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This paper develops an optimization model for a sustainable closed-loop supply chain network with
two conflicting objectives, namely, the minimization of the total logistic costs and the total amount of
carbon emissions. The first objective relates to financial benefits, whereas the second represents the
wider goal of guaranteeing cleaner air and hence a greener and healthier planet. The problem is first
modelled as a mixed integer linear programming based-model. The aim is to determine the location of
distribution centres and recycling centres, their respective numbers and the type of vehicles assigned to
each facility. Vehicle type consideration, not commonly used in the literature, adds another dimension
to this practical and challenging logistic problem. A matheuristic using compromise programming is put
forward to tackle the problem. The proposed matheuristic is evaluated using a variety of newly generated
datasets which produces compromise solutions that demonstrate the importance of an appropriate balance
of both objective functions. The robustness analysis considering fluctuations in customer demand is
assessed using Monte Carlo simulation. The results show that if the standard deviation of the demand
falls within 10% of its average, the unsatisfied demand is insignificant, thus demonstrating the stability of
supply chain configuration. This invaluable information is key towards helping senior management make
relevant operational and strategic decisions that could impact on both the sustainability and the resilience
of their supply chain networks.
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604 C. A. IRAWAN ET AL.

1. Introduction

The needs for a well-designed closed-loop supply chain (CLSC) have gained prominence in recent years.
Several reasons are responsible for this renewed push for CLSC ranging from economic considerations,
government legislations, increased customers’ expectations for better business stewardship and global
push for circular economy (Kazancoglu et al., 2018; Kusakci et al., 2019). The singular most important
purpose of these network designs is for efficient and cost-effective approaches to achieve sustainability
in the company’s environmental and economic performances (Asgari et al., 2016; Dai & Zheng, 2015).

In CLSC, the flow of products is between two markets at both ends of the supply chain, with the
forward flow represents the market at the beginning of the CLSC while the reverse flow represents the
market at the end of the CLSC. The reverse flow transports used, damage, unsold and/or end-of-life
products back to the manufacturers. This flow facilitates reprocessing of such returns with value-added
methods based on material recovery and reuse, recycling, repair, refurbishing and remanufacturing. A
well-structured CLSC system therefore facilitates the attainment of a circular economy that focuses on
recycling, conservation of scarce resources and waste transformation into wealth generation (Diabat &
Al-Salem, 2015; Ghisellini et al., 2016). It also addresses vital operational and strategic decisions on
inventory positioning/ management and optimal vehicle routing to achieve reduced costs and increased
customer service levels (Asl-Najafi et al., 2015). Furthermore, a well-designed CLSC system enables
low cost determination of optimal product flow quantity within a network (Dai & Zheng, 2015;
Kadambala et al., 2017), with the reverse strategy providing a significant cost savings and reduced
operational greenhouse gas emissions (GHGs) considerably (Abdulrahman et al., 2014).

Despite the established benefits, the design and the implementation of a cost-effective CLSC
system are not easy to achieve. The difficulties lie in the need to simultaneously consider both
forward and reverse supply networks to obtain desired results (Pishvaee & Razmi, 2012). In other
words, solving forward supply chain and reverse logistics separately as traditionally done will only
results in sub-optimal achievements of reduced cost, transport pollution reduction and optimal flow
quantities. Furthermore, senior management often face a challenging decision when attempting to
resolve the multiple conflicting decision choices within a CLSC design solution. Such dilemma include
a company’s desired level of profitability, demand variability, rate of product return and the firm’s
desired position in terms of social responsibility, among others (Elhedhli & Merrick, 2012; Kadambala
et al., 2017; Pan et al., 2013).

Several extant studies have attempted to address these challenging issues by investigating CLSC
designs from different perspectives. The majority of them focused on CLSC designs from a sustain-
ability perspective (Atabaki et al., 2020; Devika et al., 2014; Fahimnia et al., 2013; Mota et al., 2015;
Talaei et al., 2016; Tiwari et al., 2016; Tosarkani & Amin, 2018). A major problem with these and
similar studies is the lack of a holistic approach, which focuses on the challenging issue of solving the
forward and the reverse supply chain (SC) networks simultaneously. A similar issue of ignoring routing
when locating facilities was initially demonstrated by Salhi & Rand (1989). This issue of sub-optimality
has attracted a lot of attention and research in the area of location-routing problem. We believe that this
paper follows a similar line of research but for the case of CLSC instead. Furthermore, all extant studies
assumed only a single type of vehicle for the bidirectional flow of products in their designs. This is a
fundamental omission given the acknowledged environmental impact of transportation through GHG
(Dekker et al., 2012; Elhedhli & Merrick, 2012; Pan et al., 2013). All these are in addition to the limited
number of facilities considered in most of the designs of the extant studies.

To address these gaps and facilitate informed decision-making, we develop a generic optimisation
model for the sustainable CLSC network design (SCLCND). Our aim is to determine the number and
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AN EFFICIENT MATHEURISTIC ALGORITHM 605

locations of distribution centres (DCs) and recycling centres (RCs) together with their capacity, trans-
portation modes for each facility and the bidirectional flows of products in order to minimize the total
costs and carbon emissions (CO2) generated. We adopt a compromise programming (CP) methodology
to obtain compromise solutions that deal with the bi-objective problem, namely, minimizing the amount
of CO2 emissions and the total operational cost.
The contributions of this study are four-fold.

• The development of an efficient integrated bi-objective model based on CP for designing a
sustainable CLSC network.

• The construction and analysis of an effective matheuristic which integrates an aggregation
technique, an exact method and a local search.

• The ability to solve large newly constructed datasets, which can be used for future benchmark-
ing purposes.

• The flexibility in investigating both scenario analysis and Monte Carlo simulation that would
assist senior management when making their strategic decisions that could impact on both the
sustainability and the robustness of their supply network.

The rest of the study is organized as follows. Section 2 summarized the literature review. Section 3
provides a description of the proposed mathematical model, while Section 4 covers the solution method.
The matheuristic is presented in Section 5. The computational results, including the newly constructed
datasets, a scenario analysis and a simulation experiment are provided in Section 6. A summary of the
findings and some future research avenues are highlighted in the final section.

2. Literature review

In the last two decades, studies on sustainable CLSC developments have received extensive interest due
to growing resource scarcity, environmental concerns and huge financial impact of product returns.To
mitigate these negative impacts, extant studies in the CLSC network design have examined, amongst
other aspects, facility location and allocation, capacities of facilities, production planning, inventory,
transportation and environmental impact (Altmann & Bogaschewsky, 2014; Ghahremani-Nahr et al.,
2019; Kang et al., 2017; Kaya & Urek, 2016; Subramanian et al., 2013). For a comprehensive review
on the CLSC, the reader can refer to the works of Govindan et al. (2015, 2017), and recently, Oliveira
& Machado (2021) presented a systematic review on optimisation techniques applied in the CLSC.

