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ABSTRACT

This thesis investigates methods to improve the performance of hierarchical 
classification. In terms of this thesis hierarchical classification is a form of supervised 

learning, where the classes in a data set are arranged in a tree structure. As a base for our 
new methods we use the TDDC (top-down divide-and-conquer) approach for hierarchical 

classification, where each classifier is built only to discriminate between sibling classes.
Firstly, we propose a swarm intelligence technique which varies the types of 

classifiers used at each divide within the TDDC tree. Our technique, PSO/ACO-CS 
(Particle Swarm Optimisation/Ant Colony Optimisation Classifier Selection), finds 
combinations of classifiers to be used in the TDDC tree using the global search ability of 

PSO/ACO.
Secondly, we propose a technique that attempts to mitigate a major drawback of the 

TDDC approach. The drawback is that if at any point in the TDDC tree an example is 
misclassified it can never be correctly classified further down the TDDC tree. Our 

approach, PSO/ACO-RO (PSO/ACO-Recovery Optimisation) decides whether to redirect 
examples at a given classifier node using, again, the global search ability of PSO/ACO.

Thirdly, we propose an ensemble based technique, HEHRS (Hierarchical Ensembles 
of Hierarchical Rule Sets), which attempts to boost the accuracy at each classifier node in 

the TDDC tree by using information from classifiers (rule sets) in the rest of that tree. We 
use Particle Swarm Optimisation to weight the individual rules within each ensemble.

We evaluate these three new methods in hierarchical bioinformatics datasets that we 
have created for this research. These data sets represent the real world problem of protein 
function prediction.

We find through extensive experimentation that the three proposed methods improve 
upon the baseline TDDC method to varying degrees. Overall the HEHRS and PSO/ACO- 
CS-RO approaches are most effective, although they are associated with a higher 
computational cost.
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Chapter 1. Introduction

Chapter 1. Introduction

This thesis proposes new methods to improve the predictive accuracy of hierarchical 

classification algorithms. From a machine learning and data mining perspective 

classification involves a form of supervised learning, where a learning algorithm creates a 

classifier which is trained using examples from a data set with known class labels [164], 

The classification model produced by this algorithm during the training phase is then 

used to predict what class label examples from a test set (unseen during training) have.

The type of classification problem dealt with in this thesis is hierarchical -  as the 

classes form a hierarchical structure [149], An example of a hierarchical classification 

problem might be the prediction of what species and then breed a pet is. In the first case 

we wish to know whether the given animal is of the class (species) dog or cat, and in the 

second case if the animal is of the class (breed) Burmese, British Blue, Jack Russell or 

Golden Retriever. In this thesis the species would be considered the first class level and 

the breed the second class level.

The methods we propose during the course of this thesis have been applied to 

challenging bioinformatics data sets. Our goal is to improve our ability to predict what 

functions proteins have, using only information about the protein’s biochemical 

composition.

To aid us in dealing with the complex nature of the hierarchical classification

problems examined in this thesis we use swarm intelligence based techniques, including

several versions of a new PSO/ACO (Particle Swarm Optimisation/Ant Colony

Optimisation) algorithm we have developed. Swarm intelligence based techniques have

been the basis of effective optimisation algorithms in the past. However, there has been

relatively little investigation into their application to data mining problems -  notable

examples of work in this area can be found in [1] [63], We will show during the course of
1



Chapter 1. Introduction

this thesis that swarm intelligence algorithms are also effective in hierarchical 

classification problems in the context of data mining and bioinformatics.

The rest of this chapter introduces the subject matter of this thesis, including our 

motivations for carrying out this work. The aims, contributions and structure of the 

remainder of this document are also discussed.

1.1. Motivation

The amount of information being produced by biologists is increasing massively. The 

automation of the collection and storage of this information has led, in part, to this 

increase, and so the demand for automated methods to analyse this information has also 

dramatically increased. Probably the most well known source of biological data has been 

from the sequencing of the human genome. However, many more genomes have been 

sequenced, hundreds of organisms have had their genetic code revealed with base pairs of 

nucleotides (the building blocks of DNA) numbering in the hundreds of thousands of 

millions [157], An example of where computational methods have been essential to 

biological problems is where algorithms were developed to piece together the fragments 

of DNA sequences. During genomic sequencing fragments are discovered using a process 

called “shotgun sequencing”. During this process random segments of DNA are 

sequenced, with many overlapping segments, which are then knitted together 

automatically by an algorithm. With such a large amount of sequence data it would be 

impossible to use more traditional and labour intensive processes. In other words, it has 

become essential, and now commonplace, for biologists to embrace computational tools.

The prediction of protein function can be considered one of the most important 

challenges faced by biologists in the current “post-genome” era. The challenge arises, in 

part, from the fact that the number of proteins discovered each year is growing at a near 

exponential rate [156], Potential proteins are automatically decoded from DNA, 

revealing a huge number of proteins with totally unknown functional characteristics [157],

2



Chapter 1. Introduction

In addition, advances in the understanding of protein function are critical for the 

unravelling of biological processes, more effective diagnosis and treatment of disease, 

also helping in the design of more effective medical drugs, etc. While the amount of time 

it takes to discover and sequence a protein has decreased massively (the discovery of a 

protein sequence was once considered worthy of a doctorate alone), discovering its 

function remains relatively difficult and long winded via traditional biological methods.

When using data mining techniques it is possible to predict the function of many 

proteins, quickly and with reasonable accuracy. Also, the patterns discovered in the 

process can potentially be used to gain insight into the nature of proteins under 

investigation.

Protein function prediction is particularly attractive from a data mining research 

perspective. This is due to the difficulty of the problem involved, the need for the 

validation of any predictions and the potentially great relevance of knowledge to be 

discovered from the biological data. There is a lot of data readily available on the web; 

this information is in large complex databases, with many records and many possible 

attributes. Although this data is readily available in raw form, extracting the required data 

in a form that can be processed by a data mining algorithm can be a very difficult and 

time consuming task. Care must be taken to weed out unwanted data, database cross- 

referencing systems are not always straight forward, conventions for identifying attributes 

and giving descriptions are not always obvious, records might have many missing 

attribute-values, duplicate or near duplicate records are commonplace. Also, the data 

available in these biological databases often involves hierarchical and multi-label class 

structures (where a record can belong to more than one class and the classes are 

structured in a hierarchy). These class hierarchies are often ignored by 

researchers [15] [85], possibly because at first glance they seem irrelevant, possibly 

because few data mining tools exist to take advantage of them. We will show that if there 

is a hierarchical class structure present in a data set it can be used to the advantage of the 

researcher. We also present methods that take advantage of hierarchical class structures in

3
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order to improve the predictive accuracy of the hierarchical classification of protein 

function.

Swarm intelligence algorithms are derived from the way in which relatively 

unintelligent entities (at the level of the individual) perform intelligent tasks (at the level 

of the swarm) in nature. Part of the reason we chose to use swarm intelligence based 

techniques with hierarchical classification problems is that swarm intelligence based 

approaches have shown to be effective for some data mining tasks (including 

classification) in the past. Also, swarm intelligence algorithms provide a great deal of 

flexibility -  there are many different types of algorithms suiting different applications. 

Furthermore, due to the way in which the “intelligent” behaviour comes from the 

relatively unintelligent entities, the basic principles of swarm intelligence tend to transfer 

readily to computational algorithms. This is especially true for those algorithms designed 

to deal with problems that do not require a large amount of background knowledge about 

the target problem. Significantly, although the effectiveness of swarm intelligence 

approaches has been shown in conventional “flat” classification, swarm intelligence 

methods for hierarchical classification problems have not previously been investigated. 

This, broadly speaking, characterises the originality of the research described in this 

thesis, from a computer science point of view. In addition, this thesis also presents an 

original contribution to bioinformatics, since there has been no previous investigation of 

swarm intelligence methods for the hierarchical prediction of protein functions (again, to 

the best of our knowledge).

1.2. Aim and Objectives

The overall aim of this thesis is to develop swarm intelligence-based methods that use 

the extra information present within a class hierarchy to improve predictive accuracy. To 

be able to do this we must first identify which areas of the hierarchical classification 

problem can be improved upon.
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During this thesis we take, as a baseline approach to be improved upon, a type of 

hierarchical classification method that is already generally considered to be effective, the 

top-down divide-and-conquer approach (TDDC). In this context, our overall aim consists 

of several more precise objectives:

Firstly, it should be noted that different classifiers may perform differently on each 

individual classification problem (each “divide”) within the TDDC tree. This problem has 

already been investigated by other researchers (Seeker et al. [140]) to some degree.

Our first objective is to propose and evaluate a new swarm intelligence method to 

improve upon Seeker et al.’s method.

Secondly, the TDDC approach is based on the principle that only sibling class nodes 

need to be considered at any point in the class tree. So, at the first set of sibling class 

nodes (e.g., cat or dog), if we decide cat, then at the second set of class nodes we must 

only decide between the sibling class nodes Burmese or British Blue. This approach has a 

major drawback. If the pet is in fact a dog we are guaranteed to guess the breed wrong if 

we predict cat at the first class level. This problem is known as the “blocking” problem in 

the literature [152], where higher level classifiers block the ability of lower level 

classifiers to make correct predictions.

The second objective of this thesis is to propose and evaluate a swarm intelligence- 

based method that attempts to reduce this drawback.

Thirdly, the TDDC approach involves dividing the hierarchical classification problem 

into a set of flat classification problems for each classifier to deal with. In this sense the 

system is still, to some extent naive of the class hierarchy. The only part of the TDDC 

approach that is aware of the hierarchy is the simple top-down algorithm which guides 

each test example to the next child classifier during the training phase. It seems that by 

creating a method that is more aware of the hierarchy it should be possible to boost the 

classification accuracy of the entire system.

Our third objective is to use the multiple class levels in the class tree to guide the 

classification of each example in the test set in a more “intelligent” manner -  using the
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information from each of these class levels (we also aim to evaluate this approach). This 

objective is pursued by proposing an ensemble based method whose performance is 

improved by a proposed swarm intelligence based method. Stacking and bagging (two 

well-known types of ensemble methods) are explored and adapted in this thesis in an 

attempt to improve hierarchical classification accuracy. The standard TDDC approach is 

extended by sampling the examples based on the native class hierarchy of the data, which 

can be considered, at a high level of abstraction, a variation of bagging in the context of 

hierarchical classification. We also propose a meta-leaming approach conceptually 

similar to stacking.

Fourthly, it is common for researchers to infer protein function based on protein 

biochemical similarity alone [3], without using a data mining algorithm to induce a 

classification model from the data. By building a higher level classification model rather 

than relying on low level biochemical information it should be possible to increase 

predictive accuracy. We create new (hierarchical protein function) data sets with this in 

mind and try and identify which method is best to classify proteins in each data set.

Indeed, our fourth objective can be seen as the application of the methods created, as 

a result of the first three objectives, to the prediction of hierarchical protein function.

1.3. Preview of Contributions

The main original contributions of this thesis are:

• A new hierarchical classifier selector technique (PSO/ACO-CS) which uses 

PSO/ACO to try to find a hierarchical combination of classifiers (a tree of classifiers) 

with, overall, a higher predictive accuracy than the tree of classifiers found by 

Seeker’s greedy selective approach [140]. This relates to the first objective of this 

thesis; selecting the near optimal classifier at each classifier node (each “divide”
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within the TDDC tree) is a task which benefits from the global search performed by 

PSO/ACO-CS.

• A misclassification-recovery optimisation technique (PSO/ACO-RO) which uses 

PSO/ACO to try to mitigate a major drawback of the top-down divide-and-conquer 

(TDDC) approach. This relates to the second objective of this thesis and allows 

lower level classifiers to attempt to correct the errors of higher level classifiers 

(within the TDDC tree).

• An ensemble technique (Hierarchical Ensemble of Hierarchical Rule Sets) which 

attempts to boost the accuracy of individual classifier nodes within the TDDC tree. 

This relates to the third objective of this thesis. The HEHRS technique is an attempt 

to make a more “intelligent” hierarchical classification system, in that it uses 

information derived from the class hierarchy to guide predictions. We also propose 

the use of PSO to automatically adjust some parameters of the proposed ensemble 

method which led to an improvement in the predictive accuracy of the latter.

The more minor (secondary) original contributions are:

• A new hybrid Particle Swarm Optimisation/Ant Colony Optimisation (PSO/ACO) 

algorithm that deals directly with both categorical/nominal and 

numerical/continuous data. PSO/ACO is used to create a proof-of-concept “flat” 

classification algorithm for rule induction (PSO/ACO-RI) whose basic principles 

were used in the previously-mentioned swarm intelligence based algorithms for 

hierarchical classification (major contributions of this thesis).

• The creation of several hierarchical protein function data sets. Specifically, data sets 

containing data for the hierarchical prediction of GPCR function and data sets 

containing data for the hierarchical prediction of enzyme functions. These data sets 

are freely available on request.
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1.4. Thesis Organisation

The remainder of this thesis is organised as follows. Chapter 2 provides a background 

on the biological knowledge required to understand the protein function prediction 

problem tackled in this thesis. We introduce the features of proteins in general, and how it 

is possible to predict what function a protein might have. We also introduce the 

approaches that have classically been taken by previous researchers for protein function 

prediction. The online protein databases that we use in the creation of our bioinformatics 

data sets are also described.

Chapter 3 introduces background information on data mining. It describes the 

approaches taken by researches interested in hierarchical classification. It also discusses 

how swarm intelligence algorithms have been applied to data mining problems in the past, 

focusing on Ant Colony Optimisation and Particle Swarm Optimisation. We also 

summarise previous work on ensemble-based techniques, focusing on the methods that 

are used in the approaches proposed in this thesis.

Chapter 4 describes our new hybrid Particle Swarm Optimisation/Ant Colony 

Optimisation (PSO/ACO) algorithm. As a proof of concept we implement a standard “flat” 

classification algorithm based on our PSO/ACO technique and test its performance in 

standard benchmark data sets. The concepts and principles incorporated into this 

PSO/ACO algorithm for flat classification are then used to produce more sophisticated 

PSO/ACO methods for hierarchical classification in the following chapters.

Chapter 5 describes the blocking problem in detail and proposes our solution to try 

and mitigate its effect -  a PSO/ACO algorithm for misclassification-recovery 

optimisation. This is where examples can have their misclassification at higher class 

levels corrected by lower level classifiers. We also propose a classifier selection 

technique based on Seeker’s [140], which uses global (swarm-based) search to improve 

on the performance of his technique. We evaluate our proposed methods, along with 

several baseline approaches, using four new bioinformatics data sets. These challenging
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real world data sets were constructed for the hierarchical prediction of GPCR (G-Protein 

Coupled Receptors) protein function.

Chapter 6 proposes an ensemble-based approach for hierarchical classification. This 

uses information from all levels within the class hierarchy to guide the classification of 

each test example at each individual classification. We propose approaches that combine 

the prediction of the classifiers using standard ensemble-based techniques (voting, 

stacking) and also a PSO-based technique. We evaluate our proposed methods, along 

with an adapted baseline technique, in 6 data sets involving protein function (Enzyme and 

GPCR proteins) prediction. These data sets were created by us to test the effectiveness of 

our approaches in real world problems.

Chapter 7 draws general conclusions based on the analysis of the results of the 

experiments performed during this thesis and describes possible future research directions.
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Chapter 2. Bioinformatics

“Bioinformatics is:

(i) the development of computational methods for studying the structure, 

function, and evolution of genes, proteins, and whole genomes;

(ii) the development of methods for the management and analysis of 

biological information arising from genomics and high-throughput 

experiments. ”

P. G. Higgs and T. K. Attwood [78]

The field of bioinformatics encompasses many different disciplines, where the 

application of techniques from artificial intelligence, statistical analysis, applied 

mathematics and algorithmic engineering sit side by side with biochemistry. The 

techniques from these fields are applied to an array of different biological problems. 

Some of the most important problems faced by bioinformaticians are described in this 

section.

Sequence alignment, with algorithms such as the well known BLAST [3], are in part 

taken from the world of pattern matching in strings. Sequence alignment is concerned 

with matching two or more strings, possibly with omissions of substrings and possibly 

with different length, in an optimal fashion.

The identification of active coding regions of DNA is also an important area of 

bioinformatics research. A coding region of DNA is defined as any sequence within the 

DNA that performs a useful function. Conventional wisdom is being challenged in this 

area (with respect to the nature of non-coding DNA), i.e., it is now considered possible 

that very little DNA has no useful role in the organism [55] [102],

Another important area encompassed in bioinformatics is protein-protein

interaction [101] [125], This involves the analysis of sets of proteins in an attempt to
10
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detect whether they directly interact with one another. This is very important in the 

understanding of cellular biology as proteins interact to form complex metabolic 

pathways. Unravelling these “computational” pathways gives us a better understanding of 

the mechanisms of life [13]. It is one thing to understand these pathways, in the sense of 

understanding which elements interact, it is another to understand the properties of the 

proteins themselves.

Another major task in the field of bioinformatics is protein function prediction (the 

subject of this thesis), which is the prediction of what function a protein might have using 

computational means. The function of a protein can be found experimentally in a “wet- 

lab” but this is usually a laborious process. Much more commonly the function of a 

protein is predicted computationally (the subject of this thesis) and this prediction can be 

validated, or at least used as a starting point in the lab. One way of understanding (to 

some extent) how a protein performs a function is to calculate or observe its structure; its 

structure being the 3-dimensional placement of each atom. Calculating the structure of 

any long protein is extremely computationally intensive [98] and the observation of 

protein structure is a difficult process requiring X-ray crystallography or protein nuclear 

magnetic resonance spectroscopy. However, the structure of a protein can be estimated 

using heuristic approaches, and this is also an active area of research [100] [136],

Another active area of research is evolutionary analysis, using computational methods 

to identify the way in which organisms have evolved, identifying common ancestors 

(common DNA), speciation events, lineage, building phylogenetic trees [78] etc.

The rest of this chapter is organised as follows. Section 2.1 gives an overview of what 

proteins are and the features that make it possible to predict their function. Section 2.2 

introduces the topic of protein function prediction. Section 2.3 describes sequence 

alignment and how it can be used to infer homology. Section 2.4 describes methods that 

use motifs to detect homology. Section 2.5 presents the protein motif databases used for 

creating attributes for the protein datasets used in the experiments in this thesis. 

Section 2.6 introduces the biological databases used to create the records of the data sets
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investigated in this thesis, along with the two protein families which are the focus of this 

research, namely G protein-coupled receptors (GPCRs) and enzymes.

2.1. Proteins

The cell is a common element in almost all life; these cells contain extremely complex 

chemical reactions. These complex chemical reactions are protected by a semi-permeable 

membrane (cell membrane). Another common element of life is a “blueprint”, a method 

of storing the information needed to create the enclosed chemical reaction, such a 

blueprint is found in the form of DNA. This DNA is used to create progeny -  

descendants that have their own and possibly distinct DNA.

It is very probable that all cells (and so creatures) have one original ancestor. 

Therefore, common patterns in genes are likely to appear within the DNA and the 

subsequently decoded proteins of living organisms. This leads to the concept of 

homology, where two genes have evolved from a similar ancestral gene. Homology 

occurs across different species and also between different genes within the same genome. 

This is because one of the major ways in which creatures evolve is by a process of gene 

duplication where another copy of an existing gene is added to their genome and 

subsequently mutated. When two genes have a common ancestor between species due to 

split in species they are said to be orthologous. When two genes sequences have a 

common ancestry and occur within the same genome (in a single species) -  due to a gene 

duplication process -  they are said to be paralogous. Orthologous genes usually have 

similar function, i.e., they are used for a similar purpose but just in different species. This 

is not always true for paralogous genes, as they probably have mutated to perform a 

different function because of evolutionary pressures. Due to homology, proteins can often 

be organised into evolutionary families which can have similar function. Due to the 

nature of evolution these families often form hierarchies. Of course proteins do not have 

to be related in any way to perform a similar function. Analogous proteins may, however,
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still share some similarity; the amount of similarity is obviously dependant on how easily 

different proteins can fulfil the same role. Evolution often finds a slightly different 

answer to the same question; for instance, the eye has independently evolved many times 

in different but still identifiably similar ways.

Almost all of the cell’s structure and functions rely on proteins, from cell walls to 

energy generation to biological motors to move the cell around. Proteins are generated 

from DNA, which is firstly transcribed into Messenger RNA and then translated into 

protein by the ribosome. Protein structure can be divided into four main levels of 

structure: primary, secondary, tertiary and quaternary [2], Their primary structure, the one 

decoded from DNA, is formed from a sequence of amino acids which are held together 

by covalent bonds (strong bonds). This chain is built one amino acid at a time by the 

ribosome.

Figure 2.1: Alpha Helix

Figure 2.2: Beta Sheet
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A protein forms a secondary structure after it has been constructed which is held 

together by hydrogen bonds (weaker bonds). The secondary structure consists of local 

three dimensional structures. Two common secondary structures that form based on the 

amino acid backbone are alpha helices and beta sheets, shown in Figure 2.1 and 

Figure 2.2. These may occur multiple times within each protein.

A protein typically folds to form a tertiary structure. This is the overall shape of the 

protein after the secondary structures have “joined” together. Each different protein will 

have a different tertiary structure. At this level of structure, proteins are held together by a 

variety of different interacting chemical bonds that are generally weaker than those in the 

first two structures.

Some proteins also form quaternary structures. This is the overall shape when two or 

more polypeptide chains join together, forming a complex, to produce a larger molecule. 

These multimeric complexes can be grouped in two main categories, globular and fibrous. 

Multimeric complexes may comprise of multiple copies of the same polypeptide chain, or 

multiple different polypeptides. Examples of fibrous proteins are fibroin in silk and spider 

webs, and keratin a  in hair and fingernails. Examples of globular proteins (which are ball 

shaped) are haemoglobin and most enzymes.

Another level of organization somewhat separate from the above levels consist of 

protein domains. They are described as any segment of the primary structure that forms 

stable and compact structures and usually consist of around 100 amino acids [2], They are 

modular elements that often perform a specific function. A protein may have one or many 

domains and they are often common between proteins. These domains or motifs are often 

highly conserved throughout evolution and between homologous proteins. They can be 

independent and functionally important and so are considered discrete evolutionary 

building blocks. In fact it has been argued that domains, not genes, are the fundamental 

units of evolution [114].
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2.2. Protein Function Prediction

The prediction of protein function is a major task in bioinformatics and is the subject 

of this thesis. If done successfully and accurately it can produce very important results, 

for instance the ability to automatically find proteins related to known disease processes 

in cells [114]. The faster these proteins can be found, the faster new drugs can be created 

to act upon them.

As discussed in section 2.1, evolutionary processes mean that homologous proteins 

often share some similarity at the amino acid level (primary sequence). However, certain 

evolutionary mechanisms mean that the detection of similarity can be very difficult. 

Mutation often occurs at functionally insignificant sites. One amino acid can sometimes 

be swapped for another similar amino acid while conserving function. Whole sections 

(domains) can be swapped between genes creating a completely different function, or 

having no effect at all. These factors mean that detecting such meaningful similarity 

(especially in distantly related proteins) is a very challenging problem.

It may initially seem as though if two sequences have similar amino acid composition 

then they should be homologous. However, when searching large protein databases the 

chance of detecting similarity due only to chance increases. In fact this is another very 

challenging problem, especially when dealing with millions of sequences. However, these 

problems are not necessarily intractable. As stated previously, domains are often very 

highly conserved throughout evolution, with only minor changes taking place. Identifying 

regions of primary sequence - such as domains - that might be highly conserved and 

using them to search for homology has proved to be effective (as will be discussed in the 

following sections). Also, it is possible to take into account the likelihood that one amino 

acid has been exchanged for another within a protein sequence, as a result of an 

evolutionary process. This likelihood can be calculated from observed amino acid 

substitutions across homologous proteins or from the properties of the amino acids 

themselves.
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Protein function prediction methods can be broadly divided into two main 

categories [62], Firstly the methods which seek to predict function via homology 

detection alone, which is in turn usually found via a search for similar sequences in a 

database of proteins with known function. Secondly, the prediction of function based on a 

model induced from a protein data set using machine learning-based model induction 

techniques [117]. Obviously a model can be induced, and utilised for function predicted 

(to varying degrees of success) from any set of features relating to the individual proteins. 

Common methods involve either inducing the model from a set of sequence similarities 

or alignments (as in this work), or reducing the sequence to a set of other non-alignment 

based attributes.

One possibility for generating a model which is “alignment-free” is to use 

proteochemometrics. The methods based on proteochemometrics usually aim to reduce 

the sequence data to a set of numeric attributes [140], Techniques that rely on these 

metrics as a source of attribute data can be relatively effective. However, the 

comprehensibility of the produced model is questionable.

In the case of the alignment based techniques the abstraction provided by inducing a 

model based on sequence similarity (rather than simply inferring homology and so 

function directly from similarity) is an important one. As Freitas et al. [62] state, the 

abstraction mitigates three important problems associated with relying on sequence 

similarity alone:

“First, it is well-known that two proteins might have very similar sequences 

and perform different functions, or have very different sequences and perform 

the same or similar function (Syed & Yona, 2003), (Gerlt & Babbitt, 2000).

Second, the proteins being compared may be similar in regions of the 

sequence that are not determinants of their function (Schug et al., 2002). Third, 

the prediction of function is based only on sequence similarity, ignoring many 

relevant biochemical properties of proteins (Karwath & King, 2002), (Syed &

Yona, 2003).”
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The rest of this chapter describes methods for finding similarity between proteins 

based on sequence alignment, from some of the most basic techniques (Section 2.3) to 

some of the most advanced (Section 2.4). The different approaches that are described in 

the remainder of this chapter have corresponding online databases (Section 2.5) where 

similarity information is stored. These databases are used extensively in this thesis for 

attribute creation.

2.3. Sequence Alignment

Determining how similar a protein sequence is to another is a cornerstone of 

bioinformatics. Similarity, however, needs to be defined to understand how it can be 

useful in determining if one protein is related to another in some way. Firstly one must 

decide whether to measure global (Needleman and Wunsch [110]) or local similarity 

(Smith and Waterman [145]); that is the similarity of two whole sequences or just smaller 

regions within those whole sequences. Global alignment is useful when determining if 

two sequences are related, whereas local alignment is often used to discover highly 

conserved regions. Primary sequence regions are likely to be highly conserved if there is 

an evolutionary pressure to maintain those regions; this is often the case in functionally
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important regions (domains). One must also consider that protein sequences are almost 

always of different lengths. Given that fact, the problem becomes an issue of alignment; 

how one can align the sequences so that they are the most similar.

Original
Sequence Alignment 1 Alignment 2 Alignment 3

Sequence 1 ADCCCACDD ADCCCACDD ADCCCACDD ADCCCACDD
Sequence 2 CACADCCACEC CACADCCACEC CACADCC—ACEC CACADCC—ACEC

Table 2.1: An Example protein sequence alignment

Table 2.1 shows three possible alignments for two hypothetical sequences 1 and 2. A 

possible alignment is shown in the column labelled alignment 1. There are four amino 

acids in a row that match each other. Notice that after the matching sequence (ADCC) 

there are two more potentially matching amino acids A and C. Unfortunately there is an 

additional C in sequence 1 that prevents these two extra amino acids from matching. 

However, it is often the case in nature that amino acids are deleted or inserted (indels) 

due to mutation in the coding DNA; sometimes these will cause a functional difference, 

but if by adding a “gap” in the alignment enough extra amino acids align then it is likely 

that the sequences can still be considered similar. Indeed in functionally unimportant 

regions of the protein many indel events may have taken place across homologous 

proteins, but functionally important areas tend to be well preserved. How much of a gap 

to allow and how many extra amino acids should align is taken into account during the 

scoring of the match by the alignment algorithm. When performing local alignment it is 

also possible to start a totally new alignment at any position in the sequences, rather than 

adding a gap and continuing the current alignment. With global alignment gaps are 

almost always a necessity.

Alignment 2 shows the alignment with the added gap, we assume here that the extra 

AC adds enough to the alignment to negate the penalty of adding a gap (denoted by 

It may also be the case that rather than adding or removing an amino acid in the sequence,
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nature has changed it for a functionally very similar one. Alignment 3 shows such a 

scenario, where the system has considered Aspartic acid (D) and Glutamic acid (E) 

interchangeable enough to add one more amino acid to the alignment.

The method for sequence alignment seems relatively simple but leaves us with two 

important questions: when should the system stop allowing gaps and substitutions for the 

alignment, and how to calculate which amino acids substitute for others well. These 

questions are answered by employing a scoring system relying on a matrix of 

substitutions. Such a matrix will have entries corresponding to every possible amino acid 

substitution. Two common schemes for scoring an alignment are the BLOSUM [44] and 

PAM [77] matrices. Using these schemes it is possible to give each position in the 

alignment a score -  presumably a positive one for a matching amino acid, and sometimes 

a negative one for non-matching amino acid. These matrices can be derived by looking at 

known conserved regions of pairs of proteins and seeing how many times each 

substitution takes place -  high scores for pairs of amino acids that are often substituted 

for each other, and low scores for amino acids that are rarely seen substituting each other. 

Given this scoring system one can see how an optimal sequence alignment is computed; 

the addition of the individual scores for each pair of amino acids in the alignment minus 

the cost of adding gaps to the alignment. A common method of penalising the alignment 

for adding a gap is called the affine gap penalty, this works by deducting a fixed amount 

for opening a gap, and then penalising a further amount proportional to the length of the

gap-

One naive algorithmic method of finding an optimal alignment would be to generate 

and then score all possible alignments, returning the best one(s). This would obviously 

take a prohibitively long time even on modem computers and in fact there are much more 

efficient algorithms. In global alignment the Needleman and Wunsch dynamic 

programming algorithm [110] finds an optimal alignment in 0(mn) time where m and n 

are the lengths of the two sequences respectively. At a basic level, to achieve this the 

algorithm breaks the problem into a set of similar sub-problems and then recursively
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examines them to find the optimal solution. The Smith and Waterman algorithm [145] 

uses a similar dynamic programming technique to find the optimal local alignment also in 

O(nin) time.

These algorithms, while efficient, are not fast enough for searching large databases for 

related proteins. Algorithms such as BLAST [3] and FASTA [121] allow the user to find 

related sequences amongst large numbers of sequences in good time. To achieve this 

increase in speed, the proteins are broken into sub-sequences and these are compared 

against each other (using hash values [121]). Then, larger (non-gapped) segments are 

found using a scoring matrix, and these segments are finally joined together using a 

dynamic programming algorithm. Importantly it must be possible to measure how 

significant each alignment is. The Z-value [121] gives such a measure where the 

alignment against the potential match is statistically compared against that of random 

proteins.

A pair-wise comparison of proteins can sometimes be limiting. For instance, consider 

the scenario where a biologist is investigating if and how multiple proteins are related. 

When examining a family of proteins that are all descendants of a common ancestor, it 

might be useful to find out which regions are conserved -  and so are likely functionally 

important within that family. Although dynamic programming techniques have in some 

sense conquered pair-wise global and local alignment, the same cannot be said for 

multiple sequence alignment. A dynamic programming approach would take 0((2L)n) 

time, with n sequences and L being the average sequence length [57]. For this reason 

many heuristic-based approaches have been proposed [155]. With some of the more 

recent work conducted in this field using naturally-inspired algorithms such as 

evolutionary algorithms and particle swarm optimisation [134][143],

Perhaps the most famous and widely used multiple sequence alignment algorithm is 

the ClustalW algorithm [154], A multiple sequence alignment performed by ClustalW is 

shown in Figure 2.3, where the protein identifiers run down the far left column, and the 

colours represent certain properties of the amino acids in the sequences such as whether
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they are acidic. The symbols at the bottom and show that the amino acid is

always identical across all proteins, that substitutions have taken place and that less 

compatible substitutions have taken place (respectively).
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Figure 2.3: Part of a multiple sequence alignment of Muscarinic Acetylcholine receptor

GPCR proteins using ClustalW

P 163951ACM 1 _DROME 
P 419851ACM2_BOVlN 
P 10980 |ACM2_RAT 
P 11229 |ACM 1 _HUMAN 
Q5R9491ACM 1 _PONPY 
P04761|ACM1_PIG 
P564891ACM 1 _M ACMU 
P 126571ACM 1 _MOUSE 
P084821ACM 1 _RAT 
P49578|ACM3_CHICK 
Q9ERZ31 ACM3_MOUSE 
P419841ACM3_BOVlN 
P11483|ACM3_PIG 
Q9N2A2 |ACM3_PONPY 
Q9N2A3|ACM3_GORGO 
P20309 |ACM3_HUMAN 
Q9N2A4 |ACM3_PANTR

Figure 2.4: An approximate phylogenetic tree derived from the multiple sequence 

alignment of Muscarinic Acetylcholine receptor GPCR proteins using ClustalW
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Although many techniques have been devised to perform multiple sequence alignment 

in reasonable time the basic principle usually involves first building a phylogenetic 

tree [154], This tree of evolutionary relationship is constructed by finding the most 

closely related protein sequences using pair-wise sequence alignment. After all sequences 

have been aligned a matrix can be created showing the most related proteins. An 

approximate phylogenetic tree or guide tree (an example is shown in Figure 2.4) can then 

be constructed using hierarchical clustering to guide the pair-wise alignments in the 

multiple sequence alignment. For instance, in Figure 2.4 ACM2_Bovin is considered to 

be most closely related to ACM2_Rat, these sequences are aligned, and then the 

alignment for that two-protein cluster is aligned against A CM ID rom e, which the 

algorithm considers the second most related sequence.

2.4. Motif Detection using Alignment-Based Similarity Search

Although sequence alignment on its own is a good way to detect homology amongst 

proteins, it is not always flexible, sensitive (detecting as many homologous proteins as 

possible) or specific (not misclassifying non-homologous proteins as homologous) 

enough - especially when the percentage of similarity between homologous proteins is 

low [114]. For this reason more advanced techniques have been devised including Hidden 

Markov Models (HMMs), profiles, Fingerprints and regular expressions or patterns. 

HMMs, profiles and Fingerprints are used to identify homology based on the entire 

sequence, whereas patterns are used to detect smaller and somewhat independent 

functional units (domains).

All the techniques mentioned in this sub-section rely on sequence alignment in one 

way or another. This reliance on sequence alignment -  the fact that any prediction made 

will directly relate to sets of amino acids within the search sequence -  gives the 

prediction a certain level of transparency and comprehensibility. This is obviously 

important; it is not always enough to merely give an answer, the reason for the answer
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may be equally important. This is especially true in proteomics as the grouping of similar 

amino acids may often give insights into how the functionalities of proteins are conserved 

throughout protein families. However, this kind of information is at a relatively low level 

of abstraction (at the level of individual proteins), whereas information gained at a higher 

level of abstraction (at the level of a classification model) may reveal broader patterns, 

for instance, information about how protein domains interact.

2.4.1. Regular Expressions

Regular expressions or patterns are good at detecting the most conserved regions of 

proteins and usually detect a sub-sequence of around 10-20 amino acids [103], Because 

of their small size they can detect very distantly related proteins via their highly 

conserved functional regions. As they are so specific they must be very carefully crafted 

to maintain sensitivity and specificity, for this reason the regular expressions used for 

patterns are often created semi-manually. To create a regular expression, a common 

starting point consists of using a multiple sequence alignment, or using some information 

about commonalities amongst a protein family. The basic components of a regular 

expression [17] are:

• Each position is separated by a hyphen

• An uppercase character only matches itself

• An x means any amino acid

• [] brackets contain multiple amino acids that can match

• [R]* matches any number of amino acids

• {} brackets contain amino acids that are not allowed

• () brackets contain the number of repeats
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For instance, the regular expression (pattern) PS00237 found in the PROSITE [85] 

database (to be discussed later) is as follows:

[GSTALIVMFYWC] - [GSTANCPDE] - {EDPKRH} - x - {PQ} - [LIVMNQGA] - {RK} 

- {RK} - [LIVMFT] - [GSTANC] - [LIVMFYWSTAC] - [DENH] - R - [FYWCSH] -

{PE} - x - [LIVM]

This expression was created to describe a sub set of GPCR (G protein-coupled 

receptor) proteins and covers this section of the primary sequence of the A CM ID rom e 

protein (Fruit fly GPCR) sequence:

ASVLNLLIISFDRYFSV (From the entire sequence):

MEPVMSLALAAHGPPSILEPLFKTVTTSTTTTTTTTTSTTTTTASPAGYSPGYPGTTLLT 
ALFENLTSTAASGLYDPYSGMYGNQTNGTIGFETKGPRYSLASMVVMGFVAAILSTVTVA 
GNVMVMISFKIDKQLQTISNYFLFSLAIADFAIGAISMPLFAVTTILGYWPLGPIVCDTW 
LALDYLASNASVLNLLIISFDRYFSVTRPLTYRAKRTTNRAAVMIGAAWGISLLLWPPWI 
Y SWPYIEGKRTVPKDECYIQFIETNQYITFGTALAAFYFPVTIMCFLYWRIWRETKKRQK 
DLPNLQAGKKDSSKRSNS SDENTVVNHASGGLLAFAQVGGNDHDTWRRPRSESSPDAESV 
YMTNMVIDSGYHGMHSRKSSIKSTNTIKKSYTCFGSIKEWCIAWWHSGREDSDDFAYEQE 
EPSDLGYATPVTIETPLQSSVSRCTSMNVMRDNYSMGGSVSGVRPPSILLSDVSPTPLPR 
PPLASISQLQEMSAVTASTTANVNTSGNGNGAINNNNNASHNGNGAVNGNGAGNGSGIGL 
GTTGNATHRDSRTLPVINRINSRSVSQDSVYTILIRLPSDGASSNAANGGGGGPGAGAAA 
SASLSMQGDCAPSIKMIHEDGPTTTAAAAPLASAAATRRPLPSRDSEFSLPLGRRMSHAQ 
HDARLLNAKVIPKQLGKAGGGAAGGGVGGAHALMNARNAAKKKKKSQEKRQESKAAKTLS 
AILLSFIITWTPYNILVLIKPLTTCSDCIPTELWDFFYALCYINSTINPMCYALCNATFR 
RTYVRILTCKWHTRNREGMVRGVYN

Figure 2.5: Sequence for ACMl_DROME Muscarinic acetylcholine receptor from

Drosophila Melanogaster (Fruit fly).

24



Chapter 2. Bioinformatics

During the creation of such a pattern a database of proteins must be iteratively 

searched to try and improve/expand the pattern. Initially a candidate pattern might cover 

proteins that are not of the correct type (false positives), in which case the pattern must be 

expanded to make it more specific. It is important that when making the pattern more 

specific the modifications do not exclude too many proteins (false negatives) from the 

target set decreasing the sensitivity. This procedure must be repeated until the pattern 

covers only its target proteins, or until no further improvement is possible.

2.4.2. Profiles

Profiles [26] are matrices derived from a multiple sequence alignment. After a 

multiple sequence alignment is performed it is possible to scan sequences characterised 

by that alignment and construct a scoring matrix based on how many times each amino 

acid occurs at each position. For instance, in Figure 2.3 at the first position within the 

alignment, Lysine (K) is very common and there are two instances of Arginine (R). 

Therefore these two amino acids would have a positive score in the first row in the matrix. 

