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Mathematical characterisation of an egg shape implies, among other things, the possibility

of its description with simple and accurate formulae. Of mathematical models delineating

ovoidal egg shape, Hügelsch€affer's model is deemed standard and theoretically established.

However, for its application and in addition to measuring the egg length (L) and its

maximum breadth (B), one more parameter (w) is needed, which is the shift of the B-axis

from the middle point of egg length. Measurement of w is quite laborious and does not

always meet the required accuracy criteria. Previously, we introduced Narushin's model,

which uses only two parameters, L and B, but it does not exactly outline the egg profile. To

grapple with this problem, here we have developed a combination of the two models. The

new two-parametric model is based on Hügelsch€affer's model, while the parameterw has a

sliding character, changing its value at the egg's sharp end as calculated following Nar-

ushin's model, to zero at the blunt end. The newmodel was tested for accurate reproducing

the egg profile with an average error of 4.17% when the value of the parameter w changes

according to linear dependence. This error was lower than when using three parameters in

Hügelsch€affer's model. Thus, we propose a new egg shape model, which we named a

modified Hügelsch€affer's model with two parameters. With its use, new formulae were derived

for calculating the egg volume and surface area, the empirical validation of which showed

an average error of 1.72% and 0.83%, respectively.

© 2022 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At present, the description of the bird's egg contours using

mathematical indices, such as shape index (Romanoff &

Romanoff, 1949) or elongation and conicality (Hays et al., 2020),

cannot meet the increasing requirements for precise ovoidal
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egg shape characterization and its utility in engineering,

construction, and research related to poultry production and

evolution.

As we repeatedly noted (Narushin, Lu, et al., 2020;

Narushin, Romanov, et al., 2020; Narushin et al., 2021a, 2021b;

Narushin, Romanov, Lu, et al., 2021), it is a clearmathematical

description of the geometrical profile of an egg that facilitates
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Nomenclature

a, b Constant coefficients used to determine the

function of changing the value of the parameterw

B Egg maximum breadth

Kw Coefficient used to recalculate the value of the

parameter w depending on B and L

L Egg length

n A rational non-negative number and a function of

the shape index (B/L)

S Egg surface area

V Egg volume

w Parameter that corresponds to a distance between

two vertical axes, one of which coincides with B

and the other one is crossing the egg at the point

of L/2 (Narushin, Romanov, & Griffin, 2021a)

waln Average value of the parameterwwhen it changes

along a linear function (see Eq. (20))

xB Value of the egg radius at the point on the

horizontal axis corresponding to B

xL/2 Value of the egg radius at the point on the

horizontal axis corresponding to L/2

εH Average error when comparing the

Hügelsch€affer's (Eq. (1)) model with actual egg

profiles

εN Average error when comparing the Narushin's
model (Eq. (2)) with actual egg profiles

εH]N Average error when comparing the

Hügelsch€affer's model (Eq. (1)) with actual egg

profiles, whenw values were calculated according

to Eq. (10)

εln Average error when comparing the

Hügelsch€affer's model (Eq. (1)) with actual egg

profiles, if w values were calculated according to

Eq. (16)

εel Average error when comparing the

Hügelsch€affer's model (Eq. (1)) with actual egg

profiles, if w values were calculated according to

Eq. (17)

εV Average error when comparing actual values of

the egg volume and those calculated by formula

(25)

εVw Average error when comparing actual values of

the egg volume and those calculated by formula

(21) using measured values of the parameter w

εVln Average error when comparing actual values of

the egg volume and those calculated by formula

(21) using values of waln

εS Average error when comparing actual values of

the surface area and those calculated by formula

(26)

εSw Average error when comparing actual values of

the surface area and those calculated by formula

(22) using measured values of the parameter w

εSln Average error when comparing actual values of

the surface area and those calculated by formula

(22) using values waln
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solving the problems of commercial poultry farming. This is

primarily due to developing the design of machines and

mechanisms used for sorting, reloading and packaging of

eggs. In many cases, the shape of the key mechanical ele-

ments should match the geometry of an actual egg. At the

same time, the egg contour equation is indispensable in

researchwork aimed at studying the effect of egg geometry on

egg hatchability, shelf life, strength properties, etc. The need

for a mathematical description of egg contours also arises for

the whole industry of bio-inspired technologies (Narushin,

Romanov, & Griffin, 2022). To talk more specifically, there

are egg-inspired engineering approaches and applications that

use designs based on, or inspired by, the shape of avian eggs

and can be relevant to the design of thin-walled vessels and

reservoirs (Lazarus et al., 2012; Zhang, Zhu, et al., 2017; Zhang,

Wang, et al., 2017; Zhang et al., 2019, 2021; Guo et al., 2020;