Fleischmann et al. (2001) was among the first to study a generic uncapacitated CLSC model
with product recovery facilities as a mixed integer linear programming (MILP). The model was
assessed using two case studies concerning copier remanufacturing and paper recycling, respectively
and was solved using commercial solver package. Lu & Bostel (2007) developed a 0-1 mixed integer
programming (MIP) for a remanufacturing closed-loop SC network and a lagrangian-based heuristic was
designed to tackle the problem. Demirel & Gökçen (2008) formulated a remanufacturing system in a
CLSC as MILP and solved the problem using genetic algorithm (GA) to get quantities of manufactured
and remanufactured products while finding the locations of disassembly, collection and distribution
centres. Yi et al. (2016) extended the study of a CLSC with remanufacturing facilities and a hybrid
GA was applied to solve the problem in finding the location of various centre, flows of used products,
components and remanufactured products.
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606 C. A. IRAWAN ET AL.

Salema et al. (2009) put forward a MILP for a multi-product and multi-period CLSC model by
embedding strategic and tactical location-allocation decisions where the model was solved using branch
and bound technique. Wang & Hsu (2010) constructed an integer linear programming (ILP) for a CLSC
logistics system and developed a spanning tree based GA to deal with the model.

CLSC network design problems have also been extended to include various aspects in practice,
such as third party logistics (3PL) companies, recyclable products, life cycle assessment principles,
pricing decisions, and uncertainty and product return, among others. Ko & Evans (2007) integrated 3PL
operators into a CLSC model and applied genetic algorithm to tackle the model. In a similar fashion,
Li et al. (2018) studied a CLSC model with location-inventory problem where the logistic service was
outsourced to 3PL. A hybrid heuristic based on the improved hybrid differential evolution algorithm
and GA was put forward to solve the proposed model.

Chaabane et al. (2012) investigated a sustainable CLSC that considers Life Cycle Assessment (LCA)
principles and utilised an optimisation software package to solve the problem. Pishvaee et al. (2010)
introduced a multi-objective fuzzy MIP for designing an environmental CLSC network. LCA method
was applied to assess and quantify the environmental influence of the network.

Kalaitzidou et al. (2015) put forward a MILP model for a CLSC network design with recyclable
products and multifunctional nodes. A branch and bound methodology was implemented to solve the
proposed MILP model using a real case study from a Europe based consumer goods company. Kaya &
Urek (2016) proposed a MINLP to incorporate pricing decisions into a CLSC network and introduced
incentive values for the collection of right amount of recyclable products into the model. Three hybrid
metaheuristics based on simulated annealing (SA), tabu search (TS), GA, and Variable Neighborhood
Search (VNS) were designed as solution methods. Patne et al. (2018),extended the work of Kaya &
Urek (2016) and developed an improved particle swarm optimisation algorithm to deal with the model.
Atabaki et al. (2019) examined a CLSC with price-sensitive demand and put forward a priority-based
firefly metaheuristic algorithm.

Pishvaee & Torabi (2010) discussed a bi-objective MIP formulation for a CLSC network with
product return under uncertainty. To solve the proposed model, the authors put forward a multi-objective
memetic algorithm with dynamic local search mechanism. Subramanian et al. (2013) presented a CLSC
model by considering fixed charge for locating facilities and warehouse to organise uncertainty of
product returns efficiently. A priority based simulated annealing was proposed as a solution procedure.
Yadegari et al. (2019) hybridised a memetic algorithm with a multi-start SA algorithm to deal with
location and product flow decisions in a multi-period CLSC network design. Zhen et al. (2019) built a
two-stage stochastic MINLP for an integrated CLSC under uncertain demand and return. An improved
TS algorithm was suggested to tackle the problem.

Many previous works have focused on an implementation of CLSC in various industries, such as
computer products (Chen et al., 2015; Kusumastuti et al., 2008; Lee & Dong, 2008), glass (Devika
et al., 2014), tyre (Fathollahi-Fard et al., 2018), battery (Tosarkani & Amin, 2018), bottled water
(Papen & Amin, 2019), dairy (Gholizadeh et al., 2021), and walnut (Salehi-Amiri et al., 2021).
Another variant of CLSC, known as green CLSC network models, has included the environmental
element into the objective function; for example, in the works of Fahimnia et al. (2013), Altmann &
Bogaschewsky (2014), Choudhary et al. (2015), Talaei et al. (2016), Tiwari et al. (2016), and Atabaki et
al. (2020). A number of previous studies on the CLSC network design has integrated fuzzy environment
into the model, such as Ramezani et al. (2014), Kang et al. (2017), Govindan & Soleimani (2017),
Ghahremani-Nahr et al. (2019), and Nayeri et al. (2020).

Table 1 presents a summary of relevant previous works and highlights the distinctive aspects of the
current study (last row in bold). The fourth column of Table 1 indicates the sustainability aspects used

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/33/4/603/6588313 by Tem

plem
an Library, U

niversity of Kent user on 25 N
ovem

ber 2022
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in the corresponding articles where Eco, Env, and Soc refer to the Economic, Environmental and Social
aspects of sustainability respectively. The fifth column provides outputs or decision variables considered
in each paper where L refers to facility location, AL indicates allocation, FC denotes facility capacity,
TM represents transportation mode, TA stands for transportation amount, and ND expresses quantity of
non-satisfied demand.

In this paper, an integrated SCLCND problem is investigated where a mixed integer linear
programming (MILP) is constructed to determine the number and locations of DCs and RCs together
with their capacity, transportation modes for each facility and the flows of products in order to deal
with the total costs and carbon emissions (CO2) produced. In addition, it is common in the literature, as
earlier stated, that a facility uses only one type of vehicle to transport their products. Here, we extend the
problem so that the optimal vehicle type can also be determined for each facility. Although this increases
the complexity of the problem, in practice, it is important to consider this activity as part of the overall
company strategy. Moreover, a combination of single- and multi-sources allocations is applied in the
model. The multi-source allocation is used for the flows of products from plants to DCs and from RCs
to plants, whereas the single-source allocation is implemented for the flows of products from the DCs
to customers and from the customers to RCs. The single-source capacitated facility location problem
(SSCFLP) can be considered as a simple form of the proposed SCLCND. According to Fisher et al.
(1986), the SSCFLP is NP-hard itself and very hard to solve. To the best of our knowledge, there is
no literature has implemented matheuristic as a solution methodology and this is the first time such an
integrated bi-objective CLSC is thoroughly explored.

3. Problem description and mathematical modeling

An illustrative example of a CLSC is shown in Fig. 1. Here, the location of the plants and the customers
are fixed and known, while the locations of the DCs and RCs are not. The chosen locations are selected
from a list of potential candidate sites. In the forward SC, a set of plants manufacture a product delivered
to selected DCs. A plant may supply the product to more than one DC. A product is then transferred to
customers with the assumption that a customer is served by a single DC and its demand is deterministic.
In the reverse SC, the used product is collected from the customers and transferred to the selected RCs.
A customer is also assigned to one RC only. Some of the used products are recycled and shipped back
to the plants, whereas the rest, known as non-salvageable products, is sent to the nearest disposal centre
(landfill).

