54% EER (blind)
15.70% EER (OTS)

2.4.4 PIN biometrics

Personal Identification Number (PIN) authentication is relatively new as a bio-

metric modality, not in terms of concept but in terms of an hardware-led approach.

The PIN is a substitute of a password, with a fixed number of numerical digits.



25

As such, it appeared initially as a form of plain authentication or login without

providing any biometric characteristic. This was due to the digit insert mechanic,

relying on physical keyboards. The only features that could be extracted, aside

from the raw PIN and considering the setup, were time features on key press and

release (this is discussed in details in Chapter 4). For this reason, by a biometric

perspective, PIN dynamics are very similar to keystroke dynamics, which have

been proven to provide good results in terms of security in the past studies, ei-

ther for continuous authentication or for ceremony based tasks with passwords

[49][50][51][52].

Figure 2.4: Example of touchscreen interaction on a PIN request. Finger
relative position is recorded during the touch interaction.

As for Swipe, with the spread in the past two decades of the use of touchscreen

sensors on mobile devices, PIN data have also been able to record an increased

number of features, making it possible to evaluate it as a biometric modality.

Figure 2.4 shows an example of PIN interaction on mobile device.
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This section describes, as follows, a list of recent studies involving keystroke

and PIN dynamics for biometric verification purposes. The first attempt to use

keystroke dynamics on mobile devices was in 2003 by Clarke et al. [53]: they tried

to identify 16 subjects employing a multilayer perceptron. In 2014 Mendizabal-

Vazquez et al. [54] explored biometric verification with a 4-digits PIN training a

multi-layer perceptron and using distance metrics on extracted features, obtain-

ing 20% EER with 9 enrollment samples per subject. The same year, Sen and

Muralidharan [4] also explored the biometric performance of touch dynamics on

a 4-digits PIN, reaching 84.2% accuracy at the cost of a large amount of training

samples required from each separate subject (compared to the 6 or 9 from the pre-

vious study). Tasia et al. [5] claimed in their study (conducted on 100 subjects)

that pressure and finger area on touchscreen devices are two additional features

that can improve performance on PIN-based authentication models on mobile de-

vices. In 2015 Wu and Chen [55]recorded keystroke data from a mobile device

on unlock-by-password task from 100 individuals and, after feature extraction,

they assessed the performance of a SVM varying the training size and considering

device movements as extra features. They achieved a lowest EER of 1.25%, but

the results are partially biased by the length of the password, the expertise of the

participants, the reduced number of genuine subjects from the participants pool,

and by ignoring the environmental effects. In 2019, Maiorana et al. [6] adopted a

deep learning approach with a CNN architecture to extract deep features from PIN

entries and verify the subjects, achieving a minimum EER of 4.5% for a 4-digits

PIN testing on a dataset collected by Teh et al. [56]

In Table 2.2 are summarised the aforementioned studies.

Table 2.2: Recent studies on PIN dynamics on mobile devices, with focus on
enrollment data and number of subjects in the dataset.

Studies # Subjects Modality Enrollment samples Performance Results
Clarke et al. [2003] 16 4-digits PIN 20/subject ∼15% EER
Mendizabal-Vazquez et al. [2014] 80 4-digits PIN 9/subject 20% EER
Sen and Muralidharan [2014] 10 4-digits PIN 100/subject 84.2% Accuracy
Tasia et al. [2014] 100 4-digits PIN 5/subject 8.4% EER
Wu and Chen [2015] 100 [20 genuines] Password vary 1.25% EER
Maiorana et al. [2019] 150 [20 testing] 4-digits PIN 7/subject 4.5%
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2.5 Electrocardiogram biometrics

As anticipated in the introduction, during the past decades electrocardiogram data

received more attention amongst the biometric community as a possible modality

for authentication or verification purposes. Compared to other modalities already

affirmed (e.g. face and fingerprint), biometric ECG recognition received an in-

creased interest in the latest years, as a consequence of technology improvements

and sensors miniaturisation.

The further sections will resume the progression of ECG devices, including the

most recent mobile implementation, and the studies that explored ECG biometrics,

evaluating models and parameters affecting the authentication performance.

2.5.1 Devices

ECG devices are comprised of various parts, each with specific requirements [57].

The signal can be recorded with invasive (i.e. needles) and non-invasive (i.e. foam

Ag/AgCl electrodes) sensors. In both cases, the sensors need to be in direct contact

with (at least) the skin of the subjects. This has implications not only regarding

the materials used for the sensors, but also in terms of safety measurements for

the whole system (sensors, cables, power supply, etc.). Nevertheless, compared

to the first electrocardiogram prototype machine from 1906 [58], sophisticated

and miniaturised sensors have been released in the past few decades. Recent

advances in technology allowed to record the cardiac signal using wearable devices,

in compliance with regulations.

There are four main components to consider when choosing an ECG recorder,

depending on the usage: electrodes, analog front-end, power supply and digital

signal processing.

• Electrodes count a wide variety of kinds, most of them developed in the last

few years. Conventional metal electrodes are comprised of a metal mixture

disc (generally silver-silver chloride) in direct contact with the skin through



28

an electrolyte gel to reduce impedance. Figure 2.5 shows the schematic of

the equivalent circuit of a standard electrode[59][60].

Figure 2.5: Equivalent circuit for a metal electrode.

Rs and Rg refer to the corresponding subcutaneous layer and electrolyte gel

resistances, both with very low impedance compared to the epidermis (which

is a mixture layer of connective tissue and sweat glands). Ze is the total

impedance of the epidermis layer, comprising capacitance and resistances

from the various materials. At the interface, the ions generated by the heart

electrical activity react with the metal and produce a potential difference

[61]. Cd and Rd represent respectively the capacitance and the resistance

between the skin and the metal electrode.

These electrodes are the most common and widely used, especially for di-

agnostic purposes, but are impractical for continuous recording over a long

period of time. In this scenario, the gel would dry too quickly and the elec-

trode itself would be affected by change of impedance; moreover, classical

electrodes are poorly flexible and require cable connection. Latest solutions

comprise invasive micro-needle electrodes array [62], dry electrodes [63] with

various shapes (e.g plate or disc shaped) and textiles electrodes integrated

in wearable garments [64]. From a wearable perspective, the latter options

are the most likely to be applied in a real life scenario at consumer level:
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dry electrodes are already in use with small strap bands and smartwatches,

while textile electrodes can be embedded in smart clothing.

• The analog front-end components of an ECG recorder are dedicated to buffer

and amplify the feeble signal and apply an initial noise reduction strategy.

For safety reasons, the circuits are not directly connected to the power sup-

ply. The circuits usually comprise an instrumentation amplifier (Figure 2.6)

and filter batches for initial noise removal and signal smoothing.

Figure 2.6: Schematics of a generic instrumentation amplifier. The first two
buffers are connected to the electrodes.

For recording systems with 2 electrodes a different configuration might be

implemented, with just one amplifier and a voltage divider to attenuate the

common-mode voltage. In general the resistors connected to the source (in

this case, the electrodes) should be very large (e.g. 1GΩ) in order to minimise

motion artifacts [65].

• The power supply requirements have changed a lot across the past decades,

with the spread of integrated circuit technology that allowed the production

of portable devices. The former power source was the domestic power-line

(220V, 50-60 Hz), decoupled and with reduced voltage through an isolation

transformer. But for portable or integrated solutions, new options have been

available (e.g. lithium batteries and low-voltage suppliers)[66][67]. In this

scenario, the specifications shifted from the power supply itself to circuits
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able to operate for prolonged times under a low voltage supply (e.g 1V

to 8V batteries)[68][69]. In addition, rechargeable solutions have also been

explored, like solar panel ECG recorders [70].

• Digital signal processing units for ECG data, in addition to digitisation of the

signal, have two main objectives: clean the data and transfer it to another

device (e.g. a storage, a cloud service, a server). Classical methodologies

involved band pass [71] and Notch filters [72] followed by signal modulation

[73]. More recent devices incorporate filtering, peak detection, and signal

transmission through wavelet transform [74][75][76]. Latest wearable ECG

recorders have also an integrated WiFi or Bluetooth board and can digitise

the signal at 16 or 18 bits[77][78].

Considering all of the above key features of an ECG recorder, in 2021 Cosoli et

al.[79] published a review of commercial wearable wireless devices for cardiac mon-

itoring. The study provided an insight of commercial recorders shortlisted on a

basis of electrode type (most of them being dry non-invasive electrodes), pricing

and quality of the recording. Devices providing a chest-strap band with embed-

ded electrodes (e.g. Quasar [80] and Qardio[81]) can ensure continuous monitoring

and ideally can work in the background, provided a stable WiFi or Bluetooth con-

nection with the receiving interface. This is very useful in a biometric scenario,

especially considering a continuous authentication task, and it’s preferred to de-

vices connected to the interface through cables and wires.

2.5.2 ECG biometric authentication

Many studies have explored biometric performances with ECG in the past years,

but mostly considering an identification task or continuous authentication. The

amount of data for training and testing is also to be taken into consideration,

as the previous studies didn’t address the recording time in a realistic scenario;

another related issue from previous works is the lack of diversity in the data to
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proper generalise. Page et al. [82] in 2015 used deep neural networks for ECG-

based biometric identification systems through an ECG waves detection method,

isolating the QRS complex from the recorded ECG signal and using it as feature

vector for the CNN. This research involved 90 participants and collected data

using 1-lead ECG recorder for 20 seconds with a 500 Hz sampling frequency.

The study resulted in a 99.96% identification rate and 0.0582% equal error rate

(EER), considering 70/15/15% training, validation and testing data. This study

was significant because it showed that prediction with QRS techniques gives better

results compared to non-QRS techniques. Although their results were promising,

the lack of samples per subject may have resulted in over-fitting.

Biel et al. [83] who used 85 samples for training and 50 samples for testing, found

100% accuracy but they used a 12-lead ECG recorder to identify 20 participants.

As such, it doesn’t provide any solid statement for mobile device authentication,

due to the entity of the device used and the small number of participants involved

in the study. Israel et al. [84] used a Linear discriminant analysis (LDA) method

to identify 29 subjects with 98% accuracy. They used fiducial points to extract

a vector of 16 features from each heartbeat, averaging over 20 seconds of ECG

recordings from the original 14 minutes per subject, sampled at 1000 Hz.

Wang et al. [85] used ECG recordings from 13 participant to perform authenti-

cation with K-nearest neighbours (K-NN) and LDA methods. The study reached

96% accuracy rate with 50% training samples size from all samples. Chiu et al. [86]

used discrete wavelet transform and LDA analysis on 35 subjects of ECG signals

and found 100% verification rates. 2 minutes of signals were chosen for training

and testing separately. Chan et al. [87] recorded 270 seconds of data during 3

different sessions from 50 participants, then employed wavelet distance measure

algorithm to assess biometric verification. It resulted in 89% authentication rates

with 90 seconds of training and 180 seconds of testing data. Sriram et al. [88]

used wavelet and LDA classifiers with approximately 4 seconds of test data and

400 seconds of training data per person.ECG signals were collected from 17 partic-

ipants during different activities. The study achieved 88% verification rate. Shen

et al. [89] used data from 20 participants for authentication, with 400 training
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and 200 testing heartbeat samples using template matching and decision-based

neural network (DBNN) systems. The study reached 95% authentication rates for

template matching, 80% for DBNN and 100% for their combinations. Wieclaw et.

al. [90] used 3 finger ECG measurement with a deep neural network system with

30% testing and 70% training samples for biometric identification. In [91], a deep

learning (DL) algorithm gave 98.4% identification rates from wearable single-arm

ECG. Bajpai et. al. [92] evaluated WESAD dataset with different training time

and different K size to classify different stress levels. They found their best results

as 90% accuracy on K=5 with 30 minutes training sample size. Bobade et. al.

[93] compared the results of DL and machine learning (ML) systems to find stress

level on the WESAD dataset. They found between 81.65% and 93.20% accuracy

rates on ML and between 84.32% and 95.21% accuracy rates on DL. In Table 2.3

are listed the aforementioned studies.

Table 2.3: List of recent biometric studies on ECG authentication.

Studies Features # Subjects Recording Duration Accuracy Results
Page et al.[2015] QRS 90 20 seconds 99.96%
Biel et al.[2001] Fiducial points 20 4, 5 , and 10 minutes 100%
Israel et al.[2005] Fiducial points 29 14 minutes 98%
Wang et al.[2008] Temporal points 26 (13, 13) vary 96%
Chiu et al.[2008] QRS 45 15 minutes 100%
Chan et al.[2008] Non-fiducial 50 270 seconds 89%

Sriram et al.[2009]
Fiducial and
non-fiducial

17
12-15 minutes
(5-7 testing)

88%

Shen et al.[2002] Fiducial points 20 48 hours 95%
Wieclaw et al.[2017] DL features 18 147 x 10 seconds 88.97%
Zhang et al.[2017] DL features 10 26 minutes 98.4%

All the results from the previous works are promising, but each study lacks a

realistic scenario, and in the majority of the cases a very small pool of subjects

participated in the study, leading to over-fitting and unreliable data.

To consider a real-life application, it’s necessary to assume that only a single ECG

channel would be recorded from a mobile device in a short time window.

For a matter of usability, it’s unlikely that the ECG track would be used for

continuous authentication. The most probable situation is a verification task when

login to a profile or for identity confirmation.
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2.6 Multimodal biometrics

In many cases, to improve security during an authentication task, more than one

biometric modality is employed by the verification system. This is the case when

two or three (or more) factors authentication are requested. The different modal-

ities can prompt at the same time (recording multiple data types from different

sources), in background or in cascade. This is finalised to have a better perfor-

mance in terms of match and non-match rates[94], and to do so different fusion

methods can be applied at different Levels [95] (this will be discussed more in

details in Chapter 4.3.2).

Applying fusion on sensor level and therefore on raw data is complex to perform,

especially with different modalities, since it requires to blend together different

data types. More common fusion methods involve feature Level fusion [96][97],

which can be performed by either classical machine learning algorithm or tailored

deep learning architectures, especially in case of variable length features [98]. Many

studies have been conducted on score Level fusion, applying linear combinations,

considering mean, maximum, or minimum score from different classifiers as final

score[99][100][101], or applying probabilistic techniques [102][103]. On decision

Level, the most common fusion methodology is the majority vote, which returns a

decision based on the highest occurrence amongst the labels from all the classifiers

employed [104]. Other methodologies at decision Level comprise hierarchical and

parallel fusion modes [105][106].

2.7 Trade-offs and open challenges

The aforementioned biometric studies regarding the three focused modalities (swipe,

PIN, and ECG) present many promising performance results, hence it’s important

to highlight the trade offs and issues that emerged from the various experiments.

Such issues are common to all the related studies (see Tables 2.1, 2.2, 2.3) and

will represent the core factors of this thesis.
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2.7.1 Training data

The amount of training data required for each model is very large, especially when

using statistical models that don’t provide a subject template but need to retrain

for each new subject. This is a critical issue, considering that a poor training (in

terms of amount, quality, and variability of the data) can lead to an overfit model

unable to properly generalise. Moreover, in a realistic scenario it’s unreasonable

to ask the users to provide a large amount of training data for enrollment (this

statement can be extended to any modality), especially when the data recording

is prompted and not executed in the background.

2.7.2 Sampling time

This issue is related mostly to electrocardiogram biometrics, considering that for

PIN the sampling time is equal to the input from the subject and for swipe it de-

pends exclusively from the number of samples considered for the authentication.

In this perspective, ignoring server connections and response time, the authenti-

cation time is strictly connected to the sampling time, which means that the least

data are recorded, the faster the authentication will be. In the previous studies

this issue has been pointed out but never properly addressed. Recording times for

ECG are always very long and not fit for ceremony based user verification.

2.7.3 Ease of use

This issue is equally related to the modality itself, in terms of tasks and dedicated

softwares, and to the device in use. In case of Swipe and PIN biometrics, as

mentioned before when discussing the training data, requesting many samples to

perform authentication discourages the usage of the modality. In the case of ECG

data, this is even more demanding if the device is connected with many wires or if

it’s too big in size. The recording time needs also to be taken into consideration.

In favor of usability, the device should not be a source of discomfort and the task
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should be as quick and simple as possible (and this excludes all the experiments

comprising repeated actions or long recording time).

2.7.4 Stability

A good biometric system should maintain a steady performance, regardless of the

circumstances. Model stability should be invariant to environmental factors, to

change of devices, to time from enrollment, and to the subject itself. In a realistic

scenario, this is not possible and all these factors will affect the performance. Pre-

vious studies (see Tables 2.1, 2.2, 2.3), even when considering these issues, didn’t

always address them properly: in some cases multiple sessions or different sources

were not taken into consideration, or the enrollment was not chronologically hap-

pening strictly before the verification, or the data were lacking diversity (reducing

the generalisation power of the classifier).

2.8 Summary and research questions

In the recent years, many studies focused on mobile authentication through be-

havioural biometrics. Most of them assessed continuous authentication only, and

in many cases the enrollment time or number of samples required for authentica-

tion has not been considered (or just marginally taken into account). Considering

the literature alongside the aforementioned challenges, this research addresses and

solves the following questions:

Is it possible to obtain a steady performance on mobile biometric authentication

with behavioural (PIN and Swipe) and electrocardiogram data ? This implies a

model able to generalise and maintain a stable performance with unseen data

from new subjects even after prolonged periods of time.

Is it possible to perform authentication on a ceremony based task with just one

sample request? With this, we are considering a real life scenario reducing at the

very least the amount of time spent by the user to verify their identity, which



36

would result in a single swipe or PIN attempt and the lowest time to record a

valid ECG signal.

Can the performance be improved by combining the aforementioned modalities?

Fusion methods and multimodal biometrics provided an added level of security

and reduced authentication mismatches. In this research we are evaluating optimal

fusion methodologies to blend the modalities, taking into consideration the entity

of the data, the position in the framework and the implementation cost.

To address all these challenges, we are proposing a framework for ceremony-based

authentication, with constrained and semi-constrained tasks for Swipe and PIN

modalities and on-demand ECG recording in the background.

2.9 Proposed Framework

In this thesis we propose a framework for a ceremony-based biometric authenti-

cation with the combination of three different modalities: Swipe, PIN and ECG.

Figure 2.7 shows the general idea behind this project on a real life scenario.

Figure 2.7: Multi-modal authentication, combining the three modalities
(Swipe,Pin and ECG) in this study. The user tries to login to a service provider
(e.g. a bank account) and the server requests a multi-modal biometric authen-

tication.
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The study will first explore the modalities separately, assessing the single biometric

performance with the least possible amount of data for enrollment and verifica-

tion. We then evaluate fusion methods to blend the modalities and improve the

overall performance. We also considerate the specific order in which the different

modalities are prompted. Figure 2.8 shows the proposed framework, comprised of

all the stages. To achieve this, we divided the study in sub-phases:

- Phase 1 : Swipe authentication model assessment. Performance evaluation

of Swipe model: with verification performed on one sample.

- Phase 2 : PIN authentication model assessment. As per Phase 1, the per-

formance of the authentication model is evaluated on PIN data alone. This

modality is considered to be prompted after an hypothetical non-match from

the Swipe model.

- Phase 3 : 2 factors authentication with Swipe and PIN fusion. Evaluation

of a fusion model based on the fusion of the two modalities considering their

cascade structure.

- Phase 4 : ECG authentication model assessment. Performance of ECG au-

thentication models, considering short input signals that would be ideally

recorded in background during the Swipe and/or PIN tasks.

- Phase 5 (theoretical): 3 factors authentication with fusion models evaluated

at various points in the workflow. Due to Covid-19 and the impossibility to

conduct a data collection with paired sensors, this part of the study is entirely

theoretical, but it’s based on the results furtherly presented in this thesis,

related to both single performances of the models and fusion performance.

A series of approach finalised to fuse the three modalities are proposed for

future work.

From the following Chapter, we will start evaluating Swipe biometrics.
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Figure 2.8: All the stages of the framework. Pin and the second ECG record-
ing are prompted only after a failure from the previous modalities.



Chapter 3

Swipe biometrics

3.1 Swipe Authentication

3.1.1 Introduction and Framework

In the last years, swipe dynamics has been a recurrent topic, regarding continuous

authentication on mobile devices. The reason for this can be addressed by the

exponential growth of touch screen devices and by the fact that swipe gestures are

the most common and habituary actions performed by a subject when using such a

device. On a data perspective, there’s an obvious analogy between swipe gestures

and signature: both contains data points mapping over time on a xy plane (the

screen), with the main differences being that the signature is more constrained

and usually consists of more sample points, making it easier to generate a subject

pattern. Since swipe gestures are less constrained and can be affected by a mul-

titude of factors (environmental and interaction based, such as subject swapping

hand or interacting with the device in different conditions) [107], previous studies

have focused on continuous authentication over prolonged periods, in some cases

considering a penalty score (defined as a decaying score over repeated unusual

behaviours from the subject) [108].