Other amino acids would have scores depending on how similar or dissimilar they are to 

these two amino acids, this scoring system could be based on BLOSUM [44] and 

PAM [77],

/ I :
A  3  C 

3 1 - 0 ;  3 1 — - 1 0 5 ;
D £ 

3 D = - 1 0 5 ;
F  G H I K L M N F Q R s T V W Y Z

/M: s y - ' G * M -  l r - 1 1 , - 2 4 , - 1 3 , - 1 5 , - 1 9 ,  30 - 1 9 - 2 0 - I S , - 1 5 , - 1 1 - 5 , - 1 9 - 1 6 , - 1 8 , - 2 , - 1 1 , - 1 5 - 2 2 , - 2 0 , - 1 6 ;
/M : S Y - ' N ’ M -  - 9 ,  3 3 , - 1 9 , 1 5 , - 2 ,  - I S ,  - 2 3 - 1 3 , - 2 , - 2 6 , - 1 3 5 1, - 2 0 - 1 , - 2 , 9, 1 - 2 6 - 3 8 , - 1 7 , - 2 ;
/M: S Y - ' I • M -  - 1 , - 2 1 , - 1 6 , - 2 6 , - 2 1 , 0 , - 1 6 - 2 2 10 , - 2 2 , 8 , 4 - 1 7 , - 2 2 - 1 9 , - 2 0 , - 8 , - 3 10 - 2 1 , - 7 - 2 0  ;|
/M: S Y - ' L ’ M -  - 6 , - 2 4 , - 1 7 , - 2  3, - 2 1 , 5 , - 2 5 - 2 0 , 1 4 , - 2 4 , 2 3 , 12 - 2 1 , - 2 5 - 2 0 , - 1 9 , “ 1 7 , - 5 11 - 1 7 , 0 - 2 0 ;
/M: 5 Y = ’ V ' M -  - 1 , - 1 9 , - 1 6 , - 2 3 , - 2 1 , - 2 , - 2 4 , - 1 4 , 1 5 , - I S , 6 , 7 - 1 6 , - 2 4 - 1 8 - 1 7 , - 7 - 1 21 - 2  6, - 5 , - 2 0 ;
/M: S Y - ’ I ’ M -  - 8 , - 2 5 , - 1 6 , - 3 3 , - 2 5 , 6 , - 3 1 , - 2 4 , 2 6 , - 2 6 , 2 4 , 1 5 , - 2 4 , - 2 6 , - 2 1 , - 2 3 , - 2 0 , - 8 , 20 - 2 0 , - 1 , - 2 4 ;
/M: S Y = ’ I ’ M -  - 6 , - 2 3 , - 1 9 , - 2 7 , - 2 1 , 5 , - 2 4 , - 1 6 , 3, “ 1 2 , 8, 5 , - 2 0 , - 2 3 , - 1 7 , - 1 7 , - 1 5 , - 6 , 5 , - 2 , 7 , - I S ;
/M: S Y — ' V M -  4 , - 2 2 , - 1 4 , - 2 6 , - 2 1 , - 5 , - 2 3 , - 2 3 , 1 6 , - 1 8 7 , 6, - 1 9 , - 2 2 , - I S , - 1 9 , - 7 , - 1 , 2 0 , - 2 4 , - 8 , - 2 1 ;
/Ms SY**' I  * M -  - 2 , - 2 5 , - 1 9 , - 3 0 , - 2 4 , 1 4 , - 2 9 , - 2 0 , 1 9 , - 2 4 , 1 9 , 1 1 , - 2 1 , - 2 5 , - 2 1 , - 2 0 , - 1 7 , - 4 , 16 - 1 6 , 5 , - 2 3 ;
/M: S Y = •F * M -  - 3 , - 1 2 , - 1 2 , - 2 3 , - I S , 4 , - 2 0 , - 1 6 , 2 , - 1 7 , 3 , 1 , - 1 4 , - 2 2 , - 1 6 , - 1 4 , - 7 , 0 , 3 , - 1 6 , 0 , - 1 7 ;
/ K : 5 Y = ' R ' M -  - 9 , - 1 0 , - 2 2 , - 1 2 , —6 ,  - 1 0 , - 1 8 , - 7 , - 1 5 , 7 - 1 1 , - 5 , - 5 , - 1 7 , - 1 , i - : , - 6 , - 4 , - 1 1 , - 1 2 , - 5 , - 5 ;
/M: S Y = * K ' M -  - S ,  1 , - 2 1 , - 1 , 0 , - 1 4 , - 1 6 , - 1 , - I S , 4 , “ 1 7 , - 1 0 , 3 , - 1 2 , - 1 , 3 , - 1 , - 1 , - 1 5 , - 2 3 , - 5 , - l ;
/M: 5 Y - ’ R ’ M -  - 2 ,  - 7 , - 2 5 , 0 ,  - 1 9 , - 1 6 , - 6 , - 1 3 , 11 , - 1 2 , - ? - 3 , - 5 , 2 , 1 3 , “ 3 , - 4 , - 1 5 , - 2 3 , - 1 0 , 0 ;
/M:
/ I :

S Y - * R ’ M -  - 8 ,  - 7 , - 2 1 ,  
J — —4 ; M D - - 2 3 ;

- 9 , - 3 , - 1 6 , - 1 6 , - 4 , - 1 4 , - 1 2 , “ 1 , - 3 , - 1 4 , 3 , 1 1 , - 4 , - 4 , - 1 1 , - 2 3 , - 3 , - 1 ;

/M:
/ I :

5 Y = ’ L ’ M— - 7 , - 1 7 , - 2 0 , - 1 9 , - 1 1 ,  - 2 , - 2 0 , - 1 1 ,  
I « - 4 ;  M I - 0 ;  H D - - 2 3 ;  I M - 0 ;  D M - - 2 3 ;

1 , - 8 , 1 1 , 8 , - 1 4 , - 1 9 , - 1 , - 1 4 , - 7 , 0 , - 1 3 , - 3 , - 1 0 ;  D = - 4 ;

Figure 2.6: Part of a profile from Prosite [85| 
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Figure 2.6 shows part of Prosite profile PS50262 for GPCR proteins. This scoring 

matrix has scores for each amino acid (columns) for each position in the alignment (rows). 

The first two characters in each row identify whether the position in the alignment is 

either a match (/M) or an insert (/I), with the SY identifier showing the original amino 

acid in the alignment. There are default costs associated with certain operations such as 

going from a match to an insert (MI) or having a delete (D) but they can be overridden by 

the parameters in each individual insert row [85],

Obviously the quality of the original multiple sequence alignment is very important 

for the specificity and sensitivity of the final profile. To find if a protein sequence 

matches this profile well, the search sequence must first be aligned against the profile 

alignment and then scored according to the generated scoring matrix. It is therefore 

possible to calculate an E-value or the expected value -  the likelihood that the match is 

by chance alone. This value is also dependant on the database size, so large databases 

correlate to a higher E-value. A low E-value is indicative of a good match with a high 

probability that the sequences are really homologous.

2.4.3. Hidden Markov Models (HMM)

A HMM (developed by Leonard Baum and others [132]) is a probabilistic construct 

that consists of a set of linked states; each state is a set of probabilities that relate to the 

chance of emitting a particular value. In the case of a basic profile HMM [97] (a HMM 

for the characterisation of a set of proteins) the states are inserts, deletions and matches. 

A profile HMM is in some ways conceptually similar to a standard profile, in that each 

match state in the HMM functions in the same way as each column in a profile - holding 

a set of probabilities, one for each particular amino acid and for each insert. The insert 

state holds probabilities for inserting any amino acid, and the delete state always emits a 

delete value representing a deletion in the sequence. Connecting these states (Figure 2.7)

are transition probabilities, the probability of going from one state to another. In this way
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a profile HMM can be considered a probabilistic sequence generator starting sequence 

generation at the non-emitting dummy state Mo and ending at the dummy state Mj+i. 

Following the topology in Figure 2.7 it can be observed that the model may emit any 

number of inserted amino acids between each emitted match amino acid, however it may 

not add a delete and an insert for the same column (of the original alignment) -  as this 

would simply remove the last insert.

Figure 2.7: A profile HMM showing match states (M), delete states (D) and insert states 

(I), with transition probabilities shown as arrows. The beginning state is M0 and the end

state is Mj+i adapted from [97]

To create a profile HMM for a set of proteins, a good initial seed multiple sequence 

alignment is needed. Although it is possible to train the model on unaligned sequences, 

this is not done in practice as a suboptimal model is more likely to be produced. The 

number of match states can then be deduced along with the transition probabilities and 

emission probabilities from the observed number of amino acids in the aligned 

sequences [78]. This model can then be improved by aligning new sequences to it using 

the Viterbi algorithm [160] and then again using the Viterbi algorithm to retrain the 

HMM. This process can be iterated until the desired set of proteins are covered and the 

parameters of the HMM become stable. Of course it is important to monitor the HMM

27



Chapter 2. Bioinformatics

during its training to ensure specificity is maintained. HMMs are some of the best ways 

of detecting homology (distant or otherwise), tending to be very accurate.

HMMER [53] is a popular suite of programs used to create and use profile HMMs 

and is the basis of the well-known Pfam database [7]. It is possible to find the HMM that 

most likely produced a given sequence from a set of HMMs [53], If each HMM 

characterises a family of proteins then it is likely that a “hit” against one of these HMMs 

means that a given sequence belongs to that family.

Trusted matches - domains scoring higher than the gathering threshold (A)

Domain Start End Bits Evalue Alignment Mode

1 7tm 1 121 772 279.30 6.5e-81 | Alian b

Potential matches - Domains w ith Evalues above the cu to ff

Domain Start End Bits Evalue Alignment Mode

M annosvl trans2 45 408 -257.40 0.94 Align Is

? tm  4 108 334 -171.80 0.73 Align Is

DUF1970 184 192 1.80 0.93 A la n fs

T foX  C 295 306 5.10 0.98 Align fs

BAF 388 404 6.10 0.098 Align fs

Figure 2.8: A Pfam search against A C M ID rom e showing the HMM hits with the most 

likely hit and other possible hits based on E-value.

A Boolean answer cannot be given as to whether a sequence was generated by a given 

HMM (unlike with regular expressions). However, E-values can be calculated and below 

a certain threshold a good certainty is obtainable. Figure 2.8 shows a search performed 

against Pfam HMMs with the ACMl_Drome sequence. As can be seen the search has 

resulted in one highly likely match, the HMM (7tm_l) characterising the family with 7tm

or seven trans-membrane helices usually associated with GPCRs. The other top HMMs
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(representing different types of domains) are also displayed but have a relatively high E- 

value and so are more likely chance matches, although 7tm_4 is displayed that is of a 

similar type to the protein.

* -M SIO X V i 1 v i  1 r  t  k k l  r  t - p t n i  f  i  lHLAvADLLf 1 1 1 Ip p w a  l y y  1 v g  
GN++V++ + k + I + t  +n+f+++LA +A D+ +++ +p ++++ +

ACM1JDROME 1 2 1 GNVMVMIS FKIDKQLQTISNYFLFSLAIADFAIGAISMPLFAVTTIL 1 6?
gedWpf GsalCiclvtaldwmtyaSillLtalSiDRYlAIvhPlryxrrr 
q +Wp+G4++C+++ ald4-i"f4 aS-rX-fL-f XS4DRY 4+4 4PX yx4 4x

ACMl_DROME 1 6 3 G-YWPLGPIVCDXWLALDYLASNASVLNLLIISFDRYFSVTRFLTYRAKR 21 6

Figure 2.9: Part of the alignment for A C M ID rom e against the 7tm_l (seven trans­

membrane helices) Pfam HMM.

Even though an HMM is essentially a set of numbers whose interpretation is not easy, 

it is possible to see, in part, how each HMM relates to the search protein via the 

alignment. Figure 2.9 shows part of such an alignment, with the original search sequence, 

on the bottom rows, labelled as ACM1 Drome. The numbers next to the ACM 1 Drome 

label are the positions in the search sequence. The *-> symbol is the start of the 

alignment (notice that the alignment does not start at the beginning of the search 

sequence). The top rows are the most likely output of the HMM with capital letters 

showing highly probable emission values (which are likely conserved regions) and lower 

case showing less probable values. The middle line shows the exact matches following 

the same upper and lower case format as the top line. The + symbol means that the 

alignment has a positive score at that position. On the bottom set of rows an indel has 

been emitted and is represented by

2.4.4. Fingerprints

Fingerprints [120] work in a similar way to a set of patterns, but rather than 

identifying a protein using a regular expression it uses a set of frequency matrices. Firstly,
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a multiple alignment is taken from a seeding sub-set of proteins from the set that are to be 

characterised. As this multiple alignment is taken and more distant homologous proteins 

are added, gaps appear. Rather than just allowing a single alignment with gaps, the 

alignment is split into separate motifs. An un-weighted frequency matrix is constructed 

from the motifs containing the number of times each amino acid at each position within 

the motifs occurs throughout the set of proteins. This matrix is considered un-weighted as 

only this frequency of observed amino acids is taken into account and not other more 

general scoring matrices, e.g., PAM and BLOSUM. These motifs are intended to 

correspond to important conserved regions through the sequences. Once the motifs and 

frequency matrices have been constructed the software scans a database of proteins to 

find all proteins that match all the motifs and orders them by score -  according to the 

frequency matrix. This entire process of motif and frequency matrix construction is 

repeated on part of the new set of top scoring proteins in an attempt to make the motifs 

more general. This is continued until the set of proteins does not change between 

iterations. As a Fingerprint is constructed from multiple motifs it is possible to create a 

hierarchy within them, with some proteins not having all the motifs from a particular 

Fingerprint still considered part of the set of proteins characterised by it (but possibly 

only belonging to a different sub-family).

To find out which fingerprint best matches a given sequence involves using a 

different matching algorithm than the one used to create them. Fingerprint-scan [139] 

increases the sensitivity of the scanning process when compared to the algorithm for 

fingerprint creation. It achieves this by converting the motifs into un-gapped profiles 

using a choice of different scoring matrices (usually BLOSUM). The only real restriction 

in combining the predictions of the individual motifs is that the order in which the motifs 

occur in the profile is the same as the order in which they occur in the original fingerprint. 

Search hits are returned sorted by E-value and probability.

Figure 2.10 is a three-dimensional graphical view of a fingerprint (GPCR- 

RHODOPSN) taken from the PRINTS database [4] [129], The areas that are covered by
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the motifs in the fingerprint are displayed in red. As can be seen these areas are the seven 

trans-membrane helices indicative of GPCR proteins. GPCRRHODOPSN is one of the 

Fingerprints which cover the ACMl_Drome GPCR protein and the one that gives the 

lowest E-value for that protein, out of all Fingerprints in the PRINTS database. 

Figure 2.11 details the GPCRRHODOPSN fingerprint match found. Each motif from the 

fingerprint is shown numbered on the right hand side, with the position of the match for 

each motif represented by a box. The box height corresponds to the similarity between 

the search sequence and the labelled motif. Also labelled is the numerical position (in the 

protein sequence) of the motif match under each box. Notice that for the first motif there 

are two potential matches within the sequence.

Figure 2.10: A graphical view of the GPCRRHODOPSN Fingerprint -  shown in red, the 

Fingerprint corresponds to the seven Trans-membrane helices of GPCRs
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Residue Nunber

Figure 2.11: A graphical representation of the 7 motifs from the GPCRRHODOPSN 

Fingerprint covering the ACMI Drome GPCR protein

2.5. Motif Databases

Motif databases are an invaluable resource for bioinformaticians and biologists alike. 

As their name might suggest they store motifs and related information so that each person 

who is interested in using the technology does not have to spend time generating motif 

data themselves (which given the number of known and potential proteins could be a very 

time consuming process). This section presents a brief overview of a subset of the 

numerous motif databases. More specifically, this section focuses on the motif databases 

used in generating the datasets investigated in the experiments presented in this thesis. 

This particular subset of possible motif databases (PROSITE, Pfam, PRINTS, InterPro) 

was chosen to explore as broad a set of motif generation approaches as possible.
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2.5.1. PROSITE

Prosite [85] [126] is a database that contains entries to try and help identify which 

family unknown proteins belong to. These entries are known as Prosite motifs and 

contain patterns or profiles (as discussed in section 2.4) to identify one protein family 

from others along with descriptions of the nature of the pattern or profile. The patterns 

detect regions that code for sites such as [126]:

• Enzyme catalytic sites.

• Amino acids involved in binding a metal ion.

• Regions involved in binding a molecule.

Each Prosite entry contains a description of the family it covers, along with a list of 

protein matches from Swiss-Prot [166], It also contains the number of true positives, false 

positives, true negatives and false negatives showing how sensitive and specific that 

particular entry is. Release 20.31 (April 2008) contains 1514 documentation entries that 

describe 1318 patterns and 784 profiles, and 784 Pro Rules (rules designed to increase the 

performance of the motifs).

2.5.2. Pfam

Pfam [7] [123] is another database designed to assign protein family. It uses profile 

HMMs (discussed in section 2.4) to perform this task and, like the other databases 

mentioned in this section, a user supplied protein sequence can be submitted to it. It 

returns the set of HMMs most likely to characterise that sequence ordered by E-value. 

There are two parts to Pfam, Pfam-A and Pfam-B. Pfam-A contains HMMs built from 

automatically generated seed alignments that are often hand-edited to maintain the quality 

of the produced HMM. Pfam-B is completely automatically generated, using seed 

alignment derived from the ProDom [25] database (a database containing automatically
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generated protein families). For this reason Pfam-B may, in some cases, be unreliable. 

Most Pfam functionality is based on the HMMER [53] suite of programs. Each entry in 

Pfam contains similar -  but less well annotated -  information when compared to Prosite. 

However, links to other well annotated databases are provided (such as InterPro) for each 

family characterised by each HMM. Release 22.0 (July 2007) contains 9318 families for 

which HMMs have been constructed.

2.5.3. PRINTS

Prints [4] [129] is another freely available database that contains entries to try and 

identify a protein family based on its sequence. In each FingerPrint (discussed in 

section 2.4) entry, the set of motifs, along with good annotation and information relating 

to the sensitivity and specificity, are present. A hierarchy is also provided that allows the 

user to see the connections between those FingerPrints that do not possess all the motifs 

of their parent FingerPrint. Release 38.1 (June 2007) of PRINTS contains 1904 entries, 

encoding 11,451 individual motifs.

2.5.4. InterPro

InterPro [86] [109] is different from the motif databases mentioned so far in that it is a 

“composite protein pattern database”. Different large motif databases will inevitably have 

at least some overlap, covering the same families of proteins. Also, each database has its 

own advantages and disadvantages in certain situations. Obvious examples are the way in 

which Prosite with its regular expressions identifies families with small but highly 

conserved regions, Pfam with its HMMs is good at identifying proteins with small 

amounts of meaningful similarity and PRINTS is good at identifying smaller families -  

due to its hierarchical nature. Due to these facts InterPro was created to combine multiple 

motif databases into one easy to use database. Table 2.2 shows an overview of InterPro’s 

constituent databases. The database name is given in the first column, the second column
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shows the release version number, the third shows the total number of entries in that 

database, the fourth column shows the number of signatures that have been fully 

integrated into the InterPro entries and the fifth column gives a brief description of the 

type of approach the database uses.

S ig n a tu re  D a ta b a se V e rs io n A ll S ig n a tu re s
I n te g ra te d
S ig n a tu re s

D e sc r ip tio n

PANTHER 6.1 30128 2061
Hand edited protein functional classes 
characterised by HMMs

Pfam 21 .0 8957 8957 See section 2.5.2
PIRSF 2.68 1748 1499

Provides detailed relationships between 
family members

PRINTS 38 .0 1900 1898 See section 2.5.3
ProDom 2005.1 3538 1041 Automatically assigned protein families.
PROSITE patterns 20.0 1319 1319 See section 2.5.1

SMART 5.1 724 721

Automatically identifies the type of 
genetically mobile domain and provides 
automatic annotation. It also provides an 
analysis of domain architectures.

TIGRFAMs 6.0 2949 2933
Can predict function based on homology 
using HMMs

Gene3D 3 .0 .0 2147 783
Facilitates the prediction of structure 
using a Markov clustering algorithm

SUPERFAMILY 1.69 1538 463 HMMs of proteins with known structure

Table 2.2: Constituent InterPro databases

The process involved in amalgamating these different databases is obviously quite 

complex, but basically consists of creating relationships between the individual entries 

from the different constituent databases. The relationships can take the form of a 

hierarchy, where each child entry only has one parent. However, entries from more than 

one database can make up a single InterPro entry. There are also possibly overlapping 

entries, where more than one InterPro entry covers one protein. The annotations from 

each entry from each database are merged to form the annotation in the InterPro entry, 

making the annotation as comprehensive as possible.
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Figure 2.12: An example Interpro entry matching the A C M ID rom e GPCR sequence 

(only part of the relationships cell is shown)

The searching mechanisms from each constituent database are maintained in InterPro 

using InterProScan [168], Essentially, this tool wraps the individual search programs 

used for each database and provides some filtering of the returned search results. A user 

can search InterPro for motif matches using any combination of the motif databases 

included in InterPro. The results of a search performed on InterPro can be seen in 

Figure 2.12, where all constituent databases were selected and the top hit was the InterPro 

entry “IPR000276” (not that it is possible for more than one InterPro entry to match a 

given protein sequence). This contained the motifs from Pfam, PRINTS and the 

PROSITE pattern and profde.
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Figure 2.13: An example InterPro search for the ACMI Drome GPCR sequence 

showing from top to bottom, PRINTS, Pfam, PROSITE profile and PROSITE pattern

entries matching the search sequence
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If we observe the way in which the individual entries from some of the constituent 

InterPro databases match the search sequence (Figure 2.13) it becomes clear the different 

ways in which they work. At the top the PRINTS Fingerprint covers the seven trans­

membrane helices using multiple motifs. The HMM from Pfam covers much of the 

sequence along with the profile from PROSITE. Notice that the pattern from PROSITE 

only covers a very small region of the primary sequence. InterPro release 17.0 (March 

2008) contains a total of 16583 entries covering 79% of all proteins contained in 

UniProtKB (an extremely large protein database -  see Section 2.6.1). InterPro clearly has 

the largest number of entries out of any motif database examined.

2.6. Biological Databases

2.6.1. UniProt

UniProt [157] [166] is a large protein database freely available on the web. It is 

formed from a consortium of EBI (European Bioinformatics Institute), SIB (Swiss 

Institute of Bioinformatics), and PIR (Protein Information Resource) to create as 

comprehensive and complete as possible protein resource (based on the best current 

knowledge). It contains sequence data, citation information (bibliographical references), 

taxonomic data (description of the biological source of the protein) along with other 

extensive annotations. It also has cross references for other major biological databases 

such as Prosite, Prints, Pfam and InterPro, etc. UniProt consists of two separate databases: 

Swiss-Prot and TrEMBL. Swiss-Prot is a database of high quality manually annotated 

proteins. TrEMBL entries are automatically annotated with most of the sequences 

themselves being automatically generated by simulated translations from genetic code 

held in the EMBL database [38], UniProt is extensively used in this project, in particular 

as a source of data for creating the data sets used in our experiments.
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The first release of Swiss-Prot in 1986 contained 3939 sequences, whereas in 

February 2008 (release 55) it contained 356194. TrEMBL (release 38 -  February 2008) 

contains 5395414 entries, a 23% increase from the last release [157]. TrEMBL has grown 

at a near exponential rate since it was created in 1996. From these figures it is clear to see 

the growing gap between the ability to manually annotate proteins and the number of 

potential proteins being found.

2.6.2. GPCRDB

G-protein-coupled receptors (GPCRs) [60] are proteins involved in signalling. They 

span cell walls so that they influence the chemistry inside the cell by sensing the 

chemistry outside the cell. More specifically, when a ligand (a substance that binds to a 

protein) is received by the part of the GPCR on the outside of the cell, it (usually) causes 

an attached G-protein to activate and detach. This is a mechanical biological switch that 

causes the released G-Protein to affect other reactions within the cell. More than one 

GPCR can bind to more than one G-Protein, causing a complex set of pathways that can 

perform intricate functions within the cell. Common amongst all GPCRs are the seven 

trans-membrane a-helices (mentioned previously), with three intracellular loops and three 

extracellular loops. GPCRs are particularly important for medical applications because it 

is believed that 40%-50% of current drugs target GPCR activity [60], The types of 

function GPCRs facilitate are extremely varied, from detecting light to managing brain 

chemistry.

GPCRDB [70] provides a classification system for GPCRs. It arranges them into a 

hierarchy based on a function. Each functional class has one and only one parent class 

with each child class becoming more specific. For instance the functional class 1.1.1.1 

belongs to classes:

• Class 1 (Class A Rhodopsin like).

• Class 1.1 (Amine).
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2.7. Summary

This chapter has presented the fundamental biological concepts required for this thesis. 

It has explored some of the technologies used to detect similarity between proteins. It has 

provided a survey of the motif and protein databases used to generate the data sets used in 

the experiments found in this thesis. Also, the difference between function inferred 

directly from similarity and function predicted using a model has been defined.
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• Class 1.1.1 (Muscarinic acetylcholine).

• Class 1.1.1.1 (Muse, acetylcholine Vertebrate type 1).

The A C M ID rom e protein belongs to class 1.1.1.101, which has the same parents as

1.1.1.1, but rather than being of type “Muse, acetylcholine Vertebrate type 1”, it is of type 

“Muse, acetylcholine Non Vertebrate” (Drome is the code given to fruit flies).

2.6.3. Enzyme Nomenclature

Enzymes are another subset of proteins. They are catalysts which are used to speed up 

most of the chemical reactions that take part within the cell, without being altered 

themselves during the reaction. They are the target of a further 28% of current 

drugs [114], They are usually very specific and only catalyse certain types of reaction 

within the cell. Often other molecules known as inhibitors may slow down the reactions 

of a particular enzyme; conversely activators increase the rate of reaction. This is used to 

control both the speed of reaction and the course of overall reaction pathways that take 

place within the cell. Examples of well known enzymes are those in biological washing 

powder.

The Enzyme Nomenclature [16] was developed as a classification system for this 

family of proteins. It defines what type of reaction each enzyme catalyses in a 

hierarchical manner. For instance, an enzyme with the EC code (Enzyme Commission) of 

1.1.1.1 belongs to:

• Class 1 (Oxidoreductases).

• Class 1.1 (acting on the CH-OH group of donors).

• Class 1.1.1 (with NAD or NADP as acceptor).

• Class 1.1.1.1 (Alcohol Dehydrogenase).

Each class has one and only one parent class, with the root node being all enzymes.
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Chapter 3. Data Mining

Data mining is an interdisciplinary field involving mainly machine learning and 

statistics. At this point in time the ability of machines to learn in a similar way to humans 

is a distant ambition. Therefore, in this context, the word learn is relaxed to encompass a 

more achievable target, for machines to be able to “improve through experience” [106],

At the most basic level data mining involves finding useful and nontrivial patterns 

within data. To quote Witten and Frank [164]:

"People have been seeking patterns in data ever since human life began.

Hunters seek patterns in animal migration behaviour, farmers seek patterns in

crop growth” ............  “In data mining, the data is stored electronically and the

search [for patterns] is automated -  or at least augmented -  by computer.

Even this is not particularly new. Economists, statisticians, forecasters, and 

communication engineers have long worked with the idea that patterns in data 

can be sought automatically, identified, validated, and used for prediction.

What is new is the staggering increase in opportunities for finding patterns in 

data. ”

While the pursuit of finding patterns within data is not a new one the availability and 

quantity of this data is. Also, as the complexity of the data becomes greater the ability of 

humans to understand and utilise it in its raw form becomes less. Therefore, the 

importance of data mining (as a means of dealing with large quantities of complex data) 

has increased; it is a necessity in a modem world where we are swamped with data.

For the purposes of this thesis the data to be mined is considered to be contained in 

structured data sets. A data set is simply a set of examples, each example consisting of a 

set of attribute-value pairs. A data set containing information about credit might have
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attributes: Mortgage, Wage, Sex and Credit Rating. A single example in this data set 

might be the following:

Yes, 21000, Male, Good

Where Mortgage can take the values Yes or No, Wage may take any continuous value, 

Sex can have the nominal/categorical values Male or Female and CreditRating can take 

the nominal/categorical values Good, Average or Bad.

It should be noted that the careful preparation of a data set for data mining is crucial 

and usually very time consuming [130], The data miner must (iteratively) become 

familiar with the data sources, integrate the sources, transform the data, cleanse the data 

(removing errors, dealing with missing values, duplicates etc) and select which 

attributes/class labels to use before the data can be interpreted by a learning algorithm.

Many different machine learning methods have been developed to find and represent 

patterns in data. In general these methods can be split into three distinct groups, 

supervised, unsupervised and semi-supervised.

In supervised learning (the subject of this thesis) the class label of the example is 

known during the training phase, for instance the class label in the previous example 

might be the Credit_Rating, if we wish to know what credit rating to assign a person 

based on certain attribute-value pairs.

In unsupervised learning the class label is unknown during the run of the algorithm. 

This can be useful when trying to discover relationships between attribute-value pairs that 

are not necessarily dependant on a given class label. In fact, in unsupervised leaning the 

learning procedure generates its own class labels. If the example data set were used for 

unsupervised learning then the class label Credit Rating would not be considered when 

discovering patterns.

In semi-supervised learning only some of the class labels are known during training, 

this is often the case when it is difficult or laborious to assign a class label to an example.
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3.1. The Classification Task of Data Mining

Supervised learning consists of two main tasks. Firstly the classification task [164], 

where the predictions consist of nominal/categorical class labels. Secondly the regression 

task [14], where the predictions are continuous values (e.g., Wage from credit example).

It is possible to make predictions based on discovered patterns as they describe 

relationships between attribute-value pairs and class labels. Therefore, given a set of 

attribute-value pairs for a given example it is possible to use the discovered patterns 

(classification model) to predict which class label the example is likely to have. One of 

the simplest ways of assessing how good discovered patterns are is by measuring their 

predictive accuracy. This is achieved by splitting the data set into two separate partitions, 

a training set used to build the classification model, and a test set used to measure the 

predictive accuracy of that model. Examples belonging to the training set must not exist 

in the test set and vice-versa. If examples belonged to the training set and test set then the 

measured accuracy would not reflect predictive accuracy well. This is due to the need for 

the model to generalise well. It would be relatively easy to generate a model that matched 

the training set exactly (e.g., a simple mapping from each example’s attribute-value pairs 

to its class label) but this model would have no generalising power, it could not cope with 

simple variations in new examples with an unknown class. After the patterns have been 

extracted from the training set they are then applied to the test set to predict which class 

label each example might have (in the test set the example class labels are unseen by the 

classification algorithm). The predictive accuracy is then simply the number of examples 

in the test set that have the same predicted and true class labels divided by the total 

number of examples in the test set.

Aside from predictive accuracy another two useful metrics are recall and precision. 

Recall is the number of examples whose class label was predicted correctly for a given 

class divided by the total number of examples in that class. Note that it is simple to obtain 

100% recall by always predicting the given class.
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Precision is the number of examples whose class label was predicted correctly for a 

given class divided by the total number of predictions made. Note that making only one 

prediction and getting it correct would be enough to maximise precision.

It is important to use precision and recall together as it is usually easy to maximise 

either one individually.

It is important to note that typically the data set’s records are a sample of a much 

larger population of possible records. The aim of the measure of predictive accuracy is to 

give an indication of how well the model represents the base data, and how well it will 

generalise to future data. Therefore, the sampling of the training and test sets is important. 

When randomly choosing examples for the training and test sets bias will be 

introduced [164], In an attempt to reduce the bias experienced during the testing 

procedure it is usual to perform multiple iterations and find the mean predictive accuracy 

across all iterations. A common method to achieve this goal is cross-validation [164], 

where the data set is split into n partitions of approximately the same size and n 

classification models are generated, one per iteration. At each iteration (/) all but one of 

the partitions (n-1) are combined and used as the training set with the zth (/=1,...,«) 

partition being used as the test set. The predictive accuracy over the n iterations can then 

be averaged, producing the overall measure of predictive accuracy reported to the user.

There are many other ways of measuring how good a particular model is (many are 

dependant on the application) [37] [164], Witten states that a general goal of data mining 

is to discover knowledge that is not only accurate, but also comprehensible [164], so the 

model representation medium is important. A model that is not easily (or at all) human 

comprehensible is termed a black box model, often used when predictive accuracy is the 

only consideration. Even if the user is not interested in the model itself the ability to 

easily validate predictions made is lost when using a black box approach. Indeed, for this 

reason, an area of research is devoted to converting incomprehensible models to 

comprehensible models. For instance, extracting comprehensible models from Neural 

Networks [65] [87], Support Vector Machines [113] and for fuzzy rules [141], Therefore,
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another important way of assessing a classification model is its comprehensibility. 

Comprehensibility is not easily reduced to one single measurement, but in general it is 

standard practice in the literature to consider that the simpler and more compact the 

model is the more comprehensible it is.

3.2. Three Conventional Types of Algorithm for Classification

This section reviews three conventional types of learning algorithm and the classifiers 

that are created by them. These are the approaches that are particularly relevant to this 

thesis, namely: rule induction, decision tree and Bayesian.

3.2.1. Rule/Tree Induction

3.2.1.1. Rule Induction

In the classification task, rule induction algorithms generate rules representing 

patterns in the training set. These rules are then applied to a test set with examples of 

unseen (by the classification algorithm) or unknown classes. In classification the 

knowledge or patterns discovered in a data set can be represented in terms of a set of 

rules. A rule consists of an antecedent (a set of attribute-values and logical operators) and 

a consequent (class):

IF <attrib operator value> AND ...
AND <attrib operator value> THEN <class>

The consequent of the rule is the class that is predicted by that rule. The antecedent 

consists of a set of terms, where each term is essentially an attribute-value pair. More 

precisely, a term is defined by a triple <attribute, operator, value>, where value is a
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value belonging to the domain of attribute. The operator typically is “=” in the case of 

categorical attributes, or “<” and “>” in the case of continuous attributes. The logical 

operation that is performed on these terms is AND in this example, however, it could be 

any other operation, i.e., NAND, XOR etc. The knowledge representation in the form of 

rules has the advantage of being intuitively comprehensible to the user. An example rule 

might be:

IF (Salary > 30k) AND (Mortgage = No) THEN (Good Credit)

A rule that is to be considered good must not only correctly match (via its antecedent) 

as many examples in its predicted class as possible, but also not match (cover) examples 

in classes different from its predicted class. These two objectives are often at odds with 

each other and a trade off often occurs between recall and precision.

Another issue to be considered while generating classification rules is how 

complicated they are (comprehensibility is a goal of data mining as stated earlier) and 

how to measure this complexity. The complexity of a rule set is usually measured by two 

factors, namely the number of discovered rules and the number of terms per rule. In 

general, the lower these numbers the simpler and so more comprehensible the rule set is 

considered to be. Note that the number of discovered rules is related to the recall of those 

rules. After all, if each rule has a large recall (i.e., covers many examples), the number of 

rules necessary to cover all the examples will be relatively small, in comparison to a 

scenario where rules have a lower recall.

In a seminal paper on cognitive science, George A. Miller [105] describes the 

problems humans have when trying to comprehend sets of things with greater than seven 

components. This can be used as a rough guide as to the simplicity of a rule and it can be 

presumed that rules with tens of terms will tend to be incomprehensible to the average 

user. Obviously it would not be useful to have a very simple rule set that did not represent
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the data set well, so a notion of accuracy and comprehensibility is essential during rule 

evaluation.

Pseudocode 3.1 describes the standard sequential covering approach used to build a 

set of classification rules covering a given training set [118] [164], Note that 

Pseudocode 3.1 represents a very generic approach, which can be instantiated in many 

different ways to produce a number of very different rule induction algorithms as 

discussed later.

RS = 0  /* initially, Rule Set is empty */
TS = {all training examples}
FOR EACH Class C

WHILE (number of uncovered training examples of class C > 
MaxUncovExampPerClass)

Discover the best rule predicting class C, called 
BestRule

RS = RS U  {BestRule}
TS = TS - {training examples correctly covered by 

BestRule}
END WHILE 

END FOR

Pseudocode 3.1: Sequential Covering Approach

In Pseudocode 3.1 the algorithm starts by initialising the rule set (RS) with the empty 

set and initialising the current training set with all the training examples. Then, for each 

class the algorithm performs a WHILE loop. Each iteration of this loop performs one run 

of the rule discovery algorithm, returning the best discovered rule predicting examples of 

the current class (C). This rule is added to the rule set, and the examples correctly 

covered by that rule are removed from the training set (TS). An example is said to be
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correctly covered by a rule if that example satisfies all the terms (attribute-value pairs) in 

the rule antecedent (“IF part”) and it has the class predicted by the rule (“THEN part”). 

This WHILE loop is performed as long as the number of uncovered examples of the class 

C is greater than a user-defined threshold, the maximum number of uncovered examples 

per class (MaxUncovExampPerClass). After discovering rules for all classes, the 

algorithm returns RS, the discovered rule set.

Pseudocode 3.1 gives a basic method of creating an unordered rule set. The rule set is 

unordered in the sense that the rules can be applied to the test examples in any order and 

the model will still function as intended. The rule set generated by Pseudocode 3.1 

produces an unordered rule set due to the way in which only correctly covered examples 

are removed from the training set at every while loop iteration. If all examples were 

removed (including the ones incorrectly covered) ordering the discovered rule set in a 

different way could have unforeseen consequences.

Many variations on the basic sequential covering principle are found in rule induction 

algorithms, including pruning the rule (removing terms to increase rule compactness 

and/or accuracy) after creation, pruning all rules after rule set creation (possibly removing 

rules entirely), discovering ordered rule lists, discovering rules not on a per class basis 

but on the basis of quality i.e., finding the best rule for any class rather than the best rule 

for a particular class. Note that, the variations mentioned so far do not include methods 

for actually discovering the rules themselves. Many algorithms have been created for this 

purpose, using a variety of different search methods and heuristic measures [118] [164],

Two of the most successful and commonly used rule induction algorithms are 

C4.5Rules [131] and RIPPER [39]. RIPPER (Repeated Incremental Pruning to Produced 

Error Reduction) incrementally produces rules starting with a rule for the least prevalent 

class and ending with a rule for the most, pruning them at each stage using a separate 

pruning set (the training set is divided into a “growing” and pruning set). The idea of 

growing and then pruning rules was based on IREP [66] but RIPPER includes 3 

modifications, namely changing the heuristic function used to prune rules, changing the
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stopping criterion for adding rules to the rule set and optimising the entire rule set after its 

creation. These modifications make RIPPER extremely competitive in terms of rule set 

compactness, accuracy and running time.

C4.5Rules uses decision trees built by the widely used C4.5 decision tree induction 

algorithm (discussed in the next section). Note that this is essentially an advanced 

pruning algorithm, as rules and trees are interchangeable (as will be discussed in the next 

subsection). It firstly converts the decision tree to a set of rules, where every path from 

the root node to a leaf node is a single rule (note that the use of a decision tree negates the 

need for a sequential covering type approach for discovering rules). Then the algorithm 

removes terms that do not seem to affect the rule’s performance in discriminating 

between the consequent class and the other classes. Then any rules that do not affect the 

performance of the rule set are removed.

Finally, the set of rules are ordered to minimise false positive errors (where examples 

are covered by the rule antecedent but do not have the class predicted by the rule). They 

are ordered to produce a decision list. This is where an example is considered covered by 

only the first rule that matches it in the sequential list of rules (decision list). This can be 

considered a very basic conflict resolution scheme -  how to decide which class an 

example belongs to if two rules with different consequent classes match it.

In general decision trees are a comprehensible knowledge representation as discussed 

in the next sub-section. Hence, one may question the need to convert between human 

comprehensible decision trees and rule sets but as Quinlan [131] p.45 states:

“Large decision trees are difficult to understand because each node has a 

specific context established by the outcomes of tests at antecedent nodes. ”

Indeed the rules from a rule set are in some sense modular (especially in unordered 

rule sets) and so can be interpreted in their own right. C4.5Rules retains almost all of the
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performance of the decision tree algorithm with (arguably) a simplification in the 

classification model representation.

