
Holden, Nicholas (2008) Improving the hierarchical classification of protein
functions With swarm intelligence. Doctor of Philosophy (PhD) thesis,
University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94422/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94422

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes
of preservation and dissemination. It was uploaded to KAR on 25 April 2022 in order to hold
its content and record within University of Kent systems. It is available Open Access using a
Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)
licence so that the thesis and its author, can benefit from opportunities for increased readership
and citation. This was done in line with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf).
If you feel that your rights are compromised by open access to this thesis, or if you would like
more information about its availability, please contact us at ResearchSupport@kent.ac.uk and
we will seriously consider your claim under the terms of our Take-Down Policy (https://www.kent.ac.uk/is/regulations/library/kar-take-down-policy.html).

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94422/
https://doi.org/10.22024/UniKent/01.02.94422
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

IMPROVING THE HIERARCHICAL CLASSIFICATION

OF PROTEIN FUNCTIONS

WITH SWARM INTELLIGENCE

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT AT CANTERBURY

IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

BY
NICHOLAS HOLDEN

AUGUST 2008

ABSTRACT

This thesis investigates methods to improve the performance of hierarchical
classification. In terms of this thesis hierarchical classification is a form of supervised

learning, where the classes in a data set are arranged in a tree structure. As a base for our
new methods we use the TDDC (top-down divide-and-conquer) approach for hierarchical

classification, where each classifier is built only to discriminate between sibling classes.
Firstly, we propose a swarm intelligence technique which varies the types of

classifiers used at each divide within the TDDC tree. Our technique, PSO/ACO-CS
(Particle Swarm Optimisation/Ant Colony Optimisation Classifier Selection), finds
combinations of classifiers to be used in the TDDC tree using the global search ability of

PSO/ACO.
Secondly, we propose a technique that attempts to mitigate a major drawback of the

TDDC approach. The drawback is that if at any point in the TDDC tree an example is
misclassified it can never be correctly classified further down the TDDC tree. Our

approach, PSO/ACO-RO (PSO/ACO-Recovery Optimisation) decides whether to redirect
examples at a given classifier node using, again, the global search ability of PSO/ACO.

Thirdly, we propose an ensemble based technique, HEHRS (Hierarchical Ensembles
of Hierarchical Rule Sets), which attempts to boost the accuracy at each classifier node in

the TDDC tree by using information from classifiers (rule sets) in the rest of that tree. We
use Particle Swarm Optimisation to weight the individual rules within each ensemble.

We evaluate these three new methods in hierarchical bioinformatics datasets that we
have created for this research. These data sets represent the real world problem of protein
function prediction.

We find through extensive experimentation that the three proposed methods improve
upon the baseline TDDC method to varying degrees. Overall the HEHRS and PSO/ACO-
CS-RO approaches are most effective, although they are associated with a higher
computational cost.

11

ACKNOWLEDGEMENTS

This thesis has only been possible due to the help and support from several people:

I thank my supervisor Alex Freitas. His dedication to research and science has been

an inspiration to me. I couldn’t have wished for a better supervisor!

For their unwavering emotional and sometimes financial support I thank my family

and Maria greatly.

I would also like to thank my friends and colleagues, Dan for the chats about swarms,

Alex for his first class programming tips, Mudassar who has been an excellent office

mate, Elon and Andy for being the voices of PhD wisdom. Also, to all the other people

who have donated their time to me - in particular my supervisory panel.

I especially thank the XPS project and the University of Kent for providing my

bursary and so the wonderful opportunity to conduct this work.

iii

»

CONTENTS

Chapter 1. Introduction... 1
1.1. Motivation... 2

1.2. Aim and Objectives.. 4

1.3. Preview of Contributions...6

1.4. Thesis Organisation...8

Chapter 2. Bioinformatics.. 10
2.1. Proteins... 12

2.2. Protein Function Prediction..15

2.3. Sequence Alignment...17

2.4. Motif Detection using Alignment-Based Similarity Search.................................... 22

2.4.1. Regular Expressions..23

2.4.2. Profiles... 25

2.4.3. Hidden Markov Models (HMM)..26

2.4.4. Fingerprints..29

2.5. Motif Databases..32

2.5.1. PROSITE...33

2.5.2. Pfam ... 33

2.5.3. PRINTS.. 34

2.5.4. InterPro... 34

2.6. Biological Databases.. 37

2.6.1. UniProt... 37

2.6.2. GPCRDB..38

iv

2.6.3. Enzyme Nomenclature... 39

2.7. Summary... 40

Chapter 3. Data Mining..41
3.1. The Classification Task of Data Mining.. 43

3.2. Three Conventional Types of Algorithm for Classification.................................... 45

3.2.1. Rule/Tree Induction..45

3.2.2. Bayesian Classification...51

3.3. Ensembles of Classifiers.. 53

3.3.1. Bagging.. 53

3.3.2. Boosting... 56

3.3.3. Stacking.. 57

3.4. Particle Swarm Optimisation...60

3.4.1. Binary and Discrete PSO Algorithms... 63

3.5. Ant Colony Optimisation...65

3.6. Particle Swarm Optimisation and Ant Colony Optimisation for Classification.... 66

3.6.1. The Ant-Miner Algorithm.. 66

3.6.2. Particle Swarm Optimization for Classification.. 70

3.7. Hierarchical Classification...71

3.7.1. Flattening Hierarchical Classes..74

3.7.2. Top-Down Divide-and-Conquer Approach..77

3.7.3. “Big Bang” Approach...83

3.7.4. Measuring Hierarchical Classification Performance..86

3.8. Summary..88

Chapter 4. A Hybrid Particle Swarm Optimisation/Ant Colony Optimisation

Algorithm for Rule Induction.. 89
4.1. Introduction... 89

4.2. The New PSO/ACO-RI Algorithm...92

4.2.1. PSO/ACO-RI’s Sequential Covering Approach.. 93
v

4.2.2. Adding Continuous Terms to the Rule using PS O ..94

4.2.3. Pruning the Discovered R ule... 97

4.3. The Part of the PSO/ACO-RI Algorithm Coping with Nominal Data in Detail.... 99

4.3.1. Pseudocode... 102

4.3.2. Pheromone Updating Procedure..104

4.3.3. Measuring Rule Quality..107

4.4. Motivations for PSO/ACO-RI and Discussion..109

4.5. Computational Results... 112

4.6. Summary..115

Chapter 5. Particle Swarm Optimisation/Ant Colony Optimisation for

Classifier Selection and Misclassification Recovery in Hierarchical

Classification...116
5.1. Introduction... 116

5.2. Global Search-Based Classifier Selection with a Particle Swarm Optimisation/Ant

Colony Optimisation Algorithm... 117

5.3. Recovering from Misclassifications at Parent Classifier Nodes in the Top-Down

Divide-and-Conquer Tree.. 121

5.3.1. Deciding when to Recover from Parent Misclassifications with the PSO/ACO-

RO (Recovery Optimisation) Algorithm... 125

5.3.2. Combining Classifier Selection and Misclassification Recovery with

PSO/ACO-CS-RO... 127

5.4. Experimental Setup...128

5.4.1. The Creation of the Bioinformatics Datasets.. 128

5.4.2. Data Set Partitioning and Baseline Algorithms..130

5.5. Computational Results for Classifier Selection...132

5.6. Computational Results for Misclassification Recovery Approaches......................135

5.6.1. Comparing Standard Top-Down Divide-and-Conquer Against the Basic

(Always On) Recovery Approach..135

vi

5.6.2. Comparing the Standard Top-Down Divide-and-Conquer Approach against

the PSO/ACO-Optimised Recovery Approach (PSO/ACO-RO)......................141

5.6.3. Discussion of the Effectiveness of the PSO/ACO-CS, Greedy Selective and

PSO/ACO-RO Approaches...144

5.7. Summary..147

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets (HEHRS).... 149
6.1. Introduction... 149

6.2. Building a Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS).............. 150

6.2.1. Overview.. 150

6.2.2. Technical Details of the HEHRS Method... 151

6.3. Combining the Predictions from the Multiple Rules in HEHRS using Voting ... 155

6.3.1. Weighted Voting for HEHRS.. 155

6.3.2. Optimising HEHRS’ Rule Weights with PSO...158

6.4. Stacking for the Hierarchical Ensemble of Hierarchical Rule Sets (SHEHRS) ..161

6.5. Rule-Based Extended Multiplicative Method.. 168

6.6. The Creation of the Bioinformatics Data Sets... 170

6.7. Computational Results... 172

6.7.1. Voting Schemes for HEHRS and Extended Multiplicative Method Results 175

6.7.2. Stacking for HEHRS Results... 180

6.8. Summary..185

Chapter 7. Conclusions...187
7.1. Contributions... 187

7.2. Future W ork.. 191

References.. 194

Publications from the work in this Thesis... 210

vii

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO in

Benchmark Binary Optimisation Problems..................................... 212

viii

LIST OF TABLES

Table 2.1: An Example protein sequence alignment...18

Table 2.2: Constituent InterPro databases...35

Table 4.1: PSO/ACO-RI Pheromone Updating Scenarios.. 106

Table 4.2: An Example Single Class Data Set, R's are Records, An's are Nominal

Attributes.. 111

Table 4.3: Predictive Accuracy and Rule Set size of PSO/ACO-RI and PART in UCI

Data Sets, with Standard Deviation and Student T-Test Shadings..................113

Table 4.4: Summation of the number of statistically significant results of PSO/ACO-RI

against PART according to the Student T-Test (out of 27 Data Sets).......... 114

Table 5.1: Main characteristics of the datasets used in the experiments........................ 129

Table 5.2: Predictive accuracy (%) for each approach in the Prints data set............133

Table 5.3: Predictive accuracy (%) for each approach in the Interpro data set........ 133

Table 5.4: Predictive accuracy (%) for each approach in the Pfam data set.............133

Table 5.5: Predictive accuracy (%) for each approach in the Prosite data set..........134

Table 5.6: Summation of the number of statistically significant results according to the

Student T-Test..134

Table 5.7: Predictive accuracy (%) for each approach in the Prints data set.....................138

Table 5.8: Predictive accuracy (%) for each approach in the Interpro data s e t................ 138

Table 5.9: Predictive accuracy (%) for each approach in the Pfam data set......................139

Table 5.10: Predictive accuracy (%) for each approach in the Prosite data set..............139

Table 5.11: Summation of the number of statistically significant results according to the

Student’s T-Test, for the recovery always on approach against the recovery

always off approach, for each labelled approach..140

Table 5.12: Predictive accuracy (%) for each approach in the Prints data set (recovery

optimised by PSO/ACO)... 142
IX

Table 5.13: Predictive accuracy (%) for each approach in the Interpro data set (recovery

optimised by PSO/ACO)...142

Table 5.14: Predictive accuracy (%) for each approach in the Pfam data set (recovery

optimised by PSO/ACO)...142

Table 5.15: Predictive accuracy (%) for each approach in the Prosite data set (recovery

optimised by PSO/ACO)...143

Table 5.16: Summation of the number of statistically significant results (recovery

optimised by PSO/ACO) according to the Student’s T-Test.......................... 143

Table 5.17: Reproduction of the totals from Table 5.6 and Table 5.16, in terms of

numbers of significant wins over the baseline classification algorithms..... 144

Table 5.18: Comparing the predictive accuracy (%) of approaches using Recovery

Optimisation against approaches not using Recovery Optimisation on the

Prints dataset..145

Table 5.19: Standard deviations of base algorithm mean performance in each labelled

dataset (not including ConjunctiveRule)... 146

Table 6.1: Values (Classes) taken by variable c at each level i used to construct the Rule

Sets in Es ID: 1, in Figure 6.1...153

Table 6.2: Meta-example generated by SHEHRS for the set of sibling classes S = {1,2},

at level 1 in the class hierarchy.. 164

Table 6.3: Meta-example generated by SHEHRS for the set of sibling classes S = (1.1,

1.2}, at level 2 in the class hierarchy...164

Table 6.4: A set of rule weight-based SHEHRS meta-examples.......................................166

Table 6.5: Main characteristics of the datasets used in the experiments.......................... 172

Table 6.6: Predictive accuracy (%) with Prints attributes and GPCR classes..................176

Table 6.7: Predictive accuracy (%) with InterPro attributes and GPCR classes.............. 176

Table 6.8: Predictive accuracy (%) with Prosite attributes and GPCR classes.................176

Table 6.9: Predictive accuracy (%) with Prints attributes and Enzyme classes............... 177

Table 6.10: Predictive accuracy (%) with Pfam attributes and Enzyme classes.............. 177

Table 6.11: Predictive accuracy (%) with Prosite attributes and Enzyme classes..........177

x

Table 6.12: Summation of the number of statistically significant results according to the

Student’s t-test, when comparing the proposed approaches to the baseline . 177

Table 6.13: The Un-weighted Misclassification cost, comparing each proposed approach

against the baseline..179

Table 6.14: The Weighted Misclassification cost, comparing each proposed approach

against the baseline..179

Table 6.15: Predictive accuracy (%) with Prints attributes and GPCR classes............... 181

Table 6.16: Predictive accuracy (%) with InterPro attributes and GPCR classes............ 181

Table 6.17: Predictive accuracy (%) with Prosite attributes and GPCR classes.............. 181

Table 6.18: Predictive accuracy (%) with Prints attributes and Enzyme classes............. 182

Table 6.19: Predictive accuracy (%) with Pfam attributes and Enzyme classes.............. 182

Table 6.20: Predictive accuracy (%) with Prosite attributes and Enzyme classes........... 182

Table 6.21: Summation of the number of statistically significant results, according to the

Student’s t-test, when comparing each proposed approach to the Baseline . 182

Table 6.22: The Un-weighted Misclassification cost, comparing each proposed approach

against the baseline... 184

Table 6.23: The Weighted Misclassification cost, comparing each proposed approach

against the baseline... 184

Table A.l: Number of iterations to find the maximum valued bitstring in each benchmark

problem for PSO/ACO and Binary PSO...216

xi

LIST OF FIGURES

Figure 2.1: Alpha Helix...13

Figure 2.2: Beta Sheet...13

Figure 2.3: Part of a multiple sequence alignment of Muscarinic Acetylcholine receptor

GPCR proteins using ClustalW..21

Figure 2.4: An approximate phylogenetic tree derived from the multiple sequence

alignment of Muscarinic Acetylcholine receptor GPCR proteins using

ClustalW... 21

Figure 2.5: Sequence for ACMl_DROME Muscarinic acetylcholine receptor from

Drosophila Melanogaster (Fruit fly).. 24

Figure 2.6: Part of a profile from Prosite [85]... 25

Figure 2.7: A profile HMM showing match states (M), delete states (D) and insert states

(I), with transition probabilities shown as arrows. The beginning state is M0

and the end state is M;+i adapted from [97],.. 27

Figure 2.8: A Pfam search against ACMl_Drome showing the HMM hits with the most

likely hit and other possible hits based on E-value.. 28

Figure 2.9: Part of the alignment for ACMl_Drome against the 7tm_l (seven trans­

membrane helices) Pfam HMM... 29

Figure 2.10: A graphical view of the GPCRRHODOPSN Fingerprint - shown in red, the

Fingerprint corresponds to the seven Trans-membrane helices of GPCRs....31

Figure 2.11: A graphical representation of the 7 motifs from the GPCRRHODOPSN

Fingerprint covering the ACMI Drome GPCR protein.................................. 32

Figure 2.12: An example Interpro entry matching the ACMI Drome GPCR sequence

(only part of the relationships cell is shown).. 36

xii

Figure 2.13: An example InterPro search for the ACM1 Drome GPCR sequence showing

from top to bottom, PRINTS, Pfam, PROSITE profile and PROSITE pattern

entries matching the search sequence... 36

Figure 3.1: An example decision tree .. 50

Figure 3.2: Training and Testing Phases in Bagging..55

Figure 3.3: Training and testing phases in boosting...56

Figure 3.4: Training and testing stages in stacking... 58

Figure 3.5: Ring (Local) Topology for PSO Particles..60

Figure 3.6: Global Topology for PSO Particles.. 60

Figure 3.7: Von-Neumann Topology for PSO Particles.. 61

Figure 3.8: The effect of k on the binary PSO s(vici) function.. 64

Figure 3.9: Pheromone trails in natural ant colonies...65

Figure 3.10: An example hierarchical classification class structure................................... 72

Figure 3.11: An example class-tree based hierarchical classification problem shown in the

form of a Venn diagram..72

Figure 3.12: Reducing a hierarchical classification problem into a flat classification

problem.. 74

Figure 3.13: Reducing a hierarchical classification problem into a set of flat classification

problems... 75

Figure 3.14: The Top-Down Divide and Conquer method to deal with a hierarchical

classification problem...77

Figure 3.15: A TDDC tree using classification algorithm selection................................... 80

Figure 3.16: Classifier interaction scenario where |BDC| > |ADC|..................................... 81

Figure 3.17: Classifier interaction scenario where |BflC| < |ADC|......................................81

Figure 3.18: A class tree used to illustrate the discussion on classifier interaction...........82

Figure 3.19: The Big Bang approach to deal with a hierarchical classification problem,

notice that the classifier can predict any node within the class hierarchy in just

one step..84

xiii

Figure 4.1: The outline of the probability distribution for particle seeding at the lower

bound of an attribute value..96

Figure 5.1: An encoded particle with n dimensions, each with k classifier id s119

Figure 5.2: An example being redirected to the classifier discriminating between classes

2.1 and 2.2 by a classifier discriminating between classes 1.1, 1.2 and class 2.

..123

Figure 6.1: Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS)........................ 152

Figure 6.2: An Example Classification in SHEHRS..163

Figure A .l: The average performance of the best particle during 100 runs of the All Same

First benchmark function, for both PSO/ACO and BPSO.............................216

Figure A.2: The average performance of the best particle during 100 runs of the All Same

benchmark function, for both PSO/ACO and BPSO..................................... 217

xiv

LIST OF ALGORITHMS

Pseudocode 3.1: Sequential Covering Approach.. 47

Pseudocode 3.2: Computing the Value of a Particle’s Position in Binary PSO 63

Pseudocode 3.3: The Ant-Miner algorithm adapted from [119]..67

Pseudocode 4.1: Sequential Covering Approach used by the Hybrid PSO/ACO-RI

Algorithm..94

Pseudocode 4.2: The Part of the PSO/ACO-RI Algorithm Coping with Nominal Data 102

Pseudocode 5.1: The Hybrid PSO/ACO-CS Algorithm for Classifier Selection...........120

Pseudocode 6.1: The testing phase of Weighted Voting for HEHRS............................... 157

Pseudocode 6.2: The training phase of SHEHRS... 162

Pseudocode 6.3: The testing phase of SHEHRS..165

Pseudocode A.l: One Max.. 213

Pseudocode A.2: One First.. 213

Pseudocode A.3: One Max Noisy...214

Pseudocode A.4: All Same.. 214

Pseudocode A.5: All Same First...215

xv

Chapter 1. Introduction

Chapter 1. Introduction

This thesis proposes new methods to improve the predictive accuracy of hierarchical

classification algorithms. From a machine learning and data mining perspective

classification involves a form of supervised learning, where a learning algorithm creates a

classifier which is trained using examples from a data set with known class labels [164],

The classification model produced by this algorithm during the training phase is then

used to predict what class label examples from a test set (unseen during training) have.

The type of classification problem dealt with in this thesis is hierarchical - as the

classes form a hierarchical structure [149], An example of a hierarchical classification

problem might be the prediction of what species and then breed a pet is. In the first case

we wish to know whether the given animal is of the class (species) dog or cat, and in the

second case if the animal is of the class (breed) Burmese, British Blue, Jack Russell or

Golden Retriever. In this thesis the species would be considered the first class level and

the breed the second class level.

The methods we propose during the course of this thesis have been applied to

challenging bioinformatics data sets. Our goal is to improve our ability to predict what

functions proteins have, using only information about the protein’s biochemical

composition.

To aid us in dealing with the complex nature of the hierarchical classification

problems examined in this thesis we use swarm intelligence based techniques, including

several versions of a new PSO/ACO (Particle Swarm Optimisation/Ant Colony

Optimisation) algorithm we have developed. Swarm intelligence based techniques have

been the basis of effective optimisation algorithms in the past. However, there has been

relatively little investigation into their application to data mining problems - notable

examples of work in this area can be found in [1] [63], We will show during the course of
1

Chapter 1. Introduction

this thesis that swarm intelligence algorithms are also effective in hierarchical

classification problems in the context of data mining and bioinformatics.

The rest of this chapter introduces the subject matter of this thesis, including our

motivations for carrying out this work. The aims, contributions and structure of the

remainder of this document are also discussed.

1.1. Motivation

The amount of information being produced by biologists is increasing massively. The

automation of the collection and storage of this information has led, in part, to this

increase, and so the demand for automated methods to analyse this information has also

dramatically increased. Probably the most well known source of biological data has been

from the sequencing of the human genome. However, many more genomes have been

sequenced, hundreds of organisms have had their genetic code revealed with base pairs of

nucleotides (the building blocks of DNA) numbering in the hundreds of thousands of

millions [157], An example of where computational methods have been essential to

biological problems is where algorithms were developed to piece together the fragments

of DNA sequences. During genomic sequencing fragments are discovered using a process

called “shotgun sequencing”. During this process random segments of DNA are

sequenced, with many overlapping segments, which are then knitted together

automatically by an algorithm. With such a large amount of sequence data it would be

impossible to use more traditional and labour intensive processes. In other words, it has

become essential, and now commonplace, for biologists to embrace computational tools.

The prediction of protein function can be considered one of the most important

challenges faced by biologists in the current “post-genome” era. The challenge arises, in

part, from the fact that the number of proteins discovered each year is growing at a near

exponential rate [156], Potential proteins are automatically decoded from DNA,

revealing a huge number of proteins with totally unknown functional characteristics [157],

2

Chapter 1. Introduction

In addition, advances in the understanding of protein function are critical for the

unravelling of biological processes, more effective diagnosis and treatment of disease,

also helping in the design of more effective medical drugs, etc. While the amount of time

it takes to discover and sequence a protein has decreased massively (the discovery of a

protein sequence was once considered worthy of a doctorate alone), discovering its

function remains relatively difficult and long winded via traditional biological methods.

When using data mining techniques it is possible to predict the function of many

proteins, quickly and with reasonable accuracy. Also, the patterns discovered in the

process can potentially be used to gain insight into the nature of proteins under

investigation.

Protein function prediction is particularly attractive from a data mining research

perspective. This is due to the difficulty of the problem involved, the need for the

validation of any predictions and the potentially great relevance of knowledge to be

discovered from the biological data. There is a lot of data readily available on the web;

this information is in large complex databases, with many records and many possible

attributes. Although this data is readily available in raw form, extracting the required data

in a form that can be processed by a data mining algorithm can be a very difficult and

time consuming task. Care must be taken to weed out unwanted data, database cross-

referencing systems are not always straight forward, conventions for identifying attributes

and giving descriptions are not always obvious, records might have many missing

attribute-values, duplicate or near duplicate records are commonplace. Also, the data

available in these biological databases often involves hierarchical and multi-label class

structures (where a record can belong to more than one class and the classes are

structured in a hierarchy). These class hierarchies are often ignored by

researchers [15] [85], possibly because at first glance they seem irrelevant, possibly

because few data mining tools exist to take advantage of them. We will show that if there

is a hierarchical class structure present in a data set it can be used to the advantage of the

researcher. We also present methods that take advantage of hierarchical class structures in

3

Chapter 1. Introduction

order to improve the predictive accuracy of the hierarchical classification of protein

function.

Swarm intelligence algorithms are derived from the way in which relatively

unintelligent entities (at the level of the individual) perform intelligent tasks (at the level

of the swarm) in nature. Part of the reason we chose to use swarm intelligence based

techniques with hierarchical classification problems is that swarm intelligence based

approaches have shown to be effective for some data mining tasks (including

classification) in the past. Also, swarm intelligence algorithms provide a great deal of

flexibility - there are many different types of algorithms suiting different applications.

Furthermore, due to the way in which the “intelligent” behaviour comes from the

relatively unintelligent entities, the basic principles of swarm intelligence tend to transfer

readily to computational algorithms. This is especially true for those algorithms designed

to deal with problems that do not require a large amount of background knowledge about

the target problem. Significantly, although the effectiveness of swarm intelligence

approaches has been shown in conventional “flat” classification, swarm intelligence

methods for hierarchical classification problems have not previously been investigated.

This, broadly speaking, characterises the originality of the research described in this

thesis, from a computer science point of view. In addition, this thesis also presents an

original contribution to bioinformatics, since there has been no previous investigation of

swarm intelligence methods for the hierarchical prediction of protein functions (again, to

the best of our knowledge).

1.2. Aim and Objectives

The overall aim of this thesis is to develop swarm intelligence-based methods that use

the extra information present within a class hierarchy to improve predictive accuracy. To

be able to do this we must first identify which areas of the hierarchical classification

problem can be improved upon.

4

Chapter 1. Introduction

During this thesis we take, as a baseline approach to be improved upon, a type of

hierarchical classification method that is already generally considered to be effective, the

top-down divide-and-conquer approach (TDDC). In this context, our overall aim consists

of several more precise objectives:

Firstly, it should be noted that different classifiers may perform differently on each

individual classification problem (each “divide”) within the TDDC tree. This problem has

already been investigated by other researchers (Seeker et al. [140]) to some degree.

Our first objective is to propose and evaluate a new swarm intelligence method to

improve upon Seeker et al.’s method.

Secondly, the TDDC approach is based on the principle that only sibling class nodes

need to be considered at any point in the class tree. So, at the first set of sibling class

nodes (e.g., cat or dog), if we decide cat, then at the second set of class nodes we must

only decide between the sibling class nodes Burmese or British Blue. This approach has a

major drawback. If the pet is in fact a dog we are guaranteed to guess the breed wrong if

we predict cat at the first class level. This problem is known as the “blocking” problem in

the literature [152], where higher level classifiers block the ability of lower level

classifiers to make correct predictions.

The second objective of this thesis is to propose and evaluate a swarm intelligence-

based method that attempts to reduce this drawback.

Thirdly, the TDDC approach involves dividing the hierarchical classification problem

into a set of flat classification problems for each classifier to deal with. In this sense the

system is still, to some extent naive of the class hierarchy. The only part of the TDDC

approach that is aware of the hierarchy is the simple top-down algorithm which guides

each test example to the next child classifier during the training phase. It seems that by

creating a method that is more aware of the hierarchy it should be possible to boost the

classification accuracy of the entire system.

Our third objective is to use the multiple class levels in the class tree to guide the

classification of each example in the test set in a more “intelligent” manner - using the

5

Chapter 1. Introduction

information from each of these class levels (we also aim to evaluate this approach). This

objective is pursued by proposing an ensemble based method whose performance is

improved by a proposed swarm intelligence based method. Stacking and bagging (two

well-known types of ensemble methods) are explored and adapted in this thesis in an

attempt to improve hierarchical classification accuracy. The standard TDDC approach is

extended by sampling the examples based on the native class hierarchy of the data, which

can be considered, at a high level of abstraction, a variation of bagging in the context of

hierarchical classification. We also propose a meta-leaming approach conceptually

similar to stacking.

Fourthly, it is common for researchers to infer protein function based on protein

biochemical similarity alone [3], without using a data mining algorithm to induce a

classification model from the data. By building a higher level classification model rather

than relying on low level biochemical information it should be possible to increase

predictive accuracy. We create new (hierarchical protein function) data sets with this in

mind and try and identify which method is best to classify proteins in each data set.

Indeed, our fourth objective can be seen as the application of the methods created, as

a result of the first three objectives, to the prediction of hierarchical protein function.

1.3. Preview of Contributions

The main original contributions of this thesis are:

• A new hierarchical classifier selector technique (PSO/ACO-CS) which uses

PSO/ACO to try to find a hierarchical combination of classifiers (a tree of classifiers)

with, overall, a higher predictive accuracy than the tree of classifiers found by

Seeker’s greedy selective approach [140]. This relates to the first objective of this

thesis; selecting the near optimal classifier at each classifier node (each “divide”

6

Chapter 1. Introduction

within the TDDC tree) is a task which benefits from the global search performed by

PSO/ACO-CS.

• A misclassification-recovery optimisation technique (PSO/ACO-RO) which uses

PSO/ACO to try to mitigate a major drawback of the top-down divide-and-conquer

(TDDC) approach. This relates to the second objective of this thesis and allows

lower level classifiers to attempt to correct the errors of higher level classifiers

(within the TDDC tree).

• An ensemble technique (Hierarchical Ensemble of Hierarchical Rule Sets) which

attempts to boost the accuracy of individual classifier nodes within the TDDC tree.

This relates to the third objective of this thesis. The HEHRS technique is an attempt

to make a more “intelligent” hierarchical classification system, in that it uses

information derived from the class hierarchy to guide predictions. We also propose

the use of PSO to automatically adjust some parameters of the proposed ensemble

method which led to an improvement in the predictive accuracy of the latter.

The more minor (secondary) original contributions are:

• A new hybrid Particle Swarm Optimisation/Ant Colony Optimisation (PSO/ACO)

algorithm that deals directly with both categorical/nominal and

numerical/continuous data. PSO/ACO is used to create a proof-of-concept “flat”

classification algorithm for rule induction (PSO/ACO-RI) whose basic principles

were used in the previously-mentioned swarm intelligence based algorithms for

hierarchical classification (major contributions of this thesis).

• The creation of several hierarchical protein function data sets. Specifically, data sets

containing data for the hierarchical prediction of GPCR function and data sets

containing data for the hierarchical prediction of enzyme functions. These data sets

are freely available on request.

7

Chapter 1. Introduction

1.4. Thesis Organisation

The remainder of this thesis is organised as follows. Chapter 2 provides a background

on the biological knowledge required to understand the protein function prediction

problem tackled in this thesis. We introduce the features of proteins in general, and how it

is possible to predict what function a protein might have. We also introduce the

approaches that have classically been taken by previous researchers for protein function

prediction. The online protein databases that we use in the creation of our bioinformatics

data sets are also described.

Chapter 3 introduces background information on data mining. It describes the

approaches taken by researches interested in hierarchical classification. It also discusses

how swarm intelligence algorithms have been applied to data mining problems in the past,

focusing on Ant Colony Optimisation and Particle Swarm Optimisation. We also

summarise previous work on ensemble-based techniques, focusing on the methods that

are used in the approaches proposed in this thesis.

Chapter 4 describes our new hybrid Particle Swarm Optimisation/Ant Colony

Optimisation (PSO/ACO) algorithm. As a proof of concept we implement a standard “flat”

classification algorithm based on our PSO/ACO technique and test its performance in

standard benchmark data sets. The concepts and principles incorporated into this

PSO/ACO algorithm for flat classification are then used to produce more sophisticated

PSO/ACO methods for hierarchical classification in the following chapters.

Chapter 5 describes the blocking problem in detail and proposes our solution to try

and mitigate its effect - a PSO/ACO algorithm for misclassification-recovery

optimisation. This is where examples can have their misclassification at higher class

levels corrected by lower level classifiers. We also propose a classifier selection

technique based on Seeker’s [140], which uses global (swarm-based) search to improve

on the performance of his technique. We evaluate our proposed methods, along with

several baseline approaches, using four new bioinformatics data sets. These challenging

8

Chapter 1. Introduction

real world data sets were constructed for the hierarchical prediction of GPCR (G-Protein

Coupled Receptors) protein function.

Chapter 6 proposes an ensemble-based approach for hierarchical classification. This

uses information from all levels within the class hierarchy to guide the classification of

each test example at each individual classification. We propose approaches that combine

the prediction of the classifiers using standard ensemble-based techniques (voting,

stacking) and also a PSO-based technique. We evaluate our proposed methods, along

with an adapted baseline technique, in 6 data sets involving protein function (Enzyme and

GPCR proteins) prediction. These data sets were created by us to test the effectiveness of

our approaches in real world problems.

Chapter 7 draws general conclusions based on the analysis of the results of the

experiments performed during this thesis and describes possible future research directions.

9

Chapter 2. Bioinformatics

Chapter 2. Bioinformatics

“Bioinformatics is:

(i) the development of computational methods for studying the structure,

function, and evolution of genes, proteins, and whole genomes;

(ii) the development of methods for the management and analysis of

biological information arising from genomics and high-throughput

experiments. ”

P. G. Higgs and T. K. Attwood [78]

The field of bioinformatics encompasses many different disciplines, where the

application of techniques from artificial intelligence, statistical analysis, applied

mathematics and algorithmic engineering sit side by side with biochemistry. The

techniques from these fields are applied to an array of different biological problems.

Some of the most important problems faced by bioinformaticians are described in this

section.

Sequence alignment, with algorithms such as the well known BLAST [3], are in part

taken from the world of pattern matching in strings. Sequence alignment is concerned

with matching two or more strings, possibly with omissions of substrings and possibly

with different length, in an optimal fashion.

The identification of active coding regions of DNA is also an important area of

bioinformatics research. A coding region of DNA is defined as any sequence within the

DNA that performs a useful function. Conventional wisdom is being challenged in this

area (with respect to the nature of non-coding DNA), i.e., it is now considered possible

that very little DNA has no useful role in the organism [55] [102],

Another important area encompassed in bioinformatics is protein-protein

interaction [101] [125], This involves the analysis of sets of proteins in an attempt to
10

Chapter 2. Bioinformatics

detect whether they directly interact with one another. This is very important in the

understanding of cellular biology as proteins interact to form complex metabolic

pathways. Unravelling these “computational” pathways gives us a better understanding of

the mechanisms of life [13]. It is one thing to understand these pathways, in the sense of

understanding which elements interact, it is another to understand the properties of the

proteins themselves.

Another major task in the field of bioinformatics is protein function prediction (the

subject of this thesis), which is the prediction of what function a protein might have using

computational means. The function of a protein can be found experimentally in a “wet-

lab” but this is usually a laborious process. Much more commonly the function of a

protein is predicted computationally (the subject of this thesis) and this prediction can be

validated, or at least used as a starting point in the lab. One way of understanding (to

some extent) how a protein performs a function is to calculate or observe its structure; its

structure being the 3-dimensional placement of each atom. Calculating the structure of

any long protein is extremely computationally intensive [98] and the observation of

protein structure is a difficult process requiring X-ray crystallography or protein nuclear

magnetic resonance spectroscopy. However, the structure of a protein can be estimated

using heuristic approaches, and this is also an active area of research [100] [136],

Another active area of research is evolutionary analysis, using computational methods

to identify the way in which organisms have evolved, identifying common ancestors

(common DNA), speciation events, lineage, building phylogenetic trees [78] etc.

The rest of this chapter is organised as follows. Section 2.1 gives an overview of what

proteins are and the features that make it possible to predict their function. Section 2.2

introduces the topic of protein function prediction. Section 2.3 describes sequence

alignment and how it can be used to infer homology. Section 2.4 describes methods that

use motifs to detect homology. Section 2.5 presents the protein motif databases used for

creating attributes for the protein datasets used in the experiments in this thesis.

Section 2.6 introduces the biological databases used to create the records of the data sets

11

Chapter 2. Bioinformatics

investigated in this thesis, along with the two protein families which are the focus of this

research, namely G protein-coupled receptors (GPCRs) and enzymes.

2.1. Proteins

The cell is a common element in almost all life; these cells contain extremely complex

chemical reactions. These complex chemical reactions are protected by a semi-permeable

membrane (cell membrane). Another common element of life is a “blueprint”, a method

of storing the information needed to create the enclosed chemical reaction, such a

blueprint is found in the form of DNA. This DNA is used to create progeny -

descendants that have their own and possibly distinct DNA.

It is very probable that all cells (and so creatures) have one original ancestor.

Therefore, common patterns in genes are likely to appear within the DNA and the

subsequently decoded proteins of living organisms. This leads to the concept of

homology, where two genes have evolved from a similar ancestral gene. Homology

occurs across different species and also between different genes within the same genome.

This is because one of the major ways in which creatures evolve is by a process of gene

duplication where another copy of an existing gene is added to their genome and

subsequently mutated. When two genes have a common ancestor between species due to

split in species they are said to be orthologous. When two genes sequences have a

common ancestry and occur within the same genome (in a single species) - due to a gene

duplication process - they are said to be paralogous. Orthologous genes usually have

similar function, i.e., they are used for a similar purpose but just in different species. This

is not always true for paralogous genes, as they probably have mutated to perform a

different function because of evolutionary pressures. Due to homology, proteins can often

be organised into evolutionary families which can have similar function. Due to the

nature of evolution these families often form hierarchies. Of course proteins do not have

to be related in any way to perform a similar function. Analogous proteins may, however,

12

Chapter 2. Bioinformatics

still share some similarity; the amount of similarity is obviously dependant on how easily

different proteins can fulfil the same role. Evolution often finds a slightly different

answer to the same question; for instance, the eye has independently evolved many times

in different but still identifiably similar ways.

Almost all of the cell’s structure and functions rely on proteins, from cell walls to

energy generation to biological motors to move the cell around. Proteins are generated

from DNA, which is firstly transcribed into Messenger RNA and then translated into

protein by the ribosome. Protein structure can be divided into four main levels of

structure: primary, secondary, tertiary and quaternary [2], Their primary structure, the one

decoded from DNA, is formed from a sequence of amino acids which are held together

by covalent bonds (strong bonds). This chain is built one amino acid at a time by the

ribosome.

Figure 2.1: Alpha Helix

Figure 2.2: Beta Sheet

13

Chapter 2. Bioinformatics

A protein forms a secondary structure after it has been constructed which is held

together by hydrogen bonds (weaker bonds). The secondary structure consists of local

three dimensional structures. Two common secondary structures that form based on the

amino acid backbone are alpha helices and beta sheets, shown in Figure 2.1 and

Figure 2.2. These may occur multiple times within each protein.

A protein typically folds to form a tertiary structure. This is the overall shape of the

protein after the secondary structures have “joined” together. Each different protein will

have a different tertiary structure. At this level of structure, proteins are held together by a

variety of different interacting chemical bonds that are generally weaker than those in the

first two structures.

Some proteins also form quaternary structures. This is the overall shape when two or

more polypeptide chains join together, forming a complex, to produce a larger molecule.

These multimeric complexes can be grouped in two main categories, globular and fibrous.

Multimeric complexes may comprise of multiple copies of the same polypeptide chain, or

multiple different polypeptides. Examples of fibrous proteins are fibroin in silk and spider

webs, and keratin a in hair and fingernails. Examples of globular proteins (which are ball

shaped) are haemoglobin and most enzymes.

Another level of organization somewhat separate from the above levels consist of

protein domains. They are described as any segment of the primary structure that forms

stable and compact structures and usually consist of around 100 amino acids [2], They are

modular elements that often perform a specific function. A protein may have one or many

domains and they are often common between proteins. These domains or motifs are often

highly conserved throughout evolution and between homologous proteins. They can be

independent and functionally important and so are considered discrete evolutionary

building blocks. In fact it has been argued that domains, not genes, are the fundamental

units of evolution [114].

14

Chapter 2. Bioinformatics

2.2. Protein Function Prediction

The prediction of protein function is a major task in bioinformatics and is the subject

of this thesis. If done successfully and accurately it can produce very important results,

for instance the ability to automatically find proteins related to known disease processes

in cells [114]. The faster these proteins can be found, the faster new drugs can be created

to act upon them.

As discussed in section 2.1, evolutionary processes mean that homologous proteins

often share some similarity at the amino acid level (primary sequence). However, certain

evolutionary mechanisms mean that the detection of similarity can be very difficult.

Mutation often occurs at functionally insignificant sites. One amino acid can sometimes

be swapped for another similar amino acid while conserving function. Whole sections

(domains) can be swapped between genes creating a completely different function, or

having no effect at all. These factors mean that detecting such meaningful similarity

(especially in distantly related proteins) is a very challenging problem.

It may initially seem as though if two sequences have similar amino acid composition

then they should be homologous. However, when searching large protein databases the

chance of detecting similarity due only to chance increases. In fact this is another very

challenging problem, especially when dealing with millions of sequences. However, these

problems are not necessarily intractable. As stated previously, domains are often very

highly conserved throughout evolution, with only minor changes taking place. Identifying

regions of primary sequence - such as domains - that might be highly conserved and

using them to search for homology has proved to be effective (as will be discussed in the

following sections). Also, it is possible to take into account the likelihood that one amino

acid has been exchanged for another within a protein sequence, as a result of an

evolutionary process. This likelihood can be calculated from observed amino acid

substitutions across homologous proteins or from the properties of the amino acids

themselves.

15

Chapter 2. Bioinformatics

Protein function prediction methods can be broadly divided into two main

categories [62], Firstly the methods which seek to predict function via homology

detection alone, which is in turn usually found via a search for similar sequences in a

database of proteins with known function. Secondly, the prediction of function based on a

model induced from a protein data set using machine learning-based model induction

techniques [117]. Obviously a model can be induced, and utilised for function predicted

(to varying degrees of success) from any set of features relating to the individual proteins.

Common methods involve either inducing the model from a set of sequence similarities

or alignments (as in this work), or reducing the sequence to a set of other non-alignment

based attributes.

One possibility for generating a model which is “alignment-free” is to use

proteochemometrics. The methods based on proteochemometrics usually aim to reduce

the sequence data to a set of numeric attributes [140], Techniques that rely on these

metrics as a source of attribute data can be relatively effective. However, the

comprehensibility of the produced model is questionable.

In the case of the alignment based techniques the abstraction provided by inducing a

model based on sequence similarity (rather than simply inferring homology and so

function directly from similarity) is an important one. As Freitas et al. [62] state, the

abstraction mitigates three important problems associated with relying on sequence

similarity alone:

“First, it is well-known that two proteins might have very similar sequences

and perform different functions, or have very different sequences and perform

the same or similar function (Syed & Yona, 2003), (Gerlt & Babbitt, 2000).

Second, the proteins being compared may be similar in regions of the

sequence that are not determinants of their function (Schug et al., 2002). Third,

the prediction of function is based only on sequence similarity, ignoring many

relevant biochemical properties of proteins (Karwath & King, 2002), (Syed &

Yona, 2003).”

16

Chapter 2. Bioinformatics

Gerlt, J. A. & Babbitt, P.C. (2000). Can sequence determine function?

Genome Biology 1 (5), 1-10.

Karwath, A. & King, R. D. (2002). Homology induction: the use of machine

learning to improve sequence similarity searches. BMC Bioinformatics 3:11.

Schug, J., Diskin, S., Mazzarelli, J., Brunk, B.P. & Stoeckert Jr., C.J. (2002).

Predicting gene ontology functions from ProDom and CDD protein domains.

Genome Research 12, 648-655.

Syed, U. & Yona, G. (2003). Using a mixture of probabilistic decision trees

for direct prediction of protein function. In Proceedings of the 2003 Conference

on Research in Computational Molecular Biology (RECOMB-2003) (pp. 289-

300).

The rest of this chapter describes methods for finding similarity between proteins

based on sequence alignment, from some of the most basic techniques (Section 2.3) to

some of the most advanced (Section 2.4). The different approaches that are described in

the remainder of this chapter have corresponding online databases (Section 2.5) where

similarity information is stored. These databases are used extensively in this thesis for

attribute creation.

2.3. Sequence Alignment

Determining how similar a protein sequence is to another is a cornerstone of

bioinformatics. Similarity, however, needs to be defined to understand how it can be

useful in determining if one protein is related to another in some way. Firstly one must

decide whether to measure global (Needleman and Wunsch [110]) or local similarity

(Smith and Waterman [145]); that is the similarity of two whole sequences or just smaller

regions within those whole sequences. Global alignment is useful when determining if

two sequences are related, whereas local alignment is often used to discover highly

conserved regions. Primary sequence regions are likely to be highly conserved if there is

an evolutionary pressure to maintain those regions; this is often the case in functionally

17

Chapter 2. Bioinformatics

important regions (domains). One must also consider that protein sequences are almost

always of different lengths. Given that fact, the problem becomes an issue of alignment;

how one can align the sequences so that they are the most similar.

Original
Sequence Alignment 1 Alignment 2 Alignment 3

Sequence 1 ADCCCACDD ADCCCACDD ADCCCACDD ADCCCACDD
Sequence 2 CACADCCACEC CACADCCACEC CACADCC—ACEC CACADCC—ACEC

Table 2.1: An Example protein sequence alignment

Table 2.1 shows three possible alignments for two hypothetical sequences 1 and 2. A

possible alignment is shown in the column labelled alignment 1. There are four amino

acids in a row that match each other. Notice that after the matching sequence (ADCC)

there are two more potentially matching amino acids A and C. Unfortunately there is an

additional C in sequence 1 that prevents these two extra amino acids from matching.

However, it is often the case in nature that amino acids are deleted or inserted (indels)

due to mutation in the coding DNA; sometimes these will cause a functional difference,

but if by adding a “gap” in the alignment enough extra amino acids align then it is likely

that the sequences can still be considered similar. Indeed in functionally unimportant

regions of the protein many indel events may have taken place across homologous

proteins, but functionally important areas tend to be well preserved. How much of a gap

to allow and how many extra amino acids should align is taken into account during the

scoring of the match by the alignment algorithm. When performing local alignment it is

also possible to start a totally new alignment at any position in the sequences, rather than

adding a gap and continuing the current alignment. With global alignment gaps are

almost always a necessity.

Alignment 2 shows the alignment with the added gap, we assume here that the extra

AC adds enough to the alignment to negate the penalty of adding a gap (denoted by

It may also be the case that rather than adding or removing an amino acid in the sequence,

18

Chapter 2. Bioinformatics

nature has changed it for a functionally very similar one. Alignment 3 shows such a

scenario, where the system has considered Aspartic acid (D) and Glutamic acid (E)

interchangeable enough to add one more amino acid to the alignment.

The method for sequence alignment seems relatively simple but leaves us with two

important questions: when should the system stop allowing gaps and substitutions for the

alignment, and how to calculate which amino acids substitute for others well. These

questions are answered by employing a scoring system relying on a matrix of

substitutions. Such a matrix will have entries corresponding to every possible amino acid

substitution. Two common schemes for scoring an alignment are the BLOSUM [44] and

PAM [77] matrices. Using these schemes it is possible to give each position in the

alignment a score - presumably a positive one for a matching amino acid, and sometimes

a negative one for non-matching amino acid. These matrices can be derived by looking at

known conserved regions of pairs of proteins and seeing how many times each

substitution takes place - high scores for pairs of amino acids that are often substituted

for each other, and low scores for amino acids that are rarely seen substituting each other.

