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Abstract. In this article we construct Laurent polynomial Landau–Ginzburg models for
cominuscule homogeneous spaces. These Laurent polynomial potentials are defined on a
particular algebraic torus inside the Lie-theoretic mirror model constructed for arbitrary
homogeneous spaces in [Rie08]. The Laurent polynomial takes a similar shape to the
one given in [Giv96] for projective complete intersections, i.e., it is the sum of the toric
coordinates plus a quantum term. We also give a general enumeration method for the
summands in the quantum term of the potential in terms of the quiver introduced in
[CMP08], associated to the Langlands dual homogeneous space. This enumeration method
generalizes the use of Young diagrams for Grassmannians and Lagrangian Grassmannians
and can be defined type-independently. The obtained Laurent polynomials coincide with
the results obtained so far in [PRW16] and [PR13] for quadrics and Lagrangian Grass-
mannians. We also obtain new Laurent polynomial Landau–Ginzburg models for ortho-
gonal Grassmannians, the Cayley plane and the Freudenthal variety.
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PETER SPACEK

1. Introduction

Consider an arbitrary complete homogeneous space X = G/P for a simple and
simply-connected complex algebraic group G. In [Rie08], Rietsch gives a general
construction of a Landau–Ginzburg model that recovers Peterson’s presentation
of the small quantum cohomology qH∗(X) in [Pet97]. In the subsequent articles
[MR13], [PR18], [PRW16], [PR13] this general construction is worked out in special
cases of cominuscule homogeneous spaces (namely Grassmannians, odd quadrics,
all quadrics, and Lagrangian Grassmannians, respectively) to formulate the poten-
tials of these Landau–Ginzburg models in projective coordinates. To obtain these
potentials, the articles first formulated Laurent polynomial expressions for these
on an algebraic torus.

On comparing the methods used to determine these Laurent polynomial poten-
tials, a general, type-independent method has emerged, which is what we will
describe here. This is achieved by modifying the method as used in [PR18] in
order to circumvent considerations that only hold in the case of odd quadrics.
In particular, we rely on the general structure of minuscule representations as
described by the article [Gre08].

We obtain the following expression for the Laurent polynomial potential:

∑̀
i=1

ai + q

∑
(ij)∈I ai1 · · · ai`′∏`

i=1 ai
, (1)

where ` = dim(X), the ai are the toric coordinates for i ∈ {1, . . . , `}, and q is the
quantum parameter. The set I is the set of subexpressions of a certain Weyl group
element w′ in a fixed reduced expression of the minimal coset representative wP

of the longest Weyl group element, see equation (8) for wP , equation (13) for w′

and Definition 5.5 for I. For the full statement of the result, see Theorem 5.7.

Notice that the expression in (1) is reminiscent of the Laurent polynomial for
projective complete intersections given in [Giv96]. Indeed, it is given as the sum
of the toric coordinates ai plus a quantum term consisting of a homogeneous
polynomial divided by the product of all the toric coordinates. We give a second
type-independent description for this homogeneous polynomial: we replace the
summation over I by a summation over the set S of special subsets of the quiver
QX associated to wP by [Per07], [CMP08], see Definitions 8.3 and 8.5 as well as
Corollary 8.12. These subsets of QX can be considered as generalizations of Young
tableaux used in a similar way.

We use the second type-independent expression to obtain Laurent polynomial
potentials for all cominuscule homogeneous spaces: Grassmannians, quadrics, La-
grangian Grassmannians, orthogonal Grassmannians, the Cayley plane, and the
Freudenthal variety. The obtained expressions for quadrics and Lagrangian Grass-
mannians coincide with those given earlier in [PRW16] and [PR13]. This is to be
expected from the fact that the type-independent expression is a generalization of
these cases. However, to the best of our knowledge, the expressions for orthogonal
Grassmannians (for general n), the Cayley plane and the Freudenthal variety are
new.
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The Laurent polynomial potentials will facilitate finding expressions using pro-
jective coordinates for the Landau–Ginzburg models constructed in [Rie08] ana-
logously to [MR13], [PR13], [PRW16], [PR18], and this might even be done type-
independently. Furthermore, in [Rie08], Rietsch also conjectures that Landau–
Ginzburg models she constructed give rise to oscillatory integrals that are solutions
to the quantum differential equations of X, see Conjecture 8.1 there. This con-
jecture is verified in [PRW16] using their Laurent polynomial expression to describe
a flat section of the Dubrovin connection. Thus, we expect that progress can be
made in resolving this conjecture for other cominuscule examples using the results
obtained here.

The outline of this article is as follows. We start in Section 2 with recalling
some of the fundamentals required and fixing notation. This is followed by a short
presentation of the results of [Rie08] in Section 3. In Section 4 we restrict to
cominuscule homogeneous spaces and consider the general structure of minuscule
representations. Next, in Section 5 we state our Laurent polynomial expression
(Theorem 5.7) for the potential restricted to an open dense subset. We prove this
expression in Section 6, postponing the proof of a number of intermediate results
to Section 7. We deduce an alternative description of the quantum term (Corollary
8.12) using subsets of a specific quiver in Section 8, which simplifies the calculation
of the Laurent polynomials. Finally, we apply the expression in Corollary 8.12 to
all the cominuscule homogeneous spaces in section 9, verifying that the expression
coincides with [PRW16] and [PR13] for quadrics and Lagrangian Grassmannians,
and obtaining new Laurent polynomial potentials for orthogonal Grassmannians
(Subsection 9.4), the Cayley plane (Subsection 9.5) and the Freudenthal variety
(Subsection 9.6). We refer the reader interested in representative examples of the
sets S and the resulting Laurent polynomial expressions to the arXiv version of
this paper [Spa19].

Acknowledgments. We would like to thank Dr. C.M.A. Pech for the many helpful
discussions and her improvements to the readability of this text.

2. Conventions and notation

Let X be a complete homogeneous space (also known as a generalized flag
variety) for a simple and simply-connected complex algebraic group G of rank n.
In this section and in Section 3 we do not make any further assumptions on X,
but in the remaining sections will specialize to the case in which X is cominuscule,
see Section 4.

Write g for the Lie algebra of G and fix a set (e1, f1, h1, . . . , en, fn, hn) of
Chevalley generators, where hi = [ei, fi] for i ∈ {1, . . . , n}. This gives the decom-
position g = u+⊕t⊕u−, where u+ is generated by {ei | 1 ≤ i ≤ n}, u− is generated
by {fi} and the Cartan subalgebra t is spanned by {hi}. We denote by U+ and
U− the universal enveloping algebras of u+ and u− respectively, and we write their

completions as Û+ and Û−.

Let T be the maximal torus and U+ and U− be the nilpotent subgroups of G
that have t, u+ and u− as Lie algebras, respectively. Note that we can consider U+

and U− as lying inside Û+ and Û− respectively and that they are generated by the
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one-parameter subgroups

xi(a) = exp(a ei) and yi(a) = exp(a fi),

for i ∈ {1, . . . , n} and a ∈ C. Here exp(a ei) = 1 + a ei + 1
2a

2 e2
i + · · · ∈ Û+

and exp(a fi) ∈ Û− is given analogously. The subgroup B+ = TU+ defines a
Borel subgroup, and its opposite is given by B− = TU−. They have t ⊕ u+ and
t ⊕ u− as respective associated Lie algebras. There is now a unique parabolic
subgroup P containing B+ such that X = G/P . The Lie algebra p of P satisfies
u+⊕ t ⊂ p ⊂ u+⊕ t⊕u− = g, i.e., it is generated by ei and hi for all i ∈ {1, . . . , n}
and by certain fi, but not necessarily all. We will denote by IP ⊂ {1, . . . , n} the
set of indices such that p is generated as a Lie algebra as

p = 〈ei, hi, fj | i ∈ {1, . . . , n}, j ∈ IP 〉 (2)

and its complement is denoted by IP = {1, . . . , n} \ IP .
We write X for the lattice of characters χ : T → C∗ of the maximal torus

(written additively). Within X , we denote the set of roots by Φ ⊂ X and a
base of simple roots ∆ = {α1, . . . , αn} is determined by the Chevalley generators.
The associated sets of positive and negative roots are denoted by Φ+ and Φ−
respectively. We denote the cocharacter lattice by X∨, the coroots by Φ∨ and the
simple coroots by α∨i : X → C.

With a given root system Φ and character lattice X , there exists a unique group
G∨ determined by having as root system the coroots Φ∨ and as character lattice
the cocharacter lattice X∨ of G. The character lattice X∨ of G∨ also determines
a maximal torus T∨ in G∨. The pair (G∨, T∨) is called the Langlands dual pair
associated to (G,T ); we call G∨ the Langlands dual group.

Remark 2.1. As G is assumed to be simply-connected, G∨ will be adjoint.

The Langlands dual group G∨ inherits the base ∆∨ = {α∨1 , . . . , α∨n} of simple
roots, which in turn determines the decomposition of the Lie algebra g∨ of G∨

into g∨ = u∨− ⊕ t∨ ⊕ u∨+. The Langlands dual groups U∨+ , U∨−, B∨+, B∨− and P∨ are
now defined analogously to above, and we write Φ∨+ and Φ∨− for the sets positive
and negative roots of G∨. We also obtain Chevalley generators (e∨1 , f

∨
1 , h

∨
1 , . . .

. . . , e∨n , f
∨
n , h

∨
n) and define the corresponding one-parameter subgroups of U∨+ and

U∨−
x∨i (a) = exp(a e∨i ) and y∨i (a) = exp(a f∨i ) (3)

for i ∈ {1, . . . , n} and a ∈ C. Here exp(a e∨i ) = 1 + a e∨i + 1
2a

2(e∨i )2 + · · · ∈ Û∨+ in
the completed universal enveloping algebra of u∨+, and analogously for exp(a f∨i ).
Note that the parabolic subgroup P∨ is associated to the same set IP as P : that
is, its Lie algebra is given by

p∨ = 〈e∨i , h∨i , f∨j | i ∈ {1, . . . , n}, j ∈ IP 〉. (4)

Thus, the complement of the set of indices is the same, so this is denoted by
IP = {1, . . . , n} \ IP as well.
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Remark 2.2. When the Dynkin diagram of G is simply-laced, G∨ has the same
Dynkin diagram (with the same numbering of the vertices). When the Dynkin
diagram of G has a double or triple edge, the Dynkin diagram of G∨ is obtained
by reversing the arrows at these edges. Explicitly, if G is of type An, Dn or En,
then G∨ is of the same type; if G is of type Bn, then G∨ is of type Cn and vice
versa; finally, for G of type F4 and G2, G∨ is of the same type but has the reverse
numbering of vertices.

Apart from the Chevalley generators (e∨1 , f
∨
1 , h

∨
1 , . . . , e

∨
n , f

∨
n , h

∨
n) for g∨, we will

need the corresponding dual maps (e∨i )∗, (f∨i )∗ ∈ (g∨)∗ as well, satisfying

(e∨i )∗(e∨j ) = δij = (f∨i )∗(f∨j ) and (e∨i )∗(f∨j ) = 0 = (f∨i )∗(e∨j ) (5)

and vanishing on t∨ and the other root spaces of g∨.
We extend these maps to be defined on arbitrary products of the Chevalley

generators using the inclusions of u∨+ and u∨− into their completed universal algebras

Û∨+ and Û∨−. This in turn allows us to define (e∨i )∗ and (f∨i )∗ on U∨+ and U∨− through
the identification of the one-parameter subgroups x∨i (a) ∈ U∨+ and y∨i (a) ∈ U∨− with

exp(a e∨i ) ∈ Û∨+ and exp(a f∨i ) ∈ Û∨− respectively. Equivalently, (e∨i )∗ and (f∨i )∗

are defined as the unique group homomorphisms U∨+ → C and U∨− → C such that

(e∨i )∗(x∨j (a)) = aδij = (f∨i )∗(y∨j (a)). (6)

As G∨ is in general not simply-connected, we will need to consider the universal
cover G̃∨ of G∨ in Section 6. As before, we define the universal covers P̃∨, T̃∨,
B̃∨+ and B̃∨−. Note that the cover of U∨+ is in fact isomorphic to U∨+ and the same
holds for U∨−, so we simply identify them.