3.2.1.2. Decision Tree Induction

Decision trees are another human comprehensible classification approach. They 

contain two features, decision nodes where a test is performed on an example with a 

corresponding subtree for each outcome of the test, and leaf nodes which indicate a class. 

Using these two features an example is inevitably classified as it moves through the tree 

in a top-down fashion, ending at a leaf node. An example decision tree is shown in 

Figure 3.1. The first test (at the first decision node) is made based on the Wage attribute: 

if the example’s Wage value is less than or equal to 30k then it is sent to the second level 

left hand node, if it is greater than 30k is sent down the right hand edge and arrives at the 

leaf Credit=Goor/. This means that in the example decision tree any example having 

Wage > 30k will be assigned to the class Good Credit, whereas if an example has Wage < 

30K its class will be Bad or Good Credit, depending on whether or not the example’s 

Mortgage value is yes or no, respectively.

Figure 3.1: An example decision tree
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Decision trees and rule sets are interchangeable (as stated previously). Converting a 

decision tree to a rule set simply requires generating one rule per possible path from the 

root node to each leaf.

For instance the decision tree shown in Figure 3.1 could be converted to the following 

(un-pruned and unordered) rule set:

IF (Salary > 30k) THEN (Good Credit)
IF (Salary ^ 30k) AND (Mortgage = No) THEN (Good Credit)
IF (Salary ^ 30k) AND (Mortgage = Yes) THEN (Bad Credit)

A common method of generating decision trees which has been explored for many 

years is the divide and conquer principle. The divide and conquer approach involves 

calculating which test will produce the best divide of the training set, hopefully splitting 

examples belonging to one class from examples belonging to other class (or allowing this 

to happen in subsequent tests). Many algorithms use a greedy approach (e.g., C4.5 [131]) 

to calculate the best way to divide the training set, that is the interactions between the 

current test and subsequent tests are not considered fully. Another thing to be considered 

is the complexity of the tree, simpler (simple but not overly simple) trees are generally 

thought of as being more comprehensible. Simply using the divide and conquer principle 

to generate trees has a tendency to generate very complex and fragmented trees, which is 

not desirable. Therefore, a pruning procedure is normally used to reduce the size of the 

trees, often by substituting a subtree for a leaf. The subtree should be replaced if it 

produces more classification error than an appropriate leaf node. Although greedy 

algorithms such as C4.5 are relatively successful, much work has been conducted in 

producing “globally” optimised trees, using genetic algorithms and other global search 

heuristics [11] [61] [115].
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3.2.2. Bayesian Classification

Bayesian classification algorithms are based on Bayesian probability theory. Naive 

Bayes is one of the best known and widely used classification algorithms for real world 

problems, due in part to its simplicity and effectiveness. Its effectiveness is somewhat 

surprising due to its naivety; the basic assumption it makes about the lack of interaction 

between predicting attributes [135] given a class label. The Naive Bayes classification 

algorithm uses Equation 3.1:

P{C] \ X ) ^ P ( C ] ) Y\ P{ x l \C] )
i=1

Equation 3.1

Where X is a vector representing the set of attribute values (xi,... x„), n is the number 

of attributes, C7 is the yth class label, and the left hand side is proportional to the right 

hand side as the right hand side would have to be divided by a normalising constant in 

order to produce a probability value. Equation 3.1 states that the probability of observing 

a certain class Cj given a set of attribute values X  can be calculated by multiplying two 

terms: the prior probability of the class, P(C7), and the likelihood of X  given C, which is 

calculated as the observed probability (in the training set) of each attribute value (x,), 

given that class, multiplied together. The way in which the algorithm is Naive becomes 

clear; there is an assumption that the probability of each attribute value is completely 

independent from other attribute values given any particular class label. To turn 

Equation 3.1 into a functional classification algorithm, one must simply compute the 

probability for each class (Cj) given a set of attribute values (X ), and take the maximum 

value, i.e., the most probable class.

Naive Bayes algorithm makes the assumption about independence as computing the 

necessary sets of probabilities without that assumption would be problematic given a data

52



Chapter 3. Data Mining

set with a large number of attributes and values -  where there would tend to be very few, 

or no examples for certain combinations of attribute values.

It is possible to still attempt to account for attribute interaction using more 

sophisticated Bayesian classification methods like Bayesian Networks, which rely on a 

Directed Acyclic Graphs (DAGs) where dependencies between attributes are represented 

by parent-child relationships. However, Bayesian Networks are not a “magic bullet”. The 

number of possible DAGs for a data set of reasonable size is massively large and in 

general finding the correct DAG for a given data set is an NP-Hard problem [40], 

Bayesian Networks have another advantage over the naive approach in that the induced 

DAG is a graphical representation and therefore is human comprehensible (as long as the 

DAG is not very large and complex). It can be used to gain knowledge about the 

interactions of attributes within a data set. Bayesian networks are beyond the scope of this 

thesis, but it is worth briefly mentioning that swarm intelligence methods can also be 

used to find Bayesian networks [43],

3.3. Ensembles of Classifiers

Ensemble classifiers normally try to combine the predictions from separate classifiers 

(classification models) in order to increase predictive accuracy. However, with this 

increase of accuracy there is usually a loss of comprehensibility. It may be very difficult 

for a human to fully understand the nuances of many interacting classification models 

produced from a single data set such as the ones used by ensembles.

There has been a large amount of research conducted in the field of ensembles and 

many different approaches have been developed. A particularly productive field of 

ensemble research has been conducted in the difficult area of handwriting 

recognition [71], where accuracy is of paramount importance and comprehensibility, in 

general, is of lesser importance. The most common ensemble techniques are [47]:
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bagging (bootstrap aggregation), boosting, feature subspace re-sampling and stacking 

(stacked generalisation), as will be discussed in the remainder of this section.

3.3.1. Bagging

Ensemble classifiers can be categorised by the way in which their base classifiers are 

constructed and the way in which the predictions of these base classifiers are combined. 

In bagging [23] the training set is re-sampled several times in some way to generate 

separate classifiers, so that each classifier is trained with a different training set. The 

predictions of these classifiers are classically combined by a voting scheme which may or 

not be weighted. Bagging is useful when the learning algorithm used is unstable; where a 

small change in the training set causes a large change in the classifier created. Bagging 

relies on the premise that by sampling the data set multiple times and building classifiers 

for each one of these samples, the resulting combination of classifiers will be stable, with 

the instability of each component classifier averaged out across the multiple classifiers.

It is possible to re-sample the initial data set in many different ways. To make samples 

with the same («) number of examples as the original training set, n examples are 

randomly chosen (from the training set) and added to the sample whilst allowing repeats. 

This method has the advantage of being able to create as many samples as are needed 

without reducing the number of examples in each sample. It is also possible to simply 

divide the training set into different partitions and use each as a sample. However, this 

limits the number of possible samples, as if there are too many, the number of examples 

in each sample will become too small to effectively train the classifier with.

There are many methods to try and increase the performance of the classifier 

prediction combining scheme used in bagging (although classical bagging simply uses 

unweighted voting). Unweighted voting is simply where the most frequently chosen class 

(chosen by the constituent classifiers) is assigned to the example, if there is a tie than an 

class must be chosen at random. In [46] the authors optimise the weights in the voting

scheme to minimise variance (using SVMs as the base classifiers). Dietterich [47]
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provides a good review of alternative methods, including other combining schemes. 

Some of the most advanced and successful methods use genetic 

algorithms [72], [122], [133], [147], It is also possible to use other advanced and iterative 

methods when sampling the data set, including samples based on clusters produced by 

clustering algorithms such as K-means [48].

Feature subspace re-sampling [48] can be considered a variation of bagging. It creates 

diverse classifiers by only giving (during the creation of one classifier within the 

ensemble) the classification algorithm a subset of the entire set of features available in the 

original dataset for each example. In other words, conventional bagging uses different 

training examples but the same features (attributes) in different runs of the classification 

algorithm, whilst feature subspace re-sampling uses different features but (possibly) the 

same training examples in different runs of the classification algorithm. The subsets of 

features given to different runs of a classification algorithm can be optimised based on 

several metrics [24] including the diversity of the classifiers created and the predictive 

accuracies.

Figure 3.2: Training and Testing Phases in Bagging
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The training phase of bagging is shown in Figure 3.2, where the data set is re-sampled in 

some way to produce separate classifiers. During the testing phase, when an example of 

unknown class is shown to the classifiers, a vote based on the predictions of the 

component classifiers is carried out to assign the final predicted class.

3.3.2. Boosting

Training Testing

V o tin g

C lass ifie r C lass ifie r C lass ifie r

\T 7
E x a m p le

Figure 3.3: Training and testing phases in boosting

Whereas in bagging the classifiers can be built in parallel, in boosting the classifiers 

are built in series; each new classifier built is dependant on the previous classifier. 

Adaboost (Adaptively resample and combine) [64] is a commonly used boosting 

algorithm and works by assigning weights to examples. More precisely, examples that are 

considered hard to classify are assigned greater weights than examples that are easy to 

classify. It updates the example weights after each iteration, creating classifiers that 

concentrate on the hard examples. This creates a good set of specialised “experts” on
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particular areas in the data. This is possible because certain examples will not always be 

considered hard or always easy during the classifier-construction process, in fact the 

difficulty of classifying an example is dependant on the classifier. C4.5 is often used as 

the learning algorithm for Adaboost as it already can consider weighted examples when 

dealing with missing values. Some implementations of Adaboost use re-sampling rather 

than weighting to build the ensemble of classifiers. This is useful when the base 

algorithm does not easily support weighting. It has been suggested that the main strength 

of algorithms of the type of Adaboost lies not in the voting procedure, but in the 

“adaptive re-weighing of instances” [10].

The sequential nature of the training phase in boosting is shown in Figure 3.3. The 

changing gradient of grey shown on the “Dataset” boxes represent the changing weights 

associated with the examples in the training set -  each example is a static point within the 

“Dataset” box and their shade (weight) changes after each of the three iterations shown in 

the diagram. The testing phase is usually much the same as with bagging, as shown in the 

right part of Figure 3.3.

3.3.3. Stacking

Unlike bagging and boosting, which classically combine the predictions of multiple 

applications of the same classification algorithm on different subsets of data, 

stacking [165] usually combines the predictions of multiple distinct/parametrically altered 

classification algorithms trained on the same data. These base classifiers are known as 

“level-0” classifiers. Stacking utilises another level of classification which combine the 

predictions from the “level-0” classifiers, this level is known as the “level-1” classifier.

The level-1 classifier makes decisions based on the predictions of the level-0 

classifiers. In stacking a meta-data set is created with meta-attributes corresponding to the 

class predictions of the base, level-0 classifiers within the ensemble. This meta-data set is 

usually trained on a hold-out partition of the training set, which was not used in the
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construction of the level-0 classifiers. This process is used in order to reduce the risk of 

overfitting [164],

Using this meta-data set it is possible to build the level-1 classifier and predict which 

class an example with an unknown class belongs to by converting it to a meta-example. 

This meta-example will have as many meta-attributes as there are base classifiers, with 

values corresponding to the class they predict. This approach allows the level-1 classifier 

to learn from the correct predictions of the level-0 classifiers and also learn from the 

incorrect predictions of these classifiers.

The level-0 classifiers may be created in parallel as they can be independent, and 

schemes can be used [24] to try and insure the diversity of the base classifiers. It is 

possible to use stacking with classifiers generated by different algorithms, different 

parameter settings of the same algorithm, and also different samples or variations of 

data [29], Furthermore, the level-1 classifier may also be a voting scheme or use 

Bayesian probability (in a similar way to the Naive Bayes classifier). A comparison of 

these types of approaches can be found in [167], which also includes optimised weighted 

voting using a Particle Swarm Optimisation (PSO) algorithm (discussed in section 3.4).

The PSO algorithm adjusts the weights given to each voting classifier to increase 

accuracy. They conclude that given a large enough data set the PSO optimised weighted 

voting is the superior approach (when compared to using un-weighted/probabilistic types 

of approaches).
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Training
Phase I

Level 0

Phase 2

Testing

Figure 3.4: Training and testing stages in stacking

Figure 3.4 shows the training and testing stages of stacking. During phase 1 of the 

training stage the base classifiers are built as normal from the training set, with the caveat 

that a subset of the training set is used as a hold out set. In phase 2 the hold out training 

subset is classified by the level-0 base classifiers built during phase 1. These 

classifications are used to create the meta-data set and the level-1 combining classifier as 

discussed above. During the testing phase an example with unknown class is classified by 

the level-0 classifiers. These predictions are used to generate a meta-example which can 

then be classified by the level-1 meta-classifier to assign a final predicted class to the 

example.

Skalak [144] suggests that there should be three main considerations when designing 

an ensemble of classifiers: the accuracy of the component classifiers, the diversity of the 

component classifiers and the computational efficiency -  i.e., the processing time 

required to build the entire ensemble of classifiers and also to use it to classify examples.

When using a single classifier the predictive accuracy is one of the most important 

factors. However with ensembles of classifiers each classifier does not need to be

especially accurate for the ensemble to make an accurate prediction. Skalak [144]
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discusses an example of this phenomenon where a classifier that is 69% accurate is 

combined with classifiers that are 23% accurate and 25% accurate, this boosts overall 

accuracy to 88%.

The diversity of the component classifiers is very important in ensemble approaches; 

component classifiers must make different errors (from each other) in order for the 

overall ensemble to be more accurate than either of the base classifiers [9] [24], There is 

often a trade-off between accuracy and diversity when building classifiers, as it is often 

easier to make more diverse (uncorrelated) classifiers when the restrictions on accuracy 

are lowered. Unless the time taken to build the classifiers (training) or to use them to 

predict the class of the examples (testing) is prohibitive, computational efficiency is 

probably the least important factor when designing an ensemble of classifiers.

3.4. Particle Swarm Optimisation

PSO is a meta-heuristic that maintains a population of particles -  each of them a 

candidate solution to the target problem -  that iteratively move around the (normally 

continuous) search space [21] [95], Each particle is also part of a structured 

communication system as detailed below.

Figure 3.5: Ring (Local) Topology for PSO Particles
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Figure 3.6: Global Topology for PSO Particles

Figure 3.7: Von-Neumann Topology for PSO Particles

Figure 3.5, Figure 3.6 and Figure 3.7 show three commonly used topologies for 

particle communication in PSO. Figure 3.5 shows a local topology where a particle’s only 

neighbours are to the left and right of it (also referred to as ring topology). Figure 3.6 

shows the global topology where every particle is a neighbour of every other particle.
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Figure 3.7 shows Von-Neumann topology where each particle has four neighbours in a 2- 

D grid layout.

The level of “connectedness” in the topology plays an important role in the PSO 

algorithm. Topologies that involve very well connected particles (such as the global 

topology) tend to converge to a solution much faster than those that are not so well 

connected (local topology). Although well connected topologies converge to a solution 

faster they are more likely to converge to a local maximum (according to the fitness 

fucntion) rather than the global maximum value [96], The slower converging/less well 

connected topologies spend more time searching and so are more likely to perform better 

(in terms of the maximum or minimum value found). Depending on the problem 

difficulty and requirements it may not be necessary to select a very slow converging 

topology as this may simply waste computational time.

The position of a particle in the search space represents the contents of its candidate 

solution and so moving each particle corresponds to generating a new candidate solution. 

Each particle keeps track of the best position it has ever held, according to the fitness 

(evaluation) function. At each iteration, each particle finds its best neighbour (in a local 

or global neighbourhood). The particle then moves towards a combination of the best 

position any of its neighbours have ever held and its own best position, with a velocity 

calculated as shown in Equation 3.2. This process is repeated until a stopping criterion is 

met. To calculate the velocity and new position of a particle, Equation 3.2 and 

Equation 3.3 are often used (respectively) for each dimension of the current particle’s 

position, although several variations have been proposed in the literature [124]:

V/diO = Wx (V f/t-1))+(p1 xRandQ x (pid -x id( t - 1 ))+<p2xRand() x (pgcrxid( t - 1)) 

Equation 3.2: A particle’s velocity at time t
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xufc) = xd t-1) + vd t)

Equation 3.3: A particle’s position at time t

Where xid is the particle Vs position in dimension d, t is the iteration (time) index, vid 

is particle Vs velocity in dimension d, W is an inertial constant to prevent the particle 

gaining too much speed. cp1 and <p2 are user-defined personal (to adjust the influence of

the particle’s own position on its next position) and social (to adjust the influence of the 

neighbour’s position on the particle’s next position) learning constants, respectively. pgd 

is the best position of the particle’s neighbours in dimension d and p id is the best position 

particle i has ever held in dimension d. In addition to W, an optional maximum velocity is 

also used to prevent the particle from flying too far out of the search space. RandQ 

generates a random number in [0, 1],

Several studies have shown PSO to be a powerful optimisation algorithm, often 

outperforming more conventional population-based meta-heuristics such as evolutionary 

algorithms [75] [94] [107],

3.4.1. Binary and Discrete PSO Algorithms

The original PSO algorithm -  designed mainly to optimise functions with continuous 

attributes -  was extended to optimise functions with binary attributes [93]. The binary 

PSO algorithm does not use a particle’s past position and velocity directly to calculate its 

new position for fitness evaluation. Rather, a particle’s velocity in each dimension is 

interpreted as the probability that the particle will take the value 1 (rather than 0) in that 

dimension. More precisely, once the velocity of particle i in dimension d  (denoted vid) has 

been calculated, it is first converted into a number between 0 and 1 by Equation 3.4, 

where the constant k is used to determine how “deterministic” the search is:
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s(vid) = 1/(1 + exp(-kv,d))

Equation 3.4: Converting from Velocity to Probability

Next, the value of the position d, denoted by is computed by Procedure 1, where 

RandQ is a random number between 0 and 1:

IF R a n d [ )  < s ( v i d )

THEN x i d ( t )  = 1 
ELSE x i d ( t )  = 0

Pseudocode 3.2: Computing the Value of a Particle’s Position in Binary PSO

s(v id)
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This modification to the original PSO algorithm is quite subtle in its workings. Each 

time a particle chooses a position 0 or 1, if it is found to be a position of lesser fitness 

when compared to its previous position and neighbourhood best, in the next iteration the 

particle will be accelerated in the opposite direction, increasing the probability of 

choosing the other value. As it gains velocity it becomes more unlikely that the particle 

will choose the position it is moving away from. If it chooses the position it is moving 

away from and finds it suboptimal again, it will accelerate away from this position, and 

so it eventually converges to a single solution. Maximum velocity can be used to limit the 

minimum probability of choosing 0 or 1, as the faster the particle gets in a dimension the 

less chance there is of choosing the position opposite to the one it is travelling towards.

Figure 3.8 shows the effect the constant k has on the search, the higher k is the more 

deterministic the search becomes. In other words, a higher value for k corresponds to a 

lower velocity being needed to cause a high probability of either choosing position 0 or 1. 

This variability is useful, for instance, when dealing with a noisy fitness function. In this 

scenario a lower value of k is often appropriate, as it prevents fast convergence to a false 

peak in the search space.

3.5. Ant Colony Optimisation

NEST FOOD

Figure 3.9: Pheromone trails in natural ant colonies
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Ant Colony Optimisation (ACO) is a meta-heuristic inspired by the “intelligent” 

behaviour of real ant colonies. The pioneers in understanding how ant foraging works 

were Jean-Louis Deneubourg et al. [6], They suggested that the reason ants are seen 

creating “highways” to and from their food is because of a chemical pheromone. Each ant 

lays down an amount of pheromone along its route and the other ants are attracted to the 

strongest scent. As a result, ants tend to converge to the shortest path. This is because a 

shorter path is faster to transverse, so if an equal amount of ants follow a long path and a 

short path, the ants that follow the short path will make more trips to the food and back to 

the colony. If the ants make more trips when following the shorter path, then they will 

deposit more pheromone over a given time period when compared to the longer path. 

This is a type of positive feedback and the ants following the longer path will be likely to 

change to follow the shorter path, where scent from the pheromone is stronger [49] [50]. 

Due to the evaporation of pheromone and the persistent small chance than an ant will take 

a random path, if a new shorter path is added the ant may eventually move to this new 

path. This feature makes ACO useful for dynamic problems such as network routing [50], 

Figure 3.9 [20] shows a graphical representation of the way in which pheromone builds 

up on the shortest path.

ACO has been very successful in several types of combinatorial optimisation 

problems [50], An obvious application is the travelling salesman problem, but in other 

combinatorial optimisation problems, such as sequential ordering problems, resource 

constraint project scheduling problems and the open-shop scheduling problem ACO 

methods are considered the “state of the art” [51].
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3.6. Particle Swarm Optimisation and Ant Colony Optimisation 

for Classification

3.6.1. The Ant-Miner Algorithm

The Ant-Miner classification algorithm [119] takes the basic ideas from the Ant 

Colony paradigm and applies them to the field of data mining. Instead of foraging for 

food the ants in the Ant-Miner algorithm forage for classification rules and the path they 

take is described in terms of attribute-value pairs. Many variations of the original Ant- 

Miner algorithm have been proposed. Variations include fuzzy rule based 

approaches [67] [68] and a multi-label variant [28], [63] provides a discussion about 

several other variations found in the literature.

The Ant-Miner classification algorithm described in Pseudocode 3.3 works in the 

following way. Firstly an ant starts off with an empty rule. It then iteratively adds one 

attribute-value pair (term) at a time to the rule, using a probabilistic procedure, where the 

selection of terms is based on the amount of virtual pheromone and on the value of a 

heuristic function that measures the information gain of each attribute-value pair.
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TrainingSet = (all training examples};
DiscoveredRuleList = [ ] ; /* rule list is initialized with an
empty list */
WHILE (TrainingSetSize > MaxUncoveredExamples)

Anti = 1; /* ant index */
NumConverged = 1; /* convergence test index */
Initialize all trails with the same amount of pheromone; 
WHILE(Anti < MaxAnts AND NumConverged < MaxConverged)

Anti starts with an empty rule and incrementally 
constructs a classification rule Rt by adding one term 
at a time to the current rule;
Prune rule Rt;
Update the pheromone of all trails by increasing 
pheromone in the trail followed by Anti (proportional 
to the quality of Rt) and decreasing pheromone in the 
other trails (simulating pheromone evaporation);
/* update convergence test */
IF (Rt is equal to Rt - 1)
THEN

NumConverged = NumConverged + 1;
ELSE

NumConverged = 1;
END IF
A nti = A n ti + 1 ;

END WHILE
Choose the best rule Rbest among all rules Rt constructed by 
all the ants;
Add rule Rbest to DiscoveredRuleList;
TrainingSet = TrainingSet - {set of examples correctly 
covered by Rb e st} ;

END WHILE

Pseudocode 3.3: The Ant-Miner algorithm adapted from [119]
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The larger the amount of pheromone and the larger the information gain for an 

attribute-value pair, the more likely that the attribute-value is chosen to be added to the 

current rule. The ant is considered to have completed its rule when adding any term to the 

rule would make the rule cover less than M\n_examples_per_rule examples, a user- 

defined threshold. The reason for using this threshold is to avoid the generation of rules 

covering too few examples, which are unlikely to generalize well to examples in the test 

set, unseen during training.

Once a rule has been constructed, it is pruned by removing elements that are 

unnecessary or make the rule worse (in terms of rule quality). The pheromone matrix is 

then updated by increasing the amount of pheromone of the attribute values that occur in 

the rule the ant has just created. For each of the attribute values, pheromone is increased 

in proportion to the quality of the rule. This matrix can be considered a discrete landscape 

on which the ants travel, although it is not spatial in the sense that the values stored in the 

matrix do not map to coordinates. Once this has finished, the next ant creates a new and 

separate rule based on the pheromone trails of the previous ants (in addition to the 

information gain based heuristic). This means that eventually the ants will converge on a 

good classification rule as the pheromone for particular “good” attribute-value pairs will 

be much stronger than the pheromone for “bad” attribute-value pairs.

There is no part of the algorithm that explicitly makes the pheromone evaporate. 

However the probabilities stored in the matrix are normalized directly after updating the 

pheromone based on the last constructed rule. This normalisation has the side effect of 

decreasing the pheromone value of the attribute-value pairs that have not been updated 

after the candidate rule has been constructed.

Q = Sensitivity x Specificity 

Equation 3.5: The Rule Quality measure used for the Ant-Miner algorithm
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Equation 3.5 gives the rule quality Q for a rule generated by an ant. The higher the 

rule quality (0 < Q < 1) the better the rule [74]: Sensitivity = TP / (TP + FN) and 

Specificity = TN / (TN + FP), where:

• True Positives (TP) are the number of examples that match the rule antecedent 

(attribute-values) and also match the rule consequent (class). These are desirable 

correct predictions.

• False Positives (FP) are the number of examples that match the rule antecedent but do 

not match the rule consequent. These are undesirable incorrect predictions.

• False Negatives (FN) are the number of examples that do not match the rule 

antecedent and do match the rule consequent. These are undesirable uncovered 

examples and are caused by an overly specific rule.

• True Negatives (TN) are the number of examples that do not match the rule 

antecedent and do not match the rule consequent. These are desirable and are caused 

by a rule’s antecedent being specific to its consequent class.

When the rule generation loop finishes (i.e., the condition Antj < MaxAnts AND 

NumConverged < MaxConverged is not satisfied), the best rule is selected from all the 

generated rules (based on rule quality) and added to the discovered rule list. The rule 

needs to predict a class to be useful, and is assigned the class which leads to the best rule 

quality, given the just-generated rule antecedent.

After each rule is generated it is pruned. The rule pruning procedure is iterative and at 

each iteration it tries to remove, tentatively, each term of the current rule antecedent. The 

quality of the rule is measured after each term (/th value of the /th attribute) is tentatively 

removed from it. The term which when removed increases the rule quality the most is 

then removed permanently. Note that the class of the rule may be changed after each term 

ij is removed. This is continued until no term ij can be removed that would increase the 

quality of the rule.
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To test the rules discovered from the training set, they are applied to the test set in the 

order they were created (this is the most basic rule conflict resolution scheme, as 

discussed in Section 3.2.1.1). That is, for each example in the test set, the algorithm scans 

the list of discovered rules until it finds a rule covering that example. To be considered a 

correct attempt at classifying a test example, the antecedent must match the attribute- 

value pairs stored in that example and the class of that example must match the one 

predicted by the rule. If there are examples that are not covered by any rule generated, 

then a default rule is used. This default rule simply classifies all the uncovered examples 

as the most frequent class in the training set.

3.6.2. Particle Swarm Optimization for Classification

Sousa proposed the first PSO-based rule induction algorithm [146], which uses PSO 

as the mechanism for searching for candidate rules. The algorithm functions in a similar 

way to Ant-Miner, in that it uses the sequential covering approach, the same rule quality 

measure to assess candidate rules and a similar rule pruning mechanism. However, rather 

than generating the rule of best quality first regardless of class (as in Ant-Miner), it 

generates rules for the majority class first. Also, ACO can cope with categorical attributes 

natively (as was shown with the Ant-Miner example in Section 3.6.1) whereas the Binary 

PSO used in [146] cannot. For this reason nominal (or categorical) attributes having more 

than two values must first be encoded in a binary form (with each value assigned a 

consecutive binary number index) and then each rule can be represented as a binary 

vector (to be optimised by PSO). If this was a straight forward conversion from attribute 

values to binary vector then each rule would always contain one value for each attribute. 

This would not be a good situation so instead an extra bit (for each attribute) is used to 

denote whether the attribute value is present or not in the decoded rule. The authors find 

that the proposed PSO approaches are at least competitive with (and often beat) J48 [164] 

(a Java implementation of C4.5) and Genetic Algorithm-based classification algorithms.
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Note that this paper only addresses the problem of classifying data sets with 

categorical/discrete attributes.

Other works investigating PSO for classification include [58]. In this paper, rather 

than discovering rules, the PSO algorithm finds centroids in the attribute-value space, one 

per class. To classify an example a function is used to assess the distances between each 

centroid and the example. The centroid that is closest indicates that the example belongs 

to the corresponding class. The authors find that PSO is at least competitive with a wide 

range of commonly used techniques. Note that this paper only investigates data sets with 

continuous attribute values. A limitation of this approach is that in some problems a 

single class can consist of examples that are concentrated in two or more groups that are 

far apart in the search space, so that two or more centroids would be necessary for 

properly representing each class. The use of PSO for training artificial neural network 

classifiers is explored in detail in [12], In this case the PSO algorithm is used to optimise 

the weights associated with the artificial neural network.

Another area of active research is in using PSO for discovering fuzzy rules [31] [108], 

however this topic is out of the scope of this thesis.

3.7. Hierarchical Classification

This thesis focuses on hierarchical classification problems [62] where the classes to be 

predicted are organized in the form of a tree, hereafter referred to as a class tree. 

Figure 3.10 shows an example 4 level hierarchical classification problem. The first class 

level has class nodes 1 and 2, class node 1 has two child nodes 1.1 and 1.2 at the second 

class level. All examples belonging to class nodes 1.1 and 1.2 also belong to class node 1, 

however there may be examples that only belong to class 1 and not classes 1.1 or 1.2 

((1.1 u l .2 )  c: 1). Notice that in Figure 3.10 each class node has only one parent class, 

with class nodes at level 1 having an imaginary parent root node (not shown for the sake
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of simplicity) which completes the tree structure and which does not correspond to any 

class.

Figure 3.10: An example hierarchical classification class structure

C l a s s  N o d e  X

Figure 3.11: An example class-tree based hierarchical classification problem shown in

the form of a Venn diagram

In general, the class structure for hierarchical classification problems can be split into 

two main categories:
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• A tree structure, where each class node only has one parent class node (which is the 

focus of this thesis and shown in Figure 3.10).

• A Directed Acyclic Graph (DAG), where each class node may have one or more 

parent class nodes.

A commonly used DAG classification scheme in bioinformatics is the Gene Ontology 

(GO) [69], GO comprehensively describes the relationships between “gene products in 

terms of their associated biological processes, cellular components and molecular 

functions in a species-independent manner” [69], DAG based classification is not 

addressed in this thesis but good discussions can be found in [112] (which focuses on text 

mining) and [158] (which addresses GO classification).

Beyond the two types of class structures there is the possibility that the problem is 

multi-label -  where each example in the data set may belong to one or more class nodes 

at each class level. These types of problem are known as Hierarchical Multi-Label (HML) 

problems. HML is not the focus of this thesis but good discussions of the problem can be 

found in [19] and [33],

Hierarchical classification with a tree based class structure can be considered a special 

case of the more general multi-label classification problem (where an example can be 

assigned more than one class label). The example shown in Figure 3.10 is shown in the 

form a Venn diagram in Figure 3.11. Figure 3.11 illustrates the way in which multi-label 

classification problems and hierarchical classification problems relate to each other. For 

instance, class-tree based hierarchical classification examples can be considered multi­

label examples in the sense that an example belonging to class 1.1.1.1 can be said to 

belong to classes 1,1.1,1.1.1 and 1.1.1.1. However, not all multi-label classification 

problems are hierarchical. Importantly hierarchical classification problems tend to have 

different properties to “flat” (non-hierarchical) multi-label problems. Firstly, there tend to 

be classes with very small numbers of examples towards the bottom of the class tree, as at 

each progressive level the examples are split between sibling class nodes. Secondly, there
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tend to be many more classes, especially when dealing with bioinformatics data (the 

focus of this thesis).

3.7.1. Flattening Hierarchical Classes

Figure 3.12: Reducing a hierarchical classification problem into a flat classification

problem

Figure 3.12 shows the simplest (and most naive) way of dealing with hierarchical 

classification problems, which is to ignore the class hierarchy completely and so only 

predict classes at the bottommost class level. When the bottommost classes are predicted 

the classes at higher levels are indirectly predicted. For instance, in a four level 

classification problem, if the algorithm predicts for a given example the class 1.1.1.2, it is 

also predicting class 1 at the first level and class 1.1 at the second level and class 1.1.1 at 

the third level. This approach avoids the complexity associated with a truly hierarchical 

classification algorithm (any generic classification algorithm can process a hierarchical 

data set by disregarding the hierarchical structure) at the expense of not discovering more 

generalised knowledge expressed by higher class levels. Flattening the classification
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problem causes only lowest level, specific knowledge to be discovered. Furthermore such 

specific classification models tend to be less accurate than more generic models 

(predicting classes at higher levels of the hierarchy) [42], This is due to the specific 

model usually covering a smaller number of examples per class than a high-level, generic 

model. Also, flattening makes the task of building an accurate model more difficult for 

the classification algorithm; there are more classes to discriminate between and so more 

chance of errors occurring.

□  Class Node

| Scope of Classifier

Level 1

Level 2

Figure 3.13: Reducing a hierarchical classification problem into a set of flat

classification problems

The second simplest approach, as shown in Figure 3.13, is to build an independent 

classifier for each class level [62], The user can then select the granularity of the 

prediction. This approach has the advantage of being simple to implement as only basic 

data set pre-processing is needed to convert the hierarchical classification problem into 

this form, e.g., creating four separate datasets where an example of class 1.1.1.1 is found
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as an example of class 1 in the data set corresponding to class level 1 predictions, class 

1.1 in the data set corresponding to class level 2 predictions, 1.1.1 in the data set 

corresponding to class level 3 predictions and so on. This approach has the disadvantage 

of it being possible to get conflicting predictions about the class label of an example. The 

class level 1 classifier might predict class 2 for a given example, but then the class level 2 

classifier might predict class 1.1 for the same example. This may not be a major issue as, 

in general, the higher the class level prediction the more likely it is to be accurate. This is 

often due to the larger number of examples per class present at higher class levels (so 

there is more statistical evidence for the classifier), and the smaller number of classes 

(reducing the complexity of the problem for the classifier). Due to these reasons it would 

be wise to accept the higher classification as the correct one and simply stop the 

classification process when a conflicting classification occurs

This raises an important issue, whether the hierarchical classification process is of the 

type “mandatory leaf-node prediction” or “optional leaf-node prediction” [62], The 

scenario previously described where the classification process is ceased at a class node 

that is not a leaf would be an “optional leaf-node prediction”. The first flattening process 

described in this section is a “mandatory leaf-node prediction” scheme, as by design it 

always predicts a leaf node. Obviously having a correct leaf node prediction is 

advantageous as the user is returned the best possible information (most specific class) 

about an example. However, in this case the hierarchical classification algorithm must be 

intelligent enough to know when to give up, such as in cases where there are no longer 

enough examples to effectively train the classifier at the deepest class levels. This issue is 

somewhat subjective and dependant on the application, sometimes it may be more 

beneficial to attempt to classify an example all the way to a leaf node rather than give up 

whilst there is still a slim chance of correct classification.

Reducing the hierarchical classification problem into one or a set of flat classification 

problems is a technique that is often used in the bioinformatics literature. To give a small 

cross section of the literature, this technique has been used for
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GPCRs [15] [73] [92] [116], enzymes [32] [88] [162] and proteins classified according to 

the Munich Information Centre for Protein Sequences (MIPS) [32], It should be 

emphasized that in this technique the separate classifiers are completely independent and 

the hierarchy is still essentially ignored.

3.7.2. Top-Down Divide-and-Conquer Approach

□  Class Node 

Classifier Node

Level 1

Figure 3.14: The Top-Down Divide and Conquer method to deal with a hierarchical

classification problem

The first category of approaches that can be described as truly hierarchical is the Top- 

Down Divide-and-Conquer (TDDC) category [52] [149]. An example TDDC tree is 

shown in Figure 3.14, this approach being the focus of this thesis. This top-down 

approach has the important advantage of using information associated with higher-level 

classes in order to guide the prediction of lower-level classes. For instance, if class 

1 .X.X.X (where X denotes any digit) is predicted at the first level and the tree node for
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that class has only the child nodes 1.1.X.X and 1.2.X.X, only these two class nodes 

should be considered and not the children belonging to node 2.X.X.X. In general, any 

classification model constructed in the top-down divide and conquer tree only has to 

discriminate between sibling classes. In TDDC the models themselves form a tree, known 

as a classifier tree. This tree is populated with classifier nodes where a classifier 

discriminates between sibling classes.

As each classifier node in the TDDC tree only needs to discriminate between sibling 

classes, the training set used to generate each classifier node is different. For instance, to 

generate the classifier that discriminates between class nodes 1.1.X.X and 1.2.X.X, only 

examples belonging to class nodes 1.1.X.X and 1.2.X.X need to be present in the training 

set. To generate the classifier node that discriminates between class nodes 1.1.l.X and

1.1.2.X only examples belonging to class nodes 1.1.l.X and 1.1.2.X are present in the 

training set, and so on.

When it comes to the classification of an example, each classifier chooses which child 

classifier to send the example to, or if the classifier is at the leaf level what final class the 

example should be assigned to. For instance, the root classifier, which discriminates 

between classes l.X.X.X and 2.X.X.X, will decide if an example should be sent to the 

classifier discriminating between the child classes of class l.X.X.X or 2.X.X.X. If the 

example is first classified as l.X.X.X then it will be sent to the classifier discriminating 

between classes 1.1.X.X and I.2.X.X. This classifier will decide if the example should be 

sent to the classifier discriminating between the child classes of class 1.1.X.X or 1.2.X.X. 

If the example is then classified as 1.1.X.X then the next classifier (discriminating 

between 1.1.l.X and 1.1.2.X) will decide if it should be sent to the classifiers 

discriminating between the child classes of 1.1.1 .X or 1.1.2.X and so on.

The TDDC approach has the advantage of being able to use any type of classifier. 

This is because the only way the classifiers interact is through their predictions. It has the 

disadvantage of taking a comparatively large amount of computational power to create all 

the necessary models -  one per each set of sibling classes. Also due to the way in which
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classifications take place in the standard TDDC tree, i.e., a classifier only ever 

discriminates between sibling classes, once a misclassification has taken place it can 

never be corrected at a deeper-level classifier. This characteristic was dubbed blocking by 

Sun et al. [152], In this paper Sun et al. propose three methods to try and reduce the 

impact of blocking in a scenario where more than one class label can be assigned to an 

example at each class level (i.e., a multi-label problem at each level). In their approach, 

each class node is associated with a binary classifier which predicts whether or not the 

current example is assigned to that class. If so, the example is further passed to all 

children of that class node, otherwise the example is blocked at that node. The three 

methods to cope with blocking proposed by Sun et al. are as follows:

• Firstly, the threshold reduction method, where examples are more easily passed to 

child classifiers (for further classification) according to some threshold, calculated on 

a per class level basis.

• Secondly, the restricted voting method, where separate classifiers are constructed to 

bypass the child classifier nodes and go directly to the child’s child classifier node.

• Thirdly, the extended multiplicative method (originally proposed in [52] and 

extended by Sun), where a classification score is calculated for each leaf and non­

leaf node. If the score is greater than a certain threshold then the example is assigned 

to that leaf or non-leaf node.

Sun also proposes another variation on TDDC [149], where each classifier node is 

associated with another classifier that decides if an example should be passed onto the 

child classifiers; this is an optional leaf-node prediction approach. Another more recent 

proposal to improve TDDC accuracy was Seeker’s Classifier Selection [140] to be 

discussed in the next sub-section.
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3.7.2.1. Classifier Selection for the Top-Down Divide and Conquer 

Approach

In the conventional top-down approach for hierarchical classification, in general, the 

same classification algorithm is used for each classifier node. Intuitively, this is a 

suboptimal approach because each classifier node is associated with a different 

classification problem -  more precisely, a different training set, associated with a 

different set of classes to be predicted. This suggests that the predictive accuracy of the 

classifier tree can be improved by selecting, at each classifier node, the classification 

algorithm with best performance in the classification problem associated with that node, 

out of a predefined list of candidate classification algorithms. Indeed it was found in [140] 

that by varying the classification algorithm at each classifier node, or divide, in the Top- 

Down Divide and Conquer (TDDC) approach classification accuracy could be somewhat 

improved.