Given this scoring system one can see how an optimal sequence alignment is computed;

the addition of the individual scores for each pair of amino acids in the alignment minus

the cost of adding gaps to the alignment. A common method of penalising the alignment

for adding a gap is called the affine gap penalty, this works by deducting a fixed amount

for opening a gap, and then penalising a further amount proportional to the length of the

gap-

One naive algorithmic method of finding an optimal alignment would be to generate

and then score all possible alignments, returning the best one(s). This would obviously

take a prohibitively long time even on modem computers and in fact there are much more

efficient algorithms. In global alignment the Needleman and Wunsch dynamic

programming algorithm [110] finds an optimal alignment in 0(mn) time where m and n

are the lengths of the two sequences respectively. At a basic level, to achieve this the

algorithm breaks the problem into a set of similar sub-problems and then recursively

19

Chapter 2. Bioinformatics

examines them to find the optimal solution. The Smith and Waterman algorithm [145]

uses a similar dynamic programming technique to find the optimal local alignment also in

O(nin) time.

These algorithms, while efficient, are not fast enough for searching large databases for

related proteins. Algorithms such as BLAST [3] and FASTA [121] allow the user to find

related sequences amongst large numbers of sequences in good time. To achieve this

increase in speed, the proteins are broken into sub-sequences and these are compared

against each other (using hash values [121]). Then, larger (non-gapped) segments are

found using a scoring matrix, and these segments are finally joined together using a

dynamic programming algorithm. Importantly it must be possible to measure how

significant each alignment is. The Z-value [121] gives such a measure where the

alignment against the potential match is statistically compared against that of random

proteins.

A pair-wise comparison of proteins can sometimes be limiting. For instance, consider

the scenario where a biologist is investigating if and how multiple proteins are related.

When examining a family of proteins that are all descendants of a common ancestor, it

might be useful to find out which regions are conserved - and so are likely functionally

important within that family. Although dynamic programming techniques have in some

sense conquered pair-wise global and local alignment, the same cannot be said for

multiple sequence alignment. A dynamic programming approach would take 0((2L)n)

time, with n sequences and L being the average sequence length [57]. For this reason

many heuristic-based approaches have been proposed [155]. With some of the more

recent work conducted in this field using naturally-inspired algorithms such as

evolutionary algorithms and particle swarm optimisation [134][143],

Perhaps the most famous and widely used multiple sequence alignment algorithm is

the ClustalW algorithm [154], A multiple sequence alignment performed by ClustalW is

shown in Figure 2.3, where the protein identifiers run down the far left column, and the

colours represent certain properties of the amino acids in the sequences such as whether

20

Chapter 2. Bioinformatics

they are acidic. The symbols at the bottom and show that the amino acid is

always identical across all proteins, that substitutions have taken place and that less

compatible substitutions have taken place (respectively).

Q9H2A3 |AC«3_C-0RS0
P2030S1RQ« mmsir
Q9N2M1SD3 j.UPR

¡AQS_PQ«5i
F*1SS4 IJkCXS_BCrVlH
PU 4i3m C M J_Pl'S
Q9ER23 IMBJKHTSE
Pi957StSOO_CHlCK
§1.1223 I A C H ljm M I
2 S R 5 4 9 i R C H l ” ? O K r V

P047 6.1 I K J O J t t«
E S t m i a C M L J U a n

"1265* iACMlJKJOSE
S084S2 IACM1JUT
=41?i3IAD'.2_30VI}i
f i i ie o lAOtt JUfl
E16395 ;AChO r?KE

:KEK--akkQii£MiiJurii'i»rpiBimvH—rrcisciHcnraiinsficifnisivs
KtK--KJUi5ri3iiiLLAniT«tT?r!iiK’/TW !--rr:D 5ciF icr»ra 'iST iiL crrs3m

ta n iwnm.mm~rrcteamfmetmjcm sr*
i 'iK - -K ^ s T t3 A itiA r iiT so 'p m m ,w -- rn :n s c 2 F K ra ii i^ w L a riS 5 r ra

KK—K M flum tuFxxm ^iiaas^-rrcirarrxn iM em m itsrvB
xek—xM cnsM tm n im m im v ^ r r n > ^ i iK r» m c m e n s s iv K
KEK—KMF.T.LSAILLArilTWIFYHIK'ilVS—irriXCTrETInTIGTuXCr^fSIIil
K » :- - :m iT iS A itu rx ir« T ? w :» rw 5 --7 iT r3 K 'v T E ri.i.T !,5 m crA ’STii;
K E K --xw jiT tsa iu ju ,pnjfrpw 2!fti.w 5--rrr!C iicvpE n.*ticniL ew s5T i8
fKC--KAARii3JiLXArn.TW iPYHi>c.xv5--iFr!a}cviErLia:ismcmTs i i s
kek—«»M 7 i a i t u i n i T O i m : m \ 3 ~ ? r r !5 B c w n m C T W £ » v 8 5 r.'»
'iK--xAAP.ii45Mn^:imm:ffsvs--ircxDC«Erimemciv»;£i'iii
« r —K T nnn jH ix fcR ir so u ? n iw » ^ 3 » ~ T ra T c ir8 rm i< n « tc r i« S T iH

KRQES&AKXIS&IILSfl ITMTFZKX IV H K ELIirSK IilE lS 'jm ffiLw SISSIIK

Figure 2.3: Part of a multiple sequence alignment of Muscarinic Acetylcholine receptor

GPCR proteins using ClustalW

P 163951ACM 1 _DROME
P 419851ACM2_BOVlN
P 10980 |ACM2_RAT
P 11229 |ACM 1 _HUMAN
Q5R9491ACM 1 _PONPY
P04761|ACM1_PIG
P564891ACM 1 _M ACMU
P 126571ACM 1 _MOUSE
P084821ACM 1 _RAT
P49578|ACM3_CHICK
Q9ERZ31 ACM3_MOUSE
P419841ACM3_BOVlN
P11483|ACM3_PIG
Q9N2A2 |ACM3_PONPY
Q9N2A3|ACM3_GORGO
P20309 |ACM3_HUMAN
Q9N2A4 |ACM3_PANTR

Figure 2.4: An approximate phylogenetic tree derived from the multiple sequence

alignment of Muscarinic Acetylcholine receptor GPCR proteins using ClustalW

21

Chapter 2. Bioinformatics

Although many techniques have been devised to perform multiple sequence alignment

in reasonable time the basic principle usually involves first building a phylogenetic

tree [154], This tree of evolutionary relationship is constructed by finding the most

closely related protein sequences using pair-wise sequence alignment. After all sequences

have been aligned a matrix can be created showing the most related proteins. An

approximate phylogenetic tree or guide tree (an example is shown in Figure 2.4) can then

be constructed using hierarchical clustering to guide the pair-wise alignments in the

multiple sequence alignment. For instance, in Figure 2.4 ACM2_Bovin is considered to

be most closely related to ACM2_Rat, these sequences are aligned, and then the

alignment for that two-protein cluster is aligned against A CM ID rom e, which the

algorithm considers the second most related sequence.

2.4. Motif Detection using Alignment-Based Similarity Search

Although sequence alignment on its own is a good way to detect homology amongst

proteins, it is not always flexible, sensitive (detecting as many homologous proteins as

possible) or specific (not misclassifying non-homologous proteins as homologous)

enough - especially when the percentage of similarity between homologous proteins is

low [114]. For this reason more advanced techniques have been devised including Hidden

Markov Models (HMMs), profiles, Fingerprints and regular expressions or patterns.

HMMs, profiles and Fingerprints are used to identify homology based on the entire

sequence, whereas patterns are used to detect smaller and somewhat independent

functional units (domains).

All the techniques mentioned in this sub-section rely on sequence alignment in one

way or another. This reliance on sequence alignment - the fact that any prediction made

will directly relate to sets of amino acids within the search sequence - gives the

prediction a certain level of transparency and comprehensibility. This is obviously

important; it is not always enough to merely give an answer, the reason for the answer

22

Chapter 2. Bioinformatics

may be equally important. This is especially true in proteomics as the grouping of similar

amino acids may often give insights into how the functionalities of proteins are conserved

throughout protein families. However, this kind of information is at a relatively low level

of abstraction (at the level of individual proteins), whereas information gained at a higher

level of abstraction (at the level of a classification model) may reveal broader patterns,

for instance, information about how protein domains interact.

2.4.1. Regular Expressions

Regular expressions or patterns are good at detecting the most conserved regions of

proteins and usually detect a sub-sequence of around 10-20 amino acids [103], Because

of their small size they can detect very distantly related proteins via their highly

conserved functional regions. As they are so specific they must be very carefully crafted

to maintain sensitivity and specificity, for this reason the regular expressions used for

patterns are often created semi-manually. To create a regular expression, a common

starting point consists of using a multiple sequence alignment, or using some information

about commonalities amongst a protein family. The basic components of a regular

expression [17] are:

• Each position is separated by a hyphen

• An uppercase character only matches itself

• An x means any amino acid

• [] brackets contain multiple amino acids that can match

• [R]* matches any number of amino acids

• {} brackets contain amino acids that are not allowed

• () brackets contain the number of repeats

23

Chapter 2. Bioinformatics

For instance, the regular expression (pattern) PS00237 found in the PROSITE [85]

database (to be discussed later) is as follows:

[GSTALIVMFYWC] - [GSTANCPDE] - {EDPKRH} - x - {PQ} - [LIVMNQGA] - {RK}

- {RK} - [LIVMFT] - [GSTANC] - [LIVMFYWSTAC] - [DENH] - R - [FYWCSH] -

{PE} - x - [LIVM]

This expression was created to describe a sub set of GPCR (G protein-coupled

receptor) proteins and covers this section of the primary sequence of the A CM ID rom e

protein (Fruit fly GPCR) sequence:

ASVLNLLIISFDRYFSV (From the entire sequence):

MEPVMSLALAAHGPPSILEPLFKTVTTSTTTTTTTTTSTTTTTASPAGYSPGYPGTTLLT
ALFENLTSTAASGLYDPYSGMYGNQTNGTIGFETKGPRYSLASMVVMGFVAAILSTVTVA
GNVMVMISFKIDKQLQTISNYFLFSLAIADFAIGAISMPLFAVTTILGYWPLGPIVCDTW
LALDYLASNASVLNLLIISFDRYFSVTRPLTYRAKRTTNRAAVMIGAAWGISLLLWPPWI
Y SWPYIEGKRTVPKDECYIQFIETNQYITFGTALAAFYFPVTIMCFLYWRIWRETKKRQK
DLPNLQAGKKDSSKRSNS SDENTVVNHASGGLLAFAQVGGNDHDTWRRPRSESSPDAESV
YMTNMVIDSGYHGMHSRKSSIKSTNTIKKSYTCFGSIKEWCIAWWHSGREDSDDFAYEQE
EPSDLGYATPVTIETPLQSSVSRCTSMNVMRDNYSMGGSVSGVRPPSILLSDVSPTPLPR
PPLASISQLQEMSAVTASTTANVNTSGNGNGAINNNNNASHNGNGAVNGNGAGNGSGIGL
GTTGNATHRDSRTLPVINRINSRSVSQDSVYTILIRLPSDGASSNAANGGGGGPGAGAAA
SASLSMQGDCAPSIKMIHEDGPTTTAAAAPLASAAATRRPLPSRDSEFSLPLGRRMSHAQ
HDARLLNAKVIPKQLGKAGGGAAGGGVGGAHALMNARNAAKKKKKSQEKRQESKAAKTLS
AILLSFIITWTPYNILVLIKPLTTCSDCIPTELWDFFYALCYINSTINPMCYALCNATFR
RTYVRILTCKWHTRNREGMVRGVYN

Figure 2.5: Sequence for ACMl_DROME Muscarinic acetylcholine receptor from

Drosophila Melanogaster (Fruit fly).

24

Chapter 2. Bioinformatics

During the creation of such a pattern a database of proteins must be iteratively

searched to try and improve/expand the pattern. Initially a candidate pattern might cover

proteins that are not of the correct type (false positives), in which case the pattern must be

expanded to make it more specific. It is important that when making the pattern more

specific the modifications do not exclude too many proteins (false negatives) from the

target set decreasing the sensitivity. This procedure must be repeated until the pattern

covers only its target proteins, or until no further improvement is possible.

2.4.2. Profiles

Profiles [26] are matrices derived from a multiple sequence alignment. After a

multiple sequence alignment is performed it is possible to scan sequences characterised

by that alignment and construct a scoring matrix based on how many times each amino

acid occurs at each position. For instance, in Figure 2.3 at the first position within the

alignment, Lysine (K) is very common and there are two instances of Arginine (R).

Therefore these two amino acids would have a positive score in the first row in the matrix.

Other amino acids would have scores depending on how similar or dissimilar they are to

these two amino acids, this scoring system could be based on BLOSUM [44] and

PAM [77],

/ I :
A 3 C

3 1 - 0 ; 3 1 — - 1 0 5 ;
D £

3 D = - 1 0 5 ;
F G H I K L M N F Q R s T V W Y Z

/M: s y - ' G * M - l r - 1 1 , - 2 4 , - 1 3 , - 1 5 , - 1 9 , 30 - 1 9 - 2 0 - I S , - 1 5 , - 1 1 - 5 , - 1 9 - 1 6 , - 1 8 , - 2 , - 1 1 , - 1 5 - 2 2 , - 2 0 , - 1 6 ;
/M : S Y - ' N ’ M - - 9 , 3 3 , - 1 9 , 1 5 , - 2 , - I S , - 2 3 - 1 3 , - 2 , - 2 6 , - 1 3 5 1, - 2 0 - 1 , - 2 , 9, 1 - 2 6 - 3 8 , - 1 7 , - 2 ;
/M: S Y - ' I • M - - 1 , - 2 1 , - 1 6 , - 2 6 , - 2 1 , 0 , - 1 6 - 2 2 10 , - 2 2 , 8 , 4 - 1 7 , - 2 2 - 1 9 , - 2 0 , - 8 , - 3 10 - 2 1 , - 7 - 2 0 ;|
/M: S Y - ' L ’ M - - 6 , - 2 4 , - 1 7 , - 2 3, - 2 1 , 5 , - 2 5 - 2 0 , 1 4 , - 2 4 , 2 3 , 12 - 2 1 , - 2 5 - 2 0 , - 1 9 , “ 1 7 , - 5 11 - 1 7 , 0 - 2 0 ;
/M: 5 Y = ’ V ' M - - 1 , - 1 9 , - 1 6 , - 2 3 , - 2 1 , - 2 , - 2 4 , - 1 4 , 1 5 , - I S , 6 , 7 - 1 6 , - 2 4 - 1 8 - 1 7 , - 7 - 1 21 - 2 6, - 5 , - 2 0 ;
/M: S Y - ’ I ’ M - - 8 , - 2 5 , - 1 6 , - 3 3 , - 2 5 , 6 , - 3 1 , - 2 4 , 2 6 , - 2 6 , 2 4 , 1 5 , - 2 4 , - 2 6 , - 2 1 , - 2 3 , - 2 0 , - 8 , 20 - 2 0 , - 1 , - 2 4 ;
/M: S Y = ’ I ’ M - - 6 , - 2 3 , - 1 9 , - 2 7 , - 2 1 , 5 , - 2 4 , - 1 6 , 3, “ 1 2 , 8, 5 , - 2 0 , - 2 3 , - 1 7 , - 1 7 , - 1 5 , - 6 , 5 , - 2 , 7 , - I S ;
/M: S Y — ' V M - 4 , - 2 2 , - 1 4 , - 2 6 , - 2 1 , - 5 , - 2 3 , - 2 3 , 1 6 , - 1 8 7 , 6, - 1 9 , - 2 2 , - I S , - 1 9 , - 7 , - 1 , 2 0 , - 2 4 , - 8 , - 2 1 ;
/Ms SY**' I * M - - 2 , - 2 5 , - 1 9 , - 3 0 , - 2 4 , 1 4 , - 2 9 , - 2 0 , 1 9 , - 2 4 , 1 9 , 1 1 , - 2 1 , - 2 5 , - 2 1 , - 2 0 , - 1 7 , - 4 , 16 - 1 6 , 5 , - 2 3 ;
/M: S Y = •F * M - - 3 , - 1 2 , - 1 2 , - 2 3 , - I S , 4 , - 2 0 , - 1 6 , 2 , - 1 7 , 3 , 1 , - 1 4 , - 2 2 , - 1 6 , - 1 4 , - 7 , 0 , 3 , - 1 6 , 0 , - 1 7 ;
/ K : 5 Y = ' R ' M - - 9 , - 1 0 , - 2 2 , - 1 2 , —6 , - 1 0 , - 1 8 , - 7 , - 1 5 , 7 - 1 1 , - 5 , - 5 , - 1 7 , - 1 , i - : , - 6 , - 4 , - 1 1 , - 1 2 , - 5 , - 5 ;
/M: S Y = * K ' M - - S , 1 , - 2 1 , - 1 , 0 , - 1 4 , - 1 6 , - 1 , - I S , 4 , “ 1 7 , - 1 0 , 3 , - 1 2 , - 1 , 3 , - 1 , - 1 , - 1 5 , - 2 3 , - 5 , - l ;
/M: 5 Y - ’ R ’ M - - 2 , - 7 , - 2 5 , 0 , - 1 9 , - 1 6 , - 6 , - 1 3 , 11 , - 1 2 , - ? - 3 , - 5 , 2 , 1 3 , “ 3 , - 4 , - 1 5 , - 2 3 , - 1 0 , 0 ;
/M:
/ I :

S Y - * R ’ M - - 8 , - 7 , - 2 1 ,
J — —4 ; M D - - 2 3 ;

- 9 , - 3 , - 1 6 , - 1 6 , - 4 , - 1 4 , - 1 2 , “ 1 , - 3 , - 1 4 , 3 , 1 1 , - 4 , - 4 , - 1 1 , - 2 3 , - 3 , - 1 ;

/M:
/ I :

5 Y = ’ L ’ M— - 7 , - 1 7 , - 2 0 , - 1 9 , - 1 1 , - 2 , - 2 0 , - 1 1 ,
I « - 4 ; M I - 0 ; H D - - 2 3 ; I M - 0 ; D M - - 2 3 ;

1 , - 8 , 1 1 , 8 , - 1 4 , - 1 9 , - 1 , - 1 4 , - 7 , 0 , - 1 3 , - 3 , - 1 0 ; D = - 4 ;

Figure 2.6: Part of a profile from Prosite [85|
25

Chapter 2. Bioinformatics

Figure 2.6 shows part of Prosite profile PS50262 for GPCR proteins. This scoring

matrix has scores for each amino acid (columns) for each position in the alignment (rows).

The first two characters in each row identify whether the position in the alignment is

either a match (/M) or an insert (/I), with the SY identifier showing the original amino

acid in the alignment. There are default costs associated with certain operations such as

going from a match to an insert (MI) or having a delete (D) but they can be overridden by

the parameters in each individual insert row [85],

Obviously the quality of the original multiple sequence alignment is very important

for the specificity and sensitivity of the final profile. To find if a protein sequence

matches this profile well, the search sequence must first be aligned against the profile

alignment and then scored according to the generated scoring matrix. It is therefore

possible to calculate an E-value or the expected value - the likelihood that the match is

by chance alone. This value is also dependant on the database size, so large databases

correlate to a higher E-value. A low E-value is indicative of a good match with a high

probability that the sequences are really homologous.

2.4.3. Hidden Markov Models (HMM)

A HMM (developed by Leonard Baum and others [132]) is a probabilistic construct

that consists of a set of linked states; each state is a set of probabilities that relate to the

chance of emitting a particular value. In the case of a basic profile HMM [97] (a HMM

for the characterisation of a set of proteins) the states are inserts, deletions and matches.

A profile HMM is in some ways conceptually similar to a standard profile, in that each

match state in the HMM functions in the same way as each column in a profile - holding

a set of probabilities, one for each particular amino acid and for each insert. The insert

state holds probabilities for inserting any amino acid, and the delete state always emits a

delete value representing a deletion in the sequence. Connecting these states (Figure 2.7)

are transition probabilities, the probability of going from one state to another. In this way
26

Chapter 2. Bioinformatics

a profile HMM can be considered a probabilistic sequence generator starting sequence

generation at the non-emitting dummy state Mo and ending at the dummy state Mj+i.

Following the topology in Figure 2.7 it can be observed that the model may emit any

number of inserted amino acids between each emitted match amino acid, however it may

not add a delete and an insert for the same column (of the original alignment) - as this

would simply remove the last insert.

Figure 2.7: A profile HMM showing match states (M), delete states (D) and insert states

(I), with transition probabilities shown as arrows. The beginning state is M0 and the end

state is Mj+i adapted from [97]

To create a profile HMM for a set of proteins, a good initial seed multiple sequence

alignment is needed. Although it is possible to train the model on unaligned sequences,

this is not done in practice as a suboptimal model is more likely to be produced. The

number of match states can then be deduced along with the transition probabilities and

emission probabilities from the observed number of amino acids in the aligned

sequences [78]. This model can then be improved by aligning new sequences to it using

the Viterbi algorithm [160] and then again using the Viterbi algorithm to retrain the

HMM. This process can be iterated until the desired set of proteins are covered and the

parameters of the HMM become stable. Of course it is important to monitor the HMM

27

Chapter 2. Bioinformatics

during its training to ensure specificity is maintained. HMMs are some of the best ways

of detecting homology (distant or otherwise), tending to be very accurate.

HMMER [53] is a popular suite of programs used to create and use profile HMMs

and is the basis of the well-known Pfam database [7]. It is possible to find the HMM that

most likely produced a given sequence from a set of HMMs [53], If each HMM

characterises a family of proteins then it is likely that a “hit” against one of these HMMs

means that a given sequence belongs to that family.

Trusted matches - domains scoring higher than the gathering threshold (A)

Domain Start End Bits Evalue Alignment Mode

1 7tm 1 121 772 279.30 6.5e-81 | Alian b

Potential matches - Domains w ith Evalues above the cu to ff

Domain Start End Bits Evalue Alignment Mode

M annosvl trans2 45 408 -257.40 0.94 Align Is

? tm 4 108 334 -171.80 0.73 Align Is

DUF1970 184 192 1.80 0.93 A la n fs

T foX C 295 306 5.10 0.98 Align fs

BAF 388 404 6.10 0.098 Align fs

Figure 2.8: A Pfam search against A C M ID rom e showing the HMM hits with the most

likely hit and other possible hits based on E-value.

A Boolean answer cannot be given as to whether a sequence was generated by a given

HMM (unlike with regular expressions). However, E-values can be calculated and below

a certain threshold a good certainty is obtainable. Figure 2.8 shows a search performed

against Pfam HMMs with the ACMl_Drome sequence. As can be seen the search has

resulted in one highly likely match, the HMM (7tm_l) characterising the family with 7tm

or seven trans-membrane helices usually associated with GPCRs. The other top HMMs
28

Chapter 2. Bioinformatics

(representing different types of domains) are also displayed but have a relatively high E-

value and so are more likely chance matches, although 7tm_4 is displayed that is of a

similar type to the protein.

* -M SIO X V i 1 v i 1 r t k k l r t - p t n i f i lHLAvADLLf 1 1 1 Ip p w a l y y 1 v g
GN++V++ + k + I + t +n+f+++LA +A D+ +++ +p ++++ +

ACM1JDROME 1 2 1 GNVMVMIS FKIDKQLQTISNYFLFSLAIADFAIGAISMPLFAVTTIL 1 6?
gedWpf GsalCiclvtaldwmtyaSillLtalSiDRYlAIvhPlryxrrr
q +Wp+G4++C+++ ald4-i"f4 aS-rX-fL-f XS4DRY 4+4 4PX yx4 4x

ACMl_DROME 1 6 3 G-YWPLGPIVCDXWLALDYLASNASVLNLLIISFDRYFSVTRFLTYRAKR 21 6

Figure 2.9: Part of the alignment for A C M ID rom e against the 7tm_l (seven trans­

membrane helices) Pfam HMM.

Even though an HMM is essentially a set of numbers whose interpretation is not easy,

it is possible to see, in part, how each HMM relates to the search protein via the

alignment. Figure 2.9 shows part of such an alignment, with the original search sequence,

on the bottom rows, labelled as ACM1 Drome. The numbers next to the ACM 1 Drome

label are the positions in the search sequence. The *-> symbol is the start of the

alignment (notice that the alignment does not start at the beginning of the search

sequence). The top rows are the most likely output of the HMM with capital letters

showing highly probable emission values (which are likely conserved regions) and lower

case showing less probable values. The middle line shows the exact matches following

the same upper and lower case format as the top line. The + symbol means that the

alignment has a positive score at that position. On the bottom set of rows an indel has

been emitted and is represented by

2.4.4. Fingerprints

Fingerprints [120] work in a similar way to a set of patterns, but rather than

identifying a protein using a regular expression it uses a set of frequency matrices. Firstly,

29

Chapter 2. Bioinformatics

a multiple alignment is taken from a seeding sub-set of proteins from the set that are to be

characterised. As this multiple alignment is taken and more distant homologous proteins

are added, gaps appear. Rather than just allowing a single alignment with gaps, the

alignment is split into separate motifs. An un-weighted frequency matrix is constructed

from the motifs containing the number of times each amino acid at each position within

the motifs occurs throughout the set of proteins. This matrix is considered un-weighted as

only this frequency of observed amino acids is taken into account and not other more

general scoring matrices, e.g., PAM and BLOSUM. These motifs are intended to

correspond to important conserved regions through the sequences. Once the motifs and

frequency matrices have been constructed the software scans a database of proteins to

find all proteins that match all the motifs and orders them by score - according to the

frequency matrix. This entire process of motif and frequency matrix construction is

repeated on part of the new set of top scoring proteins in an attempt to make the motifs

more general. This is continued until the set of proteins does not change between

iterations. As a Fingerprint is constructed from multiple motifs it is possible to create a

hierarchy within them, with some proteins not having all the motifs from a particular

Fingerprint still considered part of the set of proteins characterised by it (but possibly

only belonging to a different sub-family).

To find out which fingerprint best matches a given sequence involves using a

different matching algorithm than the one used to create them. Fingerprint-scan [139]

increases the sensitivity of the scanning process when compared to the algorithm for

fingerprint creation. It achieves this by converting the motifs into un-gapped profiles

using a choice of different scoring matrices (usually BLOSUM). The only real restriction

in combining the predictions of the individual motifs is that the order in which the motifs

occur in the profile is the same as the order in which they occur in the original fingerprint.

Search hits are returned sorted by E-value and probability.

Figure 2.10 is a three-dimensional graphical view of a fingerprint (GPCR-

RHODOPSN) taken from the PRINTS database [4] [129], The areas that are covered by

30

Chapter 2. Bioinformatics

the motifs in the fingerprint are displayed in red. As can be seen these areas are the seven

trans-membrane helices indicative of GPCR proteins. GPCRRHODOPSN is one of the

Fingerprints which cover the ACMl_Drome GPCR protein and the one that gives the

lowest E-value for that protein, out of all Fingerprints in the PRINTS database.

Figure 2.11 details the GPCRRHODOPSN fingerprint match found. Each motif from the

fingerprint is shown numbered on the right hand side, with the position of the match for

each motif represented by a box. The box height corresponds to the similarity between

the search sequence and the labelled motif. Also labelled is the numerical position (in the

protein sequence) of the motif match under each box. Notice that for the first motif there

are two potential matches within the sequence.

Figure 2.10: A graphical view of the GPCRRHODOPSN Fingerprint - shown in red, the

Fingerprint corresponds to the seven Trans-membrane helices of GPCRs

31

Chapter 2. Bioinformatics

Residue Nunber

Figure 2.11: A graphical representation of the 7 motifs from the GPCRRHODOPSN

Fingerprint covering the ACMI Drome GPCR protein

2.5. Motif Databases

Motif databases are an invaluable resource for bioinformaticians and biologists alike.

As their name might suggest they store motifs and related information so that each person

who is interested in using the technology does not have to spend time generating motif

data themselves (which given the number of known and potential proteins could be a very

time consuming process). This section presents a brief overview of a subset of the

numerous motif databases. More specifically, this section focuses on the motif databases

used in generating the datasets investigated in the experiments presented in this thesis.

This particular subset of possible motif databases (PROSITE, Pfam, PRINTS, InterPro)

was chosen to explore as broad a set of motif generation approaches as possible.

32

Chapter 2. Bioinformatics

2.5.1. PROSITE

Prosite [85] [126] is a database that contains entries to try and help identify which

family unknown proteins belong to. These entries are known as Prosite motifs and

contain patterns or profiles (as discussed in section 2.4) to identify one protein family

from others along with descriptions of the nature of the pattern or profile. The patterns

detect regions that code for sites such as [126]:

• Enzyme catalytic sites.

• Amino acids involved in binding a metal ion.

• Regions involved in binding a molecule.

Each Prosite entry contains a description of the family it covers, along with a list of

protein matches from Swiss-Prot [166], It also contains the number of true positives, false

positives, true negatives and false negatives showing how sensitive and specific that

particular entry is. Release 20.31 (April 2008) contains 1514 documentation entries that

describe 1318 patterns and 784 profiles, and 784 Pro Rules (rules designed to increase the

performance of the motifs).

2.5.2. Pfam

Pfam [7] [123] is another database designed to assign protein family. It uses profile

HMMs (discussed in section 2.4) to perform this task and, like the other databases

mentioned in this section, a user supplied protein sequence can be submitted to it. It

returns the set of HMMs most likely to characterise that sequence ordered by E-value.

There are two parts to Pfam, Pfam-A and Pfam-B. Pfam-A contains HMMs built from

automatically generated seed alignments that are often hand-edited to maintain the quality

of the produced HMM. Pfam-B is completely automatically generated, using seed

alignment derived from the ProDom [25] database (a database containing automatically

33

Chapter 2. Bioinformatics

generated protein families). For this reason Pfam-B may, in some cases, be unreliable.

Most Pfam functionality is based on the HMMER [53] suite of programs. Each entry in

Pfam contains similar - but less well annotated - information when compared to Prosite.

However, links to other well annotated databases are provided (such as InterPro) for each

family characterised by each HMM. Release 22.0 (July 2007) contains 9318 families for

which HMMs have been constructed.

2.5.3. PRINTS

Prints [4] [129] is another freely available database that contains entries to try and

identify a protein family based on its sequence. In each FingerPrint (discussed in

section 2.4) entry, the set of motifs, along with good annotation and information relating

to the sensitivity and specificity, are present. A hierarchy is also provided that allows the

user to see the connections between those FingerPrints that do not possess all the motifs

of their parent FingerPrint. Release 38.1 (June 2007) of PRINTS contains 1904 entries,

encoding 11,451 individual motifs.

2.5.4. InterPro

InterPro [86] [109] is different from the motif databases mentioned so far in that it is a

“composite protein pattern database”. Different large motif databases will inevitably have

at least some overlap, covering the same families of proteins. Also, each database has its

own advantages and disadvantages in certain situations. Obvious examples are the way in

which Prosite with its regular expressions identifies families with small but highly

conserved regions, Pfam with its HMMs is good at identifying proteins with small

amounts of meaningful similarity and PRINTS is good at identifying smaller families -

due to its hierarchical nature. Due to these facts InterPro was created to combine multiple

motif databases into one easy to use database. Table 2.2 shows an overview of InterPro’s

constituent databases. The database name is given in the first column, the second column

34

Chapter 2. Bioinformatics

shows the release version number, the third shows the total number of entries in that

database, the fourth column shows the number of signatures that have been fully

integrated into the InterPro entries and the fifth column gives a brief description of the

type of approach the database uses.

S ig n a tu re D a ta b a se V e rs io n A ll S ig n a tu re s
I n te g ra te d
S ig n a tu re s

D e sc r ip tio n

PANTHER 6.1 30128 2061
Hand edited protein functional classes
characterised by HMMs

Pfam 21 .0 8957 8957 See section 2.5.2
PIRSF 2.68 1748 1499

Provides detailed relationships between
family members

PRINTS 38 .0 1900 1898 See section 2.5.3
ProDom 2005.1 3538 1041 Automatically assigned protein families.
PROSITE patterns 20.0 1319 1319 See section 2.5.1

SMART 5.1 724 721

Automatically identifies the type of
genetically mobile domain and provides
automatic annotation. It also provides an
analysis of domain architectures.

TIGRFAMs 6.0 2949 2933
Can predict function based on homology
using HMMs

Gene3D 3 .0 .0 2147 783
Facilitates the prediction of structure
using a Markov clustering algorithm

SUPERFAMILY 1.69 1538 463 HMMs of proteins with known structure

Table 2.2: Constituent InterPro databases

The process involved in amalgamating these different databases is obviously quite

complex, but basically consists of creating relationships between the individual entries

from the different constituent databases. The relationships can take the form of a

hierarchy, where each child entry only has one parent. However, entries from more than

one database can make up a single InterPro entry. There are also possibly overlapping

entries, where more than one InterPro entry covers one protein. The annotations from

each entry from each database are merged to form the annotation in the InterPro entry,

making the annotation as comprehensive as possible.

35

Chapter 2. Bioinformatics

A c c e s s io n A 1 P R O 0 0 2 7 6 G P C R _ R h o d p s n

S e c o n d a r y A i IP R Q Q 2 3 5 6

T y p e l i * F a m ily

S ig n a tu r e s ,* * '

D a ta b a s e ID N a m e P ro te in s

P fa m P F 0 Ö 0 0 1 7 tm 1 1 5 5 4 4

P R IN T S P R 0 0 2 3 7 G P C R R H O D O P S N 1 3 2 6 4

P R O S IT E p a t te m P S 0 0 2 3 7 G . P R O T E IN .R E C E P F1 1 1 3 4 7 5

P R O S IT E P ro fi le P S 5 Q 2 6 2 G P R O T E IN R E C E P F l 2 1 6 5 3 1

I n t e r P r o R e l a t io n s h i p s .®

IP R 0 0 0 0 2 5 M e la to n in re c e p to r
IP R Q 0 Û 1 7 4 ln te r le u k in -8 re c e c to r
IP R 0 Q 0 2 0 4 O rex in re c e c to r
IDDttAA'WO ûnnirttoncir» II ra<~ar<trir

Figure 2.12: An example Interpro entry matching the A C M ID rom e GPCR sequence

(only part of the relationships cell is shown)

The searching mechanisms from each constituent database are maintained in InterPro

using InterProScan [168], Essentially, this tool wraps the individual search programs

used for each database and provides some filtering of the returned search results. A user

can search InterPro for motif matches using any combination of the motif databases

included in InterPro. The results of a search performed on InterPro can be seen in

Figure 2.12, where all constituent databases were selected and the top hit was the InterPro

entry “IPR000276” (not that it is possible for more than one InterPro entry to match a

given protein sequence). This contained the motifs from Pfam, PRINTS and the

PROSITE pattern and profde.

In te r P r o
IPR0Ö027?

R h o d o p s in - f ik e G P C R s u p e r f a m ify
:

Family PRG0237 G PC RRHO DO PSN

irwerPw PFC0001 7tm_1

t is R S
PS5Ö 262 1— ■“--- ----- ----------------- ------------------------------- — ---------------' G _P R O TE IN_R£CE.P_F 1 _ 2

PSD0 2 3 7 -----------------------------------CD--- G _P R O TE IN_RE CE P_F1 _1

Figure 2.13: An example InterPro search for the ACMI Drome GPCR sequence

showing from top to bottom, PRINTS, Pfam, PROSITE profile and PROSITE pattern

entries matching the search sequence

36

Chapter 2. Bioinformatics

If we observe the way in which the individual entries from some of the constituent

InterPro databases match the search sequence (Figure 2.13) it becomes clear the different

ways in which they work. At the top the PRINTS Fingerprint covers the seven trans­

membrane helices using multiple motifs. The HMM from Pfam covers much of the

sequence along with the profile from PROSITE. Notice that the pattern from PROSITE

only covers a very small region of the primary sequence. InterPro release 17.0 (March

2008) contains a total of 16583 entries covering 79% of all proteins contained in

UniProtKB (an extremely large protein database - see Section 2.6.1). InterPro clearly has

the largest number of entries out of any motif database examined.

2.6. Biological Databases

2.6.1. UniProt

UniProt [157] [166] is a large protein database freely available on the web. It is

formed from a consortium of EBI (European Bioinformatics Institute), SIB (Swiss

Institute of Bioinformatics), and PIR (Protein Information Resource) to create as

comprehensive and complete as possible protein resource (based on the best current

knowledge). It contains sequence data, citation information (bibliographical references),

taxonomic data (description of the biological source of the protein) along with other

extensive annotations. It also has cross references for other major biological databases

such as Prosite, Prints, Pfam and InterPro, etc. UniProt consists of two separate databases:

Swiss-Prot and TrEMBL. Swiss-Prot is a database of high quality manually annotated

proteins. TrEMBL entries are automatically annotated with most of the sequences

themselves being automatically generated by simulated translations from genetic code

held in the EMBL database [38], UniProt is extensively used in this project, in particular

as a source of data for creating the data sets used in our experiments.

37

Chapter 2. Bioinformatics

The first release of Swiss-Prot in 1986 contained 3939 sequences, whereas in

February 2008 (release 55) it contained 356194. TrEMBL (release 38 - February 2008)

contains 5395414 entries, a 23% increase from the last release [157]. TrEMBL has grown

at a near exponential rate since it was created in 1996. From these figures it is clear to see

the growing gap between the ability to manually annotate proteins and the number of

potential proteins being found.

2.6.2. GPCRDB

G-protein-coupled receptors (GPCRs) [60] are proteins involved in signalling. They

span cell walls so that they influence the chemistry inside the cell by sensing the

chemistry outside the cell. More specifically, when a ligand (a substance that binds to a

protein) is received by the part of the GPCR on the outside of the cell, it (usually) causes

an attached G-protein to activate and detach. This is a mechanical biological switch that

causes the released G-Protein to affect other reactions within the cell. More than one

GPCR can bind to more than one G-Protein, causing a complex set of pathways that can

perform intricate functions within the cell. Common amongst all GPCRs are the seven

trans-membrane a-helices (mentioned previously), with three intracellular loops and three

extracellular loops. GPCRs are particularly important for medical applications because it

is believed that 40%-50% of current drugs target GPCR activity [60], The types of

function GPCRs facilitate are extremely varied, from detecting light to managing brain

chemistry.

GPCRDB [70] provides a classification system for GPCRs. It arranges them into a

hierarchy based on a function. Each functional class has one and only one parent class

with each child class becoming more specific. For instance the functional class 1.1.1.1

belongs to classes:

• Class 1 (Class A Rhodopsin like).

• Class 1.1 (Amine).

38

Chapter 2. Bioinformatics

2.7. Summary

This chapter has presented the fundamental biological concepts required for this thesis.

It has explored some of the technologies used to detect similarity between proteins. It has

provided a survey of the motif and protein databases used to generate the data sets used in

the experiments found in this thesis. Also, the difference between function inferred

directly from similarity and function predicted using a model has been defined.

40

Chapter 2. Bioinformatics

• Class 1.1.1 (Muscarinic acetylcholine).

• Class 1.1.1.1 (Muse, acetylcholine Vertebrate type 1).

The A C M ID rom e protein belongs to class 1.1.1.101, which has the same parents as

1.1.1.1, but rather than being of type “Muse, acetylcholine Vertebrate type 1”, it is of type

“Muse, acetylcholine Non Vertebrate” (Drome is the code given to fruit flies).

2.6.3. Enzyme Nomenclature

Enzymes are another subset of proteins. They are catalysts which are used to speed up

most of the chemical reactions that take part within the cell, without being altered

themselves during the reaction. They are the target of a further 28% of current

drugs [114], They are usually very specific and only catalyse certain types of reaction

within the cell. Often other molecules known as inhibitors may slow down the reactions

of a particular enzyme; conversely activators increase the rate of reaction. This is used to

control both the speed of reaction and the course of overall reaction pathways that take

place within the cell. Examples of well known enzymes are those in biological washing

powder.

The Enzyme Nomenclature [16] was developed as a classification system for this

family of proteins. It defines what type of reaction each enzyme catalyses in a

hierarchical manner. For instance, an enzyme with the EC code (Enzyme Commission) of

1.1.1.1 belongs to:

• Class 1 (Oxidoreductases).

• Class 1.1 (acting on the CH-OH group of donors).

• Class 1.1.1 (with NAD or NADP as acceptor).

• Class 1.1.1.1 (Alcohol Dehydrogenase).

Each class has one and only one parent class, with the root node being all enzymes.

39

Chapter 3. Data Mining

Chapter 3. Data Mining

Data mining is an interdisciplinary field involving mainly machine learning and

statistics. At this point in time the ability of machines to learn in a similar way to humans

is a distant ambition. Therefore, in this context, the word learn is relaxed to encompass a

more achievable target, for machines to be able to “improve through experience” [106],

At the most basic level data mining involves finding useful and nontrivial patterns

within data. To quote Witten and Frank [164]:

"People have been seeking patterns in data ever since human life began.

Hunters seek patterns in animal migration behaviour, farmers seek patterns in

crop growth” “In data mining, the data is stored electronically and the

search [for patterns] is automated - or at least augmented - by computer.

Even this is not particularly new. Economists, statisticians, forecasters, and

communication engineers have long worked with the idea that patterns in data

can be sought automatically, identified, validated, and used for prediction.

What is new is the staggering increase in opportunities for finding patterns in

data. ”

While the pursuit of finding patterns within data is not a new one the availability and

quantity of this data is. Also, as the complexity of the data becomes greater the ability of

humans to understand and utilise it in its raw form becomes less. Therefore, the

importance of data mining (as a means of dealing with large quantities of complex data)

has increased; it is a necessity in a modem world where we are swamped with data.

For the purposes of this thesis the data to be mined is considered to be contained in

structured data sets. A data set is simply a set of examples, each example consisting of a

set of attribute-value pairs. A data set containing information about credit might have

41

Chapter 3. Data Mining

attributes: Mortgage, Wage, Sex and Credit Rating. A single example in this data set

might be the following:

Yes, 21000, Male, Good

Where Mortgage can take the values Yes or No, Wage may take any continuous value,

Sex can have the nominal/categorical values Male or Female and CreditRating can take

the nominal/categorical values Good, Average or Bad.

It should be noted that the careful preparation of a data set for data mining is crucial

and usually very time consuming [130], The data miner must (iteratively) become

familiar with the data sources, integrate the sources, transform the data, cleanse the data

(removing errors, dealing with missing values, duplicates etc) and select which

attributes/class labels to use before the data can be interpreted by a learning algorithm.

Many different machine learning methods have been developed to find and represent

patterns in data. In general these methods can be split into three distinct groups,

supervised, unsupervised and semi-supervised.

In supervised learning (the subject of this thesis) the class label of the example is

known during the training phase, for instance the class label in the previous example

might be the Credit_Rating, if we wish to know what credit rating to assign a person

based on certain attribute-value pairs.

In unsupervised learning the class label is unknown during the run of the algorithm.

This can be useful when trying to discover relationships between attribute-value pairs that

are not necessarily dependant on a given class label. In fact, in unsupervised leaning the

learning procedure generates its own class labels. If the example data set were used for

unsupervised learning then the class label Credit Rating would not be considered when

discovering patterns.

In semi-supervised learning only some of the class labels are known during training,

this is often the case when it is difficult or laborious to assign a class label to an example.

42

Chapter 3. Data Mining

3.1. The Classification Task of Data Mining

Supervised learning consists of two main tasks. Firstly the classification task [164],

where the predictions consist of nominal/categorical class labels. Secondly the regression

task [14], where the predictions are continuous values (e.g., Wage from credit example).

It is possible to make predictions based on discovered patterns as they describe

relationships between attribute-value pairs and class labels. Therefore, given a set of

attribute-value pairs for a given example it is possible to use the discovered patterns

(classification model) to predict which class label the example is likely to have. One of

the simplest ways of assessing how good discovered patterns are is by measuring their

predictive accuracy. This is achieved by splitting the data set into two separate partitions,

a training set used to build the classification model, and a test set used to measure the

predictive accuracy of that model. Examples belonging to the training set must not exist

in the test set and vice-versa. If examples belonged to the training set and test set then the

measured accuracy would not reflect predictive accuracy well. This is due to the need for

the model to generalise well. It would be relatively easy to generate a model that matched

the training set exactly (e.g., a simple mapping from each example’s attribute-value pairs

to its class label) but this model would have no generalising power, it could not cope with

simple variations in new examples with an unknown class. After the patterns have been

extracted from the training set they are then applied to the test set to predict which class

label each example might have (in the test set the example class labels are unseen by the

classification algorithm). The predictive accuracy is then simply the number of examples

in the test set that have the same predicted and true class labels divided by the total

number of examples in the test set.

Aside from predictive accuracy another two useful metrics are recall and precision.

Recall is the number of examples whose class label was predicted correctly for a given

class divided by the total number of examples in that class. Note that it is simple to obtain

100% recall by always predicting the given class.

43

Chapter 3. Data Mining

Precision is the number of examples whose class label was predicted correctly for a

given class divided by the total number of predictions made. Note that making only one

prediction and getting it correct would be enough to maximise precision.

It is important to use precision and recall together as it is usually easy to maximise

either one individually.

It is important to note that typically the data set’s records are a sample of a much

larger population of possible records. The aim of the measure of predictive accuracy is to

give an indication of how well the model represents the base data, and how well it will

generalise to future data. Therefore, the sampling of the training and test sets is important.

When randomly choosing examples for the training and test sets bias will be

introduced [164], In an attempt to reduce the bias experienced during the testing

procedure it is usual to perform multiple iterations and find the mean predictive accuracy

across all iterations. A common method to achieve this goal is cross-validation [164],

where the data set is split into n partitions of approximately the same size and n

classification models are generated, one per iteration. At each iteration (/) all but one of

the partitions (n-1) are combined and used as the training set with the zth (/=1,...,«)

partition being used as the test set. The predictive accuracy over the n iterations can then

be averaged, producing the overall measure of predictive accuracy reported to the user.