Narushin, Romanov, & Griffin, 2022), architectural structures

(Freiberger, 2007; Petrovi�c et al., 2011), many works of art

(Gilbert, 1974; Herz-Fischler, 1990), and even computer games

(e.g., Silverman, 2020). Nevertheless, the publication of

Ursinus (1944) on applying Hügelsch€affer's model, which quite

properly replicates the egg profile, in the field of aircraft con-

struction can be considered the beginning of such an egg-

inspired engineering technologies era (Narushin, Romanov,

& Griffin, 2022). Somewhat forgotten, this model was subse-

quently revived thanks to the publications of Petrovi�c and

Obradovi�c (2010), Petrovi�c et al. (2011), and Obradovi�c et al.

(2013) in relation to architectural structures. More recently,
we successfully adapted it to the profile of bird eggs that have

the so-called classic ovoid shape (Narushin, Romanov, et al.,

2020; Narushin et al., 2021a,b):

y¼±
B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 4x2

L2 þ 8wxþ 4w2

r
(1)

where B is the egg maximum breadth, L is the egg length, and

w is an additional parameter for the distance between two

vertical axes, one coinciding with B and the other one with L/2

of the egg.

Parameters B and L are the most common egg character-

istics, primarily due to the simplicity and accuracy by which

they can be measured. This cannot be said about the param-

eter w; it was impossible to accurately determine w even with

the help of 2-D imaging analysis (Narushin, Romanov, et al.,

2020). In this respect, we proposed a method for recalculat-

ing w by measuring the egg diameter at points corresponding

to L/4 at the sharp (yL/4) and blunt ends (y-L/4), respectively, as

shown in Fig. 1. Thus, for an accurate construction of the ovoid

profile of an actual egg, it is already necessary to perform not

three, but four measurements. At the same time, in order to

carry out the latter two measurements, it is necessary to

obtain a computer image of an egg, and then process it using a

basic programme such as MS Office Picture Manager applica-

tion, or else specialised software programmes. In the event,

however, this did not add too much value to the applicability

and ease of practical use of the Hügelsch€affer's model for

creating mathematical analogues of bird eggs.

https://doi.org/10.1016/j.biosystemseng.2022.11.003
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Fig. 1 e Schematic representation of the egg's geometric

parameters required for calculating w.
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In addition to Hügelsch€affer's model, there are some other

models that, from our point of view, are termini a quo for

many subsequent similar studies. In this regard, they deserve

more detailed consideration.

A three-parameter chicken egg profile model was also

proposed by Carter (1968). In addition to L and B, the author

suggested using the distance from the sharp end of the egg to

the axis of maximum breadth. In essence, this is the same as

the sum of L/2 þ w.

Even earlier, Preston (1953) also relied on three parameters

to arrive at a “simple” or “classical” ovoid as he characterised

the figure. In addition to the classic measurements of L and B,

he introduced a certain constant that changed from egg to egg.

He assumed a number of values for this constant depending

on the avian species of a particular egg. Perhaps, this method

is acceptable for an approximate description of the egg shape

but, unfortunately, it does not take into account all possible

variants of individual variability, since the data presented

were limited to only those egg samples that were involved in

his research.

The only two-dimensional so-called “egg” model was pro-

posed by Narushin (1997, 2001), which used only two main

measurements, L and B. However, its egg profile gave some

shape error at the sharp end.

Previously, Narushin (1997a) proposed a theoretical deri-

vation of the egg profile using only two main parameters B

and L, which was improved later (Narushin, 2001) to the

followingmodel that we will henceforth refer to asNarushin's
model:

y¼±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

2
nþ1x

2n
nþ1 � x2

p
(2)

in which the coefficient n was defined as a rational non-

negative number and a function of the shape index (B/L),

and can be calculated approximately using the following for-

mula (Narushin, 2001):

B
L
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nn

ðnþ 1Þnþ1

s
(3)
This model was extremely convenient for creating engi-

neering structures resembling a bird's egg in shape (e.g.,

Zhang, Zhu, et al., 2017; Zhang,Wang, et al., 2017; Zhang et al.,

2021; Guo et al., 2020). However, judging from the graphic

images presented in Narushin (1997a, 2001), this model had

errors in comparison with the actual profiles of ovoid eggs.