There are two types of costs, namely fixed and transportation costs. The former relates to the opening
of DCs and RCs, which are based on the location and the capacity used. The latter depends on the type of
vehicles used to transfer products. In this study, the environmental impact is measured by the amount of
CO2 emissions produced (). It is also assumed, as commonly adopted in the literature, that the amount of
CO2 emissions increases with the capacity of DCs or RCs, the distance traveled and the type of vehicle
used. To ensure economies of scale, a minimal amount of products that can be shipped from a plant to a
DC or from a RC to a plant is imposed. For cost efficiency, simplicity and convenience, each plant and
each selected DC and RC use one type of transportation mode only, which is optimally chosen from a
set of vehicles provided. This assumption increases the complexity of the model as a large number of
binary variables are used. Practically, the use of low cost vehicles will reduce the transportation cost at
the expense of a significant environmental impact. In other word, there is a trade-off between economic
and environmental aspects when selecting the type of vehicle type. Therefore, the objective function that
we set (minimizing total cost or amount of emissions) affects the solutions generated from the model.

The following notations are used to describe the sets and parameters of the proposed model.
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610 C. A. IRAWAN ET AL.

Fig. 1. Flow of products in the proposed CLSC problem.

Sets

I: set of plants with i as its index

J: set of potential DCs with j as its index

K: set of customers with k as its index

L: set of potential RCs with l as its index

H: set of distribution centre designs with h as its index

R: set of RC designs with r as its index

V1: set of vehicles used to transport products from a plant to a DC with v as its index

V2: set of vehicles used to transport products from a DC to a customer with v as its index

V3: set of vehicles used to transport used products from a customer to a RC with v as its index

V4: set of vehicles used to transport recycled materials from a RC to a plant with v as its index

Parameters

si: the capacity of plant i ∈ I

dk: the demand of customer k ∈ K

b̄h: the number of products that can be stored in a potential DC when using design h ∈ H
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AN EFFICIENT MATHEURISTIC ALGORITHM 611

b̈r: the number of used products that can be recycled in a RC when using design r ∈ R

f̄jh: the fixed cost for opening DC j ∈ J when using design h ∈ H

f̈lr: the fixed cost for opening RC l ∈ L when using design r ∈ R

ēh: CO2 emissions caused by opening a DC using design h ∈ H

ër: CO2 emissions caused by opening a RC using design r ∈ R

τ 1
ijv: the transportation cost to transfer one unit product from plant i ∈ I to DC j ∈ J using

vehicle v ∈ V1

τ 2
jkv: the transportation cost to transfer one unit product from DC j ∈ J to customer k ∈ K using

vehicle v ∈ V2

τ 3
klv: the transportation cost to transfer one unit used product from customer k ∈ K to RC l ∈ L

using vehicle v ∈ V3

τ 4
liv: the transportation cost to transfer one unit recycled material from RC l ∈ Lto planti ∈ I

using vehicle v ∈ V4

ε1
ijv: CO2 emissions caused by transferring one unit product from plant i ∈ I to DC j ∈ J using

vehicle v ∈ V1

ε2
jkv: CO2 emissions caused by transferring one unit product from DC j ∈ J to customer k ∈ K

using vehicle v ∈ V2

ε3
klv: CO2 emissions caused by transferring one unit used product from customer k ∈ K to RC

l ∈ L using vehicle v ∈ V3

ε4
liv: CO2 emissions caused by transferring one unit recycled material from RC l ∈ L to plant i ∈

I using vehicle v ∈ V4

ρi: the minimal amount of products transferred from plant i ∈ I to a DC

θi: the minimal amount of recycled materials transferred from RC l ∈ L to a plant

α: the average percentage of used products that can be collected from a customer to be recycled

β: the average percentage of used products that can be recycled and transformed into raw
material.

This bi-objective closed-loop SC problem can be modelled as a mixed integer linear programming
(MILP) as follows:

Decision variables

X1
ij: the amount of products transported from plant i ∈ I to DC j ∈ J

Ȳjh =
{

1 if DC j ∈ J uses design h ∈ H,

0 otherwise
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612 C. A. IRAWAN ET AL.

Ÿlr =
{

1 if RC l ∈ L uses design r ∈ R,

0 otherwise

U1
ijv =

{
1 if products are transferred from plant i ∈ I to DC j ∈ J using vehicle v ∈ V1,

0 otherwise

Û1
iv =

{
1 if plant i ∈ I uses vehicle v ∈ V1 as its transportation mode,

0 otherwise

U2
jkv =

{
1 if customer k ∈ K is served by DC j ∈ J using vehicle v ∈ V2,

0 otherwise

Û2
jv =

{
1 if DC j ∈ J uses vehicle v ∈ V2 to transfer products to customers,

0 otherwise

U3
klv =

{
1 if used products of customer k ∈ K are shipped to RC l ∈ L using vehicle v ∈ V3,

0 otherwise

Û3
lv =

{
1 if RC l ∈ L uses vehicle v ∈ V3 to collect used products from customers,

0 otherwise

U4
liv =

⎧⎪⎨
⎪⎩

1 if recycled materials are transferred from RC l ∈ L to planti ∈ I

using vehicle v ∈ V4,

0 otherwise

Û4
lv =

{
1 if RC l ∈ L uses vehicle v ∈ V4 to transfer recycled materials to suppliers,

0 otherwise

X4
li: the amount of recycled materials transported from RC l ∈ L to plant i ∈ I

Objective functions

minZc = Zoc + Ztc (3.1)

minZe = Zoe + Zte, (3.2)

where

Zoc =
∑
j∈J

∑
h∈H

(
f̄jh · Ȳjh

)
+

∑
l∈R

∑
r∈R

(
f̈lr · Ÿlr

)
(3.3)
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AN EFFICIENT MATHEURISTIC ALGORITHM 613

Ztc =
∑
i∈I

∑
j∈J

∑
v∈V1

(
U1

ijv · X1
ij · τ 1

ijv

)
+

∑
j∈J

∑
k∈K

∑
v∈V2

(
U2

jkv · dk · τ 2
jkv

)
+

∑
k∈K

∑
l∈L

∑
v∈V3

(
U3

klv · α · dk · τ 3
klv

)
+

∑
l∈L

∑
i∈I

∑
v∈V4

(
U4

liv · X4
li · τ 4

liv

)
(3.4)

Zoe =
∑
j∈J

∑
h∈H

(
ēh · Ȳjh

)
+

∑
l∈R

∑
r∈R

(
ër · Ÿlr

)
(3.5)

Zte =
∑
i∈I

∑
j∈J

∑
v∈V1

(
U1

ijv · X1
ij · ε1

ijv

)
+

∑
j∈J

∑
k∈K

∑
v∈V2

(
U2

jkv · dk · ε2
jkv

)
+

∑
k∈K

∑
l∈L

∑
v∈V3

(
U3

klv · α · dk · ε3
klv

)
+

∑
l∈L

∑
i∈I

∑
v∈V4

(
U4

liv · X4
li · ε4

liv

)
(3.6)

subject to

∑
j∈J

X1
ij ≤ si, ∀i ∈ I (3.7)

∑
i∈I

X1
ij ≤

∑
h∈H

(
Ȳjh · b̄h

)
, ∀j ∈ J (3.8)

∑
h∈H

Ȳjh ≤ 1, ∀j ∈ J (3.9)

X1
ij ≥ ρi ·

∑
v∈V1

U1
ijv, ∀i ∈ I, j ∈ J (3.10)

X1
ij ≤ M ·

∑
v∈V1

U1
ijv, ∀i ∈ I, j ∈ J (3.11)

Û1
iv ≥ U1

ijv, ∀i ∈ I, j ∈ J, v ∈ V1 (3.12)

∑
v∈V1

Û1
iv ≤ 1, ∀i ∈ I (3.13)
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614 C. A. IRAWAN ET AL.