There are many other ways of measuring how good a particular model is (many are

dependant on the application) [37] [164], Witten states that a general goal of data mining

is to discover knowledge that is not only accurate, but also comprehensible [164], so the

model representation medium is important. A model that is not easily (or at all) human

comprehensible is termed a black box model, often used when predictive accuracy is the

only consideration. Even if the user is not interested in the model itself the ability to

easily validate predictions made is lost when using a black box approach. Indeed, for this

reason, an area of research is devoted to converting incomprehensible models to

comprehensible models. For instance, extracting comprehensible models from Neural

Networks [65] [87], Support Vector Machines [113] and for fuzzy rules [141], Therefore,

44

Chapter 3. Data Mining

another important way of assessing a classification model is its comprehensibility.

Comprehensibility is not easily reduced to one single measurement, but in general it is

standard practice in the literature to consider that the simpler and more compact the

model is the more comprehensible it is.

3.2. Three Conventional Types of Algorithm for Classification

This section reviews three conventional types of learning algorithm and the classifiers

that are created by them. These are the approaches that are particularly relevant to this

thesis, namely: rule induction, decision tree and Bayesian.

3.2.1. Rule/Tree Induction

3.2.1.1. Rule Induction

In the classification task, rule induction algorithms generate rules representing

patterns in the training set. These rules are then applied to a test set with examples of

unseen (by the classification algorithm) or unknown classes. In classification the

knowledge or patterns discovered in a data set can be represented in terms of a set of

rules. A rule consists of an antecedent (a set of attribute-values and logical operators) and

a consequent (class):

IF <attrib operator value> AND ...
AND <attrib operator value> THEN <class>

The consequent of the rule is the class that is predicted by that rule. The antecedent

consists of a set of terms, where each term is essentially an attribute-value pair. More

precisely, a term is defined by a triple <attribute, operator, value>, where value is a

45

Chapter 3. Data Mining

value belonging to the domain of attribute. The operator typically is “=” in the case of

categorical attributes, or “<” and “>” in the case of continuous attributes. The logical

operation that is performed on these terms is AND in this example, however, it could be

any other operation, i.e., NAND, XOR etc. The knowledge representation in the form of

rules has the advantage of being intuitively comprehensible to the user. An example rule

might be:

IF (Salary > 30k) AND (Mortgage = No) THEN (Good Credit)

A rule that is to be considered good must not only correctly match (via its antecedent)

as many examples in its predicted class as possible, but also not match (cover) examples

in classes different from its predicted class. These two objectives are often at odds with

each other and a trade off often occurs between recall and precision.

Another issue to be considered while generating classification rules is how

complicated they are (comprehensibility is a goal of data mining as stated earlier) and

how to measure this complexity. The complexity of a rule set is usually measured by two

factors, namely the number of discovered rules and the number of terms per rule. In

general, the lower these numbers the simpler and so more comprehensible the rule set is

considered to be. Note that the number of discovered rules is related to the recall of those

rules. After all, if each rule has a large recall (i.e., covers many examples), the number of

rules necessary to cover all the examples will be relatively small, in comparison to a

scenario where rules have a lower recall.

In a seminal paper on cognitive science, George A. Miller [105] describes the

problems humans have when trying to comprehend sets of things with greater than seven

components. This can be used as a rough guide as to the simplicity of a rule and it can be

presumed that rules with tens of terms will tend to be incomprehensible to the average

user. Obviously it would not be useful to have a very simple rule set that did not represent

46

Chapter 3. Data Mining

the data set well, so a notion of accuracy and comprehensibility is essential during rule

evaluation.

Pseudocode 3.1 describes the standard sequential covering approach used to build a

set of classification rules covering a given training set [118] [164], Note that

Pseudocode 3.1 represents a very generic approach, which can be instantiated in many

different ways to produce a number of very different rule induction algorithms as

discussed later.

RS = 0 /* initially, Rule Set is empty */
TS = {all training examples}
FOR EACH Class C

WHILE (number of uncovered training examples of class C >
MaxUncovExampPerClass)

Discover the best rule predicting class C, called
BestRule

RS = RS U {BestRule}
TS = TS - {training examples correctly covered by

BestRule}
END WHILE

END FOR

Pseudocode 3.1: Sequential Covering Approach

In Pseudocode 3.1 the algorithm starts by initialising the rule set (RS) with the empty

set and initialising the current training set with all the training examples. Then, for each

class the algorithm performs a WHILE loop. Each iteration of this loop performs one run

of the rule discovery algorithm, returning the best discovered rule predicting examples of

the current class (C). This rule is added to the rule set, and the examples correctly

covered by that rule are removed from the training set (TS). An example is said to be

47

Chapter 3. Data Mining

correctly covered by a rule if that example satisfies all the terms (attribute-value pairs) in

the rule antecedent (“IF part”) and it has the class predicted by the rule (“THEN part”).

This WHILE loop is performed as long as the number of uncovered examples of the class

C is greater than a user-defined threshold, the maximum number of uncovered examples

per class (MaxUncovExampPerClass). After discovering rules for all classes, the

algorithm returns RS, the discovered rule set.

Pseudocode 3.1 gives a basic method of creating an unordered rule set. The rule set is

unordered in the sense that the rules can be applied to the test examples in any order and

the model will still function as intended. The rule set generated by Pseudocode 3.1

produces an unordered rule set due to the way in which only correctly covered examples

are removed from the training set at every while loop iteration. If all examples were

removed (including the ones incorrectly covered) ordering the discovered rule set in a

different way could have unforeseen consequences.

Many variations on the basic sequential covering principle are found in rule induction

algorithms, including pruning the rule (removing terms to increase rule compactness

and/or accuracy) after creation, pruning all rules after rule set creation (possibly removing

rules entirely), discovering ordered rule lists, discovering rules not on a per class basis

but on the basis of quality i.e., finding the best rule for any class rather than the best rule

for a particular class. Note that, the variations mentioned so far do not include methods

for actually discovering the rules themselves. Many algorithms have been created for this

purpose, using a variety of different search methods and heuristic measures [118] [164],

Two of the most successful and commonly used rule induction algorithms are

C4.5Rules [131] and RIPPER [39]. RIPPER (Repeated Incremental Pruning to Produced

Error Reduction) incrementally produces rules starting with a rule for the least prevalent

class and ending with a rule for the most, pruning them at each stage using a separate

pruning set (the training set is divided into a “growing” and pruning set). The idea of

growing and then pruning rules was based on IREP [66] but RIPPER includes 3

modifications, namely changing the heuristic function used to prune rules, changing the

48

Chapter 3. Data Mining

stopping criterion for adding rules to the rule set and optimising the entire rule set after its

creation. These modifications make RIPPER extremely competitive in terms of rule set

compactness, accuracy and running time.

C4.5Rules uses decision trees built by the widely used C4.5 decision tree induction

algorithm (discussed in the next section). Note that this is essentially an advanced

pruning algorithm, as rules and trees are interchangeable (as will be discussed in the next

subsection). It firstly converts the decision tree to a set of rules, where every path from

the root node to a leaf node is a single rule (note that the use of a decision tree negates the

need for a sequential covering type approach for discovering rules). Then the algorithm

removes terms that do not seem to affect the rule’s performance in discriminating

between the consequent class and the other classes. Then any rules that do not affect the

performance of the rule set are removed.

Finally, the set of rules are ordered to minimise false positive errors (where examples

are covered by the rule antecedent but do not have the class predicted by the rule). They

are ordered to produce a decision list. This is where an example is considered covered by

only the first rule that matches it in the sequential list of rules (decision list). This can be

considered a very basic conflict resolution scheme - how to decide which class an

example belongs to if two rules with different consequent classes match it.

In general decision trees are a comprehensible knowledge representation as discussed

in the next sub-section. Hence, one may question the need to convert between human

comprehensible decision trees and rule sets but as Quinlan [131] p.45 states:

“Large decision trees are difficult to understand because each node has a

specific context established by the outcomes of tests at antecedent nodes. ”

Indeed the rules from a rule set are in some sense modular (especially in unordered

rule sets) and so can be interpreted in their own right. C4.5Rules retains almost all of the

49

Chapter 3. Data Mining

performance of the decision tree algorithm with (arguably) a simplification in the

classification model representation.

3.2.1.2. Decision Tree Induction

Decision trees are another human comprehensible classification approach. They

contain two features, decision nodes where a test is performed on an example with a

corresponding subtree for each outcome of the test, and leaf nodes which indicate a class.

Using these two features an example is inevitably classified as it moves through the tree

in a top-down fashion, ending at a leaf node. An example decision tree is shown in

Figure 3.1. The first test (at the first decision node) is made based on the Wage attribute:

if the example’s Wage value is less than or equal to 30k then it is sent to the second level

left hand node, if it is greater than 30k is sent down the right hand edge and arrives at the

leaf Credit=Goor/. This means that in the example decision tree any example having

Wage > 30k will be assigned to the class Good Credit, whereas if an example has Wage <

30K its class will be Bad or Good Credit, depending on whether or not the example’s

Mortgage value is yes or no, respectively.

Figure 3.1: An example decision tree
50

Chapter 3. Data Mining

Decision trees and rule sets are interchangeable (as stated previously). Converting a

decision tree to a rule set simply requires generating one rule per possible path from the

root node to each leaf.

For instance the decision tree shown in Figure 3.1 could be converted to the following

(un-pruned and unordered) rule set:

IF (Salary > 30k) THEN (Good Credit)
IF (Salary ^ 30k) AND (Mortgage = No) THEN (Good Credit)
IF (Salary ^ 30k) AND (Mortgage = Yes) THEN (Bad Credit)

A common method of generating decision trees which has been explored for many

years is the divide and conquer principle. The divide and conquer approach involves

calculating which test will produce the best divide of the training set, hopefully splitting

examples belonging to one class from examples belonging to other class (or allowing this

to happen in subsequent tests). Many algorithms use a greedy approach (e.g., C4.5 [131])

to calculate the best way to divide the training set, that is the interactions between the

current test and subsequent tests are not considered fully. Another thing to be considered

is the complexity of the tree, simpler (simple but not overly simple) trees are generally

thought of as being more comprehensible. Simply using the divide and conquer principle

to generate trees has a tendency to generate very complex and fragmented trees, which is

not desirable. Therefore, a pruning procedure is normally used to reduce the size of the

trees, often by substituting a subtree for a leaf. The subtree should be replaced if it

produces more classification error than an appropriate leaf node. Although greedy

algorithms such as C4.5 are relatively successful, much work has been conducted in

producing “globally” optimised trees, using genetic algorithms and other global search

heuristics [11] [61] [115].

51

Chapter 3. Data Mining

3.2.2. Bayesian Classification

Bayesian classification algorithms are based on Bayesian probability theory. Naive

Bayes is one of the best known and widely used classification algorithms for real world

problems, due in part to its simplicity and effectiveness. Its effectiveness is somewhat

surprising due to its naivety; the basic assumption it makes about the lack of interaction

between predicting attributes [135] given a class label. The Naive Bayes classification

algorithm uses Equation 3.1:

P{C] \ X) ^ P (C]) Y\ P{ x l \C])
i=1

Equation 3.1

Where X is a vector representing the set of attribute values (xi,... x„), n is the number

of attributes, C7 is the yth class label, and the left hand side is proportional to the right

hand side as the right hand side would have to be divided by a normalising constant in

order to produce a probability value. Equation 3.1 states that the probability of observing

a certain class Cj given a set of attribute values X can be calculated by multiplying two

terms: the prior probability of the class, P(C7), and the likelihood of X given C, which is

calculated as the observed probability (in the training set) of each attribute value (x,),

given that class, multiplied together. The way in which the algorithm is Naive becomes

clear; there is an assumption that the probability of each attribute value is completely

independent from other attribute values given any particular class label. To turn

Equation 3.1 into a functional classification algorithm, one must simply compute the

probability for each class (Cj) given a set of attribute values (X), and take the maximum

value, i.e., the most probable class.

Naive Bayes algorithm makes the assumption about independence as computing the

necessary sets of probabilities without that assumption would be problematic given a data

52

Chapter 3. Data Mining

set with a large number of attributes and values - where there would tend to be very few,

or no examples for certain combinations of attribute values.

It is possible to still attempt to account for attribute interaction using more

sophisticated Bayesian classification methods like Bayesian Networks, which rely on a

Directed Acyclic Graphs (DAGs) where dependencies between attributes are represented

by parent-child relationships. However, Bayesian Networks are not a “magic bullet”. The

number of possible DAGs for a data set of reasonable size is massively large and in

general finding the correct DAG for a given data set is an NP-Hard problem [40],

Bayesian Networks have another advantage over the naive approach in that the induced

DAG is a graphical representation and therefore is human comprehensible (as long as the

DAG is not very large and complex). It can be used to gain knowledge about the

interactions of attributes within a data set. Bayesian networks are beyond the scope of this

thesis, but it is worth briefly mentioning that swarm intelligence methods can also be

used to find Bayesian networks [43],

3.3. Ensembles of Classifiers

Ensemble classifiers normally try to combine the predictions from separate classifiers

(classification models) in order to increase predictive accuracy. However, with this

increase of accuracy there is usually a loss of comprehensibility. It may be very difficult

for a human to fully understand the nuances of many interacting classification models

produced from a single data set such as the ones used by ensembles.

There has been a large amount of research conducted in the field of ensembles and

many different approaches have been developed. A particularly productive field of

ensemble research has been conducted in the difficult area of handwriting

recognition [71], where accuracy is of paramount importance and comprehensibility, in

general, is of lesser importance. The most common ensemble techniques are [47]:

53

Chapter 3. Data Mining

bagging (bootstrap aggregation), boosting, feature subspace re-sampling and stacking

(stacked generalisation), as will be discussed in the remainder of this section.

3.3.1. Bagging

Ensemble classifiers can be categorised by the way in which their base classifiers are

constructed and the way in which the predictions of these base classifiers are combined.

In bagging [23] the training set is re-sampled several times in some way to generate

separate classifiers, so that each classifier is trained with a different training set. The

predictions of these classifiers are classically combined by a voting scheme which may or

not be weighted. Bagging is useful when the learning algorithm used is unstable; where a

small change in the training set causes a large change in the classifier created. Bagging

relies on the premise that by sampling the data set multiple times and building classifiers

for each one of these samples, the resulting combination of classifiers will be stable, with

the instability of each component classifier averaged out across the multiple classifiers.

It is possible to re-sample the initial data set in many different ways. To make samples

with the same («) number of examples as the original training set, n examples are

randomly chosen (from the training set) and added to the sample whilst allowing repeats.

This method has the advantage of being able to create as many samples as are needed

without reducing the number of examples in each sample. It is also possible to simply

divide the training set into different partitions and use each as a sample. However, this

limits the number of possible samples, as if there are too many, the number of examples

in each sample will become too small to effectively train the classifier with.

There are many methods to try and increase the performance of the classifier

prediction combining scheme used in bagging (although classical bagging simply uses

unweighted voting). Unweighted voting is simply where the most frequently chosen class

(chosen by the constituent classifiers) is assigned to the example, if there is a tie than an

class must be chosen at random. In [46] the authors optimise the weights in the voting

scheme to minimise variance (using SVMs as the base classifiers). Dietterich [47]
54

Chapter 3. Data Mining

provides a good review of alternative methods, including other combining schemes.

Some of the most advanced and successful methods use genetic

algorithms [72], [122], [133], [147], It is also possible to use other advanced and iterative

methods when sampling the data set, including samples based on clusters produced by

clustering algorithms such as K-means [48].

Feature subspace re-sampling [48] can be considered a variation of bagging. It creates

diverse classifiers by only giving (during the creation of one classifier within the

ensemble) the classification algorithm a subset of the entire set of features available in the

original dataset for each example. In other words, conventional bagging uses different

training examples but the same features (attributes) in different runs of the classification

algorithm, whilst feature subspace re-sampling uses different features but (possibly) the

same training examples in different runs of the classification algorithm. The subsets of

features given to different runs of a classification algorithm can be optimised based on

several metrics [24] including the diversity of the classifiers created and the predictive

accuracies.

Figure 3.2: Training and Testing Phases in Bagging

55

Chapter 3. Data Mining

The training phase of bagging is shown in Figure 3.2, where the data set is re-sampled in

some way to produce separate classifiers. During the testing phase, when an example of

unknown class is shown to the classifiers, a vote based on the predictions of the

component classifiers is carried out to assign the final predicted class.

3.3.2. Boosting

Training Testing

V o tin g

C lass ifie r C lass ifie r C lass ifie r

\T 7
E x a m p le

Figure 3.3: Training and testing phases in boosting

Whereas in bagging the classifiers can be built in parallel, in boosting the classifiers

are built in series; each new classifier built is dependant on the previous classifier.

Adaboost (Adaptively resample and combine) [64] is a commonly used boosting

algorithm and works by assigning weights to examples. More precisely, examples that are

considered hard to classify are assigned greater weights than examples that are easy to

classify. It updates the example weights after each iteration, creating classifiers that

concentrate on the hard examples. This creates a good set of specialised “experts” on
56

Chapter 3. Data Mining

particular areas in the data. This is possible because certain examples will not always be

considered hard or always easy during the classifier-construction process, in fact the

difficulty of classifying an example is dependant on the classifier. C4.5 is often used as

the learning algorithm for Adaboost as it already can consider weighted examples when

dealing with missing values. Some implementations of Adaboost use re-sampling rather

than weighting to build the ensemble of classifiers. This is useful when the base

algorithm does not easily support weighting. It has been suggested that the main strength

of algorithms of the type of Adaboost lies not in the voting procedure, but in the

“adaptive re-weighing of instances” [10].

The sequential nature of the training phase in boosting is shown in Figure 3.3. The

changing gradient of grey shown on the “Dataset” boxes represent the changing weights

associated with the examples in the training set - each example is a static point within the

“Dataset” box and their shade (weight) changes after each of the three iterations shown in

the diagram. The testing phase is usually much the same as with bagging, as shown in the

right part of Figure 3.3.

3.3.3. Stacking

Unlike bagging and boosting, which classically combine the predictions of multiple

applications of the same classification algorithm on different subsets of data,

stacking [165] usually combines the predictions of multiple distinct/parametrically altered

classification algorithms trained on the same data. These base classifiers are known as

“level-0” classifiers. Stacking utilises another level of classification which combine the

predictions from the “level-0” classifiers, this level is known as the “level-1” classifier.

The level-1 classifier makes decisions based on the predictions of the level-0

classifiers. In stacking a meta-data set is created with meta-attributes corresponding to the

class predictions of the base, level-0 classifiers within the ensemble. This meta-data set is

usually trained on a hold-out partition of the training set, which was not used in the

57

Chapter 3. Data Mining

construction of the level-0 classifiers. This process is used in order to reduce the risk of

overfitting [164],

Using this meta-data set it is possible to build the level-1 classifier and predict which

class an example with an unknown class belongs to by converting it to a meta-example.

This meta-example will have as many meta-attributes as there are base classifiers, with

values corresponding to the class they predict. This approach allows the level-1 classifier

to learn from the correct predictions of the level-0 classifiers and also learn from the

incorrect predictions of these classifiers.

The level-0 classifiers may be created in parallel as they can be independent, and

schemes can be used [24] to try and insure the diversity of the base classifiers. It is

possible to use stacking with classifiers generated by different algorithms, different

parameter settings of the same algorithm, and also different samples or variations of

data [29], Furthermore, the level-1 classifier may also be a voting scheme or use

Bayesian probability (in a similar way to the Naive Bayes classifier). A comparison of

these types of approaches can be found in [167], which also includes optimised weighted

voting using a Particle Swarm Optimisation (PSO) algorithm (discussed in section 3.4).

The PSO algorithm adjusts the weights given to each voting classifier to increase

accuracy. They conclude that given a large enough data set the PSO optimised weighted

voting is the superior approach (when compared to using un-weighted/probabilistic types

of approaches).

58

Chapter 3. Data Mining

Training
Phase I

Level 0

Phase 2

Testing

Figure 3.4: Training and testing stages in stacking

Figure 3.4 shows the training and testing stages of stacking. During phase 1 of the

training stage the base classifiers are built as normal from the training set, with the caveat

that a subset of the training set is used as a hold out set. In phase 2 the hold out training

subset is classified by the level-0 base classifiers built during phase 1. These

classifications are used to create the meta-data set and the level-1 combining classifier as

discussed above. During the testing phase an example with unknown class is classified by

the level-0 classifiers. These predictions are used to generate a meta-example which can

then be classified by the level-1 meta-classifier to assign a final predicted class to the

example.

Skalak [144] suggests that there should be three main considerations when designing

an ensemble of classifiers: the accuracy of the component classifiers, the diversity of the

component classifiers and the computational efficiency - i.e., the processing time

required to build the entire ensemble of classifiers and also to use it to classify examples.

When using a single classifier the predictive accuracy is one of the most important

factors. However with ensembles of classifiers each classifier does not need to be

especially accurate for the ensemble to make an accurate prediction. Skalak [144]
59

Chapter 3. Data Mining

discusses an example of this phenomenon where a classifier that is 69% accurate is

combined with classifiers that are 23% accurate and 25% accurate, this boosts overall

accuracy to 88%.

The diversity of the component classifiers is very important in ensemble approaches;

component classifiers must make different errors (from each other) in order for the

overall ensemble to be more accurate than either of the base classifiers [9] [24], There is

often a trade-off between accuracy and diversity when building classifiers, as it is often

easier to make more diverse (uncorrelated) classifiers when the restrictions on accuracy

are lowered. Unless the time taken to build the classifiers (training) or to use them to

predict the class of the examples (testing) is prohibitive, computational efficiency is

probably the least important factor when designing an ensemble of classifiers.

3.4. Particle Swarm Optimisation

PSO is a meta-heuristic that maintains a population of particles - each of them a

candidate solution to the target problem - that iteratively move around the (normally

continuous) search space [21] [95], Each particle is also part of a structured

communication system as detailed below.

Figure 3.5: Ring (Local) Topology for PSO Particles

60

Chapter 3. Data Mining

Figure 3.6: Global Topology for PSO Particles

Figure 3.7: Von-Neumann Topology for PSO Particles

Figure 3.5, Figure 3.6 and Figure 3.7 show three commonly used topologies for

particle communication in PSO. Figure 3.5 shows a local topology where a particle’s only

neighbours are to the left and right of it (also referred to as ring topology). Figure 3.6

shows the global topology where every particle is a neighbour of every other particle.

61

Chapter 3. Data Mining

Figure 3.7 shows Von-Neumann topology where each particle has four neighbours in a 2-

D grid layout.

The level of “connectedness” in the topology plays an important role in the PSO

algorithm. Topologies that involve very well connected particles (such as the global

topology) tend to converge to a solution much faster than those that are not so well

connected (local topology). Although well connected topologies converge to a solution

faster they are more likely to converge to a local maximum (according to the fitness

fucntion) rather than the global maximum value [96], The slower converging/less well

connected topologies spend more time searching and so are more likely to perform better

(in terms of the maximum or minimum value found). Depending on the problem

difficulty and requirements it may not be necessary to select a very slow converging

topology as this may simply waste computational time.

The position of a particle in the search space represents the contents of its candidate

solution and so moving each particle corresponds to generating a new candidate solution.

Each particle keeps track of the best position it has ever held, according to the fitness

(evaluation) function. At each iteration, each particle finds its best neighbour (in a local

or global neighbourhood). The particle then moves towards a combination of the best

position any of its neighbours have ever held and its own best position, with a velocity

calculated as shown in Equation 3.2. This process is repeated until a stopping criterion is

met. To calculate the velocity and new position of a particle, Equation 3.2 and

Equation 3.3 are often used (respectively) for each dimension of the current particle’s

position, although several variations have been proposed in the literature [124]:

V/diO = Wx (V f/t-1))+(p1 xRandQ x (pid -x id(t - 1))+<p2xRand() x (pgcrxid(t - 1))

Equation 3.2: A particle’s velocity at time t

62

Chapter 3. Data Mining

xufc) = xd t-1) + vd t)

Equation 3.3: A particle’s position at time t

Where xid is the particle Vs position in dimension d, t is the iteration (time) index, vid

is particle Vs velocity in dimension d, W is an inertial constant to prevent the particle

gaining too much speed. cp1 and <p2 are user-defined personal (to adjust the influence of

the particle’s own position on its next position) and social (to adjust the influence of the

neighbour’s position on the particle’s next position) learning constants, respectively. pgd

is the best position of the particle’s neighbours in dimension d and p id is the best position

particle i has ever held in dimension d. In addition to W, an optional maximum velocity is

also used to prevent the particle from flying too far out of the search space. RandQ

generates a random number in [0, 1],

Several studies have shown PSO to be a powerful optimisation algorithm, often

outperforming more conventional population-based meta-heuristics such as evolutionary

algorithms [75] [94] [107],

3.4.1. Binary and Discrete PSO Algorithms

The original PSO algorithm - designed mainly to optimise functions with continuous

attributes - was extended to optimise functions with binary attributes [93]. The binary

PSO algorithm does not use a particle’s past position and velocity directly to calculate its

new position for fitness evaluation. Rather, a particle’s velocity in each dimension is

interpreted as the probability that the particle will take the value 1 (rather than 0) in that

dimension. More precisely, once the velocity of particle i in dimension d (denoted vid) has

been calculated, it is first converted into a number between 0 and 1 by Equation 3.4,

where the constant k is used to determine how “deterministic” the search is:

63

Chapter 3. Data Mining

s(vid) = 1/(1 + exp(-kv,d))

Equation 3.4: Converting from Velocity to Probability

Next, the value of the position d, denoted by is computed by Procedure 1, where

RandQ is a random number between 0 and 1:

IF R a n d [) < s (v i d)

THEN x i d (t) = 1
ELSE x i d (t) = 0

Pseudocode 3.2: Computing the Value of a Particle’s Position in Binary PSO

s(v id)

64

Chapter 3. Data Mining

This modification to the original PSO algorithm is quite subtle in its workings. Each

time a particle chooses a position 0 or 1, if it is found to be a position of lesser fitness

when compared to its previous position and neighbourhood best, in the next iteration the

particle will be accelerated in the opposite direction, increasing the probability of

choosing the other value. As it gains velocity it becomes more unlikely that the particle

will choose the position it is moving away from. If it chooses the position it is moving

away from and finds it suboptimal again, it will accelerate away from this position, and

so it eventually converges to a single solution. Maximum velocity can be used to limit the

minimum probability of choosing 0 or 1, as the faster the particle gets in a dimension the

less chance there is of choosing the position opposite to the one it is travelling towards.

Figure 3.8 shows the effect the constant k has on the search, the higher k is the more

deterministic the search becomes. In other words, a higher value for k corresponds to a

lower velocity being needed to cause a high probability of either choosing position 0 or 1.

This variability is useful, for instance, when dealing with a noisy fitness function. In this

scenario a lower value of k is often appropriate, as it prevents fast convergence to a false

peak in the search space.

3.5. Ant Colony Optimisation

NEST FOOD

Figure 3.9: Pheromone trails in natural ant colonies

65

Chapter 3. Data Mining

Ant Colony Optimisation (ACO) is a meta-heuristic inspired by the “intelligent”

behaviour of real ant colonies. The pioneers in understanding how ant foraging works

were Jean-Louis Deneubourg et al. [6], They suggested that the reason ants are seen

creating “highways” to and from their food is because of a chemical pheromone. Each ant

lays down an amount of pheromone along its route and the other ants are attracted to the

strongest scent. As a result, ants tend to converge to the shortest path. This is because a

shorter path is faster to transverse, so if an equal amount of ants follow a long path and a

short path, the ants that follow the short path will make more trips to the food and back to

the colony. If the ants make more trips when following the shorter path, then they will

deposit more pheromone over a given time period when compared to the longer path.

This is a type of positive feedback and the ants following the longer path will be likely to

change to follow the shorter path, where scent from the pheromone is stronger [49] [50].

Due to the evaporation of pheromone and the persistent small chance than an ant will take

a random path, if a new shorter path is added the ant may eventually move to this new

path. This feature makes ACO useful for dynamic problems such as network routing [50],

Figure 3.9 [20] shows a graphical representation of the way in which pheromone builds

up on the shortest path.

ACO has been very successful in several types of combinatorial optimisation

problems [50], An obvious application is the travelling salesman problem, but in other

combinatorial optimisation problems, such as sequential ordering problems, resource

constraint project scheduling problems and the open-shop scheduling problem ACO

methods are considered the “state of the art” [51].

66

Chapter 3. Data Mining

3.6. Particle Swarm Optimisation and Ant Colony Optimisation

for Classification

3.6.1. The Ant-Miner Algorithm

The Ant-Miner classification algorithm [119] takes the basic ideas from the Ant

Colony paradigm and applies them to the field of data mining. Instead of foraging for

food the ants in the Ant-Miner algorithm forage for classification rules and the path they

take is described in terms of attribute-value pairs. Many variations of the original Ant-

Miner algorithm have been proposed. Variations include fuzzy rule based

approaches [67] [68] and a multi-label variant [28], [63] provides a discussion about

several other variations found in the literature.

The Ant-Miner classification algorithm described in Pseudocode 3.3 works in the

following way. Firstly an ant starts off with an empty rule. It then iteratively adds one

attribute-value pair (term) at a time to the rule, using a probabilistic procedure, where the

selection of terms is based on the amount of virtual pheromone and on the value of a

heuristic function that measures the information gain of each attribute-value pair.

67

Chapter 3. Data Mining

TrainingSet = (all training examples};
DiscoveredRuleList = [] ; /* rule list is initialized with an
empty list */
WHILE (TrainingSetSize > MaxUncoveredExamples)

Anti = 1; /* ant index */
NumConverged = 1; /* convergence test index */
Initialize all trails with the same amount of pheromone;
WHILE(Anti < MaxAnts AND NumConverged < MaxConverged)

Anti starts with an empty rule and incrementally
constructs a classification rule Rt by adding one term
at a time to the current rule;
Prune rule Rt;
Update the pheromone of all trails by increasing
pheromone in the trail followed by Anti (proportional
to the quality of Rt) and decreasing pheromone in the
other trails (simulating pheromone evaporation);
/* update convergence test */
IF (Rt is equal to Rt - 1)
THEN

NumConverged = NumConverged + 1;
ELSE

NumConverged = 1;
END IF
A nti = A n ti + 1 ;

END WHILE
Choose the best rule Rbest among all rules Rt constructed by
all the ants;
Add rule Rbest to DiscoveredRuleList;
TrainingSet = TrainingSet - {set of examples correctly
covered by Rb e st} ;

END WHILE

Pseudocode 3.3: The Ant-Miner algorithm adapted from [119]

68

Chapter 3. Data Mining

The larger the amount of pheromone and the larger the information gain for an

attribute-value pair, the more likely that the attribute-value is chosen to be added to the

current rule. The ant is considered to have completed its rule when adding any term to the

rule would make the rule cover less than M\n_examples_per_rule examples, a user-

defined threshold. The reason for using this threshold is to avoid the generation of rules

covering too few examples, which are unlikely to generalize well to examples in the test

set, unseen during training.

Once a rule has been constructed, it is pruned by removing elements that are

unnecessary or make the rule worse (in terms of rule quality). The pheromone matrix is

then updated by increasing the amount of pheromone of the attribute values that occur in

the rule the ant has just created. For each of the attribute values, pheromone is increased

in proportion to the quality of the rule. This matrix can be considered a discrete landscape

on which the ants travel, although it is not spatial in the sense that the values stored in the

matrix do not map to coordinates. Once this has finished, the next ant creates a new and

separate rule based on the pheromone trails of the previous ants (in addition to the

information gain based heuristic). This means that eventually the ants will converge on a

good classification rule as the pheromone for particular “good” attribute-value pairs will

be much stronger than the pheromone for “bad” attribute-value pairs.

There is no part of the algorithm that explicitly makes the pheromone evaporate.

However the probabilities stored in the matrix are normalized directly after updating the

pheromone based on the last constructed rule. This normalisation has the side effect of

decreasing the pheromone value of the attribute-value pairs that have not been updated

after the candidate rule has been constructed.

Q = Sensitivity x Specificity

Equation 3.5: The Rule Quality measure used for the Ant-Miner algorithm

69

Chapter 3. Data Mining

Equation 3.5 gives the rule quality Q for a rule generated by an ant. The higher the

rule quality (0 < Q < 1) the better the rule [74]: Sensitivity = TP / (TP + FN) and

Specificity = TN / (TN + FP), where:

• True Positives (TP) are the number of examples that match the rule antecedent

(attribute-values) and also match the rule consequent (class). These are desirable

correct predictions.

• False Positives (FP) are the number of examples that match the rule antecedent but do

not match the rule consequent. These are undesirable incorrect predictions.

• False Negatives (FN) are the number of examples that do not match the rule

antecedent and do match the rule consequent. These are undesirable uncovered

examples and are caused by an overly specific rule.

• True Negatives (TN) are the number of examples that do not match the rule

antecedent and do not match the rule consequent. These are desirable and are caused

by a rule’s antecedent being specific to its consequent class.

When the rule generation loop finishes (i.e., the condition Antj < MaxAnts AND

NumConverged < MaxConverged is not satisfied), the best rule is selected from all the

generated rules (based on rule quality) and added to the discovered rule list. The rule

needs to predict a class to be useful, and is assigned the class which leads to the best rule

quality, given the just-generated rule antecedent.

After each rule is generated it is pruned. The rule pruning procedure is iterative and at

each iteration it tries to remove, tentatively, each term of the current rule antecedent. The

quality of the rule is measured after each term (/th value of the /th attribute) is tentatively

removed from it. The term which when removed increases the rule quality the most is

then removed permanently. Note that the class of the rule may be changed after each term

ij is removed. This is continued until no term ij can be removed that would increase the

quality of the rule.

70

Chapter 3. Data Mining

To test the rules discovered from the training set, they are applied to the test set in the

order they were created (this is the most basic rule conflict resolution scheme, as

discussed in Section 3.2.1.1). That is, for each example in the test set, the algorithm scans

the list of discovered rules until it finds a rule covering that example. To be considered a

correct attempt at classifying a test example, the antecedent must match the attribute-

value pairs stored in that example and the class of that example must match the one

predicted by the rule. If there are examples that are not covered by any rule generated,

then a default rule is used. This default rule simply classifies all the uncovered examples

as the most frequent class in the training set.

3.6.2. Particle Swarm Optimization for Classification

Sousa proposed the first PSO-based rule induction algorithm [146], which uses PSO

as the mechanism for searching for candidate rules. The algorithm functions in a similar

way to Ant-Miner, in that it uses the sequential covering approach, the same rule quality

measure to assess candidate rules and a similar rule pruning mechanism. However, rather

than generating the rule of best quality first regardless of class (as in Ant-Miner), it

generates rules for the majority class first. Also, ACO can cope with categorical attributes

natively (as was shown with the Ant-Miner example in Section 3.6.1) whereas the Binary

PSO used in [146] cannot. For this reason nominal (or categorical) attributes having more

than two values must first be encoded in a binary form (with each value assigned a

consecutive binary number index) and then each rule can be represented as a binary

vector (to be optimised by PSO). If this was a straight forward conversion from attribute

values to binary vector then each rule would always contain one value for each attribute.

This would not be a good situation so instead an extra bit (for each attribute) is used to

denote whether the attribute value is present or not in the decoded rule. The authors find

that the proposed PSO approaches are at least competitive with (and often beat) J48 [164]

(a Java implementation of C4.5) and Genetic Algorithm-based classification algorithms.

71

Chapter 3. Data Mining

Note that this paper only addresses the problem of classifying data sets with

categorical/discrete attributes.

Other works investigating PSO for classification include [58]. In this paper, rather

than discovering rules, the PSO algorithm finds centroids in the attribute-value space, one

per class. To classify an example a function is used to assess the distances between each

centroid and the example. The centroid that is closest indicates that the example belongs

to the corresponding class. The authors find that PSO is at least competitive with a wide

range of commonly used techniques. Note that this paper only investigates data sets with

continuous attribute values. A limitation of this approach is that in some problems a

single class can consist of examples that are concentrated in two or more groups that are

far apart in the search space, so that two or more centroids would be necessary for

properly representing each class. The use of PSO for training artificial neural network

classifiers is explored in detail in [12], In this case the PSO algorithm is used to optimise

the weights associated with the artificial neural network.

Another area of active research is in using PSO for discovering fuzzy rules [31] [108],

however this topic is out of the scope of this thesis.

3.7. Hierarchical Classification

This thesis focuses on hierarchical classification problems [62] where the classes to be

predicted are organized in the form of a tree, hereafter referred to as a class tree.

Figure 3.10 shows an example 4 level hierarchical classification problem. The first class

level has class nodes 1 and 2, class node 1 has two child nodes 1.1 and 1.2 at the second

class level. All examples belonging to class nodes 1.1 and 1.2 also belong to class node 1,

however there may be examples that only belong to class 1 and not classes 1.1 or 1.2

((1.1 u l .2) c: 1). Notice that in Figure 3.10 each class node has only one parent class,

with class nodes at level 1 having an imaginary parent root node (not shown for the sake

72

Chapter 3. Data Mining

of simplicity) which completes the tree structure and which does not correspond to any

class.

Figure 3.10: An example hierarchical classification class structure

C l a s s N o d e X

Figure 3.11: An example class-tree based hierarchical classification problem shown in

the form of a Venn diagram

In general, the class structure for hierarchical classification problems can be split into

two main categories:

73

Chapter 3. Data Mining

• A tree structure, where each class node only has one parent class node (which is the

focus of this thesis and shown in Figure 3.10).

• A Directed Acyclic Graph (DAG), where each class node may have one or more

parent class nodes.

A commonly used DAG classification scheme in bioinformatics is the Gene Ontology

(GO) [69], GO comprehensively describes the relationships between “gene products in

terms of their associated biological processes, cellular components and molecular

functions in a species-independent manner” [69], DAG based classification is not

addressed in this thesis but good discussions can be found in [112] (which focuses on text

mining) and [158] (which addresses GO classification).

Beyond the two types of class structures there is the possibility that the problem is

multi-label - where each example in the data set may belong to one or more class nodes

at each class level. These types of problem are known as Hierarchical Multi-Label (HML)

problems. HML is not the focus of this thesis but good discussions of the problem can be

found in [19] and [33],

Hierarchical classification with a tree based class structure can be considered a special

case of the more general multi-label classification problem (where an example can be

assigned more than one class label). The example shown in Figure 3.10 is shown in the

form a Venn diagram in Figure 3.11. Figure 3.11 illustrates the way in which multi-label

classification problems and hierarchical classification problems relate to each other. For

instance, class-tree based hierarchical classification examples can be considered multi­

label examples in the sense that an example belonging to class 1.1.1.1 can be said to

belong to classes 1,1.1,1.1.1 and 1.1.1.1. However, not all multi-label classification

problems are hierarchical. Importantly hierarchical classification problems tend to have

different properties to “flat” (non-hierarchical) multi-label problems. Firstly, there tend to

be classes with very small numbers of examples towards the bottom of the class tree, as at

each progressive level the examples are split between sibling class nodes. Secondly, there

74

Chapter 3. Data Mining

tend to be many more classes, especially when dealing with bioinformatics data (the

focus of this thesis).

3.7.1. Flattening Hierarchical Classes

Figure 3.12: Reducing a hierarchical classification problem into a flat classification

problem

Figure 3.12 shows the simplest (and most naive) way of dealing with hierarchical

classification problems, which is to ignore the class hierarchy completely and so only

predict classes at the bottommost class level. When the bottommost classes are predicted

the classes at higher levels are indirectly predicted. For instance, in a four level

classification problem, if the algorithm predicts for a given example the class 1.1.1.2, it is

also predicting class 1 at the first level and class 1.1 at the second level and class 1.1.1 at

the third level. This approach avoids the complexity associated with a truly hierarchical

classification algorithm (any generic classification algorithm can process a hierarchical

data set by disregarding the hierarchical structure) at the expense of not discovering more

generalised knowledge expressed by higher class levels. Flattening the classification

75

Chapter 3. Data Mining

problem causes only lowest level, specific knowledge to be discovered. Furthermore such

specific classification models tend to be less accurate than more generic models

(predicting classes at higher levels of the hierarchy) [42], This is due to the specific

model usually covering a smaller number of examples per class than a high-level, generic

model. Also, flattening makes the task of building an accurate model more difficult for

the classification algorithm; there are more classes to discriminate between and so more

chance of errors occurring.

□ Class Node

| Scope of Classifier

Level 1

Level 2

Figure 3.13: Reducing a hierarchical classification problem into a set of flat

classification problems

The second simplest approach, as shown in Figure 3.13, is to build an independent

classifier for each class level [62], The user can then select the granularity of the

prediction. This approach has the advantage of being simple to implement as only basic

data set pre-processing is needed to convert the hierarchical classification problem into

this form, e.g., creating four separate datasets where an example of class 1.1.1.1 is found

76

Chapter 3. Data Mining

as an example of class 1 in the data set corresponding to class level 1 predictions, class

1.1 in the data set corresponding to class level 2 predictions, 1.1.1 in the data set

corresponding to class level 3 predictions and so on. This approach has the disadvantage

of it being possible to get conflicting predictions about the class label of an example. The

class level 1 classifier might predict class 2 for a given example, but then the class level 2

classifier might predict class 1.1 for the same example. This may not be a major issue as,

in general, the higher the class level prediction the more likely it is to be accurate. This is

often due to the larger number of examples per class present at higher class levels (so

there is more statistical evidence for the classifier), and the smaller number of classes

(reducing the complexity of the problem for the classifier). Due to these reasons it would

be wise to accept the higher classification as the correct one and simply stop the

classification process when a conflicting classification occurs

This raises an important issue, whether the hierarchical classification process is of the

type “mandatory leaf-node prediction” or “optional leaf-node prediction” [62], The

scenario previously described where the classification process is ceased at a class node

that is not a leaf would be an “optional leaf-node prediction”. The first flattening process

described in this section is a “mandatory leaf-node prediction” scheme, as by design it

always predicts a leaf node. Obviously having a correct leaf node prediction is

advantageous as the user is returned the best possible information (most specific class)

about an example. However, in this case the hierarchical classification algorithm must be

intelligent enough to know when to give up, such as in cases where there are no longer

enough examples to effectively train the classifier at the deepest class levels. This issue is

somewhat subjective and dependant on the application, sometimes it may be more

beneficial to attempt to classify an example all the way to a leaf node rather than give up

whilst there is still a slim chance of correct classification.

Reducing the hierarchical classification problem into one or a set of flat classification

problems is a technique that is often used in the bioinformatics literature. To give a small

cross section of the literature, this technique has been used for

77

Chapter 3. Data Mining

GPCRs [15] [73] [92] [116], enzymes [32] [88] [162] and proteins classified according to

the Munich Information Centre for Protein Sequences (MIPS) [32], It should be

emphasized that in this technique the separate classifiers are completely independent and

the hierarchy is still essentially ignored.

3.7.2. Top-Down Divide-and-Conquer Approach

□ Class Node

Classifier Node

Level 1

Figure 3.14: The Top-Down Divide and Conquer method to deal with a hierarchical

classification problem

The first category of approaches that can be described as truly hierarchical is the Top-

Down Divide-and-Conquer (TDDC) category [52] [149]. An example TDDC tree is

shown in Figure 3.14, this approach being the focus of this thesis. This top-down

approach has the important advantage of using information associated with higher-level

classes in order to guide the prediction of lower-level classes. For instance, if class

1 .X.X.X (where X denotes any digit) is predicted at the first level and the tree node for

78

Chapter 3. Data Mining

that class has only the child nodes 1.1.X.X and 1.2.X.X, only these two class nodes

should be considered and not the children belonging to node 2.X.X.X. In general, any

classification model constructed in the top-down divide and conquer tree only has to

discriminate between sibling classes. In TDDC the models themselves form a tree, known

as a classifier tree. This tree is populated with classifier nodes where a classifier

discriminates between sibling classes.

As each classifier node in the TDDC tree only needs to discriminate between sibling

classes, the training set used to generate each classifier node is different. For instance, to

generate the classifier that discriminates between class nodes 1.1.X.X and 1.2.X.X, only

examples belonging to class nodes 1.1.X.X and 1.2.X.X need to be present in the training

set. To generate the classifier node that discriminates between class nodes 1.1.l.X and

1.1.2.X only examples belonging to class nodes 1.1.l.X and 1.1.2.X are present in the

training set, and so on.

When it comes to the classification of an example, each classifier chooses which child

classifier to send the example to, or if the classifier is at the leaf level what final class the

example should be assigned to. For instance, the root classifier, which discriminates

between classes l.X.X.X and 2.X.X.X, will decide if an example should be sent to the

classifier discriminating between the child classes of class l.X.X.X or 2.X.X.X. If the

example is first classified as l.X.X.X then it will be sent to the classifier discriminating

between classes 1.1.X.X and I.2.X.X. This classifier will decide if the example should be

sent to the classifier discriminating between the child classes of class 1.1.X.X or 1.2.X.X.

If the example is then classified as 1.1.X.X then the next classifier (discriminating

between 1.1.l.X and 1.1.2.X) will decide if it should be sent to the classifiers

discriminating between the child classes of 1.1.1 .X or 1.1.2.X and so on.

The TDDC approach has the advantage of being able to use any type of classifier.

This is because the only way the classifiers interact is through their predictions. It has the

disadvantage of taking a comparatively large amount of computational power to create all

the necessary models - one per each set of sibling classes. Also due to the way in which

79

Chapter 3. Data Mining

classifications take place in the standard TDDC tree, i.e., a classifier only ever

discriminates between sibling classes, once a misclassification has taken place it can

never be corrected at a deeper-level classifier. This characteristic was dubbed blocking by

Sun et al. [152], In this paper Sun et al. propose three methods to try and reduce the

impact of blocking in a scenario where more than one class label can be assigned to an

example at each class level (i.e., a multi-label problem at each level). In their approach,

each class node is associated with a binary classifier which predicts whether or not the

current example is assigned to that class. If so, the example is further passed to all

children of that class node, otherwise the example is blocked at that node. The three

methods to cope with blocking proposed by Sun et al. are as follows:

• Firstly, the threshold reduction method, where examples are more easily passed to

child classifiers (for further classification) according to some threshold, calculated on

a per class level basis.