Figure 3.15: A TDDC tree using classification algorithm selection

In Seeker’s work the training set at each classifier node is divided into two non 

overlapping sub sets, a building set -  used to train the classification algorithms -  and a 

separate validation set -  which is used to assess the predictive accuracy of the models 

constructed by the classification algorithms. At every classifier node in the TDDC tree, 

multiple classifiers are built using the building set, each using a different classification 

algorithm. The classification accuracy of each of these classifiers is measured using the
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validation set at each classifier node, and then the best classifier (according to 

classification accuracy in the validation set) is chosen. This process is repeated at each 

classifier node to select a set of classifiers to populate the TDDC classification tree, 

which is then used to classify the test instances (unseen during training). A simple 

example of a classification tree constructed by this method, showing a different classifier 

chosen at each node, is shown in Figure 3.15.

Figure 3.16: Classifier interaction scenario where |BDC| > |ADC|

Figure 3.17: Classifier interaction scenario where |BDC| < |ADC|

In this way Seeker’s work uses a greedy selective approach to try and maximise

classification accuracy. It is described as greedy because, when it selects a classifier at

each classifier node, it maximises accuracy only in the current classifier node, using local

data. Therefore, the greedy selective approach ignores the effect of this local selection of
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a classifier on the entire classifier tree. In other words, this procedure is “short sighted”, 

and so it does not consider the interaction between classifiers at different classifier nodes.

Figure 3.16 and Figure 3.17 show two possible scenarios demonstrating interactions 

between classifiers at different classifier nodes during classifier evaluation. A and B are 

the two possible parent classifiers trying to discriminate between classes 1 and 2. C is the 

child classifier that attempts to discriminate between classes 1.1 and 1.2 -  as shown in 

Figure 3.18. Figure 3.16 and Figure 3.17 show the sets of correctly classified examples 

for each classifier in the TDDC tree. Notice that C c  A u  B for the three classifiers A, B 

and C. This is due to the fact that in the standard TDDC tree once a misclassification has 

been made, by classifier A or B at the first classifier node, it cannot be rectified by C at 

the child classifier node.

Figure 3.18: A class tree used to illustrate the discussion on classifier interaction

As mentioned earlier, the greedy approach chooses the best classifier at each node 

according to the classification accuracy, in the validation set, at that node. In the 

scenarios shown in both Figure 3.16 and Figure 3.17 classifier A would be chosen to 

discriminate between classes 1 and 2 , as it is more accurate when compared to classifier 

B, i.e., its circle has a bigger area, denoting a greater number of correctly classified 

examples. Let us now discuss how appropriate the choice of classifier A (made by the 

greedy approach) is in each of the different scenarios shown in Figure 3.16 and 

Figure 3.17, taking into account the interactions between classifiers A and C, and

between B and C, in the context of the class tree shown in Figure 3.18.
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Recall that in the TDDC approach an example is correctly assigned to class 1.1 or 1.2 

if and only if the two following events occur: the example is correctly classified by the 

root classifier (A or B); and the example is correctly classified by classifier C. Therefore, 

the individual accuracy of each classifier is not necessarily the most important factor 

when selecting a candidate classifier; rather it is the number of examples correctly 

classified by both the parent and child classifiers (the intersection between their sets of 

correctly classified examples). In the case of Figure 3.18, in order to maximise the 

classification accuracy at the leaf class nodes 1.1 and 1.2, if |AflC| > |BflC| then classifier 

A should be chosen; if it is not, B should be chosen. For this reason, the greedy approach 

produces a good selection in the case of Figure 3.17, where |AflC| > |BDC|. However, the 

greedy approach would not produce an optimal selection in the case of Figure 3.16. This 

is due to the fact that although A has a greater area (higher accuracy) in Figure 3.16,

|Bnc|> |Anc|.

As the number of candidate classifier selections for any given classifier tree is kn, 

where n is the number of classifier nodes and k is the number of candidate classifiers at 

each classifier node, it is impossible to exhaustively check all candidate solution for any 

data set with a reasonably large number of classes. Given this fact it is clear that a 

heuristic approach could be beneficial. Such a heuristic method, based on a robust global 

search algorithm, is proposed in Chapter 5.

3.7.3. “Big Bang” Approach

The second category of approaches that can be described as truly hierarchical is the

“Big Bang” category [149], A highly abstracted big bang approach is shown in

Figure 3.19. Methods following the big bang approach usually take the form of modified

classification algorithms, building classifiers that can predict any class node in one “step”

and usually offering optional leaf-node prediction. The obvious disadvantage of such an

approach is that the classifier produced is rather complex, as it must be able to assign one

(or more) of possibly hundreds of class labels to an example in one step. While it is true
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that the single big bang classifier is more complex than each component classifier from 

the Top-Down Divide-and-Conquer (TDDC) approach, it could be argued that taken as a 

whole the many models from the TDDC approach are more complex. However, it is also 

arguable whether a complex hierarchical classification model would ever be fully 

comprehensible, and at least with the TDDC approach the problem is broken into smaller 

fragments that can easily be examined. Each fragment will almost certainly be simpler 

taken on its own, within its context (position in the TDDC tree), than the complete big 

bang model. Modularity is the key to comprehending any large system, a fact that is well 

known within software engineering circles.

□  Predicted Class Node

__ | Scope of of Classifier

Figure 3.19: The Big Bang approach to deal with a hierarchical classification problem, 

notice that the classifier can predict any node within the class hierarchy in just one step

Initial big bang approaches were motivated by the need to classify data involving 

hierarchical text categories. Two examples being a modified RIPPER algorithm [138] 

and an algorithm that produces hierarchical association rules [161]. Another algorithm 

focusing on hierarchical multi-label classification (HMC) is discussed in [137]. It uses a
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kernel based [45] method to classify examples, and the classification hierarchy that is 

formed is represented by a Hidden Markov Tree.

Hierarchical C4.5 (HC4.5) [33] is another example of a big bang approach, but was 

motivated by the need to classify hierarchical multi-label gene data. A similar algorithm 

which is probably one of the most successful (producing human comprehensible models) 

big bang approaches is a recent variant of the Clus algorithm -  Clus-HMC [18] [148], 

Clus-HMC is another hierarchical decision tree algorithm which was shown to 

significantly outperform HC4.5 and a basic TDDC approach [18].

HC4.5 [33] is an extension of the original C4.5 decision tree induction algorithm that 

deals with hierarchical multi-label problems. The modifications needed for the original 

C4.5 algorithm are: a way of recording the hierarchical multi-label relationships between 

classes, a way of testing membership of a given class, a new way of finding which class 

(or classes) each node should be labelled with and a modified version of the entropy 

calculation (used to decide which decision node to place at a point in the decision tree). 

The relationships between classes are recorded in a separate file (to the data set), and 

stored internally as a Boolean array. Each element in the array corresponds to a class 

label, so testing if an example belongs to a particular class, or set of classes, becomes 

trivial.

Clus and HC4.5 differ in the way each leaf node is labelled with a set of classes. 

However, the basic principle revolves around finding whether a node should become 

another test (to allow finer grained class predictions) or whether it should become a leaf 

node. In Clus, if it is decided that the node should become a leaf the decision about what 

set of classes should be assigned is determined by the distribution of class labels in the set 

of examples at that node. A distance measure is used to find an array of class labels that 

represents the example class labels well. In this way the authors consider Clus a 

predictive clustering tree; the leaf predictions are in some sense clusters.

Another recent approach that has been developed for hierarchical multi-label gene 

function prediction is described in [8 ], This approach uses a support vector machine as a
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classifier for each class node, and combines their predictions in a hierarchy-aware manner 

using Bayesian networks.

3.7.4. Measuring Hierarchical Classification Performance

As stated in section 3.1 there are many measures of performance for standard flat 

classification. Indeed the same can be said for hierarchical classification with multiple 

different proposals [19] [149]. Freitas and Carvalho [62] divide the approaches into four 

categories: uniform misclassification costs, distance-based misclassification costs, 

semantics-based misclassification costs and the hierarchical misclassification cost matrix.

With uniform misclassification costs all misclassifications are given the same weight. 

The most basic uniform approach would mean that a mistake anywhere in the 

classification process would cause the system to consider the prediction totally incorrect. 

For instance, an incorrect prediction would be if an example’s correct class was 1.1.1.1 

and its predicted class was 1.1.1.2. Obviously this is very unreasonable as three correct 

predictions have been made (at the first, second and third class levels) even if the last one 

is incorrect. The system would also consider the following a misclassification, if the 

example’s true class was 1.1.1.1 and the predicted class was 1.1 (or vice versa).

Another uniform measure can be attained by using standard classification accuracy. 

At each class level the number of correctly classified examples can be divided by the total 

number of examples. This gives a per-level breakdown of the predictive accuracy of the 

algorithm, which can be quite enlightening. However, “the waters are muddied” by a 

specific case, when for instance, an example’s correct class is 1.1 and its predicted class 

is 1.1.1.1. Using the predictive accuracy measure this prediction would be correct at the 

first level, correct at the second level and then not counted at the third and fourth. This is 

due to the fact that the accuracy measure only usually counts the number of examples per 

class level in the denominator and not the total number of predictions made. Although 

this example is technically a misclassification it is not clear how serious of an error it

would be to the user, and so how greatly it should be penalised. For the purposes of this
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thesis hierarchical classification accuracy will remain as number of correctly classified 

examples divided by the total number of examples.

With distance-based misclassification costs, the shortest path between the correct 

class node and the predicted class node is taken. For instance, if  the correct class is 

1 .1 .1.1 and the predicted class is 1.1.1.2 then the distance, or misclassification cost, is 2 

because there are 2 edges between those class nodes in the class tree. This raises an 

interesting point, which is that an example with predicted class 1.2 and correct class 1.3 

will also have the same misclassification cost 2. It seems rational to believe that the 

second misclassification is more severe than the first. In the first case there are three 

correct classifications (first, second and third class levels) whereas in the second case 

there is only one correct classification. Not only this but a misclassification at the second 

level is more severe than a misclassification at the fourth, since almost no knowledge is 

gained about the example’s true class when a misclassification is made at the second 

class level. These problems can be somewhat overcome by using weighted distances [19] 

and possibly normalisation (to ensure each example is given the same weight independent 

of the number o f classes it belongs to, in the case of multi-label classification).

Weighted distances involve the edges between higher level class nodes being assigned 

a greater weight than those at the lower class levels. Also the misclassification cost can 

be normalised for each example: the worst possible misclassification cost can be 

calculated for each example, and then the actual misclassification cost can be divided by 

this number. This performance measurement scheme is used in this thesis and a further 

discussion of the approach can be found in section 6.7.

Semantics-based misclassification costs are discussed for text mining in [149] [150], 

These costs are calculated not by any feature of the class structure, but by the similarity 

between the predicted and correct classes. The classes can be represented by two vectors 

and then a distance measure can be applied to calculate a misclassification cost. This 

approach has the disadvantage of relying on a distance measure which is subject to bias. 

Also, the user may not subjectively agree with the objective measure. This is a problem in
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a bioinformatics context as the class structure is usually the subject of a considerable 

amount of care and effort by biologists, so completely ignoring it seems inappropriate in 

many applications.

Hierarchical misclassification cost matrices involve matrices specifying which cost 

each particular misclassification should have. In each entry in the matrix -  

corresponding to a particular predicted class node and correct class node -  a 

misclassification cost value can be set by the user. So, for instance, the user could specify 

what value to assign the misclassification of an example having correct class 1.2 and 

predicted class 1.2.1.1. This has the advantage of being extremely flexible and has 

already had its usefulness for flat classification [164], However, due to the measure’s 

complexity, manually setting each cost (a task to be done by the user) could be very time 

consuming in problems with a large number of classes; also an oversight by the user 

could cause the performance measure to be very misleading. An automatic system that 

guided the user’s input could greatly speed up the process, along with ensuring that there 

are no anomalous values.

3.8. Summary

This chapter has introduced the elements relevant to this thesis from the very large 

fields of data mining and optimisation. It has provided a discussion of the different 

techniques commonly used for class-tree based hierarchical classification along with the 

methods that can be used for their evaluation. An overview of ensemble classification 

techniques has also been presented. Also, the two “swarm intelligence” optimisation 

algorithms (Particle Swarm Optimisation and Ant Colony Optimisation) that are used in 

the approaches described in this thesis have been described in terms of their application 

to data mining. These facets of data mining and optimisation are brought together to 

create the approaches proposed in the following chapters.
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Chapter 4. A Hybrid Particle Swarm 

Optimisation/Ant Colony Optimisation 

Algorithm for Rule Induction

4.1. Introduction

The focus of this chapter is on supervised learning, more specifically, the 

classification task of data mining. As discussed in Section 3.2.1 a classification rule 

consists of an antecedent (a set of attribute-values) and a consequent (class). For the 

purposes of this chapter, a term is defined by a triple <attribute, operator, value>, where 

value is a value belonging to the domain of attribute. The operator used in this chapter is 

“=” in the case of categorical/nominal attributes, or “<” and “>” in the case of continuous 

attributes. Knowledge representation in the form of rules has the advantage of being 

intuitively comprehensible to the user. This is important, because the general goal of data 

mining is to discover knowledge that is not only accurate, but also comprehensible to the 

user [59] [164],

In this chapter we propose a hybrid Particle Swarm Optimisation/Ant Colony 

Optimisation (PSO/ACO) algorithm for the discovery of classification rules (recall that 

PSO and ACO were reviewed in Sections 3.4 and 3.5, respectively). The PSO/ACO 

classification algorithm proposed in this chapter is freely available on Sourceforge: 

http://sourceforge.net/projects/psoaco2/. PSO has been explored as a mean for 

classification in previous work (as discussed in Section 3.6.2) and shown to be rather 

successful. However, previous authors have never addressed the case where PSO is used 

for data sets containing both continuous and nominal attributes (as discussed in
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Section 3.6.2). The same can be said for ACO, where no variants have been proposed that 

deal directly with continuous attributes [63],

ACO has been shown to be a powerful paradigm when used for the discovery of 

classification rules involving nominal attributes [119] and is considered the state of the 

art for many combinatorial optimisation problems [51]. Furthermore, ACO deals directly 

with nominal attributes rather than having to convert the problem first into a binary 

optimisation problem. When compared to other combinatorial optimisation algorithms 

(e.g., binary PSO) this reduces the complexity of the algorithm and frees the user from 

the issues involved in the conversion process. Note that, in the case of a nominal attribute 

containing more than two values the conversion of the nominal attribute into a binary one 

in order to use binary PSO is not trivial. For instance, consider the nominal attribute 

marital status taking on 4 values: “single, married, divorced, widow”. One could convert 

this attribute into four binary attribute-values -  each of them taking “yes” or “no” for 

each original nominal value -  but this has the drawbacks of increasing the number of 

attributes (and so the dimensionality of the search space) and requiring a special 

mechanism to guarantee that, out of the 4 new attributes, exactly one is “turned on” 

(taking the value “yes”) in each candidate classification rule. Alternatively, we could try 

to use a standard PSO for continuous attributes by converting the original nominal values 

into numbers, say “1, 2, 3, 4”, but this introduces an artificial ordering in the values, 

whereas there is no such order in the original nominal values. Actually there is good 

evidence that “native” PSO -  i.e., PSO coping with continuous attributes only -  performs 

badly in combinatorial optimisation problems (where the variables are 

categorical/nominal) as shown in the quote from Maurice Clerk’s book on PSO [36] 

pages 203-204:
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“[A version of PSO using local search] makes it possible to find a solution 

[to a travelling salesman problem] in fewer than 5,000 evaluations, which is 

definitely more acceptable than failing after a million evaluations in “native 

PSO”! But for problems of more consequence, it is better to call upon a version 

of PSO taking directly into account the combinatorial aspects in the equations 

of displacement. ”

In this quote Clerk is talking about the way in which he attempted to apply a standard 

PSO algorithm to a 17 node travelling salesman problem -  a classic combinatorial 

optimisation problem. The algorithm could not find the optimal solution even after a 

million function evaluations. When augmenting the algorithm with a form of greedy 

search the PSO algorithm for TSP is more effective, but he still calls for a specialised 

PSO for dealing with combinatorial optimisation, where particle movement equations can 

directly cope with categorical/nominal values. As mentioned earlier, this is the research 

direction followed in this chapter, with the difference being that our proposed algorithm 

addresses the classification task of data mining, rather than TSP problems.

PSO/ACO uses ideas from ACO to cope directly with nominal attributes, and uses 

ideas from PSO to cope with continuous attributes, trying to combine “the best of both 

worlds” in a single algorithm.

We have shown [79] [80] in two of our previous papers that a previous version of the 

PSO/ACO algorithm proposed in this chapter is at least competitive with binary PSO in 

terms of a search mechanism for discovering classification rules. PSO/ACO is 

competitive with binary PSO in terms of accuracy, and often beats binary PSO when rule 

set complexity is taken into account. In this chapter we propose an improved PSO/ACO 

algorithm for Rule Induction (PSO/ACO-RI) and provide a comprehensive comparison 

between it and an industrial standard classification algorithm (PART [164]) across 27 

data sets (involving both continuous and nominal attributes).

The PSO/ACO-RI algorithm is a proof-of-concept exploration of the hybrid 

PSO/ACO paradigm in the context of the classification task of data mining. Creating
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PSO/ACO-RI gave us a valuable experience in swarm intelligence for classification. This 

experience was useful in the design of other PSO/ACO variants for hierarchical 

classification problems, discussed in Chapter 5.

The remainder of the chapter is organised as follows. Section 4.2 describes in detail 

the workings of the new algorithm’s sequential covering approach, along with the part of 

the algorithm that deals with continuous attribute-values and rule pruning. Section 4.3 

describes the part of the algorithm that supports nominal/categorical attribute-values. 

Section 4.4 discusses the reasons for the new PSO/ACO-RI algorithm. In section 4.5 we 

present the experimental set-up and results. In section 4.6 we summarise the main 

findings of this chapter.

The work presented in this chapter has been reported in a journal paper [84],

4.2. The New PSO/ACO-RI Algorithm

The proposed hybrid Particle Swarm Optimization/Ant Colony Optimization Rule 

Induction (PSO/ACO-RI) algorithm is a significant extension of our original PSO/ACO 

algorithm (here denoted PSO/ACOl) proposed in [79], The PSO/ACOl algorithm was 

designed to be the first PSO-based classification algorithm to natively support nominal 

data -  i.e., to cope with nominal data directly, without converting a nominal attribute into 

a numeric or binary one and then applying a mathematical operator to the converted value, 

as is the case in [146] (recall that the motivation for natively supporting nominal data was 

discussed in Section 4.1). The PSO/ACOl algorithm achieves a native support of 

nominal data by combining ideas from Ant Colony Optimisation [50] (the successful 

Ant-Miner classification algorithm, see section 3.6.1) and Particle Swarm Optimisation 

(discussed in section 3.4) to create a classification meta-heuristic that supports innately 

both nominal (including binary as a special case) and continuous attributes.
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4.2.1. PSO/ACO-RI’s Sequential Covering Approach

Both the original PSO/ACOl algorithm and the new modified version (PSO/ACO-RI) 

use a sequential covering approach (discussed in section 3.2.1) to discover one- 

classification- rule-at-a-time. The original PSO/ACOl algorithm is described in detail 

in [79] and [80], hereafter we describe how the sequential covering approach is used in 

PSO/ACO-RI as described in Pseudocode 4.1. The sequential covering approach is used 

to discover a set of rules. While the rules themselves may conflict (in the sense that 

different rules covering a given example may predict different classes), the “default” 

conflict resolution scheme is used by PSO/ACO-RI. This is where any new (test) 

example to be classified is only considered covered by the first rule that matches it from 

the ordered rule list. E.g., the first and third rule may cover an example, but the algorithm 

will stop testing after it reaches the first rule. Although the rule set is generated on a per 

class basis, it is ordered according to rule quality before it is used to classify new 

examples in the test set (to be discussed later in this chapter).

The sequential covering approach starts by initialising the rule set (RS) with the empty 

set. Then, for each class the algorithm performs a WHILE loop, where TS is used to store 

the set of training examples the rules will be created from. Each iteration of this loop 

performs one run of the PSO/ACO-RI algorithm which firstly discovers a rule based on 

nominal attributes and then adds terms involving continuous attributes, returning the best 

discovered rule (Rule) predicting examples of the current class (Q . After this rule has 

been pruned the training examples correctly covered by that rule -  i.e., the examples 

whose attribute-values satisfy the rule antecedent and have the class predicted by the rule 

consequent -  are removed from the training set. This process is repeated as long as 

necessary to discover rules covering all training examples of the current class. The main 

steps of the PSO/ACO-RI algorithm are described in detail in the next subsections.
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RS = 0  /* initially, Rule Set is empty */
FOR EACH class C

TS = {All training examples belonging to any class}
WHILE (Number of uncovered training examples belonging to 

class C > MaxUncovExampPerClass)

Run the PSO/ACO-RI algorithm to discover the best nominal 
rule predicting class C, called Rule

Run the standard PSO algorithm to add continuous terms to 
R ule, and return the best discovered rule BestR ule  

Prune BestR ule  

RS = RS u  {B estR u le}
TS = TS - {training examples correctly covered by 
discovered rule}

END WHILE 
END FOR
Order rules in RS by descending Quality 
Prune RS removing unnecessary terms or rules

Pseudocode 4.1: Sequential Covering Approach used by the Hybrid PSO/ACO-RI 

Algorithm

4.2.2. Adding Continuous Terms to the Rule using PSO

The rule returned by the nominal/categorical PSO/ACO algorithm is not (usually) 

complete as it does not include any terms with continuous values. For this to happen, the 

best rule discovered by the PSO/ACO-RI algorithm is used as a base for the discovery of 

terms with continuous values.

For the continuous part of the rule a conventional PSO algorithm (applied only to 

numeric attributes) with constriction is used [21] (section 3.4). The vector to be optimised 

consists of two dimensions per continuous attribute, one for an upper bound (ub) and one 

for a lower bound (lb) (the way in which these are initialised will be discussed in the rest
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of this subsection). At every particle evaluation the vector is converted to a set of terms 

(rule conditions) and added to Rule produced by the PSO/ACO-RI algorithm for fitness 

evaluation. For instance, if the data set contained one nominal attribute Ano and one 

continuous attribute Aco the PSO/ACO-RI algorithm might produce a rule like: IF A„o = 

<value> THEN class C. The standard PSO algorithm would then attempt to improve this 

rule by adding terms: xUbo > Ac0 AND xibo < Ac0, which effectively corresponds to a term 

of the form: xubo > Aco > x^o, where a single particle's position would be the vectors 

xlb, xub. The rule for evaluation purposes would be:

IF  An0 = <value>  AND Xubo > Ac0 AND x lb0 ^ Ac0 THEN C l a s s  C

If the two bounds cross over (i.e., x/bo > xubo) both terms are omitted from the decoded 

rule but the Personal Best (see Section 3.4) position is still updated in those dimensions.

To improve the performance of the PSO algorithm the upper bound for each 

dimension is initialised (seeded) in the following manner. Each example in the training 

set is examined to find the lowest and highest value that each continuous attribute takes. 

From these values the range of values for each continuous attribute is found. Then each 

particle’s initial position (for the upper bound dimension) is set to a uniformly distributed 

position between the value of a randomly chosen seed example’s continuous attribute 

and that value added to the range for that attribute. For the lower bound, the same 

procedure is also conducted except that the position is initialised at a uniformly 

distributed position between an example’s value (for that attribute) and an example’s 

value minus the range for that attribute. This seeding procedure will produce some 

seeding positions outside the range of the values seen within the data set. This is an 

intended feature as for some attributes it might never be beneficial to set lower or upper 

bounds on their values.

The most likely place a particle will be seeded is around the lowest and highest values 

the seeding examples have (for lower and upper bounds respectively).
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•  A  s e e d in g  e x a m p le 's  p o s it io n

T h e  p ro b a b ility  o f  a  p a r t ic le  b e in g  s e e d e d  a t  th is  p o s it io n

Figure 4.1: The outline of the probability distribution for particle seeding at the lower

bound of an attribute value

Figure 4.1 shows the way in which the likelihood of a particle being seeded at a 

particular position changes (for the lower bound only). It shows the probability 

distribution (the grey line) for a particle’s seeding value for one lower bound of one 

attribute. The black dots show the values of this particular attribute for the five examples 

in this class. The most likely place that the particle will be seeded in this dimension 

(bound) is between the lowest attribute-value and second to lowest attribute-value (shown 

by the black dots furthest to the left) present in any example in the class.

It is equally likely that any given example will be used as a seeding example for a 

particle. For the lower bound seeding value, a particle’s seeding position is uniformly 

distributed between the seeding example’s value and the seeding example’s value minus 

the range of the values for that attribute. Overall, there is a cumulative probability 

distribution, with the most likely seeding position being around the position of the
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seeding value with the lowest value. For the lower bound, this means that no particles 

will be seeded with values greater than the value of the example with the highest value 

(as can be seen in Figure 4.1).

This type of seeding distribution will hopefully give the particles a head start at 

finding good bound values. In an ideal data set there will be non-overlapping groups (one 

group per class) of continuous values. If this is the case then lower and upper bounds set 

as (respectively) the lowest and highest values present in the examples from one class 

will exactly distinguish that class from all others. Obviously this idealised example will 

not often occur in real data sets, but nevertheless, initially looking for this type of pattern 

remains a good starting point.

While the standard PSO algorithm attempts to optimise the values for the upper and 

lower bounds of these terms, it is still possible that the nominal part of the rule may 

change. The particles in the PSO/ACO-RI algorithm are prevented from fully converging 

using the Min-Max system (discussed in the next sub-section) used by some ACO 

algorithms, so that a mechanism for exploratory search remains for the nominal part of 

the rule. This is helpful for the search, as in combination with the continuous terms, some 

nominal terms may become redundant or detrimental to the overall rule quality. The exact 

mechanism of this exploratory search is discussed in Section 4.3.

4.2.3. Pruning the Discovered Rule

After the BestRule has been generated it is then added to the rule set after being 

pruned using a pruning procedure inspired by Ant-Miner’s pruning procedure [119]. Ant- 

Miner’s pruning procedure involves finding the term which, when removed from a rule, 

gives the biggest improvement in rule quality. When this term is found (by iteratively 

removing each term tentatively, measuring the rule’s quality and then replacing the term) 

it is permanently removed from the rule. This procedure is repeated until no terms can be 

removed without loss of rule quality. Ant-Miner’s pruning procedure attempts to

maximise the quality of the rule in any class, so the consequent class of the rule may
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change during the procedure. The procedure is obviously very computationally expensive; 

a rule with n terms may require in the worst case -  - n̂+1  ̂ i e 0(n2) -  rule quality

evaluations before it is fully pruned [119]. For this reason the PSO/ACO-RI classification 

algorithm only uses the Ant-Miner pruning procedure if a rule has less than 20 terms (a 

value empirically determined in our preliminary experiments). If there are more than 20 

terms then the rule’s terms are iterated through once, removing each one if it is 

detrimental or unimportant for the rule’s quality -  i.e., if the removal of the term does not 

decrease the classification accuracy of the rule on the training set. Also, for reasons of 

simplicity the rule’s consequent class is fixed throughout the pruning procedure in 

PSO/ACO-RI. These alterations were observed (in initial experiments) to make little or 

no difference to rule quality.

After the pruning procedure the examples covered by that rule are removed from the 

training set (75). Recall that an example is said to be covered by a rule if that example 

satisfies all the terms (attribute-value pairs) in the rule antecedent (“IF part”) (discussed 

in Section 3.2.1). This WHILE loop is performed as long as the number of uncovered 

examples of the class C is greater than a user-defined threshold, the maximum number of 

uncovered examples per class (MaxUncovExampPerClass). After this threshold has been 

reached TS is reset by adding all the previously covered examples. This process means 

that the rule set generated is unordered -  it is possible to use the rules in the rule set in 

any order to classify an example without unnecessary degradation of predictive accuracy. 

Having an unordered rule set is important because after the entire rule set is created the 

rules are ordered by their quality and not the order they were created in. This is a 

common approach often used by rule induction algorithms [131] [118]. Also, after the 

rule set has been ordered it is pruned as a whole. This involves tentatively removing 

terms from each rule and verifying whether each term’s removal affects the accuracy of 

the entire rule set on the training set. If that individual term’s removal does not affect the 

accuracy then it is permanently removed. If it does affect the accuracy then it is replaced 

and the algorithm moves onto the next term, and eventually the next rule. After this
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process is complete the algorithm also removes whole rules that do not contribute to the 

classification accuracy. This is achieved by classifying the training set using the rule list 

and if any rules do not classify any examples correctly then they are removed.

4.3. The Part of the PSO/ACO-RI Algorithm Coping with 

Nominal Data in Detail

The PSO/ACO-RI algorithm initially generates the nominal part of the rule, by 

selecting a (hopefully) near optimal combination of attribute-value pairs to appear in the 

rule antecedent (the way in which rules are assessed is discussed in Section 4.3.3). The 

PSO/ACO-RI algorithm generates one rule per run and so must be run multiple times to 

generate a set of rules that cover the entire training set. The sequential covering approach, 

as described in Section 4.2.1, attempts to ensure that the set of rules cover the training set 

in an effective manner. This section describes in detail the part of the PSO/ACO-RI 

algorithm coping with nominal data, which is the part inspired mainly by ACO. The part 

of the PSO/ACO-RI algorithm coping with continuous data is essentially a variation of 

standard PSO where each continuous attribute is represented by two dimensions, 

referring to the lower and upper bound values for that attribute in the rule to be decoded 

from the particle, as explained in Section 4.2.1.

To understand -  in an intuitive and informal way -  why the PSO/ACO-RI algorithm 

is an effective rule discovery meta-heuristic, it may be useful to first consider how one 

might create a very simple algorithm for the discovery of classification rules. An 

effective rule should cover as many examples as possible in the class given in the 

consequent of the rule, and as few examples as possible in the other classes in the data set. 

Given this fact a good rule should have the same attribute-value pairs (terms) as many of 

the examples in the consequent class. A simple way to produce such a rule would be to 

use the intersection of the terms in all examples in the consequent class as the rule 

antecedent. This simple procedure can be replicated by an agent based system, as follows.
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Each agent has the terms from one example from the consequent class (it is seeded with 

these terms), each agent could then take the intersection of its terms with its neighbours 

and then keep this new set. If this process is iterated, eventually all agents will have the 

intersection of the terms from all examples in the consequent class.

This simple procedure may work well for very simple data sets, but we must consider 

that it is highly likely that such a procedure would produce a rule with an empty 

antecedent (as no single term may occur in every example in the consequent class). Also, 

just because certain terms frequently occur in the consequent class does not mean that 

they will also not frequently occur in other classes, meaning that our rule will possibly 

cover many examples in other classes.

PSO/ACO-RI was designed to “intelligently” deal with the aforementioned problems 

with the simple agent based algorithm by taking ideas from PSO and ACO. From PSO: 

having a particle network, the idea of a best neighbour and best previous position. From 

ACO: probabilistic term generation guided by the performance of good rules produced in 

the past, and directly coping with nominal attribute-values without converting them into 

binary or integer values. PSO/ACO-RI still follows the basic principle of the simple agent 

based system, but each particle takes the intersection of its best neighbour’s and previous 

personal best position’s terms in a selective (according to fitness) and probabilistic way.

Each particle in the PSO/ACO-RI population is a collection of n pheromone matrices 

(each matrix encodes a set of probabilities) where n is the number of nominal attributes in 

a data set. Each particle can be decoded probabilistically into a rule with a predefined 

consequent class. Each of the n matrices has two entries, one entry represents an o ff state 

and one entry represents an on state. If the o ff state is (probabilistically) selected the 

corresponding (seeding) attribute-value pair will not be included in the decoded rule. If 

the on state is selected when the rule is decoded the corresponding (seeding) attribute- 

value pair will be added to the decoded rule. Which value is included in this attribute- 

value pair (term) is dependant on the seeding values.
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The seeding values are set when the population of particles is initialised. Initially, 

each particle has its past best state set to the terms from a randomly chosen example from 

class C -  the same class as the predefined consequent class for the decoded rule. From 

now on the particle is only able to decode to a rule with attribute-values equal to the 

seeding terms, or to a rule without some or all those terms. This may seem at first glance 

counter-intuitive as flexibility is lost -  each particle cannot be translated into any possible 

rule, the reasons for this will be discussed later.

Each pheromone matrix entry is a number representing a probability and all the 

entries in each matrix for each attribute add up to 1. Each entry in each pheromone matrix 

is associated with a minimum, positive, non-zero pheromone value. This prevents a 

pheromone from dropping to zero, helping to increase the diversity of the population 

(reducing the risk of premature convergence).

For instance, a particle may have the following three pheromone matrices for 

attributes Colour, H asJiir  and Swims. It was seeded with an example: Colour=Blue, 

Has_fur=False, Swims=True, Class=Fish:

Colour Has fur Swims
(on)

Colour=Blue Off (on)
Has fur=False off (on)

Swims=True off
0.01 0.99 0.8 0.2 0.9 0.1

The probability of choosing the term involving the attribute colour to be included in 

the rule is low, as the o ff flag has a high probability in the first pheromone matrix (0.99). 

It is likely that the term Has_fur=False will be included in the decoded rule as it has a 

high probability (0.8) in the second pheromone matrix. It is also likely that the term 

Swims=True will be included in the decoded rule.

The most likely rule decoded from this set of pheromone matrices is:

IF Has_fur=False AND Swims=True THEN Class=Fish
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4.3.1. Pseudocode

Initialize population 
REPEAT for M a x ln te ra tio n s  

FOR every particle x
/ *  Rule C re a tio n  * /
C = The current class being predicted 
Set Rule Rx = "IF 0 THEN C"
FOR every dimension d in x

Use roulette wheel selection to choose whether the 
state should be set to o f f or on. If it is on then 
the corresponding attribute-value pair set in the 
initialisation will be added to Rx; otherwise (i.e., 
if o f f  is selected) nothing will be added.

END FOR
Calculate Quality Qx of Rx 
/* Set the past best position */
P -  x 's  past best state 
QP = P 's quality 
IF Qx > QP

Q p  —  Q x  
P = x  

END IF 
END FOR
FOR every particle x

P = x 's  past best state
N = the best state ever held by a neighbour of x  
according to N’ s quality QN 
FOR every dimension d in x

/* Pheromone updating ' p rocedu re  * /
IF Pd = Nd THEN

pherom one_entry corresponding to the value of Nd 
in the current xd is increased by Qp 

ELSE IF Pd = o f f  AND seeding term for xd # Nd THEN 
pherom one_entry for the o f f  state in xd is 
increased by Qp

ELSE
pherom one_entry corresponding to value of Nd in 
the current xd is decreased by Qp 

END IF
Normalize pherom one_entries  

END FOR 
END FOR 

END REPEAT
RETURN best rule discovered

Pseudocode 4.2: The Part of the PSO/ACO-RI Algorithm Coping with Nominal Data
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Pseudocode 4.2 shows the new PSO/ACO-RI algorithm proposed in this chapter and 

utilised in Pseudocode 4.1 (sequential covering approach).

Firstly the population of particles is initialised. Each particle is seeded with terms 

from a randomly selected example, as described earlier. Initially, in each dimension the 

pheromone for the on state is set to 0.9 and the pheromone for the o ff state is set to 0.1. 

The first loop (REPEAT statement) iterates the whole population for Maxlterations. Then 

for each particle x  a rule is built probabilistically from its pheromone matrices. For each 

dimension d in x, roulette-wheel selection -  a well-known selection method in 

evolutionary algorithms [54] -  is used to decide if the on or o ff state should be selected. 

Roulette wheel (fitness proportional) selection simply means that the probability of an 

attribute-value being picked is proportional to the corresponding value in each entry in 

the pheromone matrix. It would also be possible to use most other selection 

mechanisms [54] but as PSO/ACO-RI is inspired by the Ant-Miner algorithm it uses its 

selection mechanism. Investigation into the effects of using different selection 

mechanisms is a topic for future research.

In PSO/ACO-RI roulette selection simply involves the following rule:

IF rand() > pheromone in entry for on state THEN 
Select on state

ELSE
Select o f f state

End IF

Where rand() returns a number from the interval [0..1] with a uniform probability 

distribution. If the on state is selected then the corresponding term is added to the 

antecedent of Rx. This is an attribute-value pair where the attribute corresponds to the 

dimension d  and the value corresponds to the initial seeding value. After this process has 

been repeated for every dimension, the quality Qx of the rule is calculated. If the new Qx 

is greater than the previous best Qp, then the particle's state is saved as P.
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After the rule creation phase the pheromone is updated for every particle. Each 

particle finds its best neighbour’s best state (N) according to Qn (the quality of the best 

rule N  has ever produced). The particles are in a static topology, so each particle has a 

fixed set of neighbour particles throughout the entire run of the algorithm. PSO/ACO-RI 

uses Von-Neumann [96] topology (Figure 3.7), where the particles are arranged in a 2D 

grid, each particle having four neighbours. This topology was chosen as it consistently 

performed the best in initial experiments. This is likely due to the level of connectivity 

present in this particular topology, i.e., enough connectivity but not too much (global 

topology was shown to be suboptimal due to premature convergence to a local optimum 

in the search space).

4.3.2. Pheromone Updating Procedure

The pheromone updating procedure is influenced by two factors, the best state a 

particle x  has ever held (the state P), and the best state ever held by a neighbour particle N. 

As discussed previously each dimension can take two values and so it has two 

corresponding pheromone entries, one for the on state and one for the o ff state. These 

states are examined in every dimension d and the following rules are applied. If Pd is the 

same as N j then an amount of pheromone equal to Qp (the quality of P) is added to the 

pheromone entry in Xd corresponding to the value of Pd. In other words, if a particle and 

its neighbour have both found that a particular attribute-value is good then pheromone is 

added to the entry corresponding to it. If Pd and Nd disagree about that attribute-value 

then pheromone is removed from the corresponding entry. This is directly related to the 

principles of the simple algorithm discussed in Section 4.3, where the aim of the 

algorithm is to get the particles to agree on a single solution -  by making it less likely for 

neighbouring particles to pick disagreeing attribute-values.

There is a caveat in this pheromone updating procedure given by the “ELSE IF” 

statement in Pseudocode 4.2. It states that if Pd is o ff and the current particle and its best

neighbour do not have the same seeding terms, then increase the likelihood of choosing
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the o ff state (by adding pheromone to the pheromone entry corresponding to the o ff value). 

The reason for this is to maintain the idea from the simple agent based system described 

earlier in this section. That is, when two particles have different seeding terms then those 

terms should tend to be omitted. Without this caveat the opposite would happen, the 

probability of the term being omitted would become less, as pheromone would otherwise 

be removed from Pd (off) if Pd and Nd do not agree. A more detailed examination of the 

effect of the pheromone updating rules can be seen in Table 4.1, with this caveat being 

shown in the second row from the bottom.

The third pheromone updating rule (the ELSE statement) states that if Pd is not the 

same as Nd (and Pd is not off) then an amount of pheromone equal to Qp is removed from 

the pheromone entry in x<* corresponding to the value of Pd-

If after this process is completed any pheromone entry is less than a predefined 

minimum amount then it is set to that amount (0.01). It is possible that adjusting this 

value might improve performance under the specific conditions of the given application -  

this is a topic left for future research, but careful experimentation would undoubtedly be a 

good starting point. Importantly, the minimum pheromone value allows the pheromone 

entry that is not the best state to increase due to the normalisation procedure. This 

increase will occur if pheromone is removed from a state. If this happens the amount of 

pheromone in the matrix becomes less than 1 and, as long as both entries have a greater 

than zero amount of pheromone, when the matrix is normalised both entries will increase. 

