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ABSTRACT

This thesis deals with weighted (generalised) least
squares estimation and analysis for some common experimental
designs with the error variance heteroscedastic with respect
to the levels of one factor, namely, the treatments or (for
split-plot designs) sub-plot treatments. The simple
regression model with error variance heteroscedastic with
respect to the values of the independent variable, is also
considered briefly. The observations in any of the analyses
considered are grouped in such a way that the error variance
is constant within groups but varies from group to group.

On the assumption that the group variances are known,
the weighted least squares estimétors of the linear para-
meters and the corresponding analysis (Aitken, 1934-35;
Plackett, 1960, pp. 47-49) are provided for each design or
model. An expression for joint confidence intervals of
parametric contrasts for the heteroscedastic models is also
obtained. The estimators of the linear parameters and other
statistics usually involve actual weights, thé reciprocals
of the group variances.

The actual weights are not usually known. The esti-
mators of the group variances are therefore derived for each
design or model. For some designs, the minimum norm
quadratic unbiased estimators (Rao, 1970; 1973, pp. 303-
305) of group variances are independently distributed as
multiples of y 2. For other designs, almost unbiased
estimators (Horn et al., 1975) of group variances have
negligible bias and are approximately independently distri-

(&}
buted as multiples of X°. Reciprocals of



(i1)

these estimators are used as the estimated weights.

The weighted least squares estimators of the linear
parametérs or variance components and other statistics
including test-statistics using estimated weights, are
genefally biased. It is shown in the thesis how a major
part of the bias can be removed; the procedure stems from
a theorem due to Meier (1953). The estimators and other
statistics using estimated weights are adjusted accordingly.
A modified form of this theorem is also proved.for correlated
estimators of the group variances. A small Monte Carlo
study conducted for completely randomised designs showed
that the performances of the adjusted statistics are more
or less satisfactory.

The designs and models covered in this thesis are:
completely.randomised designs, the general two-way model
with proportional cell frequencies, general block designs,
randomised complete block designs, latin square designs,
split-plot designs with two treatment factors and the
linear regression model. For the first three designs,
both the fixed-effects models and random or mixed models
are'considered whereas only the fixed-effects models are

dealt with for the remaining three designs.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1,1 Introduction

In the classical least squares theory, the error
variances are assumed to be equal. For linear homoscedastic
models, the least squares estimators of the parameters have
some optimality properties as given in the Gauss-Markoff
theorem (see John, 1971, p. 34). When the error variances
differ and their values or relative values are known,
the same properties are satisfied by the corresponding
generalised (weighted) least squares estimators.

For variable unknown error variances, when the mean is
-functionally related to the error variance, variance-stabili-
zing transformations can be used to remove heteroscedasticity
(see Bartlett, 1947, and others). Hoyle (1973) gave a
detailed account,with bibliography, of different types of
transformation and their uses. It has been observed from
experience that such transformations often normalise the
data so that the F-test remains valid.

However, the error variances may sometimes be
different even if there is no reason to believe that the
errors are non-normal, In animal-breeding experiments, the

bveede
litters may originate from different species and the error

bveed G breed.
variance may vary from speeies—to—speeies, If several

persons having different skills take measurementc on the same
objects, then it is not unreasonable to assume that the
A&/M veowamees foe %b—e&gw& léfy‘wm
errors of measurement have th@—%&ﬂ9~¥&¥+dﬁ€€-fﬂf each—person
Batches of chemicals used by an experimenter may have come

from different sources and the error variance may differ

from source to source.



Sometimes the treatments may not be reproduced
exactly for repetition. There are then treatment errors
which may have different variances for different treatments.
In the.data given by Fisher (1966, pp. 67-69) for a set of
variety trials, Yates and Cochran (19%38) found that one
variety, Trebi, of Barley accounted for much of the variation
due to varieties. Snedecor and Cochran (1967, p. 324) gave
some examples of unequal variances due to treatment errors.
Zyskind and Kempthorne (1960) considered treatment errors
having unequal variances and found expectations of sums of
squares over permutation distributions for some designs.

The concept of inequality of group error variances is
thus quite old. In the late thirties, Bartlett (1937)
proposed a method for testing the homogeneity of group
variances for one-way models. Later on, Hartley (1950)
gave a short-cut test. Han (1968) suggested a few methods
for testing homogeneity of correlated variances. Russell
and Bradley (1958), Johnson (1962), Han (1969), Maloney and
Rastogi (1970) and Shukla (1972) dealt with the test of homo-
geneity of group variances in two-way models and Curnow (1957)
with that in split-plot designs for only two sub-plot treat-
ments.,

Box (1954a and 1954b) derived some results on distri-
butions of quadratiC‘ forms in normal variates and applied
these to study the efféct of inequality of group error
variances on the F-test in one-way and two-way classifications.
He found that moderate differences in error variances did not
seriously affect the test for equal replications while much
larger discrepancies were observed for unequal sample sizes.

Draper and Guttman (1966) utilized Box's results from

a Bayesian point of view in one-way fixed effects models



when only two different group variances are suspected.

For heteroscedastic models, Box showed that the usual ratio
of the error mean square: to the treatment mean square:. was
approximately distributed as a constant times an F-variate.
Assuming some prior distributions of the means and variances
of the populations, Draper and Guttman obtained estimators

of the constants of such test-statistics. Applying standarad
analysis to some examples of unequal group variances, they
concluded that "serious errors can result if the effects of
unequal variances are ignored".

The problem of testing equality of two means when
group variances are unknown and unequal, was first discussed
by Behrens (1929) and Fisher (1935, 1939); the latter pro-
.vided a method for such a test with the help of fiducial
distributions of the parameters concerned. Welch (1938)
suggested an approximate test based on the assumption that a
linear function of two independent xz-variates is approxi-
mately distributed as a constant multiple of a y%variate.
Scheffé (1943) gave an exact solution to the Behrens-Fisher
problem, in terms of interval estimation on the basis of a
t-distribution. Welch (1947) suggested an asymptotic
solution in which error of the first kind was held approxi-
mately constant.

Ghosh (1961) considered estimation of parametric
functions in one-way models with unequal group variances and
obtained a generalisation of Scheffé's (194%) result. Using
Ghosh's result, Ghosh and Behari (l9655.derived expressions
for point estimators and confidence intervals for treatment
contrasts in randomised block designs with groups of treat-

ments having different variances.

Approximate test-criteria for testing equality of



several means when group variances are unequal, were first
given by James (1951) and Welch (1951). Using two successive
Taylor's series expansions, James derived the following
approximate expression for the a% point:

(o) [ 1% 13 x () +t+1} T{1/(r4-1)} (1-15w; /Tr305)/2(£°-1) 15
the weighted treatment sums of squares, using estimated
weights, are to be compared with this quantity for testing
equality of treatment means. In this expression y% (o) is
the value of X’ with (t-1) degrees of freedom (d.f.) at the
ob level of significance, t is the number of treatments, Ty
is the number of replications for the ith treatment, and the
estimated weight‘ég is the reciprocal of the variance of the
ith sample. Proceeding in the same way, James (1954)

. obtained approximate test criteria, again based on the x?Z
distribution, for tests of linear hypotheses for univariate
and multivariate heteroscedastic models.

Welch (1951) provided another asymptotic solution,
based on an F-test, to the above problem. He obtained the
cumulant generating function of F :{Xz/(t'D}/(Xz/f)s the
ratio of two mean }*'s , and took thelexpectation of F over
Xzz'. He then compared the cumulants, up to ordef{l/(ri-l)},
of the terms of the resulting series with the corresponding

terms of the cumulant generating function of the weighted

treatment sum of squares; he suggested that the statistic

t A A~ n t
{iriwiyif-(zriwiyi.)Z/Zriwi}/(t-l){1+2(t-2)§ ( y(ri-l)x

(1-ri§i/2ri§i)2/(t2- 1)}

with Y; as the mean of the ith sample, is approximately dis-
tributed as a central F under the null hypothesis with d.f.
t A N -
(t-1) and £ = {3 Z{lﬂriwlﬁ(l—riw-/Zr.w.)z/(tz- 1)} k,
1 - A | i1

Brown and Forsythe (1974a) proposed an approximate



d.f. solution to the same problemn. As both the numerator
and the denominator pf the statistic %ri(yi.—y..)Zég(i-ri/n)/wd}
- with y.. = Iy;./t and n = ZIr,,

have the same expectation, they suggested, following
Satterthwaite (1941), that this statistic is approximately
distributed as an F with (t-1) and f; d.f. under the null
hypothesis where f = 1/[= ciz/(ri—l) Jwith

c; = {l—ri/n)/ai}/{ ?(1-ri/n)/§i |

From a Monte Carlo study, they found that the performances
of their test-statistic and that of Welch (1951) were satis-
factory for more than 10 observations per group and were not
unreasonable for samples of sizes down to 5. They also
offered some suggestions for evolving an improved test-

- statistic which would be useful in ail situations including

small samples. Brown and Forsythe (1974b) showed that their

test-statistic mentioned above could be derived by combining

orthogonal contrasts of treatments. The method was extended
to two-way designs with unequal cell variances, They also
A

proposed a method of obtaining joint confidence interval for
contrasts between treatment means.
Chakravarti (1965) showed that Hotelling's 72
statistic could be used to test the hypotheses in respect
of linear contrasts of the treatments in one-way hetero-
scedastic models. Such tests are valid when the number of
treatments does not exceed the minimum number of replications.
For one-way models with unknown group variances,
Spjgtvoll (1972) derived an approximafe expression for the
joint confidence interval of all contrasts of the treatment
means., If y is any such contrast, then this joint confidence

interval is



with gﬁ as the estimated standard error of the estimator
J of ¥ and A ={aFa(t,b) }%. The expressions for a and b
in terms of individval d.f. were obtained by equating the
first two cumulants of I F(1,r;-1) to those ofa F (t,p).

For two-way hete;oscedastic models, some methods of
testing hypothes®s were suggested by several authors besides

Brown and Forsythe (1974b) mentioned above. Graybill (1954)

considered randomised complete block designs assuming the
errors to be heteroscedastic between treatment effects and
correlated within each block. Subtracting the data for any
one treatment from the corresponding data for each of the
other treatments, he showed that Hotelling's Tg statistic
could be used for testing the treatment differences. The
test is valid when there are more blocks than treatments.

Siotani (1957) dealt with replicated randomised
complete block designs assuming the e'rors in any one experi-
ment to be correlated.aﬁd heteroscedastic but independent
between fhe designs. Following Graybill (1954), he obtained
tests of significance for main effects and interactions based
again on a Tg statistic.

Robinscn and Balaam (1967) considered the same model
as that of Graybill (1954) for each of a number of replicated
complete block designs and gave a method of analysis, based
on likelihood ratio tests, that uses the independent contrasts
of observations under each treatment.

Schlesselman (1973) proposed a procedure for choosing
a power transformation of observations of the replicated two-
way designs when the usual assumptions of analysis of variance
are not satisfied. To obtain such transformations, he

suggested a weighted combination of Tukey's statistic for



removable non-additivity and the t-statistic for testing

the slope of log (sample cell variance) on log (sample cell
mean). His method was then empirically compared with that
of Box and Cox (1964). Point estimates for both procedures
were'emprically found to be the same on the average over
many sets of data obtained through simulation.

Duby et al. (1975) gave a method for analysing the
data of two-way designs when the cell variances are functions
of the cell means. The method is based on Wald's (194%)
large sample test criterion.

For general heteroscedastic linear models, Williams
(1967) derived approximate variances of weighted least squares
estimators using estimated weights based on equal replications.
Bement and Williams (1968) extended these results to the case
of unequal replications. |

Williams (1959, pp. 67-70) and Draper and Smith (1966,
pp. 77-81) discussedf;eighted least squares method for esti-
mating the linear parameters of heteroscedastic regression
models. Jacquez et al. (1968), Rao and Subrahmaniam (1971)
and Jacquez and Norusis (1973) undertook Monte Carlo studies
on the efficiency of the weighted estimators of the parameters
of linear regression models with unequal group variances.

For the experimental designs considered in this thesis,
it is assumed that the error variance is heteroscedastic with
respect to the levels of only one factor, namely the treat-
ments or (for split-plot designs) sub-plot treatments.

For the regression models, the error variance is assumed to
be heteroscedastic with respect to the values of the inde-
pendent variable. Thus the error variance is constant for

the group of observations under each level of treatments or

each value of the independent variabie and varies from group



to group. The methods are also zapplicable when the error
variance is heteroscedastic with respect to the levels of
any other main effect.

When the error variance is the same within a group of
observations but varies from group to group under a linear
model, some methods are available for estimating the error
variances from a sample. The estimators of the error variances
may then be used for obtaining the weighted least squares
estimators of the linear parameters. Such weighted estimators
will generally be biased. Similarly, use of estimated weights
introduces unknown bias in other statistics including test-
statistics for the analysis of data with heteroscedastic models.
In this situation, one method is to remove much of the resulting
.bias of such weighted estimators and statistics for these to
be of practical use.

In this thesis, the weighted least squares analysis
(Aitken, 19%4-35; Plackett, 1960, pp. 47-49) is given for
each of several common designs, assuming the group variances
to be known. The estimators (Rao, 1970, 1973, pp. 303-305;
Horn et al., 1975) of the error variances are obtained.

The weighted least squares estimators of the linear para-
meters and other statistics using estimated weights are
adjusted for removing a major portion of the bias with the
help of a theorem due to Meier (1953). A report on a
small Monte Carlo study on the adequacy of the adjusted

statistics for one-way heteroscedastic models is also given.



1.2 General principle of weighted (generalised) least

squares analysis when the error variances are known

. Let us consider the heteroscedastic linear model
1
Y= X8 * B .« « 5 » 9 5 « 5 & a (1)

where Y is the vector of observations, 5' the design matrix,
g the vector of linear parameters and € the vector of errors
such that E(g)= O and var (g)= diag (oi,o%, ceny02)= V,

say, the error variances, 0iz’being the diagonal elements and
n the number of observations. The error variances may not
be all distinct. The matrix Y is non-singular.

If the error variances are known, then the weighted
least squares estimator of the parameter vector B8 is obtained
by minimising the quadratic form‘gl Y-l §=(X'§'§)'Y_1(I‘§'§)-
Taking the derivative of the right hand sidetwith respect to

B and setting it equal to zero, we get

~

- " -
x vix' g=xvly (2)

-~

as the normal equations for finding the weighted estimator
E of B. SUChTunation was first given by Aitken (19%4-35)
and then the principle was further developed by others,
e.g. Goldman and Zellen (1964), to cover different cases.

When V=02 I , this reduces to the normal equations of the

simple least squares procedure.

Now define the weightw , = 1/o0} ,i= 1,2,...,n,
§
and V—1=w , & diagonal matrix with Wy as the diagonal
1 t
elements. Also let wd/2x = A anaw®/2y=z where wd/2

4
i

is the diagonal matrix with w,* as the diagonal elements.