• Secondly, the restricted voting method, where separate classifiers are constructed to

bypass the child classifier nodes and go directly to the child’s child classifier node.

• Thirdly, the extended multiplicative method (originally proposed in [52] and

extended by Sun), where a classification score is calculated for each leaf and non­

leaf node. If the score is greater than a certain threshold then the example is assigned

to that leaf or non-leaf node.

Sun also proposes another variation on TDDC [149], where each classifier node is

associated with another classifier that decides if an example should be passed onto the

child classifiers; this is an optional leaf-node prediction approach. Another more recent

proposal to improve TDDC accuracy was Seeker’s Classifier Selection [140] to be

discussed in the next sub-section.

80

Chapter 3. Data Mining

3.7.2.1. Classifier Selection for the Top-Down Divide and Conquer

Approach

In the conventional top-down approach for hierarchical classification, in general, the

same classification algorithm is used for each classifier node. Intuitively, this is a

suboptimal approach because each classifier node is associated with a different

classification problem - more precisely, a different training set, associated with a

different set of classes to be predicted. This suggests that the predictive accuracy of the

classifier tree can be improved by selecting, at each classifier node, the classification

algorithm with best performance in the classification problem associated with that node,

out of a predefined list of candidate classification algorithms. Indeed it was found in [140]

that by varying the classification algorithm at each classifier node, or divide, in the Top-

Down Divide and Conquer (TDDC) approach classification accuracy could be somewhat

improved.

Figure 3.15: A TDDC tree using classification algorithm selection

In Seeker’s work the training set at each classifier node is divided into two non

overlapping sub sets, a building set - used to train the classification algorithms - and a

separate validation set - which is used to assess the predictive accuracy of the models

constructed by the classification algorithms. At every classifier node in the TDDC tree,

multiple classifiers are built using the building set, each using a different classification

algorithm. The classification accuracy of each of these classifiers is measured using the

81

Chapter 3. Data Mining

validation set at each classifier node, and then the best classifier (according to

classification accuracy in the validation set) is chosen. This process is repeated at each

classifier node to select a set of classifiers to populate the TDDC classification tree,

which is then used to classify the test instances (unseen during training). A simple

example of a classification tree constructed by this method, showing a different classifier

chosen at each node, is shown in Figure 3.15.

Figure 3.16: Classifier interaction scenario where |BDC| > |ADC|

Figure 3.17: Classifier interaction scenario where |BDC| < |ADC|

In this way Seeker’s work uses a greedy selective approach to try and maximise

classification accuracy. It is described as greedy because, when it selects a classifier at

each classifier node, it maximises accuracy only in the current classifier node, using local

data. Therefore, the greedy selective approach ignores the effect of this local selection of
82

Chapter 3. Data Mining

a classifier on the entire classifier tree. In other words, this procedure is “short sighted”,

and so it does not consider the interaction between classifiers at different classifier nodes.

Figure 3.16 and Figure 3.17 show two possible scenarios demonstrating interactions

between classifiers at different classifier nodes during classifier evaluation. A and B are

the two possible parent classifiers trying to discriminate between classes 1 and 2. C is the

child classifier that attempts to discriminate between classes 1.1 and 1.2 - as shown in

Figure 3.18. Figure 3.16 and Figure 3.17 show the sets of correctly classified examples

for each classifier in the TDDC tree. Notice that C c A u B for the three classifiers A, B

and C. This is due to the fact that in the standard TDDC tree once a misclassification has

been made, by classifier A or B at the first classifier node, it cannot be rectified by C at

the child classifier node.

Figure 3.18: A class tree used to illustrate the discussion on classifier interaction

As mentioned earlier, the greedy approach chooses the best classifier at each node

according to the classification accuracy, in the validation set, at that node. In the

scenarios shown in both Figure 3.16 and Figure 3.17 classifier A would be chosen to

discriminate between classes 1 and 2 , as it is more accurate when compared to classifier

B, i.e., its circle has a bigger area, denoting a greater number of correctly classified

examples. Let us now discuss how appropriate the choice of classifier A (made by the

greedy approach) is in each of the different scenarios shown in Figure 3.16 and

Figure 3.17, taking into account the interactions between classifiers A and C, and

between B and C, in the context of the class tree shown in Figure 3.18.
83

Chapter 3. Data Mining

Recall that in the TDDC approach an example is correctly assigned to class 1.1 or 1.2

if and only if the two following events occur: the example is correctly classified by the

root classifier (A or B); and the example is correctly classified by classifier C. Therefore,

the individual accuracy of each classifier is not necessarily the most important factor

when selecting a candidate classifier; rather it is the number of examples correctly

classified by both the parent and child classifiers (the intersection between their sets of

correctly classified examples). In the case of Figure 3.18, in order to maximise the

classification accuracy at the leaf class nodes 1.1 and 1.2, if |AflC| > |BflC| then classifier

A should be chosen; if it is not, B should be chosen. For this reason, the greedy approach

produces a good selection in the case of Figure 3.17, where |AflC| > |BDC|. However, the

greedy approach would not produce an optimal selection in the case of Figure 3.16. This

is due to the fact that although A has a greater area (higher accuracy) in Figure 3.16,

|Bnc|> |Anc|.

As the number of candidate classifier selections for any given classifier tree is kn,

where n is the number of classifier nodes and k is the number of candidate classifiers at

each classifier node, it is impossible to exhaustively check all candidate solution for any

data set with a reasonably large number of classes. Given this fact it is clear that a

heuristic approach could be beneficial. Such a heuristic method, based on a robust global

search algorithm, is proposed in Chapter 5.

3.7.3. “Big Bang” Approach

The second category of approaches that can be described as truly hierarchical is the

“Big Bang” category [149], A highly abstracted big bang approach is shown in

Figure 3.19. Methods following the big bang approach usually take the form of modified

classification algorithms, building classifiers that can predict any class node in one “step”

and usually offering optional leaf-node prediction. The obvious disadvantage of such an

approach is that the classifier produced is rather complex, as it must be able to assign one

(or more) of possibly hundreds of class labels to an example in one step. While it is true
84

Chapter 3. Data Mining

that the single big bang classifier is more complex than each component classifier from

the Top-Down Divide-and-Conquer (TDDC) approach, it could be argued that taken as a

whole the many models from the TDDC approach are more complex. However, it is also

arguable whether a complex hierarchical classification model would ever be fully

comprehensible, and at least with the TDDC approach the problem is broken into smaller

fragments that can easily be examined. Each fragment will almost certainly be simpler

taken on its own, within its context (position in the TDDC tree), than the complete big

bang model. Modularity is the key to comprehending any large system, a fact that is well

known within software engineering circles.

□ Predicted Class Node

__ | Scope of of Classifier

Figure 3.19: The Big Bang approach to deal with a hierarchical classification problem,

notice that the classifier can predict any node within the class hierarchy in just one step

Initial big bang approaches were motivated by the need to classify data involving

hierarchical text categories. Two examples being a modified RIPPER algorithm [138]

and an algorithm that produces hierarchical association rules [161]. Another algorithm

focusing on hierarchical multi-label classification (HMC) is discussed in [137]. It uses a

85

Chapter 3. Data Mining

kernel based [45] method to classify examples, and the classification hierarchy that is

formed is represented by a Hidden Markov Tree.

Hierarchical C4.5 (HC4.5) [33] is another example of a big bang approach, but was

motivated by the need to classify hierarchical multi-label gene data. A similar algorithm

which is probably one of the most successful (producing human comprehensible models)

big bang approaches is a recent variant of the Clus algorithm - Clus-HMC [18] [148],

Clus-HMC is another hierarchical decision tree algorithm which was shown to

significantly outperform HC4.5 and a basic TDDC approach [18].

HC4.5 [33] is an extension of the original C4.5 decision tree induction algorithm that

deals with hierarchical multi-label problems. The modifications needed for the original

C4.5 algorithm are: a way of recording the hierarchical multi-label relationships between

classes, a way of testing membership of a given class, a new way of finding which class

(or classes) each node should be labelled with and a modified version of the entropy

calculation (used to decide which decision node to place at a point in the decision tree).

The relationships between classes are recorded in a separate file (to the data set), and

stored internally as a Boolean array. Each element in the array corresponds to a class

label, so testing if an example belongs to a particular class, or set of classes, becomes

trivial.

Clus and HC4.5 differ in the way each leaf node is labelled with a set of classes.

However, the basic principle revolves around finding whether a node should become

another test (to allow finer grained class predictions) or whether it should become a leaf

node. In Clus, if it is decided that the node should become a leaf the decision about what

set of classes should be assigned is determined by the distribution of class labels in the set

of examples at that node. A distance measure is used to find an array of class labels that

represents the example class labels well. In this way the authors consider Clus a

predictive clustering tree; the leaf predictions are in some sense clusters.

Another recent approach that has been developed for hierarchical multi-label gene

function prediction is described in [8], This approach uses a support vector machine as a

86

Chapter 3. Data Mining

classifier for each class node, and combines their predictions in a hierarchy-aware manner

using Bayesian networks.

3.7.4. Measuring Hierarchical Classification Performance

As stated in section 3.1 there are many measures of performance for standard flat

classification. Indeed the same can be said for hierarchical classification with multiple

different proposals [19] [149]. Freitas and Carvalho [62] divide the approaches into four

categories: uniform misclassification costs, distance-based misclassification costs,

semantics-based misclassification costs and the hierarchical misclassification cost matrix.

With uniform misclassification costs all misclassifications are given the same weight.

The most basic uniform approach would mean that a mistake anywhere in the

classification process would cause the system to consider the prediction totally incorrect.

For instance, an incorrect prediction would be if an example’s correct class was 1.1.1.1

and its predicted class was 1.1.1.2. Obviously this is very unreasonable as three correct

predictions have been made (at the first, second and third class levels) even if the last one

is incorrect. The system would also consider the following a misclassification, if the

example’s true class was 1.1.1.1 and the predicted class was 1.1 (or vice versa).

Another uniform measure can be attained by using standard classification accuracy.

At each class level the number of correctly classified examples can be divided by the total

number of examples. This gives a per-level breakdown of the predictive accuracy of the

algorithm, which can be quite enlightening. However, “the waters are muddied” by a

specific case, when for instance, an example’s correct class is 1.1 and its predicted class

is 1.1.1.1. Using the predictive accuracy measure this prediction would be correct at the

first level, correct at the second level and then not counted at the third and fourth. This is

due to the fact that the accuracy measure only usually counts the number of examples per

class level in the denominator and not the total number of predictions made. Although

this example is technically a misclassification it is not clear how serious of an error it

would be to the user, and so how greatly it should be penalised. For the purposes of this
87

Chapter 3. Data Mining

thesis hierarchical classification accuracy will remain as number of correctly classified

examples divided by the total number of examples.

With distance-based misclassification costs, the shortest path between the correct

class node and the predicted class node is taken. For instance, if the correct class is

1 .1 .1.1 and the predicted class is 1.1.1.2 then the distance, or misclassification cost, is 2

because there are 2 edges between those class nodes in the class tree. This raises an

interesting point, which is that an example with predicted class 1.2 and correct class 1.3

will also have the same misclassification cost 2. It seems rational to believe that the

second misclassification is more severe than the first. In the first case there are three

correct classifications (first, second and third class levels) whereas in the second case

there is only one correct classification. Not only this but a misclassification at the second

level is more severe than a misclassification at the fourth, since almost no knowledge is

gained about the example’s true class when a misclassification is made at the second

class level. These problems can be somewhat overcome by using weighted distances [19]

and possibly normalisation (to ensure each example is given the same weight independent

of the number o f classes it belongs to, in the case of multi-label classification).

Weighted distances involve the edges between higher level class nodes being assigned

a greater weight than those at the lower class levels. Also the misclassification cost can

be normalised for each example: the worst possible misclassification cost can be

calculated for each example, and then the actual misclassification cost can be divided by

this number. This performance measurement scheme is used in this thesis and a further

discussion of the approach can be found in section 6.7.

Semantics-based misclassification costs are discussed for text mining in [149] [150],

These costs are calculated not by any feature of the class structure, but by the similarity

between the predicted and correct classes. The classes can be represented by two vectors

and then a distance measure can be applied to calculate a misclassification cost. This

approach has the disadvantage of relying on a distance measure which is subject to bias.

Also, the user may not subjectively agree with the objective measure. This is a problem in

88

Chapter 3. Data Mining

a bioinformatics context as the class structure is usually the subject of a considerable

amount of care and effort by biologists, so completely ignoring it seems inappropriate in

many applications.

Hierarchical misclassification cost matrices involve matrices specifying which cost

each particular misclassification should have. In each entry in the matrix -

corresponding to a particular predicted class node and correct class node - a

misclassification cost value can be set by the user. So, for instance, the user could specify

what value to assign the misclassification of an example having correct class 1.2 and

predicted class 1.2.1.1. This has the advantage of being extremely flexible and has

already had its usefulness for flat classification [164], However, due to the measure’s

complexity, manually setting each cost (a task to be done by the user) could be very time

consuming in problems with a large number of classes; also an oversight by the user

could cause the performance measure to be very misleading. An automatic system that

guided the user’s input could greatly speed up the process, along with ensuring that there

are no anomalous values.

3.8. Summary

This chapter has introduced the elements relevant to this thesis from the very large

fields of data mining and optimisation. It has provided a discussion of the different

techniques commonly used for class-tree based hierarchical classification along with the

methods that can be used for their evaluation. An overview of ensemble classification

techniques has also been presented. Also, the two “swarm intelligence” optimisation

algorithms (Particle Swarm Optimisation and Ant Colony Optimisation) that are used in

the approaches described in this thesis have been described in terms of their application

to data mining. These facets of data mining and optimisation are brought together to

create the approaches proposed in the following chapters.

89

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

Chapter 4. A Hybrid Particle Swarm

Optimisation/Ant Colony Optimisation

Algorithm for Rule Induction

4.1. Introduction

The focus of this chapter is on supervised learning, more specifically, the

classification task of data mining. As discussed in Section 3.2.1 a classification rule

consists of an antecedent (a set of attribute-values) and a consequent (class). For the

purposes of this chapter, a term is defined by a triple <attribute, operator, value>, where

value is a value belonging to the domain of attribute. The operator used in this chapter is

“=” in the case of categorical/nominal attributes, or “<” and “>” in the case of continuous

attributes. Knowledge representation in the form of rules has the advantage of being

intuitively comprehensible to the user. This is important, because the general goal of data

mining is to discover knowledge that is not only accurate, but also comprehensible to the

user [59] [164],

In this chapter we propose a hybrid Particle Swarm Optimisation/Ant Colony

Optimisation (PSO/ACO) algorithm for the discovery of classification rules (recall that

PSO and ACO were reviewed in Sections 3.4 and 3.5, respectively). The PSO/ACO

classification algorithm proposed in this chapter is freely available on Sourceforge:

http://sourceforge.net/projects/psoaco2/. PSO has been explored as a mean for

classification in previous work (as discussed in Section 3.6.2) and shown to be rather

successful. However, previous authors have never addressed the case where PSO is used

for data sets containing both continuous and nominal attributes (as discussed in

90

http://sourceforge.net/projects/psoaco2/

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

Section 3.6.2). The same can be said for ACO, where no variants have been proposed that

deal directly with continuous attributes [63],

ACO has been shown to be a powerful paradigm when used for the discovery of

classification rules involving nominal attributes [119] and is considered the state of the

art for many combinatorial optimisation problems [51]. Furthermore, ACO deals directly

with nominal attributes rather than having to convert the problem first into a binary

optimisation problem. When compared to other combinatorial optimisation algorithms

(e.g., binary PSO) this reduces the complexity of the algorithm and frees the user from

the issues involved in the conversion process. Note that, in the case of a nominal attribute

containing more than two values the conversion of the nominal attribute into a binary one

in order to use binary PSO is not trivial. For instance, consider the nominal attribute

marital status taking on 4 values: “single, married, divorced, widow”. One could convert

this attribute into four binary attribute-values - each of them taking “yes” or “no” for

each original nominal value - but this has the drawbacks of increasing the number of

attributes (and so the dimensionality of the search space) and requiring a special

mechanism to guarantee that, out of the 4 new attributes, exactly one is “turned on”

(taking the value “yes”) in each candidate classification rule. Alternatively, we could try

to use a standard PSO for continuous attributes by converting the original nominal values

into numbers, say “1, 2, 3, 4”, but this introduces an artificial ordering in the values,

whereas there is no such order in the original nominal values. Actually there is good

evidence that “native” PSO - i.e., PSO coping with continuous attributes only - performs

badly in combinatorial optimisation problems (where the variables are

categorical/nominal) as shown in the quote from Maurice Clerk’s book on PSO [36]

pages 203-204:

91

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

“[A version of PSO using local search] makes it possible to find a solution

[to a travelling salesman problem] in fewer than 5,000 evaluations, which is

definitely more acceptable than failing after a million evaluations in “native

PSO”! But for problems of more consequence, it is better to call upon a version

of PSO taking directly into account the combinatorial aspects in the equations

of displacement. ”

In this quote Clerk is talking about the way in which he attempted to apply a standard

PSO algorithm to a 17 node travelling salesman problem - a classic combinatorial

optimisation problem. The algorithm could not find the optimal solution even after a

million function evaluations. When augmenting the algorithm with a form of greedy

search the PSO algorithm for TSP is more effective, but he still calls for a specialised

PSO for dealing with combinatorial optimisation, where particle movement equations can

directly cope with categorical/nominal values. As mentioned earlier, this is the research

direction followed in this chapter, with the difference being that our proposed algorithm

addresses the classification task of data mining, rather than TSP problems.

PSO/ACO uses ideas from ACO to cope directly with nominal attributes, and uses

ideas from PSO to cope with continuous attributes, trying to combine “the best of both

worlds” in a single algorithm.

We have shown [79] [80] in two of our previous papers that a previous version of the

PSO/ACO algorithm proposed in this chapter is at least competitive with binary PSO in

terms of a search mechanism for discovering classification rules. PSO/ACO is

competitive with binary PSO in terms of accuracy, and often beats binary PSO when rule

set complexity is taken into account. In this chapter we propose an improved PSO/ACO

algorithm for Rule Induction (PSO/ACO-RI) and provide a comprehensive comparison

between it and an industrial standard classification algorithm (PART [164]) across 27

data sets (involving both continuous and nominal attributes).

The PSO/ACO-RI algorithm is a proof-of-concept exploration of the hybrid

PSO/ACO paradigm in the context of the classification task of data mining. Creating

92

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

PSO/ACO-RI gave us a valuable experience in swarm intelligence for classification. This

experience was useful in the design of other PSO/ACO variants for hierarchical

classification problems, discussed in Chapter 5.

The remainder of the chapter is organised as follows. Section 4.2 describes in detail

the workings of the new algorithm’s sequential covering approach, along with the part of

the algorithm that deals with continuous attribute-values and rule pruning. Section 4.3

describes the part of the algorithm that supports nominal/categorical attribute-values.

Section 4.4 discusses the reasons for the new PSO/ACO-RI algorithm. In section 4.5 we

present the experimental set-up and results. In section 4.6 we summarise the main

findings of this chapter.

The work presented in this chapter has been reported in a journal paper [84],

4.2. The New PSO/ACO-RI Algorithm

The proposed hybrid Particle Swarm Optimization/Ant Colony Optimization Rule

Induction (PSO/ACO-RI) algorithm is a significant extension of our original PSO/ACO

algorithm (here denoted PSO/ACOl) proposed in [79], The PSO/ACOl algorithm was

designed to be the first PSO-based classification algorithm to natively support nominal

data - i.e., to cope with nominal data directly, without converting a nominal attribute into

a numeric or binary one and then applying a mathematical operator to the converted value,

as is the case in [146] (recall that the motivation for natively supporting nominal data was

discussed in Section 4.1). The PSO/ACOl algorithm achieves a native support of

nominal data by combining ideas from Ant Colony Optimisation [50] (the successful

Ant-Miner classification algorithm, see section 3.6.1) and Particle Swarm Optimisation

(discussed in section 3.4) to create a classification meta-heuristic that supports innately

both nominal (including binary as a special case) and continuous attributes.

93

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

4.2.1. PSO/ACO-RI’s Sequential Covering Approach

Both the original PSO/ACOl algorithm and the new modified version (PSO/ACO-RI)

use a sequential covering approach (discussed in section 3.2.1) to discover one-

classification- rule-at-a-time. The original PSO/ACOl algorithm is described in detail

in [79] and [80], hereafter we describe how the sequential covering approach is used in

PSO/ACO-RI as described in Pseudocode 4.1. The sequential covering approach is used

to discover a set of rules. While the rules themselves may conflict (in the sense that

different rules covering a given example may predict different classes), the “default”

conflict resolution scheme is used by PSO/ACO-RI. This is where any new (test)

example to be classified is only considered covered by the first rule that matches it from

the ordered rule list. E.g., the first and third rule may cover an example, but the algorithm

will stop testing after it reaches the first rule. Although the rule set is generated on a per

class basis, it is ordered according to rule quality before it is used to classify new

examples in the test set (to be discussed later in this chapter).

The sequential covering approach starts by initialising the rule set (RS) with the empty

set. Then, for each class the algorithm performs a WHILE loop, where TS is used to store

the set of training examples the rules will be created from. Each iteration of this loop

performs one run of the PSO/ACO-RI algorithm which firstly discovers a rule based on

nominal attributes and then adds terms involving continuous attributes, returning the best

discovered rule (Rule) predicting examples of the current class (Q . After this rule has

been pruned the training examples correctly covered by that rule - i.e., the examples

whose attribute-values satisfy the rule antecedent and have the class predicted by the rule

consequent - are removed from the training set. This process is repeated as long as

necessary to discover rules covering all training examples of the current class. The main

steps of the PSO/ACO-RI algorithm are described in detail in the next subsections.

94

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

RS = 0 /* initially, Rule Set is empty */
FOR EACH class C

TS = {All training examples belonging to any class}
WHILE (Number of uncovered training examples belonging to

class C > MaxUncovExampPerClass)

Run the PSO/ACO-RI algorithm to discover the best nominal
rule predicting class C, called Rule

Run the standard PSO algorithm to add continuous terms to
R ule, and return the best discovered rule BestR ule

Prune BestR ule

RS = RS u {B estR u le}
TS = TS - {training examples correctly covered by
discovered rule}

END WHILE
END FOR
Order rules in RS by descending Quality
Prune RS removing unnecessary terms or rules

Pseudocode 4.1: Sequential Covering Approach used by the Hybrid PSO/ACO-RI

Algorithm

4.2.2. Adding Continuous Terms to the Rule using PSO

The rule returned by the nominal/categorical PSO/ACO algorithm is not (usually)

complete as it does not include any terms with continuous values. For this to happen, the

best rule discovered by the PSO/ACO-RI algorithm is used as a base for the discovery of

terms with continuous values.

For the continuous part of the rule a conventional PSO algorithm (applied only to

numeric attributes) with constriction is used [21] (section 3.4). The vector to be optimised

consists of two dimensions per continuous attribute, one for an upper bound (ub) and one

for a lower bound (lb) (the way in which these are initialised will be discussed in the rest
95

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

of this subsection). At every particle evaluation the vector is converted to a set of terms

(rule conditions) and added to Rule produced by the PSO/ACO-RI algorithm for fitness

evaluation. For instance, if the data set contained one nominal attribute Ano and one

continuous attribute Aco the PSO/ACO-RI algorithm might produce a rule like: IF A„o =

<value> THEN class C. The standard PSO algorithm would then attempt to improve this

rule by adding terms: xUbo > Ac0 AND xibo < Ac0, which effectively corresponds to a term

of the form: xubo > Aco > x^o, where a single particle's position would be the vectors

xlb, xub. The rule for evaluation purposes would be:

IF An0 = <value> AND Xubo > Ac0 AND x lb0 ^ Ac0 THEN C l a s s C

If the two bounds cross over (i.e., x/bo > xubo) both terms are omitted from the decoded

rule but the Personal Best (see Section 3.4) position is still updated in those dimensions.

To improve the performance of the PSO algorithm the upper bound for each

dimension is initialised (seeded) in the following manner. Each example in the training

set is examined to find the lowest and highest value that each continuous attribute takes.

From these values the range of values for each continuous attribute is found. Then each

particle’s initial position (for the upper bound dimension) is set to a uniformly distributed

position between the value of a randomly chosen seed example’s continuous attribute

and that value added to the range for that attribute. For the lower bound, the same

procedure is also conducted except that the position is initialised at a uniformly

distributed position between an example’s value (for that attribute) and an example’s

value minus the range for that attribute. This seeding procedure will produce some

seeding positions outside the range of the values seen within the data set. This is an

intended feature as for some attributes it might never be beneficial to set lower or upper

bounds on their values.

The most likely place a particle will be seeded is around the lowest and highest values

the seeding examples have (for lower and upper bounds respectively).

96

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

• A s e e d in g e x a m p le 's p o s it io n

T h e p ro b a b ility o f a p a r t ic le b e in g s e e d e d a t th is p o s it io n

Figure 4.1: The outline of the probability distribution for particle seeding at the lower

bound of an attribute value

Figure 4.1 shows the way in which the likelihood of a particle being seeded at a

particular position changes (for the lower bound only). It shows the probability

distribution (the grey line) for a particle’s seeding value for one lower bound of one

attribute. The black dots show the values of this particular attribute for the five examples

in this class. The most likely place that the particle will be seeded in this dimension

(bound) is between the lowest attribute-value and second to lowest attribute-value (shown

by the black dots furthest to the left) present in any example in the class.

It is equally likely that any given example will be used as a seeding example for a

particle. For the lower bound seeding value, a particle’s seeding position is uniformly

distributed between the seeding example’s value and the seeding example’s value minus

the range of the values for that attribute. Overall, there is a cumulative probability

distribution, with the most likely seeding position being around the position of the

97

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

seeding value with the lowest value. For the lower bound, this means that no particles

will be seeded with values greater than the value of the example with the highest value

(as can be seen in Figure 4.1).

This type of seeding distribution will hopefully give the particles a head start at

finding good bound values. In an ideal data set there will be non-overlapping groups (one

group per class) of continuous values. If this is the case then lower and upper bounds set

as (respectively) the lowest and highest values present in the examples from one class

will exactly distinguish that class from all others. Obviously this idealised example will

not often occur in real data sets, but nevertheless, initially looking for this type of pattern

remains a good starting point.

While the standard PSO algorithm attempts to optimise the values for the upper and

lower bounds of these terms, it is still possible that the nominal part of the rule may

change. The particles in the PSO/ACO-RI algorithm are prevented from fully converging

using the Min-Max system (discussed in the next sub-section) used by some ACO

algorithms, so that a mechanism for exploratory search remains for the nominal part of

the rule. This is helpful for the search, as in combination with the continuous terms, some

nominal terms may become redundant or detrimental to the overall rule quality. The exact

mechanism of this exploratory search is discussed in Section 4.3.

4.2.3. Pruning the Discovered Rule

After the BestRule has been generated it is then added to the rule set after being

pruned using a pruning procedure inspired by Ant-Miner’s pruning procedure [119]. Ant-

Miner’s pruning procedure involves finding the term which, when removed from a rule,

gives the biggest improvement in rule quality. When this term is found (by iteratively

removing each term tentatively, measuring the rule’s quality and then replacing the term)

it is permanently removed from the rule. This procedure is repeated until no terms can be

removed without loss of rule quality. Ant-Miner’s pruning procedure attempts to

maximise the quality of the rule in any class, so the consequent class of the rule may
98

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

change during the procedure. The procedure is obviously very computationally expensive;

a rule with n terms may require in the worst case - - n̂+1 ̂ i e 0(n2) - rule quality

evaluations before it is fully pruned [119]. For this reason the PSO/ACO-RI classification

algorithm only uses the Ant-Miner pruning procedure if a rule has less than 20 terms (a

value empirically determined in our preliminary experiments). If there are more than 20

terms then the rule’s terms are iterated through once, removing each one if it is

detrimental or unimportant for the rule’s quality - i.e., if the removal of the term does not

decrease the classification accuracy of the rule on the training set. Also, for reasons of

simplicity the rule’s consequent class is fixed throughout the pruning procedure in

PSO/ACO-RI. These alterations were observed (in initial experiments) to make little or

no difference to rule quality.

After the pruning procedure the examples covered by that rule are removed from the

training set (75). Recall that an example is said to be covered by a rule if that example

satisfies all the terms (attribute-value pairs) in the rule antecedent (“IF part”) (discussed

in Section 3.2.1). This WHILE loop is performed as long as the number of uncovered

examples of the class C is greater than a user-defined threshold, the maximum number of

uncovered examples per class (MaxUncovExampPerClass). After this threshold has been

reached TS is reset by adding all the previously covered examples. This process means

that the rule set generated is unordered - it is possible to use the rules in the rule set in

any order to classify an example without unnecessary degradation of predictive accuracy.

Having an unordered rule set is important because after the entire rule set is created the

rules are ordered by their quality and not the order they were created in. This is a

common approach often used by rule induction algorithms [131] [118]. Also, after the

rule set has been ordered it is pruned as a whole. This involves tentatively removing

terms from each rule and verifying whether each term’s removal affects the accuracy of

the entire rule set on the training set. If that individual term’s removal does not affect the

accuracy then it is permanently removed. If it does affect the accuracy then it is replaced

and the algorithm moves onto the next term, and eventually the next rule. After this

99

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

process is complete the algorithm also removes whole rules that do not contribute to the

classification accuracy. This is achieved by classifying the training set using the rule list

and if any rules do not classify any examples correctly then they are removed.

4.3. The Part of the PSO/ACO-RI Algorithm Coping with

Nominal Data in Detail

The PSO/ACO-RI algorithm initially generates the nominal part of the rule, by

selecting a (hopefully) near optimal combination of attribute-value pairs to appear in the

rule antecedent (the way in which rules are assessed is discussed in Section 4.3.3). The

PSO/ACO-RI algorithm generates one rule per run and so must be run multiple times to

generate a set of rules that cover the entire training set. The sequential covering approach,

as described in Section 4.2.1, attempts to ensure that the set of rules cover the training set

in an effective manner. This section describes in detail the part of the PSO/ACO-RI

algorithm coping with nominal data, which is the part inspired mainly by ACO. The part

of the PSO/ACO-RI algorithm coping with continuous data is essentially a variation of

standard PSO where each continuous attribute is represented by two dimensions,

referring to the lower and upper bound values for that attribute in the rule to be decoded

from the particle, as explained in Section 4.2.1.

To understand - in an intuitive and informal way - why the PSO/ACO-RI algorithm

is an effective rule discovery meta-heuristic, it may be useful to first consider how one

might create a very simple algorithm for the discovery of classification rules. An

effective rule should cover as many examples as possible in the class given in the

consequent of the rule, and as few examples as possible in the other classes in the data set.

Given this fact a good rule should have the same attribute-value pairs (terms) as many of

the examples in the consequent class. A simple way to produce such a rule would be to

use the intersection of the terms in all examples in the consequent class as the rule

antecedent. This simple procedure can be replicated by an agent based system, as follows.

100

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

Each agent has the terms from one example from the consequent class (it is seeded with

these terms), each agent could then take the intersection of its terms with its neighbours

and then keep this new set. If this process is iterated, eventually all agents will have the

intersection of the terms from all examples in the consequent class.

This simple procedure may work well for very simple data sets, but we must consider

that it is highly likely that such a procedure would produce a rule with an empty

antecedent (as no single term may occur in every example in the consequent class). Also,

just because certain terms frequently occur in the consequent class does not mean that

they will also not frequently occur in other classes, meaning that our rule will possibly

cover many examples in other classes.

PSO/ACO-RI was designed to “intelligently” deal with the aforementioned problems

with the simple agent based algorithm by taking ideas from PSO and ACO. From PSO:

having a particle network, the idea of a best neighbour and best previous position. From

ACO: probabilistic term generation guided by the performance of good rules produced in

the past, and directly coping with nominal attribute-values without converting them into

binary or integer values. PSO/ACO-RI still follows the basic principle of the simple agent

based system, but each particle takes the intersection of its best neighbour’s and previous

personal best position’s terms in a selective (according to fitness) and probabilistic way.

Each particle in the PSO/ACO-RI population is a collection of n pheromone matrices

(each matrix encodes a set of probabilities) where n is the number of nominal attributes in

a data set. Each particle can be decoded probabilistically into a rule with a predefined

consequent class. Each of the n matrices has two entries, one entry represents an o ff state

and one entry represents an on state. If the o ff state is (probabilistically) selected the

corresponding (seeding) attribute-value pair will not be included in the decoded rule. If

the on state is selected when the rule is decoded the corresponding (seeding) attribute-

value pair will be added to the decoded rule. Which value is included in this attribute-

value pair (term) is dependant on the seeding values.

101

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

The seeding values are set when the population of particles is initialised. Initially,

each particle has its past best state set to the terms from a randomly chosen example from

class C - the same class as the predefined consequent class for the decoded rule. From

now on the particle is only able to decode to a rule with attribute-values equal to the

seeding terms, or to a rule without some or all those terms. This may seem at first glance

counter-intuitive as flexibility is lost - each particle cannot be translated into any possible

rule, the reasons for this will be discussed later.

Each pheromone matrix entry is a number representing a probability and all the

entries in each matrix for each attribute add up to 1. Each entry in each pheromone matrix

is associated with a minimum, positive, non-zero pheromone value. This prevents a

pheromone from dropping to zero, helping to increase the diversity of the population

(reducing the risk of premature convergence).

For instance, a particle may have the following three pheromone matrices for

attributes Colour, H asJiir and Swims. It was seeded with an example: Colour=Blue,

Has_fur=False, Swims=True, Class=Fish:

Colour Has fur Swims
(on)

Colour=Blue Off (on)
Has fur=False off (on)

Swims=True off
0.01 0.99 0.8 0.2 0.9 0.1

The probability of choosing the term involving the attribute colour to be included in

the rule is low, as the o ff flag has a high probability in the first pheromone matrix (0.99).

It is likely that the term Has_fur=False will be included in the decoded rule as it has a

high probability (0.8) in the second pheromone matrix. It is also likely that the term

Swims=True will be included in the decoded rule.

The most likely rule decoded from this set of pheromone matrices is:

IF Has_fur=False AND Swims=True THEN Class=Fish

102

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

4.3.1. Pseudocode

Initialize population
REPEAT for M a x ln te ra tio n s

FOR every particle x
/ * Rule C re a tio n * /
C = The current class being predicted
Set Rule Rx = "IF 0 THEN C"
FOR every dimension d in x

Use roulette wheel selection to choose whether the
state should be set to o f f or on. If it is on then
the corresponding attribute-value pair set in the
initialisation will be added to Rx; otherwise (i.e.,
if o f f is selected) nothing will be added.

END FOR
Calculate Quality Qx of Rx
/* Set the past best position */
P - x 's past best state
QP = P 's quality
IF Qx > QP

Q p — Q x
P = x

END IF
END FOR
FOR every particle x

P = x 's past best state
N = the best state ever held by a neighbour of x
according to N’ s quality QN
FOR every dimension d in x

/* Pheromone updating ' p rocedu re * /
IF Pd = Nd THEN

pherom one_entry corresponding to the value of Nd
in the current xd is increased by Qp

ELSE IF Pd = o f f AND seeding term for xd # Nd THEN
pherom one_entry for the o f f state in xd is
increased by Qp

ELSE
pherom one_entry corresponding to value of Nd in
the current xd is decreased by Qp

END IF
Normalize pherom one_entries

END FOR
END FOR

END REPEAT
RETURN best rule discovered

Pseudocode 4.2: The Part of the PSO/ACO-RI Algorithm Coping with Nominal Data

103

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

Pseudocode 4.2 shows the new PSO/ACO-RI algorithm proposed in this chapter and

utilised in Pseudocode 4.1 (sequential covering approach).

Firstly the population of particles is initialised. Each particle is seeded with terms

from a randomly selected example, as described earlier. Initially, in each dimension the

pheromone for the on state is set to 0.9 and the pheromone for the o ff state is set to 0.1.

The first loop (REPEAT statement) iterates the whole population for Maxlterations. Then

for each particle x a rule is built probabilistically from its pheromone matrices. For each

dimension d in x, roulette-wheel selection - a well-known selection method in

evolutionary algorithms [54] - is used to decide if the on or o ff state should be selected.

Roulette wheel (fitness proportional) selection simply means that the probability of an

attribute-value being picked is proportional to the corresponding value in each entry in

the pheromone matrix. It would also be possible to use most other selection

mechanisms [54] but as PSO/ACO-RI is inspired by the Ant-Miner algorithm it uses its

selection mechanism. Investigation into the effects of using different selection

mechanisms is a topic for future research.

In PSO/ACO-RI roulette selection simply involves the following rule:

IF rand() > pheromone in entry for on state THEN
Select on state

ELSE
Select o f f state

End IF

Where rand() returns a number from the interval [0..1] with a uniform probability

distribution. If the on state is selected then the corresponding term is added to the

antecedent of Rx. This is an attribute-value pair where the attribute corresponds to the

dimension d and the value corresponds to the initial seeding value. After this process has

been repeated for every dimension, the quality Qx of the rule is calculated. If the new Qx

is greater than the previous best Qp, then the particle's state is saved as P.

104

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

After the rule creation phase the pheromone is updated for every particle. Each

particle finds its best neighbour’s best state (N) according to Qn (the quality of the best

rule N has ever produced). The particles are in a static topology, so each particle has a

fixed set of neighbour particles throughout the entire run of the algorithm. PSO/ACO-RI

uses Von-Neumann [96] topology (Figure 3.7), where the particles are arranged in a 2D

grid, each particle having four neighbours. This topology was chosen as it consistently

performed the best in initial experiments. This is likely due to the level of connectivity

present in this particular topology, i.e., enough connectivity but not too much (global

topology was shown to be suboptimal due to premature convergence to a local optimum

in the search space).

4.3.2. Pheromone Updating Procedure

The pheromone updating procedure is influenced by two factors, the best state a

particle x has ever held (the state P), and the best state ever held by a neighbour particle N.

As discussed previously each dimension can take two values and so it has two

corresponding pheromone entries, one for the on state and one for the o ff state. These

states are examined in every dimension d and the following rules are applied. If Pd is the

same as N j then an amount of pheromone equal to Qp (the quality of P) is added to the

pheromone entry in Xd corresponding to the value of Pd. In other words, if a particle and

its neighbour have both found that a particular attribute-value is good then pheromone is

added to the entry corresponding to it. If Pd and Nd disagree about that attribute-value

then pheromone is removed from the corresponding entry. This is directly related to the

principles of the simple algorithm discussed in Section 4.3, where the aim of the

algorithm is to get the particles to agree on a single solution - by making it less likely for

neighbouring particles to pick disagreeing attribute-values.

There is a caveat in this pheromone updating procedure given by the “ELSE IF”

statement in Pseudocode 4.2. It states that if Pd is o ff and the current particle and its best

neighbour do not have the same seeding terms, then increase the likelihood of choosing
105

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

the o ff state (by adding pheromone to the pheromone entry corresponding to the o ff value).

The reason for this is to maintain the idea from the simple agent based system described

earlier in this section. That is, when two particles have different seeding terms then those

terms should tend to be omitted. Without this caveat the opposite would happen, the

probability of the term being omitted would become less, as pheromone would otherwise

be removed from Pd (off) if Pd and Nd do not agree. A more detailed examination of the

effect of the pheromone updating rules can be seen in Table 4.1, with this caveat being

shown in the second row from the bottom.

The third pheromone updating rule (the ELSE statement) states that if Pd is not the

same as Nd (and Pd is not off) then an amount of pheromone equal to Qp is removed from

the pheromone entry in x<* corresponding to the value of Pd-

If after this process is completed any pheromone entry is less than a predefined

minimum amount then it is set to that amount (0.01). It is possible that adjusting this

value might improve performance under the specific conditions of the given application -

this is a topic left for future research, but careful experimentation would undoubtedly be a

good starting point. Importantly, the minimum pheromone value allows the pheromone

entry that is not the best state to increase due to the normalisation procedure. This

increase will occur if pheromone is removed from a state. If this happens the amount of

pheromone in the matrix becomes less than 1 and, as long as both entries have a greater

than zero amount of pheromone, when the matrix is normalised both entries will increase.

It also aids search in a conceptually similar way to mutation in GAs and the Min-Max

system in the ACO literature [51],

In Table 4.1 the six possible scenarios for pheromone updating in the current particle

x are described given the differing states of Pd, Nd and also the seeding term for xd. The

two highlighted rows show the only cases where pheromone is increased for selecting the

on seeding value. These outcomes are controlled by the pheromone updating rules shown

in Pseudocode 4.2 (discussed previously).

106

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

The first and last cases shown in the table are quite intuitive, if both Pd and Nd agree

on a state that state is made more likely in the current particle. This allows the algorithm

to converge on a good solution that the particles Pd and Nd agree on.

Cases of the second type are shown in the second and fifth rows, where Pd and Nd

have different seeding terms. In these cases the current particle x makes it more likely

that the conflicting term will be omitted from the decoded rule, by increasing the

pheromone of the o ff state. This feature allows the particle to create rules that generalise

well, covering more examples from the consequent class (discussed further in

Section 4.4).

Seeding Term for xd P„ Nd Outcome for entries in xd
<value>=w (on)

<value>=w
(on)
<value>=w

on pheromone increased
o f f pheromone decreased

<value>=w (on)
< va lu e> -w

(on)
<value>pw

o f f pheromone increased
on pheromone decreased

<value>=w (on)
<value>=w

o f f o f f pheromone increased
on pheromone decreased

<value>=w o f f (on)
< va lu e> -w

on pheromone increased
o f f pheromone decreased

<value>=w Off (on)
<value>pw

o f f pheromone increased
on pheromone decreased

<value>=w Off o f f o f f pheromone increased
on pheromone decreased

Table 4.1: PSO/ACO-RI Pheromone Updating Scenarios

Cases of the third type - which involve a disagreement between Pd and Nd about

whether or not the seeded term should be used in the rule decoded from the current

particle - are shown in the third and fourth rows. These cases bias the search towards Nd

so that each particle tries to emulate its best neighbour. In the third row; if Nd = o ff (and

Nd and xd have the same seeding terms) then the probability of xd decoding to o ff will be

107

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

increased (by increasing the pheromone associated with the o ff state). In the fourth row; if

Nd= w (and Nd and xj have the same seeding terms) the probability of Xd decoding to on

will be increased. The cases of the third type allow the particles to come to a consensus

about the best set of states. By trying to emulate its best neighbour each particle has the

potential to create (in future iterations) a new past best state (P) based on a mix of its own

current P and N.

4.3.3. Measuring Rule Quality

It is necessary to estimate the quality of every candidate rule (decoded particle). A

measure must be used in the training phase in an attempt to estimate how well a rule will

perform in the testing phase. Given such a measure it becomes possible for an algorithm

to optimise a rule's quality (the fitness function). In our previous work [79] the Quality

measure used was Sensitivity x Specificity (Equation 4.1) [74],

Sensitivity x Specificity = (TP / (TP + FN)) x (TN / (TN + FP))

Equation 4.1: Quality Measure used by PSO/ACO 1 [79]

Where TP, FN, FP and TN are, respectively, the number of true positives, false

negatives, false positives and true negatives associated with the rule [164]:

• True Positives (TP) are the number of examples that match the rule antecedent

(attribute-values) and also match the rule consequent (class). These are desirable

correct predictions.

• False Positives (FP) are the number of examples that match the rule antecedent

but do not match the rule consequent. These are undesirable incorrect predictions.

• False Negatives (FN) are the number of examples that do not match the rule

antecedent but do match the rule consequent. These are undesirable uncovered

cases and are caused by an overly specific rule.

108

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

• True Negatives (TN) are the number of examples that do not match the rule

antecedent and do not match the rule consequent. These are desirable and are

caused by a rule’s antecedent being specific to its consequent class.

In the new PSO/ACO-RI classification algorithm proposed in this chapter the quality

measure is Precision with Laplace correction [34] [164], as per Equation 4.2. In initial

experiments this quality measure was observed to lead to the creation of rules that were

more accurate (when compared to the original quality measure shown in Equation 4.1).

Laplace-Corrected Precision = (1 + TP) / (1 + TP + FP)

Equation 4.2: New Quality Measure used by PSO/ACO-RI

We observed that in some cases (when using Equation 4.2 as a quality measure) rules

would be generated covering very few examples. These cases were likely due to the way

in which the Laplace-Corrected Precision measure penalises False Positives very

severely (when compared to Sensitivity x Specificity). To stop this less than ideal

situation we added the following conditional statement to the new quality measure:

IF TP < MinTP
Rule Quality = Laplace-Corrected Precision * 0.01

ELSE
Rule Quality = Laplace-Corrected Precision

END IF

Where MinTP is the least number of correctly covered examples that a rule has to

cover before it is given a “normal” value, as computed by Equation 4.2. When a rule

covers too few examples the quality is severely reduced (by a factor of 100). This

procedure reduces the quality below the quality of any normal rule but still allows the

particles covering fewer than MinTP examples to compare their solutions effectively. In
109

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

the experiments reported in this chapter we set MinTP to 10, optimisation of this

parameter is left for future research.

4.4. Motivations for PSO/ACO-RI and Discussion

PSO/ACO-RI improves upon our original preliminary PSO/ACO 1 algorithm for

classification. However, both algorithms are based on the same principle. They are both

PSO based algorithms that have pheromone matrices instead of a single velocity value in

each dimension of search space.

The modified algorithm (PSO/ACO-RI) discussed in this chapter differs from our

original algorithm (PSO/ACO 1) proposed in [79] [80] in five important ways.

• Firstly PSO/ACO 1 attempted to optimise both the continuous and nominal attribute-

values present in a rule antecedent at the same time, whereas PSO/ACO-RI takes the

best nominal rule built by nominal PSO/ACO algorithm and then attempts to add

continuous attributes to it using a conventional PSO algorithm.

• Secondly the original algorithm used a type of rule pruning to create seeding terms

for each particle, whilst PSO/ACO-RI uses all the terms from an entire training

example (record).

• Thirdly in PSO/ACO 1 it was possible for a particle to select a value for an attribute

that was not present in its seeding terms, whilst in PSO/ACO-RI only the seeding

term values may be added to the decoded rule.