The present study replaces w in Hügelsch€affer's formula

with a function of B and L. The choice of function is motivated

by further consideration of Narushin's (1997a, 2001) model.
2. Theory

Narushin (2001) derived an equation for n (see Eqs. (2) and (3))

based on all possible variations of the B/L shape index that

exist in nature, i.e., from 0.48 to 1.

For our purposes, it will be sufficient to confine ourselves to

the B/L data, which are characteristic only for chicken eggs,

since they can serve as model objects for most ovoid profiles.

According to Romanoff and Romanoff (1949), B/L for chicken

eggs varies in the range [0.65… 0.82]. This is also confirmed by

numerous data from our previous observations on egg quality

parameters (Narushin, 1997a,b, 1998, 2001, 2005; Narushin, Lu,

et al., 2020; Narushin, Romanov, et al., 2020).

Based on the n data given by Narushin (2001), values of this

coefficient in the range [3.05 … 1.70] were used, which satis-

fied the required B/L interval (i.e., [0.65… 0.82]). By substituting

the value of n from the specified interval [3.05 … 1.70], with a

step of 0.005, into formula (3), 270 values were generated and

subsequently approximated by the following dependence:

n¼ 1:464

�
L
B

�2

� 0:47 (4)

with R2 ¼ 0.999999.

Now let us determine what the parameter w in Narushin's
model (Eq. (2)) is equal to. To do this, we find the difference

between the values on the x-axis corresponding to (i) the egg

maximumbreadth (xB), and (ii) half the egg length (xL/2). The xB
value was derived in Narushin (2001) and corresponded to

xB ¼ L
� n
nþ 1

�nþ1
2

(5)

Then,

w¼ L
� n
nþ 1

�nþ1
2 � L

2
¼ L

�� n
nþ 1

�nþ1
2 �1

2

�
(6)

We rewrite (6) in the following form:

w¼ L,Kw (7)

where the coefficient Kw is equal to

Kw ¼
� n
nþ 1

�nþ1
2 � 1

2
(8)

Let us see how w will change depending on the B/L varia-

tions recalculated from the values of n using formula (3)

(Fig. 2).

Approximation of the obtained dependence resulted in the

following calculation formula:

https://doi.org/10.1016/j.biosystemseng.2022.11.003
https://doi.org/10.1016/j.biosystemseng.2022.11.003
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Kw ¼0:103þ 0:012
B
L
� 0:115

�
B
L

�2

(9)

with R2 z 1, and finally:

w¼ L

 
0:103þ 0:012

B
L
� 0:115

�
B
L

�2
!

(10)

Thus, the parameterw in Hügelsch€affer'smodel will match

its counterpart in Narushin's model in cases where the value

of w matches Eq. (10) data.

How each of the models will correspond to the profile of

actual eggs, and also what variants of respective recalcula-

tions of the value of w according to Eq. (10), has become the

goal of the experimental studies described below.
3. Materials and methods

For a comparative analysis, geometric profiles of 40 chicken

eggs obtained as a result of 2-D image scanning (Narushin, Lu,

et al., 2020) were used. The table chicken eggs were supplied

by Woodlands Farm, Canterbury and Staveleys Eggs Ltd,

Coppull, UK. The imaging procedure is described in detail in

Narushin, Lu, et al. (2020). Average weight of the eggs involved

in the experiment was 59.2 ± 4.7 g, with L ¼ 5.6 ± 0.2 cm and

B ¼ 4.3 ± 0.1 cm. The shape index (B to L ratio) in this egg

sample was about 0.767 ± 0.023.