Remark 2.3. Considering Remark 2.2, we note that for a simply-connected group
G with a simply-laced Dynkin diagram we have G̃∨ ∼= G as they are both simply-
connected and of the same type.

We turn to the Weyl groups of G∨ and P∨. We denote by W the Weyl group1

of G∨, that is the Weyl group associated to the Dynkin diagram of G∨. The Weyl
group is generated by the simple reflections denoted by si = sα∨i for α∨i ∈ ∆∨ and
any expression for w ∈ W of the form w = si1 · · · sij with j minimal is called a
reduced expression; in this case the integer j is called the length of w and denoted
by `(w) = j. The longest element of W is denoted by w0. We obtain the Weyl
group of P∨, denoted by WP , by removing the simple reflections {si | i ∈ IP }
from the generators of W , compare equation (4). Note that WP is a Weyl group
in its own right, associated to the Dynkin diagram of G∨ with the vertices marked
by IP removed. The longest element of WP is denoted by wP . To each si ∈W , we
associate two elements in G∨:

ṡi = x∨i (1)y∨i (−1)x∨i (1) and s̄i = x∨i (−1)y∨i (1)x∨i (−1) = ṡ−1
i , (7)

1Note that the Weyl groups of G∨ and G are isomorphic, as they only depend on
the underlying Coxeter diagram of the Dynkin diagrams and these are invariant under
Langlands duality. We therefore omit the “∨” from notation. The same holds for the
Weyl group WP of P∨.
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and we extend this to an arbitrary w ∈W with reduced expression w = si1 · · · sid
by setting ẇ = ṡi1 · · · ṡid and w̄ = s̄i1 · · · s̄id . Note that w̄ is not equal to ẇ−1

in general: it has the reverse product of simple reflections, i.e., ẇ−1 = s̄id · · · s̄i1 .
Moreover, note that ṡi and s̄i only differ by a torus element and both normalize
T , so that they indeed map to the same element si under the identification of W
with NG∨(T∨)/T∨, the quotient of the normalizer of the maximal torus T∨ in G∨

by the torus.
We let TP = (T∨)WP ⊂ T∨ be the part of T∨ that is invariant under the action

WP × T∨ → T∨ given by (w, t) 7→ ẇtẇ−1. Clearly, TP has dimension #IP .
We denote by WP ⊂ W the set of minimal coset representatives of W/WP

(i.e., for every coset the representative of minimal length), and we denote the
minimal representative of w0WP by wP . Note that w0 = wPwP , and we fix reduced
expressions

wP = sr1 · · · sr` and wP = sq1 · · · sqm , (8)

so we obtain a reduced expression w0 = sr1 · · · sr`sq1 · · · sqm .

3. Rietsch’s Lie-theoretic mirror model

In [Rie08], Rietsch constructs a Landau–Ginzburg model for general homoge-
neous spaces X = G/P for P an arbitrary parabolic subgroup. The mirror variety
there is a subvariety of the open Richardson variety associated to (wP , w0). This
open Richardson variety is given by:

X∨ = R∨wP ,w0
=
(
B∨+wPB

∨
− ∩B∨−w0B

∨
−
)
/B∨− ⊂ G∨/B∨−, (9)

see [Rie08, Sect. 2]. This variety turns out to be related to the following subset of
G∨:

Z∨P = B∨−w̄
−1
0 ∩ U∨+TP w̄PU∨− ⊂ G∨. (10)

Namely, there exists an isomorphism

Ψ : X∨ × TP ∼−→ Z∨P , (11)

whose inverse is given by z 7→ (zB∨−, t) where z = u+tw̄Pu−.

Remark 3.1. These results are analogous to the statements in [Rie08, Sect. 4.1],
although we have modified the definition of Z∨P compared to [Rie08] to facilitate
calculations in Section 7. Indeed, Ψ can be obtained as follows: For a given t ∈
TP , a class rB∨− ∈ R∨wP ,w0

allows by definition a representative of the form r =

b−w̄
−1
0 b′− = b+w̄P tu− (where b−, b

′
− ∈ B∨−, b+ ∈ B∨+ and u− ∈ U∨−). Note that

this representative is unique up to right-multiplication with an element of U∨−.
Thus, writing b′− = t′u′− for t′ ∈ T∨ and u′− ∈ U∨−, the element r(u′−)−1 is

independent of the choice of representative. Moreover, it is an element of B∨−w̄
−1
0 ,

as b−w̄
−1
0 t′ = b−t

′′w̄−1
0 for some t′′ ∈ T∨. Writing b+ = t+u+ for t+ ∈ T∨ and

u+ ∈ U∨+ , we find that Ψ(z) = t−1
+ r(u′−)−1 is well defined and an element of Z∨P

(using w̄P t = tw̄P ).
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Now, in [Pet97], Peterson gave a presentation of the quantum cohomology of a
generalized flag variety G/P as the coordinate ring of what is subsequently called
the Peterson variety (see, e.g., [Rie08, par. 3.2]). The coordinate ring of a well-
chosen open stratum of this (non-reduced) variety gives the quantum cohomology
localized at the quantum parameters (see, e.g., [Rie08, eqn. (3.2)]). In [Rie08], this
open stratum is then shown to be isomorphic to the critical locus of a certain
function on Z∨P . Thus, using the isomorphism Ψ of equation (11), we obtain a
subvariety of X∨ × TP whose coordinate ring is also isomorphic to the localized
quantum cohomology of X.

Instead of presenting these statements in more detail, we will instead follow the
reformulation of these results presented in [MR13, Thm. 6.5]; see also [PR18, Sect.
4.2]. There the critical locus is replaced with all of X∨×TP , but one needs to take
the quotient of the coordinate ring by the derivatives with respect to a potential.

Theorem 3.2 ([Rie08, Thm. 4.1], Lie-theoretic LG-model). Let X = G/P be a
complete homogeneous space with G a simple, simply-connected algebraic group
over C and with P a (not necessarily maximal) parabolic subgroup. There exists a
potential W : X∨ × TP → C (given in Definition 3.5) such that

qH∗(X)loc
∼= C[X∨ × TP ]/〈∂W〉,

where qH∗(X)loc is the (small) quantum cohomology of X with all quantum para-
meters inverted and where 〈∂W〉 is the ideal generated by the derivatives of W
along X∨.

The potential W is presented in [PR18] as the pull-back of a potential defined
on Z∨P along the isomorphism Ψ : X∨ × TP ∼−→ Z∨P from equation (11). To state
this potential, we introduce to the following subset of U∨−:

UP− = U∨− ∩B∨+w̄P w̄0B
∨
+ ⊂ U∨−. (12)

This set has the following property, which will also be important in Section 5:

Lemma 3.3 ([PR18, Prop. 5.1]). Every z ∈ Z∨P has a unique decomposition z =
u+tw̄Pu− with u+ ∈ U∨+, t ∈ TP and u− ∈ UP− . In particular, fixing (u−, t)
determines u+.

Remark 3.4. The proof of this result in [PR18, Prop. 5.1] can be carried over to
the general case without any modification, so it will be omitted here. Note that
our definition of UP− coincides with the one used in equation (7) of [PR18] as
(wP )−1 = wPw0 and the chosen representatives only differ by a torus element, so
that B∨+w̄P w̄0B

∨
+ = B∨+(ẇP )−1B∨+.

The potential on Z∨P is now defined as follows:

Definition 3.5. Define the potential WZ∨P : Z∨P → C as the map:

WZ∨P : z = u+tw̄Pu− 7→ E∗(u−1
+ ) + F∗(u−),
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where E∗ =
∑n
i=1(e∨i )∗ and F∗ =

∑n
i=1(f∨i )∗, and where the decomposition of

z = u+tw̄Pu− is the unique decomposition with u− ∈ UP− as stated in Lemma 3.3.
Moreover, the potential W : X∨ × TP → C mentioned in Theorem 3.2 is given by
W =WZ∨P ◦Ψ with Ψ given in equation (11).

4. Cominuscule homogeneous spaces and minuscule representations

In Section 5 we will give a Laurent polynomial expression for the potential WZ∨P
restricted to an open algebraic torus inside Z∨P , after assuming the homogeneous
space is cominuscule. In this section we will discuss this property, fix further
notation and finally consider minuscule representations of a given Lie algebra.

We will maintain all the assumptions and conventions of Section 2. In particular,
we assume that X = G/P is a homogeneous space for a complex algebraic group G
of rank n that is both simple and simply-connected. Now, we assume in addition
that X is minimal. This is equivalent to the assumption that P is a maximal
parabolic subgroup; that is, IP = {k} for a single index k ∈ {1, . . . , n}, see equation
(2). Thus, P is associated to a single vertex k of the Dynkin diagram of G. This
fact is denoted by P = Pk. Note that the Langlands dual group P∨ is associated
to the kth vertex of the Dynkin diagram of G∨ (see equation (4) and Remark 2.2),
so we can also write P∨ = P∨k .

Because of the maximality of P∨ = P∨k , we know that WP = 〈si | i 6= k〉.
In particular, the invariant torus TP ⊂ T∨ is one-dimensional and α∨k : TP →
C∗ gives an isomorphism (G∨ being adjoint). The element wP sk ∈ W will turn
out to be of particular interest; we will write w′′ ∈ WP for the minimal coset
representative of wP skWP and denote its length by `(w′′) = `′′ ≤ ` = `(wP ).
Define w′ ∈W by

w′ = wP (w′′)−1 (13)

and write `(w′) = `′; clearly ` = `′ + `′′.

The second assumption we will impose on X = G/Pk is that it is a cominuscule
homogeneous space. A minimal homogeneous space X = G/Pk is called (co)minu-
scule if the fundamental weight ωk is (co)minuscule. Recall that the fundamental
weights {ω1, . . . , ωn} form a basis of the character lattice X dual to the simple
coroot basis ∆∨ = {α∨1 , . . . , α∨n} of the cocharacter lattice X∨. A fundamental
weight ωi is called minuscule if it satisfies one of the following equivalent conditions
(see also [Bou68, Sect. VI.1, exercise 24]):

(i) For every α∨ ∈ Φ∨, 〈〈ωi, α∨〉〉 ∈ {−1, 0,+1}, where 〈〈· , ·〉〉 : X × X∨ → C
denotes the dual pairing.

(ii) For α∨0 the longest root of the root system Φ∨, 〈〈ωi, α∨0 〉〉 = 1.

(iii) The coefficient of α∨i in α∨0 is 1.