• Fourthly the pheromone updating rules have been simplified to concentrate on the

optimisation properties of the original algorithm. In PSO/ACO 1 pheromone was

added to each entry that corresponded to the particle's past best state, its best

neighbour's best state, and the particle's current state in proportion to a random

learning factor. Now pheromone is only added to a pheromone matrix entry in the

current particle x when /V^and Pd match, or taken away when they do not.

110

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

• Fifthly, the algorithm now prunes the entire rule set after creation, not simply on a

per rule basis.

In PSO/ACO-RI the conventional PSO for continuous data and the hybrid PSO/ACO-

RI algorithm for nominal data have been separated partially because they differ quite

largely in the time taken to reach peak fitness. It usually takes about 30 iterations

(depending on the complexity of the data set) for the pheromone matrices to reach a

stable state in PSO/ACO-RI, whilst it tends to take considerably longer for the standard

PSO algorithm to converge. Due to this fact the standard PSO algorithm's particles set

past best positions in quite dissimilar positions, as their fitness is dependant on the

quickly converging part of the PSO/ACO-RI algorithm coping with nominal data. This

causes high velocities and suboptimal search, with a higher likelihood of missing a

position of high fitness. Therefore, separating the rule discovery process into two stages -

one stage for the part of the PSO/ACO-RI algorithm coping with nominal data and one

stage for the part of the PSO/ACO-RI algorithm coping with continuous data (essentially

a variation of a standard PSO) - provides a better control of the search and more

consistent results.

Secondly, in the PSO/ACO 1 algorithm, sets of seeding terms were pruned before they

were used. This aggressive pruning algorithm used a heuristic to discard certain terms.

This is less than ideal as the heuristic does not take into account attribute interaction, and

so potentially useful terms are not investigated.

To understand the reasons behind the last two modifications it is important to

understand how the algorithms find good rules. In both PSO/ACO 1 and PSO/ACO-RI

sets of terms are generated by mixing together the experiences of the particles and their

neighbours. As the entries in the pheromone matrices converge and reach one (or zero),

better rules should be generated more often. In PSO/ACOl the levels of the pheromone in

the matrices are influenced by three factors (current state, past best state and best

neighbours' best state). If these factors do not agree then the pheromone matrix will be

111

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

slow to converge. Slow convergence can sometimes be advantageous as the algorithm

should not prematurely converge to a local maximum. However, in PSO/ACOl the result

of this slow convergence is usually destructive, as incompatible terms can be mixed

together over and over again. Incompatible terms are terms that do not cover any of the

same examples. For instance, in Table 4.2, incompatible terms are An\ = a and A„2 = b. A

rule including both these terms would have a quality of zero as it would not cover any

examples. This problem is addressed by the third modification in PSO/ACO-RI, now

incompatible terms will not be mixed. This modification also ensures a particle will

always cover at least one example (the seeding example) even if all the terms are

included in the decoded rule. This was not the case in PSO/ACOl as at the beginning of

the search many incompatible terms could be mixed, creating many particles with zero

fitness.

A n 1 A„i A n3

Ri a a a

R i a a b

r 3 a a b

R4 b b b

Rs b b b

r 6 b b b

Table 4.2: An Example Single Class Data Set, R's are Records, An's are Nominal

Attributes

In PSO/ACO-RI the pattern being investigated by the particles will likely include

relatively general terms - an example might be a rule including the term An3 - b in

Table 4.2. It is the job of the PSO/ACO-RI algorithm to find terms that interact well to

create a rule that is not only general to the class being predicted (covering many examples

of that class) but also specific to the class (by not covering examples in other classes). It

is also the job of the PSO/ACO-RI algorithm to turn off terms that limit the generality of

112

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

the rule without adding specificity to it. This trade-off between specificity and generality

(or sensitivity) is calculated by the rule quality measure. It is clear, in Table 4.2, that

including values for An\ and An2 will not ever lead to the most general rule (the optimal

rule only has one term, A„3 = b). Due to the new pheromone updating procedures a

particle would choose the off state for these conflicting attributes quickly.

4.5. Computational Results

For the experiments we used 27 data sets from the well-known UCI dataset

repository [111]. We performed 10 fold cross validation [164], and ran the PSO/ACO-RI

algorithm 10 times for each fold - with a different random seed for each run - as it is a

stochastic algorithm.

Both the part of the PSO/ACO-RI algorithm coping with nominal data and the

standard PSO algorithm (i.e. the part of PSO/ACO-RI coping with continuous data) had

1 0 0 particles, and these two algorithms ran for a maximum of 1 0 0 iterations

(Maxlterations) per rule discovered. In all experiments constriction factor % = 0.72984

and social and personal learning coefficients cl = c2 = 2.05, as is standard in the

literature [2 1].

MaxUncovExampPerClass was set to 10 as this is also standard in the literature [119].

As mentioned previously PSO/ACO-RI uses Von-Neumann topology, where each

particle has four neighbours, with the population being connected together in a 2D grid.

The corrected WEKA [164] statistics class was used to compute the standard deviation of

the predictive accuracies and to apply the corresponding corrected two-tailed Student’s T-

Test - with a significance level of 5% - in the results presented in Table 4.3 and

Table 4.4.

The algorithms compared in Table 4.3 are PSO/ACO-RI and PART. PART is

WEKA’s implementation of a variation of the well-known C4.5Rules rule induction

algorithm [164], PART extracts rules from decision trees created by J48 (WEKA’s

113

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

implementation of C4.5). We compared PSO/ACO-RI against PART as the latter is a

very well regarded and commonly used classification algorithm.

D ata Set
P redictive A ccuracy (%) A verage R ule Size A verage R ule Set Length
P SO /A C O -
RI PA R T P SO /A C O -

RI PA R T
P SO /A C O -
RI P A R T

A utos 76 .63± 8 .36 7 9 .8 3 i l l .4 3 2 .8 i0 .1 7 2 .5 4 i0 .2 4 1 6 .0 il .2 5 1 4 .2 i2 .7 4

ba lance-scale 82 .72± 4 .77 7 9 .3 8 i7 .8 1 2 .5 6 i0 .1 7 3 .1 3 Ì0 .1 6 2 6 .6 Ü .0 7 3 8 .9 i3 .2 5

b reast-cancer 72 .62± 6 .84 6 9 .7 i7 .8 1 .7 3 i0 .2 6 1 .9 Ü 0 .1 8 1 2 .4 i2 .2 7 1 7 .3 i4 .7 2

breast-w 93 .42± 3 .79 9 3 .7 i4 .0 5 1.17±0.09 1 .0 Ü 0 .0 3 9 .9 Ü .6 1 0 .4 i3 .0 3

cred it-a 8 5 .3 1 i4 .1 4 8 4 .2 3 i3 .3 5 2 .9 4 i0 .3 1 2 .4 6 i0 .3 4 2 2 .7 i2 .0 3 0 .8 i9 .6 6

cred it-g 67 .9± 5 .82 6 9 .7 i4 .4 4 .2 3 i0 .1 9 3 .0 Ü 0 .2 5 5 4 .3 i l .8 9 7 7 .0 i4 .5 7

C rx 8 5 .6 i2 .8 4 8 4 .5 4 i2 .8 2 .9 4 i0 .2 8 2 .4 4 i0 .3 1 2 2 .5 i3 .1 2 9 .9 i8 .6 7

diabetes 7 2 .6 7 i4 .9 8 7 4 .3 6 i4 .5 1 3 .8 8 i0 .2 9 1 .8 8 i0 .2 3 3 3 .4 i l .4 3 7 .1 Ü .5 2

G lass 7 0 .9 5 i7 .5 6 5 .4 3 i l l .4 5 3 .1 Ü 0 .1 8 2 .7 i0 .2 8 2 0 .4 i l .3 5 1 6 .1 Ü .6

H eart-c 7 7 .3 8 i5 .4 5 7 8 .7 2 i5 .9 2 3 .3 3 i0 .1 9 2 .4 2 i0 .2 1 1 2 .6 i0 .8 4 1 9 .9 i2 .4 2

H eart-sta tlog 8 1 . l l i 6 .1 6 7 8 .1 5 i6 .6 4 3 .1 7 i0 .4 4 2 .8 8 i0 .3 4 9.7A 1.34 1 8 .4 Ü .9

ionosphere 8 8 .0 6 i4 .9 1 9 0 .0 4 i4 .6 8 3 .3 3 i0 .7 9 2 .3 5 i0 .4 3 3 .6 i0 .9 7 8 .9 Ü .9 1

Iris 9 4 .6 7 i5 .2 6 9 0 .6 7 i7 .1 7 0 .9 3 i0 .1 4 1 .0 2 i0 .0 5 3 ,0 i0 .0 4 .3 Ü .4 2

iris_d 9 4 .6 7 i6 .1 3 9 4 .0 i5 .8 4 0 .6 8 i0 .0 4 0 .7 6 i0 .0 6 3 .2 i0 .4 2 4 .4 i0 .9 7

lym ph 8 3 .0 5 i6 .6 7 8 3 .1 9 i9 .4 7 1 .8 9 i0 .1 5 2 .2 6 i0 .4 2 1 4 .7 i2 .0 1 0 .0 il .2 5

m ushroom 9 9 .9 i0 . l l lOO.OiO.O 1.86±0,18 1 .5 5 i0 .0 2 8 .7 i0 .4 8 1 2 .8 i0 .4 2

prom oters 8 1 .0 Ü 2 .1 2 8 3 .9 Ü 7 .9 1 1 .0 2 i0 .0 5 1 .0 2 i0 .1 4 5 .Ü 0 .3 2 6 .9 Ü .2

segm ent 9 6 .6 7 i l .1 7 9 6 .6 7 i0 .8 4 2 .8 i0 .2 7 3 .0 7 i0 .1 7 2 1 .9 i0 .9 9 2 6 .3 Ü .7

Sonar 7 5 .0 5 i9 . l l 7 2 .5 2 il0 .5 7 2 .6 i0 .6 3 2 .2 3 i0 .4 9 4 .4 Ü .5 8 7 .4 Ü .1 7

soybean 8 7 .0 1 i6 .5 3 9 0 .5 7 i3 .9 6 2 .0 8 i0 .2 1 2 .6 6 i0 .1 6 2 4 .2 i l .0 3 3 2 .l i3 .2 1

tic-tac -toe lOO.OiO.O 9 3 .8 5 i2 .7 2 .6 7 i0 .0 2 .6 5 i0 .1 1 9-OiO.O 3 8 .3 i3 .0 6

veh ic le 7 3 .0 5 i4 .4 5 7 3 .2 9 i2 .7 7 3 .8 5 i0 .1 8 3 .8 4 i0 .3 8 3 7 .8 Ü .2 3 4 .0 i3 .0 2

vow el 8 6 .1 6 i3 .4 7 8 5 .0 5 i5 .7 9 4 .2 i0 .2 5 3 .5 5 i0 .2 1 2 9 .0 i0 .8 2 5 0 .5 i3 .5 7

W isconsin 9 4 .8 7 i2 .5 3 9 4 .4 3 i2 .0 6 1 .2 Ü 0 .0 7 1 .0 2 i0 .0 3 1 0 .2 i l .8 7 9 .9 i3 .1 1

kr-vs-kp 9 9 .4 7 i0 .5 1 9 9 .3 7 i0 .2 9 2 .25 iO . 15 3 .0 3 i0 .3 5 18 .7±2.0 2 2 .7 i l .3 4
Z oo 9 7 .1 8 i6 .2 5 9 4 .1 8 i6 .6 1 .1 4 i0 .1 8 1 .4 8 i0 .12 7 .Ü 0 .3 2 7 .6 i0 .5 2

sp lice 9 3 .4 8 i l .2 4 9 2 .7 9 il .6 5 3 .0 i0 .0 7 2 .6 5 i0 .1 8 8 .0 i2 .9 1 9 9 .6 i6 .1

Table 4.3: Predictive Accuracy and Rule Set size of PSO/ACO-RI and PART in UCI

Data Sets, with Standard Deviation and Student T-Test Shadings

The first two columns (not including the data set column) in Table 4.3 show the

percentage predictive accuracy of both algorithms - i.e., their average predictive accuracy

114

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

over the 10 test sets associated with the cross-validation procedure. The second two

columns show the average rule size (number of terms, or attribute-value pairs) for the

rules generated for each data set. The third two columns show the average rule set size for

each data set; this is simply the average number of rules in each rule set. The measures of

average rule size and average rule set size give an indication of the complexity (and so

indirectly comprehensibility) of the rule sets produced by each algorithm. The shading in

these six columns denotes a statistically significant win or a loss (according to the

corrected WEKA two tailed Student's T-Test), light grey for a win and dark grey for a

loss against the baseline algorithm (PART). Table 4.4 shows the overall score of the

PSO/ACO-RI classification algorithm against PART, considering that a significant win

counts as “+ 1” and a significant loss counts as a “-1”, and then calculating the overall

score across the 27 data sets.

Predictive Accuracy
T-Test Results

Average Rule Size
T-Test Results

Average Rule Length
T-Test Results

Total -6 14

Table 4.4: Summation of the number of statistically significant results of PSO/ACO-RI

against PART according to the Student T-Test (out of 27 Data Sets).

It can be seen from Table 4.3 and Table 4.4 that in terms of accuracy PART and

PSO/ACO-RI are quite closely matched. This is overall a good result as PART is already

considered to be very good in terms of predictive accuracy and it is the result of decades

worth of research into rule induction algorithms. Furthermore, there is only one result that

is significant in terms of accuracy: the accuracy result for the tic-tac-toe data set.

However, if one scans through the accuracy results it is clear that often one algorithm

outperforms the other slightly. In terms of rule set complexity the algorithms are much

less closely matched. When the average rule size results are taken as a whole PSO/ACO-

RI generates significantly longer rules in 6 cases overall. Although the average rule size

results are significant, the real impact of having a rule that is under one term longer is
115

Chapter 4. A Hybrid PSO/ACO Algorithm for Rule Induction

arguable (as is found in many cases). The most significant results by far are to be found

in the rule set size columns. PSO/ACO produces significantly smaller rule sets for 14 data

sets overall, sometimes having tens of rules less than PART. These improvements have a

tangible effect on the simplicity of the rule set as a whole.

4.6. Summary

In this chapter we have proposed a new PSO/ACO (Particle Swarm Optimisation/Ant

Colony Optimisation) algorithm for rule induction. We have conducted experiments on

27 public domain “benchmark” data sets used in the classification literature. We have

also shown that PSO/ACO-RI is at least competitive with PART (an industry standard

classification algorithm) in terms of accuracy, and that PSO/ACO-RI often generates

much simpler (smaller) rule sets. This is a desirable result in data mining - where the goal

is to discover knowledge that is not only accurate but also comprehensible to the user.

The proof-of-concept PSO/ACO-RI algorithm has provided promising results. We

explore the PSO/ACO paradigm further in the next chapter, where we propose new

PSO/ACO algorithms for hierarchical classification problems involving combinatorial

optimisation.

116

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

Chapter 5. Particle Swarm Optimisation/Ant
Colony Optimisation for Classifier
Selection and Misclassification Recovery in

Hierarchical Classification

5.1. Introduction

In this chapter we propose and evaluate two new methods to increase the accuracy of

classification when using the top-down divide and conquer (TDDC) approach for

hierarchical classification (as described in Chapter 3). The methods examined in this

chapter are applied to datasets involving the hierarchical prediction of GPCR function

(discussed in Chapter 2).

The new methods employ a swarm intelligence algorithm, more precisely a hybrid

Particle Swarm Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm derived

from the PSO/ACO-RI classification algorithm described in Chapter 4. The first method

involves using the PSO/ACO algorithm for classifier selection (denoted as PSO/ACO-CS)

(Section 3.7.2.1). The second method involves recovering misclassifications made by

parent classifier nodes in the TDDC tree. PSO/ACO is also used to improve the

performance of this “recovery approach”. The variant of PSO/ACO used to improve the

performance of the recovery approach is denoted as PSO/ACO-RO in this thesis - where

the “RO” stands for recovery optimiser. The two proposed methods are also combined to

improve TDDC classification accuracy further.

The remainder of this chapter is organised as follows. Section 5.2 introduces the

PSO/ACO-CS algorithm. Section 5.3 describes the recovery approach and how
117

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

PSO/ACO-RO is used to improve it. Section 5.4 introduces the hierarchical protein

function datasets, the way in which they are partitioned for the experiments, and the base

algorithms used in this investigation. Section 5.5 examines the results from the

experiments involving PSO/ACO-CS. Section 5.6 examines the results from the

experiments involving the recovery approach and the PSO/ACO-RO algorithm.

Section 5.7 provides an overview of the findings from this chapter.

Part of the work reported in this chapter appeared in a conference paper [83] (which

won best paper award).

5.2. Global Search-Based Classifier Selection with a Particle

Swarm Optimlsation/Ant Colony Optimisation Algorithm

Given the discussion in Section 3.7.2.1 it is quite clear that there is a potential to

improve the classification accuracy of the entire classifier tree by using a more

“intelligent” classifier selector - a classifier selector that (unlike the greedy one) takes

into account interaction among classifiers at different classifier nodes. As there is an

obvious objective function to be optimised - the classification accuracy of the entire

TDDC tree on the validation set (part of the training set) - and also a collection of

elements whose optimal combination has to be found - the type of classifier at each

classifier node, it seems appropriate to use a combinatorial optimisation algorithm.

We propose to optimise the selection of a classifier at each classifier node with a

PSO/ACO method, adapted from the PSO/ACO method described in Chapter 4. The

choice of this algorithm was motivated by the following factors. Firstly PSO/ACO has

been shown to be an effective classification-rule discovery method [79] [80] [81] across a

wide variety of data sets involving mainly nominal attributes. Secondly, the PSO/ACO

method can be naturally adapted to be used as a classifier selector, where instead of

finding a good combination of attribute-values for a rule, it finds good combinations of

classifiers for all the nodes of the classifier tree. This is possible because the combination

118

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

of classifiers can be specified by a set of nominal values (types of classification

algorithms).

To recap, the PSO/ACO method works with a population of particles. Each particle

contains multiple pheromone vectors and each pheromone vector is used to

probabilistically decide which value of a nominal attribute is best in each dimension of

the problem’s search space. In the original PSO/ACO method for discovering

classification rules these dimensions correspond to predictor attributes of the data being

mined, so there is one pheromone vector for each nominal attribute. The entries in each

individual pheromone vector correspond to possible values the attribute can take, and

each pheromone value denotes the “desirability” of including the corresponding attribute

value in a rule condition. We now describe in detail how this algorithm was adapted to

act as a classifier selector, rather than discovering classification rules.

To optimise the classifier selection at each classifier node the problem must be

reduced to a set of dimensions and possible values in each dimension. Hence, in the

proposed PSO/ACO-CS approach each decoded particle (candidate solution) consists of a

vector with n components (dimensions), as follows:

Decoded P a r t i c le = w1,w2,..., wn

Where wd (d -l,..,n) is the classifier selected at the dih classifier node in the TDDC

tree and n is the number of classifier nodes in the tree. Each wd can take one of the

nominal (classifier ids) values ci,..Ck where k is the number of different candidate

classifiers at each node of the TDDC tree.

It must also be possible to assess how good an individual solution created from an

individual particle is. To do this the validation set is classified by the TDDC tree

composed of the classifiers specified by the particle, and that tree's average classification

accuracy (the mean of the accuracy from each class level) on the validation set is taken.

119

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

The mean classification accuracy across all the class levels is used as the “fitness”

(evaluation) function for evaluating each particle’s quality.

Note that the only increase in computational time for this approach (over the greedy

selective approach) is in the time spent classifying examples at each fitness evaluation.

The classifiers are trained using the same data at each fitness evaluation and so can be

cached and reused without the need for retraining.

Pseudocode 5.1 shows the PSO/ACO-CS algorithm. At each iteration each

pheromone vector for each particle produces a state in a probabilistic manner. That is, the

probability of choosing a given classifier (C],..Ck) for a given classifier node (w;,..w„) is

proportional to the amount of pheromone (a number between 0 and 1) in the

corresponding entry in the corresponding pheromone vector (zpd is the pheromone vector

corresponding to particle P and classifier node d), see Figure 5.1. More precisely, the

selection of a classifier at each classifier node is implemented by a fitness proportional

(roulette-wheel) selection mechanism [54],

w . w . w/ n

\ 7 (7 { 7
CK \

\ c-

Figure 5.1: An encoded particle with n dimensions, each with k classifier ids

Figure 5.1 shows an encoded particle P. Each section labelled C / ,C 2 , - -C k (in each

dimension w j , W 2 , . . , w n) represents an amount of pheromone. The probability of choosing

each classifier c,(/=l,..,A) in each dimension Wd(d=l,..,n) is proportional to the amount of

pheromone (t) in the corresponding pheromone entry rpdi.

120

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

Divide Training Set into Building and Validation sets
Initialize population
REPEAT for M a x ln te ra t io n s

FOR every particle P
/ * C la s s i f i e r S e le c t io n * /
FOR every dimension wd in P

Use fitness proportional selection on pheromone vector
corresponding to wd to choose which state (classifier id)
c , c . should be chosen for this nr1 ' k d

END FOR
Construct a classifier tree from the Building Set by using
the classifiers selected from the particle's pheromone
vectors
Calculate fitness F of this set of classifiers w,, . .w on the
Validation Set
/* Set the past best position */
Pb = P 's past best combination of classifiers
Fb ~ The quality of Pb
IF F > Fh

Fb= F
Pb - the current combination of classifiers w,, . .w

END IF
END FOR
FOR every particle P

Find P 's best Neighbour Particle N according to each
neighbour's best fitness (Fb)
FOR every dimension wd in P

/ * Pheromone u p da t in g p rocedure */
f = N 's best fitness Fh
y = N 's best state Pb in dimension d
/ * Add an amount o f pheromone p r o p o r t io n a l to f to the
pheromone e n t r y f o r p a r t i c l e P co rrespond ing to y (the bes t
p o s i t io n h e ld by P 's b e s t Neighbour) * /
tp d y ^pdy (/ ^ V-)

Normalize Tpd
END FOR

END FOR
END REPEAT

Pseudocode 5.1: The Hybrid PSO/ACO-CS Algorithm for Classifier Selection

121

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

The “decoded” state for all m dimensions of the particle is then evaluated, and if it is

better than the previous personal best state (Pi,), it is set as the personal best state for the

particle. A particle finds its best neighbour (N) according to the fitness of each

neighbour's best state (7\). In this chapter the particles are arranged in a Von-Neumann

topology (discussed in Section 3.4), so that each particle has four neighbours.

A slightly different pheromone updating approach is taken with the PSO/ACO-CS

algorithm for classifier selection when compared to the PSO/ACO-RI algorithm for rule

discovery. As detailed in the pheromone updating procedure in Pseudocode 5.1, the

approach simply consists of adding an amount of pheromone proportional to / to the

pheromone entry corresponding to rpdy, where f is the fitness of the best neighbour's best

state, y is the best neighbour’s best state (cj,..Ck) in the particular dimension d (wj,..wn)

and P is the current particle. The amount of pheromone added can be modified to slow

down (or speed up) convergence, this is achieved using the constant a. The closer this

constant is set to 0 the slower the convergence achieved. The pheromone vectors are

normalised after pheromone has been added, so that the pheromone entries of each

pheromone vector add up to 1. All the experiments reported in this chapter use a value a

= 1, which effectively means the constant a has no influence in the results. Future

research could perform experiments with different values of a, in order to study its

influence on the performance of the algorithm.

5.3. Recovering from Misclassifications at Parent Classifier

Nodes in the Top-Down Divide-and-Conquer Tree

As explained in section 3.7.2 one of the main problems with the standard TDDC

approach is that once an example has been misclassified at one classifier node, it can

never be correctly classified at a deeper classifier node. This sort of situation can

potentially be predicted during the training phase and so corrected during the testing

phase. When the examples of a given building set (a proper subset of the training set) are
122

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

classified by a classifier node, it is possible to find out which examples have been

misclassified and so would potentially be sent to the wrong child classifier node. For

example, if a classifier discriminating between classes 1 and 2 is built, it is possible to

classify the examples in the building set used to build this classifier and find the examples

belonging to class 1 that are misclassified as class 2 and vice versa. It is then possible to

use these misclassified examples (along with the examples actually belonging to the

classes) to train the child classifiers in an attempt to correct the misclassifications of the

parent node.

For example, suppose one parent classifier node discriminating between classes 1 and

2 misclassifies some examples belonging to class 2 as class 1. In the conventional TDDC

approach the classifier discriminating between classes 1.1 and 1.2 would be trained only

with examples of classes 1.1 and 1.2. By contrast, in the proposed “recovery approach”

the classifier node discriminating between classes 1.1 and 1.2 receives the modified

building set composed of the examples belonging to classes 1.1, 1.2 and the misclassified

(misclassified as belonging class node 1) examples belonging to class node 2. As shown

in Figure 5.2, during the classification of examples in the validation or test set, if an

example is assigned class 2 by the classifier discriminating between 1 .1, 1.2 and 2 then

the system sends that example back to the classifier node discriminating between classes

2.1 and 2.2. Note that the example must not be sent to any ancestor node, as this may

cause a loop with the same example being misclassified over and over again (if the

classifiers are deterministic). For instance, it must not send the example now classified as

2 back to the node discriminating between 1 and 2 , as it will likely be misclassified as

class 1 again.

Other types of loops may also develop, so the simplest way to avoid these situations is

to use a counter to limit the number of times an example can be “redirected” (or

“recovered”) to another classifier node. For instance, suppose an example is always sent

to the classifier node discriminating between classes 2 .1, 2 .2 and 1 by the classifier node

discriminating between 1.1, 1.2 and 2. If the node discriminating between classes 2.1, 2.2

123

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

and 1 also always sent the example to the node discriminating between 1 .1, 1.2 and 2 an

infinite loop would occur. We set the value for the maximum number of redirections to

be ten (we consider this to be a safe number), investigation of this parameter is left for

future research. Although it is in theory possible that complex redirections may form and

be useful, in practice any example that is redirected more than ten times is likely to be

stuck in a loop. It is of course possible to incorporate more intelligent loop detection and

a much higher maximum number of redirections, but it is not clear that this would be

advantageous.

□ Scope of Classifier

® Class node for class x

Figure 5.2: An example being redirected to the classifier discriminating between classes

2 .1 and 2 .2 by a classifier discriminating between classes 1.1, 1.2 and class 2 .

Figure 5.2 shows an example of the recovery approach. The dashed line indicates that

the classifier discriminating between classes 1.1 and 1.2 is also trained using examples

misclassified as class 1 but belonging to class 2 (the dashed class 2 that appears as a child

of class 1). In this way if an example is assigned to class 2 by the classifier discriminating

between 1.1, 1.2 and 2 , then it is sent to the classifier discriminating between classes 2.1

and 2 .2 (denoted by the arrow).

124

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

Note that in Figure 5.2 the highest possible class is used to try and recover

misclassifications, i.e., examples are redirected as class 2 rather than 2.1 and 2.2. This is

intended as a way to simplify the problem for the classifier trying to recover the examples.

It is more likely that the classifier will be successful when attempting to discriminate

between three classes (1.1, 1.2 and 2) rather than four classes (1.1, 1.2, 2.1 and 2.2). Also

a classifier has already been constructed to discriminate between the sibling classes of

class node 2 .

Having the recovery approach enabled for every classifier node in the TDDC tree is

likely to produce suboptimal accuracy; the misclassified examples might reduce the

accuracy of the local classifications significantly (in the validation or test sets) by making

it harder to build an effective classifier. Discriminating just between classes 1.1 and 1.2

could yield a high accuracy, but when including class 2 this may drop as some examples

from classes 1.1 and 1.2 can be misclassified as class 2. Indeed, by their nature

misclassified examples are more likely to be difficult to classify. There is an obvious

trade-off between the potential benefit of correcting the original misclassifications of

examples that are recovered (e.g., belonging to class 2 that were originally misclassified

as class 1) and the potential harm of misclassifying examples that belong to classes 1.1

and 1.2 as class 2 .

It would be difficult to design an effective algorithm to sequentially decide if recovery

should be enabled or disabled for each classifier node. This is because such a sequential

approach could not take into account the accuracy of the entire classification tree, only

one node at a time. For instance, consider an example belonging to class 2 that was

misclassified as class 1 and then redirected to class 2. If the classifier discriminating

between class 2.1 and 2 .2 has recovery enabled it may classify the recovered example

originally misclassified as class 1 to any of the extra recovery class nodes associated with

it, including possibly class 1 (which would form a loop). Therefore, the decision as to

whether to enable recovery for the classifier discriminating between class 1.1 and 1.2 is

directly related to the decision as to whether to enable recovery for any classifier node

125

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

redirecting examples to it, interacting with it directly or through intermediate classifier

nodes. In this sense the nodes with recovery enabled form a type of network of

interaction, with the possibility of having multiple non-interacting networks within each

TDDC tree.

One method to find the optimal solution for the recovery problem (i.e., which nodes

should have recovery enabled) for a given TDDC tree would firstly involve detecting the

sets of interacting classifiers. Once the sets have been detected all possible combinations

of states (where the states involve having recovery enabled or disabled at each classifier

node) for each set should be assessed one by one to find the one that has maximal quality.

Once this has been completed for each set of interacting classifier nodes, the solutions

can be combined to produce the complete optimal solution for the TDDC tree with

recovery. In the worst case scenario (where every classifier interacts with every other

classifier) there are 2(n' l) possible combinations where n is the number of classifier nodes

(1 is taken away as it is not possible to enable recovery for the root classifier without

generating a loop). The number of combinations will obviously be very large number for

any reasonably sized data set and so it seems appropriate to use a heuristic search

algorithm. Such an approach based on PSO/ACO (the PSO/ACO-RO algorithm) is

discussed in the next subsection.

5.3.1. Deciding when to Recover from Parent Misclassifications

with the PSO/ACO-RO (Recovery Optimisation) Algorithm

The problem of global recovery interactions can be reduced to a combinatorial

optimisation problem involving a set of binary decisions. Therefore, we can also apply

the hybrid PSO/ACO method to this optimisation problem. To apply the PSO/ACO

method to this problem a particle (candidate solution) indicates which classifier nodes

will have recovery enabled. More precisely, a particle is represented by a vector with n

binary components, i.e.:

126

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

Particle =rx,r2,...,rn

Where n is the number of classifier nodes and d indexes the dimensions in the

PSO/ACO's search space. Each (d=l,...,n) can take the values of on or o ff depending

on whether recovery should be enabled for the ufth classifier node or not.

For this approach the training set is divided into a building set and a validation set, as

explained earlier. To evaluate such a particle, the validation set would simply be

classified by the modified TDDC tree - i.e., the TDDC tree constructed by using the

“recovery approach” in the classifier nodes whose rv flag was set to “on”. The fitness of a

particle is computed as the mean of the classification accuracies (on the validation set) for

each class level.

It is also important to consider the way in which recovery has a downward influence

in the TDDC tree during training. For instance, from the previous example shown in

Figure 5.2, if the examples belonging to class 2 are first misclassified as class 1 and then

misclassified again as, for instance, class 1.1, then the classifier node discriminating

between 1.1 .1, 1.1.2 and 2 can again try to correct the misclassification of these examples

belonging to class 2. However, if recovery is turned off for the classifier node

discriminating between class nodes 1.1 and 1.2 (previously the classifier node

discriminating between class nodes 1 .1, 1.2 and 2) the examples from class 2 that were

misclassified as class 1 will not pass down to any descendant classifier nodes during

training (this will not be the case during testing as the test example classes are unknown

during classification). In this way the decision of whether to turn recovery on or off in a

given classifier node will have an effect on its descendant classifier nodes. A full and

rigorous investigation into whether this type of approach is more effective than always

passing on misclassified examples is left for future research.

Note also that a particle represents a complete candidate solution to the problem of

deciding which classifier nodes should use the recovery approach. This means that the

evaluation of a particle is performed in a global fashion taking into account interaction

127

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

between all classifier nodes. This procedure avoids the drawbacks of a greedy approach

where the decision of tuning on/off recovery would be done sequentially for one classifier

node at a time.

5.3.2. Combining Classifier Selection and Misclassification

Recovery with PSO/ACO-CS-RO

Two new approaches have been discussed to try and improve classification accuracy

in TDDC trees, namely PSO/ACO-RO and PSO/ACO-CS. As they work independently

of each other, it is possible to combine them in an attempt to boost accuracy further,

creating an extended swarm intelligence algorithm denoted as PSO/ACO-CS-RO.

In this case a particle consists of two sections:

Particle = w„ w2,..., wn, rn+l, rn+2,..., rn+n

Where n is the number of classifier nodes and d indexes the dimensions in the

PSO/ACO-CS-RO search space. Each rd (d=n+\,...,n+n) can take the values of on or o ff

depending on whether recovery should be enabled for the d-nth classifier node or not.

Each Wd (d=l,..,n) is the classifier selected at the fifth classifier node in the TDDC tree.

Each Wd can take one of the nominal (classifier ids) values c/,..Cfc where k is the number

of different candidate classifiers at each node. The particles used for this approach have a

number of dimensions equal to twice the number of classifier nodes, two dimensions per

node. Dimension wd is used to select the classification algorithm used for the fifth

classifier node, and dimension rd is used to decide whether misclassification recovery

should be on or off for the (d - «)th classifier node.

In this chapter PSO/ACO-CS-RO will be compared with an approach that uses the

greedy selective TDDC technique (section 3.7.2.1), the PSO/ACO-RO algorithm and the

PSO/ACO-CS algorithm. However, it would be extremely computationally expensive to

combine the use of the PSO/ACO-RO algorithm with the greedy approach for classifier
128

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

selection in a tightly integrated approach. An example of such an approach would be

where each particle would consist of r\iri >•••■>rn (indicating whether recovery is turned on

or o ff for each classifier node) and the classification algorithm to be used at each

classifier node would be selected by the greedy approach at each fitness evaluation. This

would lead to a A: times increase in computational time over the PSO/ACO-CS-RO

algorithm discussed in this sub-section, where k is the number of different types of

classifier. Instead, the classification algorithm is selected for each node of the TDDC tree

using the greedy approach once, before the PSO/ACO-RO algorithm is run. Recovery is

then optimised by the PSO/ACO-RO algorithm using this fixed selection of classification

algorithms.

5.4. Experimental Setup

5.4.1. The Creation of the Bioinformatics Datasets

The hierarchical classification methods discussed in this chapter were evaluated in

four challenging datasets involving the prediction of protein function. The protein

functional classes to be predicted in these data sets are the functional classes of GPCRs

(G-Protein-Coupled Receptors) as discussed in Section 2.6.2.

The GPCR functional classes are given unique hierarchical indexes by GPCRDB

(Section 2.6.2). The GPCR class hierarchy originally had up to 5 class levels, but only 4

levels are used in the datasets created in this work, as the data in the 5th level is too

sparse for training - i.e., in general there are too few examples of each class at the 5th

level. In any case, it should be noted that predicting all the first four levels of GPCR’s

classes is already a challenging task. Indeed, most works on the classification of GPCRs

limit the predictions to just one or two of the topmost class levels [15] [73] [92] [116].

The data sets used in our experiments were constructed from data in UniProt

(discussed in 2.6.1) and GPCRDB. UniProt is a well known biological database,

129

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

containing sequence data and a rich annotation about a large number of proteins. It also

has cross-references for other major biological databases. It was extensively used in this

work as a source of data for creating our data sets. Only the UniProtKB/Swiss-Prot was

used as a data source, as it contains a higher quality, manually annotated set of proteins.

We performed experiments with four different kinds of predictor attributes, each of

them representing a kind of “protein signature”, or “m otif’, namely: FingerPrints from

the Prints database, Prosite patterns, Pfam and Interpro entries (all discussed in

Section 2.5). The four GPCR data sets each use predictor attributes from one of either the

Prints, Prosite, Interpro or Pfam databases. They also contain two additional attributes,

namely the protein's molecular weight and sequence length.

Any duplicate examples (proteins) in a data set are removed in a pre-processing step,

i.e., before the hierarchical classification algorithm is run, to avoid redundancy. If there

are fewer than 10 examples in any given class in the class tree that class is merged with

its parent class. If the parent class is the root node, the entire small class is removed from

the data set. This process ensures there is enough training and test data per class to carry

out the experiments. (If a class had less than 10 examples, during the 10-fold cross-

validation procedure there would be at least one iteration where there would be no

example of that class in the test set).

After data pre-processing, the final datasets used in the experiments have the numbers

of attributes, examples (proteins) and classes per level (expressed as level 1/ level 2 /level

3/level 4) indicated in Table 5.1.

GPCR/Prints GPCR/Prosite GPCR/Interpro GPCR/Pfam
^Attributes 283 129 450 77
#Examples 5422 6261 7461 7077
#Classes 8/46/76/49 9/50/79/49 12/54/82/50 12/52/79/49

T a b le 5.1: Main characteristics of the datasets used in the experiments

130

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

5.4.2. Data Set Partitioning and Baseline Algorithms

Each data set was split into two main subsets at each iteration of the 10-fold cross

validation process, one test set and one training set. The test set is used to assess the

performance of the approach in question; therefore the true class of each test example

remains unseen during the training process, only to be revealed to measure the predictive

accuracy of the approach. The training set is split into a further two subsets. Firstly 75%

of the training set was used as the building set; this building set is used to train the

classifiers. Secondly the validation set, which consists of the remaining 25% of the

training examples. The validation set is used to compute the quality of the classifiers, and

so particle fitness in all variants of the PSO/ACO algorithm. After the best solution

(according to accuracy in the validation set) has been found in a single PSO/ACO run, the

classifiers at every classifier node specified in that best particle are trained using the

entire training set. This procedure attempts to maximise the individual classifier’s

accuracy and so the final accuracy in the test set (unseen during the PSO/ACO run).

As a baseline it is important to evaluate the proposed method by comparing its

predictive accuracy with the predictive accuracy of the greedy selective top-down

approach. The baseline should also include each of the individual classification

algorithms used in the greedy selective top-down approach. Therefore the first

experiments are to build standard TDDC trees using one type of classification algorithm

throughout.

The baseline classification algorithms used in the experiments presented in this

chapter were implementations from the WEKA [164] package. These algorithms were

chosen to include a diverse set of machine learning paradigms, while having high

computational efficiency. The paradigms in question are rule induction, decision tree

induction and Bayesian classification.

131

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

The five baseline algorithms used in the experiments were:

• HyperPipes is a simple algorithm that constructs a “hyperpipe” for every class in

the data set; each hyperpipe contains each attribute-value found in the examples

from the class it was built to cover. An example is classified by finding which

hyperpipe covers it the best.

• NaiveBayes uses Bayes' theorem to predict which class an example most likely

belongs to. It is naive because it assumes attribute independence given the class.

• J48 is a decision tree algorithm, being WEKA's modified version of the very well

known C4.5 algorithm.

• ConjunctiveRule is another simple algorithm that only produces two rules to

classify the entire data set. A “default” rule is produced that predicts the class with

the greatest numbers of records in the training set. The other rule is constructed

using information gain to select attribute-values for the antecedent.

• BayesNet uses a Bayesian network to classify examples and can theoretically

completely take into account attribute dependency.

Although some of these algorithms are clearly more advanced than the others, all

were selected for some classifier nodes by the classifier selection method (greedy

approach or PSO/ACO-CS) during training, confirming that all of them perform best in

certain circumstances. All experiments were performed using 10-fold cross

validation [164] with a (the constant used to either speed up or slow down particle

convergence) set to 1 for the PSO/ACO algorithm.

The remainder of this chapter examines the effectiveness of the proposed PSO/ACO-

CS (Section 5.5), the baseline recovery approach (Section 5.6.1) and PSO/ACO-RO

approaches (Section 5.6.2).

132

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

5.5. Computational Results for Classifier Selection

The predictive accuracy for each method (the five baseline classifiers used throughout

the TDDC tree, the greedy and PSO/ACO-CS approaches) are shown in Table 5.2

through Table 5.5 for each dataset. The values after the “±” symbol are standard

deviations (calculated using the WEKA statistics classes). Table 5.2 through Table 5.5

are shown for the sake of completeness, but, to simplify the analysis we focus mainly on

a summary of the results (reported in Table 5.6). Table 5.6 shows the summary of the

number of cases where there is a statistically significant difference in the predictive

accuracy of a classifier selection method and a baseline algorithm according to the

WEKA corrected two-tailed student t-test (with a significance level 1%) [164], Each cell

of the last five columns show the number of times the labelled approach (Greedy or

PSO/ACO-CS) significantly beats the corresponding baseline classification algorithm

(HP - HyperPipes, NB - NaiveBayes, J4.8, CR - ConjunctiveRule, BN - BayesNet), in

each data set across all four class levels. Note that in each cell (except the totals in the last

two rows) the worst (best) possible result for a classifier selection approach is -4 (+4),

since there are four class levels for each data set. Totals across all data sets are shown at

the bottom of the table. In the total cells, the worst (best) possible result is -16 (+16),

since the totals are calculated over four data sets.

Both the greedy and PSO/ACO-CS approaches were very successful in improving

predictive accuracy with respect to four of the base classification algorithms (HP, NB,

CR, BN), as shown by the totals in Table 5.6. These two approaches were less successful

in improving accuracy with respect to J48, but even in this case the classifier selection

approaches improved upon J48’s accuracy several times, whilst never decreasing upon

J48’s accuracy. In this sense both the greedy and PSO/ACO-CS approaches are quite

successful, often increasing and never decreasing predictive accuracy significantly below

that of any base classifier.

133

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 90.76±0.34 76.79i0.55 49.99il.l 75.42i2.ll
NaiveBayes 87.74i0.71 72.72il.ll 41.3i0.99 63.85il.89
J48 91.68±0.51 83.35±1.0 58.34il.26 85.14il.8
ConjunctiveRule 80.16±0.31 49.63i0.46 17.03i0.84 24.8i0.87
BayesNet 88.34±1.39 77.41il.25 48.0i0.93 74.53i2.94
Greedy 91.68iO.51 83.06i0.88 58.21il.23 84.66i2.09
PSO/ACO-CS 91.59±0.52 82.67il.13 57.99il.52 84.8i2.34

Table 5.2: Predictive accuracy (%) for each approach in the Prints data set.

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 83.74il.14 73.77il.01 48.21i0.95 82.62i2.5
NaiveBayes 87.88i0.59 74.78i0.78 38.59il.07 51.25il.85
J48 90.36i0.34 80.68i0.66 51.06i0.93 79.86i2.68
ConjunctiveRule 73.68i0.18 47.73i0.48 17.76i0.47 24.84i0.68
BayesNet 89.18i0.67 78.99i0.83 46.4i0.94 67.3i2.62
Greedy 90.36i0.34 80.41i0.81 54.36il.33 83.58i2.46
PSO/ACO-CS 90.36i0.34 80.4i0.78 54.43il.27 84.24i2.27

Table 5.3: Predictive accuracy (%) for each approach in the Interpro data set.

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 92.02i0.44 25.4i0.75 9.8i0.82 4.58il.22
NaiveBayes 89.59i0.72 59.23il.41 19.6il.43 16.27i2.39
J48 92.98i0.48 70.77il.39 37.03il.07 48.97i3.98
ConjunctiveRule 75.55i0.13 51.4i0.53 13.49i2.0 6.97Ì4.63
BayesNet 90.35il.l 62.7il.45 23.25il.46 23.43i2.42
Greedy 92.98i0.48 70.54il.29 36.97il.2 48.24i3.55
PSO/ACO-CS 92.98i0.48 70.5il.35 36.97il.21 48.5i3.58

T a b le 5 .4 : Predictive accuracy (%) for each approach in the Pfam data set.

134

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 82.14±0.71 46.03±1.28 23.141.62 32.1642.82
NaiveBayes 85.34±1.14 60.63±1.25 24.8641.3 23.9442.11
J48 84.71±0.57 61.02±1.12 29.3141.63 39.5843.35
ConjunctiveRule 78.68±0.15 41.3840.25 14.7940.45 10.040.89
BayesNet 85.93±0.88 62.1741.06 26.6841.35 31.1442.47
Greedy 85.93±0.88 62.5440.91 31.4641.25 40.7344.21
PSO/ACO-CS 85.93±0.88 62.841.33 32.1841.48 43.1143.71

Table 5.5: Predictive accuracy (%) for each approach in the Prosite data set.

Dataset Classif. Selection
Approach

Classification Algorithm
HP NB J48 CR BN

GPCR/Prints Greedy 4 4 0 4 4
PSO/ACO-CS 4 4 0 4 4

GPCR/InterPro Greedy 3 4 1 4 4
PSO/ACO-CS 3 4 2 4 4

GPCR/Pfam Greedy 4 4 0 4 4
PSO/ACO-CS 4 4 0 4 4

GPCR/Prosite Greedy 4 2 1 4 2
PSO/ACO-CS 4 3 3 4 2

Totals Greedy 15 14 2 16 14
PSO/ACO-CS 15 15 5 16 14

Table 5.6: Summation of the number of statistically significant results according to the

Student T-Test

The PSO/ACO-CS approach significantly obtains a better result than the greedy

approach in four cases overall, as follows. PSO/ACO-CS improves on the performance of

J48 in five cases, three more than the greedy approach. These improvements are in the

third and fourth level of the Prosite dataset and there is also an improvement in the

InterPro dataset at the fourth level. As J48 is the hardest classification algorithm to beat,

these results show the most difference. However, the PSO/ACO-CS algorithm also scores

better against NaiveBayes when compared to the greedy approach in one case - in the

Prosite dataset at the second class level.
135

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

The results imply that both the PSO/ACO-CS and greedy approaches benefit more

from more “difficult” data sets. The data set in which the base classification algorithms

perform worst is the Prosite data set. This data set also yields the biggest improvement in

accuracies when using the greedy (1 significant win over J48), and more so the

PSO/ACO-CS (3 significant wins over J48) approach. Indeed for either of these

approaches to increase predictive accuracy above that of any base classifier, one of the

base classifiers must make an error that is not made by another base classifier. In other

words, if every base classifier was deterministic and the same then these approaches

would never lead to any improvement. The more mistakes made by a certain

classification algorithm (due to a more difficult data set) the higher the probability of

another classification algorithm not making the same set of mistakes. Furthermore, it was

observed that overfitting is sometimes a limiting factor with the PSO/ACO-CS approach,

since increases in validation set accuracy (over the baseline classification algorithms) did

not always result in a similar increase in test set accuracy.