It also aids search in a conceptually similar way to mutation in GAs and the Min-Max 

system in the ACO literature [51],

In Table 4.1 the six possible scenarios for pheromone updating in the current particle 

x are described given the differing states of Pd, Nd and also the seeding term for xd. The 

two highlighted rows show the only cases where pheromone is increased for selecting the 

on seeding value. These outcomes are controlled by the pheromone updating rules shown 

in Pseudocode 4.2 (discussed previously).
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The first and last cases shown in the table are quite intuitive, if both Pd and Nd agree 

on a state that state is made more likely in the current particle. This allows the algorithm 

to converge on a good solution that the particles Pd and Nd agree on.

Cases of the second type are shown in the second and fifth rows, where Pd and Nd 

have different seeding terms. In these cases the current particle x makes it more likely 

that the conflicting term will be omitted from the decoded rule, by increasing the 

pheromone of the o ff state. This feature allows the particle to create rules that generalise 

well, covering more examples from the consequent class (discussed further in 

Section 4.4).

Seeding Term for xd P„ Nd Outcome for entries in xd
<value>=w (on)

<value>=w
(on)
<value>=w

on pheromone increased 
o f f  pheromone decreased

<value>=w (on)
< va lu e> -w

(on)
<value>pw

o f f  pheromone increased 
on pheromone decreased

<value>=w (on)
<value>=w

o f f o f f  pheromone increased 
on pheromone decreased

<value>=w o f f (on)
< va lu e> -w

on pheromone increased 
o f f  pheromone decreased

<value>=w Off (on)
<value>pw

o f f  pheromone increased 
on pheromone decreased

<value>=w Off o f f o f f  pheromone increased 
on pheromone decreased

Table 4.1: PSO/ACO-RI Pheromone Updating Scenarios

Cases of the third type -  which involve a disagreement between Pd and Nd about 

whether or not the seeded term should be used in the rule decoded from the current 

particle -  are shown in the third and fourth rows. These cases bias the search towards Nd 

so that each particle tries to emulate its best neighbour. In the third row; if Nd = o ff (and 

Nd and xd have the same seeding terms) then the probability of xd decoding to o ff will be
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increased (by increasing the pheromone associated with the o ff state). In the fourth row; if 

Nd= w (and Nd and xj have the same seeding terms) the probability of Xd decoding to on 

will be increased. The cases of the third type allow the particles to come to a consensus 

about the best set of states. By trying to emulate its best neighbour each particle has the 

potential to create (in future iterations) a new past best state (P) based on a mix of its own 

current P  and N.

4.3.3. Measuring Rule Quality

It is necessary to estimate the quality of every candidate rule (decoded particle). A 

measure must be used in the training phase in an attempt to estimate how well a rule will 

perform in the testing phase. Given such a measure it becomes possible for an algorithm 

to optimise a rule's quality (the fitness function). In our previous work [79] the Quality 

measure used was Sensitivity x Specificity (Equation 4.1) [74],

Sensitivity x Specificity = (TP / (TP + FN)) x (TN / (TN + FP)) 

Equation 4.1: Quality Measure used by PSO/ACO 1 [79]

Where TP, FN, FP and TN are, respectively, the number of true positives, false 

negatives, false positives and true negatives associated with the rule [164]:

• True Positives (TP) are the number of examples that match the rule antecedent 

(attribute-values) and also match the rule consequent (class). These are desirable 

correct predictions.

• False Positives (FP) are the number of examples that match the rule antecedent 

but do not match the rule consequent. These are undesirable incorrect predictions.

• False Negatives (FN) are the number of examples that do not match the rule 

antecedent but do match the rule consequent. These are undesirable uncovered 

cases and are caused by an overly specific rule.
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• True Negatives (TN) are the number of examples that do not match the rule 

antecedent and do not match the rule consequent. These are desirable and are 

caused by a rule’s antecedent being specific to its consequent class.

In the new PSO/ACO-RI classification algorithm proposed in this chapter the quality 

measure is Precision with Laplace correction [34] [164], as per Equation 4.2. In initial 

experiments this quality measure was observed to lead to the creation of rules that were 

more accurate (when compared to the original quality measure shown in Equation 4.1).

Laplace-Corrected Precision = (1 + TP) / (1 + TP + FP) 

Equation 4.2: New Quality Measure used by PSO/ACO-RI

We observed that in some cases (when using Equation 4.2 as a quality measure) rules 

would be generated covering very few examples. These cases were likely due to the way 

in which the Laplace-Corrected Precision measure penalises False Positives very 

severely (when compared to Sensitivity x Specificity). To stop this less than ideal 

situation we added the following conditional statement to the new quality measure:

IF TP < MinTP
Rule Quality = Laplace-Corrected Precision * 0.01

ELSE
Rule Quality = Laplace-Corrected Precision 

END IF

Where MinTP is the least number of correctly covered examples that a rule has to 

cover before it is given a “normal” value, as computed by Equation 4.2. When a rule 

covers too few examples the quality is severely reduced (by a factor of 100). This 

procedure reduces the quality below the quality of any normal rule but still allows the

particles covering fewer than MinTP examples to compare their solutions effectively. In
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the experiments reported in this chapter we set MinTP to 10, optimisation of this 

parameter is left for future research.

4.4. Motivations for PSO/ACO-RI and Discussion

PSO/ACO-RI improves upon our original preliminary PSO/ACO 1 algorithm for 

classification. However, both algorithms are based on the same principle. They are both 

PSO based algorithms that have pheromone matrices instead of a single velocity value in 

each dimension of search space.

The modified algorithm (PSO/ACO-RI) discussed in this chapter differs from our 

original algorithm (PSO/ACO 1) proposed in [79] [80] in five important ways.

• Firstly PSO/ACO 1 attempted to optimise both the continuous and nominal attribute- 

values present in a rule antecedent at the same time, whereas PSO/ACO-RI takes the 

best nominal rule built by nominal PSO/ACO algorithm and then attempts to add 

continuous attributes to it using a conventional PSO algorithm.

• Secondly the original algorithm used a type of rule pruning to create seeding terms 

for each particle, whilst PSO/ACO-RI uses all the terms from an entire training 

example (record).

• Thirdly in PSO/ACO 1 it was possible for a particle to select a value for an attribute 

that was not present in its seeding terms, whilst in PSO/ACO-RI only the seeding 

term values may be added to the decoded rule.

• Fourthly the pheromone updating rules have been simplified to concentrate on the 

optimisation properties of the original algorithm. In PSO/ACO 1 pheromone was 

added to each entry that corresponded to the particle's past best state, its best 

neighbour's best state, and the particle's current state in proportion to a random 

learning factor. Now pheromone is only added to a pheromone matrix entry in the 

current particle x when /V^and Pd match, or taken away when they do not.
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• Fifthly, the algorithm now prunes the entire rule set after creation, not simply on a 

per rule basis.

In PSO/ACO-RI the conventional PSO for continuous data and the hybrid PSO/ACO- 

RI algorithm for nominal data have been separated partially because they differ quite 

largely in the time taken to reach peak fitness. It usually takes about 30 iterations 

(depending on the complexity of the data set) for the pheromone matrices to reach a 

stable state in PSO/ACO-RI, whilst it tends to take considerably longer for the standard 

PSO algorithm to converge. Due to this fact the standard PSO algorithm's particles set 

past best positions in quite dissimilar positions, as their fitness is dependant on the 

quickly converging part of the PSO/ACO-RI algorithm coping with nominal data. This 

causes high velocities and suboptimal search, with a higher likelihood of missing a 

position of high fitness. Therefore, separating the rule discovery process into two stages -  

one stage for the part of the PSO/ACO-RI algorithm coping with nominal data and one 

stage for the part of the PSO/ACO-RI algorithm coping with continuous data (essentially 

a variation of a standard PSO) -  provides a better control of the search and more 

consistent results.

Secondly, in the PSO/ACO 1 algorithm, sets of seeding terms were pruned before they 

were used. This aggressive pruning algorithm used a heuristic to discard certain terms. 

This is less than ideal as the heuristic does not take into account attribute interaction, and 

so potentially useful terms are not investigated.

To understand the reasons behind the last two modifications it is important to 

understand how the algorithms find good rules. In both PSO/ACO 1 and PSO/ACO-RI 

sets of terms are generated by mixing together the experiences of the particles and their 

neighbours. As the entries in the pheromone matrices converge and reach one (or zero), 

better rules should be generated more often. In PSO/ACOl the levels of the pheromone in 

the matrices are influenced by three factors (current state, past best state and best 

neighbours' best state). If these factors do not agree then the pheromone matrix will be
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slow to converge. Slow convergence can sometimes be advantageous as the algorithm 

should not prematurely converge to a local maximum. However, in PSO/ACOl the result 

of this slow convergence is usually destructive, as incompatible terms can be mixed 

together over and over again. Incompatible terms are terms that do not cover any of the 

same examples. For instance, in Table 4.2, incompatible terms are An\ = a and A„2 = b. A 

rule including both these terms would have a quality of zero as it would not cover any 

examples. This problem is addressed by the third modification in PSO/ACO-RI, now 

incompatible terms will not be mixed. This modification also ensures a particle will 

always cover at least one example (the seeding example) even if all the terms are 

included in the decoded rule. This was not the case in PSO/ACOl as at the beginning of 

the search many incompatible terms could be mixed, creating many particles with zero 

fitness.

A n 1 A„i A n3

Ri a a a

R i a a b

r 3 a a b

R4 b b b

Rs b b b

r 6 b b b

Table 4.2: An Example Single Class Data Set, R's are Records, An's are Nominal

Attributes

In PSO/ACO-RI the pattern being investigated by the particles will likely include 

relatively general terms -  an example might be a rule including the term An3 -  b in 

Table 4.2. It is the job of the PSO/ACO-RI algorithm to find terms that interact well to 

create a rule that is not only general to the class being predicted (covering many examples 

of that class) but also specific to the class (by not covering examples in other classes). It 

is also the job of the PSO/ACO-RI algorithm to turn off terms that limit the generality of
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the rule without adding specificity to it. This trade-off between specificity and generality 

(or sensitivity) is calculated by the rule quality measure. It is clear, in Table 4.2, that 

including values for An\ and An2 will not ever lead to the most general rule (the optimal 

rule only has one term, A„3 = b). Due to the new pheromone updating procedures a 

particle would choose the off state for these conflicting attributes quickly.

4.5. Computational Results

For the experiments we used 27 data sets from the well-known UCI dataset 

repository [111]. We performed 10 fold cross validation [164], and ran the PSO/ACO-RI 

algorithm 10 times for each fold -  with a different random seed for each run -  as it is a 

stochastic algorithm.

Both the part of the PSO/ACO-RI algorithm coping with nominal data and the 

standard PSO algorithm (i.e. the part of PSO/ACO-RI coping with continuous data) had 

1 0 0  particles, and these two algorithms ran for a maximum of 1 0 0  iterations 

(Maxlterations) per rule discovered. In all experiments constriction factor % = 0.72984 

and social and personal learning coefficients cl = c2 = 2.05, as is standard in the 

literature [2 1 ].

MaxUncovExampPerClass was set to 10 as this is also standard in the literature [119]. 

As mentioned previously PSO/ACO-RI uses Von-Neumann topology, where each 

particle has four neighbours, with the population being connected together in a 2D grid. 

The corrected WEKA [ 164] statistics class was used to compute the standard deviation of 

the predictive accuracies and to apply the corresponding corrected two-tailed Student’s T- 

Test -  with a significance level of 5% -  in the results presented in Table 4.3 and 

Table 4.4.

The algorithms compared in Table 4.3 are PSO/ACO-RI and PART. PART is 

WEKA’s implementation of a variation of the well-known C4.5Rules rule induction 

algorithm [164], PART extracts rules from decision trees created by J48 (WEKA’s
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implementation of C4.5). We compared PSO/ACO-RI against PART as the latter is a 

very well regarded and commonly used classification algorithm.

D ata Set
P redictive A ccuracy (% ) A verage R ule Size A verage R ule Set Length
P SO /A C O -
RI PA R T P SO /A C O -

RI PA R T
P SO /A C O -
RI P A R T

A utos 76 .63± 8 .36 7 9 .8 3 i l l .4 3 2 .8 i0 .1 7 2 .5 4 i0 .2 4 1 6 .0 il .2 5 1 4 .2 i2 .7 4

ba lance-scale 82 .72± 4 .77 7 9 .3 8 i7 .8 1 2 .5 6 i0 .1 7 3 .1 3 Ì0 .1 6 2 6 .6 Ü .0 7 3 8 .9 i3 .2 5

b reast-cancer 72 .62± 6 .84 6 9 .7 i7 .8 1 .7 3 i0 .2 6 1 .9 Ü 0 .1 8 1 2 .4 i2 .2 7 1 7 .3 i4 .7 2

breast-w 93 .42± 3 .79 9 3 .7 i4 .0 5 1.17±0.09 1 .0 Ü 0 .0 3 9 .9 Ü .6 1 0 .4 i3 .0 3

cred it-a 8 5 .3 1 i4 .1 4 8 4 .2 3 i3 .3 5 2 .9 4 i0 .3 1 2 .4 6 i0 .3 4 2 2 .7 i2 .0 3 0 .8 i9 .6 6

cred it-g 67 .9± 5 .82 6 9 .7 i4 .4 4 .2 3 i0 .1 9 3 .0 Ü 0 .2 5 5 4 .3 i l .8 9 7 7 .0 i4 .5 7

C rx 8 5 .6 i2 .8 4 8 4 .5 4 i2 .8 2 .9 4 i0 .2 8 2 .4 4 i0 .3 1 2 2 .5 i3 .1 2 9 .9 i8 .6 7

diabetes 7 2 .6 7 i4 .9 8 7 4 .3 6 i4 .5 1 3 .8 8 i0 .2 9 1 .8 8 i0 .2 3 3 3 .4 i l .4 3 7 .1 Ü .5 2

G lass 7 0 .9 5 i7 .5 6 5 .4 3 i l l .4 5 3 .1 Ü 0 .1 8 2 .7 i0 .2 8 2 0 .4 i l .3 5 1 6 .1 Ü .6

H eart-c 7 7 .3 8 i5 .4 5 7 8 .7 2 i5 .9 2 3 .3 3 i0 .1 9 2 .4 2 i0 .2 1 1 2 .6 i0 .8 4 1 9 .9 i2 .4 2

H eart-sta tlog 8 1 . l l i 6 .1 6 7 8 .1 5 i6 .6 4 3 .1 7 i0 .4 4 2 .8 8 i0 .3 4 9.7A 1.34 1 8 .4 Ü .9

ionosphere 8 8 .0 6 i4 .9 1 9 0 .0 4 i4 .6 8 3 .3 3 i0 .7 9 2 .3 5 i0 .4 3 3 .6 i0 .9 7 8 .9 Ü .9 1

Iris 9 4 .6 7 i5 .2 6 9 0 .6 7 i7 .1 7 0 .9 3 i0 .1 4 1 .0 2 i0 .0 5 3 ,0 i0 .0 4 .3 Ü .4 2

iris_d 9 4 .6 7 i6 .1 3 9 4 .0 i5 .8 4 0 .6 8 i0 .0 4 0 .7 6 i0 .0 6 3 .2 i0 .4 2 4 .4 i0 .9 7

lym ph 8 3 .0 5 i6 .6 7 8 3 .1 9 i9 .4 7 1 .8 9 i0 .1 5 2 .2 6 i0 .4 2 1 4 .7 i2 .0 1 0 .0 il .2 5

m ushroom 9 9 .9 i0 . l l lOO.OiO.O 1.86±0,18 1 .5 5 i0 .0 2 8 .7 i0 .4 8 1 2 .8 i0 .4 2

prom oters 8 1 .0 Ü 2 .1 2 8 3 .9 Ü 7 .9 1 1 .0 2 i0 .0 5 1 .0 2 i0 .1 4 5 .Ü 0 .3 2 6 .9 Ü .2

segm ent 9 6 .6 7 i l .1 7 9 6 .6 7 i0 .8 4 2 .8 i0 .2 7 3 .0 7 i0 .1 7 2 1 .9 i0 .9 9 2 6 .3 Ü .7

Sonar 7 5 .0 5 i9 . l l 7 2 .5 2 il0 .5 7 2 .6 i0 .6 3 2 .2 3 i0 .4 9 4 .4 Ü .5 8 7 .4 Ü .1 7

soybean 8 7 .0 1 i6 .5 3 9 0 .5 7 i3 .9 6 2 .0 8 i0 .2 1 2 .6 6 i0 .1 6 2 4 .2 i l .0 3 3 2 .l i3 .2 1

tic-tac -toe lOO.OiO.O 9 3 .8 5 i2 .7 2 .6 7 i0 .0 2 .6 5 i0 .1 1 9-OiO.O 3 8 .3 i3 .0 6

veh ic le 7 3 .0 5 i4 .4 5 7 3 .2 9 i2 .7 7 3 .8 5 i0 .1 8 3 .8 4 i0 .3 8 3 7 .8 Ü .2 3 4 .0 i3 .0 2

vow el 8 6 .1 6 i3 .4 7 8 5 .0 5 i5 .7 9 4 .2 i0 .2 5 3 .5 5 i0 .2 1 2 9 .0 i0 .8 2 5 0 .5 i3 .5 7

W isconsin 9 4 .8 7 i2 .5 3 9 4 .4 3 i2 .0 6 1 .2 Ü 0 .0 7 1 .0 2 i0 .0 3 1 0 .2 i l .8 7 9 .9 i3 .1 1

kr-vs-kp 9 9 .4 7 i0 .5 1 9 9 .3 7 i0 .2 9 2 .25 iO . 15 3 .0 3 i0 .3 5 18 .7±2.0 2 2 .7 i l .3 4
Z oo 9 7 .1 8 i6 .2 5 9 4 .1 8 i6 .6 1 .1 4 i0 .1 8 1 .4 8 i0 .12 7 .Ü 0 .3 2 7 .6 i0 .5 2

sp lice 9 3 .4 8 i l .2 4 9 2 .7 9 il .6 5 3 .0 i0 .0 7 2 .6 5 i0 .1 8 8 .0 i2 .9 1 9 9 .6 i6 .1

Table 4.3: Predictive Accuracy and Rule Set size of PSO/ACO-RI and PART in UCI

Data Sets, with Standard Deviation and Student T-Test Shadings

The first two columns (not including the data set column) in Table 4.3 show the 

percentage predictive accuracy of both algorithms -  i.e., their average predictive accuracy
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over the 10 test sets associated with the cross-validation procedure. The second two 

columns show the average rule size (number of terms, or attribute-value pairs) for the 

rules generated for each data set. The third two columns show the average rule set size for 

each data set; this is simply the average number of rules in each rule set. The measures of 

average rule size and average rule set size give an indication of the complexity (and so 

indirectly comprehensibility) of the rule sets produced by each algorithm. The shading in 

these six columns denotes a statistically significant win or a loss (according to the 

corrected WEKA two tailed Student's T-Test), light grey for a win and dark grey for a 

loss against the baseline algorithm (PART). Table 4.4 shows the overall score of the 

PSO/ACO-RI classification algorithm against PART, considering that a significant win 

counts as “+ 1” and a significant loss counts as a “-1”, and then calculating the overall 

score across the 27 data sets.

Predictive Accuracy 
T-Test Results

Average Rule Size 
T-Test Results

Average Rule Length 
T-Test Results

Total -6 14

Table 4.4: Summation of the number of statistically significant results of PSO/ACO-RI 

against PART according to the Student T-Test (out of 27 Data Sets).

It can be seen from Table 4.3 and Table 4.4 that in terms of accuracy PART and 

PSO/ACO-RI are quite closely matched. This is overall a good result as PART is already 

considered to be very good in terms of predictive accuracy and it is the result of decades 

worth of research into rule induction algorithms. Furthermore, there is only one result that 

is significant in terms of accuracy: the accuracy result for the tic-tac-toe data set. 

However, if one scans through the accuracy results it is clear that often one algorithm 

outperforms the other slightly. In terms of rule set complexity the algorithms are much 

less closely matched. When the average rule size results are taken as a whole PSO/ACO- 

RI generates significantly longer rules in 6 cases overall. Although the average rule size 

results are significant, the real impact of having a rule that is under one term longer is
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arguable (as is found in many cases). The most significant results by far are to be found 

in the rule set size columns. PSO/ACO produces significantly smaller rule sets for 14 data 

sets overall, sometimes having tens of rules less than PART. These improvements have a 

tangible effect on the simplicity of the rule set as a whole.

4.6. Summary

In this chapter we have proposed a new PSO/ACO (Particle Swarm Optimisation/Ant 

Colony Optimisation) algorithm for rule induction. We have conducted experiments on 

27 public domain “benchmark” data sets used in the classification literature. We have 

also shown that PSO/ACO-RI is at least competitive with PART (an industry standard 

classification algorithm) in terms of accuracy, and that PSO/ACO-RI often generates 

much simpler (smaller) rule sets. This is a desirable result in data mining -  where the goal 

is to discover knowledge that is not only accurate but also comprehensible to the user.

The proof-of-concept PSO/ACO-RI algorithm has provided promising results. We 

explore the PSO/ACO paradigm further in the next chapter, where we propose new 

PSO/ACO algorithms for hierarchical classification problems involving combinatorial 

optimisation.
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Chapter 5. Particle Swarm Optimisation/Ant 
Colony Optimisation for Classifier 
Selection and Misclassification Recovery in 

Hierarchical Classification

5.1. Introduction

In this chapter we propose and evaluate two new methods to increase the accuracy of 

classification when using the top-down divide and conquer (TDDC) approach for 

hierarchical classification (as described in Chapter 3). The methods examined in this 

chapter are applied to datasets involving the hierarchical prediction of GPCR function 

(discussed in Chapter 2).

The new methods employ a swarm intelligence algorithm, more precisely a hybrid 

Particle Swarm Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm derived 

from the PSO/ACO-RI classification algorithm described in Chapter 4. The first method 

involves using the PSO/ACO algorithm for classifier selection (denoted as PSO/ACO-CS) 

(Section 3.7.2.1). The second method involves recovering misclassifications made by 

parent classifier nodes in the TDDC tree. PSO/ACO is also used to improve the 

performance of this “recovery approach”. The variant of PSO/ACO used to improve the 

performance of the recovery approach is denoted as PSO/ACO-RO in this thesis -  where 

the “RO” stands for recovery optimiser. The two proposed methods are also combined to 

improve TDDC classification accuracy further.

The remainder of this chapter is organised as follows. Section 5.2 introduces the

PSO/ACO-CS algorithm. Section 5.3 describes the recovery approach and how
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PSO/ACO-RO is used to improve it. Section 5.4 introduces the hierarchical protein 

function datasets, the way in which they are partitioned for the experiments, and the base 

algorithms used in this investigation. Section 5.5 examines the results from the 

experiments involving PSO/ACO-CS. Section 5.6 examines the results from the 

experiments involving the recovery approach and the PSO/ACO-RO algorithm. 

Section 5.7 provides an overview of the findings from this chapter.

Part of the work reported in this chapter appeared in a conference paper [83] (which 

won best paper award).

5.2. Global Search-Based Classifier Selection with a Particle 

Swarm Optimlsation/Ant Colony Optimisation Algorithm

Given the discussion in Section 3.7.2.1 it is quite clear that there is a potential to 

improve the classification accuracy of the entire classifier tree by using a more 

“intelligent” classifier selector -  a classifier selector that (unlike the greedy one) takes 

into account interaction among classifiers at different classifier nodes. As there is an 

obvious objective function to be optimised -  the classification accuracy of the entire 

TDDC tree on the validation set (part of the training set) -  and also a collection of 

elements whose optimal combination has to be found -  the type of classifier at each 

classifier node, it seems appropriate to use a combinatorial optimisation algorithm.

We propose to optimise the selection of a classifier at each classifier node with a 

PSO/ACO method, adapted from the PSO/ACO method described in Chapter 4. The 

choice of this algorithm was motivated by the following factors. Firstly PSO/ACO has 

been shown to be an effective classification-rule discovery method [79] [80] [81] across a 

wide variety of data sets involving mainly nominal attributes. Secondly, the PSO/ACO 

method can be naturally adapted to be used as a classifier selector, where instead of 

finding a good combination of attribute-values for a rule, it finds good combinations of 

classifiers for all the nodes of the classifier tree. This is possible because the combination
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of classifiers can be specified by a set of nominal values (types of classification 

algorithms).

To recap, the PSO/ACO method works with a population of particles. Each particle 

contains multiple pheromone vectors and each pheromone vector is used to 

probabilistically decide which value of a nominal attribute is best in each dimension of 

the problem’s search space. In the original PSO/ACO method for discovering 

classification rules these dimensions correspond to predictor attributes of the data being 

mined, so there is one pheromone vector for each nominal attribute. The entries in each 

individual pheromone vector correspond to possible values the attribute can take, and 

each pheromone value denotes the “desirability” of including the corresponding attribute 

value in a rule condition. We now describe in detail how this algorithm was adapted to 

act as a classifier selector, rather than discovering classification rules.

To optimise the classifier selection at each classifier node the problem must be 

reduced to a set of dimensions and possible values in each dimension. Hence, in the 

proposed PSO/ACO-CS approach each decoded particle (candidate solution) consists of a 

vector with n components (dimensions), as follows:

Decoded P a r t i c le  = w1,w2,..., wn

Where wd (d -l,..,n ) is the classifier selected at the dih classifier node in the TDDC 

tree and n is the number of classifier nodes in the tree. Each wd can take one of the 

nominal (classifier ids) values ci,..Ck where k is the number of different candidate 

classifiers at each node of the TDDC tree.

It must also be possible to assess how good an individual solution created from an 

individual particle is. To do this the validation set is classified by the TDDC tree 

composed of the classifiers specified by the particle, and that tree's average classification 

accuracy (the mean of the accuracy from each class level) on the validation set is taken.
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The mean classification accuracy across all the class levels is used as the “fitness” 

(evaluation) function for evaluating each particle’s quality.

Note that the only increase in computational time for this approach (over the greedy 

selective approach) is in the time spent classifying examples at each fitness evaluation. 

The classifiers are trained using the same data at each fitness evaluation and so can be 

cached and reused without the need for retraining.

Pseudocode 5.1 shows the PSO/ACO-CS algorithm. At each iteration each 

pheromone vector for each particle produces a state in a probabilistic manner. That is, the 

probability of choosing a given classifier (C],..Ck) for a given classifier node (w;,..w„) is 

proportional to the amount of pheromone (a number between 0  and 1) in the 

corresponding entry in the corresponding pheromone vector ( zpd is the pheromone vector 

corresponding to particle P  and classifier node d), see Figure 5.1. More precisely, the 

selection of a classifier at each classifier node is implemented by a fitness proportional 

(roulette-wheel) selection mechanism [54],

w . w . w/ n

\ 7 ( 7 { 7
CK \

\ c-

Figure 5.1: An encoded particle with n dimensions, each with k classifier ids

Figure 5.1 shows an encoded particle P. Each section labelled C / ,C 2 , - -C k (in each 

dimension w j , W 2 , . . , w n) represents an amount of pheromone. The probability of choosing 

each classifier c,(/=l,..,A) in each dimension Wd(d=l,..,n) is proportional to the amount of 

pheromone ( t) in the corresponding pheromone entry rpdi.
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Divide Training Set into Building and Validation sets 
Initialize population 
REPEAT for M a x ln te ra t io n s  

FOR every particle P
/ *  C la s s i f i e r  S e le c t io n  * /
FOR every dimension wd in P

Use fitness proportional selection on pheromone vector 
corresponding to wd to choose which state (classifier id) 
c , c .  should be chosen for this nr1 ' k d

END FOR
Construct a classifier tree from the Building Set by using 
the classifiers selected from the particle's pheromone 
vectors
Calculate fitness F of this set of classifiers w,, . .w on the 
Validation Set
/* Set the past best position */
Pb = P 's past best combination of classifiers 
Fb ~ The quality of Pb 
IF F > Fh

Fb= F
Pb - the current combination of classifiers w,, . .w 

END IF 
END FOR
FOR every particle P

Find P 's best Neighbour Particle N according to each 
neighbour's best fitness (Fb)
FOR every dimension wd in P

/ *  Pheromone u p da t in g  p rocedure */ 
f  = N 's best fitness Fh 
y  = N 's best state Pb in dimension d
/ *  Add an amount o f  pheromone p r o p o r t io n a l  to  f  to  the  
pheromone e n t r y  f o r  p a r t i c l e  P co rrespond ing  to  y  ( the  bes t  
p o s i t io n  h e ld  by  P 's  b e s t Neighbour) * /
tp d y  ^pdy ( /  ^ V-)

Normalize Tpd 
END FOR 

END FOR 
END REPEAT

Pseudocode 5.1: The Hybrid PSO/ACO-CS Algorithm for Classifier Selection
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The “decoded” state for all m dimensions of the particle is then evaluated, and if it is 

better than the previous personal best state (Pi,), it is set as the personal best state for the 

particle. A particle finds its best neighbour (N) according to the fitness of each 

neighbour's best state (7\). In this chapter the particles are arranged in a Von-Neumann 

topology (discussed in Section 3.4), so that each particle has four neighbours.

A slightly different pheromone updating approach is taken with the PSO/ACO-CS 

algorithm for classifier selection when compared to the PSO/ACO-RI algorithm for rule 

discovery. As detailed in the pheromone updating procedure in Pseudocode 5.1, the 

approach simply consists of adding an amount of pheromone proportional to /  to the 

pheromone entry corresponding to rpdy, where f  is the fitness of the best neighbour's best 

state, y  is the best neighbour’s best state (cj,..Ck) in the particular dimension d (wj,..wn) 

and P  is the current particle. The amount of pheromone added can be modified to slow 

down (or speed up) convergence, this is achieved using the constant a. The closer this 

constant is set to 0 the slower the convergence achieved. The pheromone vectors are 

normalised after pheromone has been added, so that the pheromone entries of each 

pheromone vector add up to 1. All the experiments reported in this chapter use a value a 

= 1, which effectively means the constant a has no influence in the results. Future 

research could perform experiments with different values of a, in order to study its 

influence on the performance of the algorithm.

5.3. Recovering from Misclassifications at Parent Classifier 

Nodes in the Top-Down Divide-and-Conquer Tree

As explained in section 3.7.2 one of the main problems with the standard TDDC 

approach is that once an example has been misclassified at one classifier node, it can 

never be correctly classified at a deeper classifier node. This sort of situation can 

potentially be predicted during the training phase and so corrected during the testing 

phase. When the examples of a given building set (a proper subset of the training set) are
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classified by a classifier node, it is possible to find out which examples have been 

misclassified and so would potentially be sent to the wrong child classifier node. For 

example, if a classifier discriminating between classes 1 and 2 is built, it is possible to 

classify the examples in the building set used to build this classifier and find the examples 

belonging to class 1 that are misclassified as class 2 and vice versa. It is then possible to 

use these misclassified examples (along with the examples actually belonging to the 

classes) to train the child classifiers in an attempt to correct the misclassifications of the 

parent node.

For example, suppose one parent classifier node discriminating between classes 1 and 

2 misclassifies some examples belonging to class 2 as class 1. In the conventional TDDC 

approach the classifier discriminating between classes 1.1 and 1.2  would be trained only 

with examples of classes 1.1 and 1.2. By contrast, in the proposed “recovery approach” 

the classifier node discriminating between classes 1.1 and 1.2  receives the modified 

building set composed of the examples belonging to classes 1.1, 1.2  and the misclassified 

(misclassified as belonging class node 1) examples belonging to class node 2. As shown 

in Figure 5.2, during the classification of examples in the validation or test set, if an 

example is assigned class 2 by the classifier discriminating between 1 .1, 1.2  and 2  then 

the system sends that example back to the classifier node discriminating between classes 

2.1 and 2.2. Note that the example must not be sent to any ancestor node, as this may 

cause a loop with the same example being misclassified over and over again (if the 

classifiers are deterministic). For instance, it must not send the example now classified as 

2 back to the node discriminating between 1 and 2 , as it will likely be misclassified as 

class 1 again.

Other types of loops may also develop, so the simplest way to avoid these situations is 

to use a counter to limit the number of times an example can be “redirected” (or 

“recovered”) to another classifier node. For instance, suppose an example is always sent 

to the classifier node discriminating between classes 2 .1, 2 .2  and 1 by the classifier node 

discriminating between 1.1, 1.2 and 2. If the node discriminating between classes 2.1, 2.2
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and 1 also always sent the example to the node discriminating between 1 .1, 1.2  and 2 an 

infinite loop would occur. We set the value for the maximum number of redirections to 

be ten (we consider this to be a safe number), investigation of this parameter is left for 

future research. Although it is in theory possible that complex redirections may form and 

be useful, in practice any example that is redirected more than ten times is likely to be 

stuck in a loop. It is of course possible to incorporate more intelligent loop detection and 

a much higher maximum number of redirections, but it is not clear that this would be 

advantageous.

□  Scope of Classifier 

®  Class node for class x

Figure 5.2: An example being redirected to the classifier discriminating between classes 

2 .1  and 2 .2  by a classifier discriminating between classes 1.1, 1.2  and class 2 .

Figure 5.2 shows an example of the recovery approach. The dashed line indicates that 

the classifier discriminating between classes 1.1 and 1.2 is also trained using examples 

misclassified as class 1 but belonging to class 2  (the dashed class 2 that appears as a child 

of class 1). In this way if an example is assigned to class 2 by the classifier discriminating 

between 1.1, 1.2  and 2 , then it is sent to the classifier discriminating between classes 2.1 

and 2 .2  (denoted by the arrow).
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Note that in Figure 5.2 the highest possible class is used to try and recover 

misclassifications, i.e., examples are redirected as class 2 rather than 2.1 and 2.2. This is 

intended as a way to simplify the problem for the classifier trying to recover the examples. 

It is more likely that the classifier will be successful when attempting to discriminate 

between three classes (1.1, 1.2 and 2) rather than four classes (1.1, 1.2, 2.1 and 2.2). Also 

a classifier has already been constructed to discriminate between the sibling classes of 

class node 2 .

Having the recovery approach enabled for every classifier node in the TDDC tree is 

likely to produce suboptimal accuracy; the misclassified examples might reduce the 

accuracy of the local classifications significantly (in the validation or test sets) by making 

it harder to build an effective classifier. Discriminating just between classes 1.1 and 1.2 

could yield a high accuracy, but when including class 2  this may drop as some examples 

from classes 1.1 and 1.2 can be misclassified as class 2. Indeed, by their nature 

misclassified examples are more likely to be difficult to classify. There is an obvious 

trade-off between the potential benefit of correcting the original misclassifications of 

examples that are recovered (e.g., belonging to class 2 that were originally misclassified 

as class 1) and the potential harm of misclassifying examples that belong to classes 1.1 

and 1.2  as class 2 .

It would be difficult to design an effective algorithm to sequentially decide if recovery 

should be enabled or disabled for each classifier node. This is because such a sequential 

approach could not take into account the accuracy of the entire classification tree, only 

one node at a time. For instance, consider an example belonging to class 2 that was 

misclassified as class 1 and then redirected to class 2. If the classifier discriminating 

between class 2.1  and 2 .2  has recovery enabled it may classify the recovered example 

originally misclassified as class 1 to any of the extra recovery class nodes associated with 

it, including possibly class 1 (which would form a loop). Therefore, the decision as to 

whether to enable recovery for the classifier discriminating between class 1.1 and 1.2  is 

directly related to the decision as to whether to enable recovery for any classifier node
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redirecting examples to it, interacting with it directly or through intermediate classifier 

nodes. In this sense the nodes with recovery enabled form a type of network of 

interaction, with the possibility of having multiple non-interacting networks within each 

TDDC tree.

One method to find the optimal solution for the recovery problem (i.e., which nodes 

should have recovery enabled) for a given TDDC tree would firstly involve detecting the 

sets of interacting classifiers. Once the sets have been detected all possible combinations 

of states (where the states involve having recovery enabled or disabled at each classifier 

node) for each set should be assessed one by one to find the one that has maximal quality. 

Once this has been completed for each set of interacting classifier nodes, the solutions 

can be combined to produce the complete optimal solution for the TDDC tree with 

recovery. In the worst case scenario (where every classifier interacts with every other 

classifier) there are 2(n' l) possible combinations where n is the number of classifier nodes 

(1 is taken away as it is not possible to enable recovery for the root classifier without 

generating a loop). The number of combinations will obviously be very large number for 

any reasonably sized data set and so it seems appropriate to use a heuristic search 

algorithm. Such an approach based on PSO/ACO (the PSO/ACO-RO algorithm) is 

discussed in the next subsection.

5.3.1. Deciding when to Recover from Parent Misclassifications 

with the PSO/ACO-RO (Recovery Optimisation) Algorithm

The problem of global recovery interactions can be reduced to a combinatorial 

optimisation problem involving a set of binary decisions. Therefore, we can also apply 

the hybrid PSO/ACO method to this optimisation problem. To apply the PSO/ACO 

method to this problem a particle (candidate solution) indicates which classifier nodes 

will have recovery enabled. More precisely, a particle is represented by a vector with n 

binary components, i.e.:
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Particle =rx,r2,...,rn

Where n is the number of classifier nodes and d indexes the dimensions in the 

PSO/ACO's search space. Each (d=l,...,n) can take the values of on or o ff depending 

on whether recovery should be enabled for the ufth classifier node or not.

For this approach the training set is divided into a building set and a validation set, as 

explained earlier. To evaluate such a particle, the validation set would simply be 

classified by the modified TDDC tree -  i.e., the TDDC tree constructed by using the 

“recovery approach” in the classifier nodes whose rv flag was set to “on”. The fitness of a 

particle is computed as the mean of the classification accuracies (on the validation set) for 

each class level.

It is also important to consider the way in which recovery has a downward influence 

in the TDDC tree during training. For instance, from the previous example shown in 

Figure 5.2, if the examples belonging to class 2 are first misclassified as class 1 and then 

misclassified again as, for instance, class 1.1, then the classifier node discriminating 

between 1.1 .1, 1.1.2  and 2  can again try to correct the misclassification of these examples 

belonging to class 2. However, if recovery is turned off for the classifier node 

discriminating between class nodes 1.1 and 1.2 (previously the classifier node 

discriminating between class nodes 1 .1, 1.2 and 2 ) the examples from class 2  that were 

misclassified as class 1 will not pass down to any descendant classifier nodes during 

training (this will not be the case during testing as the test example classes are unknown 

during classification). In this way the decision of whether to turn recovery on or off in a 

given classifier node will have an effect on its descendant classifier nodes. A full and 

rigorous investigation into whether this type of approach is more effective than always 

passing on misclassified examples is left for future research.

Note also that a particle represents a complete candidate solution to the problem of 

deciding which classifier nodes should use the recovery approach. This means that the 

evaluation of a particle is performed in a global fashion taking into account interaction
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between all classifier nodes. This procedure avoids the drawbacks of a greedy approach 

where the decision of tuning on/off recovery would be done sequentially for one classifier 

node at a time.

5.3.2. Combining Classifier Selection and Misclassification 

Recovery with PSO/ACO-CS-RO

Two new approaches have been discussed to try and improve classification accuracy 

in TDDC trees, namely PSO/ACO-RO and PSO/ACO-CS. As they work independently 

of each other, it is possible to combine them in an attempt to boost accuracy further, 

creating an extended swarm intelligence algorithm denoted as PSO/ACO-CS-RO.