Then var(Z)=1 and the normal equations (2) become

-

N
A A g = A Z



B 10

These are the normal equations of the'simple least squares
in transformed data so that the estimators possess optimality
properties as mentioned at the beginning of section 1l.1l.

It also follows that the sum of squares (SS) due to

o~ g ~ 8
the estimates, namely SS (B) = B A Z =B X w'Y and the SS due
! 1 ~ 1 ol =T
to error, namely s8 (B) = 2'2 -f'A 2 = Y'Y - XY =g’V 7e
~ ] -~
withE=Y—§ B, are independent. loreover, sinceg {SS(B)} =

. 1 1
B'X Vv 1X'B + rank(X ) and E{SS(E)} = n- rank (X ),
the SS due to estimates and the SS due to error are distri-

buted as non-central and central- x2 variables respectively

]
with the corresponding degrees of freedom given by rank (E )
and n-rank (X1). Thus the usual F-test can be used to test

the hypothesis:
g = 0
(See Plackett,1960,pp.47-49) . . |
i gpotienin Cam aloo be Taolid by o X=Tsk usting SSE) hy

145 Methods of estimation of weights

As we are considering group variances, the variance
model of the error term in equation (1), when the obser-
vations aré arranged treatment by treatment, can be written
as

var (g) = ¥ = Vlci + .. Vmcm2 ............ (3)

where the quantities oi are the group error variances, and
the matricesnyi are diagonal matrices having the form
v, = 58810, s 500,150 :1;0;5 0450}, The matrices V, are
idempotent and orthogonal, and sum to I,

Such a model was given by Nelder (1965, 1968) for
variance components under orthogonal block structures.
There the matrices Yi defined m strata of the analysis.

Similar variance component models were considered by Hartley

and Rao (1967) and Patterson and Thompson (1271, 1975).
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The following are the methods of estimating 6&2.

(i) The MINQUE method of Rao (1970, 1973)

Rao defined the minimum norm quadratic unbiased
estimator (MINQUE) of ¢;° by the quadratic form X' Ay Y
where éi are matrices chosen in such a way that tr(éig)2 is
minimised for all i. Here

2 2

E=°‘lyl+’ oo toag Vp

and the minimisation is subject to the condition that

U 2
E (X éi X)= oiz - In general the estimates of 0; depend
2

on the choice of a:

i Rao (1973) recommended that o, should

be chosen approximately proportional to Giz wherever possible.
In the absence of any prior information about oi2 , Oy
" may be taken to be unity. |

As tr (fig)z is the square Euclidian norm, the method
is called 'minimum norm'.

Rao (1970) gave a computational method for obtaining
such estimates. Let the projection matrix be § =_} - %}
(E}’)ig = (Sij)’ A” being any generalised inverse of A.
Further let t'be the vector of squares of the residuals given
by-£5z, $ the vector of variances (&2,...,Gn2 and F = {sij2} .

Then the MINQUES of ¢.° are obtained from the equation
E g: Z when F is non-singular. He also suggested that the
groﬁb errqr variances éan be estimated by solving the reduced
equations obtained by adding the set of equations which
correspond to the same variance.

Mallela (1972) derived necessary and sufficient
conditions for E to be non-singular. In this thesis, the

coefficient matrix of the reduced equations for estimating

the group variances will always be non-singular.
Horn et al.(1975) suggested almost unbiased estimators of

variances and showed how these could be obtained from corresponding

MINQUE's.
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(ii) The method of maximum likelihood

Under the assumption of normality of errors, the
likelihood function of the observations is given by

-1/2 : '
L = (2“)'n/2|y| ¢ exp I- 4 (v - x B)'v iy -x p) 3.

~ o~ ~ ~ ~ ~

The maximum likelihood method of estimating the linear
parameter vector Bgives the same normal equations as the
weighted least squares procedure. Following Hartley and
Rao (1967), we find the equations for obtaining the maximum

likelihood estimators of diz as

=1 bv 1 1 b(V—l) ' ~

1 ~ o ~

tr (V sy ) + (Y - X B) (Y - X g)=0; i=1,2,..,m,
~ bo_. Ld -~ ~ bo .2 -~ ~ ~

i i
where B is the weighted least squares estimator of B
The estimated variances are usually in terms of the estimators
of the linear parameters and may be evaluated by an iterative

method when the process converges.
(iii) The method of modified maximum likelihood

Patterson and Thompson (1971; 1975, pp. 197-207)
proposed the method of modified maximum likelihood for
estimating variance components<ﬁ2,...,qn2 , as in (3), but
with z singular in general. They suggested partitioning of
the data into two parts - one represented by the transformed
observations (residuals) S Y and the other by Q Y

~N o~

where g is such that cov (gz,gYﬁz Qa The variance components
were then estimated by maximising the likelihood of §X

and B by maximising that of QY . Patterson and Thompson
(1975) suggested that the estimate ofoi should be obtained

]
by equating Y (SVS)+Vi(SVS)+Y 0 its expectation, i=1,2,...,m.
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An iterative method was suggested for finding the actual
estimates, Here §+ denotes the unique Moore-Penrose

(Moore, 1920, 1935; Penrose, 1955) generalised inverse of A.

(iv) The method of Nelder (1968)

As proposed by Nelder (1968) for the same model (3)
in a different context, oiz can be estimated by equating the
1 1
sums of squares Y R ViRYto their expectations, i=1,2,...,m,

where R= 5’5'(§Y—15'3+§Y—1 (see Patterson and Thompson, 1975).
Almost all the authors cited above suggested feedback of
information for estimating the linear parameters.

It was shown by Patter§on and Thompson (1975) that a
single itefation in the solution for their estimate is equi-

valent to the MINQUE procedure and that their method gives

the same results as thoss of Nelder's method.

In view of this fact and also because of the simpler
algebraic procedure for obtaining MINQUE possessing some
desirable'properties, we have considered only the MINQUE
method of estimation of the group variances in most of the
cases studied in this thesis. The method of maximum like-
lihood estimation is also considered in some cases where
simple expfessions could be obtained for such estimators.
Almost unbiased estimators (Horn et al.,1975) of error vari-
ances are also obtained from corresponding MINQUE's for two

designs.
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CHAPTER 2

COMPLETELY RANDOMISED DESIGNS

For fixed-effects one-way models with known unequal
group variances, estimation and analysis ére dealt with by
the weighted least squares method. The estimators of the
group variances are obtained and the test-statistics, using
estimated weights, are adjusted for removing a major part
of the bias of such statistics. A formula for a joint con-
fidence interval of all contrasts of treatments and a report
on a small Monte Carlo study are provided for such models.
Finally, estimation and analysis for mixed and random models

with unequal group error variances are discussed.

2,1 One-way fixed-effects models

2ol el Weighted (generalised) least squares analysis when

the group variances are known

It is assumed that there are t treatments of which the
ith treatment is applied to rs plots in an experiment, Let
the observations of such an experiment be expressed by the
linear model*:

yij=”i+€ij 5 371,25 000,121 151,200t 0 L (4)
where K is the population mean for the ith treatment and &
the error term having mean zero and variance oiz which in
general differs from treatment to treatment. The errors are
assumed to be independent of one another. For the ith treat-
ment, there are Ty observations, which are different in

general.

¥
ouggested by Dr D. A. Preece
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Let n = T

=M ct
e

1

If X—" ()’119-":}'11-19"")71:1,'°':ytrt) is the

column vector of observations arranged treatment by treat-

ment, then the above model can be written as

1

Y =XB + €
1

where Eis the column vector of treatment means, § the

design matrix and € the column vector of errors. The

design matrix is of full rank = t and

var (g) = diag (012,...,012,...,0ti,q5 =V,
say. The variance model can be written as
V=o®hr e v otV
where Vi = diag@©0,...,0,1,...1,0,...,0) with unity occurring
" i-1
ry times after I T, places in the main diagonal. The
k=1

matrices Vi are symmetric, idempotent and independent, and
sum to I.
By (2) of section 1.2, the normal equation for

estimating ﬂi by the weighted least squares method is given

by

A

riwglly =yl 5 i 1,2,...,t.

A

Hence, pi =VYi-

1= 1,2;-+4t
Heré, we have used the convention that the dot suffix of a
small letter denotes the mean and that of a capital letter
the total over the corresponding variable suffix. This
convention will be fdllowed all through. The weight

W= 1/o5%, i = 1,2,...,t

The estimators of the treatment means are thus inde-
pendent of the weights and also of each other.

The sum of squares (SS) due to the estimates is given

by SS(Est.) = g wi Y. 2/
with t degrees of freedom (d.f.) and that due to error by

SS(E) = 2L . . 2 -2 wY.?2/r.
( ) ij le]J i s T I 1
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LI 2

= ij wi(yij - Yi-)
with (n-t)d.f. Under the hypothesis of the equality of the
treatment means i.e./@:va,the model at (4) reduces to
yij=p + eij' The weighted least squares estimator of the
general mean is then given by
po= Ew, Y, /Er W,
and the corresponding sum of squares by
_ 2
SS due to mean = (Zini) /Z‘.riwi
with 1 d4.f. The sum of squares due to treatments corrected
for the mean is thus obtained as-
sS(treat) = Zini?/ri - (zini)z/Zriwi
= oyt (e - ¥oa)?
with (t-1)d.f., where ¥.. = Zrjw;y;./Ir.w;
Since Y;=H; * €;.and y..= L + e..  from the model at
.(4) with H = Zriwipi/Zriwi and €.. =2riwigi./2riwi,

~

m 2 2
Irows (J-P)° + Iryw.E(e;.- €..)

we have, E {SS(treat)}

~

= zriwi(pi-p)2 + (t - 1)

Moreover,

: - Iz N 2
- Lz _ 2
=n -t
Analysis of variance table
Source d.t. SS E(MS)
s , T ~ 2
Error n-% §§wi(yij = Yi-) 1
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or o X-lol
Once an F—testAhas shown significant differences among

the treatments, a normal test can pbe used to test the diffe-

rence between the ith and jth treatment means using the fact
- _ 1, 1 3
that 2z (yi. yj)/[ /riwi + /rjwﬂ
undo (Te null hypetheses, The
is a standardised normal variate, Ratio of this normal variate
to the square root of the error mean square is the corresponding

t-variate with n-t d.f.
2eledd An exact test for equally replicated treatments

when the group variances are not known.
Lt T tr clavwolion, be Grovpeh obilhardy e K neplieales -
Let y,= (ylk,...,ytk)l be the vector of t observations
~

at the kth replicate,k =1,2,...,r. Then the vector'zk is
distributed as multivariate normal with mean vector B=(H1,-3Ut)l
and dispersion matrix I = diag (Ulf---,dtz)-

Let ¢ be any (t-1) x t matrix of rank (t-1) such that
E 1=9 where 5 is the vector with unity as its elements.
Let 2z

~k

=C yy ° Then Zy is distributed as multivariate
" . -~ 1
normal with mean vector, CH, and dispersion matrix czC

~ o

where CiC' is non-diagonal. Hotelling's Tgtest is

applicable here. The vector z; is the vector of (t-1)
independent contrasts of t observations of the vector b

To test the hypothesis of equality of treatment means
is the same as to test the hypothesis: g H =0 .
Thus,

T2= ¢ E" 5—1 z

is the Hotelling's generalised P2statistic with (r-1)d.f.
for a (t-1l)-dimensional distribution, where

g T 1
2. Eore ad B I (g = 2l - 2 Ae U
Hence, Tz(r-t+1)/(r—1)(t—1) is a central F-variate with

(t-1) and (r-t+l)d.f. under the null hypothesis.
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The test-statistic is independent of the choice of the
matrix C (see Anderson, 1958, pp.110-111). The test is porible

only when r >t.

The test was first given by Chakravarti (1965).

2:1:3 Estimation of error variances

For unknown error variances, the above test is not
applicable when the replications r; are not all equal and/or
when r <t. In such situations, one may use estimators of the

error variances in place of the actual ones. It is well-known

that i

o
8.2 = I (y..-y.)z/(r. - 1) is an unbiased estimator
i j=1 14 4 i

of 0.2. It is shown below that Si2 is also the MINQUE.

i
(i) The maximum likelihood estimator

Prom section 1.3, we obtain the maximum likelihood

. 2
estimator of o4 as

Ty

_ X _ 2 @ i
;0= j=1(yij Yie) /ri ,i=1,2,0.0.,t,

This is the familiar maximum likelihood estimator (MLE) of

0.2 for the ith population when considered singly. The

i
estimators are independent of one another.

(ii) The MINQUE of error variances
of
Since X' is, full -~ rank=t, we have

1 1 _1
T(XX ) X.= ddag (3. /.. seonsgda Fo )
= Yo > ~Tq rl’ ’~rt Ty

where Jr is the square matrix of order Ty with unity as its
ol |

elements.,
Hence, the resulting projection matrix S is given by
t t =1 .
S=1-X (XX ) X
= glag (I ! =d /. & ssssnasd
b i ~ .
~¥1 1M By
where I, is the identity matrix of order L The elements
~ j‘ -
of the vector SY are the observed residuals.

- F. A3
N;trt
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~

Then the normal equations for obtaining the MINQUE, o5

2

ofcy.l2 are given by F § = v where F is the matrix of the

squares of the elements of the projection matrix, § is the vector

of variances with ¢; 2 repeated r, times,

and y is the vector of the squares of the residuals

~

(yij - Yi.)z, The ith set of equations involving 012 15

given by

1

=" 8 e oy -1 8 Y 2= 0y - )

]
L]

1 2 %2 SN2, L
(1 - 7/r3)" 03" + (r; - Doy /ri2 Oir, -y, 02

whence, on adding the equations,
(vy; -y /iy - 1)

Yij = Y i

= S. s 1=1,2,...,t.

Thus the MINQUE of Oj  is the familiar unbiased estimator, Si ,
of Uiz for the ith population when considered individually.
We shall denote the MINQUE of ;% by s;* .  Like maximum
likelihood estimators, the estimators Siz are also inde-
pendent of one another. As is well-known, the variate
(r;-1)s; /*is distributed as X° with (ry-1)d.f.

Feedback of iqformation is not necessary for the
treatment estimators since these are independent of error

variances. Bartlett's Xz—test can be applied to test the

homogeneity of error variances in any particular situation.

2.4 Adjustment of the test-statistics using estimated

weights

The PF-statistic in the analysis of variance of the

weighted least squares and the normal test-statistic for



20

testing the difference between any two treatment means,
involve actual weights, the reciprocals of error variances.
If the estimators of error variances are used in place of
actual.ones in these test statistics, then bias will be
introduced. It is difficult to obtain the magnitudes of
these biases analytically. But, since the estimators of
error variances are independent, bias of order ﬂl/(ri~l)}
can be eliminated by adjusting these statistics with the

help of the followiné theorem due to Meier (1953).