The degree of correspondence of each of the theoretical

profiles to actual eggs was assessedwith approximatingmean

percentage error (ε; e.g., Makridakis et al., 1982):

ε¼1
k
,
Xk
1

����v1 � v2

v1

����,100% (11)

where k is a number of x points on the x-axis, and v1 and v2 are

their respective values on the y-axis, i.e., egg radii obtained by

a direct measurement of the egg profile (v1) and calculated

from a corresponding theoretical model (v2). The radii were

measured along the horizontal axis of the egg at a shift of 1
Fig. 2 e Graphic dependence of the coefficient K
pixel. Thus, depending on the value of L, the number of

measurements k varied from 387 to 426.

Formula (1) was modified to better match Narushin's
model:

y¼±B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðL� xÞ

L2 þ 4wðL� 2xÞ þ 4w2

s
(12)

For each egg profile the following models were tested: (i)

the Hügelsch€affer's model with the measured parameter w as

appeared in Narushin, Romanov, et al. (2020); (ii) the Nar-

ushin's model, for which only twomeasurements (B and L) are

sufficient; (iii) the Hügelsch€affer'smodelwith the parameterw

that conforms to the Narushin's model as recalculated with

Eq. (10).
4. Results

4.1. Egg geometry

An example of three obtained geometric profiles is shown in

Fig. 3. As an illustration, we used an egg #1 (Fig. 3a,b) in which

the value of w for Hügelsch€affer's model was very different

from that obtained by recalculation with Eq. (10) for Narush-

in's model and also from the one (egg #2, Fig. 3c) for which a

full compliance of this parameter was found.

Approximately the same nature of the profiles was ob-

tained for the rest of the analysed eggs. The use of

Hügelsch€affer's model leads to a fairly accurate match with

the actual profile under a correctly measured value of the

parameter w. However, as noted in the Introduction section,

this is by no means always possible. The average error of

comparison of this model with actual eggs was: εH ¼ 4.62%.

Using Narushin's model eliminates the laborious and not

always accurate measurement of w, although even when the

value of this parameter corresponds to an actual egg, there is

still an error in the exact reproduction of its shape. On

average, it amounted to εN ¼ 6.95% for all analysed eggs.
w on the shape index of chicken eggs (B/L).

https://doi.org/10.1016/j.biosystemseng.2022.11.003
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Fig. 3 e Comparative analysis of three geometric profiles of chicken eggs (dimensions are given in pixels). (a) The blue line

matches the profile of an actual egg #1; the green line is plotted according to Hügelsch€affer's model with the value of the

parameter w conforming to an actual egg #1 and equal to 0.06 cm; and the purple line is consistent with Narushin's model,

for which the w value was calculated from Eq. (10) to be 0.26 cm. (b) The blue line conforms to the profile of the same actual

egg #1, and the green one to Hügelsch€affer's model with the value of parameter w corresponding to that calculated from Eq.

(10), i.e., 0.26 cm. (c) The blue line conforms to the profile of another actual egg #2; the green one to Hügelsch€affer's model

with the value of parameter w corresponding to the actual egg #2 equal to 0.23 cm; and the purple one to Narushin's model,

for which the value of w was calculated from Eq. (10) and also amounted to 0.23 cm. (For interpretation of the references to

color in this figure legend, the reader is referred to the Web version of this article.)

0 L

w

Fig. 4 e Linear change in the values of w over the interval

from 0 to L.
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The use of w values calculated from equation (10) in

Hügelsch€affer's model somewhat improved the situation in

comparison with Narushin's model, at εH]N ¼ 5.56%, although

it did not allow us to speak of complete agreement, which is

especially noticeable in Fig. 3b.

A more careful analysis of the obtained contours

allowed us to suggest that the use of Hügelsch€affer's model

with the value of the parameter w calculated from Eq. (10)

in the range of x ¼ [0 … L/2] (which corresponds to the

sharp end of the egg) does not affect the distortion as

compared to the actual egg contour. The error already oc-

curs in the interval of x ¼ [L/2 … L] (which corresponds to

the blunt end of the egg). At the same time, the blunt end

of the egg is almost identical to the ellipse, i.e., when

w ¼ 0.

In this respect, we hypothesised that the value of the

parameter w may not be constant, but with each value of x

from 0 to L, it smoothly changes from its maximum value (i.e.,

calculated according to Eq. (10)) at the point x¼ 0 and up to the

value w ¼ 0 at the point x ¼ L.

To evaluate this hypothesis, we tested a few possible

functional dependencies of the change in the values of w as

presented below.