In this case a particle consists of two sections:

Particle = w„ w2,..., wn, rn+l, rn+2,..., rn+n

Where n is the number of classifier nodes and d indexes the dimensions in the 

PSO/ACO-CS-RO search space. Each rd (d=n+\,...,n+n) can take the values of on or o ff 

depending on whether recovery should be enabled for the d-nth classifier node or not. 

Each Wd (d=l,..,n) is the classifier selected at the fifth classifier node in the TDDC tree. 

Each Wd can take one of the nominal (classifier ids) values c/,..Cfc where k is the number 

of different candidate classifiers at each node. The particles used for this approach have a 

number of dimensions equal to twice the number of classifier nodes, two dimensions per 

node. Dimension wd is used to select the classification algorithm used for the fifth 

classifier node, and dimension rd is used to decide whether misclassification recovery 

should be on or off for the (d - «)th classifier node.

In this chapter PSO/ACO-CS-RO will be compared with an approach that uses the

greedy selective TDDC technique (section 3.7.2.1), the PSO/ACO-RO algorithm and the

PSO/ACO-CS algorithm. However, it would be extremely computationally expensive to

combine the use of the PSO/ACO-RO algorithm with the greedy approach for classifier
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selection in a tightly integrated approach. An example of such an approach would be

where each particle would consist of r\iri >•••■>rn (indicating whether recovery is turned on 

or o ff for each classifier node) and the classification algorithm to be used at each 

classifier node would be selected by the greedy approach at each fitness evaluation. This 

would lead to a A: times increase in computational time over the PSO/ACO-CS-RO 

algorithm discussed in this sub-section, where k is the number of different types of 

classifier. Instead, the classification algorithm is selected for each node of the TDDC tree 

using the greedy approach once, before the PSO/ACO-RO algorithm is run. Recovery is 

then optimised by the PSO/ACO-RO algorithm using this fixed selection of classification 

algorithms.

5.4. Experimental Setup

5.4.1. The Creation of the Bioinformatics Datasets

The hierarchical classification methods discussed in this chapter were evaluated in 

four challenging datasets involving the prediction of protein function. The protein 

functional classes to be predicted in these data sets are the functional classes of GPCRs 

(G-Protein-Coupled Receptors) as discussed in Section 2.6.2.

The GPCR functional classes are given unique hierarchical indexes by GPCRDB 

(Section 2.6.2). The GPCR class hierarchy originally had up to 5 class levels, but only 4 

levels are used in the datasets created in this work, as the data in the 5th level is too 

sparse for training -  i.e., in general there are too few examples of each class at the 5th 

level. In any case, it should be noted that predicting all the first four levels of GPCR’s 

classes is already a challenging task. Indeed, most works on the classification of GPCRs 

limit the predictions to just one or two of the topmost class levels [15] [73] [92] [116].

The data sets used in our experiments were constructed from data in UniProt 

(discussed in 2.6.1) and GPCRDB. UniProt is a well known biological database,
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containing sequence data and a rich annotation about a large number of proteins. It also 

has cross-references for other major biological databases. It was extensively used in this 

work as a source of data for creating our data sets. Only the UniProtKB/Swiss-Prot was 

used as a data source, as it contains a higher quality, manually annotated set of proteins.

We performed experiments with four different kinds of predictor attributes, each of 

them representing a kind of “protein signature”, or “m otif’, namely: FingerPrints from 

the Prints database, Prosite patterns, Pfam and Interpro entries (all discussed in 

Section 2.5). The four GPCR data sets each use predictor attributes from one of either the 

Prints, Prosite, Interpro or Pfam databases. They also contain two additional attributes, 

namely the protein's molecular weight and sequence length.

Any duplicate examples (proteins) in a data set are removed in a pre-processing step, 

i.e., before the hierarchical classification algorithm is run, to avoid redundancy. If there 

are fewer than 10 examples in any given class in the class tree that class is merged with 

its parent class. If the parent class is the root node, the entire small class is removed from 

the data set. This process ensures there is enough training and test data per class to carry 

out the experiments. (If a class had less than 10 examples, during the 10-fold cross- 

validation procedure there would be at least one iteration where there would be no 

example of that class in the test set).

After data pre-processing, the final datasets used in the experiments have the numbers 

of attributes, examples (proteins) and classes per level (expressed as level 1/ level 2 /level 

3/level 4) indicated in Table 5.1.

GPCR/Prints GPCR/Prosite GPCR/Interpro GPCR/Pfam
^Attributes 283 129 450 77
#Examples 5422 6261 7461 7077
#Classes 8/46/76/49 9/50/79/49 12/54/82/50 12/52/79/49

T a b le  5.1: Main characteristics of the datasets used in the experiments
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5.4.2. Data Set Partitioning and Baseline Algorithms

Each data set was split into two main subsets at each iteration of the 10-fold cross 

validation process, one test set and one training set. The test set is used to assess the 

performance of the approach in question; therefore the true class of each test example 

remains unseen during the training process, only to be revealed to measure the predictive 

accuracy of the approach. The training set is split into a further two subsets. Firstly 75% 

of the training set was used as the building set; this building set is used to train the 

classifiers. Secondly the validation set, which consists of the remaining 25% of the 

training examples. The validation set is used to compute the quality of the classifiers, and 

so particle fitness in all variants of the PSO/ACO algorithm. After the best solution 

(according to accuracy in the validation set) has been found in a single PSO/ACO run, the 

classifiers at every classifier node specified in that best particle are trained using the 

entire training set. This procedure attempts to maximise the individual classifier’s 

accuracy and so the final accuracy in the test set (unseen during the PSO/ACO run).

As a baseline it is important to evaluate the proposed method by comparing its 

predictive accuracy with the predictive accuracy of the greedy selective top-down 

approach. The baseline should also include each of the individual classification 

algorithms used in the greedy selective top-down approach. Therefore the first 

experiments are to build standard TDDC trees using one type of classification algorithm 

throughout.

The baseline classification algorithms used in the experiments presented in this 

chapter were implementations from the WEKA [164] package. These algorithms were 

chosen to include a diverse set of machine learning paradigms, while having high 

computational efficiency. The paradigms in question are rule induction, decision tree 

induction and Bayesian classification.
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The five baseline algorithms used in the experiments were:

• HyperPipes is a simple algorithm that constructs a “hyperpipe” for every class in 

the data set; each hyperpipe contains each attribute-value found in the examples 

from the class it was built to cover. An example is classified by finding which 

hyperpipe covers it the best.

• NaiveBayes uses Bayes' theorem to predict which class an example most likely 

belongs to. It is naive because it assumes attribute independence given the class.

• J48 is a decision tree algorithm, being WEKA's modified version of the very well 

known C4.5 algorithm.

• ConjunctiveRule is another simple algorithm that only produces two rules to 

classify the entire data set. A “default” rule is produced that predicts the class with 

the greatest numbers of records in the training set. The other rule is constructed 

using information gain to select attribute-values for the antecedent.

• BayesNet uses a Bayesian network to classify examples and can theoretically 

completely take into account attribute dependency.

Although some of these algorithms are clearly more advanced than the others, all 

were selected for some classifier nodes by the classifier selection method (greedy 

approach or PSO/ACO-CS) during training, confirming that all of them perform best in 

certain circumstances. All experiments were performed using 10-fold cross 

validation [164] with a (the constant used to either speed up or slow down particle 

convergence) set to 1 for the PSO/ACO algorithm.

The remainder of this chapter examines the effectiveness of the proposed PSO/ACO- 

CS (Section 5.5), the baseline recovery approach (Section 5.6.1) and PSO/ACO-RO 

approaches (Section 5.6.2).
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5.5. Computational Results for Classifier Selection

The predictive accuracy for each method (the five baseline classifiers used throughout 

the TDDC tree, the greedy and PSO/ACO-CS approaches) are shown in Table 5.2 

through Table 5.5 for each dataset. The values after the “±” symbol are standard 

deviations (calculated using the WEKA statistics classes). Table 5.2 through Table 5.5 

are shown for the sake of completeness, but, to simplify the analysis we focus mainly on 

a summary of the results (reported in Table 5.6). Table 5.6 shows the summary of the 

number of cases where there is a statistically significant difference in the predictive 

accuracy of a classifier selection method and a baseline algorithm according to the 

WEKA corrected two-tailed student t-test (with a significance level 1%) [164], Each cell 

of the last five columns show the number of times the labelled approach (Greedy or 

PSO/ACO-CS) significantly beats the corresponding baseline classification algorithm 

(HP -  HyperPipes, NB -  NaiveBayes, J4.8, CR -  ConjunctiveRule, BN -  BayesNet), in 

each data set across all four class levels. Note that in each cell (except the totals in the last 

two rows) the worst (best) possible result for a classifier selection approach is -4 (+4), 

since there are four class levels for each data set. Totals across all data sets are shown at 

the bottom of the table. In the total cells, the worst (best) possible result is -16 (+16), 

since the totals are calculated over four data sets.

Both the greedy and PSO/ACO-CS approaches were very successful in improving 

predictive accuracy with respect to four of the base classification algorithms (HP, NB, 

CR, BN), as shown by the totals in Table 5.6. These two approaches were less successful 

in improving accuracy with respect to J48, but even in this case the classifier selection 

approaches improved upon J48’s accuracy several times, whilst never decreasing upon 

J48’s accuracy. In this sense both the greedy and PSO/ACO-CS approaches are quite 

successful, often increasing and never decreasing predictive accuracy significantly below 

that of any base classifier.
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TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 90.76±0.34 76.79i0.55 49.99il.l 75.42i2.ll
NaiveBayes 87.74i0.71 72.72il.ll 41.3i0.99 63.85il.89
J48 91.68±0.51 83.35±1.0 58.34il.26 85.14il.8
ConjunctiveRule 80.16±0.31 49.63i0.46 17.03i0.84 24.8i0.87
BayesNet 88.34±1.39 77.41il.25 48.0i0.93 74.53i2.94
Greedy 91.68iO.51 83.06i0.88 58.21il.23 84.66i2.09
PSO/ACO-CS 91.59±0.52 82.67il.13 57.99il.52 84.8i2.34

Table 5.2: Predictive accuracy (%) for each approach in the Prints data set.

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 83.74il.14 73.77il.01 48.21i0.95 82.62i2.5
NaiveBayes 87.88i0.59 74.78i0.78 38.59il.07 51.25il.85
J48 90.36i0.34 80.68i0.66 51.06i0.93 79.86i2.68
ConjunctiveRule 73.68i0.18 47.73i0.48 17.76i0.47 24.84i0.68
BayesNet 89.18i0.67 78.99i0.83 46.4i0.94 67.3i2.62
Greedy 90.36i0.34 80.41i0.81 54.36il.33 83.58i2.46
PSO/ACO-CS 90.36i0.34 80.4i0.78 54.43il.27 84.24i2.27

Table 5.3: Predictive accuracy (%) for each approach in the Interpro data set.

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 92.02i0.44 25.4i0.75 9.8i0.82 4.58il.22
NaiveBayes 89.59i0.72 59.23il.41 19.6il.43 16.27i2.39
J48 92.98i0.48 70.77il.39 37.03il.07 48.97i3.98
ConjunctiveRule 75.55i0.13 51.4i0.53 13.49i2.0 6.97Ì4.63
BayesNet 90.35il.l 62.7il.45 23.25il.46 23.43i2.42
Greedy 92.98i0.48 70.54il.29 36.97il.2 48.24i3.55
PSO/ACO-CS 92.98i0.48 70.5il.35 36.97il.21 48.5i3.58

T a b le  5 .4 : Predictive accuracy (%) for each approach in the Pfam data set.
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TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 82.14±0.71 46.03±1.28 23.141.62 32.1642.82
NaiveBayes 85.34±1.14 60.63±1.25 24.8641.3 23.9442.11
J48 84.71±0.57 61.02±1.12 29.3141.63 39.5843.35
ConjunctiveRule 78.68±0.15 41.3840.25 14.7940.45 10.040.89
BayesNet 85.93±0.88 62.1741.06 26.6841.35 31.1442.47
Greedy 85.93±0.88 62.5440.91 31.4641.25 40.7344.21
PSO/ACO-CS 85.93±0.88 62.841.33 32.1841.48 43.1143.71

Table 5.5: Predictive accuracy (%) for each approach in the Prosite data set.

Dataset Classif. Selection 
Approach

Classification Algorithm
HP NB J48 CR BN

GPCR/Prints Greedy 4 4 0 4 4
PSO/ACO-CS 4 4 0 4 4

GPCR/InterPro Greedy 3 4 1 4 4
PSO/ACO-CS 3 4 2 4 4

GPCR/Pfam Greedy 4 4 0 4 4
PSO/ACO-CS 4 4 0 4 4

GPCR/Prosite Greedy 4 2 1 4 2
PSO/ACO-CS 4 3 3 4 2

Totals Greedy 15 14 2 16 14
PSO/ACO-CS 15 15 5 16 14

Table 5.6: Summation of the number of statistically significant results according to the

Student T-Test

The PSO/ACO-CS approach significantly obtains a better result than the greedy 

approach in four cases overall, as follows. PSO/ACO-CS improves on the performance of 

J48 in five cases, three more than the greedy approach. These improvements are in the 

third and fourth level of the Prosite dataset and there is also an improvement in the 

InterPro dataset at the fourth level. As J48 is the hardest classification algorithm to beat, 

these results show the most difference. However, the PSO/ACO-CS algorithm also scores 

better against NaiveBayes when compared to the greedy approach in one case -  in the 

Prosite dataset at the second class level.
135



Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

The results imply that both the PSO/ACO-CS and greedy approaches benefit more 

from more “difficult” data sets. The data set in which the base classification algorithms 

perform worst is the Prosite data set. This data set also yields the biggest improvement in 

accuracies when using the greedy (1 significant win over J48), and more so the 

PSO/ACO-CS (3 significant wins over J48) approach. Indeed for either of these 

approaches to increase predictive accuracy above that of any base classifier, one of the 

base classifiers must make an error that is not made by another base classifier. In other 

words, if every base classifier was deterministic and the same then these approaches 

would never lead to any improvement. The more mistakes made by a certain 

classification algorithm (due to a more difficult data set) the higher the probability of 

another classification algorithm not making the same set of mistakes. Furthermore, it was 

observed that overfitting is sometimes a limiting factor with the PSO/ACO-CS approach, 

since increases in validation set accuracy (over the baseline classification algorithms) did 

not always result in a similar increase in test set accuracy.

5.6. Computational Results for Misclassification Recovery 

Approaches

5.6.1. Comparing Standard Top-Down Divide-and-Conquer Against 

the Basic (Always On) Recovery Approach

As discussed previously, the most basic recovery approach involves enabling 

recovery for every single classifier node, so that every node will always try and redirect 

misclassified examples to the correct classifier node. This is a relatively naive approach 

and its effectiveness is analysed separate in this subsection mainly in order to provide a 

baseline for the more advanced recovery approach examined in section 5.6.2 (PSO/ACO- 

RO). The reason this basic recovery approach can be considered naive is because it does 

not consider whether attempting to recover from misclassifications at a given classifier
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node will introduce more error than it corrects (error may be introduced by incorrectly 

redirecting previously correctly classified examples, as explained earlier). This basic 

recovery approach also does not consider the effect of attempting to recover the 

misclassified examples on the accuracy of the entire classifier tree.

Table 5.7 through Table 5.10 show the predictive accuracies achieved by each 

labelled approach in each dataset on a per class level basis. Note that the basic recovery 

approach can be instantiated in 7 different labelled approaches: 5 base classification 

algorithms, the PSO/ACO-CS approach and the greedy approach for classifier selection. 

The approaches without recovery enabled are included for comparative purposes. The 

shadings in the tables show whether the approach without recovery enabled performs 

significantly better (according to the WEKA corrected two-tailed Student’s t-test with a 

significance level 1% [164]) than the corresponding approach with recovery always 

enabled. Dark grey indicates that the approach without recovery performs significantly 

better than its counterpart, light grey indicates that the approach without recovery 

performs significantly worse than its counterpart. For instance, in Table 5.7, there are two 

rows for the Hyperpipes algorithm. The first row (from the top of the table) with the label 

Hyperpipes shows the predictive accuracy obtained in the Prints dataset with the standard 

TDDC approach (using the HyperPipes classification algorithm). Therefore it includes 

the entry No in the Recovery Enabled column. The second row with the HyperPipes label 

is the entry for the approach utilising the recovery method and so includes the entry 

Always in the Recovery Enabled. The entry Always indicates that for every classifier node 

in the TDDC tree the algorithm always tries to recover misclassifications. The first 

HyperPipes row has two entries coloured dark grey. This indicates that the HyperPipes 

approach without recovery performs significantly better in the third and fourth class 

levels when compared to the HyperPipes approach with recovery always enabled. The 

corresponding shading is not included in second row for HyperPipes (or any of the other 

approaches with recovery always enabled) as it would simply be the opposite of the first 

row.
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The greedy selective and PSO/ACO-CS approaches are also included in the 

comparisons in Table 5.7 through Table 5.11. As the PSO/ACO-CS approach allows the 

evaluation of the entire TDDC tree at once, it is possible to take into account the effect of 

having recovery enabled at each classifier node in the selection of the classifiers. This is 

due to way in which the PSO/ACO-CS approach defines a set of classifier types “all at 

once”. As discussed previously the recovery method causes classifier nodes to interact 

through the redirection of misclassified examples. This means that it would impossible to 

evaluate this effect on a per classifier node basis (as is the case with the greedy selective 

approach). The overall effect of these redirections can only be taken into account if the 

TDDC tree is evaluated as a whole (as is the case with the PSO/ACO-CS approach). For 

this reason the greedy approach with recovery always enabled selects the types of 

classifier in the standard way (without considering the effect of misclassification recovery 

during the selection of each classifier). Only after the classifier type selections are made 

by the greedy approach is the flag at every classifier node set to having recovery enabled.

Table 5.11 shows a summary of the student’s t-tests performed in all four data sets. 

Each cell shows the summation of the number of times the approaches with recovery 

always enabled significantly beat the corresponding approach without recovery (the 

standard TDDC approach) in each of the four datasets across the four class levels: That is, 

in each cell in the table, a score of + /-1  is added if the approach with recovery always on 

produced a significantly better or worse (respectively) result than having recovery always 

off for the algorithm in the cell’s row, in the given data set of the cell’s column. Note that 

(as expected for these baseline comparisons) in almost all cases the score is negative, 

indicating that having the recovery approach enabled for every classifier node produces a 

significantly lower accuracy than approaches without any recovery.
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Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2nd 3rd 4th
HyperPipes No 90.76±0.34 76.79±0.55 49.99±1.1 75.42±2.11
NaiveBayes No 87.74*0.71 72.72*1.11 41.3i0.99 63.85if.89
J48 No 91.68i0.51 83.35±1.0 58.34±1.26 85.14±1.8
ConjunctiveRule No 80.16*0.31 49.63i0.46 17.03±0.84 24.8i0.87
BayesNet No 88.34±1.39 77.41±1.25 48.0±0.93 74.53i2.94
Greedy No 91.68i0.51 83.06±0.88 58.21±1.23 84.66i2.09
PSO/ACO-CS No 91.59±0.52 82.67il.13 57.9fttl.52 84.8i2.34
HyperPipes Always 89.86iO.95 77.54±1.03 48.48±1.07 72.49i2.64
NaiveBayes Always 76.5il.09 69.32±1.06 38.83±0.65 59.62i2.16
J48 Always 91.33±1.39 85.8±1.16 57.56±1.05 83.18il.79
ConjunctiveRule Always 47.66il.42 47.25i0.71 14.8*0.66 11.37i0.4
BayesNet Always 84.42±1.54 77.0±1.13 46.03±0.56 69.1i3.3
Greedy Always 91.41±1.49 85.67±1.32 57.22±0.93 80.59il.61
PSO/ACO-CS Always 91.26±1.11 86.06±1.18 57.53±1.09 82.36i2.02

Table 5.7: Predictive accuracy (%) for each approach in the Prints data set.

Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2nd 3rd 4th
HyperPipes No 83.74il.14 73.77il.01 48.21i0.95 82.62i2.5
NaiveBayes No 87.88i0.59 74.78i0.78 38.59il.07 51.25il.85
J48 No 90.36i0.34 80.68i0.66 51.06i0.93 79.86i2.68
ConjunctiveRule No 73.68i0.18 47.73i0.48 17.76i0.47 24.84i0.68
BayesNet No 89.18i0.67 78.99i0.83 46.4i0.94 67.3i2.62
Greedy No 90.36i0.34 80.41*0.81 54.36il.33 83.58i2.46
PSO/ACO-CS No 90.36i0.34 80.4i0.78 54.43il.27 84.24i2.27
HyperPipes Always 84.lil.15 74.08i0.99 47.69i0.78 80.26i2.38
NaiveBayes Always 82.12il.35 71.53il.13 37.71i0.57 48.34i2.29
J48 Always 79.49i0.92 73.81il.08 41.79i0.84 68.19i2.47
ConjunctiveRule Always 48.33i0.57 47.98i0.57 14.29i0.43 11.41i0.63
BayesNet Always 86.66i0.44 76.54i0.66 45.26il.01 61.35il.78
Greedy Always 90.47i0.75 83.67i0.78 52.2il.45 78.83i2.28
PSO/ACO-CS Always 90.54±0.71 83.86i0.71 52.2il.47 80.07i2.99

T a b le  5 .8 : Predictive accuracy (%) for each approach in the Interpro data set
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Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2 nd 3rd 4th
HyperPipes No 92.02±0.44 25.4±0.75 9.840.82 4.5841.22
NaiveBayes No 89.5910 72 59.2341.41 19.641.43 16.2742.39
J48 No 92.98±0.48 70.7741.39 37.0341.07 48.9743.98
ConjunctiveRule No 75.5540.13 51.440.53 13.4942.0 6.9744.63
BayesNet No 90.3541.1 62.741.45 23.2541.46 23.4342.42
Greedy No 92.9840.48 70.5441.29 36.9741.2 48.2443.55
PSO/ACO-CS No 92.9840.48 70.541.35 36.9741.21 48.543.58
HyperPipes Always 92.2740.3 25.3540.66 7.9940.68 1.7240.89
NaiveBayes Always 83.3841.05 57.7541.81 19.6441.21 15.243.42
J48 Always 91.7240.86 70.8941.38 35.9340.93 47.4243.79
ConjunctiveRule Always 63.3741.17 48.5840.58 15.9740.67 10.2840.85
BayesNet Always 83.0740.75 59.7141.28 23.1741.2 21.5742.61
Greedy Always 91.7640.82 70.7541.35 35.2641.2 43.1843.02
PSO/ACO-CS Always 91.2140.62 70.1840.77 36.5641.13 49.0942.58

Table 5.9: Predictive accuracy (%) for each approach in the Pfam data set.

Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2nd 3rd 4th
HyperPipes No 82.1440.71 46.0311.28 23.111.62 32.1612.82
NaiveBayes No 85.3441.14 60.6341.25 24.8641.3 23.9442.11
J48 No 84.7140.57 61.0241.12 29.3141.63 39.5843.35
ConjunctiveRule No 78.6840.15 41.3840.25 14.7940.45 10.040.89
BayesNet No 85.9340.88 62.1741.06 26.6841.35 31.1442.47
Greedy No 85.9340.88 62.5440.91 31.4641.25 40.7344.21
PSO/ACO-CS No 85.9340.88 62.841.33 32.1841.48 43.1143.71
HyperPipes Always 82.0540.74 45.4641.41 22.1341.53 30.2642.86
NaiveBayes Always 82.1441.78 59.4141.51 24.2441.28 22.9241.66
J48 Always 82.3241.44 61.341.68 22.0641.14 28.3641.4
ConjunctiveRule Always 54.41428.03 33.02411.74 12.1243.43 9.9340.71
BayesNet Always 84.0841.47 61.7241.27 26.0941.14 29.6542.62
Greedy Always 85.9341.03 63.2741.49 29.3141.67 36.2543.14
PSO/ACO-CS Always 84.5942.41 62.542.2 30.2741.41 39.0144.56

T a b le  5 .1 0 : Predictive accuracy (%) for each approach in the Prosite data set
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Approach
Dataset

GPCR/
Prints

GPCR/
InterPro

GPCR/
Pfam

GPCR/
Prosite Total

HyperPipes -2 0 -2 -1 -5

NaiveBayes -4 -2 -1 -2 -9

J48 1 -4 -1 -3 -7
Conjunctive
Rule -4 -3 -2 0 -9

BayesNet -3 -4 -2 -2 -11

Greedy 0 -1 -3 -2 -6

PSO/ACO-CS 1 -1 -1 -1 -3

Table 5.11: Summation of the number of statistically significant results according to the 

Student’s T-Test, for the recovery always on approach against the recovery always off

approach, for each labelled approach

The PSO/ACO-CS approach with recovery enabled performs the best (in one case 

generating a positive result), due to the way in which it can tailor the selection of 

classifiers to the recovery scenario. It can tailor the selection of classifiers by determining 

(through fitness evaluations) which choice of classifiers will reduce the amount of error 

introduced by the recovery approach. E.g., it may be the case that having a J48 classifier 

at a particular classifier node decreases accuracy when compared to having a Conjunctive 

Rule classifier under normal TDDC circumstances; however, the opposite may be true 

when recovery is enabled.

There are some cases where enabling recovery for every classifier node is 

advantageous. These significant increases in accuracy can be seen in two of the datasets 

(Table 5.7 and Table 5.8) mainly for the PSO/ACO-CS and greedy selective approaches. 

These increases in accuracy are likely due to way in which PSO/ACO-CS and the greedy
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approaches use a selection of different classifiers. Different types of classifier are more 

likely to make different mistakes when classifying examples. For the types of approaches 

using the same type of classifier throughout the TDDC tree it is more likely that any 

attempt to recover misclassifications will lead to the same misclassifications being made 

again. Whereas, with TDDC trees with different types of classifiers (PSO/ACO-CS and 

greedy selective approaches) is it more likely that a classifier receiving misclassifications 

from a different type of classifier will be able to correct its mistake. Using the same 

classifier type to recover misclassified examples relies only on having a different 

distribution of data, whereas using a different type of classifier to recover misclassified 

examples relies on having a different data distribution and a different classification 

algorithm.

5.6.2. Comparing the Standard Top-Down Divide-and-Conquer 

Approach against the PSO/ACO-Optimised Recovery Approach 

(PSO/ACO-RO)

In this subsection the effect of using PSO/ACO for optimising recovery is examined. 

As discussed previously PSO/ACO can be used to decide whether recovery should be 

enabled or disabled at each classifier node. In this subsection this approach is combined 

with either the greedy selective approach or the PSO/ACO-CS approach (as discussed in 

Section 5.3.2). The two approaches examined in this section are: PSO/ACO-CS 

combined with PSO/ACO-RO (denoted as PSO/ACO-CS-RO) and the greedy selective 

approach combined with PSO/ACO-RO (denoted as Greedy-PSO/ACO-RO). The 

performance of these two approaches is compared against that of the five baseline 

classification algorithms. These baseline approaches use the standard TDDC approach 

without recovery enabled or optimised by PSO/ACO.
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TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 90.7640.34 76.7940.55 49.9941.1 75.4242.11
NaiveBayes 87.7440.71 72.7241.11 41.340.99 63.8541.89
J48 91.68±0.51 83.3541.0 58.3441.26 85.1441.8
ConjunctiveRule 80.1640.31 49.6340.46 17.0340.84 24.840.87
BayesNet 88.3441.39 77.4141.25 48.040.93 74.5342.94
Greedy-PSO/ACO-RO 91.4441.06 83.4841.21 58.3141.51 84.4642.38
PSO/ACO-CS-RO 91.5240.44 83.9841.65 58.541.34 84.441.59

Table 5.12: Predictive accuracy (%) for each approach in the Prints data set (recovery

optimised by PSO/ACO)

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 83.7441.14 73.7741.01 48.2140.95 82.6242.5
NaiveBayes 87.8840.59 74.7840.78 38.5941.07 51.2541.85
J48 90.3640.34 80.6840.66 51.0640.93 79.8642.68
ConjunctiveRule 73.6840.18 47.7340.48 17.7640.47 24.8440.68
BayesNet 89.1840.67 78.9940.83 46.440.94 67.342.62
Greedy-PSO/ACO-RO 90.3640.34 80.9540.88 54.6541.35 83.2542.52
PSO/ACO-CS-RO 90.3540.34 81.0440.75 55.0641.24 84.6842.06

Table 5.13: Predictive accuracy (%) for each approach in the Interpro data set (recovery

optimised by PSO/ACO)

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 92.0240.44 25.440.75 9.840.82 4.5841.22
NaiveBayes 89.5940.72 59.2341.41 19.641.43 16.2742.39
J48 92.9840.48 70.7741.39 37.0341.07 48.9743.98
ConjunctiveRule 75.5540.13 51.440.53 13.4942.0 6.9744.63
BayesNet 90.3541.1 62.741.45 23.2541.46 23.4342.42
Greedy-PSO/ACO-RO 92.6941.07 70.3241.16 37.0740.84 49.4242.38
PSO/ACO-CS-RO 92.9340.48 69.6141.46 37.4741.16 50.4243.57

T a b le  5 .14 : Predictive accuracy (%) for each approach in the Pfam data set (recovery

optimised by PSO/ACO)
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TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 82.14±0.71 46.03±1.28 23.1±1.62 32.16±2.82
NaiveBayes 85.34±1.14 60.63±1.25 24.86±1.3 23.94±2.11
J48 84.71±0.57 61.02±1.12 29.31±1.63 39.58±3.35
ConjunctiveRule 78.68±0.15 41.38±0.25 14.79±0.45 10.0±0.89
BayesNet 85.93±0.88 62.17±1.06 26.68±1.35 31.1442.47
Greedy-PSO/ACO-RO 86.23±0.85 63.03±1.02 31.56±1.35 40.8644.67
PSO/ACO-CS-RO 86.44±0.93 63.39±1.5 31.96±1.52 44.1342.4

Table 5.15: Predictive accuracy (%) for each approach in the Prosite data set (recovery

optimised by PSO/ACO)

Dataset Classif. Selection 
Approach

Classification Algorithm
HP NB J48 CR BN

GPCR/Prints Greedy-PSO/ACO-RO 3 4 0 4 4
PSO/ACO-CS-RO 4 4 0 4 4

GPCR/InterPro Greedy-PSO/ACO-RO 3 4 2 4 4
PSO/ACO-CS-RO 3 4 2 4 4

GPCR/Pfam Greedy-PSO/ACO-RO 3 4 0 4 4
PSO/ACO-CS-RO 4 4 0 4 4

GPCR/Prosite Greedy-PSO/ACO-RO 4 4 3 4 3
PSO/ACO-CS-RO 4 4 4 4 4

Totals Greedy-PSO/ACO-RO 13 16 5 16 15
PSO/ACO-CS-RO 15 16 6 16 16

Table 5.16: Summation of the number of statistically significant results (recovery

optimised by PSO/ACO) according to the Student’s T-Test

Table 5.12 through Table 5.15 show the predictive accuracies the labelled approaches 

attained in the four data sets used in this chapter. Table 5.16 shows the summation of the 

Student’s t-tests in a similar way to the results included in Section 5.5 (Table 5.6). As per 

Section 5.5 results for each base classifier are shown for comparative purposes.
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As can be seen from Table 5.16 both the Greedy-PSO/ACO-RO and PSO/ACO-CS- 

RO approaches increase classification accuracy beyond that of any base classifier type. 

These results are discussed further in the next subsection.

5.6.3. Discussion of the Effectiveness of the PSO/ACO-CS, Greedy 

Selective and PSO/ACO-RO Approaches

Both approaches with recovery optimised by PSO/ACO improve on the performance 

of the corresponding approaches without the recovery approach. This can be observed by 

comparing the summary of the results in Table 5.16 to the summation of the results in 

Table 5.6 (the table showing the summation of the results for the PSO/ACO-CS and 

greedy selective approaches). The totals from Table 5.6 and Table 5.16 are reproduced in 

Table 5.17 to allow easier comparisons.

Classif. Selection 
Approach

Classification Algorithm
HP NB J48 CR BN

Greedy 15 14 2 16 14
PSO/ACO-CS 15 15 5 16 14
Greedy-PSO/ACO-RO 13 16 5 16 15
PSO/ACO-CS-RO 15 16 6 16 16

Table 5.17: Reproduction of the totals from Table 5.6 and Table 5.16, in terms of

numbers of significant wins over the baseline classification algorithms

As can be seen in Table 5.17 both PSO/ACO-CS and Greedy approaches benefit from 

being combined with PSO/ACO-RO. The increase in the number of significant wins 

when using Greedy-PSO/ACO-RO over the standard greedy selective are: 2 for Naive 

Bayes, 3 for J48 and 1 for Bayesian Network (where J48 produces the most competitive 

classifiers). Compare these increases to PSO/ACO-CS-RO against PSO/ACO-CS: 1 for 

Naive Bayes, 1 for J48 and 2 for Bayesian Network. When only considering 

improvements the Greedy-PSO/ACO-RO approach comes out on top. However, the law
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of diminishing returns should be considered, where the more competitive the approach 

the harder it is to increase on its accuracy. Indeed the PSO/ACO-CS approach is already 

quite effective -  more so than the greedy selective approach. This makes it more difficult 

for the PSO/ACO-CS-RO approach to increase upon the accuracy of PSO/ACO-CS, 

when compared to the Greedy-PSO/ACO-RO and greedy selective approaches. Also the 

Greedy-PSO/ACO-RO approach actually performs worse than the greedy selective 

approach against Hyper Pipes (with Greedy-PSO/ACO-RO being significantly beaten by 

HyperPipes in two cases). This indicates that the PSO/ACO-CS-RO approach is more 

reliable when compared to the Greedy-PSO/ACO-RO approach -  with PSO/ACO-CS- 

RO always at least equalling the number of significant wins of the PSO/ACO-CS 

approach.

Interestingly in a few cases the PSO/ACO-CS and greedy selective approaches with 

recover always enabled (also called basic recovery and examined in Section 5.6.1) seem 

to outperform the PSO/ACO-CS-RO and Greedy-PSO/ACO-RO approaches. For 

instance, in the Prints dataset, the greedy selective approach and PSO/ACO-CS with 

basic recovery seem to outperform the PSO/ACO-CS-RO and Greedy-PSO/ACO-RO 

approaches in the second class level.

TDDC Type Recovery
Type

Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

Greedy Always On 91.41il.49 85.67±1.32 57.22i0.93 80.59il.61
PSO/ACO-CS Always On 91.26il.ll 86.06il.18 57.53il.09 82.36i2.02
Greedy-PSO/ACO-
RO PSO/ACO 91.44il.06 83.48il.21 58.31il.51 84.46i2.38
PSO/ACO-CS-RO PSO/ACO 91.52iO.44 83.98il.65 58.5il.34 84.4il.59

Table 5.18: Comparing the predictive accuracy (%) of approaches using Recovery 

Optimisation against approaches not using Recovery Optimisation on the Prints dataset

Although the approaches with recovery always enabled outperform the PSO/ACO-RO 

based approaches at this one class level it should be noted that PSO/ACO-RO is
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optimising the mean predictive accuracy of the TDDC tree over all four class levels. The 

mean accuracy of the PSO/ACO-CS approach with recovery always enabled is 79.3% 

whilst the mean accuracy of the PSO/ACO-CS-RO approach is 79.6%. This demonstrates 

that, in this case, the PSO/ACO-RO has affected a slight increase in mean performance.

The same pattern of improvement can be seen with the PSO/ACO-CS-RO and 

Greedy-PSO/ACO-RO approaches when compared to the standard PSO/ACO-CS and 

greedy selective approaches respectively. That is, both recovery optimisation approaches 

are more successful in data sets that are more difficult. For instance in the Prosite dataset 

the PSO/ACO-CS-RO approach always significantly improves on the performance of 

every base classification algorithm in all levels.

Prints Interpro Pfam Prosite
Standard Deviation of 

Classif. Accuracy 5.42 5.21 12.13 3.38

Table 5.19: Standard deviations of base algorithm mean performance in each labelled 

dataset (not including ConjunctiveRule)

The performance of the approaches in the Prosite dataset set can be differentiated 

because the performance of each individual classifier is more closely matched. In most of 

the other datasets J48 is always the clear winner in terms of classification accuracy. When 

J48 struggles to perform optimally (as is the case with the Prosite data set) and the 

classifiers perform more similarly, the base classifier errors are more readily corrected by 

the approaches discussed in this chapter. This effect can be seen in Table 5.19 which 

shows the standard deviations of the performance of every base classifier type in each 

dataset (except for ConjunctiveRule which was omitted as it performed equally badly in 

every dataset). As can be seen in Table 5.19 Prosite clearly has the lowest standard 

deviation. This correlates to the higher relative score (PSO/ACO-CS-RO beats all base 

classifiers at every level in the Prosite dataset) of the more advanced approaches

discussed in this chapter when compared to the base classifiers. Interpro has the next
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lowest standard deviation which correlates to the second highest relative score of the 

more advanced approaches against the base classifiers.

5.7. Summary

Our experiments show that both the greedy and PSO/ACO-CS approaches 

significantly improve predictive accuracy over the use of any single fixed algorithm 

throughout the classifier tree, in the majority of cases involving our four protein data sets. 

Overall, the PSO/ACO-CS approach was somewhat more successful (significantly better 

in four cases) than the greedy approach.

PSO/ACO-CS-RO performs the best out of all approaches. In one dataset PSO/ACO- 

CS-RO always significantly outperforms all other base classifiers. Indeed, one of the 

main advantages of the approaches described in this chapter is their robustness; they 

never significantly lose to any base classifier.

Computational time is an issue, with the PSO/ACO-RO based approaches taking large 

amounts of computational time when compared to any of the other approaches. This is 

due to the way in which component classifiers have to be retrained at many of the 

function evaluations when using PSO/ACO-RO (as the building set changes when 

recovery is enabled or disabled for a given classifier node). This is dissimilar to the 

PSO/ACO-CS approach, as the classifiers need only be trained once during a single run 

(as the building set never changes during a single run). A typical single run of the 

PSO/ACO-CS algorithm takes up to 1 hour on a Pentium 4 3.2 GHz machine (for the 

largest data set), whereas a run involving PSO/ACO-RO can take up to 24 hours. This 

means that a complete PSO/ACO-RO experiment involving 10 folds of a cross validation 

procedure can take up to 10 days.

In terms of computational efficiency the greedy approach is the most efficient out of 

the more advanced approaches examined in this chapter. However, the only extra 

computational time spent when using PSO/ACO-CS (when compared to the greedy
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approach) is spent classifying the examples belonging to the validation set. Recall that 

when using the greedy approach the validation set is classified k  times, where k  is the 

number of possible types of classifiers. The PSO/ACO-CS approach requires that the 

validation set be classified a number of times equal to the number of function evaluations 

made by the PSO/ACO search algorithm.

Overall we believe that the use of the more advanced approaches discussed in this 

chapter is more beneficial in more difficult data sets, where classification algorithms are 

more likely to make mistakes. Estimating a priori how likely a classification algorithm is 

to make a mistake is an open problem and this topic is left for future research. However, 

in these experiments, the smaller the standard deviation of the means of the predictive 

accuracies obtained by each component classifier, the better the proposed approaches 

performed when compared to the base classifiers.
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Chapter 6. Hierarchical Ensembles of 
Hierarchical Rule Sets (HEHRS)

6.1. Introduction

In this chapter we propose novel ensemble-based data mining methods tailored to the 

hierarchical classification problem and apply them to six protein data sets. The datasets 

examined in this chapter, as with many other bioinformatics datasets, pose a significant 

problem for any classification technique as they have a relatively large number of 

attributes, in this case ranging from 126 to 708 attributes. The large number of attributes 

increases the search space for the classification algorithm which may often lead to sub- 

optimal performance. Another challenge associated with these data sets is that they 

involve a large number of classes -  ranging from 179 to 351 arranged in four hierarchical 

class levels.