A fundamental weight ωi is called cominuscule if the corresponding coweight
ω∨i is minuscule. (Recall that the coweights {ω∨1 , . . . , ω∨n} form a basis of X∨ dual
to the basis of simple root ∆ = {α1, . . . , αn} of X .) The list of minuscule and
cominuscule fundamental weights is well known; we have included it in Table 1
together with the associated minimal homogeneous spaces X = G/Pk.
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Table 1. Table listing for each type of the fundamental weights that are minuscule,
cominuscule or both, the associated homogeneous spaces and their dimensions and
indexes. In this table, Qn denotes a quadric of dimension n; Gr(k, n) denotes the
Grassmannian of k-dimensional subspaces in Cn; LG(n, 2n) denotes the Lagrangian
Grassmannian of maximal isotropic subspaces with respect to the standard symplectic
form; OG(n, 2n) and OG(n, 2n + 1) denote (one of the two isomorphic connected
components of) the orthogonal Grassmannians of maximal isotropic subspaces with
respect to the standard quadratic form; OP2 = Esc

6 /P6 denotes the Cayley plane which
is a homogeneous space for Esc

6 , the simply-connected Lie group of type E6; and finally
Esc

7 /P7 is called the Freudenthal variety and is homogeneous for Esc
7 , the simply-connected

Lie group of type E7. Note that the two varieties that are only minuscule are redundant:
the type-Bn minuscule variety OG(n, 2n+1) is isomorphic to the variety OG(n+1, 2n+2)
which is both minuscule and cominuscule as a type-Dn+1 homogeneous space; similarly,
the type-Cn minuscule variety CP2n−1 is of course the same as Gr(1, 2n), which is both
minuscule and cominuscule as a type-A2n−1 homogeneous space. Adapted from [CMP08].

type and (co)minuscule weight variety dim index

An−1 any k both Gr(k, n) k(n− k) n

Bn > 1 com. Q2n−1 2n− 1 2n− 1

Bn > n min. OG(n, 2n+ 1) 1
2n(n+ 1) 2n

Cn < 1 min. CP2n−1 2n− 1 2n

Cn < n com. LG(n, 2n) 1
2n(n+ 1) n+ 1

Dn 1 both Q2n−2 2n− 2 2n− 2

Dn n− 1 or n both OG(n, 2n) 1
2n(n− 1) 2n− 2

E6 1 or 6 both OP2 = Esc
6 /P6 16 12

E7 7 both Esc
7 /P7 27 18

Thus, assuming that X = G/Pk is cominuscule means that ω∨k is minuscule,
which in turn implies that the fundamental weight representation Vω∨k is minuscule;
that is, the Weyl group acts transitively on the weight spaces of Vω∨k . Here the
simple reflection si ∈ W acts on a vector vµ∨ of weight µ∨ by mapping it to the
vector s̄i · vµ∨ of weight si(µ

∨).

Recall that the fundamental weight representation Vω∨k is the highest weight
representation of g∨ with ω∨k as highest weight. For any choice of a highest-weight
vector v+

ω∨k
, we obtain the representation as Vω∨k = U∨− · Cv+

ω∨k
, where U∨− is the

universal enveloping algebra of u∨− (see for example [Hum78, Thm. 20.2]). Thus,
{f∨i1 · · · f

∨
ij
· v+
ω∨k
| j ≥ 0} spans Vω∨k . We want to compare the actions of U∨− and

W , so we will need some results on the structure of minuscule representations.
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Remark 4.1. To be able to apply the results directly to our case, we will change
the notation of the following theorem to conform to our situation; for example, we
write g∨ for a general Lie algebra, as we want to apply the theorem to the minuscule
highest weight representation of the Lie algebra g∨ of the (adjoint) Langlands dual
group G∨ associated to the (simply-connected) group G such that X = G/Pk.

We denote the Cartan integers of a root system Φ∨ by aij ∈ Z, i, j ∈ {1, . . . , n}.
They are given by aij = 2(α∨j , α

∨
i )/(α∨i , α

∨
i ) for any choice of non-degenerate,

symmetric, bilinear form (· , ·) (e.g., the Killing form). We also use the notation
c(µ∨, α∨i ) = 2(µ∨, α∨i )/(α∨i , α

∨
i ) for µ∨ a general weight.

Theorem 4.2 (Green [Gre08]). Let g∨ be a simple Lie algebra and fix a set of
simple roots ∆∨ = {α∨1 , . . . , α∨n} and Chevalley generators (e∨i , f

∨
i , h

∨
i ). Suppose

V (λ∨) is a minuscule representation of g∨ with highest weight λ∨. Denote by
M(λ∨) the weights of V (λ∨) and let µ∨ ∈ M(λ∨) be an arbitrary weight. The
following statements hold:

(i) c(µ∨, α∨i ) ∈ {−1, 0, 1}, and µ∨−cα∨i ∈M(λ∨) if and only if c = c(µ∨, α∨i ).
(ii) Each of the weight spaces is one-dimensional.

(iii) Given a highest weight vector v+
λ∨ , we can find a basis {vµ∨ | µ∨ ∈M(λ∨)}

with the following properties: vµ∨ has weight µ∨ and the basis vector of
the highest weight vλ∨ coincides with v+

λ∨ ; the Chevalley generators act on
vµ∨ as

e∨i · vµ∨ =

{
vµ∨+α∨i

, if c(µ∨, α∨i ) = −1,
0, otherwise,

f∨i · vµ∨ =

{
vµ∨−α∨i , if c(µ∨, α∨i ) = +1,
0, otherwise,

and h∨i · vµ∨ = c(µ∨, αi) vµ∨ .
(iv) For any v ∈ V (λ∨) and any i ∈ {1, . . . , n}, we have (e∨i )2 · v = 0 and

(f∨i )2 · v = 0. Moreover, if j ∈ {1, . . . , n} is such that the Cartan integer

aij =−1 (i.e., when in the Dynkin diagram we have i j or >i j)2

we have both e∨i e
∨
j e
∨
i · v = 0 and f∨i f

∨
j f
∨
i · v = 0. Finally, if aij < 0 we

have e∨i f
∨
j · v = 0 = f∨j e

∨
i · v.

The following corollary is obtained directly by applying Theorem 4.2 to the
definition of ṡi and s̄i given in equation (7).

Corollary 4.3. With the assumptions of Theorem 4.2, write c = c(µ∨, α∨i ), then
we have si(µ

∨) = µ∨ − cα∨i and

ṡi · vµ∨ =


vµ∨+α∨i

= e∨i · vµ∨ , if c = −1,
vµ∨ , if c = 0,
−vµ∨−α∨i = −f∨i · vµ∨ , if c = +1,

s̄i · vµ∨ =


−vµ∨+α∨i

= −e∨i · vµ∨ , if c = −1,
vµ∨ , if c = 0,
vµ∨−α∨i = f∨i · vµ∨ , if c = +1.

2Strictly speaking, we also have aij = −1 when we have >i j , but these edges
only appear in the Dynkin diagram of type G2, and the corresponding Lie algebra does
not have any minuscule representations.
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Conversely, we have

e∨i · vµ∨ =

{
vµ∨+α∨i

= ṡi · vµ∨ = −s̄i · vµ∨ , if c = −1,
0, otherwise,

f∨i · vµ∨ =

{
vµ∨−α∨i = s̄i · vµ∨ = −ṡi · vµ∨ , if c = +1,
0, otherwise.

We now return to the case where g∨ is the Lie algebra of the (adjoint) Langlands
dual group G∨ of the (simply-connected) Lie group G such that X = G/Pk is
cominuscule. Thus, the highest weight representation Vω∨k of g∨ is minuscule and
we can apply Corollary 4.3 to Vω∨k to obtain the following facts regarding the action

of the Weyl group W on the highest weight vector v+
ω∨k

:

Lemma 4.4. Consider the highest weight vector v+
ω∨k

of the minuscule fundamental

weight representation Vω∨k , where k is such that X = G/Pk.

(i) Given an arbitrary w ∈ W with minimal coset representative wc ∈ WP ,
then we have w̄ · v+

ω∨k
= w̄c · v+

ω∨k
and ẇ · v+

ω∨k
= ẇc · v+

ω∨k
.

(ii) An element wc ∈ WP with reduced expression wc = si1 · · · sic acts on the
vector v+

ω∨k
by w̄c · v+

ω∨k
= f∨i1 · · · f

∨
ic
· v+
ω∨k

and by ẇc · v+
ω∨k

= (−1)cf∨i1 · · · f
∨
ic
·

v+
ω∨k

.

(iii) Conversely, if f∨i1 · · · f
∨
ij
· v+
ω∨k

is non-zero of weight µ∨, then si1 · · · sij is a

reduced expression for the (unique) element wc ∈WP such that wc · ω∨k =
µ∨.

(iv) In particular, w̄P , ẇP and their inverses act trivially on v+
ω∨k

and we have

that the lowest weight vector defined by v−ω∨k
= w̄0 ·v+

ω∨k
satisfies v−ω∨k

= w̄P ·
v+
ω∨k

= f∨r1 · · · f
∨
r`
·v+
ω∨k

, where wP = sr1 · · · sr` is the reduced expression fixed

in equation (8). Moreover, if f∨i1 · · · f
∨
ij
· v+
ω∨k

= v−ω∨k
, then si1 · · · sij = wP

and this is a reduced expression.

Proof. (i) Recall the identity sj(ω
∨
k ) = ω∨k for j 6= k, i.e., when sj ∈ WP . This

implies that an arbitrary w ∈ W acts on ω∨k by its minimal coset representative
wc in WP . Corollary 4.3 implies that w̄ · v+

ω∨k
= w̄c · v+

ω∨k
and ẇ · v+

ω∨k
= ẇc · v+

ω∨k
.

(ii) We need to show that each factor of w̄c = s̄i1 · · · s̄rc acts as f∨i on v+
ω∨k

.

Considering Corollary 4.3, each s̄i acts either by f∨i , −e∨i or as the identity map.
Clearly, none of these factors acts as the identity, as we could remove it from
the product, which would contradict the minimality of the coset representative
ẇc. Moreover, none of the factors acts as −e∨i either, because of the following
argument:

Let s̄i be the right-most factor acting as −e∨i . As v+
ω∨k

is the highest weight

vector, we have e∨i · v
+
ω∨k

= 0 (as e∨i raises the height of the weight), so there must

be a number of s̄j in between s̄i and v+
ω∨k

acting as f∨j . Let f∨j be the factor next

to e∨i . There are three cases: j 6= i and aij < 0; j 6= i and aij = 0; and j = i. When
j 6= i and aij < 0, Theorem 4.2(iv) tells us that e∨i f

∨
j · v = 0 in the representation,
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which is impossible. When j 6= i and aij = 0, we know that e∨i and f∨j commute
in the Lie algebra, so we can assume without loss of generality that only the case
j = i occurs. In the case j = i we obtain e∨i f

∨
j · v = v according to Theorem

4.2(iii). However, this is in contradiction with the fact that wc is a minimal coset
representative. Thus, all of the factors s̄i of w̄P act as f∨i .

For the equality ẇc = (−1)cf∨i1 · · · f
∨
ic
· v+

ω∨k
, we use an analogous argument

combined with the fact that ṡi acts as either e∨i , −f∨i or the identity due to
Corollary 4.3.

(iii) Let w = si1 · · · sij and let wc ∈ WP denote the minimal length represen-
tative of wWP . Given a reduced expression wc = si′1 · · · si′c , parts (i) and (ii) imply
that

w̄ · v+
ω∨k

= w̄c · v+
ω∨k

= f∨i′1 · · · f
∨
i′c
· v+
ω∨k
.

Thus, w̄ · v+
ω∨k

has weight ω∨k − α∨i′1 − · · · − α
∨
i′c

by Theorem 4.2(iii).

On the other hand, f∨i1 · · · f
∨
ij
· v+
ω∨k

= s̄i1 · · · s̄ij · v+
ω∨k

= w̄ · v+
ω∨k

by Corollary 4.3,

since none of the factors act as the zero map. This has two implications. Firstly,
w = si1 · · · sij is a reduced expression: else, one of the factors of f∨i1 · · · f

∨
ij

must

act as the identity map, which contradicts Theorem 4.2(iii). Secondly, the weight
of w̄ · v+

ω∨k
can also be written as ω∨k − α∨i1 − . . .− α

∨
ij

.

We conclude that

ω∨k − α∨i′1 − · · · − α
∨
i′c

= w(ω∨k ) = ω∨k − α∨i1 − . . .− α
∨
ij .

Clearly, this can only hold when c = `(wc) = `(w) = j.
Thus, we have w = wc ∈ WP and we have already shown that si1 · · · sij is a

reduced expression for w. Moreover, w(ω∨k ) = µ∨ by definition and this determines
w uniquely, proving (iii).