Theorem 1. If x.,i = 1,2,...%t, are independently distributed

i
random variables with probability density functions

il
: 2
(3n;) n 1
f .V(X ) = 1 X (——2}- - l) ez nlxl 5 OEX i<°°
n(‘ r (-r-l-}-) 8
2

and R(xi,...,xt) is a rational function with no singularities
for 0 & Xyynnn,xy « @ then E[R(xl,...,xt)] can be expanded in

an asymptotic series in the l/ni. In particular

t 1 [3°R )
E B(Xl,...,xt)] = R[l,ooo’l]+i§l H;: g‘rj: 4+ O( z?'l",:" ) .
- all x;=1 "

The result is based on Taylor's series expansion of the

function R(xl”"xt)' This theorem implies that the adjusted
1 2

statistic R [X1’°"Xt] - ‘El[: 5% ]'%% y being free from terms

LR an X i=l

of order (E%.), approximates the actual value, R [l,.s.,l lof
i )
the function more closely than R[-xl,...,xt] itself. In

practice, actual weights are to be replaced by2the corres~

. . . . L [ a’R

ponding estimated weights in the term I n. 4 ‘
s 4% 8%

1 all xi=l

2p- 2
In our case, X; = 8y /Oi where si2 is eitner the

MINQUE or the MIE of o;°, i = 1,2,...,t. The estimated

/\ 2 2
ights are: w. = 1/s.” = 1/X.g. and & o
weights are i é i /%505, ana ng =r, - 1.
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(i) Adjusted P-statistic

The error SS using estimated weights based on the

MINQUEsof error variancesis DX v?ri(yij - yi.)2
i3
2
_ ) (yij—yi') ~
=X & (y557y;:)7/ I bt F T p=
i J i
a constant. Similarly, the error SS using the estimated
weights based on the MLE is also a constant. Thus, only

the treatment SS is to pe adjusted for adjusting the P-statistic.

The weighted treatment 5§ using estimated weights 1s

"~ -~ 2
Eriwi(yi. - Yeo)
r. < 2 r < 2
= i (yye = ye)+ 2 k(Y. = v-.)
2 ST R
i%3 ' k k
where w, =1/_ _2 and Ve. =1 r.%.y.' ~
i x; 0%, i"iYiy/ Trgwg
Now, we have 2 : PN
~ N2 2r. ~ 2
j_(yi.-y;.) _ i (yi.—y..)
&y ;2. %u.
i
| end Ayp.efi.)? or (oo e I o)
yk. yoo _ ; i yk. ycc yi. yoo
x. 2. 2% ’
i o 7% W,
A t ~
where We = 3 LW Thus
1
= B mey B < 2
s (rr.ss) _ _ Falyyd..) . (yy+=y.-) )
o X. - 2 2 04 A
& G i X5 i X5 3w.

2ri(yi.—y..) .

2. 2 . 2
. X TWe k#i X\ G
91 44 7 ¢

L \2
) ri(yi.—y..)
0. %x.°
i i

Taking partial derivative of this again and putting x, = 1 for
< A = A 2 _L
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all i and simplifying, we get,

5° (Treat.Ss) Y b
5 %2 = 275wy -y )@ - )
.
all xi=l
where
We =1L Ty
Hence, by the above Theorem 1, treat.SS (adj)
t " -~ t 2. W, < r.w.
_ ~ - i1 2 i'i
= I riwi(yi.-y..) i E::Jf-(yi.-y..) (1= —=—)
1 1 1, We
: S
t 2 r.w

Thus, F (2dj) . T. W,
(n = ) { & row (y:.-y )2}[1—1”31 (1—21)]
i iiyio yoo 1 Wo

(t-1) {Z ¢ W
i

i(F35 - 93
with (t-1) and (n-t) d.f.

ITION A .

(ii) Adjusted,.normal test-statistic

PN 3
Let z = Iyz‘ - Yy | / {l/r z%'z + l/rk;}‘vk } =

be the (test-statistic using estimated weights for testing the

différence between the 2th and kth treatment means.

Then the partial derivatives are given as
¢ 2 3
NI Xy Oy )"5/2 O ;
(Al ———+ g ;
9 k :

N>

3
5 X

. :] Y gV

=

2 2
X.Q, 2 + k ® _i.. _._1.._

§£ ) 3
and [;;;2 }: [ly 2.~yk. l(—%)(w§)< T P ) ¥y ¥4

All He=1l al .=l
i i,

5/2
2. 2
/4w

=3 |y g oYy (1/7 g wy +1/rkwk) i =% or k.

Hence, by the Theorem 1, we have, on simplification,

A . ~ . 2 ~ 2 2, ~ o2 T Y
z(adj)= z [’1—5{ l/rz(rz ~1)w£ +l/rk (rk—l)wk }//4(L/r£ W ot

iy
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It is observed below from the Monte Carlo study that
these adjusted test-statistics are more or less robust with

respect to differences in error variances. The
Ratio of the adjusted normal statistic to the square root of error

mean squares is the corresponding adjusted t-variate with n-t d.f.
2415 Multiple comparison

Scheffé (1959, pp. 68-70) developed a method of
multiple comparison assuming the error variances to be
constant. For the heteroscedastic models if we proceed
in the same way, we find that the probability is (1 - a)
that the values of all contrasts, ¥, of the population means,
simultaneously satisfy the inequalities

(b -sSsoP < ye+ssf)
where § = {(t-1)F _(t-1,n-t) }?,
s 1is the square root of the error mean square of the
weighted least squares analysis, $_= Zciyiizci=0)
is an unbiased estimate of y=Ic;|l; and o, is the standard
error of @ '

This follows from the fact that if ¥ = (@1,...,$qf
is an unbiased estimate of y = (wl"""wq)" the vector of g
independent contrasts of the population means, then the
estimates, ai,are independent of s 2 and

(v- '3 @ - 9/as? =F (@,n - 1)
where B = var (@).
From this it follows that the probability is (1 - a)

that for all Q

e o
=

I A [ % ;
| b y- b ¥ |[£{aP (a,n-t)}F s (h Bh)?

This can be written as |$ - v] £ {qF. (q n—t)'}%s 5@
= X 2 ]

'y so that & = (var(j)F= (B'Bh)

I

A
where Y = h
~




A t t
In actual practice, if ¢V = fc,y.. with I c., = o,
] 171 11
is an estimator of the contrast ¥ =2Z c;ny, then
G-A _ 2. 2 —%
v = -{42(01-_ Oi /ri)} s
2 A=
i i

A

eal

the resulting quantity, Gﬁ , Will not be unbiased for

Once again the bias of order { Z l/(ri—l)} can be removed

If we replace oiz by an estimator, s.” or 0.7, then
l

from %) with the help of Meier's theorem.
S 4 4 3 % =B
20 : g t . s 2
Since [ P ? ]= e ¥i [ < “i o4 }
2 e e —————
bxi Ti 1 ri y
all Xi=1 . . -
Al\ 2 2 12 1 C' S. ’ 2 2
o vu i e s: /1 4 123 T i Ji BoC:"8s " [¥x) }
p(adj) (ci ®i 773 1 ;z—f?;’l) PR T

using the MINQUE of 012

as the estimator. Since the mean
2 :

square error s ~, computed from sample, is a constant, no

adjustment is necessary for that. Thus, the expression

for the estimator of the joint eonfidence interval of all

contrasts Y is given by

¥V - ss g@ (adj)2V £ $ + Ss Si(adj)‘ « % sl fBY

For the example considered by Spjgtvoll (1972), the
joint confidence interval at the 10/ level of significance,
for the contrast ﬂl - PZ’ is [19.3,33.3 ] obtained by the
above method using MIﬁQUE of 012. The corresponding joint
confidence intervals obtained by Spjgdtvoll and by the method
of Brown and Forsythe (1974b) are [17.5, 551 ]and ﬁ9.8,
32.8] respectively. The MLE of 012 produces a slightly

larger confidence interval.
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2.1.6 Summary dispersion measures of the estimators

of the linear parameters

Dispersions of the individual treatment estimators are
not comparable because of the differences in error variances.
In order to have an idea about the overall dispersion of all
the estimators, we consider summary measures of dispersion.

The weighted least squares (WLS) estimators of the
treatment means are the same as those of the least squares
(LS) method but their variances differ between the two pro-
cedures. The estimators are uncorrelated in both the methods
so that the dispersion matrix of the estimated treatment means
is a diagonal one in both the procedures.

Since the covariances are. zero, three measures of
location of the variances of the estimators may be taken as
summary dispersion measures. These are the arithmetic mean
(AM), geometric mean (GM) and harmonic mean (HM). All three
measures take the variance of each estimator into account
and represent dispersion per treatment. The AM is the
(1/t)th part of the trace of the dispersion matrix of the
estimators and GM the tth root of their generalised variance.

The measures and their estimators for the two methods
are as follows:

(a) Weighted least squares estimation

2 :
Here, var (y;) = o3 /ri 1 1= 1,2,4"¢ vy te
Hence, & 2 2 '
{ = 7t M= oi 1/t r
AM = zri /t, GM = ( = N ) and HM = t/ 2 riwg

with w; = 1/0.2 .

Since AM% GM 2 HM on the assumption that each ¢ 12> o, the
last measure i.e.,HM is the smallest.of the three in the

presence of differences in error variances.
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All the measures have the same value when the replications Ty

are proportional to the corresponding population variances

21 . 2 :
¢ i.e., each o, /ri is the same constant.

%4 i :
The estimated AM = (1/t) I sig/ri is an unb}ased
1 2 1l/%
estimator of the AM. The estimated GM = ( 1°i ) is not
T,
82(Est.GM)] t-1 1 % 1/t
unbiased for GM. Since — =742 “E?T- ) ,
all x.=1
1
the estimated GM with the adjustment for bias is given by
s:° 1/% $-1 1
Est. GM (adj) = (T—x=) (1 +— = ) .
i t r.-1
i
2
Also since 9 (ESté HM) j] = - 2¢f.(1-fY gr.w, , the
i . E5i%3
9 Xy i
all xizl

estimated HM with adjustment for bias is
Est. HM (adj) = (t/z rewdd 1L +2% 2y (1~ fi)/(ri - 1)
. N N .
where f, = riwi/ rryw; and f; = riwi/f TiW, .
(v) Least squares estimation °
Here var (yi) = oz/ri, where ¢° is assumed to be the

constant variance of all the populations. Hence AM =

1
i S

If MSE = £ (r,-1) s.2/(n-t) is the mean square error of the
+ * MSE 1

LS analysis then the estimated AM = % Z.ri y, estimated
1
GM = MSE (11'%,-—)t and estimated HM = t(MSE)/n are the unbiased

3
estimators of AM, GM and HM respectively.
When the treatments are equally replicated, the
estimated AM of the WLS method equals that of the LS method
and the leading terms of the estimated GM(adj) and the

estimated HM (adj) of the WLS method do not exceed the
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esimated GM and the estimated HM respectively of the

LS method.

o B | The Monte Carlo study

In order to observe the adequacy of the theoretical
results, a small Monte Carlo study was conducted. Combi-
nations of some sets of values of replications and error
variances were considered for each of 3, 5 and 8 treatments.
The results on all possible combinations of the following
3 replication groups, 3 error vériance groups and 3 treat-
ment mean groups for 5 treatments are given below. The 3
replication groups, (6,6,+++6), (3,5,6,7,9) and (9,7,6,5,3),
will be denoted by R(1), R(2)'and R(3) respectively, the 3
treatment mean groups, (10,10,-;-310),(12,11,10,9,8) and
(9,10,12,10,11) by T(1), T(2) and T(3) respectively and the
3 error variance groups, (1,1,«.41), (3,2,1,4,3) and
($,1,4,1,%3), by V(1), V(2) and V(3) respectively.

Only one table contains results on the probability
of éxceeding percentage points of the main tests for each

of 3,5 and 8 treatments.

2:1.7:1 Sampling experiments

For the linear model (4) of section 2.1.1, the

observation, Yi was assumed to be normal with mean, \j and

J
. 2 2
variance, 0.7, For each set of values of r., p; and o, ,
L | i i i

1000 distinct sample realisations were made at each run and the
analysis was carried out for each sample in double precision

on the University of London computer, CDC 7600, in FORTRAN.

The normal samples were obtained with the help of the sub-

routines, GOSAEF(A,B) and GOS5BBF, developed in package forms
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by the Numerical Algorithm Group (NAG).

Lelelui Power of Bartlett's chisguared test on the

homogeneity of error variances

Monte Carlo powers of this test were calculated over
1000 samples each and are given in Table 2 which shows that
the powers are almost independent of the treatment differences
as is expected. Data of the first row of the table show
that the probabilities of exceeding the percentage points
in the absence of differences in‘the error variances, are
close to the nominal values. The power of the test is rather
small even when the differences in error variances are quite
large. The power appears to.be larger in the equi-replicate

case.

"2sleTeD Confidence intervals of orthogonal contrasts

. joint
In order to investigate the behaviour of the,confidence

intervals of contrasts, two sets of four possible orthogonal

contrasts stated in Table 1 below, were considered.

Table 1. Two sets of orthogonal contrasts
Set Contrasts
I (1) W -y, (11) my +u, -2 4
(111) Ul+U2+]J'§ "3114 (lV) pl+u2+urj 4-‘14—4-115
iji) H | TIPS ¢ i AU (Mo 4 4
(iii) 1t 5 ( H+ 4) (iv) 415 (ui+u2+u4+u5)

For computing confidence intervals of the treatment contrasis,

the expression in (5) of section 2.1.5 was used for WLS method
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and that given by Scheffé (1959, p69) used for LS method.

It has been observed from the sampling experiments

widlk ¢f (e
that the mean confidence interval is virtually independent of
the treatment differences. Table 3 gives the average confidence
intervals of the above contrasts over 1000 samples each when all
the treatment means are the same for both the LS and WLS methods.
The table shows that the mean intervals by LS procedure are more
or less the same as those by WLS method using'MINQUE for all
contrasts in the absence of differences in error variances as
is to be expected. For the WLS method, the MLE always pro-
duces somewhat larger mean confidence interval than the MINQUE.
Mean confidence intervals involving fewer means are usually
smaller than those involving larger numbers of means except that
the last 3 contrasts of set I have approximately the same mean
confidence interval by WLS method for most of the replication
groups when group variances differ.

In presence of differenqes in error variances, the WLS
method often produces smaller mean confidence intervals than
the LS method especially when larger samples are associated with
larger variances.,

It is observed from the last 3 columns of the table that
if the sample sizes are such that the ratios of the error
variances and the corresponding replications are the same,
then the mean WLS confidehce intervals are almost always
substantially smaller than those of the LS method. The effect
of such proportional replications on the WLS method appears
to be the virtual elimination of the inequality of the error
variances and of the replications as is evident from comparison

of the second and third columns with the last two columns.,
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2edsl ol Empirical size and power of some tests of

significance

In order to observe the empirical size (Brown and
Forsythe, 1974a) under the null hypothesis, and power
under the alternative hypotheses, the following tests were
considered:

(1) The usual LS P-test ignoring differences in
error variances

(ii)  The usual t-test for testing the difference between
“1 and “2

(i1ii) The weighted least squares F-test (adjusted and

unadjusted) using both NINQUE and MLE of group
vériances

(iv) The normal test (adjusted and unadjusted) using

both MINQUE and MLE of group variances

Table 4 presenté the results of these tests over 1000
samples ét 5% and 1% nominal sizes; it gives the empirical
sizes under the null hypothesis and the maximum and minimum
powers under the alternative hypotheses. As is well-known
the usual LS P-test shows marked discrepancies between the
empirical and nominal sizes under the null hypothesis.