∑
k∈K

∑
v∈V2

(
U2

jkv · dk

)
≤

∑
h∈H

(
Ȳjh · b̄h

)
, ∀j ∈ J (3.14)

∑
i∈I

X1
ij =

∑
k∈K

∑
v∈V2

(
U2

jkv · dk

)
, ∀j ∈ J (3.15)

∑
j∈J

∑
v∈V2

U2
jkv = 1, ∀k ∈ K (3.16)

Û2
jv ≥ U2

jkv, ∀j ∈ J, k ∈ K, v ∈ V2 (3.17)

∑
v∈V2

Û2
jv ≤ 1, ∀j ∈ J (3.18)

Û2
jv −

∑
h∈H

Ȳjh ≤ 0, ∀j ∈ J, v ∈ V2 (3.19)

∑
k∈K

∑
v∈V3

(
U3

klv · dk · α
)

≤
∑
r∈R

(
Ÿlr · b̈r

)
, ∀l ∈ L (3.20)

∑
r∈R

Ÿlr ≤ 1, ∀l ∈ L (3.21)

∑
l∈L

∑
v∈V3

U3
klv = 1, ∀k ∈ K (3.22)

Û3
lv ≥ U3

klv, ∀k ∈ K, l ∈ L, v ∈ V3 (3.23)

∑
v∈V3

Û3
lv ≤ 1, ∀l ∈ L (3.24)
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AN EFFICIENT MATHEURISTIC ALGORITHM 615

Û3
lv −

∑
r∈R

Ÿlr ≤ 0, ∀l ∈ L, v ∈ V3 (3.25)

∑
k∈K

∑
v∈V3

(
U3

klv · dk · α · β
)

≤
∑
i∈I

X4
li, ∀l ∈ L (3.26)

∑
l∈L

X4
li ≤

∑
j∈J

X1
ij, ∀i ∈ I (3.27)

X4
li ≥ θl ·

∑
v∈V4

U4
liv, ∀l ∈ L, i ∈ I (3.28)

X4
li ≤ M ·

∑
v∈V4

U4
liv, ∀l ∈ L, i ∈ I (3.29)

Û4
lv ≥ U4

liv, ∀l ∈ L, i ∈ I, v ∈ V4 (3.30)

∑
v∈V4

Û4
lv ≤ 1, ∀l ∈ L (3.31)

Û4
lv −

∑
r∈R

Ÿlr ≤ 0, ∀l ∈ L, v ∈ V4 (3.32)

Ȳjh ∈ {0, 1}, ∀j ∈ J, h ∈ H (3.33)

Ÿlr ∈ {0, 1}, ∀l ∈ L, r ∈ R (3.34)

X1
ij ≥ 0, integer, ∀i ∈ I, j ∈ J (3.35)
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616 C. A. IRAWAN ET AL.

U1
ijv ∈ {0, 1}, ∀i ∈ i, j ∈ J, v ∈ V1 (3.36)

Û1
iv ∈ {0, 1}, ∀i ∈ I, v ∈ V1 (3.37)

U2
jkv ∈ {0, 1}, ∀j ∈ J, k ∈ K, v ∈ V2 (3.38)

Û2
jv ∈ {0, 1}, ∀j ∈ J, v ∈ V2 (3.39)

U3
klv ∈ {0, 1}, ∀k ∈ K, l ∈ L, v ∈ V3 (3.40)

Û3
lv ∈ {0, 1}, ∀l ∈ L, v ∈ V3 (3.41)

U4
liv ∈ {0, 1}, ∀l ∈ L, i ∈ I, v ∈ V4 (3.42)

Û4
lv ∈ {0, 1}, ∀l ∈ L, v ∈ V4 (3.43)

X4
li ∈ {0, 1}, ∀l ∈ L, i ∈ I, (3.44)

where M is a very large positive number.
Objectives (3.1) and (3.2) refer to the economic and environmental impacts, respectively. Both

objectives consist of two parts, namely, the sum of all fixed costs/emissions and the sum of all
transportation costs/emissions. The first term of the total transportation costs/emissions formulation
(Ztc and Zte) in (3.4) and (3.6) makes the problem nonlinear due to the product of the two decision
variables (U1

ijv and X1
ij). In the implementation, the problem is transformed into a linear problem (MILP)

by the introduction of new decision variables and constraints.
Constraints (3.7) and (3.8) are the capacity constraints, where a plant and an open DC cannot,

respectively, deliver and receive products more than their capacities. Constraint (3.9) enforces that one
design (with a certain capacity) can only be used by an open DC. Constraints (3.10)–(3.11) express that
the amount of products shipped to a DC from a plant must be more than or equal to the lower limit.
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AN EFFICIENT MATHEURISTIC ALGORITHM 617

Constraints (3.12)–(3.13) guarantee that a plant only uses one type of vehicle for transporting products
to DCs. Equation (3.14) indicates the maximum amount of products; an open DC can deliver to its
customers (i.e. up to its capacity). Constraint (3.15) states the flow conservation constraints through an
open DC. A single-source allocation problem is represented by Constraint (3.16), where a customer is
only served by one open DC. This constraint is widely used in the facility location problem. Constraints
(3.17)–(3.18) ensure that an open DC only uses one type of vehicle to deliver products to its customers,
whereas Constraint (3.19) imposes that a vehicle for transporting products is only required by an open
DC.

The interpretation of Constraints (3.20) and (3.21) is, respectively, similar to Constraints (3.8) and
(3.9), with DCs replaced by RCs. Constraint (3.22) assures that the used products of a customer are
only collected by one open RC. Constraints (3.23)–(3.24) define that an open RC only uses one type
of vehicle to collect used products from its customers. Constraint (3.25) enforces that a vehicle for
collecting used products is only needed by an open RC. The flow conservation constraints through an
open RC are represented by Constraint (3.26). Constraint (3.27) ensures that the amount of recycled
products delivered to a plant does not exceed the plant capacity. Equations 3.283.29 impose that the
amount of recycled products transferred to a plant from RC must be more than or equal to the lower
limit. Constraints (3.30)–(3.31) ensure that an open RC only uses one type of vehicle to ship recycled
products to the plants. Constraint (3.32) conveys that a vehicle for transferring recycled products to the
plants is only needed by an open RC. Equations 3.333.44 indicate binary and non-negativity restrictions
on decision variables.

Constraints (3.7)–(3.8) and (3.20) are designed based on a well-known capacitated plant location
problem (Sridharan, 1995). Constraints (3.9) and (3.21) have been applied for the location problems
with multiple capacity levels (Correia et al., 2010). Constraints (3.15) and (3.26) are usually used by the
two-stage capacitated facility location model (Irawan et al., 2016).

4. Compromise programming for the bi-objective CLSC

In real-life, we may face problems with more than one objective, which is referred to as a multi-objective
problem (Kaveh et al., 2019; Song et al., 2020; Yakavenka et al., 2019). There are several methods that
can be used to deal with multi-objective problems including goal programming, Pareto efficient set
generation and CP. In this paper, CP is chosen as it has the advantage of not requiring the goal target
values information, as in goal programming, while at the same time being relatively faster than the
Pareto efficient set generation technique. The idea of CP is to select a solution from the set of efficient
solutions based on the assumption that any decision-maker seeks a solution as close to the ideal point
as possible (Romero & Rehman, 1989). According to Jones (2011), CP minimises a set of weighted,
scaled distances between the ideal and efficient solutions. Recently, CP has been used successfully in
many applications, including in the environmental area of wind farm scheduling as shown by Irawan et
al. (2017a) and references therein.