39
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The aim of this particular investigation described in this chapter was to provide

verification of a query, using just one single swipe; for this purpose, we relied on

a semi-constrained scenario, with the subject only able to slide the screen on a

particular side, reducing the variability of the gesture. The steps of our framework

are the followings:

1. The user provides few samples (10) to the trained classifiers to enroll and

create their own template.

2. Data are processed and the new template is generated.

3. When the authentication request is prompted, the subject provides one single

swipe.

4. The swipe undergoes processed and compared with the template.

5. A verification result is returned.

This describes the first step of our multi modal fast verification framework, with

minimum amount of data required. The remaining pieces of the complete frame-

work will be shown in further sections.

3.1.2 Data overview

Swipe recordings are usually collected from touch screen devices, such as mobile

phones or touchpads. The recording starts when the finger presses on the screen

until it is released. The least amount of data that can be obtained are x and y

position on screen, paired with the corresponding timestamp; we will consider each

pair of x-y position points and timesteps. For each timestep, a pen down boolean

value can be assigned during the recording, to check when the swipe starts and

when it ends.

Another data pair that can be obtained is the finger pressure on screen (usually

normalised), and the finger size (usually express as pixel area or length on major
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finger axis). The last two values are particularly relevant, since they refer directly

to the subject’s body and not their general behaviour (although the values might

be misleading if the subject does not operate the device with the same finger

consistently).

Those values refers directly to the swipe itself, but there is other information that

can be stored and assessed when processing swipe data for biometric recognition.

Additional data can be obtained from accelerometer, magnetometer and gyroscope

sensors which will give information on the device state and position; it’s important

to point out that the reliability of these data is dependant on the sensor capabil-

ity and by environmental conditions (electromagnetic sources, vibrations, etc.).

Moreover, these sensors usually have different sampling frequencies, both between

themselves and the touchscreen sensor itself, and this must be accounted when

processing the data.

Other useful data are from GPS sensors, to confirm that the device is actually

where “it’s supposed to be” at the time of the authentication and not exploited

with a virtual machine. Also, the device model can be extracted, which can be

not only used as an extra security measurement but also an useful information to

draw statistics.

3.1.3 Public and Callsign datasets

Across our experimentation we used a range of swipe datasets, public and private.

We mainly focused on data provided by an industrial collaborate, Callsign, since

it will be descriptive of the real-life scenario in which the biometric authentica-

tion would be applied. In this subsection the datasets (Serwadda, Antal, Frank

and Callsign) will be described and compared, providing demographic information

when possible.

Serwadda Dataset:

This is a public database collected at Louisiana Tech University by Serwadda et
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al. [41] from 190 different subjects of different ages with one smartphone (Google

Nexus S.). The data were collected through two applications, asking the subject

multiple questions and allowing free interaction with the touch screen. Touch data

were recorded considering only one finger touch and ignoring other interactions

with multi-touch like zoom gestures. Features collected were x and y coordinates,

timestamp, pressure, and finger area. Data collection was split in two sessions

at least one day apart, the overall number of strokes per user was around 80.

Amongst the three public datasets used, the Serwadda database is the largest in

terms of number of samples and subjects.

Frank Dataset:

This database was collected by Frank et al.[40], and it is composed of swipe data

collected in two sessions (1 week apart) from 41 subjects. Data have been acquired

from several different Android devices and two applications have been developed

for the purpose. Users were free to interact with the screen. The applications

captured x and y coordinates, pressure, finger area, timestamp, device orientation

and finger orientation. It is also important to note that not all swipe directions

result in the same number of samples. For example, the Down direction contains

the most samples.

Antal Dataset:

The final public databases used, it is composed of horizontal and vertical swipe

data collected from 71 users on eight different mobile devices [45]. An application

was developed for this purpose and the strokes were task related (vertical to read

text, horizontal to choose pictures). The data was collected in one single session

with each user interacting with multiple devices. The same features of the previ-

ous databases were collected. It is important to note that the majority of swipes

in this dataset are horizontal, while the least amount is found in the Up direction.
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Callsign Dataset:

Callsign provided various sets of swipe data with a similar structure. The only

differences are the number of unique subjects and the labelling, with later dataset

containing information about device model and screen size. Our study focused on

the final dataset provided by Callsign for training and testing.

The data are stored in nested dictionary format, separated according to user IDs

and transactions; each transaction can be considered a single swipe. The recorded

features for each recorded point are: timestamp (for each recorded point), X and Y

positions on screen, Accelerometer and Gyroscope, and Major Axis of the touching

finger. The recording is performed on mobile devices on verification query as a

ceremony task . It’s a semi-constrained task, where the user is requested to perform

a horizontal swipe (either from right to left or left to right) in order to move the

rectangular screen. A guided path is not provided (like, for example, the “slide

to unlock” of Apple devices). The dataset contains 150 users of mixed ages and

genders.

3.1.4 Pre-processing

Regardless of the authentication system, all raw data went through basic pre-

processing, to provide a first level of cleaning after the capture. We used as a

reference the last Callsign dataset to define the basic criteria, and to identify the

features useful for biometric authentication.

The first step is to remove NaN (not a number) values from each row; this usually

happens when the touch sensor does not record anything due a non capturing

event, capture lag, or if there’s some other sensor (i.e., gyroscope) with a higher

sampling rate (which will add extra timesteps rows).

In our study, we decided to directly remove gyroscope and accelerometer data,as

our study wanted to asses touch information explicitly.

After clean up, we then separated individual swipes actions related to on individual

capture records. If the start and the end of each swipe sequence were not flagged,
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we considered the time difference in milliseconds between rows according to the

timestamp: if it was higher than a threshold value, we assumed that the data rows

belonged to different swipe sequences. Ideally, the value should be equal to the

inverse of the sensor sampling rate, but this could lead to errors in the case of

missed recordings; for this reason, we decided to empirically set the threshold to

50 ms.

The next step was a first removal of swipe outliers (either too short or too long

compared to the majority, in terms of data points). As suggested by previous

studies in literature [109, 110] , we removed all swipes with less than 4 data

points. For the upper bound, the decision was more complicated: we avoided

capping the length of the swipe at the mean or the max value across the length of

all the swipes in the dataset, since it would have removed half of the samples in

the first case and samples would have been retained with a large number of data

points in the second case. We decided to rely on the 95th quantile of all the swipe

lengths as a threshold for sample removal. The reason was to reject only the 5%

of outliers with the biggest gap in terms of sequence length.

Figure 3.1: Examples of rejected back-and-forth swipes from few subjects.
Different colors represent different swipe gestures. The dot indicates the begin-

ning of the swipe.

The only swipes left to reject were the ones not conforming to the requested task

for authentication, hence either vertical swipes or back-and-forth ones (see Figure

3.1). The first case (vertical swipes) was easy to reject, simply by considering
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the position variances in the two directions (X position data should vary way

more than Y position for horizontal). For the second case (back-and-fort swipes),

we developed an algorithm that could be extended to detect anomalies in any

preferred direction. We will describe the operation for the specific case of the X

direction and then extend it to the general case.

Considering a swipe S defined as a set of pairs with cardinality N, each pair de-

scribing the position on the screen at point i, defined as:

i ∈ [1, N ] : S = (x, y) ∈ R2

N = #(S)
(3.1)

Also, assuming that the swipe is developed primarily on the x direction, ignoring

y, we can calculate the maximum distance travelled on the screen d , defined as

d = max(x)−min(x).

Fixing the parameter α as a percentage value of tolerance on the travelled distance

d, we can calculate the two threshold points (t1 and t2) on the swipe than cannot

be crossed for the swipe to be accepted as follows:

t1 = min(x) + d · α

t2 = min(x) + d · (1− α)
(3.2)

Figure 3.2: Heaviside function response.
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With all those values, we can calculate the number of crossings C on the two

threshold points (considering H the Heaviside function, see Figure 3.2):

C =
N−1∑
i=1

[H(xi+1 − t1)−H(xi − t1)−] + [H(xi+1 − t2)−H(xi − t2)] (3.3)

If C > 2, the sample is rejected. We called this algorithm the shifted zero crossing.

For the general case, we need first to project the swipe on the x direction. To do

so, we need to estimate the directrix of the swipe and calculate its versor v. The

next step is to calculate the angle θ between our objective direction and the swipe

directrix, as:

θ = arccos (x · v) (3.4)

With this, we can generate the inverse of the rotation matrix R:

R =

 cos θ sin θ

− sin θ cos θ

 (3.5)

and multiply it by the swipe points to get a new swipe developed on the x direc-

tion. Then, algorithm 3.3 is applied. Figure 3.3 shows an example of the linear

transformation applied before the shifted zero crossing.

Figure 3.3: Example of Swipe projected on the x-axis before using the shifted
zero crossing. x and v are the two versors. Without the transformation, the

original swipe wouldn’t be rejected.
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For our purpose, we rejected samples with more than one crossing at a distance

from the tail major than 15% of the travelled distance (α = 0.15). This value

was heuristically determined based on visual clues (plotting the swipes) and by

comparing the improvements in performance at different chosen thresholds.

3.1.5 Feature extraction

After cleaning the database, we extracted two sets of features from each sequence

and we rearranged the swipes in two more data structures, one for the training

and testing of global feature-based algorithms and another for a recurrent neural

network architecture. The first set of features (mostly based on [38, 47]), which we

will refer to as Global Features, is representative of behavioural characteristics of

a swipe sequence on a global scale (with global we mean over the whole duration

of the recorded gesture).

These features are shown in Table 3.1.

Table 3.1: Global features extracted from swipe gestures.

Identifier Feature name Description
1 Max X Maximum value of the X-coordinate.
2 Min X Minimum value of the X-coordinate.
3 Mean X Mean value of the X-coordinate.
4 Max Y Maximum value of the Y-coordinate.
5 Min Y Minimum value of the Y-coordinate.
6 Mean Y Mean value of the Y-coordinate.
7 Max Finger Area Maximum value of the area described by the finger recorded during the swipe.
8 Travel Distance Cumulative Euclidean distance between the start and the end of the Swipe.
9 Swipe Length Number of recorded points during the swipe.
10 Global Slope Slope angle between start and end of the Swipe.
11 Cumulative Slope Sum of local slopes occurring during the Swipe.
12 Max X Velocity Maximum velocity recorded over the X-coordinate.
13 Min X Velocity Minimum velocity recorded over the X-coordinate.
14 Mean X Velocity Mean velocity recorded over the X-coordinate.
15 Max Y Velocity Maximum velocity recorded over the Y-coordinate.
16 Min Y Velocity Minimum velocity recorded over the Y-coordinate.
17 Mean Y Velocity Mean velocity recorded over the Y-coordinate.
18 Max Swipe Velocity Max velocity recorded over travelled distance.
19 Mean Swipe Velocity Mean velocity recorded over travelled distance.
20 Total Swipe Time Difference in Time between start and end of the Swipe.

21 Swipe Direction
Direction in which the swipe was performed
according to Start and End (1 if from left to right, -1 if from right to left)
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Maximum, minimum and mean values are calculated over the whole Swipe after

shifting and scaling the values based on the screen size. Travel distance is cal-

culated summing all the Euclidean distances between Delta X and Delta Y (dif-

ference between consecutive X and Y values) coordinates from first touch point

(Swipe START) and last touch point (Swipe END). Global slope was calculated

through the first derivative of Y-Coordinate with respect to the X-Coordinate

considering only the first and last touch points. Cumulative Slope was calcu-

lated summing the first derivatives of Y with respect to X for every pair of touch

points during the entire swipe movement. Min, Max and Mean Velocity of coordi-

nates and directions (for Swipe velocity) were calculated on the point-to-point first

derivative of the considered coordinate or direction respect to the delta timestamp.

Swipe direction was calculated considering the sign of the difference between start-

ing point and end point of the swipe. Max finger area (or in some cases, max major

axis value of that area) is a novel feature that was calculated as the highest value

of touch area covered by the finger recorded during the swipe; minimum value has

not been taken into consideration because it would be affected by initial or acci-

dental interactions and con-strained by screen resolution, therefore not relevant

for authentication.

The extracted 21 features corresponded to a single swipe and a single row in the

data structure that would later be fed as an input to a conventional classifier and

not a sequence based deep learning model.

Table 3.2: Raw features from swipe gestures.

Identifier Feature name Description
1 Timestamp Touch event timestamp.
2 X-position X-Coordinate values at touch point.
3 Y-position Y-Coordinate values at touch point.
4 Finger area/major axis Area (or major axis) described by the finger on the screen.
5 Pressure Pressure on screen at touch point.
6 Sequence length Number of touch points for the given swipe gesture.

The second set of features, shown in Table 3.2 referred to as Raw Features, was

saved in another three-dimensional data structure and used only for training and
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testing of a recurrent neural network. This was due to the different input require-

ments in terms of input shape.

• Timestamp is expressed in milliseconds and the first value of the sequence is

subtracted from each data entry point, so the time for each swipe will start

from 0.

• X and Y positions are the raw values of x and y coordinates for each touch

point. We also used Delta positions, this was due to the fact that the initial

position on screen can vary easily, but ultimately we concluded that it could

be a valid feature description, not only for subject behaviour but also with

respect to their physiology; Delta values could also be calculated by the deep

learning model, so it was worth maintaining original values.

• Finger area/major axis, as described before, refers to the portion of the

screen touched by the finger at each touch point.

• Pressure is a value capped to a maximum defined by the sensor, describing

the intensity of the pressure applied by the finger on the touchscreen.

• Sequence length is the original number of touch points from the start to the

end of the swipe, not considering the padding (defined as adding zero values

to complete a sequence). This is particularly useful, since the data are saved

in a structure with fixed size.

The first dimension of the structure equals to the number of rows for each swipe

gesture of the dataset ,fixed after preprocessing considering the 95th quantile of the

lengths of all swipes in the dataset. Sequences with fewer data points are padded

during the creation of the data structure, but we wanted to preserve the original

length to avoid introducing the bias of the padding in the training procedure.

As a last step of pre-processing, we normalised the two sets of features applying a

z-score normalisation to all samples. This normalisation is a suitable choice when

the data lacks globally defined boundaries, which prevent min/max scaling, but
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on the downside, it is influenced by the size of the dataset. When upper level

boundaries were available, we normalised the raw features as follows:

• x and y coordinates scaled and shifted based on the screen size and axis

origins.

• Finger area scaled by the screen area; considering H = Height of the screen

and W = Width of the screen, we divide it by H ·W .

• Major axis scaled by the diagonal D of the screen, with D =
√

(H2 +W 2)

It’s important to mention that an anonymous unique ID was assigned to each

subject in the dataset and appended as the last column of each sample provided

by the same subject. All the samples were stored chronologically in the data

structure, according to the date and time of the session when they were recorded.

3.1.6 Evaluation of previous methodologies

Before introducing new deep learning architectures, we evaluated previous models

for swipe authentication with some exclusion criteria based on existing publica-

tions, project scope and data structure. At the beginning of this project, other

studies had been published analysing the issue of the number of swipes required

for authentication [45] or the impact of certain soft biometrics on classification

performance [46]. Nevertheless, in many cases the validity of the studies was bi-

ased by the databases and their recording procedures. Moreover, the performance

of models like k-nearest neighbours (K-NN) is proportional to the size of the train-

ing dataset and how well they represent the database population. In a realistic

scenario, these kinds of models would require continuous retraining for each new

subject with no guarantee of improvement in performance.

For those reasons, K-NN was excluded from evaluation alongside one-class classi-

fiers. Even if one-class models may seem to be the best option in a verification

task, since they only rely on genuine samples for training, in reality they only
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perform well as “cleaning” classifiers, removing outliers from an existing database

or during a verification query if the subject provided a very unusual sample. The

drawback is that the hyperplane describing the new feature space can be very

descriptive of user behaviours but has no cost function that constrain it to be de-

scriptive only to the genuine user, resulting in features common for a vast majority

of the user population which would facilitate impostor attacks.

As an analogy, we could consider a one-class classifier for pictures of cats: it would

most likely reject different species, but would probably misclassify other felines.

We also rejected expensive models, in terms of memory and execution time: very

large models with a huge number of parameters that are computationally slow

such as dynamic time warping (DTW) were excluded. The aim of the project is

to provide fast authentication on mobile and wearable devices, which with these

models could not be possible.

Considering all the exclusion criteria above, we ran a relatively small evaluation on

classical methodologies. This because we used them just as a baseline for compar-

ison with our proposed methodology. In the next section, we will describe in detail

the two deep learning models constructed and evaluated for swipe authentication.

3.1.7 LSTM and GFNN architectures

3.1.7.1 Introduction

As opposed to the previous methodologies, and most deep learning models that

directly perform a classification, returning a score ranging between 0 and 1 for

binary classification (in case of sigmoid output) or a score distributions for the

classes (in case of softmax), our aim was to train a model able to generate embed-

dings for an input swipe sequence in a Euclidean hyperplane. Classification would

then be performed evaluating the Euclidean distance between a genuine subject

embedding pattern from a previous enrolment and new embeddings from a query.

Success or failure of authentication are determined by a threshold.
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We developed two architectures: a light weight architecture focused to compute

deep features starting from extracted features, the Global Feature Neural Network

(GFNN), and a second architecture based on a Long Short Term Memory layer

(LSTM) that would receive as an input a whole time-sequence and return the em-

beddings. Before describing the architectures of each model, we will provide basic

knowledge on layers, cost functions, optimisers and back propagation, focusing on

the specific elements used for our networks. These concepts are more extensively

explained in [111, 112].

3.1.7.2 Neural networks

The simplest form of a neural network is comprised by an input layer, a hidden

layer, and an output layer. Each layer is comprised of one or more nodes, or

perceptrons, connected to the previous and following layer. A single perceptron,

takes an input vector and applies to it a linear transformation with weights and

bias.

The results pass through an activation function which will return an output based

on a threshold; the output can have upper and/or lower boundaries depending on

the activation function 3.6.

u =
N∑
i

wi × xi + b0

y = f(u)

(3.6)

With f = activation function, w = trainable weights and x = input vector.

The activation function is also the source of non-linearity in the layer, with several

being able to be implemented. We will describe just two that are relevant to our

study: the sigmoid (equation 3.7) and the rectified linear unit (ReLU, equation

3.8). Figure 3.4 shows the responses of these functions.

σ(x) =
1

(1 + e−x)
(3.7)

ReLU(x) = max(0, x) (3.8)
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(a) Sigmoid (b) ReLU

Figure 3.4: Activation functions. Sigmoid (A) and ReLU (B)

The weights of the neural network are updated during the training phase through

linear regression, layer by layer. The error is calculated starting from the output

layer and computed using a cost function. Depending on the output of the last

layer and the desired task, specific cost functions are implemented. For example,

in case of a single sigmoid output on the last layer for a binary classification

problem, binary cross-entropy loss (BCE) is used (in case of a multiclass output

with a softmax, normal cross entropy is implemented) 3.9.

BCE(p) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.9)

With N being the number of samples, yi the ground truth for the i-th point and

p(yi) the predicted score for the i-th point.

In our case, with the goal of training the network to cluster the data, we imple-

mented another cost function, the triplet margin loss, described in detail in the

next chapters.

The aim of training is to minimise the error, therefore the cost function, at the

last layer of the architecture and update the weights and bias accordingly. To do

so, there are various algorithms called optimisers. The most common is gradient

descent, which simply computes the first-order derivatives of the cost function and
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back propagates 3.10.

wit+1 = wit − α
δE(x)

δwit

bit+1 = bit − α
δE(x)

δbit

(3.10)

with it = training iteration. The disadvantages are the high computational cost

and the risk to reach local minima or no convergence. There are many other options

to solve this issue [113], but we will cover a specific one that we implemented in

all our models: the Adaptive momentum (ADAM).

This optimiser adapts the learning rate over the training for each parameter, by

storing an exponentially decaying average of past momentum and square momen-

tum of the gradients. Considering mt and vt the first and second moment of the

gradients at iteration it, are calculated as follows:

mit = β1mit−1 + (1− β1)git

vit = β2vit−1 + (1− β2)g2it
(3.11)

The weights w are updated following this rule:

wit+1 = wit −
η

√
vit + ε

mit (3.12)

With β1, β2 and ε as hyperparameters of the optimiser conventionally initialised

at 0.9 , 0.999 and 10-8 respectively.

3.1.7.3 Proposed architectures

The GFNN is a very simple feed forward model [114] with two fully connected lay-

ers, a dropout layer, a L2 normalisation layer and the triplet margin loss function.

The LSTM network is comprised of a LSTM layer followed by a fully connected,

a dropout layer, a L2 normalisation and again the triplet margin loss function.