The empirical size is much larger than the nominal one when
smaller numbers of replications are associated with larger
variances but the former is somewhat smaller than the latter
in the opposite situation. The observed sizes of the
WLS F-test (unadjusted) using either MINQUE or MLE of
variances are always much larger than the corresponding
nominal sizes. For equally replicated treatments, and for

situations where larger samples are associated with larger
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variances, the differences are negligible when the test is
ad justed by Meier's Theorem (Theorem 1). In other cases,
there are slight variations especially for a nominal size

of 1%, Both the methods of estimation of variances produce
the same size in the equi-replicate case but the MLE pro-
duces slightly larger sizes than MINQUE when sample sizes
are not the same,

Like the LS F-test, the usual t-test for testing the
difference between i& and ﬁ2 shows large discfepancies
between the empirical and nominal sizes. For the normal
test (unadjusted), the discrepancies—are even larger.

Ad justment of the normal test using the MLE of variances,
does not improve the situation to a satisfactory level.
The performances of the normal test (adj) using MINQUE of
variances are much better although there are still some
differences especially for a nominal size of 1%.

Under the alternative hypotheses, the maximum powers
of all the F-tests are as large as possible at both levels
of significance. Their minimum powers are also large except
that the last treatment group coupled with the last error
variance group produced moderate minimum power for the WLS
P-test (adj) at the 1% level of significance. Maximum
powers of t and normal tests are also large. The minimum
powers of these latter tests are small because the minimum
difference between Ul and112 is smaell and one sample size is
small. In general, powers of the WLS tests with adjustment
were found to be quite large although these are somewhat

less than the corresponding LS tests in some cases.
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Table 5 gives the probabilities of exceeding the
percentage points, of the main tests under the null hypo-
thesis for each of 3, 5 and 8 treatments. The table shows
that the WLS F-test (adj) using either MINQUE or MLE is more
or less robust with respect to variations in error variances
and sample sizes. The performance of the normal test (adj)
using MINQUE is also not far from robustness if the sample
sizes are not too small. The usual F-test and t-test show

wide differences between the nominal and empirical sigzes.

2eleTed Concluding remarks

The WLS F-test (adj) using either MINQUE or MLE of
the group ?ariances is more or less robust with respect to
differences in error variances. The normal test (adj) using
MINQUE of variances for testing differences between two treat-
ment means is also not far from robustﬁess. Performances of
these tests are sometimes better if larger samples are asso-
ciated with larger variances. These tests are therefore
recommended for testing appropriate hypotheses when Bartlett's
x?-test reveals that the group variances differ.

The WLS formula appropriate for heteroscedastic models,
using either MINQUE or MLE of group variances, often gjives
smaller mean joint confidence intervals of treatment contrasts
than the usual LS method, especially when larger samples are
associated with larger variances. The WLS method is there-
fore recommended for estimating joint confidence intervals of
treatment contrasts when there are different error variances.

A minimum sample size of 4 can usually be expected to
give more or less satisfactory results especially when larger

samples are associated with larger variances.
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2yl One-way mixed models and random models with

unequal group variances

Let the mixed model be

yij — 0.+Ti +€ij j=1’2,000-|,ri; i=l,2, ooooo "t’

where o is the general constant, T i the random effect of the

s : ; 2
ith treatment having mean zero and variance Or and €.

1]
: . 2
error term having mean zero and variance Oi . Treatment

the

effects Ti are assumed to be independent of one another and
of the errors which are also assumed to be independent of one
another. This means that the observations yij are correlated
within a tieatment and independent between treatments.

Let n = ¥ 1r. as before.
l 1

2.2.1 Estimation of variance components and the

analysis when error variances are known

~ From the above model, we have,

Yi.= o+ Ty tey,
~ Aad "~
y-a = a + T + € oo
under the notation of section 2.1.1 with © = ZriwiTi/% LR P
c- { . e 2
Since E' I (yij yr) }
J
., 2
_ o2
r. = (ri'l) i
g - 2 . . : . B
8. = I (y - yi) /(ri—l) is still unbiased for o;° for

i j=1 ij
the mixed model stated above.
To obtain an estimate of 0T2, let us consider the

. - v B 2 T,
weighted treatment sum of squares, ¢ riwi(yi;y..) , which
i

was obtained in section 2.1.1.
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Since fi and Cij are independent, we have,

B{ % r,w, (y,, - v..)2 )

il
= B Y riw,(t, - T)tle.. —€..)} 2
i"1%4 i o
T 2
_ 2 LTgWs
= At = 1)+ o'y (w., - ==
i = X .
with w. TV,
Hence, an unbiased estimator of 0% is given by
2 2
52 ™ il ik
g, = {2 riwi(yi_- Yeodc =t +11) / (w. - ————WT—-)

when the actual weights w, = 1/'0i2 are known.

Also, E (weighted within sum of squares)

]

2
E {zz wi(yij— yi') }

2
E {zZ wi(eij - B)5)

(n - t)

i

as before.

To show that the above two sums of squares are inde-

pendent, we need only show that ( €35 "€ ;) and (e5.- e ]
are independent.
en-
¥ 1
NOW COV(Eij—€i°)(€i__ C")= E {(Elj - J;;-
L€ . w
(il ETiWi€4, )
r, - Lr.w,
i
s 2 2 2
_ i S . riw 0,
ry w. T r; We T

= 0.
Hence, under the assumption of normality of errors, the
above two quantities are independent.

It follows that eriwi(yi,— §f')2 is distrivuted as

central x2 with (t-1) d.f. under the hypothesis that B

a

(0]
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and that )‘;zwi(yij - yr)z is always distributed as a central
X %_variate with (n - t) d.f. under the assumption of normality
of errors and that the two sums of squares are independent.
Hence,
Erow (y;, = §..)%/(%-1)
32, wglyyqs = yi)z/(n—t)

is a central F-variate under the null hypothesis:

0. = O,with (t-1) and (n-t) d.f.

2.2.2° Adjustment of the F-test statistic and the .estimator of

0T2,using estimated weights

Since the estimators Si2 of error variances are again
“independently distributed as gamma variates, Theorem 1 due %o
Meier may be applied for adjustment of bias.

The expression of the F-statistic is the same as that
of section 2.1.1 so that the adjusted F-statistic using
estimated weights is also the same, namely

Y
- ~ 2 2 . Ti%
(y3. - ¥ ) hpa-rm )

(n-t) {2 riv?.

F(adj) = i

(t-l) L Wi (y
ij

- y.)2
ij yio

with (t-1) and (n-t) d.f.

Now the estimator of °T2 using the estimated weights

is .
2 2 o B ~ D A 2Ty
¢ . ={rw (y;, - Veo)© = t41 }/(w. = z ) = A/B
say, with w. = % T The adjusted estimator is
b A t1 2% 2
72 (adj)=5 2-r7; [ ¥ 0x } | | |
171 axa using estimated weights,

where
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A
azo’f}_ [_1_ .{sz A - BA¥B _ 2 ByMB +2A(B
= 3 —, - ___a
d x,°2 B 3 X5 3x, ° % 2. 3%, X ¥X4
1 aliz;=1 L
all X =
A - 5
the individual derivatives being B—‘Xi = - riwi(yi.--y.‘.) "
all Xi=1
¥°A 2 B
L;_E ] =2 ryw, (1-f. )(y . y..) ,[%Ez j]: ~T W AT W
i . N
all xi—l all Xi—l
(Zf - Zr Wy /w )
and .k = 2r.w, - 2r.w. { f. + (1-f.)
5 x 2 i'i i'i i i

(2f - Zr LA /w )

i . = W./We o
with f rlxl/

For the random model:

with T as random variables having mean zero and variance,

2 .
0., 1f we proceed in the same way as above, we get the same

2

estimator of O and the same F-test for testing the signi-

ficance of O, But the above analysis.is not valid ifT
a -2
have non-zero mean because separate estimator of 0. 7 is not

available in that case,



Table 2.

of error variances

Monte Carlo powers of Bartlett's chisquared test on the homogeneity

Treatment and replication groups

-

Error
variance T(1) T(2) T(3%) !
|
group : . 1
R(1) R(2) R(3) R(1) R(2) R(3) R(1) R(2) R(3) |
5% 1% 5% 1% 5% 1% 5% 1% | 5% 1% 5% 1% | 5% 1% 5% 1% 5% 1%

v (1) .059 ,010 (.063% .015} .049 .012}|.041 .007{.045 .011|.05% .014|.054 .004|.047 .015{.049 .009
V(2) +55% 302 1.502 :273] <414 +161]:9557 28B}.529 .259) 401 1771540 .2841.502 .27H1.414 .180

v (3) 546 .3%322 1.532 .3%21].53%5 .314]|.550 .335(.504 .301}.499 .%05]|.559 .316}.532 .309|.546 .315

LS
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Table 3. AYﬂean confidence intervals of two sets of orthogonal contrasts; letters LS

denote least squares method and WLS weighted least squares procedure;

numbers 1 and 2 after WLS stand for MINQUE and MLE réspectively of

group variances

Error Variance ané Replicantion groups

[
-

Ceontrast number

V(1) v(2) v (3) v(2)
2(1) R(2) R(3) R(1) R(2) R(3) r(1) R(2) R(3) (18,12,6,3,2)
LS WLS1 WLS2 LS WLS1 WLS2 LS WLS1 WLS2 Ls WLS1 WLSZ LS ¥1.S1 WLS2 18 WLS1 WL52 LS WISl WLS2 LS WLS1 WLS2 1S wLS1 VWLS2 1S WLS1 VLSZ

—

~

~

3.81 3.85 4.22| 4.84 4.86 5.32 | 3.32 3.37 3.69| 4.43 6.10 6.68 | 4.78 8,02 8.79| 4.38 S5.26 5.76| 4.48 3.38 3.70 $.71 4.09 4.48| 3.86 2.92 3.19| 3.53 3.73 3.99
6.60 6.68 7.321 7.26 7.42 8.13| 6.32 6.35 6.96| 7.67 8.22 9.00| 7.17 9.77 10.70{ 8.34 7.59 8.,32| 7.76:11.42 12.51 8.56 11.76 12.88 | 7.36 11.15 12.22| 8.51 6.44 6.87
2.33 9.45 10.3S 9.34 9.41 10.30 9.82 9.99 10.94 | 10.85 8.83 9.07 9,22 10.08 11.04]|12.95 8.65 9.48(10.98 10.31 11.29 11,01 10.20 11.18 | 11.43 10.93 11.97| 17.24 9.C0 9.61

12,05 12,17 13,33 | 10.73 10.81 11.84 | 16.08 16.16 17.71 | 14,00 9.32 10.21 | 10.60 10.08 11.04]21.21 10,95 11,99 [14.17 10.45 11.45 12.65 9.70 10.63) 18.71 12,72 13,94 27.88 11,90 12.69

3.81 3.91 4.28 4.42  4.39 4,81 4.39 4.45 4,87 4.43 4,96 S.44 4,36 6.88 7,54 S.79 4.46 4.89| 4.48 2.76 3.02 .21 3.17 3.47 §.11 3.11 3.41 7.07 3.77 4.02
3.81 3.82 4.19 3.88 3.94 4.32 3.86 3.93 4.31 4.43 4,29 4,70 | 3.83 4,58 S5,02| 5.09 4.16 4.56) 4.48 3.86 4.22 4,57 3.91 4.29 4.49 3,89 4.26 6.12 3.73 3.98

$.39 5.46 5.92 5.88 §5.91 6.48 5.85 5.95 6.52 6.26 6.58 7.21 $.81 8.32 9,11| 7.7 6.10 6.68 | 6.34 4,74 5.19 6.93 5.05 65.53 6.80 4.99 5.47 9.35 $5.30' §.65

12.05 12.19 13.35 {12.32 12.64 13.85 |12.25 12.30 13.48 |[14.00 12.81 14.03 |12.17 13.86 15.19116.1S 12.50 13.70 [14.17 22.31 24.45 14.52 22.61 24,77 | 14.25 22.09 24.20| 18.09 11.72 12.51}|

8¢



Table 4,

Probabilities of excceding percentage points under null hypothesis and maximum and minimum powers under

alternative hyrotheses, for 5% and 1% nominal sizes, of some tests of significance;

letters LS-F stand

for the usual 1S F-test, WLS-F for weighted least squares F-test using estimated weights, t for usual

t-test and Nor for normal test using estimated weights;

on MINQUE and MLE respectively of error variances

numbers 1 and 2 denote estimated weights based

Probabilities of excecding percentage points under null hypothesis

Error variance and replication groups

Test

V(1)

Power under
alternative

hypotheses

V(2) V(3)

R(1) R(2) R(3) R(1) R(2) R(3) R(1) R(2) R(3) $ 14
s5 1% 5% 15 sy 13 ¢ 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% Max. Min. Max. Min
LS-F .043 .007 .048 .008 .049 .010 | .073 .020 .182 ;077 .037 .004 |.095 .033 .081 .038 .089 .031 |1.00 1.00 1.00 1.00
WLS-F1l{unadj) | .096 .029 .153 .05 .152 .069 | .114 .032 .201 .094 .122 .044 |.136 .045 164 .072 .162 .070 [1.00 .91 1.00 .77
WLS-F1(adj) .040 .011 .050 .020 .058 .028 | .039 .012 .056 .028 .041 .012 | .052 .020 .065 .026 .061 .018 {1.00 .77 1.00 .53
¥LS-F2(unadj) | .096 .029 .166 .077 .170 .078 |'.114 .032 .216 .105 .129 .050 | .136 .045 .175 .079 .182 .076 | 1.00 .91 1.00 .77
WLS-F2(adj) .040 .011 .054 .022 .062 .028 | .039 .013 .062 .032 .045 .013 |.0S2 .020 .069 .030 .065 .020 {1.00 .77 1.CO .53
& .044 .008 .042 .007 .049 .008 | .143 .052 .247 .124 .093 .036 | .024 .005 .607 0.0 .01z .C01{ .97 .15 .88 .05
Nor 1(unadj) .070 .031 .116 .052 .06S .021 | .075 .029 .133 .058 .070 .031 | .093 .039 .107 .061 .075 .021 | .95 .21 .81 .11
Nor 1{adj) .049 ,021 .061 .025 .0S7 .018 | .062 .018 .075 .040 .C62 .021 | .069 .024 .076 .026 .060 .014| .97 .13 .86 .0€
Nor 2(unadj) .100 .041 .159 .084 .087 .029 } .100 .041 .181 .100 .083 .038 | .116 .C52 .139 .082 .091 .033| .98 .28 .74 .1ig
Nor 2(adj) .073 .03C .106 .044 .070 .023|.076 .028 .121 .0S3 .068 .031 |.097 ,038 .103 .0s3 .C72 .022 | .88 .13 .81 .10

6%



Table 5.