5.6. Computational Results for Misclassification Recovery

Approaches

5.6.1. Comparing Standard Top-Down Divide-and-Conquer Against

the Basic (Always On) Recovery Approach

As discussed previously, the most basic recovery approach involves enabling

recovery for every single classifier node, so that every node will always try and redirect

misclassified examples to the correct classifier node. This is a relatively naive approach

and its effectiveness is analysed separate in this subsection mainly in order to provide a

baseline for the more advanced recovery approach examined in section 5.6.2 (PSO/ACO-

RO). The reason this basic recovery approach can be considered naive is because it does

not consider whether attempting to recover from misclassifications at a given classifier

136

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

node will introduce more error than it corrects (error may be introduced by incorrectly

redirecting previously correctly classified examples, as explained earlier). This basic

recovery approach also does not consider the effect of attempting to recover the

misclassified examples on the accuracy of the entire classifier tree.

Table 5.7 through Table 5.10 show the predictive accuracies achieved by each

labelled approach in each dataset on a per class level basis. Note that the basic recovery

approach can be instantiated in 7 different labelled approaches: 5 base classification

algorithms, the PSO/ACO-CS approach and the greedy approach for classifier selection.

The approaches without recovery enabled are included for comparative purposes. The

shadings in the tables show whether the approach without recovery enabled performs

significantly better (according to the WEKA corrected two-tailed Student’s t-test with a

significance level 1% [164]) than the corresponding approach with recovery always

enabled. Dark grey indicates that the approach without recovery performs significantly

better than its counterpart, light grey indicates that the approach without recovery

performs significantly worse than its counterpart. For instance, in Table 5.7, there are two

rows for the Hyperpipes algorithm. The first row (from the top of the table) with the label

Hyperpipes shows the predictive accuracy obtained in the Prints dataset with the standard

TDDC approach (using the HyperPipes classification algorithm). Therefore it includes

the entry No in the Recovery Enabled column. The second row with the HyperPipes label

is the entry for the approach utilising the recovery method and so includes the entry

Always in the Recovery Enabled. The entry Always indicates that for every classifier node

in the TDDC tree the algorithm always tries to recover misclassifications. The first

HyperPipes row has two entries coloured dark grey. This indicates that the HyperPipes

approach without recovery performs significantly better in the third and fourth class

levels when compared to the HyperPipes approach with recovery always enabled. The

corresponding shading is not included in second row for HyperPipes (or any of the other

approaches with recovery always enabled) as it would simply be the opposite of the first

row.

137

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

The greedy selective and PSO/ACO-CS approaches are also included in the

comparisons in Table 5.7 through Table 5.11. As the PSO/ACO-CS approach allows the

evaluation of the entire TDDC tree at once, it is possible to take into account the effect of

having recovery enabled at each classifier node in the selection of the classifiers. This is

due to way in which the PSO/ACO-CS approach defines a set of classifier types “all at

once”. As discussed previously the recovery method causes classifier nodes to interact

through the redirection of misclassified examples. This means that it would impossible to

evaluate this effect on a per classifier node basis (as is the case with the greedy selective

approach). The overall effect of these redirections can only be taken into account if the

TDDC tree is evaluated as a whole (as is the case with the PSO/ACO-CS approach). For

this reason the greedy approach with recovery always enabled selects the types of

classifier in the standard way (without considering the effect of misclassification recovery

during the selection of each classifier). Only after the classifier type selections are made

by the greedy approach is the flag at every classifier node set to having recovery enabled.

Table 5.11 shows a summary of the student’s t-tests performed in all four data sets.

Each cell shows the summation of the number of times the approaches with recovery

always enabled significantly beat the corresponding approach without recovery (the

standard TDDC approach) in each of the four datasets across the four class levels: That is,

in each cell in the table, a score of + /-1 is added if the approach with recovery always on

produced a significantly better or worse (respectively) result than having recovery always

off for the algorithm in the cell’s row, in the given data set of the cell’s column. Note that

(as expected for these baseline comparisons) in almost all cases the score is negative,

indicating that having the recovery approach enabled for every classifier node produces a

significantly lower accuracy than approaches without any recovery.

138

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2nd 3rd 4th
HyperPipes No 90.76±0.34 76.79±0.55 49.99±1.1 75.42±2.11
NaiveBayes No 87.74*0.71 72.72*1.11 41.3i0.99 63.85if.89
J48 No 91.68i0.51 83.35±1.0 58.34±1.26 85.14±1.8
ConjunctiveRule No 80.16*0.31 49.63i0.46 17.03±0.84 24.8i0.87
BayesNet No 88.34±1.39 77.41±1.25 48.0±0.93 74.53i2.94
Greedy No 91.68i0.51 83.06±0.88 58.21±1.23 84.66i2.09
PSO/ACO-CS No 91.59±0.52 82.67il.13 57.9fttl.52 84.8i2.34
HyperPipes Always 89.86iO.95 77.54±1.03 48.48±1.07 72.49i2.64
NaiveBayes Always 76.5il.09 69.32±1.06 38.83±0.65 59.62i2.16
J48 Always 91.33±1.39 85.8±1.16 57.56±1.05 83.18il.79
ConjunctiveRule Always 47.66il.42 47.25i0.71 14.8*0.66 11.37i0.4
BayesNet Always 84.42±1.54 77.0±1.13 46.03±0.56 69.1i3.3
Greedy Always 91.41±1.49 85.67±1.32 57.22±0.93 80.59il.61
PSO/ACO-CS Always 91.26±1.11 86.06±1.18 57.53±1.09 82.36i2.02

Table 5.7: Predictive accuracy (%) for each approach in the Prints data set.

Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2nd 3rd 4th
HyperPipes No 83.74il.14 73.77il.01 48.21i0.95 82.62i2.5
NaiveBayes No 87.88i0.59 74.78i0.78 38.59il.07 51.25il.85
J48 No 90.36i0.34 80.68i0.66 51.06i0.93 79.86i2.68
ConjunctiveRule No 73.68i0.18 47.73i0.48 17.76i0.47 24.84i0.68
BayesNet No 89.18i0.67 78.99i0.83 46.4i0.94 67.3i2.62
Greedy No 90.36i0.34 80.41*0.81 54.36il.33 83.58i2.46
PSO/ACO-CS No 90.36i0.34 80.4i0.78 54.43il.27 84.24i2.27
HyperPipes Always 84.lil.15 74.08i0.99 47.69i0.78 80.26i2.38
NaiveBayes Always 82.12il.35 71.53il.13 37.71i0.57 48.34i2.29
J48 Always 79.49i0.92 73.81il.08 41.79i0.84 68.19i2.47
ConjunctiveRule Always 48.33i0.57 47.98i0.57 14.29i0.43 11.41i0.63
BayesNet Always 86.66i0.44 76.54i0.66 45.26il.01 61.35il.78
Greedy Always 90.47i0.75 83.67i0.78 52.2il.45 78.83i2.28
PSO/ACO-CS Always 90.54±0.71 83.86i0.71 52.2il.47 80.07i2.99

T a b le 5 .8 : Predictive accuracy (%) for each approach in the Interpro data set

139

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2 nd 3rd 4th
HyperPipes No 92.02±0.44 25.4±0.75 9.840.82 4.5841.22
NaiveBayes No 89.5910 72 59.2341.41 19.641.43 16.2742.39
J48 No 92.98±0.48 70.7741.39 37.0341.07 48.9743.98
ConjunctiveRule No 75.5540.13 51.440.53 13.4942.0 6.9744.63
BayesNet No 90.3541.1 62.741.45 23.2541.46 23.4342.42
Greedy No 92.9840.48 70.5441.29 36.9741.2 48.2443.55
PSO/ACO-CS No 92.9840.48 70.541.35 36.9741.21 48.543.58
HyperPipes Always 92.2740.3 25.3540.66 7.9940.68 1.7240.89
NaiveBayes Always 83.3841.05 57.7541.81 19.6441.21 15.243.42
J48 Always 91.7240.86 70.8941.38 35.9340.93 47.4243.79
ConjunctiveRule Always 63.3741.17 48.5840.58 15.9740.67 10.2840.85
BayesNet Always 83.0740.75 59.7141.28 23.1741.2 21.5742.61
Greedy Always 91.7640.82 70.7541.35 35.2641.2 43.1843.02
PSO/ACO-CS Always 91.2140.62 70.1840.77 36.5641.13 49.0942.58

Table 5.9: Predictive accuracy (%) for each approach in the Pfam data set.

Approach Recovery
Enabled

Predictive accuracy at each level in the class hierarchy

1st 2nd 3rd 4th
HyperPipes No 82.1440.71 46.0311.28 23.111.62 32.1612.82
NaiveBayes No 85.3441.14 60.6341.25 24.8641.3 23.9442.11
J48 No 84.7140.57 61.0241.12 29.3141.63 39.5843.35
ConjunctiveRule No 78.6840.15 41.3840.25 14.7940.45 10.040.89
BayesNet No 85.9340.88 62.1741.06 26.6841.35 31.1442.47
Greedy No 85.9340.88 62.5440.91 31.4641.25 40.7344.21
PSO/ACO-CS No 85.9340.88 62.841.33 32.1841.48 43.1143.71
HyperPipes Always 82.0540.74 45.4641.41 22.1341.53 30.2642.86
NaiveBayes Always 82.1441.78 59.4141.51 24.2441.28 22.9241.66
J48 Always 82.3241.44 61.341.68 22.0641.14 28.3641.4
ConjunctiveRule Always 54.41428.03 33.02411.74 12.1243.43 9.9340.71
BayesNet Always 84.0841.47 61.7241.27 26.0941.14 29.6542.62
Greedy Always 85.9341.03 63.2741.49 29.3141.67 36.2543.14
PSO/ACO-CS Always 84.5942.41 62.542.2 30.2741.41 39.0144.56

T a b le 5 .1 0 : Predictive accuracy (%) for each approach in the Prosite data set

140

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

Approach
Dataset

GPCR/
Prints

GPCR/
InterPro

GPCR/
Pfam

GPCR/
Prosite Total

HyperPipes -2 0 -2 -1 -5

NaiveBayes -4 -2 -1 -2 -9

J48 1 -4 -1 -3 -7
Conjunctive
Rule -4 -3 -2 0 -9

BayesNet -3 -4 -2 -2 -11

Greedy 0 -1 -3 -2 -6

PSO/ACO-CS 1 -1 -1 -1 -3

Table 5.11: Summation of the number of statistically significant results according to the

Student’s T-Test, for the recovery always on approach against the recovery always off

approach, for each labelled approach

The PSO/ACO-CS approach with recovery enabled performs the best (in one case

generating a positive result), due to the way in which it can tailor the selection of

classifiers to the recovery scenario. It can tailor the selection of classifiers by determining

(through fitness evaluations) which choice of classifiers will reduce the amount of error

introduced by the recovery approach. E.g., it may be the case that having a J48 classifier

at a particular classifier node decreases accuracy when compared to having a Conjunctive

Rule classifier under normal TDDC circumstances; however, the opposite may be true

when recovery is enabled.

There are some cases where enabling recovery for every classifier node is

advantageous. These significant increases in accuracy can be seen in two of the datasets

(Table 5.7 and Table 5.8) mainly for the PSO/ACO-CS and greedy selective approaches.

These increases in accuracy are likely due to way in which PSO/ACO-CS and the greedy

141

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

approaches use a selection of different classifiers. Different types of classifier are more

likely to make different mistakes when classifying examples. For the types of approaches

using the same type of classifier throughout the TDDC tree it is more likely that any

attempt to recover misclassifications will lead to the same misclassifications being made

again. Whereas, with TDDC trees with different types of classifiers (PSO/ACO-CS and

greedy selective approaches) is it more likely that a classifier receiving misclassifications

from a different type of classifier will be able to correct its mistake. Using the same

classifier type to recover misclassified examples relies only on having a different

distribution of data, whereas using a different type of classifier to recover misclassified

examples relies on having a different data distribution and a different classification

algorithm.

5.6.2. Comparing the Standard Top-Down Divide-and-Conquer

Approach against the PSO/ACO-Optimised Recovery Approach

(PSO/ACO-RO)

In this subsection the effect of using PSO/ACO for optimising recovery is examined.

As discussed previously PSO/ACO can be used to decide whether recovery should be

enabled or disabled at each classifier node. In this subsection this approach is combined

with either the greedy selective approach or the PSO/ACO-CS approach (as discussed in

Section 5.3.2). The two approaches examined in this section are: PSO/ACO-CS

combined with PSO/ACO-RO (denoted as PSO/ACO-CS-RO) and the greedy selective

approach combined with PSO/ACO-RO (denoted as Greedy-PSO/ACO-RO). The

performance of these two approaches is compared against that of the five baseline

classification algorithms. These baseline approaches use the standard TDDC approach

without recovery enabled or optimised by PSO/ACO.

142

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 90.7640.34 76.7940.55 49.9941.1 75.4242.11
NaiveBayes 87.7440.71 72.7241.11 41.340.99 63.8541.89
J48 91.68±0.51 83.3541.0 58.3441.26 85.1441.8
ConjunctiveRule 80.1640.31 49.6340.46 17.0340.84 24.840.87
BayesNet 88.3441.39 77.4141.25 48.040.93 74.5342.94
Greedy-PSO/ACO-RO 91.4441.06 83.4841.21 58.3141.51 84.4642.38
PSO/ACO-CS-RO 91.5240.44 83.9841.65 58.541.34 84.441.59

Table 5.12: Predictive accuracy (%) for each approach in the Prints data set (recovery

optimised by PSO/ACO)

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 83.7441.14 73.7741.01 48.2140.95 82.6242.5
NaiveBayes 87.8840.59 74.7840.78 38.5941.07 51.2541.85
J48 90.3640.34 80.6840.66 51.0640.93 79.8642.68
ConjunctiveRule 73.6840.18 47.7340.48 17.7640.47 24.8440.68
BayesNet 89.1840.67 78.9940.83 46.440.94 67.342.62
Greedy-PSO/ACO-RO 90.3640.34 80.9540.88 54.6541.35 83.2542.52
PSO/ACO-CS-RO 90.3540.34 81.0440.75 55.0641.24 84.6842.06

Table 5.13: Predictive accuracy (%) for each approach in the Interpro data set (recovery

optimised by PSO/ACO)

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 92.0240.44 25.440.75 9.840.82 4.5841.22
NaiveBayes 89.5940.72 59.2341.41 19.641.43 16.2742.39
J48 92.9840.48 70.7741.39 37.0341.07 48.9743.98
ConjunctiveRule 75.5540.13 51.440.53 13.4942.0 6.9744.63
BayesNet 90.3541.1 62.741.45 23.2541.46 23.4342.42
Greedy-PSO/ACO-RO 92.6941.07 70.3241.16 37.0740.84 49.4242.38
PSO/ACO-CS-RO 92.9340.48 69.6141.46 37.4741.16 50.4243.57

T a b le 5 .14 : Predictive accuracy (%) for each approach in the Pfam data set (recovery

optimised by PSO/ACO)

143

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

TDDC Type Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

HyperPipes 82.14±0.71 46.03±1.28 23.1±1.62 32.16±2.82
NaiveBayes 85.34±1.14 60.63±1.25 24.86±1.3 23.94±2.11
J48 84.71±0.57 61.02±1.12 29.31±1.63 39.58±3.35
ConjunctiveRule 78.68±0.15 41.38±0.25 14.79±0.45 10.0±0.89
BayesNet 85.93±0.88 62.17±1.06 26.68±1.35 31.1442.47
Greedy-PSO/ACO-RO 86.23±0.85 63.03±1.02 31.56±1.35 40.8644.67
PSO/ACO-CS-RO 86.44±0.93 63.39±1.5 31.96±1.52 44.1342.4

Table 5.15: Predictive accuracy (%) for each approach in the Prosite data set (recovery

optimised by PSO/ACO)

Dataset Classif. Selection
Approach

Classification Algorithm
HP NB J48 CR BN

GPCR/Prints Greedy-PSO/ACO-RO 3 4 0 4 4
PSO/ACO-CS-RO 4 4 0 4 4

GPCR/InterPro Greedy-PSO/ACO-RO 3 4 2 4 4
PSO/ACO-CS-RO 3 4 2 4 4

GPCR/Pfam Greedy-PSO/ACO-RO 3 4 0 4 4
PSO/ACO-CS-RO 4 4 0 4 4

GPCR/Prosite Greedy-PSO/ACO-RO 4 4 3 4 3
PSO/ACO-CS-RO 4 4 4 4 4

Totals Greedy-PSO/ACO-RO 13 16 5 16 15
PSO/ACO-CS-RO 15 16 6 16 16

Table 5.16: Summation of the number of statistically significant results (recovery

optimised by PSO/ACO) according to the Student’s T-Test

Table 5.12 through Table 5.15 show the predictive accuracies the labelled approaches

attained in the four data sets used in this chapter. Table 5.16 shows the summation of the

Student’s t-tests in a similar way to the results included in Section 5.5 (Table 5.6). As per

Section 5.5 results for each base classifier are shown for comparative purposes.

144

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

As can be seen from Table 5.16 both the Greedy-PSO/ACO-RO and PSO/ACO-CS-

RO approaches increase classification accuracy beyond that of any base classifier type.

These results are discussed further in the next subsection.

5.6.3. Discussion of the Effectiveness of the PSO/ACO-CS, Greedy

Selective and PSO/ACO-RO Approaches

Both approaches with recovery optimised by PSO/ACO improve on the performance

of the corresponding approaches without the recovery approach. This can be observed by

comparing the summary of the results in Table 5.16 to the summation of the results in

Table 5.6 (the table showing the summation of the results for the PSO/ACO-CS and

greedy selective approaches). The totals from Table 5.6 and Table 5.16 are reproduced in

Table 5.17 to allow easier comparisons.

Classif. Selection
Approach

Classification Algorithm
HP NB J48 CR BN

Greedy 15 14 2 16 14
PSO/ACO-CS 15 15 5 16 14
Greedy-PSO/ACO-RO 13 16 5 16 15
PSO/ACO-CS-RO 15 16 6 16 16

Table 5.17: Reproduction of the totals from Table 5.6 and Table 5.16, in terms of

numbers of significant wins over the baseline classification algorithms

As can be seen in Table 5.17 both PSO/ACO-CS and Greedy approaches benefit from

being combined with PSO/ACO-RO. The increase in the number of significant wins

when using Greedy-PSO/ACO-RO over the standard greedy selective are: 2 for Naive

Bayes, 3 for J48 and 1 for Bayesian Network (where J48 produces the most competitive

classifiers). Compare these increases to PSO/ACO-CS-RO against PSO/ACO-CS: 1 for

Naive Bayes, 1 for J48 and 2 for Bayesian Network. When only considering

improvements the Greedy-PSO/ACO-RO approach comes out on top. However, the law

145

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

of diminishing returns should be considered, where the more competitive the approach

the harder it is to increase on its accuracy. Indeed the PSO/ACO-CS approach is already

quite effective - more so than the greedy selective approach. This makes it more difficult

for the PSO/ACO-CS-RO approach to increase upon the accuracy of PSO/ACO-CS,

when compared to the Greedy-PSO/ACO-RO and greedy selective approaches. Also the

Greedy-PSO/ACO-RO approach actually performs worse than the greedy selective

approach against Hyper Pipes (with Greedy-PSO/ACO-RO being significantly beaten by

HyperPipes in two cases). This indicates that the PSO/ACO-CS-RO approach is more

reliable when compared to the Greedy-PSO/ACO-RO approach - with PSO/ACO-CS-

RO always at least equalling the number of significant wins of the PSO/ACO-CS

approach.

Interestingly in a few cases the PSO/ACO-CS and greedy selective approaches with

recover always enabled (also called basic recovery and examined in Section 5.6.1) seem

to outperform the PSO/ACO-CS-RO and Greedy-PSO/ACO-RO approaches. For

instance, in the Prints dataset, the greedy selective approach and PSO/ACO-CS with

basic recovery seem to outperform the PSO/ACO-CS-RO and Greedy-PSO/ACO-RO

approaches in the second class level.

TDDC Type Recovery
Type

Predictive accuracy at each level in the class hierarchy
1st 2nd 3rd 4th

Greedy Always On 91.41il.49 85.67±1.32 57.22i0.93 80.59il.61
PSO/ACO-CS Always On 91.26il.ll 86.06il.18 57.53il.09 82.36i2.02
Greedy-PSO/ACO-
RO PSO/ACO 91.44il.06 83.48il.21 58.31il.51 84.46i2.38
PSO/ACO-CS-RO PSO/ACO 91.52iO.44 83.98il.65 58.5il.34 84.4il.59

Table 5.18: Comparing the predictive accuracy (%) of approaches using Recovery

Optimisation against approaches not using Recovery Optimisation on the Prints dataset

Although the approaches with recovery always enabled outperform the PSO/ACO-RO

based approaches at this one class level it should be noted that PSO/ACO-RO is

146

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

optimising the mean predictive accuracy of the TDDC tree over all four class levels. The

mean accuracy of the PSO/ACO-CS approach with recovery always enabled is 79.3%

whilst the mean accuracy of the PSO/ACO-CS-RO approach is 79.6%. This demonstrates

that, in this case, the PSO/ACO-RO has affected a slight increase in mean performance.

The same pattern of improvement can be seen with the PSO/ACO-CS-RO and

Greedy-PSO/ACO-RO approaches when compared to the standard PSO/ACO-CS and

greedy selective approaches respectively. That is, both recovery optimisation approaches

are more successful in data sets that are more difficult. For instance in the Prosite dataset

the PSO/ACO-CS-RO approach always significantly improves on the performance of

every base classification algorithm in all levels.

Prints Interpro Pfam Prosite
Standard Deviation of

Classif. Accuracy 5.42 5.21 12.13 3.38

Table 5.19: Standard deviations of base algorithm mean performance in each labelled

dataset (not including ConjunctiveRule)

The performance of the approaches in the Prosite dataset set can be differentiated

because the performance of each individual classifier is more closely matched. In most of

the other datasets J48 is always the clear winner in terms of classification accuracy. When

J48 struggles to perform optimally (as is the case with the Prosite data set) and the

classifiers perform more similarly, the base classifier errors are more readily corrected by

the approaches discussed in this chapter. This effect can be seen in Table 5.19 which

shows the standard deviations of the performance of every base classifier type in each

dataset (except for ConjunctiveRule which was omitted as it performed equally badly in

every dataset). As can be seen in Table 5.19 Prosite clearly has the lowest standard

deviation. This correlates to the higher relative score (PSO/ACO-CS-RO beats all base

classifiers at every level in the Prosite dataset) of the more advanced approaches

discussed in this chapter when compared to the base classifiers. Interpro has the next
147

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

lowest standard deviation which correlates to the second highest relative score of the

more advanced approaches against the base classifiers.

5.7. Summary

Our experiments show that both the greedy and PSO/ACO-CS approaches

significantly improve predictive accuracy over the use of any single fixed algorithm

throughout the classifier tree, in the majority of cases involving our four protein data sets.

Overall, the PSO/ACO-CS approach was somewhat more successful (significantly better

in four cases) than the greedy approach.

PSO/ACO-CS-RO performs the best out of all approaches. In one dataset PSO/ACO-

CS-RO always significantly outperforms all other base classifiers. Indeed, one of the

main advantages of the approaches described in this chapter is their robustness; they

never significantly lose to any base classifier.

Computational time is an issue, with the PSO/ACO-RO based approaches taking large

amounts of computational time when compared to any of the other approaches. This is

due to the way in which component classifiers have to be retrained at many of the

function evaluations when using PSO/ACO-RO (as the building set changes when

recovery is enabled or disabled for a given classifier node). This is dissimilar to the

PSO/ACO-CS approach, as the classifiers need only be trained once during a single run

(as the building set never changes during a single run). A typical single run of the

PSO/ACO-CS algorithm takes up to 1 hour on a Pentium 4 3.2 GHz machine (for the

largest data set), whereas a run involving PSO/ACO-RO can take up to 24 hours. This

means that a complete PSO/ACO-RO experiment involving 10 folds of a cross validation

procedure can take up to 10 days.

In terms of computational efficiency the greedy approach is the most efficient out of

the more advanced approaches examined in this chapter. However, the only extra

computational time spent when using PSO/ACO-CS (when compared to the greedy

148

Chapter 5. PSO/ACO for Classifier Selection and Misclassification Recovery

approach) is spent classifying the examples belonging to the validation set. Recall that

when using the greedy approach the validation set is classified k times, where k is the

number of possible types of classifiers. The PSO/ACO-CS approach requires that the

validation set be classified a number of times equal to the number of function evaluations

made by the PSO/ACO search algorithm.

Overall we believe that the use of the more advanced approaches discussed in this

chapter is more beneficial in more difficult data sets, where classification algorithms are

more likely to make mistakes. Estimating a priori how likely a classification algorithm is

to make a mistake is an open problem and this topic is left for future research. However,

in these experiments, the smaller the standard deviation of the means of the predictive

accuracies obtained by each component classifier, the better the proposed approaches

performed when compared to the base classifiers.

149

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

Chapter 6. Hierarchical Ensembles of
Hierarchical Rule Sets (HEHRS)

6.1. Introduction

In this chapter we propose novel ensemble-based data mining methods tailored to the

hierarchical classification problem and apply them to six protein data sets. The datasets

examined in this chapter, as with many other bioinformatics datasets, pose a significant

problem for any classification technique as they have a relatively large number of

attributes, in this case ranging from 126 to 708 attributes. The large number of attributes

increases the search space for the classification algorithm which may often lead to sub-

optimal performance. Another challenge associated with these data sets is that they

involve a large number of classes - ranging from 179 to 351 arranged in four hierarchical

class levels.

Although some research has applied ensemble methods to protein data

sets [27] [76] [153] and to hierarchical data sets [56], previous research concentrates on

“classical” ensemble techniques such as bagging, or ignores any class hierarchy present.

Some work has been conducted in the field of hierarchical multi-label protein function

prediction [18] [33] but their approaches rely on modifying the base classification

algorithm, rather than using ensemble techniques.

The remainder of this chapter is organised in the following way. Section 6.2 gives an

overview of the HEHRS approach and describes how the ensembles of rule sets are

generated during training. Sections 6.3 and 6.4 describe the two ways in which the

predictions from the component rules are combined (using voting and stacking

respectively). Section 6.4 proposes a new baseline approach (Rule Based Extended

150

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

Multiplicative Method) which we have adapted for hierarchical classification. Section 6 .6

describes the data sets and how they were created. Section 6.7 discusses the

computational result. Finally, section 6 .8 gives a summary of our findings.

The work presented in this chapter has partially been reported in a journal paper [82].

6.2. Building a Hierarchical Ensemble of Hierarchical Rule

Sets (HEHRS)

6.2.1. Overview

In essence, the proposed ensemble method for hierarchical classification can be

considered a new variation of bagging adapted to the hierarchical classification problem.

In this method, an ensemble of rules is created by varying the sets of positive and

negative examples according to the class hierarchy. In order to classify test examples, the

predictions made by the rules are combined by using either voting or stacking. Such a

method should improve the accuracy beyond the use of a non-ensemble based technique

as the errors in each model can be, to some extent, mitigated by combing the predictions

made by multiple models. As the bioinformatics data sets examined in this chapter make

it more difficult to induce accurate models - because of the high number of classes,

attributes and the sparseness of the data at lower levels - the potential benefits from using

such an error correcting technique become greater.

Let us first describe the basic idea of the proposed method at a high level of

abstraction. Recall that in the standard top-down hierarchical classification approach a

rule set is built to distinguish between a set of sibling class nodes, using the training

examples belonging to those sibling class nodes. By contrast, in the proposed HEHRS

method K rule sets will be built for each set of sibling nodes in the class tree, where K is

the number of class levels between the current level (inclusive) and the deepest class

level (inclusive) which is a descendant from either of the current class nodes. For instance

151

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

for a non-leaf node in level 2 of the class tree and a class tree with 4 levels (not counting

the root node which is at the Oth level), K= 3 rule sets will be generated, namely one rule

set for each of the class levels 2, 3 and 4. All these rule sets contain rules predicting

classes at the second level of the class tree, but they are called here hierarchical rule sets

because they have been produced from examples at different levels of the class tree. In

addition, to continue with this example, these three rule sets also form an ensemble of

rule sets, and the proposed method builds several ensembles like this, at different levels

of the class tree. Therefore, the ensembles also form a hierarchy, namely a hierarchy of

ensembles, where each ensemble consists of a hierarchical rule set. Hence, this approach

is here called Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS).

6.2.2. Technical Details of the HEHRS Method

Let us now describe HEHRS in more detail, starting with notation issues. In general

an ensemble of rule sets created for a given set of sibling class nodes is denoted as Es<

where S is a set of sibling class nodes. A rule set within this ensemble (one of the K rule

sets) is denoted by the letter i, where i corresponds to the level at which the rule set is

built. Therefore any rule set belonging to Es at the level i, used to distinguish between a

set of sibling class nodes S, is denoted by Esi. Note that each rule in Esi will predict one of

the classes in S, so there will be one or more rules (i.e. a subset of the rules in Esi)

predicting each class in S. A set of rules in Esi built at level i predicting a single class d in

S is denoted as Esid. As discussed previously Es consists of K rule sets, each containing

rules produced from a different level of the class tree. For each level i and for each class c

which is a descendant class of d, the rule induction algorithm will discover rules

predicting class d, using as positive examples the examples having class c, and using as

negative examples the examples having any class different from c at level i that is a

descendant of d in the class tree. These concepts are illustrated in Figure 6.1. Note that

Figure 6 .1 refers to a hierarchy of rule sets, rather than the class hierarchy. Hence, each

152

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

node (d) in Figure 6.1 denotes an ensemble of rule sets for a given class (as explained

next).

()C) A Rule Set Predicting the Class
of the Current Node

n n Ensemble of Rules Predicting
J the Labelled Class Node

IP d Scope of Ensemble or Rule Set
Level 1

Figure 6.1: Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS)

In Figure 6 .1 the grey boxes represent the scope of the classification performed by a

given rule set (Est) or ensemble (Es). In the case of Es the scope of the classification

involves the sibling classes S. The main tree - i.e, the large tree at the centre of Figure 6.1

- shows the hierarchy of ensembles in a standard top-down approach. The expanded

(smaller) trees show the rule sets (ESI) generated by HEHRS. For each set of sibling

classes (S) in the main tree, there is a hierarchy of rule sets in the corresponding smaller

tree, indicated by the presence of several grey boxes in the smaller tree. The label S in

Figure 6.1 shows an example set of sibling classes (2.1 and 2.2) predicted by an ensemble,

and the label d within S shows one of the classes (2.1) in the set S.

Table 6.1 shows in detail the variation in the sets of examples used at different class

levels when inducing classification rules for HEHRS, with respect to Figure 6.1. For

example, let us consider the construction of the ensemble of rule sets Es labelled ID: 1 in
153

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

the top-right part of Figure 6 .1. This ensemble will consist of rules predicting either class

1 or class 2, i.e., the set of sibling classes S = {1, 2}. So, the variable d, indicating the

class to be predicted by a rule in Es, will take on the value 1 or 2. This ensemble Es will

consist of four rule sets, each of them denoted Esi, i-T,...,4, where the z'-th rule set is

constructed from examples in the z'-th level of the class tree.

Level
(i)

Class (d) in set of si bling classes S
d= 1 d= 2

1 1 2
2 1.1, 1.2 2.1, 2.2
3 1.1.1, 1.1.2 NA
4 1.1.1.1, 1.1.1.2,

1.1.2.1, 1.1.2.2
NA

Table 6.1: Values (Classes) taken by variable c at each level i used to construct the Rule

Sets in Es ID: 1, in Figure 6.1

As can be seen in Table 6.1 at the first level z is set to 1. The rule induction algorithm

is given the training set with examples belonging to classes (c) 1 and 2 , it then returns a

rule set predicting classes (d) 1 and 2 for the first rule set Esi,. 4S'= {1,2}, z=l. At the second

level i is set to 2. The rule induction algorithm is given the training set with examples

belonging to classes (c) 1.1, 1.2, 2.1 and 2.2 (descendants of the classes in S). It then

returns a rule set with rules discriminating between these classes. The rules predicting

classes 1.1 and 1.2 (Esid where z'=2 and d= 1) have their consequent changed to predict

class (d) 1. The rules predicting classes 2.1 and 2.2 {Esid where z'=2 and d= 2) are changed

to predict class (d) 2 and are added, with the other rules now predicting class 1, to the

second rule set Esij 5= {1,2}, z'=2. At the third level i is set to 3. As there are no third level

descendant classes of class 2 (in the right-hand side of Table 6.1 the term "NA" means

"not applicable") only rules predicting class 1 will be contained in this Esi. The rule

induction algorithm is given a training set containing examples belonging to classes (c)

1.1.1 and 1.1.2. The rules predicting the classes 1.1.1 and 1.1.2 have their consequent

154

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

class changed to predict class (d) 1. They are then added to Esid where i=3 and d= 1, which

in this case is equal to Esi where i=3. An analogous procedure (as described in Table 6.1)

is performed at level 4 (/ = 4) where again, because this is quite an unbalanced class tree,

there are only rules predicting class (d) 1 in the rule set Esi where i=4.

Note also that when the level i is set to 2 and the class (d) being predicted by the

ensemble is 1, the rule induction algorithm produces a rule set discriminating between

classes (c) 1.1 and 1.2 (along with 2.1 and 2 .2), which at first glance seems counter­

intuitive - as they are both descendants of class 1, the class (d) being predicted. The

reason for this is to try and encourage diversity in the rules generated. As the rule

induction algorithm is unaware of the hierarchical relationships between classes, the

algorithm could produce the same (or very similar) rule sets for, say, the following two

classification scenarios: (a) class 1 vs. class 2 ; and (b) class 1.1 vs. other non-descendant

classes of class 1 (i.e., classes 2.1 and 2.2). Although it is still possible that the same or

very similar rules will be generated between different levels and classes even when using

the method described in this section, the probability (dependant on the make-up of the

training set) of this happening is smaller when including the examples belonging to

sibling classes as negative examples when inducing rules. Recall that to make an

effective ensemble it is very important that the component classifiers be diverse, even if

at the expense of some accuracy [9] [24] [144],

This section described how the ensemble of rules produced by HEHRS is built during

the training phase of the algorithm. The next two sections describe two different

approaches to combine the predictions of the ensemble of rules during the testing phase,

namely an approach based on voting and one based on stacking, respectively.

155

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

6.3. Combining the Predictions from the Multiple Rules in

HEHRS using Voting

6.3.1. Weighted Voting for HEHRS

After the entire hierarchical ensemble of hierarchical rule sets has been induced in the

training phase, all the induced rules can be used to predict the class of a new example in

the test set. In this testing phase, in order to combine the predictions of the rules in the

hierarchical ensemble into a single predicted class at each level of the class tree for a

given test example, each rule in the ensemble is assigned a weight. That is, for each

ensemble of rule sets Es, each rule in Es is assigned a weight.

The weight of a rule is a measure of its classification accuracy, computed on the

training set. When the class predicted by a rule is the majority class (a class having more

examples than the rest of the training set combined) its weight is computed by the product

of the rule's sensitivity and specificity [74], as shown in Equation 6.1, where TP, FN, FP

and TN are, respectively, the number of true positives, false negatives, false positives and

true negatives associated with the rule [164],

When a rule predicts a minority class (i.e., any class different from the majority class)

the precision [74], shown in Equation 6.2, is used as the rule’s weight. This approach,

based on measuring rule quality either as the product of sensitivity and specificity or as

precision, depending on the relative frequency of the class predicted by the rule, is an

attempt to get a more “balanced” weight in extreme cases, as follows.

When there are a small number of examples in the class being predicted, when

compared to the overall size of the training set, then the way in which specificity

accounts for the number of false positives becomes problematic. This is because

sensitivity multiplied by specificity weights the sensitivity (TP / (TP + FN)) and the

specificity (TN / (TN + FP)) equally, ignoring the actual number of true positives and

false positives. Therefore, in the case where the minority class is being predicted, it is

156

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

possible to obtain a good rule quality even though the ratio of TP / (TP + FP) - i.e. the

precision - is bad. Such a situation will likely produce a low accuracy as although a high

sensitivity and relatively high specificity may be obtained, many examples may be

misclassified as this minority class (due to the absolute number of false positives). The

opposite is true for the majority class; the absolute number of false positives becomes less

important for producing good accuracy as the number of true positives will likely be

much higher. Sensitivity multiplied by specificity increases the importance of obtaining a

low number of false positives when compared to precision. This is because it is more

useful to consider the ratio TN / (77V + FP), rather than ratio of the large number of true

positives to the low possible number of false positives (as it is implicitly the case with

precision). For further discussions see [80],

Sensitivity x Specificity = (TP / (TP + FN)) x (TN / (TN + FP))

Equation 6.1: Rule Weight (Majority Class)

Precision = TP / (TP + FP)

Equation 6.2: Rule Weight (Minority Class)

The testing phase can be seen in Pseudocode 6 .1. A test example is classified in a top-

down fashion, as follows. Let S be the set of sibling classes out of which one class must

be assigned to the example. Initially, S contains the set of classes in the first class level.

For each class d in S, the weight of class d is given by the summation of the weights of

all the rules in the ensemble of rule sets Es that cover the test example and predict class d.

The class with the greatest weight is assigned to the test example at the first level. Next

the example is pushed down to the second level, where the set S is updated to contain the

child classes of the class assigned to the example in the first level - the ensemble Es is

also updated accordingly. Again, for each class d in the current S the weight of class d is

157

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

computed - adding the weights of all rules in the current Es that cover the test example

and predict class d - and the class with the greatest weight is assigned to the test example

at the current (second) level, and so on. This process is repeated until the test example

reaches a leaf node in the class tree.

FOR each example in test set
S = The set of classes in first class level
d = No class
/* S will not contain classes when d is a leaf node */
WHILE S contains classes

FOR each rule set Esi in Es for this set of sibling classes S

Find rule from rule set in Esl that covers example

Record which class (from S) the rule predicts and what
weight is associated with the rule

END FOR
d = the class from S that has the highest accumulative weight
S = the set of d's child classes

END WHILE
Classify example as having class d

END FOR

Pseudocode 6.1: The testing phase of Weighted Voting for HEHRS

To allow the user to interpret a prediction made by HEHRS for a given example a

simple procedure can be implemented. After the example has been fully classified to the

leaf level it is possible to examine all the rules that covered it. All the rules that have

consequent classes that are parents of the final leaf classification can be used to present

an overview of the classification process to the user. However, the issue of such

interpretation by the user is out of the scope of this thesis.

158

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

6.3.2. Optimising HEHRS' Rule Weights with PSO

As computed by Equation 6.1 and Equation 6.2, the weight of a rule in HEHRS

depends only on the predictive accuracy of that individual rule, and it does not take into

account the complex interactions of the rules in an ensemble. It is possible to optimise the

set of rule weights by taking rule interaction into account, by defining two elements:

(a) An evaluation function that measures the quality of a candidate set of rule weight

values. The evaluation function to be maximised is the normalised total number of correct

predictions made at each internal (non-leaf) class node and each leaf class node. This

evaluation function is computed on the training set.

(b) An optimization method, which searches for the optimal set of rule weight values

in the space of candidate weight values. In this work we use, as an optimization method, a

Particle Swarm Optimization (PSO) algorithm.

Recall that PSO is a meta-heuristics that maintains a population of particles - each of

them a candidate solution to the target problem - that iteratively move around the search

space [95]. The position of a particle in the search space represents the contents of its

candidate solution, and so moving the particles correspond to generating new candidate

solutions. In this work, each particle’s position corresponds to a set of rule weight values

for the HEHRS method. Each particle is initialised with randomly deviating (±1) position

generated from the rule weight equations and random velocity. The value ±1 is used to

ensure that there is an even spread of initial positions over the range of the evaluation

function ([0, 1]) with up to ±1 extra to stimulate exploration. The rest of the algorithm

uses the standard PSO methodology (see Section 3.4).

The main motivations for using PSO is that it performs a global search (rather than

the greedy search performed by local search algorithms), and has been empirically shown

to be a powerful optimizer, often outperforming more traditional population-based

optimizers such as evolutionary algorithms (EAs) [94], [107]. In any case, we do not

claim that PSO is the “optimal” algorithm for our rule weight optimization problem. It

159

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

produced very good results - as will be shown later - but it is possible that other global

search optimization methods such as EAs would produce a similarly good result. The

issue of comparing PSO and EAs is out of the scope of this thesis, and is left for future

research.

Two versions of the PSO for rule weight optimization are proposed in this work, one

where negative weight values are allowed and another one where they are not. In the

former case, if a rule is extremely unreliable it may be assigned a negative weight,

detracting from the class predicted by that rule. An example of where a negative value

may be appropriate for a rule is where that rule covers more examples of other classes

than its own consequent class and so, in fact, signals that other classes are more likely. In

the version where negative values are not allowed, the lowest possible rule weight is 0 ,

where a rule will not have any influence in the classification of a test example.

In some cases it does not matter what the weights associated with certain rules are

during the training phase. For instance, if all examples are always correctly classified by

all rules, then as long as the weights are all positive it does not matter what the weight

values are. This can cause a problem, as even though all examples are correctly classified

by all rules during the training phase they may not be during the testing phase. Therefore,

during the testing phase the exact weights may become important. To combat this

situation it is detected whether any rules do not take part in any contentions (where two

or more rules predict different classes for any given example) during the training phase. If

they do not they will not have their weights optimised by the PSO algorithm and default

to the normal rule weights. Such contentions (or lack of) can be detected by assigning a

flag to each rule (with a default value of off); the sets of rules covering each example can

then be examined. If any set of rules contain rules covering a given training example with

different consequent classes then the contention flag is set to on for those rules, meaning

that the weight for those rules should be optimised. The rules left with a flag of o ff should

not have their weight optimised.

160

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

The two main elements of the proposed PSO for rule weight optimization are the

particle representation and the fitness function. The particle representation consists of a

vector with n components, each of them denoted w,-, i = 1 where w, is the weight

associated with i-th rule and n is the total number of rules. That is:

Particle = w,, w,,..., wn

The fitness function measures the quality of a particle, i.e., the quality of a candidate

set of rule weights. In order to compute the fitness of a particle, for each example in the

training set, the system extracts the rule weights from the particle and uses those weights

to decide which class will be assigned to the example. This decision is made by

computing, for each class, the total weight of rules that cover the example and have that

class, as discussed earlier. The class chosen to be assigned to the example is the class

with the largest total weight. After every training example has been completely classified

(i.e., assigned a class at a leaf node in the class tree), the value of the fitness function for

the current particle is the classification accuracy on the training set. This is the average

accuracy across all four class levels.

Note that, ideally, the fitness function should be based on the classification accuracy

on a hold out set, i.e. the original training set should be divided into a building set (used

to build the rules) and a validation, hold out set, used to compute the classification

accuracy to be used as the fitness of a particle. This would have the advantage of

avoiding overfitting of the rule weights optimised by the PSO to the training set.

However, it was not feasible to use such a hold out set in our experiments, due to the

sparseness of data at lower levels of the class tree. It would be impossible to induce rules

for some classes if examples from the training set were reserved for a hold out set. We

consider the benefits of creating rules for all classes outweigh the problems due to

possible overfitting from the lack of a hold out set.

161

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

6.4. Stacking for the Hierarchical Ensemble of Hierarchical

Rule Sets (SHEHRS)

It is reasonable to think that out of all the rules built by the HEHRS method some of

them will be redundant or detrimental to the overall performance of the system. The PSO-

based HEHRS approaches should ideally consider these cases by setting the weights of

the low quality rules to 0 (or negative values) and so minimise the influence of these

detrimental rules. The SHEHRS (Stacking for the Hierarchical Ensemble of Hierarchical

Rule Sets) method attempts to address these same issues in a more effective way by

creating meta-rules [159], Also, as a stacking method (see section 3.3 for a discussion of

stacking), the SHEHRS method should be able to learn from the fact that some classifiers

often misclassify some examples.

The meta-rules generated by SHEHRS are not derived from the features (attributes) in

each original (base level) example, but instead are learnt from the decision making

process of the original rules. In order to build these meta-rules, we first create a meta-data

set where each meta-example corresponds to an original example. Each meta-example is

described by a set of binary meta-features, each of which indicates whether or not the

original example is covered by a given original (level-0) rule. More precisely, each meta­

example consists of a vector with (n+1) components, as follows:

Meta-Example_ = Rz], R :2,..., R :n, C.

Meta-examplez is the zth meta-example in the meta-dataset, RZJ-,j = 1,..,« (where n is

the number of level-0 original rules), is a binary meta-variable taking in the value “yes”

or “no” to indicate whether or not the yth rule covers the zth original example. Cz is the

class of the original zth example.

162

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

FOR each example in training set
S = The set of classes in first class level
d = No class
/* S will not contain classes when d is a leaf node */
WHILE S contains classes

/* Create the meta-data set If necessary */
IF meta-data set for S does not exist

Create a meta-data set, where each meta-feature corresponds
to a rule in Es

FOR each rule set Esl in Es for this set of sibling classes S

Find rule from rule set Esi that covers example and record
it

END FOR
ADD new meta-example to meta-data set for S. Where meta­
example's class is the true class of example (at the level of
the classes in S) and all of its feature-values are "no"

except for those corresponding to the rules that covered the
example from the previous FOR loop - which are set to "yes"

d = The true class of example (at the level of the classes in
S)

S = The set of d 's child classes
END WHILE

END FOR

Pseudocode 6.2: The training phase of SHEHRS

Recall that, during the rule discovery process of the HEHRS method, each rule in Esi

is constructed to predict a single class from the set of sibling classes S at class level i.

Note that it is clear which meta-features correspond to which level in the class hierarchy,

or which rules are used to predict the classes in which level for a given original example.