The LSTM [115][116] is a particular kind of recurrent cell that solves the issue

of classic RNN networks: while both relies on hidden states from the previous

iteration that contributes in the dependency of the time sequence, the LSTM
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cell contains more gates that help manage the long-term dependencies, without

overfitting on the single sequence through the forget gates (Figure 3.5).

Figure 3.5: LSTM cell diagram, describing the various gates and input-output
connections.

The LSTM cell consists of three gates (forget gate ft, input gate it and output gate

ot), the cell state Ct and the cell output ht, defined as follows:

ft = σ(Wf × [ht−1, xt] + bf )

it = σ(Wi × [ht−1, xt] + bi)

Ĉt = tanh (Wc × [ht−1, xt] + bc)

Ct = ft · Ct−1 + it · Ĉt

ot = σ(Wo × [ht−1, xt] + bo)

ht = ot · tanh (Ct)

(3.13)

Considering xt the input sequence at timestep t.

Both models are very small because we wanted to achieve our goal with the least

number of trainable parameters, making it possible to upload the model on any

mobile device. In the case of the GFNN we relied mostly on the importance of

the extracted features, therefore we didn’t add many more layers which would be

either redundant or generating overfitting. In the case of the LSTM, other studies
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stack multiple recurrent layers to increase the complexity of the extracted features,

but this has several flaws: LSTM layers are very slow to train and very memory

expensive. The advantages of such layers decrease exponentially with the depth

of the network, best performing in the proximity of the original sequence (in some

cases, stacking more than three LSTMs worsen the performance) [117].

For both networks, we had a set of hyperparameters that we changed time by time

until an optimal one was found:

• Model Depth : The depth is defined as the number of multiple non-linear

layers between input and output. Each layer can have multiple nodes (or

filters). Pooling and dropout layers are usually associated with convolutional

or fully connected layers as a single block.

• Number of filters : The number of nodes or filters of the layers (not nec-

essarily the same number for each layer). In the case of convolutional layers,

kernel must also be defined by other hyperparameters, such as width, length,

stride and padding.

• Learning rate : this defines the rate of the weight update with respect to

the gradient during back propagation. It is a decaying value to avoid large

oscillations at the end of the training that would prevent smooth conver-

gence.

• Batch size : The number of samples per iteration fed to the network during

training. When all the samples in the training set are evaluated, an Epoch

is passed (Iterations per Epoch = Number of samples in training set / Batch

size)

• Epochs : Number of Epochs to run during the training.

• Normalisation : Flag value for data normalisation.

• Output dimension : the number of embeddings returned from the last

layer.
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To find optimal hyperparameters, it was used a trial-and-error methodology, vary-

ing one parameter at the time and exploring the effects on the model. The method-

ology can be compared to a manually executed grid search. The selection of the

Number of filters was always connected to the Output dimension, being a pseudo-

average between Input and Output dimension.

In terms of input/output, the GFNN took as input a tensor of shape GFNN Input shape

= (batchc size,Number of features) and returned an embedding vector of shape

GFNN Output shape = (batch size, Number of embeddings). The LSTM network

took as input a tensor of shape LSTM Input shape = (timesteps,batch size, Num-

ber of features) and returned another embedding vector of shape LSTM Output shape

= (batch size, Number of embeddings).

It’s important to mention that the LSTM layer evaluates the whole input sequence

regardless of padding, which propagates error during the training. For this reason,

during the pre-processing we stored the original length of the swipe sequence and

we implemented it as an extra parameter in the LSTM cell to pick the output

from the real endpoint and pass it to the fully connected layer.

The two implementations utilised Python’s TensorFlow library [118], but we used

customised iterator and loss functions to perform the training due to the complex-

ity of the task. The core of the model was in fact the clustering of the classes to

generate the embeddings, performed by the triplet loss.

3.1.7.4 Triplet loss and embedding space

There are several ways to generate embeddings from data depending on the in-

formation that the new features must contain, and their purpose. In the case of

clustering a virtually infinite number of classes, we need to project our data to a

hyperspace that at the same time groups data of the same class and separates them

from the others, maximising the distance. This is something not only inherent of

the architecture itself, but mostly computed by the cost function.
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One option could be a Siamese network [119], as it’s generally defined as follows:

the same basic architecture (tower) is duplicated. At the bottom, the two towers

blend their outputs in a merging layer. The model receives pairs of data and

the cost function is a contrastive loss (equation 3.14) that tries to minimise the

distance between pairs from the same class and maximises it for data from different

classes.

Contrastive Loss(f1, f2,m) = y · d(f1, f2) + (1− y) ·max(m− d(f1, f2), 0)2

y =

1, if C2 = C1

0, if C1 6= C2

(3.14)

With m = margin.

During the backpropagation, the weights of the towers are updated simultaneously.

Once trained, the model can perform authentication directly by feeding enrolment

data and query data as pair of inputs. The drawback of this methodology is

that a Siamese network is very hard to train, generating pairs needs some extra

preprocessing and it increases the size of the database (O2) without adding any

variance.

Random weights initialisation could also lead to early convergence to local mini-

mum resulting in a random classifier. For those reasons we instead used a single

tower network with triplet margin loss [120] defined as follows in equation 3.15:

Triplet Loss(fa, fp, fnm) = max(‖fa − fp‖2 − ‖fa − fn‖2 +m, 0) (3.15)

with m = margin, f = embedding features.

The idea is again to maximise the distance between the same classes and different

classes with respect to a margin, with the added value to check that the distance

between anchor and positive should always be smaller than the distance between

anchor and negative (see Figure 3.6).
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This implementation also has the advantage that it only requires a one-dimensional

set of labels and no pair creation, since distances and triplet mining will only be

performed at the bottom of the model, once all the embeddings are created. It

solves the problem of enlarging the input datasets, but the dimensionality of the

output increases. The Tensorflow library provides an implementation of triplet

loss called triplet semihard loss, which mines for semihard triplets in every batch

to speed up the training phase.

Figure 3.6: Visual representation of the idea behind the triplet loss for data
clustering.

With the goal to improve the model at the cost of longer training time (and the

risk of not converging), we decided to use a custom version of triplet loss with two

small adjustments: we selected the hard triplets, evaluated on pairwise distances

of the embeddings in the batch. Moreover, instead of considering just the anchor-

positive and anchor-negative distances, we also introduced in the algorithm the

positive-negative distances.

This last distance would have been set instead of the anchor-negative if smaller,

avoiding loss of information given by the step function and better clustering of the

classes

Other issues to be wary of when implementing triplet loss are the number of

different classes in the database, the distribution of samples per class and therefore

the batch size. With a large number of unique classes, it’s not possible to use the

built-in iterator of TensorFlow: in most of the cases there would not be enough

sample per class and in the worst-case scenario a batch could have one sample per

class, making it impossible to evaluate the loss and therefore resulting in a system

crash, or an array of NaN values and exploding gradients.



60

The issue was solved by fixing the minimum number of samples per class on a

single batch, meaning that not every class from the database appeared at each

iteration (constrained by batch size). The class index was randomised at every

epoch, and at each iteration we overlapped a percentage of the previous classes

with the new classes to avoid overfitting on subclusters of classes. We also had

to increase the number of epochs, since this iteration system not only slowed the

training process, but also had some data loss caused by the randomisation process,

and sometimes not all the available samples were loaded.

The training steps with the custom randomiser are summarised as follows:

� Step 1: a dictionary with indexes of the samples according to class ID is

generated, alongside of a list of unique classes.

� Step 2: At the beginning of each epoch, the class list is shuffled randomly.

� Step 3: From the class list, N classes = Batch size
N samples per class

are selected. This

will iterate at each loop until all the classes in the list have been selected.

From one iteration to another, it will move by a fixed number (Stride)

� Step 3: random sample N samples per class for each class in N classes and

append to the batch.

� Step 4: train the model on the current batch.

� Step 5: update the weights with gradient clipping to avoid large values.

� Step 6: repeat from Step 2 for the selected number of epochs.

Once the training is complete, the testing is performed on unseen subjects from

the same database through a verification task. For each subject, a fixed number

N of swipes are used for enrolment and fed to the trained model to generate the

user template.
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Considering Xi
s the i-th enrolment swipe of a subject s and M our embedding

model, the template Ts for the subject is calculated as it follows:

T s =
1

N

N∑
i=1

M(Xs
i ) (3.16)

Following this process, random samples from the same user class and different

classes in the testing set are presented to the model and the Euclidean distances

between the verification embeddings and the user templates are calculated. If

the distance is lower than a set threshold, the verification response is positive,

otherwise it is negative. The threshold is calculated through evaluating false match

(positive) rate (FPR) and false non-match (negative) rate (FNR) and selecting

the threshold that would give the least combined error (equal error rate) or, from

another point of view, the threshold that would maximise the area under the curve

(AUC) in the related receiver operator curve (ROC).

The dissimilarity score is calculated through a Euclidean distance for two main rea-

sons: the loss function of the model also uses the Euclidean distance as a distance

metric when evaluating the triplets. Utilising another distance would give biased

results that could not relate to the training process. Moreover, considering also

the last normalising layer, the Euclidean distance can return values constrained

between 0 and 2, making it easier to understand the results in the embedding

space (or in a reduced space for visual representation).

The embedding space Sc is the multidimension hypersphere of extracted features

from the deep learning model. It’s a subspace of Rod with od = output dimension

of codimension c = od− 1 and is defined as follows:

Sc = {x ∈ Rod : ‖x‖ = 1} (3.17)

This reduction is due to the L2 normalisation layer, and implies (as can be de-

ducted from the equation) that the maximum possible absolute value of a pro-

jected point is 1, while in the od -dimensional Euclidean space that value would be
√
od for the corresponding vertexes. This means that the reduction to the sphere
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does not just imply a loss of a dimension itself but also a different perspective

when evaluating optimal centres for clusters. Using the entire space instead of the

reduced space would increase the maximum distance between clusters, allowing

different classes to spread wider and ensuring a slower decay of the authentication

threshold with the increase of unique classes.

The reason for choosing an apparently worse feature space is model-related: con-

straining the output values improves the gradient calculations and backpropaga-

tion, avoiding large numbers or an imbalance between features. During the calcu-

lation of the distance and the score, we did not observe large differences between

values, which would be good with a small dataset but would affect the distribution

on a larger dataset, resulting in outliers and producing oscillating thresholds.

To observe the spread of the data in the clusters and the positions of the centroids,

batches of data have been projected on a reduced space for visual representation.

For this purpose, we used Principal Component Analysis (PCA) to reduce the

dimensionality of the embedding vector and obtain the first three principal com-

ponents according to the variance of the subset of data. The PCA algorithm

calculates the principal components applying a linear transformation to the input

data (in our case, the embeddings) considering the Eigenvalues of the covariance

matrix of the data and rank ordering them from largest to smallest.

For a n-dimensional dataset with m elements (rows), the covariance matrix will be

a n×n symmetric matrix, with the diagonal equal to variances for each dimension.

The concept of PCA is to transform a dataset so that the new features will max-

imise the variance between data and minimise the correlation between dimensions.

In this way the new components will be ideally independent between each others

(in reality, the dependency will be minimal). It’s important to point out that this

is a statistical method and is heavily affected by the size of the dataset and by

data normalisation.

In our case, we selected the first three principal components of batches of embed-

dings (the PCA was trained on a training batch and applied both to the last batch

of the training set and to the sample embed-dings of the test set) to be projected in
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a three-dimensional space. Different classes have been assigned different colours.

In case of the test set, the template of the subject has been represented as a small

diamond with black corners to highlight it in the cluster cloud. Ideally it should

appear near the centroid of the cluster.

In the following section, results are presented alongside figures of projected em-

beddings in the reduced features space.

3.1.8 Results and comparisons

Several experiments were conducted to train the two deep learning models, vary-

ing parameters such as margin, number of training epochs, train and testing set

percentages, hidden and output dimensions, and normalisation. We could not

apply a grid search due to the large amount of memory usage by the Tensorflow li-

brary, hence we run each experiment with different parametrisation by itself (more

than once for repeatability). Both models were very slow to train (especially the

LSTM network due to the recurrent layers), and to reach the flattening of loss,

approximately 900 epochs were required.

In each case of the LSTM network, the model was trained and tested removing a

subset of raw features from the training set, to explore if any of them were more

impactful with respect to the others. We noticed a consistent change in accuracy

when excluding the major axis/finger area features; this was expected, since it’s

the only feature directly connected to a physical trait of the subject and by itself

it’s more unique and less changing over time.

The testing was conducted on a percentage of the whole dataset (the test set)

with unseen subjects. For each unique subject, 10 consecutive swipes were used

to generate the user template. Then, 300 verification attempts were evaluated

between remaining samples from the genuine user and random samples from the

remaining users in the testing set considered impostor attempts. For genuine

verification, we used only samples collected after the enrolment samples, to avoid

feeding data from the past to the model. As described above, the Euclidean
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distance was calculated between the new embeddings of the query and the user

template. We calculated the optimal threshold and the related equal error rate

for all the scores from the verification attempts.

Figure 3.7: Projection of the three principal components of the swipes’ em-
beddings for four different subjects. Points of same colors are samples belonging

to the same subject.

The initial tests were run on a very small subset of the Callsign database (36

subject for training of the network and 4 unseen subjects for testing), to debug the

code and to analyse the performance of the triplet loss on an easy clustering task.

Whilst the results were not relevant, this process provided a better visualisation

of how the clusters were displayed (see Figure 3.7). The final tests with optimised

hyperparameters were run on the entire CallSign dataset and on the public dataset,

splitting train and test set as 90% and 10% respectively to the total number of

subjects. The hyperparameters are listed for Callsign dataset (Table 3.4) and

Serwadda Dataset 3.3 for both architectures. In the case of Serwadda dataset, we
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used a reduced number of subjects for training and testing, due to memory issues.

In Table 3.5 are shown the results for both datasets in terms of equal error rate.

Table 3.3: Models hyperparameters for Serwadda dataset.

LSTM GFNN
Input dimension 5 21
Hidden dimension 64 64
Output dimension 128 128
Batch size 128 128
Epochs 100 100
# Subject in training set 90 90
# Unseen users in test set 10 10
Normalisation Z-score Z-score
Margin 1.0 1.0

Table 3.4: Models hyperparameters for Callsign dataset.

LSTM GFNN
Input dimension 5 21
Hidden dimension 64 64
Output dimension 128 128
Batch size 256 256
Epochs 900 1000
# Subject in training set 148 148
# Unseen users in test set 14 14
Normalisation Z-score Z-score
Margin 1.0 1.0

Table 3.5: Equal error rate for LSTM and GFNN models evaluated on Ser-
wadda and Callsign dataset

EER [%]
LSTM GFNN

Serwadda Dataset 25.6 22.4
Callsign Dataset 12.9 15.0

In Figure 3.8, it can be seen the clustering for the final batch in the training set,

after applying PCA for dimensionality reduction.

The classification error for both models is relatively high, but it’s important to

consider the context: this evaluation considers a single swipe authentication, not

a continuous authentication or an average over several samples. It is reasonable

to expect an overlapping in the behaviours between subjects or inter sample in-

consistency over time. It’s also important to note that these results are provided
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Figure 3.8: 3-D projections of the first three principal components of the
swipes embeddings in the last batch of training.

Figure 3.9: Common dataset issues
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from a very light model using a single modality. Having a multimodal system or

other features could improve the results, but this will be covered in Chapter 4.

Nevertheless, a 13% error on verification for a single swipe model makes it com-

petitive with the state of the art; results are better compared to studies relying

on single swipe authentication [40], in addition the proposed model doesn’t need

retraining on new subjects. The fact that it performed better than GFNN means

that the LSTM layer was able to extract more relevant features compared to the

pre-processed features for the feed forward network.

Regarding the huge difference in performance between the production database

from Callsign and the publicly available dataset collected by Serwadda et al., the

most likely explanation is that the models work better on a semi-constrained task.

Subjects from Callsign were inherently more consistent with themselves and pro-

vided better samples, not only in terms of behavioural data but also in terms

of swipes quality. Pre-processing procedures and normalisation were consistently

applied across both datasets and a search for best hyperparameters has been con-

ducted separately for each.

Figure 3.9 highlights the common dataset related issues that can affect model

performance. Most of these issues have been addressed in this chapter, except for

the quality which will be the focus of section 3.2 .
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3.2 Swipe quality

3.2.1 Introduction to Biometric quality

Quality is a term with different meanings depending on the context. It is not easy

to define; in a very shallow way, quality is a metric that defines the inherently

goodness of an entity. To better define the metric, it’s necessary to understand

what makes something good and from what perspective. ”Goodness” itself is very

subjective.

From this initial statement, quality would be a metric impossible to define or

generalise, since we would need to know the ground truth of goodness to establish

parameters and metrics, but to do so we need first to assign those labels based on

observer’s decisions. It’s a vicious circle. The way to solve this issue is to adopt a

definition of quality that only describes the correlation between the metric itself

and the effect, without the in-between process.

In this study we will refer to the NIST definition of biometric quality [121], in

which quality is defined as:

‘A sample should be of good quality if it is suitable for automated matching. [. . . ]

A quality measure could be tuned to predict the performance of one matcher or the

more difficult case of one that generalizes to other matchers or classes of match-

ers.’

By this definition, the quality of a sample should give information on the predictive

performance of one or more models, despite their specific implementation; a good

sample will be suited for the specific classification task and will not result in an

outlier on a decision scale. For those reasons, quality estimation is a key study

in biometrics, allowing optimisation and improvement of existing authentication

systems by giving a prediction on the model performance based on the goodness

of the sample or the user.
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The previous definition covers what makes samples of good quality, but leaves

open to interpretations the why. For the same reason, a general rule or metric

system or range for the quality measure is not specified. For a small number of

specific modalities there exists a standard protocol with quality ranges, based on

specific features.

One example is face image quality: the ground truth is still defined by the observer

on a subjective decision. The observer defined a range of global quality features

that can be extracted from every image (blurriness, distortion, resolution, entropy,

etc.) from which a quality score is generated. The testing steps evaluate the

correlation between the quality score and the ground truth, and furthermore the

quality with the model(s) performance.

Those criteria cannot be applied for behavioural biometrics, since there is no

standardisation nor regulation to estimate the quality of behavioural data such as

a keystroke or swipe sequence.

The following section will describe related studies and how their approach can be

relevant for quality on behavioural biometrics.

3.2.2 Related works

Over the past years, biometric quality has been a topic of interest for many research

groups and has seen its definition changed multiple times. Most studies were

focused on image quality for fingerprint, iris and face recognition; quality was

assessed in terms of extractability of features or suitability of the sample or even

as an estimation of degrading factors known to affect the classification.

In 2014 Bharadwaj et al. [122] reviewed the methodologies for quality assessment

and explored factors that could affect quality for different modalities. Regard-

ing fingerprint quality assessment, in 2005 NIST released the “Fingerprint Image

Quality (NFIQ) Compliance Test” [123]. More recently, in 2016, Yao et al. pub-

lished a review of quality assessments for fingerprints [124].
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Regarding the face, different studies assessed quality for face images consider-

ing different kinds of approaches and issues. Corsetti et al. [125] investigated how

accessibility influences the quality of the captured image and therefore the authen-

tication process, revealing how users with accessibility issues struggle in providing

good samples compared to control population.

Chen et al. [126] proposed a flexible ranking method to evaluate the quality

of face images depending on the dataset and the authentication system in use,

allowing to select the best performing images during the authentication process

(when more than one is provided, for example in a video recording).

Hernandez-Ortega et al. [127] developed a quality assessment approach for face

recognition based on deep learning (FaceQnet) for face recognition purposes; the

model would assess the suitability based on the image itself, without prior ex-

traction of image features. The training process of the model followed the same

framework previously described and even in that case they used ground truth for

quality assessment provided by ICAO compliance level. Very recently, NIST has

released the “Face Image Quality Assessment” on the Ongoing Face Recognition

Vendor Test (FRVT) [128].

Despite the common interest to develop a solid and consistent quality score for

each modality, few studies have been conducted on behavioural biometrics, except

for signature recognition. A big issue is the absence of ground truth when it comes

to behavioural biometrics (such as swipe or keystroke dynamics). Manual labelling

is also not possible in these cases due to lack of understanding, unlike in the case

of pictures where visual samples are provided.

A number of studies have explored the impact of quality in signatures trying to find

metrics or predictors to estimate sample quality and correlate to the classification

performance.

Müller et al. [129] described the a priori and a posteriori approaches to evaluate

quality on handwritten signatures, identifying specific quality features descriptive

of signature stability; Galbally et al. [130] applied the Sigma Longnormal model as
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a quality estimator for handwritten signature, while Sae Bae et al. [131] proposed

a quality metric for online signatures that measures the separation between intra-

user and inter-users distributions.

Considering the existing issues with quality for behavioural data, the approach of

Sae Bae et al. [131] seemed the best to fit the case of swipe biometrics for both

sample and user quality.