4.1.1. Linear function
For this case, the change in the values of w will occur ac-

cording to the following function (also shown conventionally

in Fig. 4):

w¼axþ b (13)

where a and b are constants to be determined.
According to our hypothesis, at x ¼ 0 the value of w will be

maximum, i.e., calculated by formula (10). Then, starting from

Eq. (13),

b¼ L

 
0:103þ 0:012

B
L
� 0:115

�
B
L

�2
!

(14)

At x ¼ L, the value w ¼ 0 (Fig. 4). Taking Eq. (14) into

account, formula (13) can be rewritten as

a¼ �
 
0:103þ0:012

B
L
�0:115

�
B
L

�2
!

(15)

Then, substituting the values of the obtained coefficients a

(Eq. (15)) and b (Eq. (14)) into Eq. (12), we have the following

final function of changing w:

https://doi.org/10.1016/j.biosystemseng.2022.11.003
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w¼
 
0:103þ 0:012

B
L
� 0:115

�
B
L

�2
!
ðL� xÞ (16)

Using Eq. (16) to determinew in Eq. (12) for Hügelsch€affer's
model, variants of chicken egg profiles were constructed. For

ease of comparison, Fig. 5 shows graphic images corre-

sponding to the same eggs #1 and #2 as in Fig. 3.

The average error in comparing the obtained contours with

actual eggs was: εln ¼ 4.17%.

4.1.2. Ellipse equation
What will happen if the values ofw change curvilinearly? The

easiest way to test this hypothesis is using the ellipse equation

due to the smoothness and uniformity of the change in the

values of y depending on x. That is, the value of w will grad-

ually decrease along its 1st quadrant (Fig. 6).

Using the ellipse formula and an approach similar to the

one we applied for the linear function, the following equation

for changing the parameter w was obtained:

w¼
 
0:103þ 0:012

B
L
� 0:115

�
B
L

�2
! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � x2
p

(17)

Using Eq. (17) to determinew in Eq. (12) for Hügelsch€affer's
model, we also obtained variants of chicken egg profiles. Two

of them are presented in Fig. 7 and conform to actual eggs that

have already been used by us in Figs. 3 and 5.

The average error εel in comparing the obtained contours

with actual eggs was 4.38%.

The use of other curvilinear functions was not feasible for

two probable reasons: (i) due to the presence ofmore than two

unknown constants, which made it impossible to determine

them in our case; or (ii) due to obtaining incorrect values for

the case w ¼ 0. The latter could occur, for example, when

using power, exponential or logarithmic functions.

Comparison of the values of the average errors ε showed

that the linear dependence of the change in the parameter w

leads to a more accurate match with the actual egg contour

(εln ¼ 4.17%). In this case, the calculation accuracy was even

higher than when using a correctly measured constant value

of w (εH ¼ 4.62%).

Given the linear change inw according to Eq. (16), Eq. (12) of

Hügelsch€affer's model can be rewritten as follows:
y¼±B


xðL� xÞ

L2 þ 4
�
0:103þ 0:012 B

L � 0:115
�
B
L

	2�ðL� xÞðL� 2xÞ þ 4
�
0:103þ 0:012 B

L � 0:115
�
B
L

	2�2ðL� xÞ2

vuut (18)
Thus, Eq. (18) was taken as optimal for the geometric

description of the contours of chicken eggs. We conditionally

coined this model as modified Hügelsch€affer's model with two

parameters.

4.2. Egg volume and surface area

The next step in the evaluation of this two-parameter approach

was the derivation of equations for calculating the main

geometrical egg parameters, volume (V) and surface area (S).
Previously, we have proposed a number of approaches for

calculating V and S based on Hügelsch€affer'smodel. For this, it

was assumed both the use ofmeasured values ofw (Narushin,

Romanov, et al., 2020; Narushin et al., 2021; Narushin,

Romanov, Mishra, et al., 2022) and calculations without it

(Narushin et al., 2021a).

Nonetheless, the development of a new model can be

considered completed when, on its basis, derived formulae for

the main characteristics of an object are also obtained. Thus,

we considered it necessary to expand research on Eq. (18), i.e.,

modified Hügelsch€affer's model with two parameters, by

inferring new dependencies:

V ¼ f(L,B) and S ¼ f(L,B).

In doing so, we took two approaches.