(iv) As wP ∈ WP , (i) implies that w̄P , ẇP and their inverses act trivially on
v+
ω∨k

. As wP is defined as the minimal coset representative of w0, we conclude that

v−ω∨k
= w̄0·v+

ω∨k
= w̄P ·v+

ω∨k
by (i), and since wP = sr1 · · · sr` is the reduced expression

we fixed in Section 2, (ii) implies that v−ω∨k
= s̄r1 · · · s̄r` ·v

+
ω∨k

= f∨r1 · · · f
∨
r`
·v+
ω∨k

. Part

(iii) implies the last statement directly. �

5. Statement of the Laurent polynomial potential

In this section we state the main result of this article, Theorem 5.7, which is an
explicit Laurent polynomial expression for WZ∨P on an open, dense algebraic torus
Z◦P inside Z∨P , whenever X = G/P is a cominuscule homogeneous space. Recall
that X = G/P is cominuscule when P = Pk is maximal and ω∨k is minuscule.

First we define another subset of U∨−:

Definition 5.1. Recall the reduced expression wP = sr1 · · · sr` fixed in equation
(8). Let U◦− ⊂ U∨− be the algebraic torus of elements u− that can be written as

u− = y∨r`(a`) · · · y
∨
r1(a1) (14)

with ai ∈ C∗.
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Lemma 5.2. We have U◦− ⊂ UP− open and dense, where UP− = U∨− ∩B∨+w̄P w̄0B
∨
+

was defined in equation (12).

Proof. (See also [PR18, Sect. 5.2].) Note that

B∨+ṡiB
∨
+ = B∨+x

∨
i (1)y∨i (−1)x∨i (1)B∨+ = B∨+y

∨
i (−1)B∨+,

so that y∨i (a) ∈ B∨+ṡiB∨+, as the −1 can be scaled to any a ∈ C∗ since T∨ ⊂ B∨+.
Of course, sr` · · · sr1 = (wP )−1 is reduced, so the Bruhat lemma (see for example
[Hum75, Lem. 29.3.A]) implies that

U◦− ⊂ B∨+ṡr` · · · ṡr1B∨+ = B∨+(w̄P )−1B∨+

and it remains to show that B∨+(w̄P )−1B∨+ = B∨+w̄P w̄0B
∨
+. This follows from the

fact that w0 = wPwP and the fact that ṡi and s̄i only differ by a torus element.

It is clear that U◦− ⊂ UP− is an open subset and it is dense as both have dimension
`(wPw0) and UP− is irreducible [Lus94]. �

Definition 5.3. We define the open, dense algebraic torus Z◦P ⊂ Z∨P as

Z◦P = B∨−w̄
−1
0 ∩ U∨+TP w̄PU◦− ⊂ Z∨P .

Note that the fact that this variety is non-zero and an algebraic torus follows
from Lemma 3.3 and the resulting isomorphism Z∨P → UP− × TP : z 7→ (u−, t).

The following is immediate from the definition and Lemma 3.3:

Corollary 5.4. Every z ∈ Z◦P can be factorized in two ways: on the one hand as
b−w̄

−1
0 for b− ∈ B∨−; and on the other as z = u+tw̄Pu− with u− ∈ U◦− of the form

(14), u+ ∈ U∨+ and t ∈ TP . Moreover, the latter decomposition is unique with u+

determined by a choice of (u−, t).

We will define the Laurent polynomial expression for the potential on this
algebraic torus Z◦P . It turns out that this expression is indexed by the subexpressi-
ons of w′ in wP . Recall from equation (13) that w′ ∈W is defined by wP = w′w′′,
where wP , w′′ ∈WP are the minimal coset representatives of w0WP and wP skWP

(with k such that P = Pk). Moreover, their lengths are denoted by `(wP ) = `,
`(w′) = `′ and `(w′′) = `′′ and satisfy ` = `′ + `′′.

Definition 5.5. Let I be the set indexing reduced subexpressions for w′ occurring
inside the fixed reduced expression wP = sr1 · · · sr` of equation (8). In other words:

I =
{

(i1, . . . , i`′)
∣∣ 1 ≤ i1 < i2 < · · · < i`′ ≤ ` and w′ = sri1 · · · sri`′

}
.

Remark 5.6. Note that the reduced expression w′ = sri1 · · · sri`′ is not fixed, i.e.,

if (ij), (i
′
j) ∈ I, then we do not necessarily have rij = ri′j for all j.
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Theorem 5.7 (Laurent-polynomial LG-model). Let X = G/P be a cominuscule
complete homogeneous space with G a simply-connected, simple, complex algebraic
group and P = Pk a (maximal) parabolic subgroup. The restriction WZ◦P of WZ∨P
to Z◦P has the following Laurent polynomial expression:

WZ◦P (z) =
∑̀
i=1

ai + q

∑
(ij)∈I ai1 · · · ai`′∏`

i=1 ai
. (15)

Here z ∈ Z◦P is uniquely decomposed as z = u+tw̄Pu− with u− = y∨r`(a`) · · · y
∨
r1(a1)

in U◦− as in Corollary 5.4, and q ∈ C∗ is given by q = α∨k (t) (with t ∈ TP ). Finally,
the set I is given in Definition 5.5.

The proof of this statement follows in Sections 6 and 7. In Section 8 we rewrite
the summation over I into a summation over subsets of a quiver associated to
wP by [CMP08], see Corollary 8.12. In Section 9 we apply Theorem 5.7 and its
reformulation as Corollary 8.12 to all the cominuscule homogeneous spaces, leading
to new Laurent polynomial potentials for the cominuscule homogeneous spaces of
type Dn, E6 and E7, see Subsections 9.4, 9.5 and 9.6, respectively.

6. Proof of the Laurent polynomial expression

In Section 5 we stated our main result in Theorem 5.7. This section is dedicated
to proving this theorem. Before we get started on the proof, let us introduce the
following notation:

Definition 6.1. Write Vω∨i for the irreducible representation of g∨ with highest

weight ω∨i , and denote by v+
ω∨i

a choice of a highest weight vector. Denote by

v−ω∨i
= w̄0 · v+

ω∨i
the associated lowest weight vector. Note that the weight space

of v+
ω∨i

is one-dimensional, so that the projection of an arbitrary v ∈ Vω∨i to this

weight space (parallel to the other weight spaces) is a scalar multiple of v+
ω∨i

; we

denote this scalar by 〈v, v+
ω∨i
〉.

Remark 6.2. Recall that every representation of a Lie algebra induces a represen-
tation of the associated simply-connected Lie group. Here, the highest weight
representation Vω∨i of g∨ induces a representation of the universal cover G̃∨ of
G∨. Since this representation does not always descend to a representation of G∨,
we need to work on G̃∨ instead. Because we identified U∨+ and U∨− with their
universal covers, we consider the factors u+ and u− of z = u+tw̄0u− ∈ Z◦P as

elements of G̃∨. The same holds for the one-parameter subgroups x∨j (a) ∈ U∨+
and y∨j (a) ∈ U∨− for j ∈ {1, . . . , n}, which we also consider as elements of G̃∨.
However, the elements ṡi and s̄i of G∨ associated to si ∈W have multiple lifts to
G̃∨; we choose the lifts to be the elements obtained by taking the product of the
one-parameter subgroups in G̃∨, i.e.,

ṡi = x∨i (1)y∨i (−1)x∨i (1) ∈ G̃∨ and s̄i = x∨i (−1)y∨i (1)x∨i (−1) ∈ G̃∨.

Note that we abuse notation and denote these lifts in the same way as the original
elements. Also note that with these choices we still have s̄i = ṡ−1

i . The elements
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ẇ, w̄ ∈ G̃∨ associated to w ∈ W are similarly defined by ẇ = ṡi1 · · · ṡij and
w̄ = s̄i1 · · · s̄ij respectively, where w = si1 · · · sij is a reduced expression. This fixes
the lift of z = u+tw̄0u− up to a choice of lift of t ∈ TP ⊂ T∨; the choices differ

by a factor in ker(α∨k ) ⊂ T̃∨, so all the lifts have α∨k (t) = q and we choose one
arbitrarily (we will continue to abuse notation and also denote the lift of t ∈ TP
by t ∈ T̃∨).

Remark 6.3. Expressions of the form 〈g · v+
ω∨i
, v+
ω∨i
〉 are a priori only defined for

g ∈ G̃∨, so expressions of that form will always assume the group element g to
be elements of the universal cover G̃∨. Thus, the abuse of notation in Remark 6.2
should not give rise to ambiguity.

The proof of Theorem 5.7 requires a few intermediate results which we will prove
in section 7. Assuming for the moment that these hold, the proof of Theorem 5.7
is a straightforward computation:

Proof of Theorem 5.7. We want to find an expression for

WZ◦P (z) = E∗(u−1
+ ) + F∗(u−) = −E∗(u+) + F∗(u−)

in terms of the toric coordinates of z ∈ Z◦P . First, we calculate F∗(u−):

Lemma 6.4. For u− ∈ U◦− we have F∗(u−) =
∑`
i=1 ai.

Thus, we only need to find the term involving the quantum parameter, which
comes from E∗(u+) =

∑n
i=1(e∨i )∗(u+). We can rewrite each of the summands of

this term as follows:

Lemma 6.5. For z = u+tw̄Pu− ∈ Z◦P we have

(e∨i )∗(u+) = α∨i (t)
〈w̄−1

0 u−1
− w̄−1

P s̄i · v+
ω∨i
, v+
ω∨i
〉

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨i
, v+
ω∨i
〉
.

It turns out that except for i = k, these summands do not contribute to the
sum:

Lemma 6.6. For z = u+tw̄Pu− ∈ Z◦P and i 6= k (where k is such that P = Pk)
we have (e∨i )∗(u+) = 0.

Altogether, we have now found that

E∗(u+) = (e∨k )∗(u+) = q
〈w̄−1

0 u−1
− w̄−1

P s̄k · v+
ω∨k
, v+
ω∨k
〉

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨k
, v+
ω∨k
〉
,

where q = α∨k (t). Now we of course need to calculate the denominator and nume-
rator of this quotient:

Lemma 6.7. For u− ∈ U◦− we have 〈w̄−1
0 u−1

− w̄−1
P · v+

ω∨k
, v+
ω∨k
〉 = (−1)`

∏`
i=1 ai,

where ` = `(wP ).
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Lemma 6.8. For u− ∈ U◦− we have

〈w̄−1
0 u−1

− w̄−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I

ai1 · · · ai`′ ,

where I = {(i1, . . . , i`′) | 1 ≤ i1 < i2 < · · · < i`′ ≤ ` and w′ = sri1 · · · sri`′} and

where we fixed the reduced expression wP = sr1 · · · sr` in Section 2.

Thus, we find

E∗(u+) = −q
∑

(ij)∈I ai1 · · · ai`′∏`
i=1 ai

.

Inserting this and the expression for F∗(u−) into WZ◦P (z) = −E∗(u+) + F∗(u−),
we obtain the statement of Theorem 5.7. �

7. Proof of the intermediate results

We only need to prove the lemmas stated in the proof of Theorem 5.7 to conclude
the result.

Remark 7.1. The five intermediate lemmas in the proof of Theorem 5.7 are gene-
ralizations of [PR18, Lem. 5.5]. Lemmas 6.4, 6.5 and 6.6 follow similar reasoning in
the general case. The proof of Lemma 6.7 requires a modification using the general
structure of minuscule representations, while Lemma 6.8 follows a different line of
reasoning than its counterpart in [PR18].

The first lemma is very straightforward:

Proof of Lemma 6.4. We want to show that F∗(u−) =
∑`
i=1 ai for u− ∈ U◦−.

Recall from equation (6) that (f∨i )∗(yj(a)) = aδij . From this it follows that

(f∨i )∗(u−) = (f∨i )∗
(
y∨r`(a`) · · · y

∨
r1(a1)

)
= a1δi,r1 + . . .+ a`δi,r` .

Summing over all i ∈ {1, . . . , n}, we find F∗(u−) =
∑n
i=1(f∨i )∗(u−) =

∑`
i=1 ai.