3.2.3 User quality and Sample quality

Before describing the methodology used to estimate the quality for swipe data, a

differentiation between sample and user quality must be done. With respect to

a single sample, which could be of bad quality for a multitude of reasons (envi-

ronmental or otherwise), the user provides a more systematic behaviour when it

comes to quality and therefore to verification outcome; moreover, the evaluation

of user quality is never estimated on just one pulled request to the system and

even the a posteriori methodologies consider the percentages of false match and

non-match for a single user, which implies a list of queries and comparison with

the rest of the population.

In particular, the first classes of the biometric zoo [132] describe the ability of

certain subjects to easily impersonate others or to be often unable to authenticate

themselves regardless of the biometric authentication system used. At this stage,

where the classification is executed on behalf of a system performance, quality

features and metrics are not defined yet, but everything points towards two aspects:

the variance within a subject, and the variance between subjects and the rest of

the population.

A ”goat”, hereby defined as a subject unlikely to pass a verification test, hence

having high false non-match rate, will probably be very inconsistent with them-

selves; this high variance will reflect both with the enrolment and the template

matching on query.
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Similarly for a ”lamb”, a subject easily to be impersonated and that increases the

false match rates of the system, the major cause of errors is due to the resemblance

of the user with others in the population; the samples provided and their features

won’t be discriminative enough to increase the uniqueness of the subject, which

can be seen as a very low variance between subject and population.

For sample quality, the same assumptions can be applied, but from a slightly

different perspective. We are not considering anymore a constant good or bad

behaviour from a subject when recording data, but the single capture itself; to

be more precise, a ”high quality user” may happen to occasionally provide a very

bad sample and a ”low quality user”, as opposite, could provide sometimes a very

good sample.

The reasons for this could be an accidental capture, hardware issues or delayed/pro-

longed action. In this context, the variability between the single swipe and the

average swipes from the observed population can still be comparable with the pre-

vious example of variance between subjects; but in the case of sample quality, the

variance within a single person sample is more like a measure of stability of the

swipe gesture.

For this reason, it is necessary to extract a few features that define the swipe as

an operation and not as a discriminant for an individual behaviours. They need

to be descriptive of local changes and address software or hardware issues while

still being screen independent, device invariant and position independent.

The following section will describe the features and metrics used to estimate both

sample and subject quality for swipe biometrics, along with the experimental

protocol for the various datasets used in this study.
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3.2.4 Quality metrics and experimental protocol

3.2.4.1 User template quality

User quality has been estimated considering the enrolment template and the re-

lated extracted features. Being a value descriptive of the subject, it also depends

on the authentication model used and therefore by the extracted features used by

the model for enrolment and verification.

In the case of the LSTM model, the embedding has been used to calculate the

score. For the GFNN and classical machine learning models, the input feature

vector was used. Both feature vectors (input vector for GFNN and embedding

from LSTM) were discussed in sections 3.1.5 and 3.1.7.4

Considering F the number of features (or embedding dimension) extracted from

the swipes in the considered dataset, Ni the number of enrolment samples for the

i-th subject in the database, and S the total number of samples in the database,

the quality score for subject i was calculated with the following algorithm based

on a study by Sae-Bal et al.[131]:

Qi =
1

F

F∑
f=1

‖µl,f − µg,f‖√
σ2
l,f+σ

2
g,f

2

(3.18)

With µl,f , µg,f , σl,f , σg,f being the mean and standard deviation of feature f for

the enrolment set (local) and the whole dataset (global). We will refer again as

local and global in swipe quality for the single sample and the whole population

estimator respectively.

If the data were previously z-score normalised, the quality score would be en-

tirely determined by the subject’s enrolment samples since the global mean for

each feature would be equal to 0 and the global standard deviation equal to 1.

For each subjects in the considered dataset, a single quality score is evaluated

and the corresponding EER is obtained with the selected classifier for biometric

authentication.
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3.2.4.2 Sample quality

Compared to user quality and referring to the previous assumptions regarding

the quality feature of a swipe sample, further pre-processing was required before

calculating the quality score. In Table 3.6 the extracted features have been listed,

six derivatives and two physiological:

Table 3.6: Extracted features for sample quality.

Identifier Feature name Description
1 P2P X Velocity Instant velocity on x-axis.
2 P2P Y Velocity Instant velocity on y-axis.
3 P2P Swipe Velocity Instant velocity on distance travelled.
4 P2P X Acceleration Instant acceleration on x-axis.
5 P2P Y Acceleration Instant acceleration on y-axis.
6 P2P Swipe Acceleration Instant acceleration on distance travelled.
7 Pressure Finger pressure value during the swipe gesture.
8 Finger Area Area (or major axis) described by the finger.

The first and second derivative features describe the trend along the swipe without

screen size dependency (on a certain extent); such features are similar to the

derivative features considered for biometric authentication (see Table 3.1), with

the difference that it’s been considered the instant derivative for sample stability.

Ideally, a good sample would mantain stability with no major changes as it was

previously mentioned.

Pressure and finger area are also useful to detect accidental touch over the swipe

or uncommon interactions that would affect the recording. In addition, from a

user quality point of view, these two physiological features are good candidates

as they are expected not to considerably vary in case of a consistent user (high

quality).

Local mean and variance are computed for each feature across the sample record-

ing, while global mean (eq.3.19) and variance (eq. 3.20) are computed over the

means in the dataset as follows:

µg,f =
1

S

S∑
i=1

µil,f (3.19)
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σg,f =

√∑S
i=1(µ

i
l,f − µg,f )2

S − 1
(3.20)

The quality score is assigned at a given sample following eq. 3.18 taking into

account these new global mean and global variance features.

It’s important to note that the quality score used in this study has no upper bound

and, as previously stated, there is no ground truth for quality. Therefore, to define

quality ranges and a suitable threshold, two methodologies are proposed: K-means

and quantile normalisation.

One approach is to use the K-means algorithm [133] with K as the number of

quality ranges set to 3 (low, medium and high) to cluster the data in an unsuper-

vised mode. The algorithm considers only the score distributions for samples and

users without further information provided. Once the centroids and the thresholds

have been obtained, the mean and the variance of the EER (or similarity score for

sample quality) are computed for every range and subsequently compared. This

approach works well when considering a large number of points, however when

data points are sparse, the estimation of the cluster means was mostly random

and not reliable.

The second proposed solution was a max score normalisation with fixed thresholds

at 0.33 and 0.66 and outliers removal. A standard scaler was not a good option as it

would result in negative values without solving the issue of the missing constraints,

and a normal min-max or max scaler would be biased by the presence of outliers.

With the proposed approach, data were normalised based not on the maximum

value of the quality scores in the dataset, but on the 95th quantile (considering

5% of the samples as outliers). This methodology works well with small datasets

containing outliers, but the downside is that it also imposes an equal width for all

the quality ranges (which might not necessarily be the real case).
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This method is still a valid option when the K-means algorithm cannot be applied

and consistently highlights the correlation between quality and classifier perfor-

mance.

3.2.4.3 Protocols

For the Callsign dataset, the GFNN and LSTM models were used to provide

authentication performance records, while for the public datasets a state of the art

model was selected (the fusion model comprised of a SVM and a GMM proposed

by Fierrez et al. [47]). Protocols for the various datasets are similar, the main

difference is that for the Callsign dataset, as the data provided were task related

and not split in multiple supervised sessions, we only produced a single output

of data for sample and user quality. For the public datasets, we explored the

correlation within and between sessions and considered the directions of the swipes

separately.

For user template quality we first estimated the quality scores on the extracted

features used by the models; for the Callsign dataset we used the features for the

GFNN as described in Table 3.1 whilst for the public datasets we calculated the

quality score of each subject based on the extracted features used with the State of

the Art model previously described. Such features are distributed in two vectors

of 28 and 5 dimensions each, according to [47]. The first 28 extracted features are

representative of the state-of-the-art swipe biometric recognition:

- mean, standard deviation, first quartile, second quartile and third quartile of

velocity, acceleration, pressure and finger area.

- x and y coordinates of extreme points in the stroke.

- Distance between start and end of the stroke.

- Stroke duration.

- Distance traveled.
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The last 5 features were proposed for on-line signature verification. These features

are selected from a larger set of 100 features as explained in [47]:

- θ (finger down to finger up)

- σax (std of the acceleration in x)

- (xmax − xmin)/xmaxrange

- (x− xmin)/x

- (ymax − ymin)/ymaxrange

From the second set, the last four features are considered for vertical strokes. In

the case of horizontal strokes, x and y are alternated in the formulas.

A quality score is calculated from the extracted features using equation 3.18, but

instead of considering a small subset of impostors, we calculated the global mean

µg and standard deviation σg from all users and samples in the database with

respect to each task and only on the first session, if there was more than one.

µl and σl are calculated for each feature over the enrollment samples of the i-th

subject.

The enrollment samples of each user are also included in the computation of the

global mean and variance, to avoid them being automatically considered outliers

from the population and, as a consequence, having a higher quality score than

expected.

In the case of the public datasets, for each subject a single quality score is evaluated

for each direction (meaning that the same user could provide higher quality data

for specific tasks) and the corresponding EER is obtained with the classifier for

both inter and intra sessions.

The quality score evaluation was performed for each subject during the training

phase of the classifier, using only the enrollment samples. Quantile normalisation

or K-means were used depending on the number of testing subjects.
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For the public datasets, after calculating the quality score for each subject the

evaluation was repeated three more times, varying the number of enrollment sam-

ples for each user (5 , 15 and 20 samples from genuine, and equal numbers from

imposter samples) and comparing the mean EERs for the different quality groups

for each enrollment size.

Regarding Sample quality, the scores are calculated for all the samples in the

testing set using the extracted features from Table 3.6 and according to equations

3.19 and 3.20.

Instead of the EER, for each sample used during the testing phase a similarity

score is stored and only genuine samples are considered. The reason is that the

same genuine sample could be an impostor if compared to the profile of another

subject during the evaluation, but it would still maintain the same quality score.

Thus, in this case it is better to just consider the correlation between quality and

similarity score for genuine samples.

The K-means algorithm is then applied to find quality thresholds on genuine sam-

ples considering the corresponding similarity score. Mean and variance of the

similarity scores for the samples in the three quality ranges are calculated, ex-

pecting a correlation between quality and classifier performance (similarity score

should be higher for high quality samples).

All the experiments on the Callsign dataset were run on Python. For the public

datasets, MatLab r2018 was used for model compatibility.

This decision did not impact the outcome of the research and did not provide a

bias for the results either; instead, it explains the cosmetic differences in visual

representations of the results.

3.2.5 Experimental results and conclusions

Experimental results are provided for public and Callsign datasets. The differences

in design for the figures are due to different environments used to run the codes.
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For Sample Quality, Table 3.7, Table 3.8, and Table 3.9 show the mean and stan-

dard deviation (in brackets) of the similarity score for genuine testing samples,

considering quality ranges, stroke directions, sessions and datasets. Higher scores

represent a better classifier performance. An example is shown in Fig. 3.10.

Intra-session classification performs better in every circumstance, due to the in-

creased consistency of the subjects. Overall, we can see an increase of the similar-

ity score for higher quality samples, with some exceptions (especially in the Frank

database) caused in all probability by a smaller number of samples or increased

inconsistency towards certain stroke directions.

For User Quality, Tables 3.10, 3.11, 3.12, 3.13 and 3.14 show EER values (mean

and standard deviation) for the three public datasets, considering directions, ses-

sions and number of enrollment samples. Examples of quality clustering using

quantile normalisation and corresponding distribution of EER per range are shown

in Figure 3.11a and Figure 3.11b .

The Tables highlight not only the decreasing EER over the quality ranges, but also

how the different number of training samples affect the performance for different

quality subjects. In general, high quality users are quite consistent with their own

samples and increasing or decreasing the number of enrollment samples does not

impact on the classifier performance.

In contrast, for low quality users, increasing the number of training samples helps

to provide correct classification during testing, as shown in Figure 3.12.

Finally, Table 3.15 shows results for sample quality and user quality on the Callsign

dataset in terms of EER per quality ranges. The same criteria has been used to

calculate the quality ranges. In Figures 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20

and 3.21 are shown the similarity score distribution for genuine and impostors for

all the quality ranges when evaluating sample and user quality. It’s interesting to

notice how for sample quality the scores are skewed on the left, which results in

closer thresholds for low and medium quality samples.

Observing the results, it can be seen that the estimation of quality is impactful
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and consistent over different datasets and models. Predicting the user quality

behaviour or rejecting low quality sample can improve the performance.

The bottleneck of this study resides in the models themselves: even with effec-

tive quality estimation, if the biometric authentication models perform badly by

themselves the improvement will be low to none.
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Figure 3.10: Sample quality score vs Similarity score, Serwadda database,
intra session, right swipe. K-means algorithm has been used to cluster the

three ranges.

Table 3.7: Results for Sample Quality Analysis on Serwadda dataset. Mean
Similarity score (standard deviation in brackets) for genuine samples in different
quality ranges, evaluated for each direction on both intra and inter sessions.

values are left blank when missing.

Serwadda Database
Quality Range

Low Medium High

INTRA
SESSION

Down 0.73 (0.12) 0.74 (0.13) 0.78 (0.14)
Up 0.71(0.14) 0.75 (0.13) 0.79 (0.13)
Left 0.63 (0.23) 0.78 (0.10) 0.78 (0.15)

Right 0.67 (0.19) 0.70 (0.18) 0.82 (0.1)

INTER
SESSIONS

Down 0.63 (0.14) 0.65 (0.14) 0.67 (0.15)
Up 0.61(0.14) 0.63 (0.14) 0.66 (0.15)
Left 0.64 (0.15) 0.67 (0.13) 0.69 (0.15)

Right 0.60 (0.14) 0.63 (0.15) 0.68 (0.15)
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(a) EER vs Quality.

(b) EER distributions over quality ranges.

Figure 3.11: User quality in Serwadda database (Direction: down, Intra ses-
sion). Here we used quantile normalisation to separate quality groups. In figure
(A) it’s shown EER vs quality score, in figure (B) the histograms of EER distri-
butions over quality ranges (note: x-axis’ scales differ for the three histograms).
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Figure 3.12: Mean subjects’ EERs with varying enrollment sizes for each
quality group. The quality score has been evaluated considering 10 enrollment

samples.

Table 3.8: Results for Sample Quality Analysis on Frank. Mean Similarity
score (standard deviation in brackets) for genuine samples in different quality
ranges, evaluated for each direction on both intra and inter sessions. values are

left blank when missing.

Frank Database
Quality Range

Low Medium High

INTRA
SESSION

Down 0.69 (0.12) 0.60 (0.19) 0.68 (0.2)
Up - - -
Left 0.73 (0.14) 0.77 (0.12) 0.74 (0.15)

Right 0.71 (0.12) 0.76 (0.12) 0.77 (0.15)

INTER
SESSIONS

Down 0.62 (0.15) 0.49 (0.16) 0.52 (0.18)
Up - - -
Left 0.63 (0.15) 0.69 (0.14) 0.65 (0.14)

Right 0.66 (0.14) 0.70 (0.14) 0.65 (0.17)
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Table 3.9: Results for Sample Quality Analysis on Antal dataset. Mean Sim-
ilarity score (standard deviation in brackets) for genuine samples in different
quality ranges, evaluated for each direction. Values are left blank when missing.

Antal Database
Quality Range

Low Medium High

INTRA
SESSION

Down 0.62 (0.12) 0.74 (0.10) 0.83 (0.01)
Up 0.70 (0.15) 0.68 (0.13) 0.74 (0.14)
Left 0.65 (0.18) 0.71 (0.17) 0.74 (0.17)

Right 0.74 (0.12) 0.71 (0.16) 0.52 (0.19)

Table 3.10: Results for User Quality Analysis for Serwadda database (Intra
session). Mean EER in % (standard deviation in brackets) for subjects in qual-
ity ranges. In addition to directions, different number of training samples are

considered in the evaluation.

SERWADDA DATABASE
INTRA SESSION

Enrollment samples
Quality Ranges 5 samples 10 samples 15 samples 20 samples

Down
low 14.61 (9.6) 12.97 (9.5) 8.02 (5.4) 7.75 (6.0)

medium 10.48 (7.9) 7.45 (6.5) 5.25 (5.3) 5.28 (5.0)
high 3.55 (4.4) 2.11 (2.5) 1.74 (2.2) 1.50 (1.6)

Up
low 13.86 (8.8) 10.45 (7.9) 7.77 (5.8) 7.19 (6.4)

medium 7.93 (6.3) 4.38 (4.3) 3.95 (4.1) 3.18 (3.5)
high 1.83 (2.1) 0.51 (0.7) 0.18 (0.3) 0.11 (0.2)

Right
low 11.26 (7.2) 9.25 (6.9) 6.09 (5.2) 5.14 (3.8)

medium 5.63 (5.7) 3.85 (3.8) 2.90 (3.3) 2.74 (2.6)
high 2.19 (2.1) 1.35 (1.4) 0.85 (1.2) 1.08 (1.2)

Left
low 10.36 (9.4) 8.25 (7.0) 5.84 (6.2) 6.21 (5.5)

medium 6.51 (6.9) 5.20 (5.2) 2.78 (2.8) 2.12 (2.5)
high 3.24 (4.6) 2.47 (3.5) 2.16 (2.8) 1.43 (2.8)
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Table 3.11: Results for User Quality Analysis for Serwadda database (Inter
sessions). Mean EER in % (standard deviation in brackets) for subjects in
quality ranges. In addition to directions, different number of training samples

are considered in the evaluation.

SERWADDA DATABASE
INTER SESSIONS
Enrollment samples

Quality Ranges 5 samples 10 samples 15 samples 20 samples

Down
low 25.31 (14.1) 23.56 (14.7) 22.22 (13.7) 19.79 (13.9)

medium 22.41 (16.6) 17.88 (14.0) 20.10 (14.4) 16.89 (13.7)
high 12.57 (12.5) 11.27 (10.4) 10.16 (12.5) 15.76 (22.6)

Up
low 30.12 (14.9) 25.97 (15.1) 24.71 (18.2) 22.86 (14.6)

medium 21.85 (13.8) 21.85 (15.9) 17.56 (16.1) 18.51 (14.7)
high 15.30 (11.6) 12.14 (12.8) 10.24 (9.1) 11.97 (10.4)

Right
low 25.88 (16.4) 24.70 (15.7) 21.59 (13.4) 20.43 (12.8)

medium 16.42 (14.4) 16.24 (13.8) 15.47 (14.4) 13.78 (12.4)
high 21.27 (21.4) 18.45 (17.3) 19.35 (17.4) 18.49 (23.2)

Left
low 19.29 (14.5) 19.67 (13.6) 17.86 (15.6) 17.49 (12.3)

medium 18.34 (17.3) 17.00 (16.9) 17.41 (18.4) 13.87 (15.1)
high 17.82 (16.8) 18.30 (19.5) 17.35 (20.7) 18.49 (23.2)

Table 3.12: Results for User Quality Analysis for Frank database (Intra ses-
sion). Mean EER in % (standard deviation in brackets) for subjects in quality
ranges. In addition to directions, different number of training samples are con-

sidered in the evaluation.

FRANK DATABASE
INTRA SESSION

Enrollment samples
Quality Ranges 5 samples 10 samples 15 samples 20 samples

Down
low 40.06 (0.0) 15.13 (0.0) 13.96 (0.0) 16.90 (0.0)

medium 17.69 (11.3) 9.19 (2.4) 4.67 (4.5) 6.6 (4.9)
high 13.3 (8.6) 8.71 (6.9) 8.83 (6.4) 7.95 (7.3)

Right
low 17.46 (0.0) 12.42 (0.0) 19.58 (0.0) 8.28 (0.)

medium 15.27 (17.7) 10.06 (7.8) 6.46 (3.9) 7.61 (4.6)
high 2.09 (1.7) 1.00 (1.1) 1.94 (2.4) 1.14 (2.5)

Left
low - - - -

medium 9.31 (10.1) 5.55 (4.9) 9.46 (10.5) 5.16 (7.1)
high 7.36 (6.1) 4.29 (3.4) 4.71 (4.3) 3.29 (3.1)
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Table 3.13: Results for User Quality Analysis for Frank database (Inter ses-
sions). Mean EER in % (standard deviation in brackets) for subjects in quality
ranges. In addition to directions, different number of training samples are con-

sidered in the evaluation.