4.2.1. Using averages
Here, we tested possibility to use the average value of w

calculated using Eq. (16).

To calculate the mean value w that we will denote as wa,

we use the classical formula of a mean value theorem (e.g.,

Besenyei, 2012):

fa ¼ 1
b� a

Zb
a

fðxÞdx; (19)

which for our cases will be rewritten in the following form:

wa ln ¼0:5L

 
0:103þ 0:012

B
L
� 0:115

�
B
L

�2
!

(20)

To test this approach and the average value of the

parameter w of the above function, we used the formula for

calculating egg volume from Narushin, Romanov, et al. (2020)

and its surface area formula from Narushin, Romanov, Lu,

et al. (2021), respectively:

V¼ pB2

256w3
a

�
4waL

�
L2 þ 4w2

a

	� �L2 � 4w2
a

	2
, ln

����Lþ 2wa

L� 2wa

����
�

(21)

S¼2:48B
L

,
�
L2 �0:34Lwa �4:27w2

a

	
(22)
Empirical data on egg volumes measured by Archimedes’

principle and surface areas examined with the 2-D digital

imaging and subsequent image processing techniques were

used from the same papers.

Comparison of the calculated values forV (Eq. (21)) and S (Eq.

(22)) with the experimental data values showed the following

error values: for a linear function, εVln ¼ 1.72% and εSln ¼ 0.83%.

Similarly, we checked the possibility of calculating V

and S by recalculating the value of w that varies following an

elliptic function (formula (17)); however, the resulting errors
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exceeded those for a linear function. As a result, it was

concluded that it would be inappropriate to use the curvilinear

w change function.

Checking the error in calculating V and S using the same

formulas and considering the measured (i.e., actual) value of

the parameter w, gave the following results: εVw ¼ 1.73%, and

εSw ¼ 0.95%.

4.2.2. Using integral geometry formulae
This approach is considered standard when deriving such

formulae, although sometimes the complexity of calculating

the integral, associated with the cumbersomeness of the

integrand, does not always lead to an exact accurate result.

However, we decided to follow this testing path in order to

choose the most optimal solution for sure.

In this instance, the volume of the rotation figure described

using the following integral geometry formulae:

V¼p

ZL
0

y2dx (23)

and
Fig. 7 e Construction of geometric profiles of two different chick

ellipsoidal change in the parameter w (dimensions are given in

egg #1 (w ¼ 0.06 cm), and the green one to Hügelsch€affer's mode

(b) Blue line corresponds to the profile of an actual egg #2 (w ¼ 0.

ellipsoidal change in the parameter w from 0.23 to 0 cm. (For in

the reader is referred to the Web version of this article.)
S¼2p
ZL
0

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dy
dx

�2
s

dx (24)

where function y is defined by formula (18)

Integrals (23) and (24) cannot be converted to a tabular

form, therefore, their solution is possible only with the

help of approximate methods. As such, the method for

determining the area of a flat figure formed by the respec-

tive curves from the integrands in Eqs. (23) and (24) was

chosen. For that purpose, we exploited a numerical method

in MS Excel as was proposed elsewhere (Piessens et al.,

1983).

As a consequence of the implementation of this approach,

the solution of the above integrals (Eqs. (23) and (24)) resulted

in the following mathematical expressions:

V¼ 0:034LB2

�
B
L
þ14:389

�
(25)

S¼1:038LB

�
B
L
þ2:005

�
(26)

A detailed transformation of Eqs. (23) and (24) and the

derivation of the final formulas are presented in Supplemen-

tary Data A.

The L and B values from our experimental data were

substituted into Eqs. (25) and (26). After that, the obtained

values were compared with the measured egg volumes and

surfaces (similar to the procedure in Section 4.2.1. Using

averages).

A comparison of the calculated values for V (Eq. (25)) and S

(Eq. (26)) with the experimental ones showed the following

errors: εV ¼ 2.55%, and εS ¼ 17.70%, respectively.

For the convenience of subsequent analysis, we trans-

formed Eqs. (21) and (22) by substituting Eq. (20) into them and
en eggs according to Hügelsch€affer's model with an

pixels). (a) The blue line conforms to the profile of an actual

l with ellipsoidal change in parameter w from 0.26 to 0 cm.