Probabilities of exceeding percentage points under the null hypothesis, for

5% and 1% nominal sizes, of the usual F- and t-tests, the WLS F-test (adj)

using MINQUE or MLE of error variances and the normal test (adj) using MINQUE,

12,14,16)

for 3, 5 and 8 treatments.
No. of : y
, Error . L S P-test WLS F-test(adj) using t-test Normal test
Srea- variances Replications MINQUE MLE for ﬂl= (adj) using
ments 'MZ MINQUE for
My =4y
5% 1% 5% 1% 5% 1% 5% 1% | 5% 1%
3 (2,1,%) (4,4,4) .059 .015 .038 .008| .038 .008 | .076 .019| .066 .027
. (8,6,4) .040 .004 .040 .011 .039 ,012 .059 ,012}| .061 .015
(4,6,8) .098 .030 .045 ,015 .047 .018 .114 .042 | .058 .027
5 (3,2,1,%,%)| (6,6,6,6,6) +073 .020 .0%39 .013 .03%39 .013 .143% ,052 | .062 .018
(9,7,6,5,3) .037 .004 .041 .012 | .045 .013 | .093 .036| .062 .021
(3,5,6,7,9) .182 .077 .056 .028 .062 .032 247 1241 .075 040
8 (4,3,2,1,1, | (6,6,6,6,6, LOT77 .025 056 024 .056 .024 .22% 0991 .05% .013
£,%,3) 6,6,6)
(16,14,12,10,] .031 .0l0 054 022 .059 .024 190 <0551 057 . 021
109896)4) '
(4,6,8,10,10,1 «2%4 " 110 JOB3% - D22 064 .025 «29% 167§ .06% - 021

ohH
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CHAPTER 3
CELL

GENERAL TWO-WAY MODEL WITH PROPORTIONAL, FREQUENCIES

In this chapter, two-way models having proportional cell
ffequencies and unequal group variances are considered.
On the assumption that the error variances are known, esti-
mators of the linear parameters of the fixed-effects models
are obtained and the analysis is given for two sets of con-
straints on the linear parameters. The MLE and MINQUE of
group variances are derived. Tﬁe estimators and test-
statistics using estimated weights are adjusted for bias.
Formulae for estimating joint confidence intervals are
provided for contrasts of both.main effects and interactions.

Two-way random models witﬁ unequal group variances are
also considered for estimation of variance components; the
corresponding analysis is given for both known and unknown
weights.  Finally, some simpler tests are discussed for

two-way fixed-effects modelsWith equally replicated treatments.

5 d Two-way fixed-effects model
T e The model

In order to keep uniformity with the general terminology
of the thesis, we shall refer to one of the two factors as
treatments and the other as blocks. The model will cover
experiments where block effects constitute a factor in which
the experimenter is interested in addition to the treatments.
For example, in an experiment where several persons work with
the same set of machines, the experimenter may be interested

in observing differences between machines as well as persons
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and both factors may be of equal interest, even though one
is designated "blocks".

When the block effects are meant to eliminate from
observations heterogeneity in any direction, they will not
usually be of interest. In a variety trial in the field,
varieties are of prime importance and blocks are introduced
mainly to remove the heterogeneity.

We shall consider the non-additive model:

Vige =P34 i ij ijk

RPN 4}

1=1;25es530 § J=lsBssvsss¥ 3 k=1,2,...,nij
where g;1is the effecﬁ of the ith block, Tj the effect of the
jth treatment, %J the effect of the interaction between the

.ith block and jth treatment and €. the error term having

ijk
. 2
mean zero and variance cj . The errors are assumed to be
independent of one another. The variances of the errors

under the same treatment are assumed to be the same but differ
from treatment to treatment. The number nij( >1) of obser-
vations in the (i,j)th cell is assumed to be proportional

to the marginal totals, that is,

njyo= Ny Ney /N..
where N, = ;:nij’ N.j = f gy and N.. = g% ng 5 This

includes tﬁe case of equal number of observations per cell.
Let there be two types of congraint on the linear

parameters of the model:
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0 = Ié;, for all j

n..w. 6.. for all i

Constraints (I) = 1375 %43

™

nijszij

<.

8 for all j

iJ
8

Constraints (II) = ij for all i

L6

g

e ™M ey ™M ™M

where the gquantities Wy o= 1/0 j2 are the weights. The
constraints (I) which are more arbitrary than the usual
constraints (II), facilitate the test for block effects as

‘is shown below. There is no constraint on the block effects
B . which include the general parameter. Different sets of

i
constraints imply different values of the parameters.

- P -, Estimation and analysis when the group

variances are known

Let Y be the vector of observations arranged treatment

~

by treatment. Then the model (6) above can be written, in

matrix notation, as
| A
Y= XB +¢

o~
~ o~

1 .
where X is the design matrix, 8 the vector of all linear
~ Ramk Z(v': bt.

parameters and € the vector of errors. , The vector Y is

given by
) 1
Y = e ” . LN " ¢ ¢ e e e 0 é
L =(¥3110 ?yllnll,yZJf ’y21n21’ 'Yt 10 ’ybtnbt)
so that
. 2 5 2 2
VaI‘(X) = dlag (Ol ’-c-,O' l ,-n,c)' t ,o.,o‘_t ) = ’V‘(’

say. Phen V™0 = diag (Wl""’Wl"'“’wt""’wt)'

-~

From equation (2) of section 1.2, we get the normal

equations given at (7) for estimating the linear parameters.
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From these the individual normal equations are obtained as

T.: N..w. T.+W. o B . in..6.. =w.Y.. jo. = L ePgaesqb
j 3735y Pagh 7y Inggfag = WiTepes 3= LiZheees
B TN W T 8. 5
¢ z 8 = . s =
J J J
6.-: N: W:T o+l W B+n W, 6 = W-Yo~ i = 1,2,-..’0b

1J 1377371373117 1) J 17’
j=1,2’.ﬂl,.t

Using the constraints given by

~ ~ ~f
?N.jwjrj = 0 = ?Niﬁi = anJwJGlJ for all i
J 1 J
~q
= fnijaij for all j

along with the proportionality conditions, we get the esti-

mators as

>

T' =y". ; j =I’2"..,t

J J
o IW.ng LY 5
Biz J'—'J‘—'L—_J— = yi,'.’ 1-—12,.00})
-1
J
say, and
N‘ ~
Gij = (yijo - yioc - y.jn) .

Finally, %jk:z (yijk - Ei -T, - 6;.) = (yijk - yij')
froﬁ the last normal equation. Here, we have used the usual
convention that the dot suffix of a small letter denotes the
mean and that of a capital letter the total over the corre-
sponding variable suffix. This convention will be followed
in the sequel.

The corresponding sums of squares for the above three

types of estimators are Z(W1‘. ./N ), 2{(ZWJY o) /E(nleJ)}
Al i3

J
and ﬁ% ny5Ws¥; 4 (yij‘ oF Ll y.j;) in that order.

To obtain the sums of squares corrected for the mean,

let us assume that 4= P for all i, Tj = 0 for all j and
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813 = 0 for all i and j. Then the model reduces to

= B+

Y1k & 3k *

"The weighted least squares estimator of the general

mean B is given by

= ¥ .Yo.. ZN. . = LR
B Wi¥e g/ T N gwy y ’

say, and the corresponding sum of squares by

5 2
e Wes Ve ne WN..W. .
(5 wg Xeye)/ . gy

with 1 4.f. Then the above three sums of squares (SS)

corrected for the mean are:

2 2 .
to . -Yo LUK} . - . . @ o .
SS (Treat.) Jf(wJ 3 /N J) (szY j )C/IN. .w

J J
= EINe.w.(yoese - ;...)2
j J J J
with (t-1) d.f.
2 2
SS (Block) = e i . . - (Zw.Y... Nao.w,
(Block) z{igjwJ 1J,) /anawa} (Tw 3 )/):j 5
= 2 Zni.w.(;l.. —}o-o)2
Firg P47

50 N2 "
(yij.—yr.-y.3)+ (gij.J.) /T N..w.

SS(Int.) =gy n. .w.y. Ny
J

ij 3913

£ st

- II - - 2
nijwj(yij' Yiee Ve )

ot ¥
with (b-1)(t-1) da.f.

To get the corrected SS due to the interactions, we are to
add the SS due to the mean because the SS due to all linear
parameters is a fixed duantity.

Finally, the sum of squares due to error is given by

il B Sy ~e - g
= = . o =ZLX . % 48 ' Woeew
SS(E) = & ¥ & =Ilfwye, LGS AT
with (N.. - bt) d.f.

It follows that the estimators of the linear para-

meters are not unbiased under any of -the two given sets of
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constraints. If we define Gij = (yij' = Yoo = Yoyt Vs i)y

then Gij is unbiased for the interaction effect 61j under

~

constraints (I). The estimated treatment contrasts are
unbiased for the corresponding parametric contrasts under
both sets of constraints. The estimated block effects
contrasts are unbiased for the corresponding parametric
contrasts under constraints (I) only.
The variances of the estimators are:
A 2 | bt
Var (Tj) = oy /N.j , Var (Bi) =1/ -
J +JJ
and Var (gij) = oj2(l/ni - I/V. ) - (l/fnlJ j - lﬂ}N.jwj)-
The treatment estimators are independent of one
another and also the estimated block parameters are inde-
pendent of one another under the .usual assumption of normaiity
of errors.  The interaction estimators gij are not inde-

pendent since

Cov ( aij, cik)

- l . : W . - l zNo W fo é k
- l N . W . ey l IJ . W, 01X i £ Ra

Cov (Gij’ ‘Sej)
and

Cov (Eij,%'ﬂ{) = 1/§N.jwj for i #9% and j ¥k

Expectationé of the sums of squares under the two sets

of constraints are given below.

Under constraints (I), we have from model (6)

_ B T s € . _ B T e .
Yige = "4 Y 3t Uiyt oiged ey R TR L
g = :E' E v = . T goo-
Yy Si + T+ €0, and y... B. +T+
where B, =28i/b, € ee= gnijwj eij/ghijwj y £ ann B
ZN.jN €y /IN. W4 and T = ZN}jwj’%/'N.jwj. Thus we have

J ¢ J -



E (Ss (Treatments) }

IN. (T, )24 BLZ W..Ww.(€..0m€..d)

~ N2
t—l z No . . . L
( )+ JWJ(TJ T )

E {85 (Blocks) } = Zfn, w,( 8.)%+ E{ r3n. PP
ij i~ i3 b

2
and = (b=1) + zznlJ J( B. —B.) 5

~ } = 5, .2 -
E {SS (Interactions) X Ry W04 5 + E{ZZ ng 4w (e £

= (b-1)(t-1) +zZ nleJGlJ
. plTE - P
since E {ZZnijwj( %j'- Eﬁ..) } = b(t-1) and

E {ZZnijwj(eij.—Ei..)(qj’— €...)}= (t-1). Finally,

e

n. .
J 2

— E - - -— v

E {S$ (Error) } E?BWjE{ : (eijk eij') } (N..-bt)

-

Under constraints (II), we have from model (6)

Yije = By + Y + Gij-+ %J‘ - y'j'= B. + Tj + €.j. ;
Yjeo = B, + ;+-v%f + &.. and y... = B, + T + €,.,.
where §. = aniJ 3 /ﬁniij. Thus we have
~ 2
E {SS (Treatments) } = (t-1) +Z N'jwj(Tj - T)as above,
_ Y 2
E {SS (Blocks) } -ZZnijij 1= B Gi.) +
- 2
E {1z nleJk:i.. Eaos) J
= (b-1) + £I n. 13956 5 ~B . +5 ,.)7,

ij

E {sS (Interactions)]-#ﬁ:nijwj6 ij-di' +

2
E{Zznij\vj€ --o"‘€ e c 0™ ono+€-oc)}

= (b-1)(t-1) +ZIZ ni.w.(5..— g--)Z
and

E {sS (Error) } = N.. - bt as above .

The analysis of variance table is given below.
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Anelysis of variance table

Source of

d.f. 58 E(MS) under E(MS) under
variation constraints (1) constraints (II)
~ ~ 2 2 e \2
Blocks b-1 ZZnijwj(yi..—y..J 1+22nijwj(si—s.) /(b-1) l+zznlJ ;6 478 .+ 85,) /(-]
Treatments (t-1) ZN.jwi(y.j.-y...)2 1+3N. JWJ\T -1) /(t l) l+zN.jijrj-J92/(t—l)
Interactions (b-1)(%-1) ZEn w (J ij° ~Yjee- 1+2LnleJalJ /(b—l)(t-l) l+zzn13w3@ "i.)z
xj.+y...) /(b=1)(%t-1)
Error N..- bt ITI W, (lek 313 )2 1 1
Total
2
(corrected) Neo = 1 IZZ w V3 3k -C w.Y. f

oV



50

It is evident from this table that the differences
in block effects cannot be tested in the presence of inter-
actions under constraints (II).

or ATl

When the F—test\indicates significant differences among
the treatments, block effects or interaction effects, the
difference between any two of the treatments, block effects
or interaction effects can be tested by the normal test.

In fact the variates
4 ('T\ - ;)/(I/N wW.+1/N. w )%‘
1” j k 3] ‘kk

o~

2 1
z2= (B-Bp/ LN, (1/0, . +1/0 .)/2 o gwd ®

and

9. = 613" 8, )/ 1 (.. /8- 1)(1/N.jwj+l/N.Kwk)}i for j#k

( gij_gu.)/{ (N../N,+N. ./NR.)(l/N.jwj-l/ L N.jwj,) } z
for i# %

(513.-62}{)/ {(N../Ni,-l)/N,j~wj+(N../N,L,—l)/N.kwk -

-

2
(No /N 4N /Ny ) /2 N. W, } for i# % and

J
37k

b

are all standardised normal undu W« nell fypoficses-
Ratios of these normal variates to the square root of
the error mean square: are the corresponding t-variates with

N..-btd.f.
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idla D Estimation of weights

The estimators of the linear parameters and the test-
statistics involve weights, the reciprocals of the error
variances which are usually unknown. One procedure in
such a situation is to use the estiméted‘weights in- place of
actual weights and remove the major part of the resulting
bias of the estimators and other statistics as done for one-

way models.

(i) Maximum likelihood estimators of the error variances

The likelihood function of the model (6) is given by

L = (2n)-N"/Qy(cjz)qN'j/2exp {“%'%U/ﬁfﬁffk(yijk‘ﬁi"3’513)2 ¥
Taking partial derivative of loge L with respect to the

linear parameters, we get the same normal equations as those

for the weighted least squares procedure and hence the same

estimators.