FRANK DATABASE
INTER SESSIONS
Enrollment samples

Quality Ranges 5 samples 10 samples 15 samples 20 samples

Down
low - - - -

medium 31.61 (27.9) 19.24 (5.4) 2.95 (4.8) 23.08 (25.2)
high 5.66 (5.1) 2.95 (4.8) 4.82 (8.4) 2.83 (3.9)

Right
low - - -

medium 11.31 (9.1) 9.25 (10.9) 9.48 (11.1) 4.08 (4.1)
high 11.24 (12.1) 12.00 (12.1) 11.29 (11.8) 12.43 (12.5)

Left
low - - - -

medium 19.91 (10.1) 18.88 (10.3) 13.33 (12.2) 11.28 (5.1)
high 17.33 (20.5) 11.80 (9.3) 8.58 (11.1) 9.46 (9.5)

Table 3.14: Results for User Quality Analysis for Antal database. Mean
EER in % (standard deviation in brackets) for subjects in quality ranges. In
addition to directions, different number of training samples are considered in

the evaluation.

ANTAL DATABASE
INTRA SESSION
enrollment samples

Quality Ranges 5 samples 10 samples 15 samples 20 samples

Down
Low - - - -

Medium 13.77 (7.2) 12.75 (8.8) 5.61 (4.9) 7.01 (3.7)
High 5.66 (5.0) 7.83 (6.1) 3.97 (4.7) 0.26 (0.4)

Up
Low - - - -

Medium - - - -
High 9.68 (15.8) 5.03 (6.2) 5.51 (6.2) 0.85 (0.5)

Right
Low 26.17 (5.0) 23.31 (11.3) 17.83 (5.4) 17.75 (8.3)

Medium 18.15 (10.3) 14.59 (8.9) 9.95 (6.6) 9.49 (5.8)
High 11.82 (8.3) 10.81 (8.5) 6.84 (5.8) 6.25 (5.0)

Left
Low 16.91 (4.6) 29.70 (6.7) 15.88 (6.5) 8.64 (8.5)

Medium 18.90 (10.9) 14.59 (8.3) 11.70 (8.6) 10.05 (7.6)
High 11.00 (6.1) 8.82 (6.5) 6.48 (5.3) 4.72 (4.6)
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Table 3.15: Sample and user quality for the Callsign dataset with the deep
learning architectures

Callsign Database
Sample quality User quality
Quality ranges Quality ranges

Low Medium High Low Medium High
GFNN - - - 13.33 9.27 10.5
LSTM 13.67 11.42 9.09 18.88 9.07 8.31

Figure 3.13: Sample quality in Callsign database with LSTM model. Simi-
larity score distributions for genuine and impostor samples, low quality range.
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Figure 3.14: Sample quality in Callsign database with LSTM model. Sim-
ilarity score distributions for genuine and impostor samples, medium quality

range.

Figure 3.15: Sample quality in Callsign database with LSTM model. Simi-
larity score distributions for genuine and impostor samples, high quality range.
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Figure 3.16: User quality in Callsign database with LSTM model. Similarity
score distributions for genuine and impostor samples, low quality range.

Figure 3.17: User quality in Callsign database with LSTM model. Similarity
score distributions for genuine and impostor samples, medium quality range.
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Figure 3.18: User quality in Callsign database with LSTM model. Similarity
score distributions for genuine and impostor samples, high quality range.

Figure 3.19: User quality in Callsign database with GFNN model. Similarity
score distributions for genuine and impostor samples, low quality range.
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Figure 3.20: User quality in Callsign database with GFNN model. Similarity
score distributions for genuine and impostor samples, medium quality range.

Figure 3.21: User quality in Callsign database with GFNN model. Similarity
score distributions for genuine and impostor samples, high quality range.
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3.3 Discussion

This Chapter explored extensively Swipe dynamics from a biometric authentica-

tion perspective. Two deep learning models for single Swipe authentication were

introduced (GFNN and LSTM) and compared to State of the Art systems. The

strengths of the proposed deep learning architectures reside in their ability to gen-

eralise over unseen subjects (without the necessity of re-training the model) and

the ability to perform authentication with just one sample.

In addition, to improve model performance and explore furtherly user behaviours,

it was introduced a novel quality metric for Swipe quality. Such metric is appliable

to both user quality and samples quality. Results show that the estimation of the

quality of the sample or the user gives a solid prediction on the performance of

the system and the consistency of the user. It also suggests the amount of samples

required to enroll a user depending on their quality rank (see Figure 3.12 ), or if

during an authentication task it would be reasonable to reject a low quality sample

due to the expected uncertainty of the prediction.

The next Chapter will explore PIN biometrics and present a fusion algorithm to

combine the two modalities.



Chapter 4

PIN biometrics

4.1 Introduction

This Chapter will cover the second part of the framework, as a direct follow-up

of Swipe biometrics. We will describe PIN data as a biometric modality related

to user behaviours, highlighting a parallelism with keystroke dynamics. In this

context, we will explore device interactions when providing a sequence of 4 or 5

digits on a mobile device through a touchscreen, similarly to swipe.

In this Chapter we will describe our dataset, the methodology and experiments to

asses biometric verification performance through PIN and, finally, our proposed

fusion method to combine the two modalities.

4.1.1 PIN gestures as behavioural data

PIN is a security measure used in a multitude of situations, as a main authen-

tication or as part of two factors authentication systems, and can be used as a

substitute for a password. Usually it consists of 4 or 5 digits between 0 and 9, with

the option to replicate the same numbers. It has less variance compared to an al-

phanumerical password (which can be longer and contain special characters), but
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unhence it’s more difficult to guess. Moreover, passwords and PINs serve different

purposes.

The possible combinations are theoretically “just” 10digits, but the actual number

can be reduced dramatically if we take into consideration a scenario with an expert

attacker and a mobile device with a touchscreen. If fingerprints are partially

visible in proximity of the numbers on the screen, the possible combinations are

reduced to digits! and it further decreases if one or more entries are repeated.

For example, considering this scenario with a 4 digits PIN where two numbers are

repeated and known, the possible combinations to guess drop from 10000 to 14.

This is a very specific case, but in general there are many ways to guess a PIN

code. For this reason, it’s useful to consider device interaction when inserting the

PIN as biometric data, to provide an added layer of protection. As for keystroke

dynamics, PIN data can be considered time sequences with a known start and end.

In addition, for mobile devices provided with a touchscreen sensor, positional data

can also be retrieved too.

4.1.2 Differences between swipe and PIN gestures

Swipe and PIN gestures have similarities in terms of data collected, especially

related to mobile devices provided with touch screens. Both can provide posi-

tional data (from the touch screen or the accelerometer/gyroscope), temporal data

(from the timestamp), flags (start and end of a gesture, either flagged by a finger

down/finger up identifier or by a PIN digit flag). Aside from those parallelisms,

there are many differences that result in different challenges to overcome for each

biometric modality. The first difference to mention is that swipe gestures can be

generally analysed from a biometric perspective as a continuous authentication

modality and not as a ceremony based or identification modality. Even for the

aforementioned verification task, discussed in the previous Chapter, there could be

the possibility to use more than one swipe sequence for authentication purposes.
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In the case of PIN, a single attempt (if successful in providing the correct sequence

of numbers) will be the only available data for biometric verification. It’s not

possible to provide continuous authentication on PIN due to the ceremonial nature

of the task. We could however consider it as a special case of keystroke dynamics

(in which data could be analysed in the background for authentication purposes),

prompted by a request and constrained by the number of digits required for the

PIN.

Another difference involves the finger position capture on the screen. While swipe

data describe a trajectory, in the case of PIN data the sensor records sparse tap-

pings located in the relative position of each digit. This means that those data

cannot be interpolated, nor certain features such as velocity and acceleration re-

lated to the position be calculated. Instead, the majority of features are related to

the timestamp, in contrast with Swipe features mostly relating to finger position

and x and y derivatives.

4.2 PIN Authentication

For our study we designed a protocol to train models and evaluate their perfor-

mance on PIN authentication, adopting a similar procedure as used for the swipe

experimentation. For our experiments we exclusively utilised the database pro-

vided by Callsign, described in the next section.

4.2.1 Callsign dataset

The Callsign PIN dataset was collected using a range of different mobile devices

with data entry from 385 different subjects. Similarly to the swipe dataset, PIN

data are stored in a nested dictionary format, according to subject ID and transac-

tion. Each transaction corresponds to a sequence of touch interactions performed

by the subject to enter PIN digits. Subjects were requested to enter a 4 digit PIN

on a standard ten digits entry screen.
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The recorded features for each timestep in the sequence are: timestamp, x and

y relative positions on the screen, Accelerometer and Gyroscope, Major axis of

the touching finger area, and event flag which can assume the value of pressed

or released according to the finger action. This was used to determine the press

time, the flight time and other features related to the digits dynamics. Table 4.1

summarises the Callsign dataset information, compared to the swipe dataset.

The recording was performed on mobile devices on a verification query as a cere-

mony task, but the PIN request would only occur after a failed Swipe authentica-

tion attempt. This peculiarity of the framework has been taken into consideration

when designing the multimodal fusion system.

Table 4.1: Comparison between Callsign datasets for Swipe and PIN data.

PIN dataset Swipe dataset

Database
informations

Source Callsign Callsign
Task 4 Entries Horizontal swipe
# Users 385 148
95th quantile
sequence length

29 16

Features

x position Relative position Absolute position
y position Relative position Absolute position
Timestamp X X
Major axis X X

4.2.2 Pre-processing and feature extraction

We decided to follow the same procedure applied to swipe data to pre-process the

PIN data, when possible. This decision was taken after considering the previously

mentioned similarities between the two dataset structures. In addition, we wanted

to explore the same methodology for model evaluation as described in Section 3.1.

The first step was to remove NaN values from the rows, occurring during signal

capturing for the same reasons explained in Chapter 3. Furthermore, we removed

accelerometer and gyroscope data, as we wanted our model to rely on touch inter-

actions only.
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After this initial pre-processing of the data, we separated individual PIN sequences

and stored them for each individual subject, according to the subject ID and the

transaction ID. While doing this, we replaced the subject ID and transaction ID

with anonymised numbers to ensure the full anonymisation of the dataset.

We also stored the length of each PIN sequence in terms of number of timesteps.

With this, we were able to remove outliers based on the 95th quantile, similarly to

the procedure used previously for Swipe data.

Unfortunately we could not apply further cleaning of the dataset, due to the fact

that PIN gestures, even if related to a more constrained task compared to Swipe

gestures, are more complex to understand and evaluate in terms of behaviours. In

the case of Swipe dynamics, we could recognise and reject samples not conforming

to the given task (i.e. back-and-forth swipes), but this was not possible with

PIN data; multi-tapping a single digits could be due to a delay of the touchscreen

sensors or the sampling frequency, but it was not a criteria for rejection. In general,

it was not possible (neither with visual clues nor descriptive statistics) to define

what samples could have been considered faulty or sources of errors.

For PIN data we created two new data structures. One structure preserved the

raw data points for each timestep in the PIN sequence to train a recurrent deep

learning model. The other structure contained extracted features stored in a row

for each PIN sequence.

The first data structure is a list of 3D matrixes, each element in the list contains

a matrix with all the PIN sequences from a given user. The matrix dimensions

correspond to timesteps, PIN transaction, and raw features.

The number of timesteps as previously mentioned is equal to the 95th quantile of

sequence lengths calculated over all the sequences in the database, with padded

values for shorter sequences. For each sequence, the starting value of timestamp

is subtracted from all the remaining timestamp values. With this method, every

sample started at 0 seconds.
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Table 4.2: Raw features from PIN sequences.

Identifier Feature name Description
1 Timestamp Touch event timestamp

2 X relative position
X coordinate value at touch point
relative to digit area.

3 Y relative position
Y coordinate value at touch point
relative to digit area.

4 Major axis
Major axis described by the finger
touching the screen at touch point

5 Sequence length
Number of actual touch points
for the given PIN gesture.

The raw features are listed in Table 4.2. We applied a z-score normalisation to

each individual feature vector, calculating global mean and standard deviation

from the training set data.

The second data structure is comprised of extracted features based on keystroke

studies. This structure comprises a list of 2D matrixes, each one containing the

data of a different subject from the original database, with each row corresponding

to one transaction and with the columns representing the extracted features.

To describe the extracted features, it’s necessary to mention the common time

intervals occurring during keystroke dynamics.

Figure 4.1: Keystroke time intervals based on Press (P) and Release (R)
events.
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Taking as reference Figure 4.1 and considering P and R respectively as Press and

Release events, we can define the following intervals:

- P-R: the time elapsed between the press and release of a key. It’s also

referred to as dwell time.

- R-P : the time between the release of a key and the press of the following

key. Also known as flight time.

- P-P : the time between the press of a key and the press of the following key.

Also known as inter-key timing.

- R-R: the time elapsed between two consecutive key releases.

These intervals are descriptive of keystroke behaviours on mechanical keyboards,

but can be extended to virtual keyboards on touchscreen devices and to PIN

dynamics on mobile devices. Considering that tyPINg on a keyboard can be done

with both hands (i.e. two digits can be pressed at the same time) and that for

a virtual keyboard there might be input latency, it’s reasonable to assume that

occasionally the flight time and the R-R time could have negative values.

Table 4.3: Second set of PIN extracted features based on previous studies
[4–6]

Identifier Feature Description

1 Max m.a.
Maximum value recorded of the major axis
of the finger.

2-5 Mean X digits Average value of x coordinate for each PIN digit.
6-9 Mean Y digits Average value of y coordinate for each PIN digit.
10-12 P-P Inter-key timing for each pair of digits.
13-15 P-R Dwell time for each PIN digit.
16-19 R-P Flight time for each pair of digits.
20-22 R-R Inter-key release time for each pair of digits.

The positional-based features are calculated by averaging the coordinate values

recorded by the touchscreen from the beginning to the end of a digit entry event

(so from press to release). The time-based features correspond to the previously

defined intervals for each digit (or pair of digits) during the PIN recording.
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We discarded the Sequence length because, considering the task, it’s reasonable

to expect that each tap on the touchscreen could provide multiple and variable

number of touch points for each digit and it would not be a consistent feature.

As for the positional values, being recorded relative to the digits, it seemed more

reasonable to separate them between events instead of calculating a global value

that could have similarities inter subjects.

The features were z-score normalised, with the global mean and standard deviation

calculated on the training set and used to normalise both training and test set.

After this, we proceeded with evaluating the models.

4.2.3 Experiments and results

We evaluated the performance of two deep learning authentication models with

architectures similar to the swipe models in Chapter 3. For each model, it was

followed the same experimental procedure:

• Hyperparameters fitting through manual grid search.

• Training of the embedding model over 90% of the users from the dataset.

• Testing the model on the remaining 10% of the unseen subjects in the

database.

Each step is furtherly described in details.

We manually searched the best hyperparameters amongst the number of hidden

layers, output dimension, learning rates, and training epochs. As explained in

Section 3.1.7.3, we iteratively changed each hyperparameter and explored training

performance until we found the best set of parameters based on trial-and-error

criteria; similarly to the swipe models, hidden layers and output dimension pa-

rameters were intrinsically connected.
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The first model, trained on the first 3D data structure, was an LSTM-based ar-

chitecture with the number of timesteps for the input vector equal to 25 (95th

quantile over the lengths of all data). For PIN data, median and mean of lengths

distribution were equal.The second model, trained on the 2D data structure with

extracted features, was a feed-forward architecture with two fully connected layers.

Both models returned an L2 normalised output vector of 128 elements and the

cost function was again the triplet margin loss that already proved to be optimal

for data clustering of swipe data. We used 90% of the data to train the models

and the remaining data for testing. Table 4.4 shows the hyperparameters selected

for the evaluation.

Table 4.4: Hyperparameters for PIN

PINLSTM PINGFNN
Input features 5 22
Hidden dimension 64 64
Output dimension 128 128
Batch size 256 256
Training epochs 3000 3000
Training set (#subjects) 90% (347) 90% (347)
Test set (#subjects) 10% (38) 10% (38)
Normalisation z-score z-score

For testing, we used the first 10 samples in chronological order for each unique

subject in the test set to generate the subject template. The template is a single

vector of 128 elements, obtained by averaging the 10 deep feature vectors ob-

tained by feeding the enrollment samples through the models. We calculated the

Euclidean distances between each template and the remaining samples in the test

set, then we calculated the optimal threshold and the global EER for each model.

In Figure 4.2 is shown the last batch of embeddings projected on the first three

principal components after applying PCA.

We repeated the experiments several times for consistency of the methodology.

Results are shown in Table 4.5 for the two models assessed in terms of EER.
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Figure 4.2: PCA 3-D projections of extracted features from last training batch
PIN data. Different colours corresponds to different subjects.

Table 4.5: Results for PIN models.

PINLSTM PINGFNN
EER [%] 13.72 20

Compared to swipe authentication, PIN provides slightly better results with the

LSTM, probably due to the larger amount of data for training, but there’s still

a considerable margin of error. To overcome this issue, we developed a fusion

algorithm to increase the performance of the authentication system at this stage

of the framework (see Figure 4.3).
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4.3 Swipe and PIN fusion

4.3.1 Introduction

After assessing the authentication models for PIN and swipe, the next step in our

framework is to combine these two modalities to improve the biometric system

performance. Fusion models or in general multimodal systems are common solu-

tions when multiple authentication modalities are implemented, sequentially or at

the same time, to reduce the classification error.

In this Section, the most common fusion methods will be described in terms of

mathematical and practical implementation. Our own fusion method will be pre-

sented and justified according to the current framework, and the results of our

experimentation will be shown.

4.3.2 Multimodal systems

Multi-biometrics is a complex topic that can be studied from a multitude of per-

spectives with systems typically designed for a specific task in which biometric

recognition needs to be performed. Multi-biometrics presents in a multitude of

scenarios which need to be identified at first to understand the optimal fusion

method. For example, for the same modality there might be different scenarios

in which multiple algorithms, instances, or sensors are used. In the case of this

study, we are considering a specific scenario with multiple modalities with one

sensor each. The next question is: at which Level should the fusion be enabled?

To answer this question, it’s important to define the different Levels. In order of

“appearance” in an authentication system, these are Feature Level, Model Level,

Score Level, and Decision Level fusion.

- Feature Level: The fusion happens during the feature extraction process.

Either the extracted features from the different sensors are combined in a
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single feature vector or brand new features are computed from the combina-

tion of the previous data. The new feature vector is fed into a classification

model.

- Model Level: Feature vectors are calculated separately and fed to different

models that are blended together at some point into a new model. It’s

possible that a part of the originals model weights is left untouched.

- Score Level: Prediction scores from dedicated models for each of the

modalities are fused together, returning a new score (or set of scores). The

fusion could be performed by an algorithm or a brand new model.

- Decision Level: The decision scores (binary value for authentication mod-

els or categorical for an identification model) from the different models are

evaluated, usually based on statistical criteria, and a final decision is gener-

ated.

For all the Levels, there is a variety of algorithms to perform the fusion. At

feature Level, a possibility is to reduce the features from the various modalities

using PCA or alternative and then concatenate them in a new feature vector. At

Model Level it becomes more complicated, since the mathematical operations need

to be embedded in the models; this requires access to the raw architecture and

the complexity may vary depending on the number and types of predictors. In

general there is no specific technique for Feature Level and Model Level, this is

due to the fact that it’s relative to the modalities, features and models in use.

For Score Level and Decision Level there are common techniques used for fusion,

for example a linear combination of the scores (or weighted scores), a nearest

neighbour algorithm or other distance metrics, or in the case of the Decision Level

a majority vote (if the modalities are more than two). Statistical models, like

Naive Bayes based systems, can also be used to generate a new score or decision,

depending on the distribution of the labels or the scores from the predictive models.

Choosing the optimal technique depends on the data that are provided, not only

in terms of features and distributions, but also regarding the amount of data
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available for training. As for the Level, choosing where to execute the fusion (or

if implementing multiple fusion Levels) depends on the task and the flow of data.

In some cases it is not possible to implement a multi-modal system at certain

Levels. For example, in the case of a two factor authentication when modalities

are in cascade, it’s possible but not necessarily optimal to implement the fusion

at Feature Level. Or, as stated before, if there are only two modalities it’s not

possible to implement the majority vote at Decision Level.

In the case of this study, there was a very specific framework when considering

swipe and PIN authentication. The latter modality would be prompted by the

system only after a recorded failure from the former authentication, as shown in

the updated framework in Figure 4.3.

Figure 4.3: Adapted framework of the verification pipeline for Swipe and PIN.
PIN verification is prompted only after a swipe failure, which means that the

fusion cannot happen before that event.

Moreover, PIN and swipe data do not have a fixed number of timesteps, which

would make it very difficult to fuse the data at Feature Level, especially when

using the LSTM models (better performing compared to the GFNN models).

The first intuition was to implement the fusion at Score Level, since all the pro-

posed architectures from both modalities have the same output vector and same

kind of similarity score, calculated using the Euclidean distance between the tem-

plate (defined in equation 3.16) and the target sample. Most importantly, the
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similarity scores can only assume fixed values in a range, which did not change

across the models.

With these premises, various algorithms could be used without the necessity of a

further normalisation of the score (which was already provided). But the major

issue of score fusion methods, like linear combination or support vector machines,

is that they ignore the contextual information related to this specific framework,

defined as when and how the PIN authentication is prompted. In our case, the con-

text is a “failed verification from previous modality”. For this reason, a dedicated

fusion method was implemented: the penalty fusion.