CP uses a distance function to measure the closeness between a solution and the ideal point, where
a family of Lp metrics is usually implemented. The general formulation of a CP approach is expressed
as follows:

min Lp =
(

N∑
k=1

∣∣∣∣∣ŵk · Zk(x) − Z∗
k

Z+
k − Z∗

k

∣∣∣∣∣ p

) 1
p

, (4.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/33/4/603/6588313 by Tem

plem
an Library, U

niversity of Kent user on 25 N
ovem

ber 2022



618 C. A. IRAWAN ET AL.

where

p: indicates the distance measure with p in the range [1, ∞],

N: the number of objectives,

Z∗
k : the ideal solution of objective o,

Z+
k : the anti-ideal solution of objective o,

Zk(x): the compromise solution that minimises Lp, and

ŵk: the weight/importance of objective o relative to the other objectives.

In this study, we explore the case when the value of p is 1 and ∞.
For p = 1, Equation (4.1) is transformed into the following form:

min L1 = min
N∑

k=1

ŵk · Zk(x) − Z∗
k

Z+
k − Z∗

k

. (4.2)

When p = ∞, the objective function (4.1) reduces to minimizing the maximum deviation (π) as follows:

min L∞ = min π (4.3)

s.tŵk · Zk(x) − Z∗
k

Z+
k − Z∗

o

≤ π , ∀k = 1, . . . , N. (4.4)

Algorithm 1 shows the main steps of CP for solving the bi-objective CLSC network problem. This
approach consists of three phases. The first phase is to obtain the anti-ideal solution for each objective,
where the maximising problem is used instead. As expected, in the optimal solution configuration, all
potential sites with their largest capacity will be chosen for opening DCs and RCs. Moreover, a customer
will be served by the furthest facility instead of the nearest one. This property of the maximizing problem
renders its resolution relatively easy to solve optimally. In the second phase, the ideal solution for
each objective is obtained by solving the minimizing problem separately. In this study, even though
the problem is more complex, it is also solved by an exact method, where CPLEX is used to generate
optimal or near optimal solutions.
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AN EFFICIENT MATHEURISTIC ALGORITHM 619

Phase 3 is introduced to find the solutions that minimize L1 and L∞ as these can serve as bounds
for the compromise solutions. The MILPs for L1 and L∞ are solved by both the exact method using
CPLEX and the proposed matheuristic. For relatively large instances, the matheuristic is an effective
tool for minimizing L1 and L∞ problems as these problems are relatively harder to solve optimally.

5. The proposed matheurisic

A matheuristic technique, which falls within the class of hybridisation of heuristics and exact methods,
is proposed. In this study, this approach is designed by integrating an aggregation technique, an exact
method, a local search and metaheuristic. For the applications of matheuristics, the readers are referred
to Ramos et al. (2020), Huber et al. (2020), Obal et al. (2019) and Irawan & Jones (2019). This type
of approach, which was shown to be efficient for solving a class of location problems (Irawan et al.,
2017b), is adapted to tackle the L1 and L∞ problems.
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5.1 Overview of the algorithm

This method requires the ideal and anti-ideal solutions of the total costs and the amount of emissions
that have been calculated in Phases 1 and 2 of Algorithm 4.1. Algorithm 5.1 presents the proposed
matheuristic which consists of five stages.

For the initialisation stage of Algorithm 5.1, the necessary parameters are defined. This includes the
number of iterations (T) to solve the aggregated problems, the number of aggregated potential DCs (μ̄)

and RCs (μ̈), the maximum computational time for CPLEX to solve the aggregated problems (τ ), the
augmented problem (τ ′) and the reduced problem (τ ′′). A set of arrays is also constructed to store the
solutions obtained when solving the aggregated problems. The data structure of these arrays is the same
as the one representing the decision variables in the model.

Stages 1 and 2 use an aggregation technique to solve the problems where an iterative process is
conducted. In these stages, the aim is to generate promising sites to locate DCs and RCs using an
aggregation approach. Given that the CLSC problem can be divided into forward SC and reverse SC
problems, the resulting problems become relatively easier to solve. The ideal and anti-ideal solutions of
the total cost and amount of emissions for both SCs are calculated based on the solutions generated in
Phases 1 and 2 of Algorithm 4.1.
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AN EFFICIENT MATHEURISTIC ALGORITHM 621

In the first stage, a set of aggregation problems on the forward SC is generated. Firstly, μ̄ potential
DCs are selected randomly out of |J| sites. The aggregated forward SC problem (minimizing L1 or
L∞) consisting of |I| plants, (μ̄) (instead of |J|) potential DCs and |K| customers is then solved by
CPLEX within (τ ) seconds. For the forward SC problem, model (3.1)–(3.44) is reduced by considering
the following decision variables only: Ȳjh, X1

ij, U1
ijv, Û1

iv, U2
jkv and Û2

jv. Note that the objective function
formulation needs to be revised by removing the flows of products from customers to plants and the
opening of RCs. Constraints (3.20)–(3.32) are also not needed here. The obtained solution is stored in

arrays Û
1
iv, Ȳ jh and Û

2
jv for decision variables Û1

iv, Ȳjh and Û2
jv, respectively. The process is repeated T

times.
The main procedure of Stage 2 is relatively similar to that of Stage 1 whereby a set of aggregation

problems is constructed on the reverse SC instead. The potential RCs are also aggregated to μ̈ sites
randomly selected from |L| sites. The aggregated reverse SC problem comprises |K| customers, μ̈

potential RCs and |I| plants which is solved by CPLEX within (τ ) seconds. Note that this is a
reduced model which includes the following decision variables only: Ÿlr, X4

li, U3
klv, Ü3

lv, U4
liv and Ü4

lv.
Constraints (3.7)–(3.19) are also excluded from the model. In addition, in constraints (3.27),

∑
j∈J X1

ij

is approximated by si (capacity of plant i) as the variable X1
ij belongs to the forward SC. The obtained

solution is stored in arrays Ü
3
lv, Ÿ lr and Ü

4
lv for decision variables Ü3

lv, Ÿlr and Ü4
lv, respectively.

A feasible solution for the original problem can be found easily. This is then used as an initial
solution in the next stage, which is the local search. Let Z be its objective function. The values of all the

corresponding decision variables are then copied into the set of arrays (Ȳ jh, Ÿ lr, X1
ij, U1

ijv, Û
1
iv, U2

jkv, Û
2
jv,

U3
klv, Û

3
lv, U4

liv, Û
4
lv and X4

li) which are referred to as the best storage arrays. Let χ and ψ denote the set
of open DCs and RCs, respectively.