Also, we have

3log L He: 13 (-1) A g ey 2

————.—?——— - — ——-—J- e T " ’ - - . —_— &

T2 2 764 L2 ik 81T 63350 =0
J J J ik

whence the maximum likelihood estimator (MLE) of 0.2 is

J
s 2 _ 1 2
J N Z.Z (yl']k - yij‘) 3 J = L1,2,...%,
*J ik
~ oo ~|

3 - 8 T 6 - £ ade —— e R \ "
since F,+ j+ 1j yij' from the 1last normal equation of the
weighted least squares in section 3.1.2. Far 5 £ 3% 6j2

. 2 .
and Uj, are independent,
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(ii) The MINQUE of error variances

From the model of section 3.1.2, we have

- =
N. n e o 0 0 n n e o o 0 n
(xx )= 1. ' bl "11 o1
Negp Dypecees Dy Ny peees Npy
nllcaoo ni..t 1\]'1‘ . nll e e 0002 000 nl-t
Dppeee Mpg No. b1 Dy
1 g 2 "1
b1 o1 Tyl
N4 D44 n 4
Ny Npg Dy
Sl

To fiﬁa a generalised inverse of (§§‘)’ we consider the bt x Dbt
matrix obtained by deleting the firsf (b+t) rows and (b+t)

columns of (}5'). Let it be denoted by 9. Then P is diagonal
and has full rank. Its inverse is given by

-1 ,
D "= diag (1/n11""’1/nb1”"’l/nlt’°"’l/nbt)‘

o~

Then according to Rao (1973, p.225), a generalised inverse of

1

' - » e . .
(XX ) is obtained if we increase the order of D by inserting

rows and columns of zero from where the dependeni rows and

i
columns were removed. Thus, a generalised inverse of (XX ) is
~ o
given by e )
(XX ) = .
~ o~

ol o
L-Q © : (] -JNS“’].




From this, we have

X(XX') X = diag(d. /. seeeyd. / csw gl "7 . ieh

~ vv = ~Ny9"0yq R S Y P
J )
~Dpt Dyt

where Jm is the square matrix of order m with unity as its
elements.

The projection matrix S = I = §'(§§')j§ is thus given by

S =diag(l. =d. 5/ 3T, =d. [o seseyI. =d. /. )
~ e I R R DI S B S M5 MR S SIS SR S

where I, is the identity matrix of order n. The product
SY gives the observed residuals.

Let E be the matrix whose elements are the squares of
the elements of the projection matrix, v the vector of sqguared
residuals and Q the vector of thg variances (052 being repeated
N.; times)f Then according to Rao (1970), the MINQUE of 032

are obtained from the equation F § = v.

Adding the equations involving 032 and simplifying,

we get
Ly ) 842 ( )
:(n,.=1) s.” =2 2 (¥, Y s
j21 1] J i B ijk 1j.
or
» b Mij 2 .
S . o 2 z (yijk - yij.) /( .j - b); J = l’2,.ll’tl

Unlike the MLE, sj2 is unbiased for djz. Here also, the
estimators s.2 and sgi\are independent when j # j'.

If the number of observations in any cell 1is unity,
then the contributions from that cell to the degrees of
freedom and to the SS for calculating either MLE or MINQUE

of 032, will be zero. Thus, in order to get an estimate
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2

of % y, the inequality nij > 1 must be satisfied for at

least one cell for the jth treatment.

As the estimators sj2 are independent, Bartlett's
x2-test can be applied for testing the homogeneity of error
variances in this case also. . n .

1]
It is obvious that the variate jil (yijk- yij.)2 is

distributed as x?ojz with (ng, - 1) d.f. so that

(N.5 - b) 5,%/0,% is aistributed as x° with (N.j - b) a.f.

3.1.4 Adjustment of theestimators of the linear parameters

Since the estimators of the treatment parameters do
not involve weights, no adjustment is necessary for these.
_Estimators of the block effects involve weights which also
occur in the expressions of the estimators of interactions.
To remove a major portion of the bias when estimated weights
are used in the estimators of the linear parameters, the
estimators have to be adjusted by Theorem 1 due to Meier.

Let x. = s.2/o.2. Then the estimated weight

- J J J
” 2 2 2 .
Wy = 1/s; = l/ijj . The MLE of o may also be used in
defining Gj' The estimators, using estimated weights, of

block and interaction effects are

oy on )
~ A, w &
Bi = Fgoe® .Znijwj yij./; ny vy
J J
and N &
§ - - - Veoo)
59 (yij' Yieo = Yese + Juun
5 ~ A
with yeoo = ZN..w.y.../% No.w. -
i d 4° J j Jd J
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i)
: dFi o *
Since ax.z } = (1 - f, )( Vi4° - yi..),
J all x.=1
J
the adjusted estimator of B;is given by
g . 2 t 2

with fj = nijwj/ J?;nijwj = N‘jwj/ N.;w; by the proportionality
condition, (N.j—b) as the d.f. for the estimator of (52 and

A A o)
fj = N.jwj/zN.jwj. Similarly,

yoo. (adj)=§7...—2

~

so that %j(adj)

tA A
f fj(l—fJ)(y.J —y...)/(N..-b),
Y -

(adj) -yc-n +}ooo(adj)o

= Yiye T ¥Yieel® i

o o Adjustment of the test-statistics

(i) Adjustment of F-statistics
' The error sum of squares (SS) using estimated

weighis based on the MINQUE of error variances is

B IS (g - vy ) /] I8 (yygp - ¥yg)P/(e - D) ]Y = NLL-bt,
j ik ijk 1J [ik ijk 13

a constant. Similarly, the SS due to error, using the

estimated weights based on MLE of error variances is also

a constant. Hence, no adjustment of the error SS is necessary

for removal of bias of the F-statistics.

The SS(treat.) using estimated weights is
2
)

ZN.jwj(y.j. ~ Veee)S. This is exactly in the same form as

that of the SS(treat.) using estimated weights in the one-way
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model with unequal group variances (section 2.1.4).
Hence, the adjusted SS(treat.) using estimated weights will
be of the same form as that in the one-way model and it is

given by
Adjusted SS(treat) = zN.jw?vj(y.j;f...)2 { 1-2(1-%3)/(1\1.j - b)}

Thus, the adjusted F-statistic for testing treatment differences

is given by

3 2(1-1.)
~ . _ ~ & RN _
Fl(adg)—(N.. bt) j:iN.jwj(y.j. Fusd T 1 N.j_b — Y /(t-1)
RLRLUNCOPNIE T L BN Y

with (t-1) and (.. - bt) d.f.
To find the adjustment for the other two sums of

squares, we see that

Bﬁ... : G
i . ij % ' 2
T—Eg—- T o2 (gnlJ ¥i5° le Ay v )/X G:n w )
J
and
ol
'byioo
all x.=l1
Similarly,
Y o D% 3 2
e = . =Y e =0 iNe No- -
S OX o 2 ( N ML R AS EN 3" /%570y JWJ)
J j J J J
and . .
?_E.NL_ v )
’:. = lew f-l_f- oee ™ YVeuse ®)
o 2 2 1£4( 31 Te s
11 % =1
a xJ

The estimated block SS is given by
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| > :’ = 2
Est. SS(block) = ??n.ﬁw.(yi..— Vons )

ij 13 J
so that
3[Est.55(bl)] 1 < < 2 A
= - e & s 0 0™V oo 222 . e
bxj x.20.§ E 13(y1 J )+ nleJ
Jd d & A
& & a(Fyeee
(yloo i y oc)’a yl.. y..
9x .
J
and o
3 {Est.SS(bllj
3 2
.
E 11 1
a xj—
= 2 P e e ™Y o o Z f o e o e c s 0™ --"N.'o"‘hf"l
R PR A .04 RECAPLRICA Vo) (g geye g T

+ 2Z§nleJfJ (yi.. y ,,y.j.+y..J +4f§nleJfJ(1 -f. )(y o y.. )

~ o~

,.(yij."yi-."y.jo +yoon),‘

Thus
Est. SS(bl.)(adj) = LI nijv?j(yi..-;r.,.)? ST
13 9 § &9
2
D “Est.SS(bl)
3 2 using estimated weights.
Xj }
all xi=1
J
= Zzni o;I-(%ioo_‘%rcoo)Q(l —§ —b ) _22Z 1 (y ‘Srjo-"
ij J J * 3 ij J J J .
& &
~ 1
z
Vosot Yoou) T 5 )
3
- 43¥n. .M. T, (y y ) (v —cy. -y +3§: ){}——-——— +(l—f,'\.)
1J 1J J J LN e ¢ » vij. l‘. .jl . o0 i\d.j—b J
1
oo g)
(2 N. o )}" (}/

with (b-1) d.f.
The adjusted F-statistic for testing differences

in block effects ig thus given by



(N..-bt)
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{Bst. SS(bl.)(adj)}

A .
F2(ad3) =

(b-1) { zzzﬁj(y

g
ijk ~ yij') :

with (b-1) and (N..-bt) d.f.

The estimated SS due to interactions is given by

. =ZZ ..A.
Est. SS(Int) ijnlJWJ

¥3{Est.SS(Int) }

so that " Xj

[ﬁz{Est.ss(Int)} }
and 5
dx .,
J

Hence, Est. SS(Int)(adj)

A

yijc(yijo"'yio u_yojo'."yooo)

~

2 zn. .W.y. .o(yijo-yia c—yojo‘*‘?ooo)

g 13 3°4]
1
22 .b (y'ioc"yooo)
+ n. .W.y. ..
4 14 J°1J axj
11 x.=1
a XJ

D, & <
[B (yicu—yo..)
- zrn, . w.y. .|
i3 1373 1Jl

Bx.2
J

all x.=1
J

A N

- ~ ~ 2
ZZ . N s s 6T e T Y2 e e o 0
ijnleJ(ylJ FoFegetYooe)

" [B 2{Est.5S(Int)}
e - 5
J J bxj

1] =.=1
a 73

(using estimated weights)
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= 3¥In, .w ( o + : ) {1.2(1 f‘)(%“““%
155 Yip iy Y 3T T
Ca) 1 \
f‘ z —— )} ...(lO)
3 II. -—b ’
I B

on simplification, with (b-1)(t-1)d.f.

The adjusted F-statistic for testing differences in
interaction effects is thus given by
(N..-bt) { Est. SS (Int) (adj)}

Fy(adj) = : 2
(b"l)(t-l) {222 Wj (yijk-yij.) }

with (b-1) (t-1) and (N..-bt) d.f.

%umﬁymaﬁ

(ii) Adjustment of the normal test-statistics

WAML‘M
Thehnormal test-statistic, using estimated

weights, for testing the difference between the jth and kth
treatment effects is . e :
R P RV e L
z, = | 3 kl 4 N'jwj + TN W
This is in the same form as the corresponding normal test-
statistic in the one-way model with unequal group variances.
Hence, the adjusted normal test-statistic will be of the same

form as that in one-way model (section 2.1.4) and it is

given by
A A 2 A2 2 A2
2, (adj)=%, {1-3 [l/N.j(N.j—b)wj +1/N.k(N.k-b)wk] /

4(1/N. . +1/N. % )%
. 3 k' k
O\Ji\WLWV\OL
The normal test-statistic using estimated weights for

testing the difference between the ith and 2th block effects

is
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A
~

L
N.. N.. 2

A
~

ZZ:' B‘.'(adj) 'Be (adj) ‘/6: N. W 1 2( N N—_.)
2
5
= Y N..w. .
H (N ,Jw,]) , say
on H N..w, W,
Since Eé-——2-32- } = P— g | " (1- 4__1_1_ Je
. « W. )= N.w.
BXJ (zN JWJ) NJWJ
all: x.=1
J
it follows that
5 o B, (adj)-8 g (adj) % f.(1 - £./4)
z,(adj)= l,l | 1 = E J J
2 §— e ] o % .
{ENJ.w"j N, Nz.} J= J

Here, var'{Bi(adj) }.has been approximated by var (Bi)=1/inijw
j ¢

J

.since the former is difficult to find analytically.
Similarly,‘if we approximate var {gij(adj)} by

var (Eij)’ the normal test-statistic using estimated weights

for testing the difference between the (i,j)th and (%,k)th

interaction parameters is given by

A A
~ ~

' - . L
rIﬁj._j(adj)"(Sik(adj)I /{ (N° '/NiO"l)(l/N-jo+1/N.ka) } 2

. for j # k
A e ~ b I8
25 |6ij(adj)—62j(adj)l / '{(N../NiﬁN../N )(l/N W . -l/;;N. W )}»a
for i £ %
|6 (adj)- 8y (adj) | /1 (N../Ni‘-l)/N.jwj+(N../Nl.-—1)

. b 1
/N.kwk-(N../Ni.+N../N£.)/ZN.jwj}z for iA & j#k

- ofhnokim ate
The corresponding adjusted normal test-statistic is
c :
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~

| g m
%y [1 - 3u=>:j,k1/{ 4N, W, (I\T.u-b)(l/N.jwj+

/N )2 ] for j #£ k
b

~ N :, ¥ {A 2- A 2 } 'y 5 )
Iy(aag)=| 25| 1+ G 3(1+fjt>/4 /(e g=b) v Fo6, ] for i o
23 [l + z H + ) (p1+qb +2)fu { 1 = §u~ B%u

m=k,j " u(#j#k)

(Pi+qu2)/4P} /P(N.u-b)] for i #4 .and j ¥ k

where 6, = f,f, @ - fu[ 1+ 3fj/4(1-fj)]} /(=% ) (. -b),
By = [£4(py+a,02) (1-2)-3 (p;-1,2(p; 0, 42)%/02, %2 ) ]

./P(N.m—b),

. and '
q = (Ncn/NoL - l)o . .
Ratios Of these adjusted statistics to the square root of error
mean square: are the corresponding adjusted t-variates with N.-bt d.f.
Bsdab Multiple comparison

The inequality (5) of sec¢tion 2.1.5, may be used to
estimate the joint confidence intervals of contrasts of treat-
ment, block or interaction effects.

(1) Treatment contrasts

Since the estimators of the treatment parameters
and their variances are in the same forms as those for the
one-way model, the formula with necessaty adjustment obtained

in section 2.1.5 is also applicable here. Ii‘$l =ZchTj is

an estimate of the treatment contrast, y; =Zca then the

b3’

estimated joint confidence interval for all wl is given by

A

Py — Sys crd?(adj)e P14 Y1 + Syson (adj)
1

(O RA

Rl
)

where S, = { (t-1)p, (t-1,N..=bt)} % = = square root of mean

square error and
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PN : 4 4
o ; . o 2 2 o 18 t C. 8-
Y (adj) ={ ?3(0'j 55 /N’j) 32 {1 4+ 1 'E _;%TJL_tT_
j j=1 N'j(N’j b)

_ -2
(c.2s.2/N..) } using the MINQUE of 0:2 as the estimator.
217505 j J

A A
~

Approximating the variances of Bi(adj) and Gij(adj)
by those of Bi and %j respectively, we get the estimated

joint confidence intervals of B-contrasts and interaction

contrasts as follows.
(ii) B-contrasts

If ¢2 = Zciﬁi, then var (wz) = var | ZCiﬁi) =

2 _ _ 2 |
xi(ci /jmijwj) = df §N.jwj where d = }:i(ci N../N;) by the

A A A
proportionality condition. Thus 0$ = di(IN.jwj)-z.
%Y, 3

The - estimated joint confidence interval for all

contrasts wz is then given by

~
~ A
-~

4’2 - st 0~2(adj) Yo £ Vot S2 So'q:z(adj)

where $, = { (b-1)F, (b-1 ,N..-bt) }7]5, 3; (adj) =
L

>

Il ™Mt

@/ s, w)FL1 + 4 _1-3r2
S 21 N.j—b

J J

~

and %(adj) are used in computing Wz.