Hence (as shown in Pseudocode 6.2), in order to predict the classes in S we construct a

163

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

meta-data set having only meta-features corresponding to the discovered rules in Es. Note

that this means we create only one meta-data set for each ensemble of hierarchical rule

sets Es. We now have a new secondary hierarchical classification problem, so it would be

possible (though not necessarily useful) to recursively apply an extended version of this

approach.

(^) A Rule Set Predicting the Class (^) A rule covering the example
of the Current Node

Figure 6.2: An Example Classification in SHEHRS

To illustrate how SHEHRS uses the result of HEHRS, Figure 6.2 shows the

ensembles of rules produced by HEHRS in a simple two level class hierarchy. In

Figure 6.2, each of the ellipsis R1,...,R10 denotes a single classification rule. (Note that

this notation is being used in the example of Figure 6.2 purely to keep the example and

the figure as simple as possible, since in general in HEHRS each of those ellipses would

represent a set of rules, as in the notation used in Figure 6.1.) Figure 6.2 also shows the

rules that are covering a given training example, which are the rules R l, R6 and R8 .

Given the result of HEHRS shown in Figure 6.2, and the fact that the given training

example has class 1.2, SHEHRS generates, during its training phase, the meta-examples

shown in Table 6.2 and Table 6.3.

164

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

IVleta-Features Actual Class
R1 R2 R3 R4 R5 R6 1yes no no no no yes

Table 6.2: Meta-example generated by SHEHRS for the set of sibling classes S = {1,2},

at level 1 in the class hierarchy

Meta-Features Actual Class
R7 R8 1.2no yes

Table 6.3: Meta-example generated by SHEHRS for the set of sibling classes S = {1.1,

1 .2 }, at level 2 in the class hierarchy

For the sake of simplicity Table 6.2 and Table 6.3 show only one meta-example each.

Of course, the meta-data set will contain a meta-example for each original (base level)

example of the classes to be predicted. A separate meta-data set is generated at each set of

sibling classes S. Table 6.2 shows the meta-example generated at level 1. The only meta­

attributes with value yes for this meta-example are the ones referring to rules R1 and R6 ,

since these are the only rules covering the original example at level 1 .

Note that the class predicted by SHEHRS’ level-1 classifier for the meta-example at

class level 1 is not used to decide how the meta-example travels through the HEHRS tree

when building the meta-dataset for class level 2 ; only the actual (true) class of the

example does. Hence, Table 6.3 shows the meta-example generated at class level 2.

As shown in Pseudocode 6.3 - when an example of unknown class needs to be

classified it must first be converted into a meta-example based on which rules cover it

from the original ensemble of rule sets (Es) produced to decide which class the example is

assigned to at each divide. Once this conversion is done, the classification is performed

using the standard top down hierarchical classification approach, using the meta-rules

discovered in the training phase.

165

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

FOR each example in test set
S = The set of classes in first class level
d = No class
/* S will not contain classes when d is a leaf node */
WHILE S contains classes

/* Creating the meta-example */
FOR each rule set Esi in Es fo r this set of sibling classes S

Find rule from rule set Esi that covers example and record
it

END FOR
meta-exam ple = New example where all feature-values are "no"
except for those corresponding to the rules that covered the
example from the previous FOR loop - which are set to "yes"

/* Classifying the new meta-example */
d = Classify meta-example using the meta-classifier (rule

set) constructed from the meta-data set associated with
S (constructed during the training phase) and return the
predicted class label

S = The set of d 's child classes
END WHILE
Classify example as having class d

END FOR

Pseudocode 6.3: The testing phase of SHEHRS

Note that in the version of SHEHRS described so far each meta-feature is a binary

one, indicating only whether or not the example is covered by the corresponding rule.

Hereafter this version of SHEHRS will be referred to as Cov-SHEHRS (rule Coverage-

based SHEHRS). An alternative to this approach is to use the rule weights from the

HEHRS method as the set of meta-features, rather than using meta-features that just

indicate whether or not an example is covered by each rule. In essence this is an
166

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

extension of the voting scheme discussed in section 6.3.1, where rules are built to decide

the vote. In this alternative approach a meta-example has the following structure:

Meta-Example_ = N z2,...,N zn,C :

Where N zj , j = 1 is the weight of they'th class {d) and n is the number of classes in

the set of sibling classes S. This version of SHEHRS will be hereafter referred to as Wei-

SHEHRS (rule Weight-based SHEHRS).

Meta-Example ID Meta-Features Actual Class
Class 1 Class 2

1 1.2 0.7 1
2 1 0.9 1
3 0.3 1.1 2
4 1.2 1 2
5 1.1 1 2

Table 6.4: A set of rule weight-based SHEHRS meta-examples

Table 6.4 shows a possible set of meta-examples for Wei-SHEHRS, where each meta­

feature is the accumulative rule weight of all rules covering the base level example for

each class d. This simple set of meta-examples might lead to the discovery of a meta-rule

set such as:

IF Class_l > 0.3 AND Class_2 < 1 THEN CLASS = 1
IF Class_2 > 1 THEN CLASS = 2

Even in this simple example it is clear to see the potential advantage gained by using a

more flexible approach (when compared to standard weighted voting) such as Wei-

167

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

SHEHRS. If the simple weighted voting scheme presented in Section 6.3.1 was used to

classify these examples, meta-examples with ID 4 and 5 would be misclassified.

It is also possible to mix these two kinds of meta-features (Boolean rule coverage and

real-valued rule weight) to form a meta-example with both binary and continuous meta­

features. The motivation for using this approach is to give the meta-leaming algorithm

more information for discovering high-quality meta-rules. This approach including the

two kinds of meta-features will be hereafter referred to as Cov-Wei-SHEHRS.

The main difference between SHEHRS and classical stacking (designed for flat

classification) is the way in which the level-0 classifiers are constructed using the class

hierarchy in SHEHRS. As discussed previously, the problem is broken down using the

divide and conquer approach, building an ensemble for each set of sibling class nodes,

rather than building a single level- 1 classifier that makes a single complete prediction for

each example (although this is a possible future research direction).

As a meta-data set is constructed any classifier-learning algorithm can be used to

build a classifier to classify it. A rule induction algorithm has the advantage building a

model that is comprehensible and has the possibility of only using a subset of the meta­

features. In addition, rule induction algorithms are in general relatively computationally

fast, by comparison with much slower types of algorithms such as artificial neural

networks and support vector machines. This computational efficiency is important in the

context of SHEHRS and the datasets used in our experiments, where there are a large

number of classes to be predicted, as will be shown later.

As is common in the literature [159] we also compare the proposed SHEHRS using a

rule induction algorithm against a Bayesian method which constructs the level-1

classifiers using a naive Bayesian classification algorithm [135], which is also a

computationally efficient type of classification method.

168

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

6.5. Rule-Based Extended Multiplicative Method

This method is derived from a method proposed by Sun et al. [152] to reduce the

problem of blocking in hierarchical multi-label classification. The blocking problem was

described by Sun et al. in the following way. Each class node in the class tree is

associated with a probabilistic classifier, learned during the training phase. In the testing

phase, an example with unknown class is classified in a top-down fashion, as follows. For

each class node in the first level of the class tree, the example is assigned that class if the

corresponding classifier predicts that class with a probability greater than a predefined

threshold. An example is said to be rejected by a classifier if the probability of the

example having the class predicted by the classifier is smaller than or equal to the

threshold. For each of the (parent) classes assigned to the example at the first level, the

example is pushed down the class tree to the child class nodes of those parent classes.

Then, for each of those child classes the example is either assigned that child class or is

rejected by the corresponding classifier depending on the probability of that class as

computed by the classifier (again, compared with a threshold), etc. This top-down

classification process is repeated until the example reaches the leaf nodes of the class tree.

In this context, blocking occurs when an example is wrongly rejected by a classifier in an

internal (non-leaf) node of the class tree, and so the example can never be shown to the

classifiers that are descendants of the classifier that made the wrong rejection. As a result,

the example can never be correctly classified at class levels deeper than d, where d is the

level of the classifier that wrongly rejected the example.

One of the methods proposed by Sun et al. to cope with the blocking problem consists

of assigning an example to a leaf class in the class tree if the multiplied probabilities of

the example belonging to the internal (non-leaf) classes along the path from the root node

to the leaf class node exceed a certain threshold. The authors called their approach the

Extended Multiplicative Method (EMM).

169

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

Note that in Sun et al.’s work an example can be assigned to more than one class at

each hierarchical level, which is characteristic of multi-label classification problems. This

is not the case in the data sets examined in this chapter, where a single class must be

assigned for each level. In addition, EMM was proposed in the context of probabilistic

classifiers, which again is not the case in our work, where the classifier consists of a set

of IF-THEN classification rules.

Therefore, we adapted EMM to the context of our work, where the classification of

test set examples is performed by classification rules and we must assign only one class

label per hierarchical level to each example. In this context, there is no need for the

threshold used by EMM, since a testing example is simply assigned the best predicted

class at each hierarchical class level. In addition, note that different leaf class nodes can

be at different depths in the class tree. Hence, just multiplying the probabilities along

each path from the root to a leaf class node is not appropriate because, when we compare

the probabilities associated with different leaf classes in order to choose the best leaf

class to be assigned to the testing example, shallower leaf class nodes would have an

advantage over deeper ones - given the reductive nature of multiplying positive numbers

smaller than 1. Furthermore, there is no innate sense of probabilistic matching given a

rule-based classifier, so it is natural to use a measure of rule quality instead of

probabilistic matching.

Given this discussion, our variant of EMM, called Rule-based EMM, finds the best

"path" consisting of a series of rules discovered by HEHRS - one rule for each class level.

It considers every possible path by considering not only the best rule covering the current

test example at each class level, but all possible rules that cover the current test example.

The best path is considered to be the path with the highest value of the geometric mean of

all the rule weights along the path from the root to the class leaf node, as given by

Equation 6.3. The geometric mean is used as the rule qualities in this hierarchical setting

have a multiplicative (rather than additive) nature - at each progressively lower level in

170

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

the hierarchy the rule can only correctly classify the set of examples correctly classified

by its parent classifier.

PathQuality = lyJwl x w2 x ...w,

Equation 6.3: Rule Path Quality for Rule-Based EMM

Where PathQuality is the score for a certain path and wn i = 1,...,/, is the weight

associated with the rule covering the example at class level i in that path and / is the

number of rules that cover the example (i.e. the number of class levels) in that path. The

formula used to compute each rule weight is given by Equation 6.1 and Equation 6.2.

6.6. The Creation of the Bioinformatics Data Sets

The hierarchical classification methods proposed in the previous section were

evaluated in six challenging real-world datasets involving the prediction of protein

function. The protein functional classes to be predicted in these data sets are the

functional classes of GPCRs (G-Protein-Coupled Receptors) or Enzymes.

The protein functional classes are given unique hierarchical indexes by GPCRDB

(Section 2.6.2) in the case of GPCRs and by Enzyme Commission Codes (Section 2.6.3)

in the case of enzymes. In the case of GPCRs, examples (proteins) have up to 5 class

levels, but only 4 levels are used in the datasets created in this work, as the data in the 5th

level is too sparse for training - i.e., in general there are too few examples of each class at

the 5th level. In any case, it should be noted that predicting all the first four levels of

GPCR’s classes is already a challenging task. Indeed, most works on the classification of

GPCRs limit the predictions to just the topmost or the two topmost class levels (families

and subfamilies but not groups, etc.) [15] [73] [92] [116]. All 4 levels of the Enzyme

Commission Codes are used in the created Enzymes data sets.

171

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

The data used in our experiments was constructed from data in UniProt (Section 2.6.1)

and GPCRDB. UniProt is a well known biological database, containing protein sequence

data and a rich annotation about a large number of different kinds of proteins. It also has

cross-references for other major biological databases such as Prosite (Section 2.5.1),

Prints (Section 2.5.3), Pfam (Section 2.5.2) and Interpro (Section 2.5.4) (see below). It

was extensively used in this work as a source of data for creating the data sets used in our

experiments. Only the UniProtKB/Swiss-Prot was used as a data source, as it contains a

higher quality, manually annotated set of proteins. Unlike Uniprot, GPCRDB is a

biological database specialised on GPCR proteins.

We did experiments with four different kinds of predictor attributes, each of them

representing a kind of “protein signature”, or “m otif’, namely: FingerPrints from the

Prints database, Prosite patterns, Pfam and Interpro entries (see Section 2.5 for

descriptions of these different signatures). We created six data sets to evaluate the

proposed hierarchical classification methods, three GPCR data sets and three Enzyme

data sets. For the GPCR data sets the main predictor attributes were Prints, Prosite and

Interpro entries (with a different type of motif used in each of the data sets). In addition,

all three GPCR data sets used as predictor attributes the protein's molecular weight and

sequence length. For the Enzyme data sets the main predictor attributes were Prosite,

Interpro and Pfam entries. Again, all three enzyme data sets used the protein's molecular

weight and sequence length as predictors.

Any duplicate examples (proteins) in a data set are removed in a pre-processing step,

i.e., before the hierarchical classification algorithm is run, to avoid redundancy. For both

GPCR and Enzyme data sets, if there are fewer than 10 examples in any given class in the

class tree that class is merged with its parent class. If the parent class is the root node, the

entire small class is removed from the data set. This process ensures there is enough

training and test data per class to carry out the experiments. (If a class had less than 10

examples, during the 10-fold cross-validation procedure there would be at least one

iteration where there would be no example of that class in the test set, an undesirable

172

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

situation.) Any binary attribute that has a value which occurs in only one example is

removed from the corresponding data set, since these binary attributes in general do not

have a good predictive power. An initial random sample of 15000 enzymes from the

UniProt database was used to generate the enzyme data sets. Less than the original 15000

examples occur in the final data sets because of the duplicate and small class removal

process.

After data pre-processing, the final datasets used in the experiments have the numbers

of attributes, examples (proteins) and classes per level (expressed as level 1/ level 2 /level

3/level 4) indicated in Table 6.5.

GPCR/
Prints

GPCR/
Prosite

GPCR/
Interpro

EC/
Prints

EC/
Prosite

EC/
Pfam

#Attributes 283 129 450 382 585 708
#Examples 5422 6261 7461 14038 14048 13995

^Classes 8/46/76/49 9/50/79/49 12/54/82/
50

6/45/92/
208

6/42/89/
187 6/41/96/190

Table 6.5: Main characteristics of the datasets used in the experiments

6 .7 . Computational Results

This section reports computational results evaluating the methods proposed in

Sections 6 .2-6.5 in the created datasets described in Section 6 .6 . Recall that Sections 6.2-

6.5 proposed several types of hierarchical classification methods, namely:

(a) Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS) with rule weights

computed by Equation 6 .1 and Equation 6.2;

(b) HEHRS with rule weights optimized by PSO - two versions of the PSO were

proposed, with and without a lower limit of 0 for the rule weights; these two versions are

hereafter referred to as LimPSO-HEHRS and PSO-HEHRS, respectively. Both versions

of PSO are a "vanilla" PSO [21] with standard parameter settings [35]: W= 0.73, cpi = <P2 =

173

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

2.05. Note that these parameter settings have been carefully calculated and that the

performance of PSO is sensitive to them (as explained in Clerc and Kennedy’s work [35]).

(c) The Extended Multiplicative Method adapted for rule-based (rather than

probabilistic) classifiers - hereafter called Rule-EMM for short.

(d) The Stacking for HEHRS approach using the rule coverage meta-attributes, using

rule induction algorithm RIPPER as the level-1 classifier or Naïve Bayes as the level-1

classifier, referred to as Cov-SHEHRS and Bayes-SHEHRS respectively.

(e) The Stacking for HEHRS approach using the rule weights as meta-attributes, with

RIPPER as the level-1 classifier, referred to as Wei-SHEHRS.

(f) The Stacking for HEHRS approach using the rule weight and rule coverage meta­

attributes with RIPPER as the level-1 classifier (Cov-Wei-SHEHRS).

These methods are compared against a baseline method, namely the standard top-

down approach for hierarchical classification. This approach consists of simply running a

rule induction algorithm at each internal (non-leaf) node of the class tree, as described in

Section 3.7.2. In the proposed and baseline methods the base rule induction algorithm

used in our experiments was the well-known RIPPER algorithm [39],

Throughout the entire set of experiments 10-fold cross validation [164] is used. Since

PSO is a stochastic method, the PSO-HEHRS and Lim PSO-HEHRS methods are run 10

times each - with different random seeds used to create the initial population in each run

- for each one of the 10 iterations of the cross-validation procedure. As the remainder of

the methods are deterministic, they are run just once for each of the 10 cross-validation

iterations.

Table 6 .6 through Table 6.11 and Table 6.15 through Table 6.20 show the predictive

accuracy that the different methods achieved in each data set during 10-fold cross

validation. The numbers after the “±” symbol are standard deviations. The first set of

tables (Table 6 .6 through Table 6.11) report results involving voting schemes for HEHRS

and the Extended Multiplicative Method. The second set of tables (Table 6.15 through

Table 6.20) report results involving stacking for HEHRS. In all these tables a cell is

174

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

coloured dark grey if there is a statistically significant win of the method in the

corresponding column against the baseline method, according to a two-tailed Student's t-

test with significance level of 0.05. The t-test used is WEKA’s implementation of Nadeau

and Bengio’s corrected re-sampled t-test [164], This more conservative corrected t-test

takes into account the ratio of training and test examples in an attempt to limit the number

of significant results occurring by chance. A cell is coloured light grey if there is a

statistically significant loss when compared to the baseline method. Table 6.12 and

Table 6.21 show the cumulative scores - calculated based on the results of the Student's t-

test - for each method, at each class level, for all data sets. For each data set, in

Table 6.12 and Table 6.21 one is added to the score of each cell if its corresponding

method (indicated by the column label) at the corresponding class level (indicated by the

row label) significantly beats the baseline approach in that data set. One is deducted from

the score in the cell for a loss against the baseline approach in the same manner. The

totals in the bottom row of the table are simply the summed results - over all data sets -

from each class level for each method.

Table 6.13, Table 6.22 and Table 6.14, Table 6.23 show the un-weighted and

weighted - respectively - misclassification costs associated with each experiment. The

misclassification cost is computed by finding the shortest path in the class tree from the

predicted class node to the actual class node.

In the case of the weighted misclassification cost this path is then weighted (the

weights of the edges of the path are added), with edges between the root node and the

first class level given a weight of 0.26, the edges between the first a second class level

given a weight of 0.13, between the second and third a weight of 0.07 and between the

third and fourth class levels a weight of 0.04. The reason for this weighting is to assign a

higher cost to more general misclassifications. These general errors are more serious than

the finer grained errors at lower levels of the class tree, as if a general error is made, no

information about the true class of an example is gained. The particular values assigned

to the edges will affect the overall result to a large extent, making the scoring system

175

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

more sensitive to the misclassifications at, or before the most heavily weighted edge.

Also, the differences between the weighting at each level must also be taken into account,

with less difference making the weighted misclassification cost behave more like the un­

weighted misclassification cost (discussed in the next paragraph). It is important that the

analysis of the results take into account the way each edge is weighted.

In the case of the un-weighted misclassification score, each edge is assigned a weight

of one. The final misclassification score is normalised by dividing the total number of

edges (or total weight) in the path between the predicted and the actual class nodes in the

class tree by the total worst possible score for all examples. The latter can be found by

finding the weight (or number of edges) from the actual class to any leaf node via the root

node, and taking the largest weight (or number of edges) as the worst possible

misclassification score.

The accumulative student’s t-test score at the bottom of Table 6.13, Table 6.22 and

Table 6.14, Table 6.23 shows the number of times the corresponding method is

significantly better (+ 1) or worse (-1) than the baseline approach across all the

experiments. The misclassification costs shown in Table 6.13, Table 6.22 and Table 6.14,

Table 6.23 are useful as (unlike the accuracy rates) they take into account the hierarchical

structure of the classes, and so they provide a way to quickly assess the performance of a

hierarchical approach. They can also be tailored to concentrate on general or fine grained

errors using weighting.

6.7.1. Voting Schemes for HEHRS and Extended Multiplicative

Method Results

Let us first analyze the voting for HEHRS results with respect to accuracy rate (shown

in detail in Table 6 .6 through Table 6.11 and summarised in Table 6.12). As can be

observed in Table 6.12 the pure HEHRS - without rule weights optimized by PSO -

achieved a disappointing performance: it obtained an overall score of -7 , overall,

significantly losing 7 times (according to the student’s t-test results) against the baseline
176

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

approach. Observing both Table 6.12 and the more detailed results per dataset in

Table 6 .6 through Table 6.11, one can see that, in all the 6 datasets, HEHRS obtains

results significantly worse than the baseline method's results in the first two (shallower)

class levels. On the other hand, in all the 6 datasets HEHRS obtains results significantly

better than the baseline method's results in the fourth (deepest) class level. The

consistency of these results is interesting, considering that the 6 datasets contain very

different numbers of attributes and examples, as well as different kinds of biological

motifs as predictor attributes - as indicated in Table 6.5.

Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 91.0±0.65 91.5i0.8 91.3i0.83 90.6i0.41 91.2i0.74
2 65.lil.25 82.0il.09 81.7il.06 77.9i0.46 80.3il.12
3 37.5i0.84 56.lil.43 ■.56.U1.2 55.liO.95 53.5Ü.5
4 44.0i3.49 83.1i3.03 83.0i2.78 82.li2.33 78.3i2.53

Table 6.6: Predictive accuracy (%) with Prints attributes and GPCR classes

Class level Rule-EMM
PSO-

11 LI IKS
LimPSO-
HEHRS HEHRS Baseline

1 90.2i0.69 91.0i0.71 91.li0.76 89.7i0.3 90.3i0.71
2 68.5i0.79 83.3i0.97 82.9i0.82 79.Ü0.47 81.li0.74
3 36.4il.03 55.2il.33 55.4il.15 54.6il.16 52.8i0.87
4 46.0i2.86 86.9il.78 86.6il.81 86.5i2.23 82.4i2.65

Table 6.7: Predictive accuracy (%) with InterPro attributes and GPCR classes

Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 87.4i0.88 87.8i0.62 87.5Ü.0 86.3il.36 87.6i0.92
2 49.8il.18 63.5Ü.77 62.9il.91 61.5il.79 63.9il.43
3 18.li0.59 32.2il.74 32.3Ü.91 29.5il.62 29.3il.56
4 12.8i2.39 45.5i3.18 45.5i3.93 36.5i2.46 35.4il.84

Table 6.8: Predictive accuracy (%) with Prosite attributes and GPCR classes

177

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 48.9±2.41 ‘97.8i0.34 97.8±0.41 96.7i0.35 97.4i0.28
2 33.5i2.61 95.0i0.47 95.2i0.67 93.3i0.29 94.6i0.46
3 32.8il.03 94.li0.34 94.3i0.65 90.li0.97 93.8i0.54
4 29.7±0.91 93.4i0.69 93.7i0.79 93.3i0.75 92.8i0.87

Table 6.9: Predictive accuracy (%) with Prints attributes and Enzyme classes

Class level Rule-EMM
PSO-

IIEHRS
LimPSO-
HEHRS HEHRS Baseline

1 37.0i0.24 98.0±0.2 98.0i0.32 92.3il.01 95.8il.84
2 23.3i0.8 96.2i0.43 96.3i0.37 88.7il.07 94.0i2.04
3 23.5i0.74 94.9i0.5 94.9i0.45 87.6il.01 92.6i2.26
4 23.5i0.75 96.0i0.48 96.Ü0.33 95.li0.89 94.5il.19

Table 6.10: Predictive accuracy (%) with Pfam attributes and Enzyme classes

Class level Rule-EMM
PSO-

HEHRS
LimPSO-
HEHRS HEHRS Baseline

1 40.7i0.4 98.7i0.3 98.7i0.24 96.6i0.48 98.5i0.24
2 28.li0.42 97.4i0.45 97.3i0.41 94.li0.27 97.li0.42
3 26.2i0.44 96.2i0.39 96.0i0.34 92.4i0.45 95.9i0.19
4 23.3i0.44 95.2i0.34 95.3i0.41 95.2i0.42 95.0i0.42

Table 6.11: Predictive accuracy (%) with Prosite attributes and Enzyme classes

Overall Scores Against Baseline - The best possible score for each cell in the
first 4 rows is 6 (number of data sets)_______________________________

Class level Rule-EMM PSO-HEHRS
LimPSO-
HEHRS HEHRS

1 -3 3 2 -4
2 -6 4 3 -6
3 -6 4 4 -1
4 -6 4 5 4

Totals -21 15 14 -7
Table 6.12: Summation of the number of statistically significant results according to the

Student’s t-test, when comparing the proposed approaches to the baseline

178

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

The poor performance of HEHRS is likely due to its bias towards deeper classes. As it

predicts a class based upon the addition of rule weights, classes that are deeper will have

more nodes and so more weights when compared to shallower ones. This explanation is

supported by the differences seen between the GPCR and Enzyme data sets. In the GPCR

data sets the number of examples in each class is quite unbalanced, with one class having

a large portion of the examples, this is even more so the case at lower levels. This is an

advantage for HEHRS at the lower levels (3 and 4) because it tends to try and classify

more examples as the deeper class, which also happens to be one of the largest. The

classes are more balanced in the enzyme data set but again the bias towards deeper

classes still reaps rewards in the fourth level.

One method of dealing with this bias would be to average the rule weights rather than

adding them. However, it is likely that this would cause the opposite problem in HEHRS

- a bias towards shallower classes. This is because, in general, rules at deeper class levels

tend to have lower qualities, due to the higher number of classes and lower number of

examples per class. Hence, the averaging process would favour the classes with fewer

descendants, giving fewer and higher weights. Investigating the effect of this averaging

process empirically could be a topic for future research. By contrast, this thesis proposed

a more sophisticated solution to the above problems, consisting of adaptively adjusting

the rule weights with a PSO algorithm, which produced good results - as will be

discussed later.

The Rule-EMM method achieved by far the worst results, significantly losing to the

baseline method in 21 out of 24 cases. This very bad performance is most likely due to

the way in which a decision list is generated by the rule induction algorithm and its

interaction with the EMM approach. The Rule-EMM method is reliant on not choosing

only the best matching rule (as in RIPPER), but all rules that match the test example at all

(at each class level) in a rule list. This is the trade off needed when attempting to find all

possible paths to class leaf nodes. The trade off does not seem to pay off with the current

rule induction algorithm, RIPPER. It is possible that if the rules produced by the rule

179

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

induction algorithm were unordered the misclassifications would become less of a

problem, since unordered rules tend to be more modular than ordered rules. Investigating

this hypothesis is an interesting topic for future research.

In general the best performing methods in terms of predictive accuracy are LimPSO-

HEHRS and PSO-HEHRS, with the version of PSO without a lower limit on the rule

weights (PSO-HEHRS) beating the PSO version with a lower limit (LimPSO-HEHRS)

by only one test. Both methods obtained a good performance, with an overall score of 15

or 14, respectively - the maximum possible score is 24 (4 class levels times 6 datasets).

Data Set
Rule-
EMM

PSO-
HEHRS

LimPSO-
HEHRS HEHRS Baseline

GPCR Prints 28.3±0.78 18.72i0.62 18.88i0.69 20.76i0.33 19.86i0.61
GPCR Interpro 25.53±0.5 17.13±0.51 17.19Ì0.5 19.21i0.31 18.44i0.36
GPCR Prosite 37.62±0.66 30.8i0.74 31.21i0.79 32.83il.13 31.43i0.94
Enzyme Prints 60.5± 1.74 4.78i0.39 4.67i0.55 6.74i0.4 5.2i0.42
Enzyme Pfam 69.45±0.51 3.68—-0.29 3.65Ì0.26 9.68Ì0.91 5.73Ü.83
Enzyme Prosite 66.59±0.41 2.99±0.29 3.07Ì0.22 5.68i0.32 3.2Ü0.23
Accumulative
t-test Score
against Baseline

-6 5 3 -6

Table 6.13: The Un-weighted Misclassification cost, comparing each proposed approach

against the baseline

Data Set Rule-EMM
PSO-
HEHRS

LimPSO-
HEHRS HEHRS Baseline

GPCR Prints 22.24i0.65 15.li0.65 15.31i0.75 17.0Ü0.3 15.98i0.66
GPCR Interpro 20.62i0.53 14.3i0.63 14.35i0.65 16.38i0.23 15.51i0.53
GPCR Prosite 30.31i0.77 24.9Ü0.7 25.33i0.95 26.87il.29 25.25i0.96
Enzyme Prints 57.74i2.16 3.73i0.36 3 66-- '1.49 5.4Ì0.27 4.16i0.32
Enzyme Pfam 68.23i0.43 3.04iO.25 3.0+0.27 9.33i0.96 5.21Ü.89
Enzyme Prosite 64.62i0.38 2.2Ì0.31 2.27i0.23 4.9i0.37 2.42i0.24
Accumulative
t-test Score
against Baseline

-6 4 3 -6

Table 6.14: The Weighted Misclassification cost, comparing each proposed approach

against the baseline
180

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

These conclusions derived from the analysis of accuracy rates are also reflected in

general in the misclassification costs (Table 6.13 and Table 6.14), with HEHRS and

Rule-EMM getting the same overall negative score against the baseline and the two

versions of the PSO getting an overall positive score against the baseline. Also, when the

finer grained misclassifications are weighted more evenly (as with the un-weighted

misclassification costs) the difference between LimPSO-HEHRS and PSO-HEHRS

becomes more apparent, with PSO-HEHRS outperforming LimPSO-HEHRS

significantly in 2 out of 6 tests.

Using the PSO to optimise rule weights has the disadvantage that a PSO run is

computationally expensive. On a machine with a P4 3.0 GHz CPU it takes about five

hours to optimise the weights for the rules generated from a single 10 times 10-fold cross

validation run (depending on the number of rules). Also HEHRS itself requires more

computational time as many more rule sets must be induced using larger training sets

(when compared to the baseline approach). On the same machine the models for a single

run of the baseline approach are induced within ten minutes, whereas the HEHRS models

take up to one hour on the larger datasets. These models do not vary between approaches

and so can be cached, increasing efficiency when comparing multiple approaches.

However, note that maximising classification accuracy is usually considered more

important than minimizing the processing time taken by a classification algorithm. This is

particularly the case in real-world scenarios like the bioinformatics problems addressed in

this work, where the time taken by a run of the PSO algorithm is a very small fraction of

the time that was spent in preparing our datasets for data mining purposes (about 4

months). This scenario is also often found in other data mining applications, where most

of the time taken by the entire knowledge discovery process is spent preparing data [91].

6.7.2. Stacking for HEHRS Results

As can be seen in tables Table 6.15 through Table 6.20 - and summarised in

Table 6.21 - the rule based (Cov-SHEHRS, Wei-SHEHRS and Cov-Wei-SHEHRS)
181

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

stacking approaches (SHERS) do not perform particularly well when compared to the

baseline approach. The method that purely uses binary attributes (Cov-SHEHRS)

performs the best out of these three methods, with the purely continuous version doing

the least well (Wei-SHEHRS) - nearly always losing to the baseline approach. The

Bayes-SHEHRS method (which uses a naive Bayesian classifier as the level-1 classifier)

performs better, significantly beating the baseline approach in 8 out of 24 cases

(Table 6.21).

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 90.5il.13 91.Ü0.9 89.7il.03 90.5i0.99 91.2i0.74
2 80.5il.04 78.0Ü .1 45.9il.37 44.3il.38 80.3il.12
3 54.9Ü.42 53.5il.12 39.9il.33 45.2Ü.1 53.5Ü.5
4 80.3Ü.5 80.li2.66 71.li2.47 77.7i2.89 78.2i2.53

Table 6.15: Predictive accuracy (%) with Prints attributes and GPCR classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 90.li0.84 87.0ill.15 8 6 .8Ü .2 90.2il.41 90.2i0.71
2 80.6Ü.1 71.6ill.48 51.4ill.54 57.1Ü3.6 81.li0.74
3 54.0il.07 49.3i5.9 43.3i3.01 46.6i3.23 52.8i0.87
4 83.9i2.17 80.6i2.36 78.li2.88 83.2i3.52 82.4i2.65

Table 6.16: Predictive accuracy (%) with InterPro attributes and GPCR classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 87.4Ü.4 85.7i2.86 86.3Ü.4 86.3il.39 87.6i0.92
2 64.4il.41 61.7i2.02 52.4i8.67 45.5i5.93 63.9il.43
3 30.lil.72 29.5il.35 27.8i2.29 26.2i0.97 29.3il.56
4 36.4i3.35 37.2il.26 38.6i6.54 41.7i4.01 35.3il.84

Table 6.17: Predictive accuracy (%) with Prosite attributes and GPCR classes

182

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 97.540.28 96.0±0.38 95.440.43 95.941.05 97.340.28
2 94.9±0.57 93.440.6 92.240.52 92.841.11 94.540.46
3 93.5±0.8 91.140.83 89.440.76 90.841.17 93.740.54
4 92.640.82 90.040.76 75.641.04 91.540.76 92.840.87

Table 6.18: Predictive accuracy (%) with Prints attributes and Enzyme classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 97.940.33 97.140.75 95.342.55 96.442.06 95.741.84
2 96.440.49 95.340.87 91.341.83 92.941.66 94.042.04
3 94.740.7 92.840.97 87.441.82 90.741.76 92.642.26
4 96.240.46 94.040.61 83.640.89 94.740.5 94.441.19

Table 6.19: Predictive accuracy (%) with Pfam attributes and Enzyme classes

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

1 98.640.26 98.640.35 97.240.79 97.740.86 98.540.24
2 97.140.32 97.040.52 93.240.73 96.040.82 97.140.42
3 95.840.29 95.840.29 89.640.71 94.540.87 95.940.19
4 95.040.49 94.940.48 80.440.57 95.140.5 94.940.42

Table 6.20: Predictive accuracy (%) with Prosite attributes and Enzyme classes

Overall Scores Against Baseline - The best possible score for each cell in
the first 4 rows is 6 (number of data sets)__________________________

Class
Level

Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS

1 1 0 -5 -2
2 1 -3 -5 -5
3 3 -1 -6 -5
4 3 0 -5 0

Totals 8 -4 -21 -12

Table 6.21: Summation of the number of statistically significant results, according to the

Student’s t-test, when comparing each proposed approach to the Baseline

183

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

It is initially somewhat surprising that the rule based stacking approaches perform so

badly, especially that the Wei-SHEHRS approach performs significantly worse than the

considerably more simple HEHRS approach (HEHRS uses weighted majority voting

whereas Wei-SHEHRS uses classification rules - as was discussed in the latter part of

section 6.4). This is due to the generality and flexibility of the voting scheme and the

reliance of Wei-SHEHRS on specific cases found in the training phase that may not occur

in the testing phase (see Table 6.4 for an example of such a case). This problem may be

amplified by using RIPPER (a general purpose classification algorithm) on a very

specific type of problem - finding relationships between the continuous meta-attributes.

Rules may be found that make little sense but fit the training data well, e.g., including a

term that puts an upper limit on the cumulative score meta-attribute for a particular class.

Furthermore, the performance of the Cov-Wei-SHEHRS and Cov-SHEHRS

approaches is most likely due to over fitting and the level- 1 algorithm being unaware of

the hierarchy involved in HEHRS. This hierarchy is important as higher level rules are

usually more reliable than lower level ones within the ensemble. The algorithm is

unaware of this during the rule pruning stages, to its detriment, i.e., it is just as likely to

prune a term involving a higher level rule as a lower level rule. Obviously if there was

sufficient and extensive enough training data for the level- 1 classifiers this would not be a

problem, but this is always the case with any induction algorithm. The impact of pruning

can be seen by the relatively good performance of Bayes-SHEHRS when compared to

Cov-SHEHRS. The methods are very similar, except that the Bayes method is influenced

by all level-0 rules (due to the nature of the Bayes classification algorithm) whereas the

Cov approach is only influenced by the level-0 rules included in the meta-rules. This

makes the Cov approach less flexible in the testing phase and more prone to overfitting

the training data.

184

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

Data Set Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

GPCR Prints 19.36±0.61 20.39±0.59 33.36i0.84 31.86i0.97 19.86i0.61
GPCR Interpro 18.21i0.49 21.78±5.6 30.29i3.64 26.16i4.32 18.44i0.36
GPCR Prosite 30.91il.04 32.55il.51 35.33i3.33 37.76il.82 31.43i0.94
Enzyme Prints 5.04i0.49 6.8Ü0.46 10.93i0.47 6.98i0.89 5.2i0.42
Enzyme Pfam 3.67±0.39 4.87Ì0.74 lO.Oil.8 6.3Ü.51 5.73Ü.83
Enzyme Prosite 3.19±0.24 3.22i0.31 9.04i0.54 4.13Ì0.67 3.2Ü0.23
Accumulative
t-test Score
against Baseline

3 -1 -6 -5

Table 6.22: The Un-weighted Misclassification cost, comparing each proposed approach

against the baseline

Data Set Bayes-
SHEHRS

Cov-
SHEHRS

Wei-
SHEHRS

Cov-Wei-
SHEHRS Baseline

GPCR Prints 16.0i0.85 16.57i0.65 27.68i0.85 26.81i0.92 15.98i0.66
GPCR Interpro 15.54i0.58 19.59i8.59 26.6i3.2 22.29i3.83 15.51iO.53
GPCR Prosite 24.98il.24 26.85i2.1 29.24i3.08 31.22il.51 25.25i0.96
Enzyme Prints 3.97i0.4 5.6Ü0.41 7.55i0.4 5.88Ü.0 4.16i0.32
Enzyme Pfam 3.05i0.36 4.05i0.76 7.51*2.14 5.39Ü.74 5.21Ü.89
Enzyme Prosite 2.38i0.24 2.4Ü0.34 5.89i0.66 3.34i0.76 2.42i0.24
Accumulative
t-test Score
against Baseline

1 -2 -6 -5

Table 6.23: The Weighted Misclassification cost, comparing each proposed approach

against the baseline

The un-weighted misclassification cost (Table 6.22) reveals that the Bayes-SHEHRS

approach improves predictive accuracy significantly in 3 out of 6 cases. The fact that the

scores differ between the weighted and un-weighted misclassification costs (Table 6.23

and Table 6.22 respectively) indicate that the Bayes-SHEHRS and Cov-SHEHRS

approaches perform better at lower levels in the class hierarchy. This can be surmised as
185

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

the weighted misclassification cost measure weights the misclassifications at higher

levels more heavily than the lower ones, whereas the un-weighted cost weights all

misclassification the same. The fact that there appears to be less difference between the

two approaches in the weighted misclassification cost table when compared to the un­

weighted misclassification cost table means that most of the difference is in the lower

levels of the class hierarchy. This is not entirely surprising as misclassifications that are

averted are bound to accumulate towards the lower levels of the class tree due to the

nature of TDDC.

6.8. Summary

This work proposed new hierarchical classification methods that use characteristics of

hierarchical class data (where the classes are arranged in a tree structure) to try to

improve predictive accuracy, with respect to a standard top-down hierarchical

classification method. More precisely, four main types of hierarchical classification

methods were proposed, namely:

(a) HEHRS (Hierarchical Ensemble of Hierarchical Rule Sets), a method based on

exploiting the hierarchical nature of the data to create different training sets to be given as

input to a bagging-like ensemble method;

(b) Two versions of a Particle Swarm Optimisation (PSO) method for optimising the

rule weights used by HEHRS to classify test examples;

(c) Rule-EMM, the rule-based version of the Extended Multiplicative Method, which

tries to reduce the problem of misclassifications at shallower class levels leading to

misclassifications at deeper class levels in the standard top-down approach for

hierarchical classification; and

(d) Four stacking approaches: Two using rule coverage meta-features, with either

RIPPER or Naïve Bayes as the level-1 classifier; Two using either rule weight meta-

186

Chapter 6. Hierarchical Ensembles of Hierarchical Rule Sets

features, or a combination of rule weight meta-features and rule coverage meta-features

(with RIPPER as the level-1 classifier).

Out of these four types of methods, the pure HEHRS method, Rule-EMM and

RIPPER-based stacking approaches produced disappoint results, in general significantly

worse than the standard top-down approach. However, the development of a PSO

algorithm to optimise rule weights for HEHRS was very effective, leading to a

hierarchical classification system that obtained, overall, predictive accuracies

significantly better than the accuracies obtained by the standard top-down approach. The

same can be said for the results from Naive Bayes-based stacking approach, which

significantly increased performance beyond that of the baseline. These results were to a

large extent consistent across 6 different bioinformatics datasets involving the

hierarchical classification of protein functions, a set of challenging real-world

bioinformatics problems with large numbers of predictor attributes and large numbers of

classes to be predicted.

187

Chapter 7. Conclusions

Chapter 7. Conclusions

7.1. Contributions

This thesis has proposed several new methods which aim to improve the predictive

accuracy of hierarchical classification. It has focused on the prediction of protein

functions, more specifically the function of two types of protein: G-protein coupled

receptors and enzymes. Being able to predict the functions of these proteins automatically

and accurately is a major task in bioinformatics and has important applications in our

ability to create new drugs. For instance, being able to identify newly discovered or

potential proteins that have a particular function relating to a disease allows biologists to

design drugs that target them.

The hierarchical nature of the new protein data sets used in our experiments have

posed difficult challenges, mainly due to the large number of classes and low number of

records per class (at the deeper levels of the class hierarchy, containing more specialised

classes). These challenges require new approaches tailored to the problem of hierarchical

classification.

In this context, we have created new swarm intelligence techniques for the

hierarchical classification problems identified in this work. Swarm intelligence

algorithms have proved successful for data mining applications in the past and this thesis

has demonstrated that they continue to be successful (one of the goals of the EPSRC-

funded XPS project [169] was to assess how applicable Particle Swarm Optimisation

could be to data mining problems).

188

Chapter 7. Conclusions

The main original contributions of this thesis are:

• A Particle Swarm Optimisation/Ant Colony Optimisation Classifier Selector

Algorithm.

The proposed PSO/ACO-CS (Section 5.2) algorithm is a new hierarchical

classifier selector technique. This is based on the idea that different classifiers will

be optimal at each “divide” (classifier node) in the top-down divide-and-conquer

(TDDC) tree. Seeker et al. [140] proposed a greedy approach to take advantage of

this fact and to try and boost classification accuracy. We discussed the sub­

optimality of this approach (Section 3.7.2.1) and proposed a swarm intelligence

based method to try to find more optimal combinations of classifiers in a global

search fashion.

In terms of classification accuracy PSO/ACO-CS always at least equalled the

best performing individual classification algorithm and often beat them in our

experiments. Furthermore, PSO/ACO-CS affected a relatively small but significant

improvement when compared to Seeker et al’s approach.

• A Particle Swarm Optimisation/Ant Colony Optimisation Misclassification

Recovery algorithm.

The proposed PSO/ACO-RO (Section 5.3) algorithm is a misclassification

recovery optimisation technique which uses a swarm intelligence method to try to

mitigate a major drawback of the TDDC approach. This drawback, known as

“blocking” in the literature, occurs when in the standard TDDC tree a classifier at a

higher level in the tree misclassifies an example. Due to the top-down nature of the

classifier tree, the misclassifications at a higher level can never be correctly

classified at a lower level in the hierarchy. PSO/ACO-RO attempts to improve the

situation by allowing classifiers to redirect examples (during the testing phase) to

classifier nodes that are not necessarily one of their child classifier nodes. In this

189

Chapter 7. Conclusions

fashion each classifier can attempt to correct any errors that a parent classifier node

has made. The swarm intelligence algorithm is used to decide which nodes benefit

from this type of recovery and which do not (i.e., which classifier nodes should

have misclassification recovery “turned on”) in a global search manner.

PSO/ACO-RO and PSO/ACO-CS were combined to create PSO/ACO-CS-RO

(Section 5.3.2). This approach was compared against the baseline classifiers and a

modified greedy method based on Seeker et al’s approach (Greedy-PSO/ACO-RO).

Overall PSO/ACO-CS-RO was the most effective approach, almost always

outperforming all of the baseline classifiers. It was also shown that using

PSO/ACO-RO increased the performance of both the greedy and PSO/ACO-CS

techniques to a degree.

• The Hierarchical Ensembles of Hierarchical Rule Sets Method.

The proposed HEHRS (Chapter 6) ensemble technique attempts to boost the

accuracy of individual classifier nodes within the TDDC tree. It does this by

constructing a hierarchical ensemble of rule sets in place of each classifier node

within the TDDC tree. This can loosely be seen as a type of bagging (a well known

ensemble method), with multiple classifiers derived from the same original data set

but in different “forms”, in this case the different “forms” are obtained by

modifying the classes to be predicted in a way which follows the native class

hierarchy. We explored several methods to combine the predictions made by each

constituent rule set within each ensemble, including a PSO-based approach which

optimises the rule weights in a global fashion.

Overall our experiments showed that the PSO-based technique performed

significantly best overall, with the Bayesian technique (based on the naive Bayes

algorithm) also being quite effective. Both of these approaches significantly beat the

baseline approach (a standard TDDC classifier using one type of algorithm).

190

Chapter 7. Conclusions

The secondary original contributions of this thesis are:

• A Particle Swarm Optimisation/Ant Colony Optimisation Rule Induction

algorithm.

The proposed PSO/ACO-RI (Chapter 4) is a new proof-of-concept “flat”

classification rule induction algorithm. This algorithm is based on the hybrid

Particle Swarm Optimisation/Ant Colony Optimisation (PSO/ACO) method

proposed in this thesis. The PSO/ACO-RI algorithm copes directly with both

nominal/categorical and numeric data.

Our experiments showed that, in general, PSO/ACO-RI generated simpler rule

sets when compared to the well established PART algorithm (based on the industry

standard C4.5Rules algorithm). Furthermore, PSO/ACO-RI achieved this without

reducing predictive accuracy.

• Protein Function Data Sets

We have created 7 new hierarchical protein function data sets to evaluate our

proposed algorithms. These consist of 4 GPCR data sets and 3 enzyme data sets.

These data sets are available to other researchers on request.

One of the main objectives of this thesis was to propose new methods to deal with

hierarchical classification problems more effectively. Another main aim was to see if the

previously successful swarm intelligence based paradigm would be effective in the type

of challenging data mining problem explored in this thesis (namely hierarchical

classification in particular applied to protein function). Taking the extensive experimental

results reported in this thesis as a whole we believe that a firm conclusion can be made -

yes, swarm intelligence is definitely effective and applicable to this type of problem. We

hope that future researchers will take this conclusion on board and develop novel,

interesting and more sophisticated approaches based on this very versatile paradigm.