�

Unfortunately, the other term, E∗(u+) =
∑n
i=1(e∨i )∗(u+), will not be as easy. We

will first reformulate each of the terms e∨i (u+):

Proof of Lemma 6.5. We want to show that

(e∨i )∗(u+) = α∨i (t)
〈w̄−1

0 u−1
− w̄−1

P s̄i · v+
ω∨i
, v+
ω∨i
〉

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨i
, v+
ω∨i
〉
.

for z = u+tw̄Pu− ∈ Z◦P .
First, note that the map U∨+ → C : u 7→ 〈us̄i · v+

ω∨i
, v+
ω∨i
〉 is equal to the unique

homomorphism (e∨i )∗ sending x∨i (a) = exp(a e∨i ) to a and the other one-parameter-
subgroups to zero, so

(e∨i )∗(u+) = 〈u+s̄i · v+
ω∨i
, v+
ω∨i
〉.
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Next, we use the fact that u+ is a factor in the decomposition of z ∈ Z◦P
as z = u+tw̄Pu− to find a decomposition for u+ itself. By definition, we have
z = b−w̄

−1
0 for some b− ∈ B∨− as Z◦P ⊂ B∨−w̄

−1
0 . In Remark 6.2 we fixed lifts of

z = u+tw̄Pu− and the elements ṡi and s̄i to G̃∨. Thus, there is a unique lift of

b− ∈ B∨−, also denoted by b− ∈ B̃∨−, such that b−w̄
−1
0 = z ∈ G̃∨. This gives

u+ = b−w̄
−1
0 u−1

− w̄−1
P t−1 ∈ G̃∨. (16)

Thus, we have to calculate 〈b−w̄−1
0 u−1

− w̄−1
P t−1s̄i · v+

ω∨i
, v+
ω∨i
〉.

Now, s̄i · v+
ω∨i

has weight ω∨i − α∨i , so t−1 ∈ T̃∨ acts on this vector by scalar

multiplication with

[ω∨i − α∨i ](t−1) =
ω∨i (t−1)

α∨i (t−1)
=
α∨i (t)

ω∨i (t)
∈ C.

(Note that weights and roots are written additively.) We conclude

(e∨i )∗(u+) = α∨i (t)
〈b−w̄−1

0 u−1
− w̄−1

P s̄i · v+
ω∨i
, v+
ω∨i
〉

ω∨i (t)
.

Noting that b− ∈ B̃∨− sends a vector to a linear combination of vectors of equal or

lower weight, we see that the only contribution of b− to 〈b−w̄−1
0 u−1

− w̄−1
P s̄i·v+

ω∨i
, v+
ω∨i
〉

will be the factor 〈b− · v+
ω∨i
, v+
ω∨i
〉, so we find

(e∨i )∗(u+) = α∨i (t)
〈b− · v+

ω∨i
, v+
ω∨i
〉

ω∨i (t)
〈w̄−1

0 u−1
− w̄−1

P s̄i · v+
ω∨i
, v+
ω∨i
〉. (17)

Finally, we use the decomposition in (16) in combination with the fact that
〈u+ · v+

ω∨i
, v+
ω∨i
〉 = 1 (as u+ ∈ U∨+) to conclude that

1 = 〈u+ · v+
ω∨i
, v+
ω∨i
〉 = 〈b−w̄−1

0 u−1
− w̄−1

P t−1 · v+
ω∨i
, v+
ω∨i
〉

=
〈b− · v+

ω∨i
, v+
ω∨i
〉

ω∨i (t)
〈w̄−1

0 u−1
− w̄−1

P · v
+
ω∨i
, v+
ω∨i
〉,

where we calculated the contributions of b− and t−1 in an analogous way as above.
Substituting this into (17), we obtain

(e∨i )∗(u+) = α∨i (t)
〈w̄−1

0 u−1
− w̄−1

P s̄i · v+
ω∨i
, v+
ω∨i
〉

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨i
, v+
ω∨i
〉
,

as in the statement of the lemma. �

Lemma 6.6 claims that all of the summands of E∗(u+) =
∑n
i=1(e∨i )∗(u+) are

zero, except for i = k (where k is such that P = Pk).
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Proof of Lemma 6.6. We need to show that (e∨i )∗(u+) = 0 for z = u+tw̄Pu− ∈ Z◦P
and i 6= k (where k is such that P = Pk).

Considering the expression for (e∨i )∗(u+) of Lemma 6.5, we need to show that

〈w̄−1
0 u−1

− w̄−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉 = 0 for i 6= k.

Recall that we assumed u− ∈ U◦− ⊂ UP− = U∨− ∩ B∨+w̄P w̄0B
∨
+ (see Lemma 5.2).

Thus, we have u−1
− ∈ B∨+w̄−1

0 w̄−1
P B∨+; in other words, there are b1, b2 ∈ B∨+ such

that u−1
− = b1w̄

−1
0 w̄−1

P b2. Choosing lifts b1, b2 ∈ B̃∨+ such that u−1
− = b1w̄

−1
0 w̄−1

P b2

as elements of G̃∨ (again abusing notation), it follows that we have to show that

〈w̄−1
0 b1w̄

−1
0 w̄−1

P b2w̄
−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉 = 0 for i 6= k.

Now, w̄−1
0 b1w̄

−1
0 ∈ w̄−1

0 B̃∨+w̄
−1
0 = B̃∨−, so using an analogous argument to the one

in the proof of Lemma 6.5, we find that

〈w̄−1
0 b1w̄

−1
0 w̄−1

P b2w̄
−1
P s̄i ·v+

ω∨i
, v+
ω∨i
〉 = 〈w̄−1

0 b1w̄
−1
0 ·v

+
ω∨i
, v+
ω∨i
〉〈w̄−1

P b2w̄
−1
P s̄i ·v+

ω∨i
, v+
ω∨i
〉.

As 〈w̄−1
0 b1w̄

−1
0 · v+

ω∨i
, v+
ω∨i
〉 only contributes a scalar factor, we need to show that

〈w̄−1
P b2w̄

−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉 = 0 for i 6= k. (18)

In other words, it is enough to show that w̄−1
P b2w̄

−1
P s̄i · v+

ω∨i
has no components of

weight ω∨i . This is a straightforward argument with weights: s̄i · v+
ω∨i

has weight

ω∨i − α∨i , so that w̄−1
P s̄i · v+

ω∨i
has weight wP

(
ω∨i − α∨i

)
, noting that w−1

P = wP as

it is the longest element of the Weyl group WP = 〈si | i 6= k〉. Now, as b2 ∈ B̃∨+,

all components of b2w̄
−1
P s̄i · v+

ω∨i
will have weight wP

(
ω∨i − α∨i

)
+ α∨+ for some

(possibly trivial) sum α∨+ of positive roots. Thus, we find that w̄−1
P b2w̄

−1
P s̄i · v+

ω∨i
has components of weight

wP

(
wP
(
ω∨i − α∨i

)
+ α∨+

)
= ω∨i − α∨i + wP (α∨+),

again using w−1
P = wP . Thus, one of these components has weight ω∨i if and only

if wP (α∨+) = α∨i . However, since wP is the longest element of the Weyl group
WP = 〈si | i 6= k〉, we know that it maps all the simple roots α∨i with i 6= k to
negative roots, but then we must have that α∨+ = wP (α∨i ) ∈ Φ∨− is a negative root
and definitely not a sum of positive roots, which gives a contradiction. Thus, all
components have weight unequal to ω∨i , implying that (18) holds, which in turn
implies the lemma. �

Combining Lemmas 6.5 and 6.6, we conclude that

E∗(u+) = (e∨k )∗(u+) = q
〈w̄−1

0 u−1
− w̄−1

P s̄k · v+
ω∨k
, v+
ω∨k
〉

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨k
, v+
ω∨k
〉
. (19)

Lemma 6.7 calculates the denominator of this quotient and Lemma 6.8 calculates
its numerator:
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Proof of Lemma 6.7. We need to show that for u− ∈ U◦− we have

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨k
, v+
ω∨k
〉 = (−1)`

∏̀
i=1

ai,

where ` = `(wP ).
Using Lemma 4.4(iv) we find

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨k
, v+
ω∨k
〉 = 〈w̄−1

0 u−1
− · v+

ω∨k
, v+
ω∨k
〉.

By definition of U◦− (see Definition 5.1), u−1
− has a decomposition of the form

u−1
− = y∨r1(−a1) · · · y∨r`(−a`),

where the sequence of indices (r1, . . . , r`) is the same as the one used in the reduced
expression wP = sr1 · · · sr` fixed in equation (8), see Section 2. Now, by definition
y∨i (a) = exp(a f∨i ) = 1 + a f∨i + 1

2a
2(f∨i )2 + · · · , but only the first two terms act

non-trivially on the representation, since (f∨i )2 · v = 0 for all v ∈ Vω∨k according to
Theorem 4.2(iv). We conclude that

u−1
− · v+

ω∨k
= (1− a1 f

∨
r1) · · · (1− a` f∨r`) · v

+
ω∨k
.

Note that this is a sum of vectors of different weights, the term of highest weight
being v+

ω∨k
(obtained by taking the term with all the identity factors), and the term

of lowest weight being (see Lemma 4.4(iv))

(−a1) · · · (−a`)f∨r1 · · · f
∨
r`
· v+
ω∨k

= (−1)`
(∏`

i=1 ai
)
v−ω∨k

.

Only the lowest weight term contributes a coefficient to 〈w̄−1
0 u−1

− · v+
ω∨k
, v+
ω∨k
〉 as

w̄−1
0 v−ω∨k

= v+
ω∨k

and w̄−1
0 is a bijection. Thus, we obtain

〈w̄−1
0 u−1

− w̄−1
P · v

+
ω∨k
, v+
ω∨k
〉 = (−1)`

∏`
i=1 ai

as we wanted to show. �

Now we turn to the numerator of (19):

Proof of Lemma 6.8. We need to show that for u− ∈ U◦− we have

〈w̄−1
0 u−1

− w̄−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I

ai1 · · · ai`′ ,

where I = {(i1, . . . , i`′) | 1 ≤ i1 < i2 < · · · < i`′ ≤ ` and w′ = sri1 · · · sri`′ } was

defined in Definition 5.5 and where we fixed the reduced expression wP = sr1 · · · sr`
in equation (8).
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As we saw in the proof of Lemma 6.7, we only need to consider the lowest-weight
term of the vector u−1

− w̄−1
P s̄k · v+

ω∨k
, as it is the only term mapped to v+

ω∨k
by w̄−1

0 .

However, w̄−1
P s̄k acts non-trivially on v+

ω∨k
, whereas in the proof of Lemma 6.7 w̄−1

P

acted trivially on v+
ω∨k

by Lemma 4.4(iv).

Recall that we had fixed the reduced expression wP = sq1 · · · sqm in equation
(8) and that s̄−1

i = ṡi, so we find that w̄−1
P = ṡqm · · · ṡq1 . Moreover, note that

s̄k · v+
ω∨k

= f∨k · v
+
ω∨k

= −ṡk · v+
ω∨k

(see Corollary 4.3). All in all, we find that

w̄−1
P s̄k · v+

ω∨k
= −ṡqm · · · ṡq1 ṡk · v+

ω∨k
.

In Section 4 we have written w′′ ∈WP for the minimal coset representative of the
coset wP skWP (note that w−1

P = wP ) and written `′′ = `(w′′) ≤ `(wP ) = ` for its
length. Since sqm · · · sq1 is a reduced expression for wP ∈ WP and sk /∈ WP , we
deduce that sqm · · · sq1sk is a reduced expression for wP sk. Thus, by Lemma 4.4(i)
and (ii), we deduce that w̄−1

P s̄k ·v+
ω∨k

= −ṡqm · · · ṡq1 ṡk ·v+
ω∨k

= −ẇP ṡk ·v+
ω∨k

and that

w̄−1
P s̄k · v+

ω∨k
= −ẇP ṡk · v+

ω∨k
= −ẇ′′ · v+

ω∨k
= (−1)`

′′+1f∨j1 · · · f
∨
j`′′
· v+
ω∨k
, (20)

where w′′ = sj1 · · · sj`′′ is a reduced expression.
Note that in the case `′′ = ` (which only occurs for CPn = Gr(1, n + 1) =

Asc
n /P1

∼= Asc
n /Pn) the following arguments become trivial, see Remark 7.3 below.