4.3.3 Penalty fusion

The fusion method proposed in this study is novel has not been applied previously

for biometric authentication. The fusion is performed on the dissimilarity score

obtained from swipe and PIN authentication calculating the Euclidean distances

between templates and samples from each modality.

Considering TS and TP the subject templates for swipe and PIN respectively, qS,i

and qP,i the embeddings of the i-th attempts of authentication from a subject

against these templates on the two modalities, the dissimilarity scores dS and dP

are the Euclidean distances between the templates and the embeddings.

Considering thS and thP the authentication thresholds for the two modalities, in

a way such that if d > th then the authentication fails, the aim of the fusion

method is to modify the PIN score dP based on the error magnitude during the

swipe authentication.

Therefore, the fusion method provides a penalty on the follow-up modality based

on the performance on the first modality; the assumption is that a genuine user,

when failing to authenticate themselves, performs better still against their tem-

plate compared to a random imposter. The mathematical formulation for this

methodology is:

dfusionP = dP · (γ + eS) (4.1)
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with γ being the learning weight and eS the error on swipe authentication, defined

as dS - thS, always strictly positive in the interval (0, 1− thS].

The optimal value for γ is found through regression, under the condition that the

penalty fusion should increase the PIN’s dissimilarity score if the error on swipe

authentication was large, while decreasing it if the error was small. Considering

the range of the error, γ ideally should converge to a value smaller than 1.

To perform the regression on γ, the cost function, the weight updater and the

gradients were calculated and implemented in Python. We performed training and

testing with fixed thresholds from the previous models. Such thresholds correspond

to the discriminant value of the models dissimilarity scores below which the subject

is authenticated. If we considered the thresholds as extra parameters, the system

would have not converged to a single solution. Nevertheless, after the training,

we also estimated a new possible threshold for the new set of fusion scores for

comparison.

Since to train and test this fusion method paired data were required from the same

subject. To avoid overfitting towards the most populated class (genuine subjects

or impostor subjects) we considered the scaling parameter C for each different

class during the weight update process. This parameter is defined as follows:

Ci = N samples/(N classes ·N occurrencesi) (4.2)

With Ci being the weight for the i-th class, N classes being the number of classes

considered (in our case, two), and N occurrencesi being the number of occurrences

for the i-th class in the training set.

4.3.4 Experiments and results

To train and test the fusion method it was necessary to find paired data from PIN

and swipe and evaluate the dissimilarity scores from each. To find the correct pairs

from the same subject we matched the transaction IDs; we could not generate
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artificial pairs since it would bias dramatically the results. For both genuine

attempts and impostor attempts, both swipe and PIN data had to be from the

same session.

For this reason, the amount of usable data from the original datasets decreased

consistently and we could only rely on around three thousand pairs. Due to the

dataset reduction and the fact that the new subset listed real impostor attempts

and not zero effort impostor authentication, the EER of the PIN model was slightly

higher compared to the previous evaluations.

We trained the fusion system on 80% of the available pairs and tested on the

remaining 20%. We used the same set to also train an SVM with dissimilarity

scores as input vector. We repeated the process several times for consistency,

randomising the train and test set and changing the initial value of the weight γ.

Since the training set was very small, we didn’t create mini-subsets and at each

iteration we used all the data, computing the gradients on the average error from

all samples. We also trained the model several times varying the initial value of γ

to ensure its convergence to a singular optimal value, as can be seen in Figure 4.4

Figure 4.4: Weight update over training from different initial values. For
higher values, more iterations are needed to reach convergence to the optimal

value.

Figure 4.5 shows the mean absolute error at each iteration. Table 4.6 and Table

4.7 show the experiment parameters and the results respectively. In addition, in
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Figure 4.6 are shown the ROC curves over a 6 fold cross-validation for the proposed

methodology. The model performance proves to be consistent, as can be seen by

the area under curve (AUC) values. As further information, the thresholds for the

three authentication systems (original PIN model and the two fusion methods) are

also provided as well as the corresponding ROC curves in Figure 4.7.

Figure 4.5: Mean absolute error per iteration during the training of the fusion
system.

Table 4.6: Parameters for the penalty fusion experiments. γ0 is the initialised
value of γ.

Parameter Value
Training set 2698
Test set 675
Iterations 400
Learning rate 0.01
Highestγ0 3.0

Table 4.7: Results and thresholds for the score fusion methods compared with
raw scores.

PIN
scores

SVM
fusion

Penalty
fusion

EER [%] 15.32 13.55 7.84
Threshold 0.25 1.04 0.23
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Figure 4.6: 6 folds cross-validation for the penalty fusion model.

Figure 4.7: ROC curves for SVM fusion, penalty fusion and original PIN
scores. The dotted line represents a random classifier.

As predicted, the SVM is not improving the performance enough compared to our

fusion system. We introduced a non-linearity that considers the specific task and

adheres to the classification criteria.

It can be seen that the optimal threshold after the Penalty fusion doesn’t deviate
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considerably from the original threshold. This is an added value to this method-

ology, making it consistent and more difficult to spot by external attackers. It’s

also very fast to re-train even with high amount of data, due to the one and only

trainable parameter γ.

4.4 Discussion

In this Chapter we evaluated PIN dynamics on mobile devices as behavioural

biometrics for user verification. As the premises and the data structure of PIN

data are similar to Swipe data, we assessed the performance of two deep learning

models proposing the same architecture and cost function used to assess Swipe

biometrics. Our findings show that the RNN with the LSTM cell outperforms the

fully connected model, with 13.72% EER on the testing set. We followed the same

protocol for enrollment and testing, such as only one sample for each verification

task and enrollment samples recorded before the testing samples.

These results show that the model can generalise and generate deep features spe-

cific to the subject, but it’s still subject to misclassification due to the spread of

user’s sample, with few overlapping as can be seen in the 3D projections in figure

4.2. This can be due to variation in behaviours over time, use of different devices

or, in the worst possible case, changes in writing hand.

To improve the model performance without increasing the number of samples

requested for the authentication, we implemented a fusion model based on the

Framework contextual structure, which penalises or eases the verification decision

based on the magnitude of the failure from the previous modality.

Our algorithm proved to greatly improve classification performance, with lowest

computational expenses (calculated based on the number of weights of the fusion

model, in this case just one), low training cost (each input vector is only comprised

of a pair of scores) and avoiding risks of data leaks, since the model receives as input

just the dissimilarity scores and no sensible data from the mobile device (hence,
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no need of location data, nor accelerometer data, nor to record and transfer any

personal data of the user).

Nevertheless, the whole authentication process can still be improved. To accom-

plish this goal, we added a new modality to the current framework: Electrocar-

diogram authentication.



Chapter 5

Electrocardiogram biometrics

5.1 Introduction

5.1.1 Problem statement

In the past years, electrocardiogram (ECG) data and heart activity have been

studied not only from a clinical point of view, but also from a biometric perspective.

Past studies have demonstrated how features that characterise the individual can

be extracted from the electrocardiogram signal and how these features can be used

for encryption or identification. The drawback consists in the difficulty to record

the signal, pre-process it and implement the system in a real life scenario (due to

recording times and cumbersome devices required). However, the fast growth in

technology led to the development of miniaturised systems and wearable devices,

making it possible to record the electrocardiogram signal without the need for

large devices or leads and wires. Furthermore, the Internet of Things, alongside

the most recent smartwatches and smartphones being capable of fast computation

and comprised of large data storage, suggest that electrocardiogram biometrics for

identity verification with wearable devices could be feasible.

113
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In this Chapter, we will explore this possibility by analysing the electrocardiogram

signal, the available datasets, wearable devices for signal capture and a few models

for user authentication with the lowest recording time.

5.1.2 ECG overview

The heart is the biggest autonomous muscle of the human body and it’s the

only one that never ceases its activity during the whole life of a person. Some

characteristics like the heart rate or intensity of the activity vary over time due

to growth, emotional or environmental conditions, and illness, but in general it

provides a unique description of the person.

The heart can be divided into four different sections: the atrial and ventricular, two

per side. To function properly, the activity of the four sections must be perfectly

timed and synchronised or else blood would not be pumped correctly and there

would be turbulence and reflux in the heart itself.

The timing of the activity is regulated by a small network of nerves which electri-

cal activity triggers depolarisation and therefore the contraction of the appropriate

muscles. There are four important parts of this network: the sinoatrial and atri-

oventricular nodes that act as pacemakers, the bundle of Hiss that delivers the

signal to the ventricular nerves and lastly the Purkinje fibres innervating the large

surface of the two ventricles.

An electrocardiogram is a recording of the aforementioned heart’s electrical activ-

ity, captured using electrodes attached to specific body locations. These electrical

activities are the sum of all the electrical waves occurring during the depolarisa-

tion of the cardiac muscles and can be visualised as a moving vector, the cardiac

vector, that travels through the heart. In a normal cardiac cycle, there are three

phases (Fig. 5.1):
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- Initially, the atrial depolarization is triggered by the sinoatrial node (P wave).

Atrial repolarisation follows this depolarization. Then a new trigger by the

atrioventricular node occurs after a short delay.

- The signal travels through the bundle of Hiss to the Purkinje fibres, activat-

ing the ventricular depolarization and contraction (QRS complex). During

this phase, the cardiac vector forms a triangular wave, hence the resulting

characteristic complex.

- During the last phase, ventricular relaxation and repolarisation occur (T

wave).

For a diagnostic ECG recording, 10 electrodes are positioned on the body of the

patient, as shown in Figure 5.2. RA, LA, LL and RL refer to the anatomical

positions for the electrodes, respectively: right arm, left arm, left leg and right

leg. The first four electrodes contribute to the first six limb channels of the ECG,

defined as:

- Channel I: from RA to LA.

- Channel II: from RA to LL.

- Channel III: from LA to LL.

- aVR: from the average value between LA and LL to RA.

- aVL: from the average value between RA and LL to LA.

- aVF: from the average value between RA and LA to LL.

The right leg electrode is used as a driven right leg circuit to denoise the signal

and reduce common-mode interference by actively removing it.

The last six electrodes provide six more channels, the precordial leads. The signals

are recorded through the differences between each one of the 6 electrodes and the

average values of the first 3.
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(a) Heart activity during one cycle [134].

(b) Electrocardiogram signal for I lead.

Figure 5.1: ECG example for one heartbeat. In Figure (A) it’s showed the
propagation of the electrical signal across the myofibers. P wave, QRS complex

and T wave are labeled in proximity of the peaks in Figure (B).

The bandwidth of the cardiac cycle is substantial. It may overlap with other

signals (not necessarily biological), but it is consistent with itself (considering

healthy subjects) and is unique to each subject. The entire cycle follows the same

rules, and timing is triggered by the sinoatrial node. This leads to two important

conclusions:

1. Another cycle cannot occur unless there is repolarisation of the muscle fibres.
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Figure 5.2: Anatomical locations of the electrodes for ECG recording [3].

2. Only the heart rate can be affected by external factors and cannot exceed a

particular value.

Therefore, the heart rate is irrelevant for biometric purposes, and the only useful

data we can extract are from the single cycle during the various phases.

5.1.3 Framework

The framework for ECG recognition is very similar to swipe and PIN, however

with the latter two modalities we recorded a single sample representing one single

action, well defined by the start and end of the sequence (the horizontal slide or

the PIN entries respectively). In the case of the ECG, we need to arbitrary decide

the start and the end of the recording and select an appropriate time window.

Figure 5.3 illustrates the entire framework for ECG verification. The flowchart

refers to the data processing for a single subject.
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Figure 5.3: Generic framework for ECG verification, regardless of the model
used for decision making. This block diagram is valid for each subject on a

non-continuous authenticaton.

Signal segmentation is the process of selecting a specific window from the whole

recording that would be fit for the feature extraction. The User template and the

Template matching are managed by the classifier, but this will be explained in

detail in the following sections.

This framework provides an evaluation of ECG verification alone, but the aim

of this research is to combine all the three modalities for mobile authentication.

In our original framework, ECG authentication should happen in the background

during Swipe and/or PIN verification; this suggests the ideal time window for

capturing and processing the ECG data. We considered this when exploring the

methodology and the possible devices.

Unfortunately, as mentioned before, we were impaired in our ability to conduct a
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data collection using the paired sensors to provide further evidence of the feasi-

bility of this framework due to the ongoing COVID-19 pandemic and the related

restrictions. Nevertheless, we utilised our time by conducting experiments on pub-

lic datasets while minimising the recording and authentication time for ECG data,

in order to be fit for mobile use. We found an open-source wearable device able

to connect in real time with a mobile device and stream data, with device spec-

ification and sensor resolution comparable in performance to the devices used to

collect the publicly available datasets. Finally, we formulated a theoretical fusion

protocol for further follow-up studies in Chapter 6.

5.2 Databases and devices

5.2.1 Public databases

The WeSAD dataset [135] consists of ECG recordings from 15 subjects collected

from a RespiBAN device for 36 minutes per subject. Data were collected from the

subjects while they were sitting, speaking, and watching video clips in the sitting

position. RespiBAN data were collected at 16-bit sampling resolution and 700 Hz

sampling frequency from a chest band. Subject genders did not distribute equally

(3 females, 12 males). In this study, we used RespiBAN data from all 15 subjects.

E-HOL-03-0202-003 [136] consists of 24 hours of continuous digital Holter record-

ings from 202 healthy subjects collected from three electrodes positioned to obtain

the pseudo-orthogonal lead configuration. The dataset indicated that participants

had no cardiovascular diseases or disorders, high blood pressure, or chronic illness.

The population consists of equally distributed genders (100 males, 100 females and

two undefined). The data were captured after a 20 minutes resting (supine) pe-

riod, and 200 Hz sampling frequency and 10mV of amplitude resolution recorded

the ECG signals.

The ECG ID dataset was recorded especially for biometric purposes by Lugovaya

et al. [137] in 2005 and it’s widely used in related studies to assess biometric
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performances on ECG signals. It consists of 310 ECG recordings from 90 different

subjects over six month period of time. Participation to the data collection was

voluntary. The subjects are split into 44 men and 46 women aged between 13 and

75 years. The number of recordings collected from the same subject varies from 2

(collected on the same day) to 20 (collected periodically over the 6 months). Each

recording was a 20 seconds-long ECG Channe I, sampled at 500 Hz with 12 bit

digital resolution, and ±10 mV range.

Figure 5.4: Demographic distributions over the three ECG public datasets.

In Figure 5.4 are summarised the demographic information of the three datasets.

We chose these three datasets for the large amount of data provided from healthy

subjects and the differences in recording devices, the wearable-based chest bands

versus medical-grade Holter ECG recorders. Furthermore, the lack of existing

studies about biometric verification performance assessments using the first two

datasets and the many participants in the E-HOL database played a vital role

in dataset selection. An aim of this work is to prove that the evaluated models
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were consistent and not biased by device specification, providing reliable biometric

verification with wearable devices.

5.2.2 Wearable devices

The public datasets were chosen to provide an understanding of the ECG signal

captured with different devices under different conditions, but to apply biometric

authentication in real life small wearable sensors need to be assessed. The selection

criteria for such a sensor have to take into consideration the cost, the size, and

the connectivity of the device, without sacrificing signal resolution. We shortlisted

a number of devices that provide the required signal with built-in circuitry that

performs initial signal denoising, signal amplification, and that can be connected

to other devices with a Bluetooth connection.

In terms of smartwatches or smart bracelets, the best options were the Apple

Watch 4, the Amazfit Verge 2 and the Shenzhen Smart Bracelet, all of which

provide ECG and photoplethysmography (PPG) signals. Digital resolution and

sampling rate were comparable with the public datasets devices, with the Apple

Watch having the highest sampling rate (600 Hz). The downside was that the

signal was recorded on demand of the user, by placing the finger on the electrode

positioned on the top or on the side of the smartwatch/smart bracelet to close the

circuit with the other electrode beneath the device (recording in this way the first

lead). The recording time was fixed and could not be shortened. Moreover, the

Apple Watch raw data are difficult to access due to the design of the software.

The cost of the devices was also taken into consideration.

For the aforementioned reasons, we decided to focus on another wearable device,

the Max ECG monitor (see Figure 5.5a). Compared to the previous devices,

which provided many other functions, the ECG monitor’s only purpose was to

record ECG signals alongside accelerometer data. Nevertheless, it was the best

option to be implemented in the framework, due to the reasonable cost, the device

specification (see Table 5.1), the small size and the connectivity with other devices
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via Bluetooth. The recording could be performed in the background without the

(a) Max ECG monitor. Image belonging to Maxim
IntegratedTM, all rights reserved.

(b) ECG Recording from the device.

Figure 5.5: Max ECG monitor (A) and an example of signal recording (B).
The values on the ECG track are yet to be normalised based on the digital

resolution. On the top-left of the screen it’s shown the sampling rate.



123

need for an active input from the subject, which would perfectly fit in our study.

The sampling rate for the signal could also be set, varying in a range from 200 Hz

to 500 Hz.

Unfortunately, as mentioned before, we could not conduct a data collection, but

this would have been the main choice. We presented a recording example in Figure

5.5b, the resolution and the structure were comparable to the data from the public

datasets.

Table 5.1: Specification table for the MAX ECG monitor.

Max ECG
Features Values

Weight 9.4 g
Diameter 36.5 mm
Operating temperature −20◦C to +60◦C
Battery type CR2025 3V lithium cell
Transmission frequency 2.4 GHz
Sampling ranges 200-512 Hz
Digital resolution 18 bit
ECG sensor MAX30003
Manufacturer Maxim Integrated

5.3 Pre-processing and filtering

The pre-processing of the ECG signal is one of the most important parts of this

study, due to the fact that it relies on all the previous assumptions and information

about the cardiac cycle and aims to provide a new input structure for the classifiers

that had both a high signal-to-noise ratio (SNR) and a small sample time window.

In the following subsections, all the procedures will be described. As previously

done with Swipe and Pin data, a series of methodologies were applied to generate

feature vectors depending on the classifiers used for evaluation.
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5.3.1 Signal filtering

Signal filtering was the only pre-processing step common to both data structures

feeding into different classifiers that we aimed to create, as the only purpose of

the filtering was to remove the noise from the raw signal.

To provide appropriate filtering, it’s imperative to have a full understanding of

the full frequency range of the signal, the useful range, the signal magnitude range

and the main noise sources.

With useful range we refer to the only part of the signal useful to the task, which

can easily change depending on the desired goal. For example, in hospitals a

monitoring ECG is used to check exclusively the correct activity of the heart in

hospitalised patients, usually after a surgery; no accurate information is required,

except for the heart rate and an approximate view of the various waves on a single

channel. This means that the cutoff frequency for the low-pass filter can be set at

a very low value (50 Hz or lower).

In the case of a diagnostic signal, every component of information in the signal is

useful, including all twelve channels. It requires sharper filters with low ripple and

distortions. In most extreme cases, noise from high frequencies overlapping with

ECG natural frequencies should be removed with direct subtraction, recording the

noise signal with electromyography. This however is not a case of interest for this

study.

For our purposes, we applied a low-frequency noise removal filter and powerline

band removal. To do so, all recordings were filtered with a high-pass Butterworth

filter with cutoff frequency at 0.5 Hz and a notch filter centred at the powerline

frequency (50 or 60 Hz depending on the power source). Applying the high-pass

Butterworth we also removed the zero drift.
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5.3.2 Windowing and feature extraction

After cleaning the data, we created two different data structures, one to train the

classical machine learning algorithms and one for the deep learning architectures,

since the two methodologies work with different data structures. This procedure

was applied to 3 databases, resulting in a total of six new data structures.

To generate the first data structure, N samples per subject were trimmed from

the whole recording. Each sample was a time window of size T and delay between

windows s, resulting in a matrix of dimensions [(N subjects ·N)× (T + 1)]. The

window size considered for each sample is ten seconds, with a one-second shift.

Each sample is further processed to extract a feature vector, resulting in a final

structure of dimensions [(N subjects ·N)× (N features+ 1)].

It’s a set of 15 features, comprised of 9 fiducial features common in literature and

9 based on the interval between heartbeats. Such features are:

• QS distance.

• PQ distance.

• ST distance.

• P peak amplitude.

• Q peak amplitude.

• R peak amplitude.

• S peak amplitude.

• S peak amplitude.

• RR minimum distance over the sample.

• RR maximum distance over the sample.

• RR median distance over the sample.
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• RR standard deviation.

• Number of RR intervals shorter than 50 points.

• Ratio between RR intervals shorter than 50 points and all RR intervals in

the sample.

Figure 5.6: Peak detection on ECG recording. For each peak a different
marker has been used.

With P, Q, R, S, T waves of the signal.