(iidi) Interaction contrasts

Ifu)3 = II Cijﬁij is the interaction contrast, then
1]
var ($,) = var( XX c..6..) = ZIc, . “var(%,.) + 3 0
5 ij ij 1] 1j ij i3k ij ik

stk e . cOV(B. ca8 )+ T % C..C
AT LT e LS R R A PR ¥ At i
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“ _ -1 -1 4 2
cov( 85456 2k) = ZQj(N.jwj) - Q( ZN.jwj) where Qj = f cij

o
(N.-/N-.-l) Z Z CisQ . and Q = Z Z C~:(I\]QO/N'."1) + Z z z
& g £1 443 § g e i i 3fk
(N../N o~1) = BT Fou . -¥ Lz .C : Thus the
13 Cik 1493 13 J i 2,3%k 13 Lk

estimated standard error of $3 is given by

o

A ¥ ;: _1- =" _1
3

The joint confidence interval for all interaction

contrasts u;3 is then estimated by

A

v = Sq so\'LB (adj)s v 5§ Vs + Sy so$ 3(adj)

ol

.(adj) are

where 33 ={ (v-1)(t-1) P [ (b-1)(%-1),N..-bt] } , ij

~

used in computing ¢ 3 and

t

- b 13
o  (adj) = hy "1 1+ 3 N. w { h, (1+N. W
V3 1 [ 341 it

- N.jwjh3j} /hl(N.j—b)]

4 4h1

: B A A 2 a2
with.h, = (2Qj/N.jwj-Q/ zN.jwj), hZJ Q /(q. W, ) + Q/(y W. N )

and

_ T % %3
h3j = Qj/(N.jwj) + Q/( zN.jwj) :

3.2 Two-way random models .

Let.the random model be

Yisk = By + L Gij +E ;o
(L o 1i2yuwwsd™}  Xim Bg@snenyh i Bl 2,...,nl3)
where Bi is the random effect of the ith block having mean
M and variance 08 2, Tj the random effect of the Jjth

; : 2
treatment having mean zero and variance 0. ; O ij the random

€

effect of the interaction between the ith block effect
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and the jth treatment effect, having mean zero and variance

2 : ¢
o 5 0 and e the error term having mean zero and variance

ijk
o j2‘ All the random effects and the errors are assumed

to be independent of one another.

- 1% Estimation of the wvariance components and the

analysis when error variances are known

From the above model we have,

TJ+6cj+€.J.,
Yieo = gnleJy ./ z:jnijwj =B, + T+ 8§, + €5..8nd youo =
8.‘*"[""‘60. +€ ) .
2 2 b
Since, E {Zz(ylak ¥iye =) = ZIE{X (ele eij.) } E(H ij” 1)

2 2 . 2 !
0.°=(N.,=b} 0. ; EE (9. 0o ~Fs 25 1=
3 ( 3 ) IR the quantity ik(y1Jk ¥4 Y /(N 3 b) is

still the unbiased estimator of 032 3 J = 1y25000yt,

Now E (Treatments SS) = E { & wj(y.j;-y...)2 }
j=1

- {32 ; 2 § E 2
= B Ne.w.(7.-T)°} + E {ZN..w.(8,.-6,,)

: J J J : J J

J J )
+ B {gN..w.( €40 —E..)z

Jd J J

i

(1) + (w. = 0. Pw P/ (0 +o5 %/,

with we = ¢ N..w
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~

- 2
wj(yi..— Fsas )= 2

E(Blocks SS) = E {g3 n..
ij

| 2 | & L,
E{fjl-Zjnijwj(B g B.)°} + E{Zz nijwj(G ;-8 o) 3

+ B{zZ nijwj(Ei,_-E...)? }

]

(b"l) I O'B2 ZN.JwNJ(l_l/b) + 06 2(2No32W32/W.)(1 _ ]_/b)
J J

Since E ( 81— 6.)2: 082(1 e l/b) arld E(Gi'_ Eo.

(1 - Yoy ow. 2w 2wR.)
® j J J
and

.+y...)2

E (Interactions SS) = E {If n..wj(yij.-yi..-y. }

15 13 j

& = .9
E {inijwj(s ij‘é Tt - ‘3 +8 «.)°} + B{::x ng Wy

( "O—Ei"—e‘j‘+e'..)2}

e (b~ 13h = 1) # o 2(1 - vy (w. - 3 N.jzwjz/w.)

ot 2 2 1 s PURRY:
since B (8,5 - 6.,)% = 957(1 - Yv); B (8 4.-6.0)
20521 - Yo)(zn. 2w 2Rl

~

and E ( §44- a.j )( 8 T - g = (N.jwj/w.)o6 2(1 - 1/b).

From these expectations, it follows that the unbiased estimators
of the other three variance components are given by
2

o ,~ = b {Interactions S5 - (b-1)(t-1)} /(w. - %N'j wjz/W-)

x(b-1),

4
N

; - {Treatments SS - Interaction SS/(b-l)}/(w.—EN.?w;/w.)
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5,2 = b(Blocks SS - b+l)fb-1)w. - { Interaction S5 - (b-1)(t-1)}
2.9

/(w.z/!:N.jwj -1)

when the actual weights, wj = l/tsz,_are known.

. o _ >
Finally E {Within (Error) SS} = E{IIl wj(yijk-yij‘) }

— _ 2
= (Nco — bt)
as before.
It can easily be shown that ( ijk -e ij.) is uncorre-
1ated With (Etj'-€0-¢), (ei‘l_el.l) and (eij. — €i.. -

o

E’j' + €,..). Hence, by the assumption of normality of errors,
‘the error SS is independent of the treatments SS, the blocks
SS and the interaction SS. Similarly, the last three sums
of squares are also mutually indebendent. Furthermore, each
of these three sums of squares is distributed as non-central
X? times a constant while the error SS is always distributed
as a central X2'
The hypotheses can thus be tested in the following way.
To test the hypothesis, Hl: o5 = 0, we see that
Inferaction SS/(b=1)(t-1)
Error SS/(N..-bt)

Po=

is a central F-variate under the hypothesis Hl with
(b-1)(t~1) and (N..-bt) d.f.
For tests of significance of oir.andoB , we are to
consider two cases.
Case I: 05 = (O

In this case, it follows that
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(i) { Treatments 8S/(t-1) }/ { Error SS/(N..-bt)}

and (ii) { Blocks SS/(b-1) } / { Error SS/(N..-bt)}

are central F with corresponding d.f. under the hypotheses,

H g, = O and H, : g = O respectively.

2" 3
Case II: o5 # O.

In this case, 05 occurs in the expectations of both the
treatments SS and the blocks SS.

To test the hypothesis H2 . O = 0, we find that

T

{ Treatments SS/(t-1) } / { Interaction $S/(b-1)(t=1) 1}
= F {t-1,(b-1)(t-1)} [_1+{ o 2 (w.- ZN?jwjg/w.)/(t-l)} /

{1 +-062(w.—IINj2w$2/w.)/b(t—l)} ]

= F[ t—l,(b—l)(t-l)] under the hypothesis H2:cy,r = O

This test is valid also when s = 0,

On the other hand, since
{ Blocks SS/(b-1) }/ {Interaction SS/(b-1)(t-1) }

= F{ b-1,(b=1)(t-1) }[ 1+ {w.g.2/b + 062A v/ (1 *'052

B
(we = zN.j2w32/w.)/b(t~l)} }
where A = {ZN.j‘?wj2 - (w. = Nﬁ2wjz)/(t—l) } /ow. ,

it follows that the hypothesis H = 0 cannot be tested

A
in this way wheno, ¥F B

9202 Ad justment of the test-statistics and the

estimators of variance components

Since the estimated error variances are independently
- . : 2 . . ’
distributed as multiples of y"—variates, the test-statistics
and the estimated variance components using estimated weights

can be adjusted as before to remove the bias of order
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( IF=%) .

j J
(1) Test-statistics
The F-statistic for testing le Os = 0 is the
same as that for testing the significance of interaction
effects in section 3.1.2. Hence, the adjusted F-statistic

using estimated weights will also be the same (section 3.1.5)

- [ TP
. (N..-bt) { Interaction SS(using estimated weights&adj) }
F4(adj)= ~ ”
- -1y{ I I -
(b-1)(t-1) . 1fwj(yijk yig) !

with (b-1)(t-1) and (N..-bt) d.f. where the interaction SS
(using estimated weights& adj) is given by equation (10) of
section 3.1.5.

Sim;larly, for testing H2: o = 0 when Os = 0, the
adjusted F-statistic using estimated weights is given, as

in equation (8) of section %.1.5, by

(N.o=bt) ZN.wio(yegemyes) {1- N.-R }
Fs(adj)= N
(t"l) {zzz Wj(yijk - yij')z}

= N.jwj/f N..w..

with (t-1) and (N..-bt) d.f., where f. N

J

When Og# 0, the adjusted F-statistic for testing
H2: 6. = 0 is more complicated. The F-statistic using esti-
mated welghts is

~ (b-1) [ Treatments SS using estimated weights}

Interaction SS using estimated weights
with (t-1) and (b-1)(t-1) d.f.
A

Both the numerator and the denominator of F6 depend on

estimated weights. Hence



Pe (adj) = P¢ - g

Denoting the

1
-No -_b
J

3 26f6)}

bx.z
J

11 x.=1
a XJ
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using estimated weights.

treatments SS and the interaction SS,

both using estimated weights, by TSS and ISS respectively,

we have
2 2(Fg) v -1
asz (1s5)°
3 ISS 3 7SS
2 T . )
SS 5 XJ d xJ
3 (TSS)
where T
J
all
5 (ISS)
X
[
all
TRt R
[ 32 (78S)
_——
axj

all

2 (ISS)
and 3e 2 | = 2(1-f. ) z ny 4WiY3
i i

X
all

{ (188)°

+ 2 TSS

=1
3

ni.
3 13
=%
3

jl-yio a-y

=2 N

X =1
J

X.=1
J

W.y. .o (Y

3 78S
5

¥ X

.

Now, (..
330

J°1j

~

.j.+y...)

- ISS.TSS

.‘.300-) ’

~

iy

2

~

J

3 215

¢ x.
*4

—y‘-c"'yoct) +

~ 2
e . e 0T )Y e 00 l -f-
(e gemFee )@ - 1)

J

S
2

s % CLlL)
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When 06 = 0, the adjusted PF-statistic using estimated

weights for testing H3: gg = 0, is given, as in section
3¢l.5, by
A ~ (N..-bt) { Blocks SS (using estimated weights& adj-)}
F7(adj)= ~ 5

(b-1) {zzz wa(yijk - yij-) }

with (b-1) and (N..-bt) d.f. and the blocks SS(using estimated
weights &« adj) is given by the equation (9) of section 3.1.5.
As shown in the previous section, the hypothesis HB:
Og = 0 cannot be tested in the presence of interaction

. 2
varliance 06 .

(ii) Adjustment of the estimators of variance components

The estimator using estimated weights, of o 62 is

5 b Iss - (b-1)(t-1)

8 Lol W -(zNJ.?GJj?/?v.)

an
I

with w. = zN.jw?j so that

A 2 o
, , % 1 32 (6 1 using
86 (adj) =6y T jEl N_j_b 3xj2 estimated weignts
=1
*5
where
3 G, = b |42 2185 _ A {ISS - (b-1)(t=1)}
d3x,° (b-1)A° 3 x.2
J J
32y M BISS dA (2
ol 24 = % + 2 {Iss -~ (b-l)(t—l)}(gij)

with A = w. - ZN.jzwjz/w.,




1L

2N. .W.W, = ZN..2W.2

- NegWy (1 - J_J L4, . ... (13)

‘<
W.

e
o o
7 |7

.

| SE—

I

3°A i g | g 2 2
= 2 e - 6 No . . o o . 2 o
{2 w Jwa ‘+ 4'N 3 wJ + TN 3

all x.=1
J

2
wj(l-fj)}............. (14)

Bx.z
d

and §$ISS) and BZISS are given by the equations (11)
dx )
all x.=1 all x.=1
J J

J

and (12) respectively.

In the same way, the adjusted estimator using estimated

weights, of <5,f is given by

7SS - I8S/(b-1) t 1 [ 32( §I ) }
V. .-b

A
S 2 .y ® = £ _
6. “(adj) = [ _ ZN.jzwjz/w. : P anZ
all x.=1
using estimated weights
where
32 5 7 1 2 2
bl o g a® TE s 1B oy LS
dx 2 A° dx . ¥3x.°2 dx. dx.
J J J i

+ 2B( dA/ ij)z} ’

B = PSS - ISS/(b - 1),




...—~“.—,.. - N... - 2 I n..w s X (%3 50 e ...;'...
(¥ 5o=YgoFge + Foor) L * §Fi3°F5(Ts; y wAPTRL )} ’

%8| 5w w ( 7ee)2(1-£,) $r | 2n, v
RETH DA i At M j MRS LER K
all x.=1
J

(yijo—yic '_on - 2 ynco) = 2 anJWJlefJ(y ) yi.a-br’jo + yooo)

-—2 22 f lf ) cas ™Yo 50 + ~onc
L PP P )]
Joi:8 2 . .
and - o and dTA are given by the equations
j LE
all x.=1 all x.=1
3 *3

(1%3) and (14) respectively.