Next, we need to multiply this vector by u−1
− , which due to Theorem 4.2(iv)

reduces to multiplying by (1 − a1 f
∨
r1) · · · (1 − a` f∨r`) in the representation. As we

mentioned at the start of the proof, we only need to look at the coefficient in
front of v−ω∨k

in this product. From Lemma 4.4(iv) we know that f∨i1 · · · f
∨
i`
· v+
ω∨k

=

v−ω∨k
if and only if si1 · · · si` = wP and this is a reduced expression. So we need

exactly those terms of (1− a1 f
∨
r1) · · · (1− a` f∨r`) that complete f∨j1 · · · f

∨
j`′′
· v+
ω∨k

to

f∨ri1 · · · f
∨
ri
`−`′′

f∨j1 · · · f
∨
j`′′
· v+
ω∨k

in such a way that the indices satisfy the condition

sri1 · · · sri`−`′′ sj1 · · · sj`′′ = wP . However, sj1 · · · sj`′′ = w′′ and sr1 · · · sr` = wP , so

we obtain a contributing term for every subexpression sri1 · · · sri`−`′′ of the fixed

reduced expression for wP such that sri1 · · · sri`−`′′w
′′ = wP . Therefore, every

subexpression of w′ = wP (w′′)−1 in the fixed reduced expression of wP gives a
contributing term.

Now, in Definition 5.5 we defined the set indexing these subexpressions as

I = {(i1, . . . , i`′) | 1 ≤ i1 < i2 < · · · < i`′ ≤ ` and w′ = sri1 · · · sri`′ },

where `′ = `(w′) = `(wP )−`(w′′) = `−`′′. In conclusion, for every (i1, . . . , i`) ∈ I,
we obtain the following term

−(−ai1) · · · (−ai`′ )f
∨
ri1
· · · f∨ri

`′
(−1)`

′′
f∨j1 · · · f

∨
j`′′
· v+
ω∨k

= (−1)`+1ai1 · · · ai`′ v
−
ω∨k

and we find that

〈w̄−1
0 u−1

− w̄−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I

ai1 · · · ai`′ ,

as we wanted to show. �

This concludes the last of the intermediate results for the proof of Theorem 5.7.
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Remark 7.2. Note that at no point in the proof of Lemma 6.8 do we fix a reduced
expression for w′, so if (ij), (i

′
j) ∈ I, then we do not necessarily have rij = ri′j for

all j.

Remark 7.3. Note that if `′′ = `, we have w′′ = wP . In this case, equation (20)
becomes

−ẇ′′ · v+
ω∨k

= −ẇP · v+
ω∨k

= (−1)`+1f∨r1 · · · f
∨
r`
· v+
ω∨k

= (−1)`+1v−ω∨k
,

Since u− ∈ U∨−, we find that u−1
− acts trivially on this, so that

〈w̄−1
0 u−1

− w̄−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1.

Of course, w′′ = wP implies that w′ = wP (w′′)−1 = 1. Thus, subexpressions of
w′ inside wP have zero length and there is only one such subexpression so we find

I = {∅}. We conclude that
∑

(ij)∈I
∏`′

j=1 arij = 1, taking the empty product to

be 1. Thus,

〈w̄−1
0 u−1

− w̄−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I

`′∏
j=1

arij

also holds in case `′′ = `.

8. Reformulating the quantum term using quiver subsets

In the last two sections we proved that Theorem 5.7 gives a local Laurent
polynomial expression for the potential constructed by Rietsch in [Rie08]. However,
the drawback of the current expression is the effort required to find all the subex-
pressions of w′ inside the fixed reduced expression of wP . In this section we will
use a quiver associated to wP to enumerate all these subexpressions. For this, we
need to use the fact that both wP and w′ are fully commutative:

Definition 8.1. An element w ∈ W is called fully commutative if every reduced
expression of w can be obtained from a given reduced expression by commuting
its factors.

Lemma 8.2. Both wP ∈WP and w′ ∈W are fully commutative.

Proof. Full commutativity of wP (and in fact of every element of WP ) follows
from [Ste96, Thm. 6.1]. Full commutativity of w′ is now a consequence of the full
commutativity of wP due to [Ste96, Prop. 2.4], which states that every element in
W obtained from a fully commutative element by removing simple reflections at
the right (or left) is fully commutative itself. �

In [CMP08] a quiver is associated to wP using the full commutativity property.
This quiver is a modification of the quiver introduced in [Per07]. It is defined as
follows:
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Definition 8.3 ([CMP08, Def. 2.1]). Given a fixed reduced expression

wP = sr1 · · · sr` ,

e.g., the one fixed in equation (8):

• For β ∈ {α1, . . . , αn}, let m(β) be the number of occurrences of sβ in the
reduced expression, i.e., m(β) = #{j | srj = sβ}.

• For (β, j) such that 1 ≤ j ≤ m(β), let J(β, j) be the index of the jth
occurrence of sβ in the reduced expression (from left to right), i.e., let J(β, j)
be the index such that srJ(β,j) = sβ and such that #{̃ ≤ J(β, j) | sr̃ =
sβ} = j. Also, set J(β, 0) = 0 and J(β,m(i) + 1) =∞.

The quiver is now defined as follows:

• Draw for the jth occurrence of sβ in the reduced expression for wP a vertex
labeled (β, j), i.e., the vertices are (β, j) for β ∈ {α1, . . . , αn} and j ∈
{1, . . . ,m(β)}.

• Draw an arrow from (β, j) to (β′, j′) if sβ and sβ′ do not commute and if
the j′th occurrence of sβ′ is the first one to the right of the jth occurrence
of sβ in the reduced expression for wP and it occurs before the (j + 1)th
occurrence of sβ , i.e., draw an arrow from (β, j) to (β′, j′) if (sβsβ′)

2 6= 1 and
J(β′, j′ − 1) < J(β, j) < J(β′, j′) < J(β, j + 1).

We will denote the resulting quiver by QX .

Note that the resulting quiver does not depend on the reduced expression for
wP as it is fully commutative; it suffices to check that the quiver is the same after
commuting two simple reflections.

Remark 8.4. In Definition 8.3, we associate the quiver QX to X = G/Pk. However,
as the Laurent polynomial WZ◦P is defined on Z◦P ⊂ G∨, it would be more proper
to associate the quiver to the variety P∨k \G∨ (the left-quotient of G∨ by P∨k ).
This variety has not played a role here, but is closely related to the variety
X∨ of equation (9) and Theorem 3.2. In fact, in the articles [MR13], [PR18],
[PRW16], [PR13] it is shown that X∨ is isomorphic to a subvariety of P∨k \G∨
and an expression for the pull-back of W : X∨ × TP → C (see Definition 3.5) to
P∨k \G∨ is given. It is expected that such an isomorphic subvariety exists in general.
For now, however, we note that G and G∨ have the same Weyl groups W and
WP = 〈si | i 6= k〉 ⊂ W as these only depend on the Coxeter diagram underlying
the Dynkin diagram of G∨ and the vertex k, so that wP and the associated quivers
are actually the same. Thus, we will continue to write QX even though it would
be more proper to write QP∨k \G∨ .

This quiver has as vertices the factors of the reduced expression of wP , so every
subexpression of w′ inside the reduced expression will become a subset of vertices
of this quiver.

Definition 8.5. We denote the set of subsets of vertices of the quiver QX that
are associated to reduced subexpressions of w′ inside the reduced expression of wP

fixed in Section 2 by S. In other words,

S =
{(

(β1, j1), . . . , (β`′ , j`′)
) ∣∣ sβ1

· · · sβ`′ = w′
}
,
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where `′ = `(w′). Note that we implicitly order the vertices (β1, j1), . . . , (β`′ , j`′)
such that J(β1, j1) < · · · < J(β`′ , j`′), but we will still refer to the elements of S
as subsets.3

Remark 8.6. Recall from Definition 5.5 that we defined I as the set of sequences
of subindices (i1, . . . , i`′) such that sri1 · · · sri`′ = w′ is a reduced subexpression

of w′ in the fixed reduced expression wP = sr1 · · · sr` . Note that J gives rise to a
bijection between S and I, which we will also denote by J:

J :
(
(β1, j1), . . . , (β`′ , j`′)

)
7→
(
J(β1, j1), . . . ,J(β`′ , j`′)

)
. (21)

This bijection gives the translation between the subsets of vertices of the quiver
QX (in S) and their associated reduced subexpressions (in I).

Example 8.7. To illustrate the quiver and the subsets associated to the subexp-
ressions, consider the example of the Grassmannian X = Gr(4, 6) = SL6/P4 of
type A5. Fixing for wP the reduced expression wP = (s2s3s4s5)(s1s2s3s4), we find
that QX is of the form below. Here all edges are arrows are pointing downwards
and the ith column of vertices contains the vertices (αi, j) with j increasing from
1 to mP (αi) from top to bottom. Above the quiver, we have drawn the labeled
Coxeter diagram in such a way that the ith vertex of the diagram is above the
ith column of the quiver. The vertex labeled 4 is marked in the Coxeter diagram
to signify that we are considering X = SL6/P4, i.e., to signify that k = 4 in
X = G/Pk. For each vertex (β, j), we also give the value of J(β, j).

1 2 3 4 5

1

2

3

4

8

7

6

5

The reduced expression w′ = s2s3s4 is unique and appears as subexpression
(s2s3s4s5)(s1s2s3s4), (s2s3s4s5)(s1s2s3s4), (s2s3s4s5)(s1s2s3s4), and finally
(s2s3s4s5)(s1s2s3s4). These correspond in the quiver QX to marking the vertices

respectively, where we suppressed the vertices. �

3This is to distinguish them from the sequences of subindices that are the elements of
I from Definition 5.5.
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It turns out that we can use the quiver QX to find all the reduced subexpressions
of w′ in wP using two operations that are straightforward when considered as
operations on subsets of the quiver. First, we need the following observation:

Remark 8.8. From Definition 8.3, it is clear that we can only have an arrow (i, j)→
(i′, j′) if J(i, j) < J(i′, j′), so that any path (i, j) → (i1, j1) → · · · → (i′, j′)
between the two vertices corresponds to simple reflections srJ(i,j) , srJ(i1,j1)

, . . . ,

srJ(i′,j′) that appear in that order in the reduced expression of wP .

The two operations are given as follows:

Lemma 8.9. Suppose (i1, . . . , i`′) ∈ I, i.e., suppose it is a sequence of subindices
such that sri1 · · · sri`′ = w′ is a reduced subexpression inside the reduced expression

wP = sr1 · · · sr` . Denote by S ∈ S the corresponding subset obtained by (the inverse
of ) the bijection in (21).

(i) For every ı̃ such that rı̃ = rij and ij−1 < ı̃ < ij+1, the sequence of subindices
obtained by replacing ij with ı̃, i.e., (i1, . . . , ij−1, ı̃, ij+1, . . . , i`′), also gives
a reduced subexpression of w′ in wP .

In terms of subsets in S, this says that we can replace a vertex (β, j) ∈ S
with a vertex (β, ̃) if every (β′, j′) with J(β, j) < J(β′, j′) < J(β, ̃) is not
an element of S when j < ̃ (or J(β, j) > J(β′, j′) > J(β, ̃) when j > ̃).