Distances between peaks (QS, PQ and ST ) are calculated considering the position

of the maximum value of the two peaks and averaged over the recording. Peak

amplitude refers to the mean of the maximum values of the related peaks over the

recording. To calculate each peak amplitude in each cycle, we took as reference the

R peak position (detected with the Pan-Tompkins algorithm [138]). We evaluated

the maximum (in the case of P and T ) or minimum (in the case of Q and S ) value

in a confident interval of milliseconds before or after the R peak. An example of

peak detection is provided in Figure 5.6.

The extracted features are further described in Table 5.2. In Figure 5.7 the paired

distributions of some of these features are shown for each subject from the WE-

SAD dataset. It can be seen that, especially for some pairs of features (e.g. Ramp

and QS distance), samples from same subjects were clustered together. This rep-

resentation helped to visually understand the validity of the chosen features and
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Figure 5.7: Pair distributions of features across WESAD subjects. Each color
corresponds to a different subject.

to estimate how easily separable were the different subjects based on the current

features. The diagonal shows the distributions of the subjects samples for the

single features.

The second data structure, generated for the deep learning models, is a 2D matrix

with each row representing a single heartbeat cycle. We stored the first 10000

cycles centred on the R peak as single samples for each subject in the datasets.

Each sample consists of 150 points, equal to 0.75 seconds of recording. We take the

R peak as a reference (from the peak, the previous 0.25 seconds and the following

0.5 seconds are selected).

For each dataset collected with a sampling rate higher than 200 Hz, after trimming

with the 0.75 seconds window, all samples are downsampled to match the 151-point

size, resulting in a matrix of dimensions [(N subjects · 10000) × 151]. The last

column corresponds to the unique ID assigned to the subjects. To detect R peaks,
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Table 5.2: Description of the extracted features. t is the time vector of the
sample, N the number of heartbeats in a sample. P, Q , R S, T refer to wave
peaks. Distance and amplitude features are commonly referred as fiducial fea-

tures [83, 139]

Features Description

QS 1
N

∑N
i=1 tSi − tQi

Distances between peaks

(averaged over sample)
PQ 1

N

∑N
i=1 tQi − tPi

ST 1
N

∑N
i=1 tTi − tSi

Pamp µ{Pi}Ni=1

Peak amplitude

(averaged over sample)

Qamp µ{Qi}Ni=1

Ramp µ{Ri}Ni=1

Samp µ{Si}Ni=1

Tamp µ{Ti}Ni=1

minRR min{tRi − tRi−1
}Ni=2

R-R distances statistics

maxRR max{tRi − tRi−1
}Ni=2

medRR m{tRi − tRi−1
}Ni=2

meanRR µ{tRi − tRi−1
}Ni=2

stdRR σ{tRi − tRi−1
}Ni=2

RR50p dim(
{
RR50p

∣∣ RR50p = RRi < 50
}

)

RR50pRatio RR50p
dim(RR)

we used the neurokit2 libraries with the implemented Pan-Tompkins algorithm

[140].

5.4 Models and methodology

To assess the performance of the ECG on a biometric verification task, we ex-

plored classical feature-based machine learning models and three deep learning

architectures. We did not compare all the existing models proposed in the previ-

ous studies (see table 2.3), but we restricted the selection based on the following

exclusion criteria. Models too slow or too memory consuming were discarded, since

the authentication task should ideally be happening on a mobile device within a
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very short time. In our framework, this process would occur in the background

during the swipe authentication.

Models requiring further processing or more complex data structures (i.e. images

or spectrogram) as inputs were discarded for the same issues mentioned above.

Finally, we discarded KNN and DTW models, the former for the large numbers of

samples required to generate the template and the latter for computational cost

alongside unreliability of the performance.

In the following sections we will describe what models we used and the parameters

selected.

5.4.1 Feature-based machine learning models

Considering the distributions of the extracted features (see Figure 5.7) and how

well they clustered different classes for some specific pair distributions, we decided

to evaluate the performance of three statistical classification models: Linear Dis-

criminant Analysis (LDA) [141], Naive Bayes classifier (NB) [24] and Decision

Tree (DT) [23].

All the models were implemented using Python’s Scikit Learn module [142]. The

models and their behaviours are described below.

5.4.1.1 Linear Discriminant Analysis

LDA works based on the Fisher’s linear discriminant for normally distributed

data. The main assumption is that all the features have a Gaussian distribution

and each input variable has the same variance for its class. The computation of

the prediction is performed on a linear projection of the features, considering the

mean of the distribution and the covariance matrix for all the classes. For this

reason, the size of the training set, the number of outliers and the normalisation of

the data are possible sources of errors. Another downside of the LDA and a direct

consequence of its simplicity is the likelihood to overfit on the training data.
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5.4.1.2 Naive Bayes

The Naive Bayes classifier (GNB) works on the same assumptions of LDA, such

as Gaussian distribution of the data and independence between features (this last

strong statement is what gives the name ”Naive” to this model). The imple-

mentation is simple and the computational cost is low, due to the model relying

entirely on the conditional probability (and the corresponding probability density

functions) of all the features respect to the class.

During the training process, the model calculates the a-priori probabilities for each

unique class (in the case of a binary classifier, this probability is determined by the

class imbalance or by the training criteria for data splitting) and the conditional

probability of each feature with respect to each class. The decision rule for this

classifier is to pick the maximum likelihood a-posteriori. Considering K as the

number of classes, Ck the k-th class, F the number of features and xf the f-th

feature in the feature vector x, the decision y is given as:

y = argmax
k∈{1,...,K}

p(Ck)
F∏
f=1

p(xf |Ck) (5.1)

This model is very fast to train, but it is also very dependant on the training

size and the randomisation of the imposter samples. The performance is directly

correlated to how representative the training set is of the population and how are

linearly separable the features.

5.4.1.3 Decision Tree

The Decision Tree (DT) is a non-parametric model (meaning that it only learns

probabilities and conditions, and the only hyperparameter is the depth of the

tree) that, given a feature vector, recursively partitions the features in branches

(each one being an “if” statement) to group samples with the same labels and/or

similar target values. For each branch, a new threshold is estimated based on the
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input feature from the previous branch. The cost function tries to minimise the

propagated error on each branch.

The advantages of the DT are that it’s an easy-to-understand white-box model,

with computational cost growth logarithmically proportional to the number of

samples used for training and doesn’t require normalisation of the data. The

downsides are the sensibility to oscillations and outliers and the risk of overfitting,

especially for datasets with a large class imbalance. Also, as for the previous

models, branches parameters need to be retrained for each new subject, resulting

in N subjects number of models instead of a N subjects number of templates, which

is ideal for deep learning models.

5.4.2 Deep learning models

We evaluated the performance of three deep learning models. As anticipated

before for swipe and pin gestures, the models should be small enough to be used

on a mobile device and should not be excessively computationally expensive, or

require further processing on the ECG data that would increase the complexity.

For these reasons, we avoided using recurrent networks or convolutional networks

with 2-dimensional kernels, typically used with image data.

The models we chose were a convolutional network based on the DeepECG model

[143], a Siamese network and a Variational autoencoder.

5.4.2.1 DeepECG-like model

The first deep learning model is a unidimensional convolutional network based on

a previous implementation by Labati et al.[143], but with a smaller structure and a

different set of weights and parameters, in order to make it fit for a mobile device

in terms of memory space and computation speed. The architecture consists of

four successions of convolutional and pooling layers, a dropout layer, a flatten layer

and a fully connected layer (see Figure 5.8).
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Figure 5.8: Visualization of the DeepECG-like deep learning model. Blue
sections inside layers represents the filters. Numbers describe layers and filters

dimensions (height, width and depth).

A convolutional layer is defined by its filter f with height H, width W and depth

D (in the case of 1-dimensional convolution, height will be 1). Depth can also be

visualised as the number of filters. Another parameter for the convolution is the

stride s, defined as the shift between successive convolutional operations. Given

an input vector x of length N, the output y for a single filter can be calculated as

follows:

y(n) =
W∑
i=0

x(n+i+s−1)·f(i) (5.2)

For all the N values in the input vector. The new length o of the output vector

will be:

o =
N − k
s

+ 1 (5.3)

This is repeated for all the D filters of the layer.

During the training phase, we used a softmax layer and a cross-entropy loss func-

tion, as also used for an identification task. When the training was complete,

we tested the model on unseen subjects, using the output of the fully connected

layer as a feature extractor. We created the user pattern averaging the extracted
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features from five samples after an L2 normalization, and later, we performed au-

thentication calculating the Euclidean distances between the pattern and testing

samples the same way we did for swipe and PIN in Chapters 3 and 4.

The model was trained as a feature extractor with data from 160 subjects of the

E-HOL dataset. We did not repeat the training procedure for the other two public

datasets. The main assumption was that once the model had learned to extract

features from a dataset, it should be able to generalise on other datasets if the

structure of the input data is the same.

We decided to perform the training on the E-HOL dataset for two main reasons:

it is the largest dataset amongst the three and has the lowest sampling rate. This

directly implies that to have the same input shape, data collected with different

sampling rates need to be reshaped to match the required input (after applying the

selected time window). This reshaping operation, depending on the sampling rates,

can be seen as a smoothing/moving average filter (if the data were collected at a

higher sampling rate) or an upsampling/interpolation (if the data were collected

at a lower sampling rate).

The first case is always a better choice, because even if the smoothing filter implies

some data loss, the output is still not distorted. Upsampling implies a function

estimation and the direct introduction of artificial data that may not correspond

to the real signal, resulting in an introduction of a bias.

5.4.2.2 Siamese network

As anticipated in the Swipe Chapter, a Siamese Network is a deep learning ar-

chitecture with two towers sharing weights and a merging layer that combines

the outputs. After the merging layer, there might be other layers performing

additional operations, but the output will still be a sigmoid that will give the

prediction. The merging layer is structured to calculate a distance metric between

the encodings of the two tower structures. In Figure 5.9 an example of a generic

siamese network is shown.
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Figure 5.9: Generic Siamese network. In the merging layer, a distance metric
function is executed to calculate distances between pairs.

A Siamese Network is used to predict if the two inputs correspond to the same

class or to different classes, hence the output will be a value between 0 and 1, and

the ground truth will be a binary value. The loss function, as described previously

in equation 3.14, tries to maximise the distance between different classes and

minimise the distance for data from the same class. The distance vector can

also be the monodimensional prediction value, the important factor is that at the

merging layer a distance was calculated.

Ibtehazx et al. provided an implementation of a Siamese Network for biometric

identification in closed environments and template verification for ECG record-

ings, but their model was not fit for mobile devices, due to the high number of

parameters and memory usage. We adopted a simpler solution, using the Siamese

Network framework just to improve the discrimination between classes compared

to our first deep learning model. We used the trained deepECG-like model as a

backbone for the two towers, freezing the weights, and merged the two output

layers, followed by a fully connected layer and a sigmoid output. The training

step of the Siamese Network was finalised to fine tune the distance criteria and

the clustering.
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With these premises, we did not evaluate the Siamese Network on all the datasets,

due to the complexity of generating pairs and the different protocol for testing (av-

eraging the enrolment heartbeat data to obtaining a mean heart cycle to compare

with the remaining data).

5.4.2.3 Variational autoencoder

The autoencoder is a hourglass network composed of an encoder and a decoder.

The encoder part is an extractor that embeds the input data into a latent space

Z of deep features. The decoder part expands the features from the latent space

and tries to reconstruct the original input. Due to its architecture and the cost

function relying on the reconstruction error between the input to the encoder and

the output of the decoder, an autoencoder is considered an unsupervised model

and doesn’t require labels during the training procedure. A visual representation

of a generic autoencoder is shown in Figure 5.10.

Figure 5.10: Generic structure of an autoencoder. X is the output, Z the
latent space and X’ the reconstructed output.

The purpose of an autoencoder is to reduce the dimensionality of an input vector,

retaining the features that better describe the data, and to act as a generator

for synthetic data; this is feasible after the model is trained, utilising only the

decoder part and feeding a custom latent vector as an input. A good encoding

would ideally generate a regularised set of features in the latent space, each one

with specific information content. The main issue of autoencoders is that they

are very dependant on the shape and the distribution of the training dataset and

they can overfit very easily (especially if the decoder and encoder architectures

are very complex and the latent space has few dimensions, resulting in too much

information loss).
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To improve the generalisation of the model and the regularisation of the latent

space, variational autoencoders (VAE) have been introduced. Compared to a nor-

mal autoencoder, the output of the encoder is not a latent space but a latent

normal distribution, sampled to generate a new Gaussian distributed representa-

tion. In this way, the new features are better regularised and distributed, providing

values that are equally descriptive of the input data.

The new sampled distribution Z is defined as follows:

Z = h(x)ℵ(0,I) + g(x) (5.4)

with h(x) and g(x) functions of the encoding network describing the mean and

variance of the distributions, and ℵ(0,I) representing the Gaussian distribution

centred in 0 and with variance of 1. Using this reparametrisation, errors can be

backpropagated ignoring the issue of the sampling from normal distribution.

To optimise the parameters of h and g, another loss is added to the reconstruc-

tion loss based on the Kullback-Leiber (KL) divergence [144] between estimated

sampled distributions that project data into the latent space and the actual dis-

tribution. The KL loss is defined as follows:

KL Loss = 1 + log(σ2
z)− µ2

z − σ2
z (5.5)

Considering that the latent space of the VAE provided mean and variance of the

distributions, we decided to use two distance metrics to evaluate the biometric

performance on verification of this model: the Euclidean distance and the Maha-

lanobis distance [145]. The latter seemed a better fit for the task, since it calculates

the distance between a point (in our case, the subject template) and a distribution.

For a distribution with diagonal covariance, which we assumed to be our case, the

Mahalanobis distance is defined as follows:

DM(x) =

√∑
i

(xi − µi)2
σ2
i

(5.6)
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5.4.3 Experimental protocol

We designed our experiments to evaluate not only the performance of the models,

but also the improvements when varying the enrolment sets for the subjects. For

classical ML classifiers, we used a 10 seconds time window for each sample during

the preprocessing. We calculated the mean EER for each model. During training,

we used 50, 150, 250 and 500 seconds of total time from the sample selected

amongst genuine and imposter subjects; in the case of the DL algorithm, we also

included a smaller training window of 5 seconds that classical models could not

achieve.

Imposter samples for training were selected randomly across all the subjects in

the dataset different from the enrolled subject. The biometric verification time

corresponds to the single sample window (10 seconds for classical machine learning

models and 2 seconds/1 heartbeat for deep learning models).

To train the DL algorithms, we used all the pre-processed samples from the first

160 subjects of the E-HOL dataset; the data were split into training and validation

sets, to evaluate the ongoing performance during the training phase. Then, for

verification, we used the first samples (according to the various aforementioned

enrollment times) in chronological order from each unseen subject (40 remaining

in the E-HOL dataset and all the others from WESAD and ECG-ID datasets) to

create the user template.

We applied the same concept from equation 3.16 to create the templates with the

DeepECG-like model and the VAE. Euclidean distance between the template and

the embeddings was used to perform the verification (Mahalanobis distance in the

case of the VAE). We used all the remaining samples from the enrolled subject

and the rest of the data for this evaluation.

Results are expressed in terms of EER for each enrollment set, for each model and

for each dataset. In the case of the ECG-ID dataset, we also analysed the inference

of gender during the authentication, calculating similarity scores for random pairs
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of genuine and impostor samples and comparing them with the scores of same/op-

posite gender pairs only. This was under the assumption that the heart structure

and size change not only through growth but also differs based on biological sex.

In the following section, we present the results for all the experiments and we draw

the conclusions.

5.5 Results and discussion

Results are shown for each dataset, comparing model performances on different

enrollment sizes (in terms of recording time). As explained above, all the deep

learning models extract features from a single heartbeat (2 seconds of recording)

and perform the verification using a distance metric from the template. The

statistical machine learning models, instead, perform direct binary classification

on a 10 seconds window of recording. We provided results separately for the

Siamese model, since it directly compares two samples and we could not apply the

same protocol as used for the other models.

In Table 5.3 results are shown for the E-HOL dataset. It’s the largest dataset in

terms of subjects and recording time. This affected the machine learning model

performance, that failed to generalise, with the exception of the Naive Bayes classi-

fier; and even in this case, results could vary depending on the randomisation seed

for training samples and more importantly depending on the impostor samples

selected for training.

We could not provide results for the VAE for the remaining three training sizes

due to internal computational memory issues, but we can predict the trend. As

distance metric, we used the Euclidean distance for the DeepECG-like model and

Mahalanobis distance for the VAE (which had a 10% increased error rate with

Euclidean distance).

In Table 5.4 the results for the WESAD dataset can be seen. As described before,

the WESAD dataset contains the least number of subjects and all the recordings
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were unsupervised (which resulted occasionally in noisy data and/or anomalies).

The reduced number of different classes and samples in all probability allowed the

decision tree to reach the best performance, with the 500 seconds of enrollment:

it’s reasonable to assume that data from all the different subjects were randomly

picked during the training procedure, becoming an identification problem more

than a verification task (which, as can be seen, is easily solved with the extracted

features). By this, it’s meant that, during the training procedure, the model

could most likely gain some information from every single subject in the dataset

and generate the best boundary for each one of them at every interaction. Such

boundaries would have the same validity if it was an identification problem, since

data from all the classes contributed to the training, not just an estimation from

few of them.

LDA and GNB classifiers remain consistent with the previous results. The deep

learning models perform slightly worse, but this is probably due to the aforemen-

tioned anomalies during the recordings. It’s important to remember that, unlike

the shallow models pretrained on the specific datasets, the DL architectures were

pre-trained only on a different dataset (E-HOL dataset, with a lower sampling

rate) and they still maintain consistency, proving that these models are good at

generalising. This is also the reason why the GNB model performs better on the

WESAD dataset compared to the DL models; the training allows a better fit, at

the cost of an ungeneralised model that needs re-training (and therefore a whole

database of data) for every new subject.

Overall, the DL models provide consistent results over different datasets (with-

out the necessity of retraining the weights) from data collected under different

conditions, with different devices, at different sampling rates, and with different

recording times.

An additional proof is provided in Table 5.5, with the results from the ECG-ID

dataset. Due to the small amount of data and very short recordings, we could only

evaluate the deep learning models and only for two enrollment sizes. Nevertheless,

the average EER was comparable with the previous results.
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Figures 5.11a and 5.11b show the clusters for the subjects from the E-HOL dataset

and the WESAD dataset respectively, using T-SNE to reduce the dimensionality

of the embeddings and project just the first 3 principal components. For both

datasets, it’s shown how well the samples recorded from the same subject are

clustered together with few to none overlap with other subjects samples.

In Figure 5.12 are shown a small number of reconstructed samples from the E-

HOL testing set using the VAE. Even if the performance as a biometric classifier

was not comparable to the DeepECG-like model, it would be a valid option as a

synthetic data generator to expand datasets.

As mentioned before, we evaluated the Siamese network model on one dataset

only due to the further preprocessing and complexity of creating pairs, which also

modified the testing protocol. We used the E-HOL dataset and the same criteria

for training testing. We repeated the training phase multiple times, noting that,

depending on the initial random value of the weights, it could either converge or

become a random classifier. Nevertheless, the EER was never lower than 5% with

the lowest value of 5.42%.

We reached the conclusion that, despite the increased complexity, the Siamese

could not provide a better separator for template and matching sample. In Figure

5.13 are shown pairs of samples and the predictions from the network.
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Table 5.3: Results on E-HOL dataset. All results are expressed in term of
Equal Error Rate [%].

E-HOL dataset
Enrollment time [seconds]

5 s 50 s 150 s 250 s 500 s
LDA - 37.33% 25.65% 19.22% 15.94%
DT - 27.91% 16.64% 10.99% 7.89%
NB - 6.30% 4.1% 4.09% 3.64%
DeepECG-like 4.71% 4.64% 4.26% 4.15% 4.11%
VAE 14.21% 12.85% 11.05% - -

Table 5.4: Results on WESAD dataset for all the enrollment sets. All results
are expressed in term of Equal Error Rate [%].

WESAD dataset
Enrollment time [seconds]

5 s 50 s 150 s 250 s 500 s
LDA - 32.03% 16.10% 11.68% 9.97%
DT - 31.88% 9.61% 8.37% 1.60%
NB - 4.57% 3.67% 3.67% 3.02%
DeepECG-like 7.07% 6.65% 6.59% 6.43% 7.17%
VAE 17.37% 15.17% 13.9% 14.29% 14.98%

Table 5.5: Results on ECG-ID dataset. Being the smallest dataset with very
short recordings, only two very short enrollment sizes could be evaluated. Re-

sults are expresses in Equal Error Rate [%].

ECG-ID dataset
Enrollment time [seconds]

5 s 7 s
DeepECG-like 5.7% 5.74%
VAE 14.51% 15.44%
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(a) E-HOl dataset.