Although some research has applied ensemble methods to protein data 

sets [27] [76] [153] and to hierarchical data sets [56], previous research concentrates on 

“classical” ensemble techniques such as bagging, or ignores any class hierarchy present. 

Some work has been conducted in the field of hierarchical multi-label protein function 

prediction [18] [33] but their approaches rely on modifying the base classification 

algorithm, rather than using ensemble techniques.

The remainder of this chapter is organised in the following way. Section 6.2 gives an 

overview of the HEHRS approach and describes how the ensembles of rule sets are 

generated during training. Sections 6.3 and 6.4 describe the two ways in which the 

predictions from the component rules are combined (using voting and stacking 

respectively). Section 6.4 proposes a new baseline approach (Rule Based Extended
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Multiplicative Method) which we have adapted for hierarchical classification. Section 6 .6  

describes the data sets and how they were created. Section 6.7 discusses the 

computational result. Finally, section 6 .8  gives a summary of our findings.

The work presented in this chapter has partially been reported in a journal paper [82].

6.2. Building a Hierarchical Ensemble of Hierarchical Rule 

Sets (HEHRS)

6.2.1. Overview

In essence, the proposed ensemble method for hierarchical classification can be 

considered a new variation of bagging adapted to the hierarchical classification problem. 

In this method, an ensemble of rules is created by varying the sets of positive and 

negative examples according to the class hierarchy. In order to classify test examples, the 

predictions made by the rules are combined by using either voting or stacking. Such a 

method should improve the accuracy beyond the use of a non-ensemble based technique 

as the errors in each model can be, to some extent, mitigated by combing the predictions 

made by multiple models. As the bioinformatics data sets examined in this chapter make 

it more difficult to induce accurate models -  because of the high number of classes, 

attributes and the sparseness of the data at lower levels -  the potential benefits from using 

such an error correcting technique become greater.

Let us first describe the basic idea of the proposed method at a high level of 

abstraction. Recall that in the standard top-down hierarchical classification approach a 

rule set is built to distinguish between a set of sibling class nodes, using the training 

examples belonging to those sibling class nodes. By contrast, in the proposed HEHRS 

method K  rule sets will be built for each set of sibling nodes in the class tree, where K  is 

the number of class levels between the current level (inclusive) and the deepest class 

level (inclusive) which is a descendant from either of the current class nodes. For instance
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for a non-leaf node in level 2 of the class tree and a class tree with 4 levels (not counting 

the root node which is at the Oth level), K= 3 rule sets will be generated, namely one rule 

set for each of the class levels 2, 3 and 4. All these rule sets contain rules predicting 

classes at the second level of the class tree, but they are called here hierarchical rule sets 

because they have been produced from examples at different levels of the class tree. In 

addition, to continue with this example, these three rule sets also form an ensemble of 

rule sets, and the proposed method builds several ensembles like this, at different levels 

of the class tree. Therefore, the ensembles also form a hierarchy, namely a hierarchy of 

ensembles, where each ensemble consists of a hierarchical rule set. Hence, this approach 

is here called Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS).

6.2.2. Technical Details of the HEHRS Method

Let us now describe HEHRS in more detail, starting with notation issues. In general 

an ensemble of rule sets created for a given set of sibling class nodes is denoted as Es< 

where S  is a set of sibling class nodes. A rule set within this ensemble (one of the K  rule 

sets) is denoted by the letter i, where i corresponds to the level at which the rule set is 

built. Therefore any rule set belonging to Es at the level i, used to distinguish between a 

set of sibling class nodes S, is denoted by Esi. Note that each rule in Esi will predict one of 

the classes in S, so there will be one or more rules (i.e. a subset of the rules in Esi) 

predicting each class in S. A set of rules in Esi built at level i predicting a single class d  in 

S  is denoted as Esid. As discussed previously Es consists of K  rule sets, each containing 

rules produced from a different level of the class tree. For each level i and for each class c 

which is a descendant class of d, the rule induction algorithm will discover rules 

predicting class d, using as positive examples the examples having class c, and using as 

negative examples the examples having any class different from c at level i that is a 

descendant of d in the class tree. These concepts are illustrated in Figure 6.1. Note that 

Figure 6 .1 refers to a hierarchy of rule sets, rather than the class hierarchy. Hence, each
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node (d) in Figure 6.1 denotes an ensemble of rule sets for a given class (as explained 

next).

()C ) A Rule Set Predicting the Class 
of the Current Node

n n  Ensemble of Rules Predicting 
J the Labelled Class Node

IP d  Scope of Ensemble or Rule Set
Level 1

Figure 6.1: Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS)

In Figure 6 .1 the grey boxes represent the scope of the classification performed by a 

given rule set (Est) or ensemble (Es). In the case of Es the scope of the classification 

involves the sibling classes S. The main tree -  i.e, the large tree at the centre of Figure 6.1 

-  shows the hierarchy of ensembles in a standard top-down approach. The expanded 

(smaller) trees show the rule sets (ESI)  generated by HEHRS. For each set of sibling 

classes (S) in the main tree, there is a hierarchy of rule sets in the corresponding smaller 

tree, indicated by the presence of several grey boxes in the smaller tree. The label S in 

Figure 6.1 shows an example set of sibling classes (2.1 and 2.2) predicted by an ensemble, 

and the label d  within S shows one of the classes (2.1) in the set S.

Table 6.1 shows in detail the variation in the sets of examples used at different class 

levels when inducing classification rules for HEHRS, with respect to Figure 6.1. For

example, let us consider the construction of the ensemble of rule sets Es labelled ID: 1 in
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the top-right part of Figure 6 .1. This ensemble will consist of rules predicting either class 

1 or class 2, i.e., the set of sibling classes S = {1, 2}. So, the variable d, indicating the 

class to be predicted by a rule in Es, will take on the value 1 or 2. This ensemble Es will 

consist of four rule sets, each of them denoted Esi, i-T,...,4, where the z'-th rule set is 

constructed from examples in the z'-th level of the class tree.

Level
(i)

Class (d) in set of si bling classes S
d= 1 d= 2

1 1 2
2 1.1, 1.2 2.1, 2.2
3 1.1.1, 1.1.2 NA
4 1.1.1.1, 1.1.1.2, 

1.1.2.1, 1.1.2.2
NA

Table 6.1: Values (Classes) taken by variable c at each level i used to construct the Rule

Sets in Es ID: 1, in Figure 6.1

As can be seen in Table 6.1 at the first level z is set to 1. The rule induction algorithm 

is given the training set with examples belonging to classes (c) 1 and 2 , it then returns a 

rule set predicting classes (d) 1 and 2 for the first rule set Esi,. 4S'= {1,2}, z=l. At the second 

level i is set to 2. The rule induction algorithm is given the training set with examples 

belonging to classes (c) 1.1, 1.2, 2.1 and 2.2 (descendants of the classes in S). It then 

returns a rule set with rules discriminating between these classes. The rules predicting 

classes 1.1 and 1.2 (Esid where z'=2 and d= 1) have their consequent changed to predict 

class (d) 1. The rules predicting classes 2.1 and 2.2 {Esid where z'=2 and d= 2) are changed 

to predict class (d) 2  and are added, with the other rules now predicting class 1, to the 

second rule set Esij 5= {1,2}, z'=2. At the third level i is set to 3. As there are no third level 

descendant classes of class 2 (in the right-hand side of Table 6.1 the term "NA" means 

"not applicable") only rules predicting class 1 will be contained in this Esi. The rule 

induction algorithm is given a training set containing examples belonging to classes (c) 

1.1.1 and 1.1.2. The rules predicting the classes 1.1.1 and 1.1.2 have their consequent
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class changed to predict class (d) 1. They are then added to Esid where i=3 and d= 1, which 

in this case is equal to Esi where i=3. An analogous procedure (as described in Table 6.1) 

is performed at level 4 (/ = 4) where again, because this is quite an unbalanced class tree, 

there are only rules predicting class (d) 1 in the rule set Esi where i=4.

Note also that when the level i is set to 2 and the class (d) being predicted by the 

ensemble is 1, the rule induction algorithm produces a rule set discriminating between 

classes (c) 1.1 and 1.2  (along with 2.1  and 2 .2 ), which at first glance seems counter­

intuitive -  as they are both descendants of class 1, the class (d) being predicted. The 

reason for this is to try and encourage diversity in the rules generated. As the rule 

induction algorithm is unaware of the hierarchical relationships between classes, the 

algorithm could produce the same (or very similar) rule sets for, say, the following two 

classification scenarios: (a) class 1 vs. class 2 ; and (b) class 1.1 vs. other non-descendant 

classes of class 1 (i.e., classes 2.1 and 2.2). Although it is still possible that the same or 

very similar rules will be generated between different levels and classes even when using 

the method described in this section, the probability (dependant on the make-up of the 

training set) of this happening is smaller when including the examples belonging to 

sibling classes as negative examples when inducing rules. Recall that to make an 

effective ensemble it is very important that the component classifiers be diverse, even if 

at the expense of some accuracy [9] [24] [144],

This section described how the ensemble of rules produced by HEHRS is built during 

the training phase of the algorithm. The next two sections describe two different 

approaches to combine the predictions of the ensemble of rules during the testing phase, 

namely an approach based on voting and one based on stacking, respectively.
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6.3. Combining the Predictions from the Multiple Rules in 

HEHRS using Voting

6.3.1. Weighted Voting for HEHRS

After the entire hierarchical ensemble of hierarchical rule sets has been induced in the 

training phase, all the induced rules can be used to predict the class of a new example in 

the test set. In this testing phase, in order to combine the predictions of the rules in the 

hierarchical ensemble into a single predicted class at each level of the class tree for a 

given test example, each rule in the ensemble is assigned a weight. That is, for each 

ensemble of rule sets Es, each rule in Es is assigned a weight.

The weight of a rule is a measure of its classification accuracy, computed on the 

training set. When the class predicted by a rule is the majority class (a class having more 

examples than the rest of the training set combined) its weight is computed by the product 

of the rule's sensitivity and specificity [74], as shown in Equation 6.1, where TP, FN, FP 

and TN are, respectively, the number of true positives, false negatives, false positives and 

true negatives associated with the rule [164],

When a rule predicts a minority class (i.e., any class different from the majority class) 

the precision [74], shown in Equation 6.2, is used as the rule’s weight. This approach, 

based on measuring rule quality either as the product of sensitivity and specificity or as 

precision, depending on the relative frequency of the class predicted by the rule, is an 

attempt to get a more “balanced” weight in extreme cases, as follows.

When there are a small number of examples in the class being predicted, when 

compared to the overall size of the training set, then the way in which specificity 

accounts for the number of false positives becomes problematic. This is because 

sensitivity multiplied by specificity weights the sensitivity (TP / (TP + FN)) and the 

specificity (TN  / (TN + FP)) equally, ignoring the actual number of true positives and 

false positives. Therefore, in the case where the minority class is being predicted, it is
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possible to obtain a good rule quality even though the ratio of TP / (TP + FP) -  i.e. the 

precision -  is bad. Such a situation will likely produce a low accuracy as although a high 

sensitivity and relatively high specificity may be obtained, many examples may be 

misclassified as this minority class (due to the absolute number of false positives). The 

opposite is true for the majority class; the absolute number of false positives becomes less 

important for producing good accuracy as the number of true positives will likely be 

much higher. Sensitivity multiplied by specificity increases the importance of obtaining a 

low number of false positives when compared to precision. This is because it is more 

useful to consider the ratio TN / (77V + FP), rather than ratio of the large number of true 

positives to the low possible number of false positives (as it is implicitly the case with 

precision). For further discussions see [80],

Sensitivity x Specificity = (TP / (TP + FN)) x (TN / (TN + FP)) 

Equation 6.1: Rule Weight (Majority Class)

Precision = TP / (TP + FP)

Equation 6.2: Rule Weight (Minority Class)

The testing phase can be seen in Pseudocode 6 .1. A test example is classified in a top- 

down fashion, as follows. Let S  be the set of sibling classes out of which one class must 

be assigned to the example. Initially, S  contains the set of classes in the first class level. 

For each class d in S, the weight of class d is given by the summation of the weights of 

all the rules in the ensemble of rule sets Es that cover the test example and predict class d. 

The class with the greatest weight is assigned to the test example at the first level. Next 

the example is pushed down to the second level, where the set S  is updated to contain the 

child classes of the class assigned to the example in the first level -  the ensemble Es is 

also updated accordingly. Again, for each class d in the current S  the weight of class d is
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computed -  adding the weights of all rules in the current Es that cover the test example 

and predict class d -  and the class with the greatest weight is assigned to the test example 

at the current (second) level, and so on. This process is repeated until the test example 

reaches a leaf node in the class tree.

FOR each example in test set
S = The set of classes in first class level 
d = No class
/* S will not contain classes when d is a leaf node */
WHILE S contains classes

FOR each rule set Esi in Es for this set of sibling classes S 

Find rule from rule set in Esl that covers example 

Record which class (from S) the rule predicts and what 
weight is associated with the rule 

END FOR
d = the class from S that has the highest accumulative weight 
S = the set of d's child classes 

END WHILE
Classify example as having class d 

END FOR

Pseudocode 6.1: The testing phase of Weighted Voting for HEHRS

To allow the user to interpret a prediction made by HEHRS for a given example a 

simple procedure can be implemented. After the example has been fully classified to the 

leaf level it is possible to examine all the rules that covered it. All the rules that have 

consequent classes that are parents of the final leaf classification can be used to present 

an overview of the classification process to the user. However, the issue of such 

interpretation by the user is out of the scope of this thesis.
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6.3.2. Optimising HEHRS' Rule Weights with PSO

As computed by Equation 6.1 and Equation 6.2, the weight of a rule in HEHRS 

depends only on the predictive accuracy of that individual rule, and it does not take into 

account the complex interactions of the rules in an ensemble. It is possible to optimise the 

set of rule weights by taking rule interaction into account, by defining two elements:

(a) An evaluation function that measures the quality of a candidate set of rule weight 

values. The evaluation function to be maximised is the normalised total number of correct 

predictions made at each internal (non-leaf) class node and each leaf class node. This 

evaluation function is computed on the training set.

(b) An optimization method, which searches for the optimal set of rule weight values 

in the space of candidate weight values. In this work we use, as an optimization method, a 

Particle Swarm Optimization (PSO) algorithm.

Recall that PSO is a meta-heuristics that maintains a population of particles -  each of 

them a candidate solution to the target problem -  that iteratively move around the search 

space [95]. The position of a particle in the search space represents the contents of its 

candidate solution, and so moving the particles correspond to generating new candidate 

solutions. In this work, each particle’s position corresponds to a set of rule weight values 

for the HEHRS method. Each particle is initialised with randomly deviating (±1) position 

generated from the rule weight equations and random velocity. The value ±1 is used to 

ensure that there is an even spread of initial positions over the range of the evaluation 

function ([0, 1]) with up to ±1 extra to stimulate exploration. The rest of the algorithm 

uses the standard PSO methodology (see Section 3.4).

The main motivations for using PSO is that it performs a global search (rather than 

the greedy search performed by local search algorithms), and has been empirically shown 

to be a powerful optimizer, often outperforming more traditional population-based 

optimizers such as evolutionary algorithms (EAs) [94], [107]. In any case, we do not 

claim that PSO is the “optimal” algorithm for our rule weight optimization problem. It
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produced very good results -  as will be shown later -  but it is possible that other global 

search optimization methods such as EAs would produce a similarly good result. The 

issue of comparing PSO and EAs is out of the scope of this thesis, and is left for future 

research.

Two versions of the PSO for rule weight optimization are proposed in this work, one 

where negative weight values are allowed and another one where they are not. In the 

former case, if a rule is extremely unreliable it may be assigned a negative weight, 

detracting from the class predicted by that rule. An example of where a negative value 

may be appropriate for a rule is where that rule covers more examples of other classes 

than its own consequent class and so, in fact, signals that other classes are more likely. In 

the version where negative values are not allowed, the lowest possible rule weight is 0 , 

where a rule will not have any influence in the classification of a test example.

In some cases it does not matter what the weights associated with certain rules are 

during the training phase. For instance, if all examples are always correctly classified by 

all rules, then as long as the weights are all positive it does not matter what the weight 

values are. This can cause a problem, as even though all examples are correctly classified 

by all rules during the training phase they may not be during the testing phase. Therefore, 

during the testing phase the exact weights may become important. To combat this 

situation it is detected whether any rules do not take part in any contentions (where two 

or more rules predict different classes for any given example) during the training phase. If 

they do not they will not have their weights optimised by the PSO algorithm and default 

to the normal rule weights. Such contentions (or lack of) can be detected by assigning a 

flag to each rule (with a default value of off); the sets of rules covering each example can 

then be examined. If any set of rules contain rules covering a given training example with 

different consequent classes then the contention flag is set to on for those rules, meaning 

that the weight for those rules should be optimised. The rules left with a flag of o ff should 

not have their weight optimised.
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The two main elements of the proposed PSO for rule weight optimization are the 

particle representation and the fitness function. The particle representation consists of a 

vector with n components, each of them denoted w,-, i = 1 where w, is the weight 

associated with i-th rule and n is the total number of rules. That is:

Particle = w,, w,,..., wn

The fitness function measures the quality of a particle, i.e., the quality of a candidate 

set of rule weights. In order to compute the fitness of a particle, for each example in the 

training set, the system extracts the rule weights from the particle and uses those weights 

to decide which class will be assigned to the example. This decision is made by 

computing, for each class, the total weight of rules that cover the example and have that 

class, as discussed earlier. The class chosen to be assigned to the example is the class 

with the largest total weight. After every training example has been completely classified 

(i.e., assigned a class at a leaf node in the class tree), the value of the fitness function for 

the current particle is the classification accuracy on the training set. This is the average 

accuracy across all four class levels.

Note that, ideally, the fitness function should be based on the classification accuracy 

on a hold out set, i.e. the original training set should be divided into a building set (used 

to build the rules) and a validation, hold out set, used to compute the classification 

accuracy to be used as the fitness of a particle. This would have the advantage of 

avoiding overfitting of the rule weights optimised by the PSO to the training set. 

However, it was not feasible to use such a hold out set in our experiments, due to the 

sparseness of data at lower levels of the class tree. It would be impossible to induce rules 

for some classes if examples from the training set were reserved for a hold out set. We 

consider the benefits of creating rules for all classes outweigh the problems due to 

possible overfitting from the lack of a hold out set.
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6.4. Stacking for the Hierarchical Ensemble of Hierarchical 

Rule Sets (SHEHRS)

It is reasonable to think that out of all the rules built by the HEHRS method some of 

them will be redundant or detrimental to the overall performance of the system. The PSO- 

based HEHRS approaches should ideally consider these cases by setting the weights of 

the low quality rules to 0  (or negative values) and so minimise the influence of these 

detrimental rules. The SHEHRS (Stacking for the Hierarchical Ensemble of Hierarchical 

Rule Sets) method attempts to address these same issues in a more effective way by 

creating meta-rules [159], Also, as a stacking method (see section 3.3 for a discussion of 

stacking), the SHEHRS method should be able to learn from the fact that some classifiers 

often misclassify some examples.

The meta-rules generated by SHEHRS are not derived from the features (attributes) in 

each original (base level) example, but instead are learnt from the decision making 

process of the original rules. In order to build these meta-rules, we first create a meta-data 

set where each meta-example corresponds to an original example. Each meta-example is 

described by a set of binary meta-features, each of which indicates whether or not the 

original example is covered by a given original (level-0) rule. More precisely, each meta­

example consists of a vector with (n+1) components, as follows:

Meta-Example_ = Rz], R :2,..., R :n, C.

Meta-examplez is the zth meta-example in the meta-dataset, RZJ-,j =  1,..,« (where n is 

the number of level-0  original rules), is a binary meta-variable taking in the value “yes” 

or “no” to indicate whether or not the yth rule covers the zth original example. Cz is the 

class of the original zth example.
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FOR each example in training set
S = The set of classes in first class level 
d = No class
/* S will not contain classes when d is a leaf node */
WHILE S contains classes

/* Create the meta-data set If necessary */
IF meta-data set for S does not exist

Create a meta-data set, where each meta-feature corresponds 
to a rule in Es

FOR each rule set Esl in Es for this set of sibling classes S 

Find rule from rule set Esi that covers example and record 
it

END FOR
ADD new meta-example to meta-data set for S. Where meta­
example's class is the true class of example (at the level of 
the classes in S) and all of its feature-values are "no" 

except for those corresponding to the rules that covered the 
example from the previous FOR loop - which are set to "yes" 

d = The true class of example (at the level of the classes in 
S)

S = The set of d 's  child classes 
END WHILE 

END FOR

Pseudocode 6.2: The training phase of SHEHRS

Recall that, during the rule discovery process of the HEHRS method, each rule in Esi 

is constructed to predict a single class from the set of sibling classes S  at class level i. 

Note that it is clear which meta-features correspond to which level in the class hierarchy, 

or which rules are used to predict the classes in which level for a given original example. 

Hence (as shown in Pseudocode 6.2), in order to predict the classes in S  we construct a
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meta-data set having only meta-features corresponding to the discovered rules in Es. Note 

that this means we create only one meta-data set for each ensemble of hierarchical rule 

sets Es. We now have a new secondary hierarchical classification problem, so it would be 

possible (though not necessarily useful) to recursively apply an extended version of this 

approach.

( ^ )  A Rule Set Predicting the Class ( ^ )  A rule covering the example 
of the Current Node

Figure 6.2: An Example Classification in SHEHRS

To illustrate how SHEHRS uses the result of HEHRS, Figure 6.2 shows the 

ensembles of rules produced by HEHRS in a simple two level class hierarchy. In 

Figure 6.2, each of the ellipsis R1,...,R10 denotes a single classification rule. (Note that 

this notation is being used in the example of Figure 6.2 purely to keep the example and 

the figure as simple as possible, since in general in HEHRS each of those ellipses would 

represent a set of rules, as in the notation used in Figure 6.1.) Figure 6.2 also shows the 

rules that are covering a given training example, which are the rules R l, R6  and R8 . 

Given the result of HEHRS shown in Figure 6.2, and the fact that the given training 

example has class 1.2, SHEHRS generates, during its training phase, the meta-examples 

shown in Table 6.2 and Table 6.3.
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IVleta-Features Actual Class
R1 R2 R3 R4 R5 R6 1yes no no no no yes

Table 6.2: Meta-example generated by SHEHRS for the set of sibling classes S = {1,2},

at level 1 in the class hierarchy

Meta-Features Actual Class
R7 R8 1.2no yes

Table 6.3: Meta-example generated by SHEHRS for the set of sibling classes S = {1.1,

1 .2 }, at level 2 in the class hierarchy

For the sake of simplicity Table 6.2 and Table 6.3 show only one meta-example each. 

Of course, the meta-data set will contain a meta-example for each original (base level) 

example of the classes to be predicted. A separate meta-data set is generated at each set of 

sibling classes S. Table 6.2 shows the meta-example generated at level 1. The only meta­

attributes with value yes for this meta-example are the ones referring to rules R1 and R6 , 

since these are the only rules covering the original example at level 1 .

Note that the class predicted by SHEHRS’ level-1 classifier for the meta-example at 

class level 1 is not used to decide how the meta-example travels through the HEHRS tree 

when building the meta-dataset for class level 2 ; only the actual (true) class of the 

example does. Hence, Table 6.3 shows the meta-example generated at class level 2.

As shown in Pseudocode 6.3 -  when an example of unknown class needs to be 

classified it must first be converted into a meta-example based on which rules cover it 

from the original ensemble of rule sets (Es) produced to decide which class the example is 

assigned to at each divide. Once this conversion is done, the classification is performed 

using the standard top down hierarchical classification approach, using the meta-rules 

discovered in the training phase.
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FOR each example in test set
S = The set of classes in first class level 
d = No class
/* S will not contain classes when d is a leaf node */
WHILE S contains classes

/* Creating the meta-example */
FOR each rule set Esi in Es fo r this set of sibling classes S 

Find rule from rule set Esi that covers example and record 
it

END FOR
meta-exam ple = New example where all feature-values are "no" 
except for those corresponding to the rules that covered the 
example from the previous FOR loop - which are set to "yes" 

/* Classifying the new meta-example */
d = Classify meta-example using the meta-classifier (rule

set) constructed from the meta-data set associated with 
S (constructed during the training phase) and return the 
predicted class label 

S = The set of d 's  child classes 
END WHILE
Classify example as having class d 

END FOR

Pseudocode 6.3: The testing phase of SHEHRS

Note that in the version of SHEHRS described so far each meta-feature is a binary 

one, indicating only whether or not the example is covered by the corresponding rule. 

Hereafter this version of SHEHRS will be referred to as Cov-SHEHRS (rule Coverage- 

based SHEHRS). An alternative to this approach is to use the rule weights from the 

HEHRS method as the set of meta-features, rather than using meta-features that just 

indicate whether or not an example is covered by each rule. In essence this is an
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extension of the voting scheme discussed in section 6.3.1, where rules are built to decide 

the vote. In this alternative approach a meta-example has the following structure:

Meta-Example_ = N z2,...,N zn,C :

Where N zj , j  = 1 is the weight of they'th class {d) and n is the number of classes in

the set of sibling classes S. This version of SHEHRS will be hereafter referred to as Wei- 

SHEHRS (rule Weight-based SHEHRS).

Meta-Example ID Meta-Features Actual Class
Class 1 Class 2

1 1.2 0.7 1
2 1 0.9 1
3 0.3 1.1 2
4 1.2 1 2
5 1.1 1 2

Table 6.4: A set of rule weight-based SHEHRS meta-examples

Table 6.4 shows a possible set of meta-examples for Wei-SHEHRS, where each meta­

feature is the accumulative rule weight of all rules covering the base level example for 

each class d. This simple set of meta-examples might lead to the discovery of a meta-rule 

set such as:

IF Class_l > 0.3 AND Class_2 < 1 THEN CLASS = 1 
IF Class_2 > 1 THEN CLASS = 2

Even in this simple example it is clear to see the potential advantage gained by using a 

more flexible approach (when compared to standard weighted voting) such as Wei-
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SHEHRS. If the simple weighted voting scheme presented in Section 6.3.1 was used to 

classify these examples, meta-examples with ID 4 and 5 would be misclassified.

It is also possible to mix these two kinds of meta-features (Boolean rule coverage and 

real-valued rule weight) to form a meta-example with both binary and continuous meta­

features. The motivation for using this approach is to give the meta-leaming algorithm 

more information for discovering high-quality meta-rules. This approach including the 

two kinds of meta-features will be hereafter referred to as Cov-Wei-SHEHRS.

The main difference between SHEHRS and classical stacking (designed for flat 

classification) is the way in which the level-0  classifiers are constructed using the class 

hierarchy in SHEHRS. As discussed previously, the problem is broken down using the 

divide and conquer approach, building an ensemble for each set of sibling class nodes, 

rather than building a single level- 1 classifier that makes a single complete prediction for 

each example (although this is a possible future research direction).

As a meta-data set is constructed any classifier-learning algorithm can be used to 

build a classifier to classify it. A rule induction algorithm has the advantage building a 

model that is comprehensible and has the possibility of only using a subset of the meta­

features. In addition, rule induction algorithms are in general relatively computationally 

fast, by comparison with much slower types of algorithms such as artificial neural 

networks and support vector machines. This computational efficiency is important in the 

context of SHEHRS and the datasets used in our experiments, where there are a large 

number of classes to be predicted, as will be shown later.

As is common in the literature [159] we also compare the proposed SHEHRS using a 

rule induction algorithm against a Bayesian method which constructs the level-1 

classifiers using a naive Bayesian classification algorithm [135], which is also a 

computationally efficient type of classification method.
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6.5. Rule-Based Extended Multiplicative Method

This method is derived from a method proposed by Sun et al. [152] to reduce the 

problem of blocking in hierarchical multi-label classification. The blocking problem was 

described by Sun et al. in the following way. Each class node in the class tree is 

associated with a probabilistic classifier, learned during the training phase. In the testing 

phase, an example with unknown class is classified in a top-down fashion, as follows. For 

each class node in the first level of the class tree, the example is assigned that class if the 

corresponding classifier predicts that class with a probability greater than a predefined 

threshold. An example is said to be rejected by a classifier if the probability of the 

example having the class predicted by the classifier is smaller than or equal to the 

threshold. For each of the (parent) classes assigned to the example at the first level, the 

example is pushed down the class tree to the child class nodes of those parent classes. 

Then, for each of those child classes the example is either assigned that child class or is 

rejected by the corresponding classifier depending on the probability of that class as 

computed by the classifier (again, compared with a threshold), etc. This top-down 

classification process is repeated until the example reaches the leaf nodes of the class tree. 

In this context, blocking occurs when an example is wrongly rejected by a classifier in an 

internal (non-leaf) node of the class tree, and so the example can never be shown to the 

classifiers that are descendants of the classifier that made the wrong rejection. As a result, 

the example can never be correctly classified at class levels deeper than d, where d is the 

level of the classifier that wrongly rejected the example.

One of the methods proposed by Sun et al. to cope with the blocking problem consists 

of assigning an example to a leaf class in the class tree if the multiplied probabilities of 

the example belonging to the internal (non-leaf) classes along the path from the root node 

to the leaf class node exceed a certain threshold. The authors called their approach the 

Extended Multiplicative Method (EMM).

169



Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

Note that in Sun et al.’s work an example can be assigned to more than one class at 

each hierarchical level, which is characteristic of multi-label classification problems. This 

is not the case in the data sets examined in this chapter, where a single class must be 

assigned for each level. In addition, EMM was proposed in the context of probabilistic 

classifiers, which again is not the case in our work, where the classifier consists of a set 

of IF-THEN classification rules.

Therefore, we adapted EMM to the context of our work, where the classification of 

test set examples is performed by classification rules and we must assign only one class 

label per hierarchical level to each example. In this context, there is no need for the 

threshold used by EMM, since a testing example is simply assigned the best predicted 

class at each hierarchical class level. In addition, note that different leaf class nodes can 

be at different depths in the class tree. Hence, just multiplying the probabilities along 

each path from the root to a leaf class node is not appropriate because, when we compare 

the probabilities associated with different leaf classes in order to choose the best leaf 

class to be assigned to the testing example, shallower leaf class nodes would have an 

advantage over deeper ones -  given the reductive nature of multiplying positive numbers 

smaller than 1. Furthermore, there is no innate sense of probabilistic matching given a 

rule-based classifier, so it is natural to use a measure of rule quality instead of 

probabilistic matching.

Given this discussion, our variant of EMM, called Rule-based EMM, finds the best 

"path" consisting of a series of rules discovered by HEHRS -  one rule for each class level. 

It considers every possible path by considering not only the best rule covering the current 

test example at each class level, but all possible rules that cover the current test example. 

The best path is considered to be the path with the highest value of the geometric mean of 

all the rule weights along the path from the root to the class leaf node, as given by 

Equation 6.3. The geometric mean is used as the rule qualities in this hierarchical setting 

have a multiplicative (rather than additive) nature -  at each progressively lower level in
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the hierarchy the rule can only correctly classify the set of examples correctly classified 

by its parent classifier.

PathQuality = lyJwl x w2 x ...w,

Equation 6.3: Rule Path Quality for Rule-Based EMM

Where PathQuality is the score for a certain path and wn i = 1,...,/, is the weight

associated with the rule covering the example at class level i in that path and / is the 

number of rules that cover the example (i.e. the number of class levels) in that path. The 

formula used to compute each rule weight is given by Equation 6.1 and Equation 6.2.

6.6. The Creation of the Bioinformatics Data Sets

The hierarchical classification methods proposed in the previous section were 

evaluated in six challenging real-world datasets involving the prediction of protein 

function. The protein functional classes to be predicted in these data sets are the 

functional classes of GPCRs (G-Protein-Coupled Receptors) or Enzymes.

The protein functional classes are given unique hierarchical indexes by GPCRDB 

(Section 2.6.2) in the case of GPCRs and by Enzyme Commission Codes (Section 2.6.3) 

in the case of enzymes. In the case of GPCRs, examples (proteins) have up to 5 class 

levels, but only 4 levels are used in the datasets created in this work, as the data in the 5th 

level is too sparse for training -  i.e., in general there are too few examples of each class at 

the 5th level. In any case, it should be noted that predicting all the first four levels of 

GPCR’s classes is already a challenging task. Indeed, most works on the classification of 

GPCRs limit the predictions to just the topmost or the two topmost class levels (families 

and subfamilies but not groups, etc.) [15] [73] [92] [116]. All 4 levels of the Enzyme 

Commission Codes are used in the created Enzymes data sets.
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The data used in our experiments was constructed from data in UniProt (Section 2.6.1) 

and GPCRDB. UniProt is a well known biological database, containing protein sequence 

data and a rich annotation about a large number of different kinds of proteins. It also has 

cross-references for other major biological databases such as Prosite (Section 2.5.1), 

Prints (Section 2.5.3 ), Pfam (Section 2.5.2) and Interpro (Section 2.5.4) (see below). It 

was extensively used in this work as a source of data for creating the data sets used in our 

experiments. Only the UniProtKB/Swiss-Prot was used as a data source, as it contains a 

higher quality, manually annotated set of proteins. Unlike Uniprot, GPCRDB is a 

biological database specialised on GPCR proteins.

We did experiments with four different kinds of predictor attributes, each of them 

representing a kind of “protein signature”, or “m otif’, namely: FingerPrints from the 

Prints database, Prosite patterns, Pfam and Interpro entries (see Section 2.5 for 

descriptions of these different signatures). We created six data sets to evaluate the 

proposed hierarchical classification methods, three GPCR data sets and three Enzyme 

data sets. For the GPCR data sets the main predictor attributes were Prints, Prosite and 

Interpro entries (with a different type of motif used in each of the data sets). In addition, 

all three GPCR data sets used as predictor attributes the protein's molecular weight and 

sequence length. For the Enzyme data sets the main predictor attributes were Prosite, 

Interpro and Pfam entries. Again, all three enzyme data sets used the protein's molecular 

weight and sequence length as predictors.

Any duplicate examples (proteins) in a data set are removed in a pre-processing step, 

i.e., before the hierarchical classification algorithm is run, to avoid redundancy. For both 

GPCR and Enzyme data sets, if there are fewer than 10 examples in any given class in the 

class tree that class is merged with its parent class. If the parent class is the root node, the 

entire small class is removed from the data set. This process ensures there is enough 

training and test data per class to carry out the experiments. (If a class had less than 10 

examples, during the 10-fold cross-validation procedure there would be at least one 

iteration where there would be no example of that class in the test set, an undesirable
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situation.) Any binary attribute that has a value which occurs in only one example is 

removed from the corresponding data set, since these binary attributes in general do not 

have a good predictive power. An initial random sample of 15000 enzymes from the 

UniProt database was used to generate the enzyme data sets. Less than the original 15000 

examples occur in the final data sets because of the duplicate and small class removal 

process.

After data pre-processing, the final datasets used in the experiments have the numbers 

of attributes, examples (proteins) and classes per level (expressed as level 1/ level 2 /level 

3/level 4) indicated in Table 6.5.

GPCR/
Prints

GPCR/
Prosite

GPCR/
Interpro

EC/
Prints

EC/
Prosite

EC/
Pfam

#Attributes 283 129 450 382 585 708
#Examples 5422 6261 7461 14038 14048 13995

^Classes 8/46/76/49 9/50/79/49 12/54/82/
50

6/45/92/
208

6/42/89/
187 6/41/96/190

Table 6.5: Main characteristics of the datasets used in the experiments

6 .7 . Computational Results

This section reports computational results evaluating the methods proposed in 

Sections 6 .2-6.5 in the created datasets described in Section 6 .6 . Recall that Sections 6.2- 

6.5 proposed several types of hierarchical classification methods, namely:

(a) Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS) with rule weights 

computed by Equation 6 .1 and Equation 6.2;

(b) HEHRS with rule weights optimized by PSO -  two versions of the PSO were 

proposed, with and without a lower limit of 0  for the rule weights; these two versions are 

hereafter referred to as LimPSO-HEHRS and PSO-HEHRS, respectively. Both versions 

of PSO are a "vanilla" PSO [21] with standard parameter settings [35]: W= 0.73, cpi = <P2 =

173



Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

2.05. Note that these parameter settings have been carefully calculated and that the 

performance of PSO is sensitive to them (as explained in Clerc and Kennedy’s work [35]).

(c) The Extended Multiplicative Method adapted for rule-based (rather than 

probabilistic) classifiers -  hereafter called Rule-EMM for short.

(d) The Stacking for HEHRS approach using the rule coverage meta-attributes, using 

rule induction algorithm RIPPER as the level-1 classifier or Naïve Bayes as the level-1 

classifier, referred to as Cov-SHEHRS and Bayes-SHEHRS respectively.

(e) The Stacking for HEHRS approach using the rule weights as meta-attributes, with 

RIPPER as the level-1 classifier, referred to as Wei-SHEHRS.

(f) The Stacking for HEHRS approach using the rule weight and rule coverage meta­

attributes with RIPPER as the level-1 classifier (Cov-Wei-SHEHRS).

These methods are compared against a baseline method, namely the standard top- 

down approach for hierarchical classification. This approach consists of simply running a 

rule induction algorithm at each internal (non-leaf) node of the class tree, as described in 

Section 3.7.2. In the proposed and baseline methods the base rule induction algorithm 

used in our experiments was the well-known RIPPER algorithm [39],

Throughout the entire set of experiments 10-fold cross validation [164] is used. Since 

PSO is a stochastic method, the PSO-HEHRS and Lim PSO-HEHRS methods are run 10 

times each -  with different random seeds used to create the initial population in each run 

-  for each one of the 10 iterations of the cross-validation procedure. As the remainder of 

the methods are deterministic, they are run just once for each of the 10 cross-validation 

iterations.

Table 6 .6  through Table 6.11 and Table 6.15 through Table 6.20 show the predictive 

accuracy that the different methods achieved in each data set during 10-fold cross 

validation. The numbers after the “±” symbol are standard deviations. The first set of 

tables (Table 6 .6  through Table 6.11) report results involving voting schemes for HEHRS 

and the Extended Multiplicative Method. The second set of tables (Table 6.15 through 

Table 6.20) report results involving stacking for HEHRS. In all these tables a cell is
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coloured dark grey if there is a statistically significant win of the method in the 

corresponding column against the baseline method, according to a two-tailed Student's t- 

test with significance level of 0.05. The t-test used is WEKA’s implementation of Nadeau 

and Bengio’s corrected re-sampled t-test [164], This more conservative corrected t-test 

takes into account the ratio of training and test examples in an attempt to limit the number 

of significant results occurring by chance. A cell is coloured light grey if there is a 

statistically significant loss when compared to the baseline method. Table 6.12 and 

Table 6.21 show the cumulative scores -  calculated based on the results of the Student's t- 

test -  for each method, at each class level, for all data sets. For each data set, in 

Table 6.12 and Table 6.21 one is added to the score of each cell if its corresponding 

method (indicated by the column label) at the corresponding class level (indicated by the 

row label) significantly beats the baseline approach in that data set. One is deducted from 

the score in the cell for a loss against the baseline approach in the same manner. The 

totals in the bottom row of the table are simply the summed results -  over all data sets -  

from each class level for each method.

Table 6.13, Table 6.22 and Table 6.14, Table 6.23 show the un-weighted and 

weighted -  respectively -  misclassification costs associated with each experiment. The 

misclassification cost is computed by finding the shortest path in the class tree from the 

predicted class node to the actual class node.