Examples of this operation are the following (using the conventions of
Example 8.7):

ij−1
ij

ij+1

7→

ij−1

ı̃
ij+1

ij−1
ij

ij+1

7→

ij−1

ı̃
ij+1

ij−1

ij
ij+1

7→

ij−1

ı̃

ij+1

(ii) For every ı̃ < ij with rı̃ = rij such that there exists a j′ with ij′ < ı̃ <
ij′+1 ≤ ij and (srij srĩ )

2 = 1 for all ̃ ∈ {j′ + 1, . . . , j − 1}, we have

that the sequence of subindices (i1, . . . , ij′ , ı̃, ij′+1, . . . , ij−1, ij+1, . . . , i`′) is
an element of I as well.

Similarly, for every ı̃ > ij with rı̃ = rij such that there exists a j′ with
ij ≤ ij′ < ı̃ < ij′+1 and (srij srĩ )

2 = 1 for all ̃ ∈ {j + 1, . . . , j′}, the

sequence of subindices (i1, . . . , ij−1, ij+1, . . . , ij′ , ı̃, ij′+1, . . . , i`′) is also an
element of I.

In terms of subsets in S, this says that we can replace a vertex (β, j) ∈ S
with a vertex (β, ̃) if for every path (β, j) → (β1, j1) → . . . → (β, ̃) when
j < ̃ (or (β, ̃) → (β1, j1) → . . . → (β, j) when j > ̃ respectively) there is
no vertex (β′, j′) ∈ S contained in the path such that (sβsβ′)

2 6= 1. Examples
of this operation are:
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ij′

ij′+1

ij−1

ij
ij+1

7→

ij′

ij′+1

ij−1 ı̃

ij+1

ij−1
ij

ij′

ij′+1

7→

ij−1

ij′

ı̃
ij′+1

Proof. (i) By assumption, (i1, . . . , ij−1, ı̃, ij+1, . . . , i`′) is an increasing sequence of
subindices such that

sri1 · · · srij−1
srı̃srij+1

· · · sri
`′

= sri1 · · · srij−1
srij srij+1

· · · sri
`′

= w′,

and therefore a reduced expression of w′ in wP as well.
(ii) If ı̃ < ij , we can commute the factor srij to the left in the given reduced

subexpression to obtain sri1 · · · srij′ srij srij′+1
· · · srij−1

srij+1
· · · sri

`′
as a reduced

expression for w′. Moreover, this is a subexpression of w′ in wP since there is a ı̃
with ij′ < ı̃ < ij′+1 and rı̃ = rij , so that (i1, . . . , ij′ , ı̃, ij′+1, . . . , ij−1, ij , . . . , i`′) is
an increasing sequence of subindices.

The case ı̃ > ij is analogous, except that we commute the factor srij to the

right. �

Remark 8.10. Note that the operation (i) is actually a special case of the operation
(ii) where no commutation takes place.

It turns out that these operations suffice to obtain all the reduced subexpressi-
ons of w′ in wP . To show this, we introduce a total order on the set of reduced
subexpressions by taking the lexicographical order ≺ on I. In other words, we
have (i1, . . . , i`′) ≺ (i′1, . . . , i

′
`′) if and only if there exists a j such that ij < i′j and

ij′ = i′j′ for j′ ∈ {1, . . . , j−1}. Let (i∗1, . . . , i
∗
`′) be the minimal sequence associated

to a reduced subexpression of w′ in wP .

Proposition 8.11. Every reduced subexpression of w′ in wP can be obtained using
the operations of Lemma 8.9 on the reduced subexpression w′ = sri∗1

· · · sri∗
`′

that is

minimal with respect to the lexicographical order.

Proof. We will show that every non-minimal reduced subexpression can be made
smaller using one of the operations in Lemma 8.9. This gives a sequence of opera-
tions from any given reduced subexpression to the minimal one. Since it is evident
that each operation is invertible, we obtain the statement.

Therefore, let (i1, . . . , i`′) ∈ I be non-minimal with respect to the lexicographi-
cal order. By definition, there exists a j such that ij > i∗j and ij′ = i∗j′ for all
j′ ∈ {1, . . . , j − 1}. We distinguish two cases: rij = ri∗j and rij 6= ri∗j .

In the case rij = ri∗j , we can apply operation (i) to directly obtain the reduced

subexpression (i1, . . . , ij−1, i
∗
j , ij+1, . . . , i`′) ≺ (i1, . . . , ij−1, ij , ij+1, . . . , i`′).
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Now, consider the case rij 6= ri∗j . Suppose that the simple reflection sri∗
j

occurs

for theNth time in the minimal reduced subexpression of w′ in wP , then there must
exist some j′ > j such that sri

j′
is the Nth occurrence of the same simple reflection

in the subexpression (i1, . . . i`′). Indeed, w′ is fully commutative so that each simple
reflection appears the same number of times in each reduced expression. (Note that
we have j′ > j since sri∗

̃
= srĩ for ̃ ∈ {1, . . . , j−1} and srij 6= sri∗

j
.) We also know

that the simple reflections srĩ commute with sri
j′

for ̃ ∈ {j, . . . , j′ − 1} because

of full commutativity of w′, since these simple reflections have commuted with
sri∗

j
= sri

j′
going from (i∗1, . . . , i

∗
`′) to (i1, . . . , i`′). Thus, we can apply operation (ii)

to obtain the reduced subexpression (i1, . . . , ij−1, i
∗
j , ij , . . . , ij′−1, ij′+1, . . . , i`′) ≺

(i1, . . . , i`′). �

Combining this with Theorem 5.7 and Remark 8.6, we conclude the following:

Corollary 8.12. Let X = G/P be a cominuscule complete homogeneous space
with G a simply-connected, simple, complex algebraic group and P = Pk a (maxi-
mal) parabolic subgroup. The restriction WZ◦P of WZ∨P to Z◦P has the following
Laurent polynomial expression:

WZ◦P (z) =
∑̀
i=1

ai + q

∑
S∈S

∏
(β,j)∈S aJ(β,j)∏`
i=1 ai

. (22)

Here z ∈ Z◦P is uniquely decomposed as z = u+tw̄Pu− with u− = y∨r`(a`) · · · y
∨
r1(a1)

in U◦− as in Corollary 5.4. Also, q ∈ C∗ is given by q = α∨k (t) (with t ∈ TP ), and the
subindex relabeling J is defined in Definition 8.3. The set S is defined in Definition
8.5 and all its elements are obtained using the operations of Lemma 8.9.

9. Laurent polynomial potentials for all the cominuscule cases

Theorem 5.7 allows us to calculate Laurent polynomial potentials for the co-
minuscule homogeneous spaces listed in Table 1, and Corollary 8.12 gives us a
tractable way to find all the terms. In this section, we will give reduced expressions
for wP and w′, and describe the quivers QX for all the cominuscule homogeneous
varieties. We refer the reader interested in representative examples of the sets S
and the resulting Laurent polynomial expressions to the arXiv version of this paper
[Spa19].

The Laurent polynomials we obtain for quadrics (type Bn and Dn) and La-
grangian Grassmannians (type Cn) are identical to those found in [PRW16, Props.
2.2 and 3.11] and [PR13, Prop. A.1]. This is to be expected, as Theorem 5.7 is
obtained by a generalization of the methods used there.

However, to the best of our knowledge, the Laurent polynomials for orthogonal
Grassmannians (type Dn) for general n, the Cayley plane (type E6) and the Freu-
denthal variety (type E7) have not yet been given. Moreover, all the potentials
have a uniform structure resembling Givental’s Laurent polynomial potential for
projective complete intersections [Giv96], namely they are the sum of the toric
coordinates plus a quantum term consisting of a homogeneous polynomial divided
by the product of all the toric coordinates.
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9.1. The Grassmannian

X = Gr(k, n) = SLn/Pk, considered as a homogeneous space for the special
linear group, the simply-connected complex Lie group of type An−1. Note that
the parabolic subgroup is given by

Pk =

[
GLk Matk×(n−k)

0 GLn−k

]
∩ SLn.

We make two assumptions on k: Firstly, we assume that k /∈ {1, n− 1}: for k = 1
and k = n− 1 we find w′ = 1. Secondly, we assume without loss of generality that
k > n− k: for the remaining cases apply the Dynkin diagram bijection i 7→ n− i.
The longest Weyl group element has minimal coset representative

wP = (sn−ksn+1−k · · · sn−1)(sn−1−ksn−k · · · sn−2) · · · (s1s2 · · · sk),

having n− k products in parentheses each with k factors. On the other hand, we
find for w′ the reduced expression

w′ = (sn−k · · · sn−2)(sn−k−1 · · · sn−3) · · · (s2 · · · sk),

having n− k − 1 products in parentheses each with k − 1 factors.

The quiver QX can be written as a (n − k − 1) × (k − 1)-rectangle and the
reduced subexpression for w′ that is minimal in the lexicographical order is the
(n−k−2)×(k−2)-rectangle obtained by removing the bottom row and rightmost
column.

Note that there is a clear bijection between the subsets of the quiver QX and
Young diagrams that fit inside a (n − k − 1) × (k − 1)-rectangle: the unmarked
vertices correspond to the contour of the Young diagram. This bijection works
in general, so we obtain an alternative description of the quantum term for a
general Grassmannian Gr(k, n) that sums over the Young diagrams that fit inside
a (n− k − 1)× (k − 1)-rectangle.

Remark 9.1. Other Laurent polynomial Landau–Ginzburg models have already
been given for Grassmannians. Particularly relevant is the potential given in the
paper [EHX97, eqn. (B.25)] (see also [BCFKvS98, Conj. 4.2.2], as well as [MR13,
Sect. 6.3]).

The potential L : (C∗)k(n−k) × C∗ → C of [EHX97] is shown in [MR13],
Theorem 4.6, to be a local Laurent polynomial expression for the Landau–Ginzburg
model used there. That model is also shown in Proposition 6.7 of [MR13] to be
isomorphic to Rietsch’s Lie-theoretic Landau–Ginzburg model given in [Rie08],
see also Theorem 3.2 here. By construction, the Laurent polynomial potential
WZ◦P of Theorem 5.7 and Corollary 8.12 here is a local expression for Rietsch’s
Lie-theoretic Landau–Ginzburg model. Thus, both WZ◦P and L are local Laurent
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polynomial expressions for the same model. However, it is clear that WZ◦P and
L are not isomorphic: the quantum term of L is a Laurent monomial, namely,
T[n−k,k] = q/z[n−k,k], whereas the quantum term of WZ◦P is not.

On the other hand, it is straightforward to find a birational map Φ such that
Φ∗L =WZ◦P . First, consider the following bijection: for [i, j] ∈ Λs \ {[n−k, k]}, let
φ([i, j]) = i · k − j + 1, and let φ(∅) = (n − k − 1)k + 1. Clearly, φ is a bijection
Λ∗s \ {[n − k, k],∞} → {1, . . . , k(n − k)}. Define Φ : (C∗)k(n−k) → (C∗)k(n−k) to
be the birational map such that Φ∗(ai) = Tφ−1(i). By definition, we find (recalling
T∞ = 0)

Φ∗WZ◦P = Φ∗

k(n−k)∑
i=1

ai + q
P (aj)

a1 · · · ak(n−k)


=

∑
[i,j]∈Λ∗s\{[n−k,k]}

T[i,j] + q
P (T[i′,j′])

T∅T[1,1]T[1,2] · · ·T[n−k,k−1]
,

where P is the homogeneous polynomial in the numerator of the quantum term
of Corollary 8.12. Thus, what remains to be shown is that the quantum term
simplifies to T[n−k,k] = q/z[n−k,k], which is a straightforward computation for any
given k and n.

9.2. The quadric

X = Qd. Note that both odd- and even-dimensional quadrics are homogeneous for
Spind+2, and that the parabolic subgroup is associated to the first vertex of the
Dynkin diagram. Note, however, that Spind+2 is of a different type depending on
whether d+ 2 = 2n+ 1 is odd (type Bn) or d+ 2 = 2n is even (type Dn), but the
resulting homogeneous spaces are nonetheless similar enough to be considered at
the same time. We find for wP the reduced expressions:

wP =

{
s1s2 · · · sn−1(sn)sn−1sn−2 · · · s1, for d = 2n− 1,
s1s2 · · · sn−2(sn−1sn)sn−2sn−3 · · · s1, for d = 2n− 2.