(b) WESAD dataset.

Figure 5.11: 3D projections of embeddings from recorded data after apply-
ing T-SNE. 30 subjects from E-Hol dataset (A) and 15 from WESAD dataset

(B).Different colors represent different subjects.
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Figure 5.12: Original and reconstructed samples using the Variational au-
toencoder.
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Figure 5.13: Predictions for paired data. Blue line corresponds to the ref-
erence sample, orange to the matching sample. True: 1.0 means that the two

samples come from the same subject. Viceversa for True: 0.0 .
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5.6 Discussion

As the last modality of our framework, we explored the electrocardiogram sig-

nal (from a physiological perspective and a biometric perspective), we identified

an optimal wearable device for recording the data which can be used in a real

life scenario, and we assessed a few verification models on a multitude of public

datasets.

The best performing model, which also maintained stability in performance over

the three datasets (which means that it can generalise despite the device used or

the recording condition), is the DeepECG-like architecture.

We evaluate the performances over different enrolling times, maintaining the verifi-

cation on a single sample (corresponding to a single heartbeat and approximately

2 3 seconds of real time recording), finding that providing additional informa-

tion for the user templates provides improvement for classical machine learning

algorithms only, while deep learning algorithms have very small variations in per-

formance.

The effects of age differences on model’s performance were not explored, since

only one dataset (ECG-ID) provided the demographic information and it was not

enough to draw conclusions. Nevertheless it’s reasonable to hypothesize that age

difference could affect the performance, due to the fact that the aging process

directly affects the heart’s physiology and activity.

According to our results, we can conclude that ECG biometric is a very promising

modality that can be implemented even for short-time single-sample verification

tasks, without the subject even noticing it (the ECG monitor can connect with

the mobile device through Bluetooth and the recording process can be prompted

in the background).

Unfortunately due to COVID regulation we could not perform a data collection

and therefore it was impossible to generate paired data with Swipe and PIN to
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furtherly assess the multimodal fusion across all the three modalities, but we still

suggest a possible methodology on this matter in Chapter 6.



Chapter 6

Conclusion and future work

6.1 Summary

Biometric verification procedures on mobile and wearable devices is a topic studied

by a wide variety of perspectives. The collection time, verification time, and

performance of the models are some of the key factors that ensure acceptance

by the user population. Few studies evaluated the authentication performance of

behavioural biometrics based on the number of samples required by the model

for enrollment and verification, but the vast majority could not provide a single

sample solution or were focused on continuous authentication.

This research explored the possibility of light computational expense models, en-

rolled with few samples to perform a ceremony based verification task, in a realistic

framework that combines two behavioural modality and ECG. The study assessed

the performance of different models, proving not only the feasibility of the single-

sample verification, but also exploring how the quality of a subject or a sample

affects the outcome (in the case of Swipe verification).

In the following sections, we review our results and findings in relation to the

research question. We also provide a further look at the open challenges and

follow-up studies that this research brought up. We additionally give an insight of

147
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how the three factors fusion and the data collection would have been conducted,

if we were not impaired by covid restrictions.

6.2 Research findings

With this study, we addressed real life issues related to mobile biometric authen-

tication with respect to behavioural data. The research was not just focused on

performance evaluation, but also on authentication model stability, recording time,

and feasibility of the proposed framework for daily usage. We provide a discus-

sion for each research question (from Chapter 2) concerning the aforementioned

challenges.

- Is it possible to obtain a steady performance on mobile biometric

authentication with behavioural (PIN and Swipe) and electrocar-

diogram data?

To answer this question, it’s necessary to remark the whole experimental

protocol for each modality with particular attention on the enrollment data,

the datasets used and the tasks involved. It’s not possible to assess stabil-

ity in performance based on the authentication error alone. In the case of

Swipe authentication, our proposed deep learning models performed consis-

tently on unseen subject, but the overall performance was worse when using

public dataset data. This was due to the fact that Callsign data were semi-

constrained to a very specific task and the subject were more incentivated to

perform it at the best of their ability, unlike the publicly collected dataset.

This is not a critique to data collection procedures, but an observation on

how a system stability and generalisation power is strongly affected by task

constraints and subject consistency, especially considering behavioural data.

Other factors hardware-related may have constituted a bias (e. g. latency in

capture from the touch sensor), but we contained them during preprocessing

of the data, removing outliers.
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A further proof of biometric performance stability being highly affected by

a user’s own behaviours towards the verification task is given by the follow

up study on Swipe quality. Our experiments show that not only quality can

be estimated for behavioural data on both user and sample perspective, but

it’s a good indicator for performance. High quality subjects have smaller

authentication error and fluctuations, as per high quality samples are more

easily predicted correctly by the verification system. This directly implies

that authentication performance on behavioural biometrics can be predicted,

consistent, and feasible for real life applications.

In the case of PIN authentication, we can see a parallelism with Swipe dy-

namics, even thought we could provide less comparative results. More inter-

esting conclusions can be drawn regards ECG authentication. As described

in Chapter 5, an ECG signal is not behavioural (but emotions or intensity

of activity can still alter the signal), implying that data are inherently more

consistent for the same subject (if we exclude subjects with heart condi-

tions). We run our experiments evaluating different enrollment sizes and

testing our proposed verification model on multiple datasets to assess its

consistency over different devices and recording conditions, obtaining very

small variation in performance. Additionally, overall performance in terms of

EER for ECG biometrics was better compared to Swipe and PIN modalities,

confirming its stability and feasibility.

For the assessment of all the modalities, the enrollment samples were chosen

amongst the data recorded before the samples used for verification. This

ensured that our results were not biased by providing data ”from the future”.

We can conclude that the evaluated modalities with our assessed models

provide a steady verification performance.

- Is it possible to perform authentication on a ceremony based task

with just one sample request?

Directly connected to the previous research question, we investigated the

possibility of authenticating a subject providing one single sample (either a
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single Swipe gesture, a single 4-digits PIN entry, or a single recorded heart-

beat). The evaluation was conducted following the same premises mentioned

in the first research question: outliers removed, unseen subjects in the test

set, enrollment data for the subject template temporally older than the test-

ing samples.

The single sample verification task was a very challenging task, but it reflects

real world scenarios and expectations, in which when using an online service

that requires login verification, the user needs to be authenticated in the

least possible time. Especially in the case of PIN biometrics, it would not

be realistic to request a PIN multiple times (if not entered it correctly), so

the background biometric processing and verification needs to use the few

available data provided by that single entry.

With our evaluation we found that our model can generalise and provide

valid templates and authentication with few enrollment samples and just

one sample for testing. The performance of the models remain stable across

the subjects, but are very affected by the required task and behavioural

instability of the subjects. Nevertheless, considering the complexity of the

challenge and the , we can conclude that 13.72% EER for PIN authentication

and 12.9% EER for Swipe authentication are acceptable values.

ECG data, as stated before, are not directly related to user behaviours and

in general a single heartbeat contains more information, in terms of recorded

data and extractable features, compared to a Swipe gestures or a PIN entry.

Due to these reasons, it was expected that ECG biometric verification would

perform better than the behavioural biometric modalities. We found not only

great values in performance with one single heartbeat, but also that these

values can achieved with just 5 seconds of recorded data for enrollment and

that the model is able to generalise over three different datasets, making it

optimal for mobile authentication in a real life scenario.

It’s reasonable to believe that adding more complexity to the models would

improve the performances, but the trade-off would be more computational

expensive (considering computational cost as the number of parameters in
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the model and therefore the memory usage) and result in a prolonged train-

ing phase with uncertainty on convergence. Another improvement can be

attained by combining the modalities, but this will be discussed in the fol-

lowing research question.

In conclusion, even if not providing the highest accuracy and the lowest

error compared to other modalities (e.g. face recognition), the results sug-

gest that single sample authentication with behavioural biometrics and ECG

biometrics are feasible and can be implemented with the current mobile de-

vices available on the market, with expectations of further improvement in

performance with the growth of new technologies.

- Can the performance be improved by combining the aforemen-

tioned modalities? Our study addressed this issue developing a fusion

model designed for this specific framework, considering the optimal Level

where to perform the fusion (given the structure of the input data and the

contextual information on the sequential pipeline of the framework). We

used only paired samples from the two modalities without introducing syn-

thetic data, in order to make our results more consistent and unbiased.

We assessed our fusion model and compared its performance with the results

from the non-fused models and with fusion through another classical model.

Both fusion systems decreased the prediction error, but our proposed model

performed consistently better than the classical one, due to the contextual

information inherited in the algorithm formulation. In addition, our model

has only one trainable parameter, it’s easily implementable either on a local

device or on a server, and does not require the raw input data from the

modalities sensors, just the output scores from each modality’s model (which

decreases the risk of data leakage).

Results suggests not only that multi-modal biometric fusion can greatly im-

prove authentication performance (EER reduced from 15.32% to 7.84%), but

also that it can be performed at a low computing cost and that considering

the structure of the framework can lead to further improvements.



152

Unfortunately we could only assess two factors fusion in this study with

Swipe and PIN data, due to the impossibility to conduct a data collection

and record paired samples for the three modalities. Nevertheless, considering

the presented results, it’s reasonable to expect a further improvement in

performance with a multimodal system that combines ECG, Swipe and PIN

biometrics.

Considering all the research findings, we can conclude that this study introduces a

novel framework for mobile biometric verification on ceremony based task, which

proves how authentication can be performed rapidly in a real life scenario with min-

imal number of samples requested for enrollment and verification. We presented

a valid wearable solution that allows to include ECG biometric as a background

task on query, minimising the amount of data recorded and stored. We proposed

a novel fusion method which outperforms classical models.

In the last section, remaining open challenges are discussed, alongside a theoretical

solution for three factors fusion.

6.3 Open challenges

The work conducted in this study addressed the research questions, but also put

the basis for further evaluation and challenges that could not be addressed for

many reasons (e.g. time, COVID-19 restrictions and availability of participants

and devices). The first one is the fusion between all the considered modalities,

that unfortunately could not be done without a data collection and with paired

data from the various sensors. We will still provide a theoretical framework and

propose fusion methods based on our previous findings and forecasting an optimal

methodology considering the setup. The remaining two challenges are related to

the performance over long periods of time or sudden changes.
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6.3.1 Three factors authentication

Considering the initial setup, described in Chapter 2, there are various possible

steps in which the fusion between the three modalities (Swipe, PIN and ECG)

might happen, due to the recording of the ECG signal happening in background.

The options, considering just the different authentication phases, can be the fol-

lowings:

1. Swipe-ECG fusion followed by PIN : Only Swipe and ECG modalities are

blend together. If the subject is not authenticated, PIN verification is

prompted (see Figure 6.1).

Figure 6.1: Pipeline for the first multimodal option.

2. Swipe followed by PIN-ECG fusion: PIN and ECG fusion is prompted only

after a Swipe failure. This option reduces the amount of data collected from

the same subject dramatically, since the ECG data would not be recorded

until the first authentication task is failed (see Figure 6.2).

Figure 6.2: Pipeline for the second multimodal option.
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3. Swipe followed by Swipe-PIN-ECG fusion: as for option 2), ECG and PIN

data are recorded only after a Swipe failure, but in this case the fusion

method combines all the three modalities (see Figure 6.3).

Figure 6.3: Pipeline for the third multimodal option.

4. Swipe-ECG fusion followed by PIN-ECG fusion: two fusion algorithms with

two different ECG recordings (see Figure 6.4). The second multimodal ver-

ification is prompted after a failure from the first.

Figure 6.4: Pipeline for the fourth multimodal option.

5. Swipe-ECG fusion followed by Swipe-PIN-ECG fusion: Fusion is applied at

every stage with all the possible available data. This rigorously follows the

framework in Figure 2.8 from Chapter 2.

For each option the fusion algorithm can be implemented in many way and at

different Levels, but there are recurrent steps as can be seen in the figures. We

will propose few theoretical fusion methods for two (PIN-ECG or Swipe ECG)

and three (PIN-Swipe-ECG) modalities blend together.
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6.3.1.1 Two factors fusion with ECG

If we consider the case of ECG and PIN or Swipe fusion, with the sensors and

models evaluated in the previous Chapters and based on the former assumptions on

multimodal systems, it would be unlikely to have the fusion at feature or decision

level.

In the first case, there are several issues: data structures are not the same (not just

in terms of sampling but also in terms of dimensionality) and this would imply

some further pre-processing or vectorisation with the risk of losing information.

An LSTM network would not be possible to implement, unless considering the

whole ECG track as a single feature, but this would imply large padding for Swipe

or PIN data, or downsampling for the ECG signal. It could be argued that these

premises might not necessarily negatively affect the performance, nevertheless the

input data alongside the new model would be more computational expensive and

a new training would be needed from scratch to learn all the new weights.

A fusion at decision Level would not be recommended either, since majority vote

could result in a tie and ”weighting” more the decision of one model in respect to

the other model would make the latter superfluous.

A good choice would be to implement the fusion at model level, combining the two

original neural network architectures similarly to a Siamese network, but freezing

the weights before the merging layer and maintaining an embedding output with

triplet loss as cost function. The frozen weights would not be furtherly updated

during the training process of the fusion model, as a common procedure during

transfer learning. In this configuration, both modalities would be given equal

consideration, it would be the training process itself to adjust importance. In

Figure 6.5 the general idea is visualised.

The merging operation could be more complex and involve more than one layer,

as well as the following part of the architecture may have variable complexity.

The training process would be smoother, considering the frozen weights trained
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Figure 6.5: Two modalities fusion at model Level. Original models with frozen
weights are combined with a merging layer. The remaining layers of the new
architecture are the only one with trainable weights. The training is conducted

with batches of paired data from the same class.

already. This fusion can be implemented for options 1, 2, and 5; in the last case,

penalty fusion can be applied to the output scores of the two fusion models.

For ECG fusion, fusion at score level could not be performed with the penalty

fusion algorithm, since for both ECG-Swipe and ECG-PIN the main hypothesis of

cascade prompting would be missing. A combination of the two scores (linear or

non-linear) would still be possible, but with different criteria for the weights. An

easy way would be weighting each score based on the overall performance of the

corresponding model (the better performing would have a higher scaling parameter

for its score in the fusion algorithm). An example is given in Equation 6.1:

fusion score =
α · s1 + (1− α) · s2

M

0 < α < 1

(6.1)

With α as a parameter based on the performance of the first model respect to the

second model, s1 as the score from first model, s2 as the score from the second

model, and M as the maximum possible value between s1 and s2.
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A similar implementation could also take into consideration the quality score of

the subject, instead of the relative performances of the model. Assuming f(d1,d2)

being the fusion algorithm for the two modality scores expressed as distances from

the template, d1 can be corrected based on the quality score Qi of the i -th subject

and on the entity of the error as follows:

dcorrected1 = d1 · e(Qi−k)·σ(8d1−4)

0 < d1 < 1
(6.2)

With k as trainable parameter and σ as the sigmoid function. Equation 6.2 implies

that for low dissimilarity scores (hence when the subject is most likely verified)

the correction is close to 0, while for high uncertainty (e.g. when the difference

between sample and template is close to 1) the user quality applies a penalty

for high quality users (that are expected to be easily authenticated) and is more

permissive for low quality (usually inconsistent with themselves).

6.3.1.2 Three factors fusion

Fusing the three modalities together, as suggested by the Framework and seen

in Chapter 4, is only possible after a Swipe verification failure; this reduces the

number of possible fusion methods that can be applied. In this context, even if

there is an odd number of modalities, majority vote would become just a simpler

condition, defined as “if PIN and ECG authentication are successful, then the sub-

ject is authenticated”. Feature Level fusion is discouraged for the aforementioned

reasons and Model Level might not be possible, if the recorded data from Swipe

are not saved for further authentication.

An option would be to combine the embeddings generated separately by Swipe,

PIN and ECG models and create a new template. Similarly, the three similarity

scores can be fused together. For both solutions there are few criteria that could

be followed. Considering fS, fP , fE as the functions that transform the input

data from Swipe, PIN, and ECG respectively into embedding or similarity scores.
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These functions represent the three pre-trained models. Assuming h(x) and g(x)

as parametric functions of class C1, we can define possible fusion algorithms as

follows:

fusion score = g(fS ,fP ,fE)

fusion score = fP · g(fS ,fE)

fusion score = h(fP ,g(fS,fE))

(6.3)

Depending on the chosen functions, the fusion algorithms can be a linear combi-

nation or strongly non-linear distributions. Being both g and h of class C1 ensures

the differentiability of the fusion method, but not the convexity. This could affect

the training procedure, so the functions must be chosen wisely.

Equation 6.3 does not include other possible combinations, in order to avoid redun-

dancy; it’s also taken into consideration the cascade structure of the framework.

An example could be the following:

fusion(fS ,fP ,fE) = fP · eg(fS,θS,fE,θE)

g(fS ,θS ,fE ,θE) = θS · fS + θE · fE
(6.4)

6.3.2 Stability over time

Another open challenge for behavioural data is the stability of the system over

long periods of time, which directly reflect on the consistency of the user and

their change in behaviours. This issue can be directly addressed through repeated

user and sample quality estimations, frequency of changes and sensibility of the

authentication model on such changes. For an extensive study, it would be opti-

mal to evaluate quality-over-time considering different windows of time between

authentication attempts (weeks, months, and years).

In this study we assessed the performance of our models taking in consideration

their stability at the best of our possibilities, testing on samples recorded tem-

porally after the enrollment samples or, in case of ECG, also using datasets with

samples collected over several months of time. Nevertheless, to explore this issue,

it’s necessary to conduct a data collection over prolonged periods of times, with
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recordings from the same subjects years apart. As mentioned in Chapter 2 with

the related studies and in the descriptions of commonly used behavioural datasets

(Frank [40], Serwadda [41], Antal [45], and ECG-ID [137]) for biometric authenti-

cation, this issue has been identified before but never fully addressed. The existing

database for behavioural and ECG data have recordings collected at most with

few months apart, with a small number of samples and subjects (compared, for

example, with few face databases that have a larger range of collection time).

In conclusion, it would be advised for further studies to take into consideration a

prolonged data collection, in accordance with current COVID and GDPR regula-

tions.

6.3.3 Inter-device consistency

This issue is mostly related to behavioural biometrics, for two main reasons: a) as

behavioural data are affected by subject behaviours and interactions, differences

in devices may have effect of such interactions, which may result in a drop of

authentication performance. b) Our results have shown that ECG biometrics are

consistent over different devices, which can be seen by the similar performance

obtained over different datasets (each one using different devices and sampling

rate for signal capture).

In a real life scenario, with the growth of mobile technologies and the possibility to

synchronice multiple devices, it’s reasonable to expect a single user to have multiple

devices with different sizes and sensors. The authentication model should be able

to successfully verify the user regardless of these changes. Further studies could

explore those possibilities, assessing the correlation between model performance

and device, and trying to solve the issue with further data pre-processing or model

weights scaling based on device used.
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6.4 Final considerations

In conclusion, the work conducted in this thesis achieved many goals. The major

contributions are listed below:

• Novel deep learning models for Pin, Swipe and ECG biometric authentica-

tion. Each model performs the verification using only a single sample from

the user (and in case of ECG, a single recording of 3 seconds).

• The introduction and evaluation of a novel quality metric for Swipe data,

considering both cases of user quality and samples quality.

• A new pre-processing algorithm for data removal, the shifted zero crossing

(S0X, see Equation 3.3). it’s purpose is to detect swipe data that do not

comply with the required task (horizontal swipe) on a threshold basis.

• A multi-modal score-Level fusion algorithm (see equation 4.1), with only

one trainable parameter, that considers the contextual information of the

modalities and bases the decision on the magnitude of the error from the

first modality.

• A theoretical framework for multi-modal mobile biometric authentication,

comprised of three different modalities and fusion algorithms at different

stages.

As technology progresses, it’s reasonable to expect further improvements in mobile

authentication systems. This thesis provided promising results on biometric user

authentication from a multitude of modalities, addressing the challenge of the

single sample authentication.

Nevertheless, it was not expected, nor it was the initial intention, to reach an

end-point with this study. Instead, this thesis should be a launching pad for

future mobile authentication systems and future studies in the field of behavioural

biometrics.



Appendix A

Callsign agreement

Figure A.1: Agreement on use of Materials (including production data) from
Callsign.

161



Bibliography

[1] Marco Santopietro, Ruben Vera-Rodriguez, Richard Guest, Aythami

Morales, and Alejandro Acien. Assessing the quality of swipe interactions for

mobile biometric systems. In 2020 IEEE International Joint Conference on

Biometrics (IJCB), pages 1–8, 2020. doi: 10.1109/IJCB48548.2020.9304858.
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[142] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.

the Journal of machine Learning research, 12:2825–2830, 2011.

[143] Ruggero Donida Labati, Enrique Muñoz, Vincenzo Piuri, Roberto Sassi, and
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