In Stage 4, we propose two methods to improve the quality of the solutions produced by the previous
stages, namely the interchange-based heuristic and a metaheuristic based on Variable Neighbourhood
Search (VNS). The description of these two methods is presented in the next subsections. Here, the
implementation of Matheuristic with the interchange-based heuristic is called MTH-ICH, whereas the
one with the VNS is refer to as MTH-VNS. In the final stage, the original L1 or L∞ problem is then
solved using the exact method with CPLEX within (τ ′′) seconds. This problem can be considered as the
reduced problem given that the binary decision variables Û1

iv, Ȳjh, Û2
jv, Û3

lv and Û4
lv are now treated as

known. These are populated from the storage arrays obtained from the previous stage, namely, the local
search. Here, the flows of products from plants to customers and the flows of returned products from
customers to plants are obtained. Based on the solution found, the total cost (Zc) and the total amount
of emissions (Ze) are then determined.

5.2 The interchange-based heuristic (Stage 4 of Algorithm 5.1)

The interchange heuristic is developed using a combination of the first and best improvement strategy.
The heuristic is divided into two categories, namely, one for the forward SC and another for the reverse
SC. The former local search seeks the best location of open DCs, whereas the latter searches for the
RCs’ sites. The algorithms for both supply chains are quite similar.
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Heuristic for the forward SC
The main steps of the proposed heuristic for the forward SC are presented in Algorithm 5.2. The

algorithm aims to seek a potential DC site to replace a DC site already used in the current solution.

Firstly, the maximum CPU time (cpumax) and the number of nearest potential DCs (�) from an open
DC are defined. In Lines 2–20, an open DC, say DC ĵ, is swapped with each potential DC site included
in the set ς (the list of (�) potential DCs nearest to the open DC ĵ, where ς 	⊂ χ , ς ⊆ J). The set ς is
introduced to reduce the computational time at the expense of a small quality loss. For more information
on the design and practicality of neighborhood reduction, see Salhi (2017). Here, the open DC is not
necessarily swapped with the potential DC located too far from the open DC. The potential DC site that
yields the best positive saving is chosen to replace DC ĵ. Then, the process returns to Line 2 without
checking the remaining open DCs that have not been searched.

In Lines 6–12, the chosen DC is restricted to opt for the same design (capacity) and to use the same
type of vehicle already present at the removed DC. The model is reduced to find the flow of products
from plants to customers only (forward SC). In other words, all the decision variables except X1

ij, U1
ijv

and U2
jkv are treated as known, which are populated from the best storage arrays. The reduced problem

is then solved by the exact method using CPLEX applied within (τ ′′′) seconds. In Lines 13–19, once the
potential DC that produces the best improvement is found, the flows of new and returned products are
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determined by solving the problem which considers the following decision variables X1
ij, U1

ijv, U2
jkv, X4

li,

U3
klv and U4

liv only. At this stage, other binary decision variables have known values which are populated
by the best storage arrays. This reduced problem is solved by CPLEX within τ̂ seconds. The search goes
back to Line 2 and the process is repeated until there is either no improvement or the computational time
reached cpumax, whichever comes first.

Heuristic for reverse supply chain
The local search for the reverse SC is relatively similar to the one in the forward SC given in

Algorithm 3, except that

(i) the operator, which finds the location of the DC site, seeks a potential RC site to replace an RC
site already used in the current solution,

(ii) in Lines 6–12, the model is also reduced to determining the flow of returned products from
customers to plants (reverse SC). Here, all decision variables, except X4

li, U3
klv and U4

liv, are
known and are populated from the best storage arrays,

(iii) in Lines 13–19, the flows of new and returned products are determined by solving the reduced
problem, which considers the following decision variables X1

ij, U1
ijv, U2

jkv, X4
li, U3

klv and U4
liv only.

5.3 The proposed variable neighbourhood search (Stage 4 of Algorithm 5.1)

VNS was first formally formulated by Hansen & Mladenović (1997) for solving the p-median problem.
VNS consists of two parts, namely neighbourhood search and local search where the objective of the
first part is to help the search process escape from the local optima. The local search seeks the best
solution in the local neighbourhood. A larger neighbourhood is used if the local search process cannot
find any improvement, otherwise it reverts to the smaller neighbourhood. VNS-based matheuristic has
successfully been implemented to address challenging problems, including for location problem (Irawan
et al., 2017c), vehicle routing problem (Wang et al., 2017) and layout problem (Irawan et al., 2019).

The same as the interchange heuristic described previously, the proposed VNS aims to address the
forward and reverse SCs. Algorithm 4 presents the main steps of the proposed VNS where parameter
kmax needs to be defined first.

In the proposed, the shaking process is conducted by removing a facility randomly selected from the
current solution (χ ′) and replacing it with a randomly selected potential site near to the removed facility.
Note that the site is chosen from a set of ς , a list of potential DCs near to removed DC, which is described
in the previous subsection. Once the interchange has been conducted, the allocation problem is solved
and the objective value z′ is calculated. Here, the allocation problem is the same as the one presented in
Line 10 of Algorithm 3 which is solved by an exact method. This shaking process is repeated k times to
perturb the solution.

Then, an interchange heuristic is proposed using the best improvement strategy to improve the
quality of solution by finding the local optima. The algorithm aims to seek the best facility location
site to be swapped with the facility site used in the current solution. To speed up the process, the swap
is performed between facility j ∈ χ ′ and a potential site (ĵ ∈ ς , ĵ /∈ χ ′) which is near to facility j.
The restricted allocation problem is solved to check whether improvement has been made. Note that the
allocation problem is restricted by only including facility ĵ and a set of open facilities near to facility
ĵ. This significantly reduces the computing time at the expense of a relatively small solution quality
reduction. The permanent swap between the best potential site and the best facility to be removed will
be done if improvement occurs. The local search process will be repeated until no improvement is found.
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624 C. A. IRAWAN ET AL.

In Move or Not step, if the proposed heuristic is not able to improve the solution, a larger
neighbourhood is systematically used otherwise the smallest one will be used. This can be performed by
updating the value of k, where k = kmax indicates the largest neighbourhood, while k = 1 represents the
smallest one. In the VNS, the smallest neighbourhood is the one that is closest to the current solution,
whereas the largest one is the farthest from the current solution (Hansen & Mladenović, 1997). Similar
to the previous method, the proposed VNS can also be used for the reverse SC. The modification of
the algorithm is quite similar with the previous method. Here, DC sites are replaced by RC sites and all
decisions for the flow of forward SC are replaced by the ones for reverse SC.

6. Computational experiments

Computational experiments are carried out to examine the performance of the proposed solution method.
The implementation is written in C++. Net 2015 and the mathematical model is solved using the IBM
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AN EFFICIENT MATHEURISTIC ALGORITHM 625

ILOG CPLEX version 12.7 Concert Library. The tests are run on a PC with an Intel Core i7 CPU
@ 3.60GHz processor, 16.00 GB of RAM and under Windows 7. To the best of our knowledge, no
benchmark dataset is available for this problem. We constructed four new datasets with |K| = 50 − 200
with an increment of 50.

6.1 Computational evaluation of the proposed matheuristic

The four newly constructed datasets are used to assess the performance of the proposed solution method.
For each instance, the number of potential DCs and RCs is set to |K| (i.e. |J| = |L| = |K|), with the
number of plants (|I|) being set to 0, 1, . . . , |K|. The locations of plants, potential DCs, customers and
potential RCs are randomly and uniformly generated. The demand of each customer is randomly chosen
between 5 and 15, whereas the number of designs for DCs and RCs is set to 3 (i.e. |H| = |R| = 3). The
number of vehicle types for plants, DCs and RCs is also set to 3 (i.e. |V1| = |V2| = |V3| = |V4| = 3).
The production capacity, DC and RC capacity for each design, along with their associated parameters,
are estimated based on the total demand of customers. Here, the dataset is constructed in such a way that
the total transportation cost/emissions obtained is close to the total fixed/opening cost/emissions. These
datasets can be downloaded from .