In the case of the weighted misclassification cost this path is then weighted (the 

weights of the edges of the path are added), with edges between the root node and the 

first class level given a weight of 0.26, the edges between the first a second class level 

given a weight of 0.13, between the second and third a weight of 0.07 and between the 

third and fourth class levels a weight of 0.04. The reason for this weighting is to assign a 

higher cost to more general misclassifications. These general errors are more serious than 

the finer grained errors at lower levels of the class tree, as if a general error is made, no 

information about the true class of an example is gained. The particular values assigned 

to the edges will affect the overall result to a large extent, making the scoring system
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more sensitive to the misclassifications at, or before the most heavily weighted edge. 

Also, the differences between the weighting at each level must also be taken into account, 

with less difference making the weighted misclassification cost behave more like the un­

weighted misclassification cost (discussed in the next paragraph). It is important that the 

analysis of the results take into account the way each edge is weighted.

In the case of the un-weighted misclassification score, each edge is assigned a weight 

of one. The final misclassification score is normalised by dividing the total number of 

edges (or total weight) in the path between the predicted and the actual class nodes in the 

class tree by the total worst possible score for all examples. The latter can be found by 

finding the weight (or number of edges) from the actual class to any leaf node via the root 

node, and taking the largest weight (or number of edges) as the worst possible 

misclassification score.

The accumulative student’s t-test score at the bottom of Table 6.13, Table 6.22 and 

Table 6.14, Table 6.23 shows the number of times the corresponding method is 

significantly better (+ 1) or worse (-1) than the baseline approach across all the 

experiments. The misclassification costs shown in Table 6.13, Table 6.22 and Table 6.14, 

Table 6.23 are useful as (unlike the accuracy rates) they take into account the hierarchical 

structure of the classes, and so they provide a way to quickly assess the performance of a 

hierarchical approach. They can also be tailored to concentrate on general or fine grained 

errors using weighting.

6.7.1. Voting Schemes for HEHRS and Extended Multiplicative 

Method Results

Let us first analyze the voting for HEHRS results with respect to accuracy rate (shown

in detail in Table 6 .6  through Table 6.11 and summarised in Table 6.12). As can be

observed in Table 6.12 the pure HEHRS -  without rule weights optimized by PSO -

achieved a disappointing performance: it obtained an overall score of -7 , overall,

significantly losing 7 times (according to the student’s t-test results) against the baseline
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approach. Observing both Table 6.12 and the more detailed results per dataset in 

Table 6 .6  through Table 6.11, one can see that, in all the 6  datasets, HEHRS obtains 

results significantly worse than the baseline method's results in the first two (shallower) 

class levels. On the other hand, in all the 6 datasets HEHRS obtains results significantly 

better than the baseline method's results in the fourth (deepest) class level. The 

consistency of these results is interesting, considering that the 6 datasets contain very 

different numbers of attributes and examples, as well as different kinds of biological 

motifs as predictor attributes -  as indicated in Table 6.5.

Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 91.0±0.65 91.5i0.8 91.3i0.83 90.6i0.41 91.2i0.74
2 65.lil.25 82.0il.09 81.7il.06 77.9i0.46 80.3il.12
3 37.5i0.84 56.lil.43 ■.56.U1.2 55.liO.95 53.5Ü.5
4 44.0i3.49 83.1i3.03 83.0i2.78 82.li2.33 78.3i2.53

Table 6.6: Predictive accuracy (%) with Prints attributes and GPCR classes

Class level Rule-EMM
PSO- 

11 LI IKS
LimPSO-
HEHRS HEHRS Baseline

1 90.2i0.69 91.0i0.71 91.li0.76 89.7i0.3 90.3i0.71
2 68.5i0.79 83.3i0.97 82.9i0.82 79.Ü0.47 81.li0.74
3 36.4il.03 55.2il.33 55.4il.15 54.6il.16 52.8i0.87
4 46.0i2.86 86.9il.78 86.6il.81 86.5i2.23 82.4i2.65

Table 6.7: Predictive accuracy (%) with InterPro attributes and GPCR classes

Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 87.4i0.88 87.8i0.62 87.5Ü.0 86.3il.36 87.6i0.92
2 49.8il.18 63.5Ü.77 62.9il.91 61.5il.79 63.9il.43
3 18.li0.59 32.2il.74 32.3Ü.91 29.5il.62 29.3il.56
4 12.8i2.39 45.5i3.18 45.5i3.93 36.5i2.46 35.4il.84

Table 6.8: Predictive accuracy (%) with Prosite attributes and GPCR classes
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Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 48.9±2.41 ‘97.8i0.34 97.8±0.41 96.7i0.35 97.4i0.28
2 33.5i2.61 95.0i0.47 95.2i0.67 93.3i0.29 94.6i0.46
3 32.8il.03 94.li0.34 94.3i0.65 90.li0.97 93.8i0.54
4 29.7±0.91 93.4i0.69 93.7i0.79 93.3i0.75 92.8i0.87

Table 6.9: Predictive accuracy (%) with Prints attributes and Enzyme classes

Class level Rule-EMM
PSO-

IIEHRS
LimPSO-
HEHRS HEHRS Baseline

1 37.0i0.24 98.0±0.2 98.0i0.32 92.3il.01 95.8il.84
2 23.3i0.8 96.2i0.43 96.3i0.37 88.7il.07 94.0i2.04
3 23.5i0.74 94.9i0.5 94.9i0.45 87.6il.01 92.6i2.26
4 23.5i0.75 96.0i0.48 96.Ü0.33 95.li0.89 94.5il.19

Table 6.10: Predictive accuracy (%) with Pfam attributes and Enzyme classes

Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 40.7i0.4 98.7i0.3 98.7i0.24 96.6i0.48 98.5i0.24
2 28.li0.42 97.4i0.45 97.3i0.41 94.li0.27 97.li0.42
3 26.2i0.44 96.2i0.39 96.0i0.34 92.4i0.45 95.9i0.19
4 23.3i0.44 95.2i0.34 95.3i0.41 95.2i0.42 95.0i0.42

Table 6.11: Predictive accuracy (%) with Prosite attributes and Enzyme classes

Overall Scores Against Baseline -  The best possible score for each cell in the 
first 4 rows is 6 (number of data sets)_______________________________

Class level Rule-EMM PSO-HEHRS
LimPSO-
HEHRS HEHRS

1 -3 3 2 -4
2 -6 4 3 -6
3 -6 4 4 -1
4 -6 4 5 4

Totals -21 15 14 -7
Table 6.12: Summation of the number of statistically significant results according to the 

Student’s t-test, when comparing the proposed approaches to the baseline
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The poor performance of HEHRS is likely due to its bias towards deeper classes. As it 

predicts a class based upon the addition of rule weights, classes that are deeper will have 

more nodes and so more weights when compared to shallower ones. This explanation is 

supported by the differences seen between the GPCR and Enzyme data sets. In the GPCR 

data sets the number of examples in each class is quite unbalanced, with one class having 

a large portion of the examples, this is even more so the case at lower levels. This is an 

advantage for HEHRS at the lower levels (3 and 4) because it tends to try and classify 

more examples as the deeper class, which also happens to be one of the largest. The 

classes are more balanced in the enzyme data set but again the bias towards deeper 

classes still reaps rewards in the fourth level.

One method of dealing with this bias would be to average the rule weights rather than 

adding them. However, it is likely that this would cause the opposite problem in HEHRS 

-  a bias towards shallower classes. This is because, in general, rules at deeper class levels 

tend to have lower qualities, due to the higher number of classes and lower number of 

examples per class. Hence, the averaging process would favour the classes with fewer 

descendants, giving fewer and higher weights. Investigating the effect of this averaging 

process empirically could be a topic for future research. By contrast, this thesis proposed 

a more sophisticated solution to the above problems, consisting of adaptively adjusting 

the rule weights with a PSO algorithm, which produced good results -  as will be 

discussed later.

The Rule-EMM method achieved by far the worst results, significantly losing to the 

baseline method in 21 out of 24 cases. This very bad performance is most likely due to 

the way in which a decision list is generated by the rule induction algorithm and its 

interaction with the EMM approach. The Rule-EMM method is reliant on not choosing 

only the best matching rule (as in RIPPER), but all rules that match the test example at all 

(at each class level) in a rule list. This is the trade off needed when attempting to find all 

possible paths to class leaf nodes. The trade off does not seem to pay off with the current 

rule induction algorithm, RIPPER. It is possible that if the rules produced by the rule
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induction algorithm were unordered the misclassifications would become less of a 

problem, since unordered rules tend to be more modular than ordered rules. Investigating 

this hypothesis is an interesting topic for future research.

In general the best performing methods in terms of predictive accuracy are LimPSO- 

HEHRS and PSO-HEHRS, with the version of PSO without a lower limit on the rule 

weights (PSO-HEHRS) beating the PSO version with a lower limit (LimPSO-HEHRS) 

by only one test. Both methods obtained a good performance, with an overall score of 15 

or 14, respectively -  the maximum possible score is 24 (4 class levels times 6 datasets).

Data Set
Rule-
EMM

PSO-
HEHRS

LimPSO-
HEHRS HEHRS Baseline

GPCR Prints 28.3±0.78 18.72i0.62 18.88i0.69 20.76i0.33 19.86i0.61
GPCR Interpro 25.53±0.5 17.13±0.51 17.19Ì0.5 19.21i0.31 18.44i0.36
GPCR Prosite 37.62±0.66 30.8i0.74 31.21i0.79 32.83il.13 31.43i0.94
Enzyme Prints 60.5± 1.74 4.78i0.39 4.67i0.55 6.74i0.4 5.2i0.42
Enzyme Pfam 69.45±0.51 3.68—-0.29 3.65Ì0.26 9.68Ì0.91 5.73Ü.83
Enzyme Prosite 66.59±0.41 2.99±0.29 3.07Ì0.22 5.68i0.32 3.2Ü0.23
Accumulative 
t-test Score 
against Baseline

-6 5 3 -6

Table 6.13: The Un-weighted Misclassification cost, comparing each proposed approach

against the baseline

Data Set Rule-EMM
PSO-
HEHRS

LimPSO-
HEHRS HEHRS Baseline

GPCR Prints 22.24i0.65 15.li0.65 15.31i0.75 17.0Ü0.3 15.98i0.66
GPCR Interpro 20.62i0.53 14.3i0.63 14.35i0.65 16.38i0.23 15.51i0.53
GPCR Prosite 30.31i0.77 24.9Ü0.7 25.33i0.95 26.87il.29 25.25i0.96
Enzyme Prints 57.74i2.16 3.73i0.36 3 66-- '1.49 5.4Ì0.27 4.16i0.32
Enzyme Pfam 68.23i0.43 3.04iO.25 3.0+0.27 9.33i0.96 5.21Ü.89
Enzyme Prosite 64.62i0.38 2.2Ì0.31 2.27i0.23 4.9i0.37 2.42i0.24
Accumulative 
t-test Score 
against Baseline

-6 4 3 -6

Table 6.14: The Weighted Misclassification cost, comparing each proposed approach

against the baseline 
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These conclusions derived from the analysis of accuracy rates are also reflected in 

general in the misclassification costs (Table 6.13 and Table 6.14), with HEHRS and 

Rule-EMM getting the same overall negative score against the baseline and the two 

versions of the PSO getting an overall positive score against the baseline. Also, when the 

finer grained misclassifications are weighted more evenly (as with the un-weighted 

misclassification costs) the difference between LimPSO-HEHRS and PSO-HEHRS 

becomes more apparent, with PSO-HEHRS outperforming LimPSO-HEHRS 

significantly in 2  out of 6  tests.

Using the PSO to optimise rule weights has the disadvantage that a PSO run is 

computationally expensive. On a machine with a P4 3.0 GHz CPU it takes about five 

hours to optimise the weights for the rules generated from a single 10 times 10-fold cross 

validation run (depending on the number of rules). Also HEHRS itself requires more 

computational time as many more rule sets must be induced using larger training sets 

(when compared to the baseline approach). On the same machine the models for a single 

run of the baseline approach are induced within ten minutes, whereas the HEHRS models 

take up to one hour on the larger datasets. These models do not vary between approaches 

and so can be cached, increasing efficiency when comparing multiple approaches. 

However, note that maximising classification accuracy is usually considered more 

important than minimizing the processing time taken by a classification algorithm. This is 

particularly the case in real-world scenarios like the bioinformatics problems addressed in 

this work, where the time taken by a run of the PSO algorithm is a very small fraction of 

the time that was spent in preparing our datasets for data mining purposes (about 4 

months). This scenario is also often found in other data mining applications, where most 

of the time taken by the entire knowledge discovery process is spent preparing data [91].

6.7.2. Stacking for HEHRS Results

As can be seen in tables Table 6.15 through Table 6.20 -  and summarised in

Table 6.21 -  the rule based (Cov-SHEHRS, Wei-SHEHRS and Cov-Wei-SHEHRS)
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stacking approaches (SHERS) do not perform particularly well when compared to the 

baseline approach. The method that purely uses binary attributes (Cov-SHEHRS) 

performs the best out of these three methods, with the purely continuous version doing 

the least well (Wei-SHEHRS) -  nearly always losing to the baseline approach. The 

Bayes-SHEHRS method (which uses a naive Bayesian classifier as the level-1 classifier) 

performs better, significantly beating the baseline approach in 8 out of 24 cases 

(Table 6.21).

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei- 
SHEHRS Baseline

1 90.5il.13 91.Ü0.9 89.7il.03 90.5i0.99 91.2i0.74
2 80.5il.04 78.0Ü .1 45.9il.37 44.3il.38 80.3il.12
3 54.9Ü.42 53.5il.12 39.9il.33 45.2Ü.1 53.5Ü.5
4 80.3Ü.5 80.li2.66 71.li2.47 77.7i2.89 78.2i2.53

Table 6.15: Predictive accuracy (%) with Prints attributes and GPCR classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 90.li0.84 87.0ill.15 8 6 .8Ü .2 90.2il.41 90.2i0.71
2 80.6Ü.1 71.6ill.48 51.4ill.54 57.1Ü3.6 81.li0.74
3 54.0il.07 49.3i5.9 43.3i3.01 46.6i3.23 52.8i0.87
4 83.9i2.17 80.6i2.36 78.li2.88 83.2i3.52 82.4i2.65

Table 6.16: Predictive accuracy (%) with InterPro attributes and GPCR classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 87.4Ü.4 85.7i2.86 86.3Ü.4 86.3il.39 87.6i0.92
2 64.4il.41 61.7i2.02 52.4i8.67 45.5i5.93 63.9il.43
3 30.lil.72 29.5il.35 27.8i2.29 26.2i0.97 29.3il.56
4 36.4i3.35 37.2il.26 38.6i6.54 41.7i4.01 35.3il.84

Table 6.17: Predictive accuracy (%) with Prosite attributes and GPCR classes
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Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 97.540.28 96.0±0.38 95.440.43 95.941.05 97.340.28
2 94.9±0.57 93.440.6 92.240.52 92.841.11 94.540.46
3 93.5±0.8 91.140.83 89.440.76 90.841.17 93.740.54
4 92.640.82 90.040.76 75.641.04 91.540.76 92.840.87

Table 6.18: Predictive accuracy (%) with Prints attributes and Enzyme classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 97.940.33 97.140.75 95.342.55 96.442.06 95.741.84
2 96.440.49 95.340.87 91.341.83 92.941.66 94.042.04
3 94.740.7 92.840.97 87.441.82 90.741.76 92.642.26
4 96.240.46 94.040.61 83.640.89 94.740.5 94.441.19

Table 6.19: Predictive accuracy (%) with Pfam attributes and Enzyme classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 98.640.26 98.640.35 97.240.79 97.740.86 98.540.24
2 97.140.32 97.040.52 93.240.73 96.040.82 97.140.42
3 95.840.29 95.840.29 89.640.71 94.540.87 95.940.19
4 95.040.49 94.940.48 80.440.57 95.140.5 94.940.42

Table 6.20: Predictive accuracy (%) with Prosite attributes and Enzyme classes

Overall Scores Against Baseline -  The best possible score for each cell in 
the first 4 rows is 6 (number of data sets)__________________________

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS

1 1 0 -5 -2
2 1 -3 -5 -5
3 3 -1 -6 -5
4 3 0 -5 0

Totals 8 -4 -21 -12

Table 6.21: Summation of the number of statistically significant results, according to the 

Student’s t-test, when comparing each proposed approach to the Baseline
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It is initially somewhat surprising that the rule based stacking approaches perform so 

badly, especially that the Wei-SHEHRS approach performs significantly worse than the 

considerably more simple HEHRS approach (HEHRS uses weighted majority voting 

whereas Wei-SHEHRS uses classification rules -  as was discussed in the latter part of 

section 6.4). This is due to the generality and flexibility of the voting scheme and the 

reliance of Wei-SHEHRS on specific cases found in the training phase that may not occur 

in the testing phase (see Table 6.4 for an example of such a case). This problem may be 

amplified by using RIPPER (a general purpose classification algorithm) on a very 

specific type of problem -  finding relationships between the continuous meta-attributes. 

Rules may be found that make little sense but fit the training data well, e.g., including a 

term that puts an upper limit on the cumulative score meta-attribute for a particular class.

Furthermore, the performance of the Cov-Wei-SHEHRS and Cov-SHEHRS 

approaches is most likely due to over fitting and the level- 1 algorithm being unaware of 

the hierarchy involved in HEHRS. This hierarchy is important as higher level rules are 

usually more reliable than lower level ones within the ensemble. The algorithm is 

unaware of this during the rule pruning stages, to its detriment, i.e., it is just as likely to 

prune a term involving a higher level rule as a lower level rule. Obviously if there was 

sufficient and extensive enough training data for the level- 1 classifiers this would not be a 

problem, but this is always the case with any induction algorithm. The impact of pruning 

can be seen by the relatively good performance of Bayes-SHEHRS when compared to 

Cov-SHEHRS. The methods are very similar, except that the Bayes method is influenced 

by all level-0 rules (due to the nature of the Bayes classification algorithm) whereas the 

Cov approach is only influenced by the level-0 rules included in the meta-rules. This 

makes the Cov approach less flexible in the testing phase and more prone to overfitting 

the training data.
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Data Set Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

GPCR Prints 19.36±0.61 20.39±0.59 33.36i0.84 31.86i0.97 19.86i0.61
GPCR Interpro 18.21i0.49 21.78±5.6 30.29i3.64 26.16i4.32 18.44i0.36
GPCR Prosite 30.91il.04 32.55il.51 35.33i3.33 37.76il.82 31.43i0.94
Enzyme Prints 5.04i0.49 6.8Ü0.46 10.93i0.47 6.98i0.89 5.2i0.42
Enzyme Pfam 3.67±0.39 4.87Ì0.74 lO.Oil.8 6.3Ü.51 5.73Ü.83
Enzyme Prosite 3.19±0.24 3.22i0.31 9.04i0.54 4.13Ì0.67 3.2Ü0.23
Accumulative 
t-test Score 
against Baseline

3 -1 -6 -5

Table 6.22: The Un-weighted Misclassification cost, comparing each proposed approach

against the baseline

Data Set Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

GPCR Prints 16.0i0.85 16.57i0.65 27.68i0.85 26.81i0.92 15.98i0.66
GPCR Interpro 15.54i0.58 19.59i8.59 26.6i3.2 22.29i3.83 15.51iO.53
GPCR Prosite 24.98il.24 26.85i2.1 29.24i3.08 31.22il.51 25.25i0.96
Enzyme Prints 3.97i0.4 5.6Ü0.41 7.55i0.4 5.88Ü.0 4.16i0.32
Enzyme Pfam 3.05i0.36 4.05i0.76 7.51*2.14 5.39Ü.74 5.21Ü.89
Enzyme Prosite 2.38i0.24 2.4Ü0.34 5.89i0.66 3.34i0.76 2.42i0.24
Accumulative 
t-test Score 
against Baseline

1 -2 -6 -5

Table 6.23: The Weighted Misclassification cost, comparing each proposed approach

against the baseline

The un-weighted misclassification cost (Table 6.22) reveals that the Bayes-SHEHRS

approach improves predictive accuracy significantly in 3 out of 6 cases. The fact that the

scores differ between the weighted and un-weighted misclassification costs (Table 6.23

and Table 6.22 respectively) indicate that the Bayes-SHEHRS and Cov-SHEHRS

approaches perform better at lower levels in the class hierarchy. This can be surmised as
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the weighted misclassification cost measure weights the misclassifications at higher 

levels more heavily than the lower ones, whereas the un-weighted cost weights all 

misclassification the same. The fact that there appears to be less difference between the 

two approaches in the weighted misclassification cost table when compared to the un­

weighted misclassification cost table means that most of the difference is in the lower 

levels of the class hierarchy. This is not entirely surprising as misclassifications that are 

averted are bound to accumulate towards the lower levels of the class tree due to the 

nature of TDDC.

6.8. Summary

This work proposed new hierarchical classification methods that use characteristics of 

hierarchical class data (where the classes are arranged in a tree structure) to try to 

improve predictive accuracy, with respect to a standard top-down hierarchical 

classification method. More precisely, four main types of hierarchical classification 

methods were proposed, namely:

(a) HEHRS (Hierarchical Ensemble of Hierarchical Rule Sets), a method based on 

exploiting the hierarchical nature of the data to create different training sets to be given as 

input to a bagging-like ensemble method;

(b) Two versions of a Particle Swarm Optimisation (PSO) method for optimising the 

rule weights used by HEHRS to classify test examples;

(c) Rule-EMM, the rule-based version of the Extended Multiplicative Method, which 

tries to reduce the problem of misclassifications at shallower class levels leading to 

misclassifications at deeper class levels in the standard top-down approach for 

hierarchical classification; and

(d) Four stacking approaches: Two using rule coverage meta-features, with either 

RIPPER or Naïve Bayes as the level-1 classifier; Two using either rule weight meta-
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features, or a combination of rule weight meta-features and rule coverage meta-features 

(with RIPPER as the level-1 classifier).

Out of these four types of methods, the pure HEHRS method, Rule-EMM and 

RIPPER-based stacking approaches produced disappoint results, in general significantly 

worse than the standard top-down approach. However, the development of a PSO 

algorithm to optimise rule weights for HEHRS was very effective, leading to a 

hierarchical classification system that obtained, overall, predictive accuracies 

significantly better than the accuracies obtained by the standard top-down approach. The 

same can be said for the results from Naive Bayes-based stacking approach, which 

significantly increased performance beyond that of the baseline. These results were to a 

large extent consistent across 6 different bioinformatics datasets involving the 

hierarchical classification of protein functions, a set of challenging real-world 

bioinformatics problems with large numbers of predictor attributes and large numbers of 

classes to be predicted.
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Chapter 7. Conclusions

7.1. Contributions

This thesis has proposed several new methods which aim to improve the predictive 

accuracy of hierarchical classification. It has focused on the prediction of protein 

functions, more specifically the function of two types of protein: G-protein coupled 

receptors and enzymes. Being able to predict the functions of these proteins automatically 

and accurately is a major task in bioinformatics and has important applications in our 

ability to create new drugs. For instance, being able to identify newly discovered or 

potential proteins that have a particular function relating to a disease allows biologists to 

design drugs that target them.

The hierarchical nature of the new protein data sets used in our experiments have 

posed difficult challenges, mainly due to the large number of classes and low number of 

records per class (at the deeper levels of the class hierarchy, containing more specialised 

classes). These challenges require new approaches tailored to the problem of hierarchical 

classification.

In this context, we have created new swarm intelligence techniques for the 

hierarchical classification problems identified in this work. Swarm intelligence 

algorithms have proved successful for data mining applications in the past and this thesis 

has demonstrated that they continue to be successful (one of the goals of the EPSRC- 

funded XPS project [169] was to assess how applicable Particle Swarm Optimisation 

could be to data mining problems).
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The main original contributions of this thesis are:

• A Particle Swarm Optimisation/Ant Colony Optimisation Classifier Selector 

Algorithm.

The proposed PSO/ACO-CS (Section 5.2) algorithm is a new hierarchical 

classifier selector technique. This is based on the idea that different classifiers will 

be optimal at each “divide” (classifier node) in the top-down divide-and-conquer 

(TDDC) tree. Seeker et al. [140] proposed a greedy approach to take advantage of 

this fact and to try and boost classification accuracy. We discussed the sub­

optimality of this approach (Section 3.7.2.1) and proposed a swarm intelligence 

based method to try to find more optimal combinations of classifiers in a global 

search fashion.

In terms of classification accuracy PSO/ACO-CS always at least equalled the 

best performing individual classification algorithm and often beat them in our 

experiments. Furthermore, PSO/ACO-CS affected a relatively small but significant 

improvement when compared to Seeker et al’s approach.

• A Particle Swarm Optimisation/Ant Colony Optimisation Misclassification 

Recovery algorithm.

The proposed PSO/ACO-RO (Section 5.3) algorithm is a misclassification 

recovery optimisation technique which uses a swarm intelligence method to try to 

mitigate a major drawback of the TDDC approach. This drawback, known as 

“blocking” in the literature, occurs when in the standard TDDC tree a classifier at a 

higher level in the tree misclassifies an example. Due to the top-down nature of the 

classifier tree, the misclassifications at a higher level can never be correctly 

classified at a lower level in the hierarchy. PSO/ACO-RO attempts to improve the 

situation by allowing classifiers to redirect examples (during the testing phase) to 

classifier nodes that are not necessarily one of their child classifier nodes. In this
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fashion each classifier can attempt to correct any errors that a parent classifier node 

has made. The swarm intelligence algorithm is used to decide which nodes benefit 

from this type of recovery and which do not (i.e., which classifier nodes should 

have misclassification recovery “turned on”) in a global search manner.

PSO/ACO-RO and PSO/ACO-CS were combined to create PSO/ACO-CS-RO 

(Section 5.3.2). This approach was compared against the baseline classifiers and a 

modified greedy method based on Seeker et al’s approach (Greedy-PSO/ACO-RO). 

Overall PSO/ACO-CS-RO was the most effective approach, almost always 

outperforming all of the baseline classifiers. It was also shown that using 

PSO/ACO-RO increased the performance of both the greedy and PSO/ACO-CS 

techniques to a degree.

• The Hierarchical Ensembles of Hierarchical Rule Sets Method.

The proposed HEHRS (Chapter 6 ) ensemble technique attempts to boost the 

accuracy of individual classifier nodes within the TDDC tree. It does this by 

constructing a hierarchical ensemble of rule sets in place of each classifier node 

within the TDDC tree. This can loosely be seen as a type of bagging (a well known 

ensemble method), with multiple classifiers derived from the same original data set 

but in different “forms”, in this case the different “forms” are obtained by 

modifying the classes to be predicted in a way which follows the native class 

hierarchy. We explored several methods to combine the predictions made by each 

constituent rule set within each ensemble, including a PSO-based approach which 

optimises the rule weights in a global fashion.

Overall our experiments showed that the PSO-based technique performed 

significantly best overall, with the Bayesian technique (based on the naive Bayes 

algorithm) also being quite effective. Both of these approaches significantly beat the 

baseline approach (a standard TDDC classifier using one type of algorithm).
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The secondary original contributions of this thesis are:

• A Particle Swarm Optimisation/Ant Colony Optimisation Rule Induction 

algorithm.

The proposed PSO/ACO-RI (Chapter 4) is a new proof-of-concept “flat” 

classification rule induction algorithm. This algorithm is based on the hybrid 

Particle Swarm Optimisation/Ant Colony Optimisation (PSO/ACO) method 

proposed in this thesis. The PSO/ACO-RI algorithm copes directly with both 

nominal/categorical and numeric data.

Our experiments showed that, in general, PSO/ACO-RI generated simpler rule 

sets when compared to the well established PART algorithm (based on the industry 

standard C4.5Rules algorithm). Furthermore, PSO/ACO-RI achieved this without 

reducing predictive accuracy.

• Protein Function Data Sets

We have created 7 new hierarchical protein function data sets to evaluate our 

proposed algorithms. These consist of 4 GPCR data sets and 3 enzyme data sets. 

These data sets are available to other researchers on request.

One of the main objectives of this thesis was to propose new methods to deal with 

hierarchical classification problems more effectively. Another main aim was to see if the 

previously successful swarm intelligence based paradigm would be effective in the type 

of challenging data mining problem explored in this thesis (namely hierarchical 

classification in particular applied to protein function). Taking the extensive experimental 

results reported in this thesis as a whole we believe that a firm conclusion can be made -  

yes, swarm intelligence is definitely effective and applicable to this type of problem. We 

hope that future researchers will take this conclusion on board and develop novel, 

interesting and more sophisticated approaches based on this very versatile paradigm.
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7.2. Future Work

Although we have attempted to explore and evaluate as many potentially-effective 

techniques as possible for hierarchical classification, there remain a large number of 

potential avenues for future research.

The most obvious direction for future research is applying the techniques proposed in 

this thesis to more data sets. Different types of proteins and different protein function 

classification schemes could be used. Also, it should be possible to apply the techniques 

to text classification where there are often hierarchies present -  although the methods 

proposed in this work might need modification for this specific (and quite different) type 

of problem in order for them to be effective. In any case, in principle the swarm 

intelligence based hierarchical methods proposed in this thesis are generic enough to be 

applied to any hierarchical classification problem in any application domain. This is true 

as long as the data is pre-processed in a format suitable for the proposed algorithms.

Another obvious direction for future research would be to extend the approaches to 

deal with data sets where the class nodes form a directed acyclic graph, rather than a tree 

as addressed in this thesis. This is a particularly interesting and challenging direction for 

research and it would be very interesting to discover whether the types of approach 

proposed in this thesis would be applicable to this type of problem. The approaches may 

also be adapted to deal with hierarchical multi-label problems, where an example can 

belong to more than one class node at any given class level.

A further interesting avenue for future research would be attempting to use swarm 

intelligence to create a “big bang” type hierarchical classification approach where the 

entire classifier -  predicting potentially any of the classes in the class hierarchy -  is 

constructed at once. The fact that PSO/ACO algorithm was shown to (in general) create 

simpler rule sets when compared to J48 and the fact that hierarchical C4.5 [33] (a “big 

bang” approach) is such a promising algorithm leads us to believe that this could be a 

very fruitful research direction.
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Another potentially very interesting avenue for research would be to apply feature 

selection methods [41] (which uses PSO) [89] [90] [141] [142] to the datasets before they 

are processed by the approaches discussed in this thesis. An investigation into how this 

feature selection interacts with the proposed approaches would also be very interesting, 

also possibly using feature selection during the run of the proposed algorithms.

It would also be interesting to discover whether PSO/ACO would be effective on 

other combinatorial optimisation problems such as the travelling salesman problem (we 

present some very preliminary results in Appendix A for PSO/ACO on binary 

combinatorial optimisation problems). We believe that due to the flexibility of PSO/ACO 

-  being able to select the topology and the possible advantages discrete 

recombination [2 2 ] (where influence is taken from all neighbouring particles not just the 

best one in a single interaction) has shown with standard PSO -  this would be a 

promising area. Also, it may be interesting to use an optimiser to optimise the 

settings/topology, etc, for PSO/ACO for specific types of application. However, the 

advantage of such parameter optimisation would have to be balanced against the 

disadvantage of a much longer overall processing time.

It may also be possible to improve PSO/ACO-RI. At present PSO/ACO-RI is partly 

greedy in the sense that it builds each rule with the aim of optimising that rule's quality 

individually, without directly taking into account the interaction with other rules. A less 

greedy, but possibly more computationally expensive way to approach the problem 

would be to associate a particle with an entire rule set and then to consider the quality of 

the entire rule set when evaluating a particle. This is known as the “Pittsburgh 

approach” [61] in the evolutionary algorithm literature, and it could be an interesting 

research direction. Also, the part of the rule containing nominal attributes is always 

discovered first and separately from the part containing continuous attributes, it could be 

advantageous to use a more “co-evolved” [61] approach.

For classifier selection this work only compares the proposed PSO/ACO-CS 

algorithm with Seeker et al’s greedy selective approach, so one direction for future
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research is to compare the PSO/ACO-CS algorithm with another population-based meta­

heuristics for optimisation, e.g. evolutionary algorithms. As the focus of this thesis was 

on swarm intelligence and not on the benefits of other potential algorithms, such a 

comparison would be an interesting topic of future research.

There are several potential avenues for future research with the ensemble-based 

approach proposed in Chapter 6 . Since optimising the rule weights used by HEHRS with 

the PSO method proved to be very effective, perhaps the rule weights used by Rule-EMM 

could be optimised in just as an effective way. In addition, it would be interesting to 

investigate the performance of Rule-EMM when the base rule induction algorithm used 

to discover classification rules produces an unordered rule set, rather than an ordered rule 

list.
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Appendix A. Comparing the Performance of 
PSO/ACO and Binary PSO in Benchmark 

Binary Optimisation Problems

In this appendix we present some preliminary results comparing the performance of 

the “standard” Binary-PSO (BPSO) [95] (briefly reviewed in Section 3.4) to the 

PSO/ACO algorithm proposed in Section 4.3 in several simple benchmark functions 

involving optimisation problems with binary variables (unrelated to the data mining 

problem). Both algorithms used 100 particles with Von-Neumann topology. Note that 

Von-Neumann topology does not always lead to the fastest particle convergence. 

However, our preliminary experiments demonstrated that it provided the most consistent 

results across both the easier and more difficult problems. Neither algorithm was 

particularly optimised for these specific problems. For PSO/ACO (as it standard) a was 

set to 1, and the minimum and maximum pheromone level were set to 0.01. The BPSO 

algorithm uses the standard update equation:

vtd = vid + ciRand()(pw -  xld) + c2 Rand() (pgd -  xld)

Notice that a constriction coefficient is not used as it significantly reduced BPSO’s 

performance, k was set to 2 as it was found to be the best overall in initial testing -  and a 

significant improvement over k = 1. c l and c2 were set to 2.05 as is usual in the 

literature. VMax was set to 6 as per the original algorithm [93], Rand() produces a 

random number between 0 and 1.
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The benchmark problems have the following details where x  is a candidate binary 

solution with a number of dimensions (bits) d and the value to maximise is returned by 

the functions defined by the corresponding pseudocode:

• OneMax -  The highest score is the bitstring with all l ’s. For instance, a 2-bit 

instance of the problem, the bitstring 01 would have the score 0.5

score = 0, to Add = l + d 
FOR EACH Xj 

IF Xj = 1
score = score + toAdd 

END IF 
LOOP
RETURN score 

Pseudocode A .l: One Max

• OneFirst -  The highest scoring bitstring is all l ’s but the scoring starts at the left 

hand side and stops when a 0 is detected. For instance 1011 would have the score 

0.25.

score = 0, toAdd = 1 d 
FOR EACH xj 

IF Xj = 1
score = score + toAdd 

ELSE
RETURN score 

END IF 
LOOP
RETURN score 

Pseudocode A.2: One First
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• OneMaxNoisy -  The same as OneMax, but 1% noise is added to the fitness 

evaluation, swapping a bit 1% of the time.

score = 0, to Add = 1 d 
FOR EACH Xj 

IF Xj = 1
// Random() returns a number in the range [0..1] with uniform probability 
//distribution 
IF Random() < 0.99 
score = score + toAdd 
END IF 

END IF 
LOOP
RETURN score

Pseudocode A.3: One Max Noisy

• AllSame -  The highest scoring bitstring is either all l ’s or all 0’s, the maximum 

scoring bitstring is taken. For instance, in a 4-bit problem 0111 and 1000 would 

score the same (0.75).

scoreA = 0, scoreB = 0, toAdd = 1 + d 
FOR EACH xj 

IF Xj = 1
scoreA = scoreA + toAdd 

ELSE
scoreB = scoreB + toAdd 

END IF 
LOOP
RETURN max(scoreA, scoreB)

Pseudocode A.4: All Same
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• AllSameFirst -  The highest scoring bitstring is either all 1 ’s or all 0’s, but scoring 

starts at the left hand side of the bitstring and stops when the next bit is not the 

same as the current bit. For instance, 0101 would have the score 0.25, and 0010 

would have the score 0.5.

score = 0, to Add = \+  d 
FOR EACH xj FROM xx TO xd.,

IF X j =  X j+1

score = score + toAdd 
ELSE

RETURN score 
END IF 

LOOP
RETURN score

Pseudocode A.5: All Same First

Table A.l shows the results for both algorithms in the labelled benchmark functions 

with each function having 200 dimensions (bits). Each cell provides the average number 

of iterations it took each approach to find the optimal bitstring. Both PSO/ACO and 

BPSO were limited to a maximum of 2000 iterations for simplicity; so that if the 

optimum is not reached within 2000 iterations, 2000 is used as score for that run. Note 

that, since both algorithms use the same population size, the number of iterations required 

to reach the optimum is a fair measure of their relative cost-effectiveness. Each 

experiment was repeated 100 times (the average performance is provided in each cell), 

with standard deviations shown after the “±” symbol and the results of the WEKA two 

tailed t-tests (significance 1%) indicated by shadings. Light grey indicates a statistically 

significant win, so in every test PSO/ACO performs significantly better than BPSO.
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BPSO PSO/ACO
AllSame 76.81±6.69 65.92±8.38

AllSameFirst 1854.38±323.78 706.97±55.41
OneFirst 1057.77±351.91 693.92±51.56
OneMax 64.35±2.47 56.04±2.64

OneMaxNoisy 76.67±4.88 68.68±5.39

Table A.l: Number of iterations to find the maximum valued bitstring in each

benchmark problem for PSO/ACO and Binary PSO

Figure A .l: The average performance of the best particle during 100 runs of the All 

Same First benchmark function, for both PSO/ACO and BPSO
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—  PSO/ACO
—  BPSO

Figure A.2: The average performance of the best particle during 100 runs of the All 

Same benchmark function, for both PSO/ACO and BPSO

Most of the problems do not take the algorithms many iterations to solve. As expected 

the trickier “All Same First” and “One First” problems take the most number of iterations 

to solve. As can be seen by the high standard deviations of the results for BPSO (Table 

A .l) it was not able to solve the aforementioned problems in a very consistent number of 

iterations (or indeed within the maximum number of iterations in some cases). Note that, 

if the maximum number of iterations was exceeded during a run then the number of 

iterations reported for this run was set to this maximum number.

In Figure A. 1 the different performance characteristics of PSO/ACO and BPSO in the 

“All Same First” function can be seen. BPSO finds better solutions at the beginning of 

the run, but after about 250 iterations PSO/ACO overtakes BPSO. This may be a sign that 

BPSO is converging too quickly and getting trapped too easily in local maxima.
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The performance of both algorithms in the simpler “All Same” problem is shown in 

Figure A.2, where it can be seen that the same sort of behaviour is not present in this 

problem. However, notice that the qualities of the solutions are higher at the start of the 

“All Same” problem when compared to the “All Same First” problem. It is likely that the 

type of behaviour seen in both Figure A. 1 and Figure A.2 can be attributed to the way in 

which PSO/ACO uses the fitness of the best solution each particle has found so far to add 

to the pheromone entries. This means that in the Figure A .l, at the beginning of the run, 

the solutions found so far are not of high quality and so not much pheromone is added to 

the entries. However, in Figure A.2 the solutions found are reasonably good at the 

beginning of the run and so more pheromone is added. This means that convergence is 

speeded up in the case of the easier “All Same” problem, and slowed down in the “All 

Same First” problem.

Despite the simplicity of these benchmark functions we believe that they add to the 

evidence that PSO/ACO is an effective optimiser. Furthermore, the results show that 

PSO/ACO is more consistent (when compared to BPSO) in the number of iterations it 

requires to find the maximum quality combination of bits, with it rarely seeming to get 

trapped in a local optimum (if it did it would cause large standard deviations). This is a 

useful feature to have in an optimiser for both these benchmark problems and the data 

mining problems investigated in this thesis.

219