For both odd and even quadrics we find w′ = s1 and in both cases the simple
reflection s1 only appears as the first and the last factor, so it is easy enough to
find the Laurent polynomial potential without using Corollary 8.12. We find the
same potential in both cases, namely:

WZ◦P (z) =

d∑
i=1

ai + q
a1 + ad∏d
i=1 ai

,

where d is the dimension of the quadric, and we decomposed z = u+tw̄Pu−
with u− = y∨1 (−a1)y∨2 (−a2) · · · y∨1 (−ad) and q = α∨1 (t). Note that this Laurent
polynomial expression is indeed identical to the ones obtained in [PRW16, Props.
2.2 and 3.11].
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9.3. The Lagrangian Grassmannian

X = LG(n, 2n) = Sp2n/Pn, considered as a homogeneous space for the symplectic
group of type Cn. Note that the parabolic subgroup is given by

Pn =

[
GLn Matn×n

0 GLn

]
∩ Sp2n.

The coset representative for the longest Weyl group element has reduced expres-
sion:

wP = (sn)(sn−1sn)(sn−2sn−1sn) · · · (s1s2 · · · sn),

Similarly, we find for w′

w′ = (sn)(sn−1sn)(sn−2sn−1sn) · · · (s2s3 · · · sn).

The quiver QX can be written as the triangle that is the left half of an n × n-
square, and the reduced subexpression for w′ that is minimal with respect to the
lexicographical order is the triangle that is the left half of the (n−1)×(n−1)-square
obtained after removing the bottom row and the rightmost column. Note that the
Laurent polynomial expression of Theorem 5.7 coincides with the description given
in [PR13, Prop. A.1].

Example 9.2. Consider LG(4, 8) which is homogeneous for Sp8 of type C4. We
find that wP = (s4)(s3s4)(s2s3s4)(s1s2s3s4), w′ = (s4)(s3s4)(s2s3s4) and the
following quiver:

1 2 3 4

1

2

34

5

6

7

8

9

10

To the right we have drawn the eight subsets corresponding to reduced subexpres-
sions of w′ inside the reduced expression for wP . So, considering the decomposition
z = u+tw̄Pu− with (u−)−1 = y∨4 (−a1)y∨3 (−a2) · · · y∨4 (−a10) and q = α∨4 (t), we find

WZ◦P (z) =

10∑
i=1

ai + q
P (ai)

a1a2a3a4a5a6a7a8a9a10
,

where

P (ai) = a1a2a3a4a5a6 + a1a2a3a4a5a10 + a1a2a3a4a9a10 + a1a2a4a6a9a10

+ a1a2a3a8a9a10 + a1a2a6a8a9a10 + a1a5a6a8a9a10 + a3a5a6a8a9a10

are the eight reduced expression for w′ obtained from the diagrams above. �
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9.4. The orthogonal Grassmannian

X = OG(n, 2n) = Spin2n/Pn, considered as a homogeneous space for the spin
group of type Dn. We fix for the minimal coset representative wP of the longest
element the reduced expression

wP =

{
sn−1(sn−2)sn(sn−3sn−2)sn−1 · · · (s1s2 · · · sn−2)sn, for n odd,
sn(sn−2)sn−1(sn−3sn−2)sn · · · (s1s2 · · · sn−2)sn, for n even.

Now, for w′ we find the reduced expression:

w′ =

{
sn−1(sn−2)sn(sn−3sn−2)sn−1 · · · (s3s4 · · · sn−2)sn, for n odd,
sn(sn−2)sn−1(sn−3sn−2)sn · · · (s3s4 · · · sn−2)sn, for n even.

Note that these expressions are very similar to those of Lagrangian Grassmannians
except that the expressions for the orthogonal Grassmannians alternate between
sn and sn−1. The quiver QX is therefore the left half of an (n−1)× (n−1)-square
with the longest column split over two columns. The subset that corresponds to the
reduced subexpression for w′ that is minimal with respect to the lexicographical
order is in this case the triangle that is the left half of the (n− 3)× (n− 3)-square
obtained after removing the two bottom rows and the two rightmost columns.

9.5. The Cayley plane

X = OP2 = Esc
6 /P6, considered as a homogeneous space for the simply-connected

Lie group Esc
6 of type E6. We fix for wP the reduced expression

wP = s1s3s4s2s5s6s4s5s3s4s2s1s3s4s5s6

and we find for w′ the (unique) reduced expression w′ = s1s3s4s5s6. Thus, the
quiver is as follows:

1 23 4 5 6

1
2
3

4 5
67

89

10
11

12
13

14

15
16

To the right we have drawn the twelve subsets corresponding to subexpressions of
w′. We find for z = u+tw̄Pu− with (u−)−1 = y∨1 (−a1)y∨3 (−a2) · · · y∨6 (−a16)
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WZ◦P (z) =

16∑
i=1

ai + q
P (ai)∏16
i=1 ai

,

with q = α∨6 (t) and in order of the drawn subsets

P (ai) = a1a2a3a5a6 + a1a2a3a5a16 + a1a2a3a8a16 + a1a2a7a8a16

+ a1a2a3a15a16 + a1a2a7a15a16 + a1a2a10a15a16 + a1a9a10a15a16

+ a1a2a14a15a16 + a1a9a14a15a16 + a1a13a14a15a16 + a12a13a14a15a16.

9.6. The Freudenthal variety

X = Esc
7 /P7, considered as a homogeneous space for the simply-connected Lie

group Esc
7 of type E7. We fix for wP the reduced expression

wP = s7s6s5s4s2s3s4s5s6s7s1s3s4s2s5s6s4s5s3s4s2s1s3s4s5s6s7,

and w′ has reduced expression w′ = s7s6s5s4(s2s3)s4s5s6s7. The quiver QX is of
the form

1 23 4 5 6 7

1
2

3
4

56
7

8
9

10

11
12

13
14 15

1617
1819

20
21

22
23

24
25

26
27

To the right we have drawn the subset corresponding to the reduced subexpression
of w′ that is minimal with respect to the lexicographical order. However, in this
case, there are 78 reduced subexpressions, so instead of giving all the corresponding
subsets, we will simply list in lexicographical order the elements of I consisting of
sequences of subindices (i1, . . . , i10) of wP = sr1 · · · sr` such that w′ = si1 · · · si10 ,
see Table 2.

We find for z = u+tw̄Pu− with (u−)−1 = y∨7 (−a1)y∨6 (−a2) · · · y∨7 (−a27) that

WZ◦P (z) =

27∑
i=1

ai + q
P (ai)∏27
i=1 ai

,

with q = α∨7 (t) and P (ai) =
∑

(ij)∈I
∏10
j=1 aij is a homogeneous polynomial of

degree 10 with 78 terms:
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Table 2. The full list of all the 78 elements of I for the Freudenthal variety Esc
7 /P7

{
( 1, 2, 3, 4, 5, 6, 7, 8, 9,10),( 1, 2, 3, 4, 5, 6, 7, 8, 9, 27), ( 1, 2, 3, 4, 5, 6, 7, 8,16,27),

( 1, 2, 3, 4, 5, 6, 7, 8,26,27),( 1, 2, 3, 4, 5, 6, 7,15,16,27), ( 1, 2, 3, 4, 5, 6, 7,15,26,27),

( 1, 2, 3, 4, 5, 6, 7,18,26,27),( 1, 2, 3, 4, 5, 6, 7,25,26,27), ( 1, 2, 3, 4, 5, 6,13,15,16,27),

( 1, 2, 3, 4, 5, 6,13,15,26,27),( 1, 2, 3, 4, 5, 6,13,18,26,27), ( 1, 2, 3, 4, 5, 6,13,25,26,27),

( 1, 2, 3, 4, 5, 6,17,18,26,27),( 1, 2, 3, 4, 5, 6,17,25,26,27), ( 1, 2, 3, 4, 5, 6,20,25,26,27),

( 1, 2, 3, 4, 5, 6,24,25,26,27),( 1, 2, 3, 4, 5,12,13,15,16,27), ( 1, 2, 3, 4, 5,12,13,15,26,27),

( 1, 2, 3, 4, 5,12,13,18,26,27),( 1, 2, 3, 4, 5,12,13,25,26,27), ( 1, 2, 3, 4, 5,12,17,18,26,27),

( 1, 2, 3, 4, 5,12,17,25,26,27),( 1, 2, 3, 4, 5,12,20,25,26,27), ( 1, 2, 3, 4, 5,12,24,25,26,27),

( 1, 2, 3, 4, 5,19,20,25,26,27),( 1, 2, 3, 4, 5,19,24,25,26,27), ( 1, 2, 3, 4, 5,23,24,25,26,27),

( 1, 2, 3, 4, 6,14,17,18,26,27),( 1, 2, 3, 4, 6,14,17,25,26,27), ( 1, 2, 3, 4, 6,14,20,25,26,27),

( 1, 2, 3, 4, 6,14,24,25,26,27),( 1, 2, 3, 4, 6,21,24,25,26,27), ( 1, 2, 3, 4,12,14,17,18,26,27),

( 1, 2, 3, 4,12,14,17,25,26,27),( 1, 2, 3, 4,12,14,20,25,26,27), ( 1, 2, 3, 4,12,14,24,25,26,27),

( 1, 2, 3, 4,12,21,24,25,26,27),( 1, 2, 3, 4,14,19,20,25,26,27), ( 1, 2, 3, 4,14,19,24,25,26,27),

( 1, 2, 3, 4,14,23,24,25,26,27),( 1, 2, 3, 4,19,21,24,25,26,27), ( 1, 2, 3, 4,21,23,24,25,26,27),

( 1, 2, 3, 7,12,14,17,18,26,27),( 1, 2, 3, 7,12,14,17,25,26,27), ( 1, 2, 3, 7,12,14,20,25,26,27),

( 1, 2, 3, 7,12,14,24,25,26,27),( 1, 2, 3, 7,12,21,24,25,26,27), ( 1, 2, 3, 7,14,19,20,25,26,27),

( 1, 2, 3, 7,14,19,24,25,26,27),( 1, 2, 3, 7,14,23,24,25,26,27), ( 1, 2, 3, 7,19,21,24,25,26,27),

( 1, 2, 3, 7,21,23,24,25,26,27),( 1, 2, 3,13,14,19,20,25,26,27), ( 1, 2, 3,13,14,19,24,25,26,27),

( 1, 2, 3,13,14,23,24,25,26,27),( 1, 2, 3,13,19,21,24,25,26,27), ( 1, 2, 3,13,21,23,24,25,26,27),

( 1, 2, 3,17,19,21,24,25,26,27),( 1, 2, 3,17,21,23,24,25,26,27), ( 1, 2, 3,20,21,23,24,25,26,27),

( 1, 2, 8,13,14,19,20,25,26,27),( 1, 2, 8,13,14,19,24,25,26,27), ( 1, 2, 8,13,14,23,24,25,26,27),

( 1, 2, 8,13,19,21,24,25,26,27),( 1, 2, 8,13,21,23,24,25,26,27), ( 1, 2, 8,17,19,21,24,25,26,27),

( 1, 2, 8,17,21,23,24,25,26,27),( 1, 2, 8,20,21,23,24,25,26,27), ( 1, 2,15,17,19,21,24,25,26,27),

( 1, 2,15,17,21,23,24,25,26,27),( 1, 2,15,20,21,23,24,25,26,27), ( 1, 2,18,20,21,23,24,25,26,27),

( 1, 9,15,17,19,21,24,25,26,27),( 1, 9,15,17,21,23,24,25,26,27), ( 1, 9,15,20,21,23,24,25,26,27),

( 1, 9,18,20,21,23,24,25,26,27),( 1,16,18,20,21,23,24,25,26,27), (10,16,18,20,21,23,24,25,26,27)
}
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