Table 2 shows the ideal and anti-ideal solutions found by CPLEX when solving the minimizing/-
maximizing total cost and emissions problems. In the experiments, the computing time of CPLEX is
limited to 3 h where the upper bound (UB) and the lower bound (LB) are obtained. Therefore, the Gap
(%) is determined using the following equation:

Gap(%) = UB − LB

UB
× 100. (6.1)

For the minimizing problems, the required number of DCs (p) and the number of RCs (q) to be
opened are also provided. Table 2 reveals that the maximizing problems can be easily solved by CPLEX.
For the minimizing problems, CPLEX produced near-optimal solutions; on average, relatively small
gaps of 1.2 and 1.86% for the minimizing total cost and emissions problems, respectively.

The proposed matheuristic is used for the minimizing L1 and L∞ problems, where the weight of
objectives is set equally to 0.5. The solutions for L1 and L∞ problems found by CPLEX are used for
comparison purposes. Here, the UB found within the maximum allowed time of 3 h is used as the
objective function value. According to the results, CPLEX was not able to obtain the LB within the
allowed time. Therefore, the performance of the matheuristic is then measured using the percentage
deviation (Dev) instead of Gap (Equation 6.1) where Dev (%) is computed as follows:

Dev(%) = Z′ − Zb

Zb
× 100, (6.2)

where Z′ refers to the objective function value obtained by either the exact method (UB) or the proposed
method, whereas Zb is the best objective function value attained by either the exact method or the
proposed matheuristic.

In these experiments, the following parameter values are used: T = 2, τ = 2|K|/5, τ ′ = 2|K|,
τ ′′ = 50, τ ′′′ = 1, τ̂ = 5, cpumax = 2|K|, � = 25 and kmax = 2. Parameters τ , τ ′, τ ′′, τ ′′′, τ̂ , cpumax are
measured in seconds. The number of aggregated DCs (μ̄) and RCs (μ̈) is calculated based on the UB
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on the number of open DCs and RCs required, which is expressed as follows:

μ̄ = ε ·
⌊ ∑

k∈K

maxh∈H b̄h

⌋
andμ̈ = ε ·

⌊ ∑
k∈K

maxr∈R b̄r

⌋
, (6.3)

where ε is a parameter set to 1.5. Those parameters are chosen based on preliminary experiments.
Tables 3 shows the summary of computational results in obtaining compromise solutions using the

exact method (EM) and the matheuristic. Here, the proposed matheuristic is divided into two types,
namely matheuristic with the interchange heuristic (MTH-ICH) and with the VNS (MTH-VNS). The
first column of Table 3 refers to the number of customers. The table is mainly divided into two parts
which are the results of minimizing L1 and L∞ problems. For each problem, the table also presents the
solution obtained by EM, MTH-ICH and MTH-VNS represented by the deviation (%) achieved by the
corresponding method together with its computational time (CPU). The best objective function value
(Zb) is also provided. The bold numbers in the table refer to the best solutions found.

According to Table 3, within 3 h, CPLEX was not able to guarantee optimality for the minimising L1
and L∞ problems. It is also noted that compared with the proposed matheuristic, CPLEX produced better
solution for one instance only (i.e. |K| = 50 for the minimizing L1 problem). It is worthwhile noting
that the EM experienced difficulties when solving the minimizing L1 and L∞ problems, especially
when |K| > 50. Based on the average deviation, the proposed matheuristic performs much better than
the EM in obtaining the compromise solutions. The MTH-VNS provides a relatively small average
deviation of 1.67 and 4.56% for the minimizing L1 and L∞ problems, respectively, whereas the EM
yields approximately a massive value of 967 and 6,605%. Note that the large values of Dev (%) in
Table 3 are mostly very large for the EM. This is due to the fact that CPLEX could not improve the
UB within the maximum computing time of 3 h. Interesting results were observed where the MTH-ICH
performs better for small instances (i.e. |K| = 50 and 100), whereas the MTH-VNS produces better
results for the large ones (i.e. |K| = 150 and 200). It is mainly because MTH-VNS explores more
feasible solutions rather than MTH-ICH. In summary, the matheuristic, especially MTH-VNS, is found
to be the best method for generating good compromise solutions while consuming a smaller amount of
computational effort.

Table 3 also presents the details of best compromise solutions obtained by the proposed methods,
where the breakdown of the total cost and amount of emissions obtained are provided. Moreover, the
information on the number of open DCs and RCs is given. It is worthwhile noting that the compromise
solutions attained by the proposed are quite close to each other. For example, compromise solutions are
shown in Fig. 2 for |K| = 50 and |K| = 150. The figure also reveals the ideal and non-ideal solutions.
Here, compromise solutions are bounded by solutions generated by solving L1 and L∞ problems. The
decision-maker, based on his/her individual preferences, will choose one or a few solutions from this
solution set.

6.2 Sensitivity and robustness analysis

Sensitivity analysis
A detailed analysis is performed to assess the effect of the weight factor on the change in the number

of DCs and RCs together with the balance between environmental and economical considerations. As
a platform for discussion, the experiment is performed with an instance with |K| = 50, with w̃ =
0.1, 0.2, ..., 0.9 leading to a set of solutions as shown in Fig. 3. In this case, the solution found for each
(minimizing L1 or L∞ problem with a different w̃) using the proposed matheuristic is considered. Here,
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Fig. 2. Ideal, compromise and non-ideal solutions for |K| = 50 and |K| = 150.

Fig. 3. A set of solutions for |K| = 50.

these generated solutions make up a Pareto frontier. When w̃ is set to a high value (e.g. w̃ = 0.9), the
total cost decreases but the total emissions increases. It is worth noting that, while the matheuristic is
used to solve the minimizing L1 or L∞ problems, it is not guaranteed that the solutions produced are
always non-dominated. This risk is linked to the heuristic nature and would obviously not happen if it
was appropriate to apply an EM instead.

Figure 4 shows the breakdown solutions for each problem where Fig. 4a provides the total cost and
emissions produced, whereas Fig. 4b presents the number of DCs and RCs. It is also highlighted that the
required number of DCs and RCs decreases when the value of w̃ increases. This indicates that, despite
the increased product movement (transportation) and consequent larger environmental impact, it is still
economically efficient to have fewer DCs and RCs. For example, in the solution generated by solving
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Fig. 4. The breakdown solutions for |K| = 50.

the L1 problem with w̃ = 0.9, there are 8 DCs and 5 RCs, which are selected. In this solution, the vehicle
that provides the lowest cost for each open facility is chosen. On the other hand, if w̃ is small, say 0.1, we
need to open 18 DCs and 14 RCs, with each facility requiring the vehicle, which produces the smallest
amount of emissions. Solving the L∞ problem with mid range values of w̃, such as w̃ = 0.4 and 0.5,
generates solutions that are located in the middle of the Pareto frontier. As an example, if w̃ = 0.5 is
used, 13 DCs and 8 RCs are required, whereas 13 DCs and 10 RCs are needed for w̃ = 0.4. In this case,
the type of vehicles used by each facility may be different. Even though this information is invaluable
to senior management, the different configurations obtained presents a dilemma. We believe that the
information given ought to be complemented by external factors, e.g. socio-economic information, in
order for the management team to reach a compromise. Such an outcome could be based on a robust
solution in order to remain financially and socially attractive for many years to come.