23 cm), and the green one to Hügelsch€affer's model with an

terpretation of the references to color in this figure legend,
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some transformation to a simpler form. As a result, we ob-

tained the following final calculation formulae:

V¼ 0:5115LB2 þ 0:0035B3

�
1�0:343

B
L

�
(27)

S¼2:48LB

 
1� 0:02

�
1�B

L

��
B
L
þ0:896

�
� 0:014

�
1� B

L

�2

�
B
L
þ 0:896

�2
! (28)

Detailed output of Eqs. (27) and (28) is provided in Supple-

mentary Data B.
5. Discussion

All previous successful attempts to describe the profile of

chicken eggs mathematically required, at a minimum, the

measurement of three parameters. Two of them, i.e., the egg

length (L) and its maximum breadth (B), have always been

considered the most popular and easiest to implement.

Nevertheless, another one was normally required, for

example,w, whichmost often turned out to be quite laborious

in terms of its measurement.

In the present study, this problem was solved by our

suggesting to change the variant of the constant value of the

parameter w for a particular egg to a “sliding” one, i.e.,

replacing w in Hügelsch€affer's formula with a function of B/L

along the egg profile. Such a functional change in w enabled

to combine two fundamental principles e the accuracy of

matching with the actual egg profile and the use of the

minimum possible number of measurements. When tested,

this hypothesis resulted in an unexpectedly high accuracy

estimate, exceeding not only Narushin's model, which is

more distant from the actual profile of a chicken egg, but also

the classical Hügelsch€affer's model, for which the value of w

was carefully selected by sorting and comparing with the

digitised shape of each egg involved in the experiment. In

this case, the two considered variants (linear and elliptical) of

the functional change in w led to a smaller error than its

constant value (εln ¼ 4.17% and εel ¼ 4.38%, respectively, vs

εH ¼ 4.62%). It was the linear function that was taken as the

basic one and the most accurate and easy to use, resulting in

a new mathematical model of a chicken egg as described

using Eq. (18).

Since the derivation of mathematical dependence often

pursues purely applied problems, we also performed the

respective calculations. And since the most relevant pa-

rameters, being most often in demand both in research

work and in poultry industry (Baydevlyatova et al., 2009;

Tagirov et al., 2009; Shomina et al., 2009), are the egg volume

and surface area, we have made a number of steps to

generate the appropriate calculation formulae for these two

main egg characteristics also. Since field zootechnical

studies often do not require a specialized analytical equip-

ment for measuring accurately a whole number of geo-

metric parameters of eggs, the availability of simpler

calculation formulae based on just two measurements

makes it easy to carry out these investigations.
The results of theoretical calculations and experimental

verification enabled us to assert that our approach using the

average value of the “sliding” parameter w turned out to be

more accurate than the expressions obtained using the inte-

gral calculus formula. However, based on a comparison of the

obtained errors of these calculations, we chose the option that

gives the minimum ε.

We produced the final formulae for calculating V (Eq. (27))

and S (Eq. (28)) exactly in this form in order to demonstrate the

adequacy of the controversy we raised earlier about the co-

efficients for LB2 (for V) and LB (for S) (Narushin, 2005;

Narushin et al., 2021a). The coefficient of 0.5115 in Eq. (27) fits

exactly into the interval of 0.5163 ± 0.0065 demonstrated by

Narushin et al. (2021a). At the same time, the remaining part

of Eq. (27) is designed to level out possible calculated errors

depending on the values of L and B for a particular egg.

Similarly, the coefficient of 2.48 in Eq. (28) is fairly close to

that found by Narushin et al. (2021a), i.e., 2.186. The differ-

ences between them are smoothed out by an additional

functional factor, which in this case has the form of a

quadratic dependence, in contrast to the linear dependence

that we obtained earlier (Narushin et al., 2021a).
6. Conclusions

On the basis of our findings, we suggest that the designed

ovoidal egg shape mathematical model (Eq. (18)) can be

considered useful in terms of accuracy, simplicity and

compactness.

Thus, in this investigation, we have synthesised a new

modified, two-parametermathematicalmodel of a chicken egg.

As a result of the study with its help, we also obtained theo-

retical expressions for calculating the egg volume and surface

area, the adequacy and relevance of which are confirmed not

only by the current performed observations, but also by other

previous studies in this field (e.g., Narushin et al., 2021a).
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