191

Chapter 7. Conclusions

7.2. Future Work

Although we have attempted to explore and evaluate as many potentially-effective

techniques as possible for hierarchical classification, there remain a large number of

potential avenues for future research.

The most obvious direction for future research is applying the techniques proposed in

this thesis to more data sets. Different types of proteins and different protein function

classification schemes could be used. Also, it should be possible to apply the techniques

to text classification where there are often hierarchies present - although the methods

proposed in this work might need modification for this specific (and quite different) type

of problem in order for them to be effective. In any case, in principle the swarm

intelligence based hierarchical methods proposed in this thesis are generic enough to be

applied to any hierarchical classification problem in any application domain. This is true

as long as the data is pre-processed in a format suitable for the proposed algorithms.

Another obvious direction for future research would be to extend the approaches to

deal with data sets where the class nodes form a directed acyclic graph, rather than a tree

as addressed in this thesis. This is a particularly interesting and challenging direction for

research and it would be very interesting to discover whether the types of approach

proposed in this thesis would be applicable to this type of problem. The approaches may

also be adapted to deal with hierarchical multi-label problems, where an example can

belong to more than one class node at any given class level.

A further interesting avenue for future research would be attempting to use swarm

intelligence to create a “big bang” type hierarchical classification approach where the

entire classifier - predicting potentially any of the classes in the class hierarchy - is

constructed at once. The fact that PSO/ACO algorithm was shown to (in general) create

simpler rule sets when compared to J48 and the fact that hierarchical C4.5 [33] (a “big

bang” approach) is such a promising algorithm leads us to believe that this could be a

very fruitful research direction.

192

Chapter 7. Conclusions

Another potentially very interesting avenue for research would be to apply feature

selection methods [41] (which uses PSO) [89] [90] [141] [142] to the datasets before they

are processed by the approaches discussed in this thesis. An investigation into how this

feature selection interacts with the proposed approaches would also be very interesting,

also possibly using feature selection during the run of the proposed algorithms.

It would also be interesting to discover whether PSO/ACO would be effective on

other combinatorial optimisation problems such as the travelling salesman problem (we

present some very preliminary results in Appendix A for PSO/ACO on binary

combinatorial optimisation problems). We believe that due to the flexibility of PSO/ACO

- being able to select the topology and the possible advantages discrete

recombination [2 2] (where influence is taken from all neighbouring particles not just the

best one in a single interaction) has shown with standard PSO - this would be a

promising area. Also, it may be interesting to use an optimiser to optimise the

settings/topology, etc, for PSO/ACO for specific types of application. However, the

advantage of such parameter optimisation would have to be balanced against the

disadvantage of a much longer overall processing time.

It may also be possible to improve PSO/ACO-RI. At present PSO/ACO-RI is partly

greedy in the sense that it builds each rule with the aim of optimising that rule's quality

individually, without directly taking into account the interaction with other rules. A less

greedy, but possibly more computationally expensive way to approach the problem

would be to associate a particle with an entire rule set and then to consider the quality of

the entire rule set when evaluating a particle. This is known as the “Pittsburgh

approach” [61] in the evolutionary algorithm literature, and it could be an interesting

research direction. Also, the part of the rule containing nominal attributes is always

discovered first and separately from the part containing continuous attributes, it could be

advantageous to use a more “co-evolved” [61] approach.

For classifier selection this work only compares the proposed PSO/ACO-CS

algorithm with Seeker et al’s greedy selective approach, so one direction for future

193

Chapter 7. Conclusions

research is to compare the PSO/ACO-CS algorithm with another population-based meta­

heuristics for optimisation, e.g. evolutionary algorithms. As the focus of this thesis was

on swarm intelligence and not on the benefits of other potential algorithms, such a

comparison would be an interesting topic of future research.

There are several potential avenues for future research with the ensemble-based

approach proposed in Chapter 6 . Since optimising the rule weights used by HEHRS with

the PSO method proved to be very effective, perhaps the rule weights used by Rule-EMM

could be optimised in just as an effective way. In addition, it would be interesting to

investigate the performance of Rule-EMM when the base rule induction algorithm used

to discover classification rules produces an unordered rule set, rather than an ordered rule

list.

194

References

References

[1] A. Abraham, C. Grosan, V. Ramos. Swarm Intelligence in Data Mining. Studies

in Computational Intelligence, Vol. 34. Springer. 2006.

[2] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts. P

Walter. Essential Cell Biology second edition, Garland Science. 2004.

[3] S. F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local

alignment search tool. J. Mol. Biol, Vol. 215, No. 3. pp. 403-410. 1990.

[4] T. K. Attwood. The PRINTS database: a resource for identification of protein

families. Brief Bioinform. pp. 252-63. 2002.

[5] T. K. Attwood, P. Bradley, D. R. Flower, A. Gaulton, N. Maudling, A. Mitchell,

G. Moulton, A. Nordle, K. Paine, P. Taylor, A. Uddin, C. Zygouri. PRINTS and

its automatic supplement, prePRINTS. Nucleic Acids Research, 31(1). pp. 400-

402. 2003.

[6] R. Beckers, S. Goss, J. L. Deneubourg & J. M. Pasteels. Colony size,

communication and ant foraging strategy. Psyche, 96. pp. 239-256. 1989.

[7] A. Bateman, L. Coin, R. Durbin, R. D. Finn, V. Hollich, S. Griffiths-Jones, A.

Khanna, M. Marshall, S. Moxon, E. L. L. Sonnhammer, D. J. Studholme, C.

Yeats, S. R. Eddy. The Pfam protein families database. Nucleic Acids Research,

32 (Database-Issue), pp. 138-141.2004.

[8] Z. Barutcuoglu, R. Schapire, O. Troyanskaya. Hierarchical multi-label prediction

of gene function. Bioinformatics, 22(7). pp. 830-836. 2006.

[9] R. Battiti, A. Colla. Democracy in Neural Nets: Voting Schemes for Accuracy.

Neural Networks, Vol. 7. pp. 691-707. 1994.

195

References

[10] E. Bauer, R. Kohavi. An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants. Machine Learning, 36 (1/2). pp. 105-

139. 1999.

[11] K. P. Bennett. Global tree optimization: A non-greedy decision tree algorithm.

Computing Science and Statistics, 26. pp. 156-160. 1994.

[12] F. V. D. Bergh, An Analysis of Particle Swarm Optimizer, PhD thesis,

University of Pretoria. 2001.

[13] M. Bemaschi, F. Castiglione, A. Ferranti, C. Gavrila, M. Tinti, G. Cesareni.

ProtNet: a tool for stochastic simulations of protein interaction networks

dynamics. BMC Bioinformatics 2007, 8 (Suppl. 1), S4. 2007.

[14] R. A. Berk. Data Mining within a Regression Framework. In Proc. Data Mining

and Knowledge Discovery Handbook: A Complete Guide fo r Practitioners and

Researchers, Oded Maimon and Lior Rokach (eds.), Kluwer Academic Publishers,

Forthcoming.

[15] M. Bhasin, G.P. Raghava. GPCRpred: an SVM-based method for prediction of

families and subfamilies of G-protein coupled receptors. Nucleic Acids Res, 1, 32

(Web Server issue), pp. 383-9. 2004.

[16] Eur. J. Biochem. Nomenclature Committee of the International Union of

Biochemistry and Molecular Biology, 264. pp. 610-650. 1999.

[17] Eur. J. Biochem. IUPAC-IUB Joint Commission on Biochemical Nomenclature

(JCBN). Nomenclature and Symbolism for Amino Acids and Peptides.

Recommendations, 138. pp. 9-37. 1984.

[18] H. Blocked, L. Schietgat, J. Struyf, S. Dzeroski, A. Clare. Decision Trees for

Hierarchical Multilabel Classification: A Case Study in Functional Genomics. In

Proc. of PKDD 2006, 10th European Conference on Principles and Practice o f

Knowledge Discovery in Databases, LNAI, vol 4213. pp. 18-29. 2006.

196

References

[19] H. Blocked, M. Bruynooghe, S. Dzeroski, J. Ramon, J. Struyf. Hierarchical

multi-classification. In Proc. KDD-2002 Workshop Notes: MRDM 2002 -

Workshop on Multi-Relational Data Mining, pp. 21-35. 2002.

[20] E. Bonabeau, G. Théraulaz. Swarm Smarts. Scientific American, pp 73-79. 2000.

[21] D. Bratton, J. Kennedy. Defining a Standard for Particle Swarm Optimization. In

Proc. of the 2007 IEEE Swarm Intelligence Symposium, pp. 120-127. 2007.

[22] D. Bratton, T. Blackwell. A Simplified Recombinant PSO. Journal o f Artificial

Evolution and Applications (JAEA), special issue on Particle Swarms: The

Second Decade. Article ID 654184. doi: 10.1155/2008/654184. 2008.

[23] L. Breiman. Bagging Predictors. Machine Learning, Vol. 24. pp. 123-140. 1996.

[24] G. Brown, J. Wyatt, R. Harris, X. Yao. Diversity creation methods: a survey and

categorisation. Information Fusion, 6(1). pp. 5-20. 2005.

[25] C. Bru, E. Courcelle, S. Carrère, Y. Beausse, S. Dalmar, D. Kahn. The ProDom

database of protein domain families: more emphasis on 3D. Nucleic Acids Res, 33:

D212-D215. 2005.

[26] P. Bucher, A. Bairoch. A generalized profile syntax for biomolecular sequence

motifs and its function in automatic sequence interpretation. In Proc. ISMB-94. pp.

53-61. AAAI/MIT Press. 1994.

[27] A. Bulashevska, R. Eils. Predicting protein subcellular locations using

hierarchical ensemble of Bayesian classifiers based on Markov chains. BMC

Bioinformatics, 7:298. 2006.

[28] A. Chan, A. A. Freitas. A new ant colony algorithm for multi-label classification

with applications in bioinformatics. In Proc. Genetic and Evolutionary

Computation Conference (GECCO-2006). pp. 27-34. ACM. 2006.

[29] P.K. Chan, S. J. Stolfo. On the Accuracy of Meta-Learning for Scalable Data

Mining. J. Intel! Inf. Syst, 8(1). pp. 5-28. 1997.

[30] O. Chapelle, B. Schôlkopf, A. Zien. Semi-Supervised Learning. M IT Press. 2006.

197

References

[31] C. Chen. A PSO-Based Method for Extracting Fuzzy Rules Directly from

Numerical Data. Cybernetics and Systems, 37(7). pp. 707-723. 2006.

[32] A. Clare, R. D. King. Knowledge discovery in multi-label phenotype data. In

Proc. 5th European Conference on Principles and Practice o f Knowledge

Discovery and Data Mining (PKDD-2001), LNAI 2168. pp. 42-53. 2001.

[33] A. Clare. Machine learning and data mining for yeast functional genomics. PhD

Thesis. University of Wales Aberystwyth. 2003.

[34] P. Clark, R. Boswell. Rule induction with CN2: Some recent improvements.

Machine Learning - EWSL-91. pp. 151-163. 1991.

[35] M. Clerc, J. Kennedy. The particle swarm-explosion, stability and convergence

in a multidimensional complex space. IEEE Transactions on Evolutionary

Computation, 6(1). pp. 58-73. 2002.

[36] M. Clerc. Particle Swarm Optimization. ISTE Ltd. London. 2006.

[37] R. Caruana, A. Niculescu-Mizil. Data mining in metric space: an empirical

analysis of supervised learning performance criteria. In Proc. of the 6th ACM

SIGMOD International Conference on Knowledge Discovery and Data Mining

(KDD-2004). pp. 69-78. ACM Press. 2004.

[38] G. Cochrane et. al. Priorities for nucleotide trace, sequence and annotation data

capture at the Ensembl Trace Archive and the EMBL Nucleotide Sequence

Database. DOI 10.1093/nar/gkml018. Nucleic Acids Research Journal. 2007.

[39] W. W. Cohen. Fast effective rule induction. In Proc. of the 12th Int. Conf. on

Machine Learning (ICML-95), A. Prieditis and S. Russell, editors, pp. 115-123.

Morgan Kaufmann. 1995.

[40] G. F. Cooper. The Computational Complexity of Probabilistic Inference using

Bayesian Belief Networks. Artificial Intelligence, 42. pp. 393-405. 1990.

[41] E. S. Correa, A. A. Freitas, C. G. Johnson. Particle swarm for attribute selection

in Bayesian classification: an application to protein function prediction. Journal o f

Artificial Evolution and Applications. 2008:12 pages. 2008.

198

References

[42] E. P. Costa, A. C. Lorena, A. C. P. L. F. Carvalho, A. A. Freitas, N. Holden.

Comparing several approaches for hierarchical classification of proteins with

decision trees. Advances in Bioinformatics and Computational Biology (Proc.

Second Brazilian Symposium on Bioinformatics, BSB-2007), LNBI 4643. pp. 126-

137. Springer. 2007.

[43] R. Daly, Q. Shen. Using Ant Colony Optimisation in Learning Bayesian

Network Equivalence Classes. In Proc. 2006 UK Workshop on Computational

Intelligence, pp 111-118. ACTA Press. 2006.

[44] M. O. Dayhoff, R. M. Schwartz, B. C. Orcutt, A model of evolutionary change

in proteins. In Dayhoff, M. O. [ed] Atlas of protein sequece and structure,

supplement 3. National Biomedical Research Foundation, pp. 345-352. 1978.

[45] O. Dekel, J. Keshet,Y. Singer. Large margin hierarchical classification. ICML'04.

pp. 209-216. 2004.

[46] P. Derbeko, R. E. l.-Yaniv, R. Meir. Variance Optimized Bagging. In

Proceedings of the 13th European Conference on Machine Learning, pp. 60-71.

2002.

[47] T. G. Dietterich. Machine learning research: Four current directions. AI

Magazine, 18(4). pp. 97-136. 1997.

[48] Y. Dong, K. Han. Text classification based on data partitioning and parameter

varying ensembles. SAC '05: Proceedings o f the 2005 ACM symposium on

Applied computing, pp. 1044-1048. ACM Press. 2005

[49] M. Dorigo, L.M. Gambardella. Ant colonies for the travelling salesman problem.

Biosystems, 43. pp. 73-81. 1997.

[50] M. Dorigo, T. Stutzle. Ant Colony Optimization. MIT Press. 2004.

[51] M. Dorigo, K. Socha. An Introduction to Ant Colony Optimization. To appear in

T. F. Gonzalez, Approximation Algorithms and Metaheuristics. CRC Press. 2008.

199

References

[52] S. Dumais, H. Chen. Hierarchical classification of Web content. In Proc. of the

23 rd ACM Int. Conf. on Research and Development in Information Retrieval, pp.

256-263. 2000.

[53] S. Eddy. HMMER User’s Guide - Biological sequence analysis using profile

hidden Markov models, http://hmmer.wustl.edu/. 2003.

[54] A.E. Eiben, J.E. Smith. Introduction to Evolutionary Computing. Springer.

Natural Computing Series. 2nd edition. 2007.

[55] The ENCODE Project Consortium et al. Identification and analysis of functional

elements in 1% of the human genome by the ENCODE pilot project. Nature, pp.

799-816. 2007.

[56] R. Eisner, B,.Poulin, D. Szafron, P. Lu, R. Greiner. Improving Protein Function

Prediction using the Hierarchical Structure of the Gene Ontology. In Proc. 2005

IEEE Symp. on Computational Intelligence in Bioinformatics and Computational

Biology. 2005.

[57] W. J. Ewens, G. R. Grant. Statistical Methods in Bioinformatics: An

Introduction, Second Edition. Springer. 2005.

[58] I. D. Falco, A. D. Cioppa, E. Tarantino. Facing classification problems with

Particle Swann Optimization. Appl. Soft Comput, 7(3). pp. 652-658. 2007.

[59] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From data mining to knowledge

discovery: an overview. Advances in Knowledge Discovery and Data Mining, pp.

1-34. AAAI/MIT. 1996.

[60] D. Fillmore. It’s a GPCR World. Modem Dmg Discovery, 11(7). pp 24-28. 2004

[61] A. A. Freitas. Data Mining and Knowledge Discovery with Evolutionary

Algorithms. Springer. August 2002.

[62] A. A. Freitas and A. C. P. L. F. de Carvalho. A Tutorial on Hierarchical

Classification with Applications in Bioinformatics. In. D. Taniar (Ed.) Research

and Trends in Data Mining Technologies and Applications, pp. 175-208. Idea

Group. 2007.

200

http://hmmer.wustl.edu/

References

[63] A. A. Freitas, R. S. Parpinelli, H. S. Lopes. Ant Colony Algorithms for Data

Classification. To appear in: M. Khosrou-Pour (Ed.) Encyclopedia o f Information

Science and Technology, 2nd Ed. Idea Group. 2008.

[64] Y. Freund, R. E. Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. J. Comput. Syst. Sei., Academic Press, Inc., 55. pp.

119-139. 1997.

[65] G. Fung, S. Sandilya, and R. Bharat Rao. Rule extraction from linear support

vector machines. In Proc. of the 11th ACM SIGKDD bit. Conf. on Knowledge

Discovery and Data Mining (KDD-05). pp. 32-40. 2005.

[6 6] J. Fumkranz and G. Widmer. Incremental reduced error pruning. In Proc. the

11th Int. Conf. on Machine Learning (ICML-94). pp. 70-77. 1994.

[67] M. Galea, Q. Shen. Linguistic Hedges for Ant-Generated Fuzzy rules. In. Proc.

IEEE International Conference on Fuzzy Systems, pp. 1973-1980. 2006.

[6 8] M. Galea, Q. Shen. Simultaneous Ant Colony Optimization Algorithms for

Learning Linguistic Fuzzy Rules. In. Swarm Intelligence in Data Mining, pp. 75-

100. Springer. 2006.

[69] The Gene Ontology Consortium. Gene Ontology: tool for the unification of

biology. Nature Genetics 25. pp. 25-29. 2000.

[70] GPCRDB. http://www.gpcr.org/. Visited December 2007.

[71] S. Günter, H. Bunke. Evaluation of Classical and Novel Ensemble Methods for

Handwritten Word Recognition. In Proc. 10th Int. Workshop on Structural and

Syntactic Pattern Recognition (SSPR). pp. 583-591. 2004.

[72] S. Günter, H. Bunke. Optimization of Weights in a Multiple Classifier

Handwritten Word Recognition System Using a Genetic Algorithm. ELCVIA(3).

No. l.pp . 25-44. 2004.

[73] Y. Z. Guo, M. L. Li, K. L. Wang, Z. N. Wen, M. C. Lu, L. X. Liu, L. Jiang,

Classifying G protein-coupled receptors and nuclear receptors on the basis of

201

http://www.gpcr.org/

References

protein power spectrum from fast Fourier transform. Amino Acids, 30(4). pp. 397-

402. Epub. 2006.

[74] D. J. Hand. Construction and Assessment of Classification Rules. Wiley. 1997.

[75] R. Hassan, B. Cohanim, O. L de Week, Venter G. A Comparison of Particle

Swarm Optimization and the Genetic Algorithm. AIAA Multidisciplinary Design

Optimization Specialist Conference. 2005.

[76] Y. Huang, J. Cai, L. Ji, Y. Li. Classifying G-protein coupled receptors with

bagging classification tree. Computational Biology and Chemistry, 28(4). pp. 275-

280. 2004.

[77] S. Henikoff, J. G. Henikoff. Amino acid substitution matrices from protein

blocks. Proc. Natl. Acad. Sci. pp. 10915-10919. 1992.

[78] P. G. Higgs, T. K. Attwood. Bioinformatics and Molecular Evolution. Blackwell.

2005.

[79] N. Holden, A. A. Freitas. A hybrid particle swarm/ant colony algorithm for the

classification of hierarchical biological data. In Proc. 2005 IEEE Swarm

Intelligence Symposium (SIS-05). pp. 100-107. IEEE. 2005.

[80] N. Holden, A. A. Freitas. Hierarchical Classification of G-Protein-Coupled

Receptors with a PSO/ACO Algorithm. In Proc. IEEE Swarm Intelligence

Symposium (SIS-06). pp. 77-84. IEEE, 2006.

[81] N. Holden, A. A. Freitas. A hybrid PSO/ACO algorithm for classification. In

Proc. Genetic and Evolutionary Computation Conference (GECCO-2007)

Workshop on Particle Swarms: The Second Decade, pp 2745-2750. ACM. 2007.

[82] N. Holden, A. A. Freitas. Hierarchical classification of protein function with

ensembles of rules and particle swarm optimisation. Soft Computing Journal,

special issue on Evolutionary and Metaheuristics-based Data Mining. 14 pages,

doi: 10.1007/s00500-008-0321 -0. Springer. 2008.

[83] N. Holden, A. A. Freitas. Improving the performance of hierarchical

classification with swarm intelligence. In Proc. 6th European Conf. on

202

References

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

(EvoBio-2008). LNCS 4973. pp. 48-60. Springer. 2008.

[84] N. Holden, A. A. Freitas. A Hybrid PSO/ACO Algorithm for Discovering

Classification Rules in Data Mining. Journal o f Artificial Evolution and

Applications (JAEA), special issue on Particle Swarms: The Second Decade.

Article ID 316145. 11 pages, doi: 10.1155/2008/316145. 2008.

[85] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. S. Langendijk-

Genevaux, M. Pagni, C. J. A. Sigrist. The PROSITE database. Nucleic Acids Res.

34:D227-D230. 2006.

[8 6] InterPro. http://www.ebi.ac.uk/InterPro/.Visited December 2007.

[87] H. Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and

review. Neural Computation, 17. pp. 1223-1263. 2005.

[8 8] L.J. Jensen, R. Gupta, N. Blom, D. Devos, J. Tamames, C. Kesmir, H. Nielsen,

H. H. Staerfeldt, K. Rapacki,C. Workman,C. A. F. Andersen, S. Knudsen, A.

Krogh, A. Valencia, S. Brunak. Prediction of human protein function from

posttranslational modifications and localization features. J. Mol. Biol, 319. pp.

1257-1265. 2002.

[89] R. Jensen, Q. Shen. Fuzzy-rough sets assisted attribute selection. IEEE

Transactions on Fuzzy Systems, 15(1):73-89. 2007.

[90] R. Jensen, Q. Shen. Computational Intelligence and Feature Selection: Rough

and Fuzzy Approaches. IEEE Press and Wiley & Sons. 2008.

[91] A. K. Kamrani, E. S. Abouel Nasr. Data-Mining Process Overview. Springer US.

pp. 89-102. 2008.

[92] R. Karchin, K. Karplus, D. Haussler. Classifying G-protein coupled receptors

with support vector machines. Bioinformatics, 18(1). pp. 147-59. 2002.

[93] J. Kennedy, R. C. Eberhart. A discrete binary version of the particle swarm

algorithm. In Proc. of the 1997 Conference on Systems, Man, and Cybernetics, pp.

4104-4109. 1997.

203

http://www.ebi.ac.uk/InterPro/.Visited

References

[94] J. Kennedy, W. Spears. Matching Algorithms to Problems: An experimental Test

of the Particle Swarm and some Genetic Algorithms on the Multimodal Problem

Generator. IEEE International Conference on Evolutionary Computation, pp. 78-

83. 1998.

[95] J. Kennedy and R. C. Eberhart, Y. Shi. Swarm Intelligence. San Francisco:

Morgan Kaufmann/Academic Press. 2001.

[96] J. Kennedy, R. Mendes. Population structure and particle swarm performance.

Proceedings o f the IEEE Congress on Evolutionary Computation (CEC 2002).

Honolulu, Hawaii USA. IEEE. 2002.

[97] A. Krogh, M. Bron, I.S. Mian, K. Sjolander, D. Haussier. Hidden Markov

models in computational biology: Applications to protein modelling. J. Mol. Biol,

235. pp. 1501-1531. 1994.

[98] S. Larson, C. Snow, M. Shirts, V. Pande. Folding@home and Genome@Home:

Using distributed computing to tackle previously intractable problems in

computational biology. In Grant, R. (Ed.). Computational Genomics: Theory and

Application. Horizon Press. 2003.

[99] M. Lapinsh, P. Prusis, S. Uhlen, J.E.S Wikberg. Improved approach for

proteochemometrics modeling: application to organic compound - amine G

protein-coupled receptor interactions. Bioinformatics, 21. pp. 4289-4296. 2005.

[100] D. Latek, D. Ekonomiuk, A. Kolinski. Protein structure prediction: combining

de novo modeling with sparse experimental data. J. Comput. Chem. 28(10). pp.

1668-1676. 2007.

[101] M. H. Li, X. L. Wang, L. Lin, T. Liu. Protein-protein interaction site prediction

based on conditional random fields. Bioinformatics, 23(5). pp. 597-604. 2007.

[102] J. S Mattick, I. V. Makunin,. Non-coding RNA. Human Molecular Genetics, 15.

pp. 17-29. 2006.

[103] J. McDowall, InterPro: Exploring a Powerful Protein Diagnostic Tool. ECCB05.

Tutorial, pp 14. 2005.

204

References

[104] E. Mezura-Montes, J. Veläzquez-Reyes, C. Coello Coello, A comparative study

of differential evolution variants for global optimization. In Proceedings of

Genetic and Evolutionary Computation Conference (GECCO ’06). ACM, 2006.

[105] A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on

Our Capacity for Processing Information. The Psychological Review, vol. 63. pp.

81-97. 1956.

[106] T. Mitchell. Machine Learning. Me Graw Hill. 1997.

[107] R. Mouser, S. A. Dunn. Comparing genetic algorithms and particle swarm

optimisation for an inverse problem exercise. Computational Techniques and

Applications Conference (CTAC-2004). pp 89-101. 2005.

[108] S. Mukhopadhyay, A. Mandal. Fuzzy Rule Extraction Using Robust Particle

Swarm Optimization. Advances in Neural Networks - ISNN 2006. pp. 762-767.

2006.

[109] N. J. Mulder et al. New developments in the InterPro database. Nucleic Acids

Res. 35 (Database Issue)\D224-D228. 2007.

[110] S. B. Needleman, C. D. Wunsch. A General Method Applicable to the Search

for Similarities in the Amino Acid Sequence of Two Proteins. Journal o f

Molecular Biology 48. pp. 443-53. 1970.

[111] D. J. Newman, S. Hettich, C. L. Blake, C. J. Merz. UCI Repository of machine

learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html. CA:

University of California, Department of Information and Computer Science. 1998.

[112] D. Nguyen, T. A. Dung, T. H. Cao. Text Classification for DAG Structured

Categories. Advances in Knowledge Discovery and Data Mining, LNCS. pp. 290-

300. 2005.

[113] H. Nunez, C. Angulo, and A. Catala. Rule extraction from support vector

machines. In Proc. of the European Symposium on Artificial Neural Networks

(ESANN-02), pp. 107-112, 2002.

205

http://www.ics.uci.edu/~mlearn/MLRepository.html

References

[114] C. Orengo, D. Jones, J Thornton. Bioinformatics: Genes, Proteins and

Computers. BIOS Scientific Publishers Ltd. 2003.

[115] A. Papagelis, D. Kalles. Breeding decision trees using evolutionary techniques.

ICML2001. 2001.

[116] P. K. Papasaikas, P. G. Bagos, Z. I. Litou, S. J. Hamodrakas. A novel method

for GPCR recognition and family classification from sequence alone using

signatures derived from profile hidden Markov models. SAR QSAR Environ Res,

14(5-6). pp. 413-20. 2003.

[117] G. L. Pappa, A. J. Baines and A. A. Freitas. Predicting post-synaptic activity in

proteins with data mining. Bioinformatics 21 (2). pp. Ü19-Ü25. 2005.

[118] G. L. Pappa. Automatically Evolving Rule Induction Algorithms with

Grammar-Based Genetic Programming. PhD Thesis. University of Kent. 2007.

[119] R. S. Parpinelli, H. S. Lopes and A. A. Freitas. Data Mining with an Ant

Colony Optimization Algorithm, IEEE Trans, on Evolutionary Computation,

special issue on Ant Colony algorithms, 6(4). pp. 321-332. 2002.

[120] J. Parry-Smith, T. K. Attwood: ADSP - a new package for computational

sequence analysis. Computer Applications in the Biosciences 8(5). pp. 451-459.

1992.

[121] W. R. Pearson, D. J. Lipman: Improved tools for biological sequence

comparison, Proc. Natl. Acad. Sei. USA, 85. pp. 2444-2448. 1988.

[122] T. Peng, W. Zuo, F. He. Text Classification from Positive and Unlabeled

Documents Based on GA. VECPAR06 (7). 2006.

[123] Pfam. http://www.sanger.ac.uk/Sofitware/Pfam/. Visited December 2007.

[124] R. Poli, J. Kennedy, T. Blackwell. Particle Swarm Optimization: An Overview.

Swarm Intelligence, pp. 33-57. 2007.

[125] A. Porollo, J. Meller. Prediction-based fingerprints of protein-protein

interactions. Proteins, 66(3). pp. 630-645. 2007.

[126] Prosite, http://www.expasy.ch/prosite/. Visited 2007.

206

http://www.sanger.ac.uk/Sofitware/Pfam/
http://www.expasy.ch/prosite/

References

[127] K. V. Price, R. M. Stom, J. A. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization. Springer. 2005.

[128] K. V. Price, R. M. Stom. Differential Evolution Java Implementation.

http://www.icsi.berkeley.edu/~storn/code.html. Visited on July. 2007.

[129] Prints. http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/. Visited

December 2007.

[130] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann. 1999.

[131] R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann. 1993.

[132] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. In Proc. of the IEEE. 77 (2). p. 257-286. 1989

[133] R. Ranawana, V. Palade. MVGen - Ensemble Learning for MCS Majority

voting with a Genetic Algorithm. Internal Report. Oxford University Computing

Laboratory. 2005.

[134] T. K. Rasmussen, T. Krink. Improved Hidden Markov Model training for

multiple sequence alignment by a particle swarm optimization-evolutionary

algorithm hybrid. In: Biosystems, 72(1-2). pp 5-17. 2003.

[135] I. Rish. An empirical study of the naive Bayes classifier. IJCAI 2001 Workshop

on Empirical Methods in Artificial Intelligence. 2001.

[136] B. Rost, G. Yachdav, J. Liu. The PredictProtein Server. Nucleic Acids Research

32(Web Server issue). W321-W326. 2004.

[137] J. Rousu, C. Saunders, S. Szedmak, J. Shawe-Taylor. Learning hierarchical

multi-category text classification models. In Proc. ICML '05: Proceedings o f the

22nd international conference on Machine learning. ACM. pp. 744-751. 2005.

[138] M. Sasaki, K. Kita. Rule-based text categorization using hierarchical categories.

In Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 2827-2830.

1998.

207

http://www.icsi.berkeley.edu/~storn/code.html
http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/

References

[139] P. Scordis, D. R. Flower, T. K. Attwood. FingerPRINTScan: intelligent

searching of the PRINTS motif database. Bioinformatics 15(10). pp. 799-806.

1999.

[140] A. Seeker, M. N. Davies, A. A. Freitas, J. Timmis, M. Mendao, D. Flower. An

experimental comparison of classification algorithms for the hierarchical

prediction of protein function. Expert Update (the BCS-SGAI Magazine). Vol. 9,

No. 3, Special Issue on the 3rd UKKDD Workshop, pp. 17-22. 2007.

[141] Q. Shen, A. Chouchoulas. A rough-fuzzy approach for generating classification

rules. Pattern Recognition. 35(11):2425-2438. 2002.

[142] Q. Shen, R. Jensen. Selecting informative features with fuzzy-rough sets and its

application for complex systems monitoring. Pattern Recognition, 37(7): 1351-

1363,2004.

[143] L. Sheneman, J. A. Foster. Evolving Better Multiple Sequence Alignments.

Genetic and Evolutionary Computation. GECCO-2004. pp. 449-460. 2004.

[144] D. B. Skalak. Prototype Selection for Composite Nearest Neighbour Classifiers.

PhD Thesis. University of Massachusetts, Amherst, Massachusetts. 1997.

[145] T. F. Smith, M. S. Waterman, Identification of common molecular

subsequences. J. Mol. Biol. 147. pp. 195-197. 1981.

[146] T. Sousa, A. Silva, A. Neves. Particle Swarm based Data Mining Algorithms

for classification tasks. Parallel Computing 30. pp. 767-783. 2004.

[147] C. D. Stefano, A. D. Cioppa, A. Marcelli. Exploiting Reliability for Dynamic

Selection of Classifiers by Means of Genetic Algorithms. In Proc. of the Seventh

international Conference on Document Analysis and Recognition - Volume 2,

ICDAR. IEEE Computer Society. 2003.

[148] J. Struyf, S. Dzeroski, H. Blocked, A. Clare. Hierarchical multi-classification

with predictive clustering trees in functional genomics. In Proc. Progress in

Artificial Intelligence: 12th Portugese Conference on Artificial Intelligence, EPIA

2005, vol 3808. pp. 272-283, 2005.

208

References

[149] A. Sun, E.-P. Lim. Hierarchical text classification and evaluation. In

Proceedings of the 1st IEEE International Conference on Data Mining. IEEE

Computer Society Press, pp. 521-528. 2001.

[150] A. Sun, E.-P. Lim, W.-K. Ng. Performance measurement framework for

hierarchical text classification. Journal o f the American Society fo r Information

Science and Technology 54(11). pp. 1014-1028. 2003.

[151] A. Sun, E.-P. Lim, W.-K. Ng. Hierarchical text classification methods and their

specification. In: A.T.S. Chan, S.C.F. Chan, H.V. Leong, V.T.Y. Ng. (Eds.)

Cooperative Internet Computing, pp. 236-256. 2003.

[152] A. Sun, E.-P. Lim, W.-K. Ng. Blocking reduction strategies in hierarchical text

classification. IEEE Transactions on Knowledge and Data Engineering 16(10).

pp. 1305-1308. 2004.

[153] A. Tan, D. Gilbert, Y. Deville. Multi-class protein fold classification using a

new ensemble machine learning approach. Genome Informatics, 14. pp. 206-217.

2003.

[154] J. D. Thompson, D. G. Higgins, T. J. Gibson. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res, 22. pp. 4673-4680. 1994.

[155] J. D. Thompson, F. Plewniak, O. Poch. A comprehensive comparison of

multiple sequence alignment programs. Nucleic Acids Res. J13: pp. 2682-2690.

1999.

[156] TrEMBL. http://www.ebi.ac.uk/swissprot/sptr_stats/full/index.html. Visited

June 2007.

[157] UniProt. http://www.expasy.UniProt.org/. Visited December 2007.

[158] G. Valentini, N. Cesa-Bianchi. HCGene: a software tool to support the

hierarchical classification of genes. Bioinformatics Vol. 24. pp. 729-731. 2008.

209

http://www.ebi.ac.uk/swissprot/sptr_stats/full/index.html
http://www.expasy.UniProt.org/

References

[159] R. Vilalta, Y. Drissi. A perspective view and survey of meta-leaming. Artificial

Intelligence Review. 18(2). pp. 77-95. 2002.

[160] J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory 13(2). pp. 260-

269. 1967.

[161] K. Wang, S. Zhou, and Y. He. Hierarchical classification of real life documents.

In Proc. of the 1st SIAM Int. Conf. on Data Mining, Chicago, 2001.

[162] W. Weinert, H. Lopes. Neural networks for protein classification. Applied

Bioinformatics, 3(1). pp. 41-48. 2004.

[163] S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn:

Classification and Prediction Methods from Statistics, Neural Nets, Machine

Learning, and Expert Systems. Morgan Kaufmann Publishers. 1991.

[164] I. H. Witten, E. Frank, Data Mining: Practical machine learning tools and

techniques, 2nd Edition, Morgan Kaufmann, San Francisco. CA. 2005.

[165] D. H. Wolpert. Stacked Generalization. Neural Networks. Vol. 5. pp. 241-259.

1992.

[166] C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker, B. Boeckmann,

S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, R.

Mazumder, C. O'Donovan, N. Redaschi, B. E. Suzek: The Universal Protein

Resource (UniProt): an expanding universe of protein information. Nucleic Acids

Research 34(Database-Issue). pp. 187-191. 2006.

[167] L. Yang, Z. Qin. Combining Classifiers with Particle Swarms. ICNC (2). pp.

756-763. 2005.

[168] E. M. Zdobnov, R. Apweiler. InterProScan - an integration platform for the

signature-recognition methods in InterPro. Bioinformatics. 17(9). pp. 847-8. 2001.

[169] XPS Project, http://xps-swarm.essex.ac.uk/. Visited July 2008.

210

http://xps-swarm.essex.ac.uk/

Publication from the work in this Thesis

Publications from the work in this Thesis

Journal Papers

• N. Holden, A. A. Freitas. A Hybrid PSO/ACO Algorithm for Discovering

Classification Rules in Data Mining. Journal o f Artificial Evolution and Applications

(JAEA), special issue on Particle Swarms: The Second Decade. Article ID 316145.

11 pages. doi:10.1155/2008/316145. 2008.

• N. Holden, A. A. Freitas. Hierarchical classification of protein function with

ensembles of rules and particle swarm optimisation. Soft Computing Journal, special

issue on Evolutionary and Metaheuristics-based Data Mining. 14 pages,

doi: 10.1007/s00500-008-0321 -0. Springer. 2008.

Conference Papers

• N. Holden, A. A. Freitas. Improving the performance of hierarchical classification

with swarm intelligence. In Proc. 6th European Conf. on Evolutionary Computation,

Machine Learning and Data Mining in Bioinformatics (EvoBio-2008). LNCS 4973.

pp. 48-60. Springer. 2008. Won best paper award at this conference.

• E. P. Costa, A. C. Lorena, A. C. P. L. F. Carvalho, A. A. Freitas, N. Holden.

Comparing several approaches for hierarchical classification of proteins with

decision trees. In Proc. of the 2007 Brazilian Symposium on Bioinformatics (BSB-

2007). LNBI 4643. pp. 126-137. Springer. 2007.

211

Publication from the work in this Thesis

• N. Holden, A. A. Freitas. Hierarchical Classification of G-Protein-Coupled

Receptors with a PSO/ACO Algorithm. In Proc. IEEE Swarm Intelligence

Symposium (SIS-06), pp. 77-84. IEEE. 2006.

• R. Poli, W. B. Langdon, P. Marrow, J. Kennedy, M. Clerc, D. Bratton, N. Holden.

Communication, Leadership, Publicity and Group Formation in Particle Swarms. In

Proc. of ANTS '06. LNCS 4150. pp. 132-143. Springer. 2006.

• N. Holden, A. A. Freitas. A hybrid particle swarm/ant colony algorithm for the

classification of hierarchical biological data. In Proc. 2005 IEEE Swarm Intelligence

Symposium, pp. 100-107. IEEE. 2005.

Workshop Paper

• N. Holden, A. A. Freitas. A hybrid PSO/ACO algorithm for classification. In Proc.

of the GECCO-2007 Workshop on Particle Swarms: The Second Decade, pp. 2745-

2750. ACM Press. 2007.

212

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO

Appendix A. Comparing the Performance of
PSO/ACO and Binary PSO in Benchmark

Binary Optimisation Problems

In this appendix we present some preliminary results comparing the performance of

the “standard” Binary-PSO (BPSO) [95] (briefly reviewed in Section 3.4) to the

PSO/ACO algorithm proposed in Section 4.3 in several simple benchmark functions

involving optimisation problems with binary variables (unrelated to the data mining

problem). Both algorithms used 100 particles with Von-Neumann topology. Note that

Von-Neumann topology does not always lead to the fastest particle convergence.

However, our preliminary experiments demonstrated that it provided the most consistent

results across both the easier and more difficult problems. Neither algorithm was

particularly optimised for these specific problems. For PSO/ACO (as it standard) a was

set to 1, and the minimum and maximum pheromone level were set to 0.01. The BPSO

algorithm uses the standard update equation:

vtd = vid + ciRand()(pw - xld) + c2 Rand() (pgd - xld)

Notice that a constriction coefficient is not used as it significantly reduced BPSO’s

performance, k was set to 2 as it was found to be the best overall in initial testing - and a

significant improvement over k = 1. c l and c2 were set to 2.05 as is usual in the

literature. VMax was set to 6 as per the original algorithm [93], Rand() produces a

random number between 0 and 1.

213

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO

The benchmark problems have the following details where x is a candidate binary

solution with a number of dimensions (bits) d and the value to maximise is returned by

the functions defined by the corresponding pseudocode:

• OneMax - The highest score is the bitstring with all l ’s. For instance, a 2-bit

instance of the problem, the bitstring 01 would have the score 0.5

score = 0, to Add = l + d
FOR EACH Xj

IF Xj = 1
score = score + toAdd

END IF
LOOP
RETURN score

Pseudocode A .l: One Max

• OneFirst - The highest scoring bitstring is all l ’s but the scoring starts at the left

hand side and stops when a 0 is detected. For instance 1011 would have the score

0.25.

score = 0, toAdd = 1 d
FOR EACH xj

IF Xj = 1
score = score + toAdd

ELSE
RETURN score

END IF
LOOP
RETURN score

Pseudocode A.2: One First

214

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO

• OneMaxNoisy - The same as OneMax, but 1% noise is added to the fitness

evaluation, swapping a bit 1% of the time.

score = 0, to Add = 1 d
FOR EACH Xj

IF Xj = 1
// Random() returns a number in the range [0..1] with uniform probability
//distribution
IF Random() < 0.99
score = score + toAdd
END IF

END IF
LOOP
RETURN score

Pseudocode A.3: One Max Noisy

• AllSame - The highest scoring bitstring is either all l ’s or all 0’s, the maximum

scoring bitstring is taken. For instance, in a 4-bit problem 0111 and 1000 would

score the same (0.75).

scoreA = 0, scoreB = 0, toAdd = 1 + d
FOR EACH xj

IF Xj = 1
scoreA = scoreA + toAdd

ELSE
scoreB = scoreB + toAdd

END IF
LOOP
RETURN max(scoreA, scoreB)

Pseudocode A.4: All Same

215

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO

• AllSameFirst - The highest scoring bitstring is either all 1 ’s or all 0’s, but scoring

starts at the left hand side of the bitstring and stops when the next bit is not the

same as the current bit. For instance, 0101 would have the score 0.25, and 0010

would have the score 0.5.

score = 0, to Add = \+ d
FOR EACH xj FROM xx TO xd.,

IF X j = X j+1

score = score + toAdd
ELSE

RETURN score
END IF

LOOP
RETURN score

Pseudocode A.5: All Same First

Table A.l shows the results for both algorithms in the labelled benchmark functions

with each function having 200 dimensions (bits). Each cell provides the average number

of iterations it took each approach to find the optimal bitstring. Both PSO/ACO and

BPSO were limited to a maximum of 2000 iterations for simplicity; so that if the

optimum is not reached within 2000 iterations, 2000 is used as score for that run. Note

that, since both algorithms use the same population size, the number of iterations required

to reach the optimum is a fair measure of their relative cost-effectiveness. Each

experiment was repeated 100 times (the average performance is provided in each cell),

with standard deviations shown after the “±” symbol and the results of the WEKA two

tailed t-tests (significance 1%) indicated by shadings. Light grey indicates a statistically

significant win, so in every test PSO/ACO performs significantly better than BPSO.

216

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO

BPSO PSO/ACO
AllSame 76.81±6.69 65.92±8.38

AllSameFirst 1854.38±323.78 706.97±55.41
OneFirst 1057.77±351.91 693.92±51.56
OneMax 64.35±2.47 56.04±2.64

OneMaxNoisy 76.67±4.88 68.68±5.39

Table A.l: Number of iterations to find the maximum valued bitstring in each

benchmark problem for PSO/ACO and Binary PSO

Figure A .l: The average performance of the best particle during 100 runs of the All

Same First benchmark function, for both PSO/ACO and BPSO

217

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO

— PSO/ACO
— BPSO

Figure A.2: The average performance of the best particle during 100 runs of the All

Same benchmark function, for both PSO/ACO and BPSO

Most of the problems do not take the algorithms many iterations to solve. As expected

the trickier “All Same First” and “One First” problems take the most number of iterations

to solve. As can be seen by the high standard deviations of the results for BPSO (Table

A .l) it was not able to solve the aforementioned problems in a very consistent number of

iterations (or indeed within the maximum number of iterations in some cases). Note that,

if the maximum number of iterations was exceeded during a run then the number of

iterations reported for this run was set to this maximum number.

In Figure A. 1 the different performance characteristics of PSO/ACO and BPSO in the

“All Same First” function can be seen. BPSO finds better solutions at the beginning of

the run, but after about 250 iterations PSO/ACO overtakes BPSO. This may be a sign that

BPSO is converging too quickly and getting trapped too easily in local maxima.

218

Appendix A. Comparing the Performance of PSO/ACO and Binary PSO

The performance of both algorithms in the simpler “All Same” problem is shown in

Figure A.2, where it can be seen that the same sort of behaviour is not present in this

problem. However, notice that the qualities of the solutions are higher at the start of the

“All Same” problem when compared to the “All Same First” problem. It is likely that the

type of behaviour seen in both Figure A. 1 and Figure A.2 can be attributed to the way in

which PSO/ACO uses the fitness of the best solution each particle has found so far to add

to the pheromone entries. This means that in the Figure A .l, at the beginning of the run,

the solutions found so far are not of high quality and so not much pheromone is added to

the entries. However, in Figure A.2 the solutions found are reasonably good at the

beginning of the run and so more pheromone is added. This means that convergence is

speeded up in the case of the easier “All Same” problem, and slowed down in the “All

Same First” problem.

Despite the simplicity of these benchmark functions we believe that they add to the

evidence that PSO/ACO is an effective optimiser. Furthermore, the results show that

PSO/ACO is more consistent (when compared to BPSO) in the number of iterations it

requires to find the maximum quality combination of bits, with it rarely seeming to get

trapped in a local optimum (if it did it would cause large standard deviations). This is a

useful feature to have in an optimiser for both these benchmark problems and the data

mining problems investigated in this thesis.

219