Robustness analysis
Here, we incorporate the concept of robustness to alleviate potential risks that could arise due to

changes in some of the parameters, mentioned in the earlier subsection. It is worth emphasizing that
decisions relating to the location and the capacity of the DCs and RCs, together with the transportation
mode used by each facility, are strategic in nature. One way to address this complex decision issue is to
provide a robust configuration for such problem. As an illustration, we investigate the robustness of a
given configuration for a given scenario. The aim is to obtain a configuration that remains economically
viable and environmentally attractive despite alterations in the input. Here, the presence of uncertain
customer demand is analyzed using the SC configuration generated in the previous subsection. Monte
Carlo simulation is designed and it is assumed that customer demand follows a normal distribution.
The standard deviation of customer demand (σk) is determined based on the expected demand (d̃k) with
σk = ψ · d̃k, where ψ is a correction parameter and d̃k = dk.

The main procedure of the proposed simulation is presented in Algorithm 6.1 where the number
of iterations (T̂) needs to be defined first. For each iteration, the demand of customer (d̃k) is randomly
generated. The closed-loop supply chain assignment problem (CLSCAP) is solved using the EM within
(τ ′′′) seconds. The CLSCAP considers the uncertain demand (d̃k) generated from the previous step.
The decision variables used in the CLSCAP are the same as the ones given in Section 3, except that
the decision variables Ȳjh, Ÿlr, Û1

iv, Û2
jv, Û3

lv and Û4
lv are fixed. As the DCs and RCs have capacity
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constraints, new decision variables are introduced, representing the unmet demand of each customer
for both the forward SC (δf

k) and the reverse SC (δb
k ). In this study, the CLSCAP aims to minimize the

overall unmet demand which is expressed as follows:

min
∑
k∈K

(
δ

f
k + δb

k

)
. (6.4)

The constraints used by the CLSCAP are also similar to Equations (3.1)–(3.44) with minor
modifications, where Constraints (3.14), (3.15), (3.20) and (3.26) are replaced by (6.5), (6.6), (6.7)
and (6.8), respectively.

∑
k∈K

∑
v∈V2

(
U2

jkv · (d̃k − δ
f
k)

)
≤

∑
h∈H

(
Ȳjh · b̄h

)
, ∀j ∈ J (6.5)

∑
i∈I

X1
ij =

∑
k∈K

∑
v∈V2

(
U2

jkv · (d̃k − δ
f
k)

)
, ∀j ∈ J (6.6)

∑
k∈K

∑
v∈V3

(
U3

klv · (d̃k − δb
k ) · α

)
≤

∑
r∈R

(
Ÿlr · b̈r

)
, ∀l ∈ L (6.7)

∑
k∈K

∑
v∈V3

(
U3

klv · (d̃k − δb
k ) · α · β

)
≤

∑
i∈I

X4
li, ∀l ∈ L. (6.8)

As the CLSCAP is a non-linear model, we linearize it in the standard way so the model can be
solved by a commercial solver such as CPLEX. Once T̂ CLSCAP problems have been solved, the
expected unmet demand for the forward SC (δ̄f

k) and for the reverse SC (δ̄b
k ) are determined.

The experiments are conducted on an instance with |K| = 50, where two extreme solutions, as
well as, two other solutions from the middle of the Pareto frontier given in Fig. 3 are selected. We vary
the value of ψ from 0.1 to 0.3 with an increment of 0.1 in order to analyze if the standard deviation
of customer demand influences the SC configuration. We set the value of T̂ to 1,000 that represent

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/33/4/603/6588313 by Tem

plem
an Library, U

niversity of Kent user on 25 N
ovem

ber 2022



632 C. A. IRAWAN ET AL.

Table 4 Summary of the computational results for the simulation

Problem w̃ ψ Out of 1,000 problem, δ̄
f
k δ̄b

k
(%) (%) #problems that have unmet demands

L1 10 10 6 0.011 0
L∞ 40 10 34 0.09 0
L∞ 50 10 34 0.09 0
L1 90 10 34 0.09 0
L1 10 20 99 0.531 0.219
L∞ 40 20 175 1.091 0.074
L∞ 50 20 175 1.091 0.057
L1 90 20 174 1.09 0.057
L1 10 30 187 1.713 1.07
L∞ 40 30 255 2.632 0.621
L∞ 50 30 255 2.632 0.538
L1 90 30 255 2.632 0.538

1,000 problems with different customer demands using an SC configuration. Here, we also analyze
the number of problems that do not meet customer demands. Table 4 presents the summary of the
computational results for this simulation. The SC configuration generated by solving an CLSC problem
with a smaller w̃ (focusing on CO2 emissions) resulted in a smaller number of cases which do not satisfy
all of the customer demands. Also, as expected, the increase in the standard deviation (σk) will increase
the number of cases that have unmet demands. We can state that our configuration is rather stable as
long as the changes in customer demand are within a reasonable margin, say 10% of d̃k. We believe that
this finding is valuable to decision-makers as the analysis could be replicated onto their organizational
scenarios, to eventually obtain an overall robust decision.

7. Conclusions and suggestions

In this study, we addressed a closed-loop SC and examined the challenging problem of sustainability
using CP. We designed an optimisation model that incorporates two conflicting objectives, namely,
the minimization of the total cost and the amount of CO2 emissions. We modelled this closed-loop
SC problem as a bi-objective mixed integer linear programming. The problem was solved to obtain
the optimal number and locations of DCs and RCs, along with their capacity and the type of vehicle
used. An effective matheuristic method, which is based on an aggregation technique, a reduced EM,
an interchange-based heuristic and VNS, was then designed to overcome the difficulties faced by the
original EM. The matheuristic technique was assessed using a variety of newly generated datasets which
produced compromise solutions with higher quality than the ones found by the EM, while requiring only
a fraction of the computing time.

To test the efficacy of our proposed methods, we performed scenario analysis followed by robustness
analysis of the network configuration due to the changes in customer demand. The scenario analysis
was to assess the effect of weight with respect to the objective functions which yielded different SC
configurations. The robustness of the SC configuration is then assessed by applying Monte Carlo
simulation on the customer demand. It was found that if the standard deviation is within 10% of
the average demand, the unsatisfied demand is insignificant, thus demonstrating the stability of SC
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configuration. This invaluable information is key to assisting senior management to focus on attributes
with impact on sustainability and resilience of their SC.

The following research directions may be worthy of future investigation. The uncertain demand of
customers can be considered in the proposed model. Using a stochastic model instead of a deterministic
one may be more difficult on a practical level, but it is more academically challenging to solve. In this
study, only one product is considered; this restriction can be expanded to include a class of products
instead. From a general viewpoint of heuristic search, other powerful metaheuristics including adaptive
search methods could also be worth exploring.
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