Finally, the estimator using estimated weights, of
2

08 s is
g 2 _ N . " A 2 2’\ 2
g = b(BSS - b+l)/(b-1)w. = {ISS = (b=-1)e-)/(w."/3 N, W ~1)
so that " 3 2% 2 using
A9, o ARG |
Og (adj) = Og = % N'j“b [ sz estimated weights
all x.=1
J
IS
5¢ 3 2 . { 32(Bss) 2 £3@ss)
where  ——3= = (311 ¥ ° 3 x.
xj J J
- 2£; (1-£5) (BSS-t+1)}
1 3 2(188) 1 3 %c : iy 2
—_ w e g et (L8fe Bl B=El) =
- 3P T3, 2 B tx B N o2
J j
2 e G
d0x ox 6 axj
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3C
; 2 .20 2 T
with ¢ = (W.“/3 N.j Wyl 1) { axj ] = 2 N’jij' (w.N.jwj
all x.=1
J
- T N. w 2y/( s N.2 w.BH?
i ]
RY | 2 2
= - 2 No W, No -‘N-C No . . + 2 . N oNo . .
[ 3X.2 } NE RS b /% " ws v Tk
o '
all x.=1
2 2y - 2 2 2 2 I !
- IN. . 1 - 2N..“w./ LN, “w. LN..w,
3w ) ( 5 Wy / 5 s ) / ( 5 ;5 ) ’
d(BSS _ ~ = 2 o33 -
[ .y f:nijwj(yi’° Veeo) : ny Wy J(yl.. ~Yeos)
J R
all x.=1 ‘ T = ~ _ T )
. J y]"j. Yi.. y.jo y-.n

[ Bsg) ] =2 3 nijwj(yi..—y...)2 +4 Z n..w.T. (y v=Ysis s )
i

o - 2
e +y..;) + 22 Zn Wf (yijo"yi.o"yo-o +yn-o)

== Xy =T R T he b j

(1 j

XZ f 1f 00 o0 --0"~-0"" e -0 e o0
+ 4 s ny wiTy( )(3 g )(yla Yy Yege + ¥eer)

5 % 34 are given by (11)

all x.=1
J

[

3(1S8S) ® ss)
and [ ] and [ ]
X

=1
J

and (12) respectively.
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3¢5 Fixed effects models with equal replication

While the results of sections 3.1.2 to 3.1l.6 are
entirely applicable, some simpler tests are available in this
case. These were first discussed by Robinson and Balaam (1967)
for correlated and heteroscedastic errors.

The model is the same as that of (6) in section 3.1
under the usual constraints (II), with the exéeption that
the quantities n.. are now all equal to r. The proportionality

1]
condition is thus satisfied.

3.3.1 Test of significance of treatment effects

Taking the mean of the observations of the model with

respect to the suffix i, we get under constraint (II),
Y°jk=6'-+'l'j+e ‘ 5k = uj+€'jk’ J=14250005t 3

k=1,2,e..,7 ; say, where var-(e.jk) = sz/b, which differs
from treatment to treatment. Hence, this model is the same
as that of the one-way model with unequal group variances.
Thus the methods of estimation and analysis described in

Chapfer 2 may be used.

The methods are also applicable when the number of
observations per cell is constant for each treatment but

varies from treatment to treatment.

e % P Test of significance of block effects

Taking the mean of the observations under the model at

(6) with respect to the suffix j, we get,

Yix = By teix L= dy@yrvs sl §
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k = 1,2,...,r, where var (€, ,) = sz/tg which is a

ok

constant so that this model is a homoscedastic one-way one.
The usual least squares analysis can be used for testing the
significance of block effects. The procedure holds good
even if the number of observations is constant within the

cells of each block but varies from block to block.

3¢363 Likelihood ratio tests for significance of inter-

actions and treatment effects

Let'Yik be the column vector of observations at the
kth realisation within the ith block, iﬁq'{ik = (yilk""’
1
yitk) 3 1 =1,2,.04b5 k =1,2,...,r. Let L be a (t-1) x ¢
matrix such that

Then the elements of the vector Zix =L Y5, are (t-1) ortho-

gonal contrasts amongst the kth set of observations within

the i1th block. The matrix L will be called the matrix of

o~

orthogonal contrasts.

Then the model at (6) of section 3.1 can be written,

in vector notation, as

Zik = T +§.i + %ik ; i = 1,2,ooo,b ; k = 1,2,000,1‘;
! | |
Where ;["z EJ( '[i, ¢ o009 T t) ] §i = «]:J(S ilg e o o ,6 i_t) and "ej_k =

L (e50,0+++r€54;) » Lt then follows that g., is distributed

as multivariate normal with mean vector Q and dispersion

matrix I where

1
r = 1 diag (012""’0t2) L , which is non-diagonal.

We can now use the likelihood ratio (LR) tests of the multi-
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variate analysis of variance for testing the hypotheses
(1) z =0 and (ii) éi = 0 for all i,

Robinson and Balaam (1967) considered independent
cohtrasts of treatment observations instead of orthogonal
ones as used here. One advantage of using the orthogonal
contrasts is that the LR test-statistics are invariant under
such transformation of data.

The LR test-statistics given by them are as follows.

(1) Hp: T =0 de, 74 = 0 for'all -

LR test criterion for testing this hypothesis is

g

= :
: ' ~ ~ o~

where A = i§1 kil (?ik —ﬁ?..) (gik - gfjl = b(r - 1) % and
.
Since (br %f' g1 Z'..) is Hotelling's T2, this is an exact
test, ieq- | i
DRPT ;?:Fi??ﬁ Fi 1, br-b—t+2 ) -

under the hypothesis HT'

(idi) Hgp: §i = 0 for all i = 1,2,...b ie, Gij = 0 for all
i and j. The LR criterion for this test is given in the

notation of Anderson (1958 , p, 208); by

| £ ]
U "
t-1,b-1,b(r-1) = | A + B |
b z
V\lhel—‘e B = I E (Zi- bt Zt.) (Zj_‘ - Z~oo) ¢
~ i=_]_ “~ o~ ~ .
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Now ={br -1 -3 (b+t - 1) 1log, Ut-l,b-l,b(r~l) P

distributed asymptotically as X2 with (b-1)(t-1) a.f.

For small sample, further approximations may be used.

To show the invariance of the LR tést—statistics,
let M be another matrix of orthogonal contrasts of treatment
observations.
Then % is given by

M=CL

where 9 is an orthogdnal~matrix. This was stated by Shukla
(1972) without proof which may be as follows.

Since M' is a t x(t-1) matrix of rank (t-1), there

exists a non-singular t x t matrix C and an orthogonal

-0
(t-1) x ($-1) matrix R such that
. (lt-l )
M =¢, \U"g"JR , (see Rao, 1973, p.20).

or,

=8 (1439 ¢ =F&

~

say, where E = R' is orthogonal and C1 = (It_ﬁo) CO is a

(t-l) x t matrix of rank (t-1).

o ~ e

Now by definition, O = M 1= EC, 1 which implies that
]

~ ~ o ~ ~l Al
Thus C, is again a matrix of orthogonal contrasts. Applying
bt | :

1
Cl =0y and I =M M = EC.C E which implies that ngiz I,

this result once again we find that
$1=E1L
where F is orthogonal and T is anothef_matrix of orthogonal

contrasts.

It then follows that by a suitable choice of the

orthogonal matrix ¢, the matrix M can be written as

I‘Y}T’-CLO
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Now let A, be the value of A when M is used in place of L.

~

Then the vector of newly transformed observations is given

l _ y 2/br

+br Z..Z'..

~

1
so that AA12/br= | & ﬁ'g |
ICAC + bI' C Z..Z c.C l

= e

(

Similarly, the expression of the other LR criterion,

Ilt—l,b-l,b(r—l)’ also remains unchanged.

The above method is easily generalised to multi-way
factorial designs with equal numbers of observations per cell

and with unequal group variances.
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CHAPTER 4

GENERAL BLOCK DESIGNS

An additive fixed-effects model with unequal group
variances is considered here for general block designs
including both extended and incomplete block designs.
Estimators of the linear parameters are obtained on the
assumption that the group variances are known, and the
corresponding analysis is provided. Canonical forms of
two sums of squares are derived.: When the group variances
are not known, adjustment of estimators and test-statistics
using estimated weights is suggested for removing bias.

FPinally, recovery of inter-block information is discussed.

4.1 Estimation and intrablock analysis when group variances

are known
Let the additive fixed-effects model be:

Vi = P4 j ijk
..-(15)

|
—
I\
ct
=
|
—
N
°
=
A\
o

i=l,2,oo¢,b ; j—

where Bi is- the effect due to the ith block,T 3 the effect
due to the jth treatment and eijk the error term having mean
zero and variance, 032. The errors are assumed to be inde-
pendent of one another as before. Both incomplete and
extended block designs are included in this model. Block
sizes are unequal in general.

Let Y be the vector of observations arranged treatment

~

by treatment; then the model can be written as

1 1
Y= A ¢ + D B+ ¢




80

where tand g are the vectors of treatment and block effects

1
respectively with the corresponding design matrices, A and
1
D, and ¢ is the vector of errors. E(g) = 0 and var(eg) =

diag ((32"‘7012""’0t%“”0%) = y, say.. The rank of the

overall design matrix is (b + t - 1).

Further notations:

1
Let r (rl,..,rt) , the vector of replications of

Il

9]

the treatment

k (k

z l’...’

A B = (n

!
kb) , the vector of block sizes,

s
]

ji)’ the incidence matrix of treatments
with the blocks,

]
w = (wl,...,wt) , the vector of weights with

2
w. = (1/g.
5= (/g%
T = AY, the vector of treatment totals,
' E Y Y, the vector of weighted block totals
with elements, ~
B, = z njiwjyij‘ ’

G=w T =1 B , the weighted total of all obser-

o~

vations and N = § ¥ n

1 1

1
Then, D1 =1=A1,D1l=%kx=n 1, Al =Vv=n1l,
‘ ' 1 5
k' 1<¥=r 1,DD = 55 andar' = rS vhere the superscript$
denotes . . :

«a diagonal matrix with elements of the vector as the diagonal

elements. The superscript, - §, will denote the inverse

of such a diagonal matrix. Also i nji 5= rj and § nji = k.

By (2) of section 1.2, the normal equations for
finding the weighted least squares estimators of the linear

parameters are given by

A " . T A L
(o.;@-) :{ s (é‘ 512') ('—:B:") - (oé-) 21' l:{ v




g1

Or,
pYH A s YD T p VY
.....I':....'.OQ..;].-..:. ..':. — e o & & 0 0 0 00 1
pyts 217D £ DYy

Now, AV LA =wl 5, A V"l D' =wln gy D =L A' =n wb

ys r‘S : +w~611 E = WGHP
and
n' w1 4 (n'w)‘S B = B .

Eliminating § from the first set of equations, we get the
reduced normal equations for the treatments as

o r S n(n"w)-‘S (n'wé)} T = Q,
with Q = T - g(n'w)-G B as the vector of adjusted treatment
totals.

-8
Since { rS® ~ n(n'w) G(n w6 )} l = r81 - n(n'w)” n'w=0,

a unique solution for the treatment estlmates is not possible.
Following Tocher (1952), the singular coefficient

matrix may be replaced by a non-singular one in the following

way.
~_01_| s~ - I‘G~ :
We have, G = w'T = w (r°t+n §) T assuming
the constraint (n'w)' g = 0.

Then, 5 + r(a/w'r) = ] rd.- n(n'w)_s(n'wd) + rw'rd
_ (1/W‘r)}7£
-1 ~ o~

WO

z
::{I' $
It follows that g 11 = r s0 that

._;H

say, with Q - n(n'w)” °n w<S + 'S (1/w'r)h

~ o~ o oo a0 ~

r = ls

~

t E-e N
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Thus the treatment estimators are obtained as

T = f 5 £. P (é/w'r) 1. ;5 Q + 1 (é/w'r)

N e

10

It follows from the second set of normal equations that the

sum of squares due to all estimates is

+ ;T'S’ (n'w)—sﬁ

~ o~

SS(Est.) = : v +E ' B = T W

~

S

O

~

with (b+t-1) d.f.

Ignoring the treatment effects, the model reduces 1o
Y = D'B + ¢

The weighted least squares estimator of g is now given by

and the SS due to blocks (uncorrected) ignoring treatment

effects by

o~ ~ 9 _-v
B=38 (n'w)B with b a.f.

8
Similarly, the SS due to treatment (uncorrected) ignoring
block effects is given by T' r—aw 7 with t 4.f.

~

As 1' WGQ = §'w5 1l = 0, the adjusted treatment sum of sqguares

is
"'| ~ ~ ~ ~ (] o~
Adjusted SS (treat.) = 7 wiQ = {9 Q + 1(G/w'r) } w®Q
~'~’ 6 ~
=Q Qw Q
with (t-1) d.f., and the SS due to error is
_l ;V| "‘6 ~ ~ ~ 6 o
SS(E) =y 'V " Y - B (n'w) B-Q o0 w Q

~

with (N-b-t+1l) d.f. The above resulis reduce to those of

Tocher (1952) when w = 1 for homoscedastic models.

. o

The analysis of variance table is given below.



Analysis of variance table

Source . d.f. : SS _ 5SS d.f. Source
Block & general vy _6~ voos Treatments and
mean (unadj) b Sy =3B (n'w) B S,=T r wom i gen.mean(unadj)
Treatments  mtet Geo Block
(2dj) t-1 S, =Q g w Q S5=51+8,-5,| b-1 (adj)
Error (N-b=-t+1) S3 = Y,V—lY S3 N-b-t+1 Error
=y~ Sy
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4.2 A special case

Let us consider an experiment where the number of blocks
is equal to the number of treatments and where the ith block
contains r(>1) plots for the ith treatment and only one plot

for each of the other (t-1) treatments ;3 i = 1,2,...,%.

Then
_ _ 6 _ - ~1
n = Ll .«d|= E" | E'Y = Wy Wo o e Wy
i ® 5 a1 Wi ToW, . Wy
1 X o« o 2 Wy Wo o o T W

T = (r+t-1) }=k and n'w = {(r-l)wl+w.,(r—l)w2+w.,

...,(r-l)wt+w. | A

Consequently, if a-1 o (a

" ij), the elements a;; are given
by
W, 2
i r -1 t 1
_ B i+4—y _ . | ————t s
841 T (r+t-1) ( We ) ey (r-1)w.+w. .Z (r=1)w.4+w. |’
i j=1 J
r+t-1 r-1 " r-1 t 1
aij = Wj We (r-l)wi+w. (r—l)wj+w. kEI (}—l)wk+w.
and
a4y = Wy aij/wj

(i 7‘1 J = 1’27'00’1::)

Moreover,

P. =2y.. + I
RS PR AR S
and
~ t
B. = TW.Y.:, + £ W, ¥..
* s [ 28
i 17ii Ve J

so that the adjusted treatment total for the jth treatment is
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dy = T, - (r-1) Bj/’{(r-—l)wj+w'.} - k);:l B,/ {(r-1)

Wk+Wo } ) j = l,ooo,to

Here w. =X wj

4.3 Canonical forms of the sums of squares

The adjusted SS (treat.) and the SS due to error can
be expressed in the same sorts of canonical form as used by

Pearce and Jeffers (1971) for homoscedastic models.

~ = 9 -
We have, Q = ;Y =, D'(n'w) DV lY

~ o~

Il
>
%]
I
o
B
g°
S~~~
(og]
o
<

= AE;Y
say, with ; =1 - Q}(n'g)

~ ~

o~ ' ~ 1!
Since D V 71 = n'w, it follows that ¢ 1 =0 = 4D and

% § = § . Thus § is idempotent but not symmetric.
then, 89 [treat.) sdi. = @ ~'w6 Q
=y §a ?‘ wéA.a Y ,
T ={2p g+l ARy
and var (D =@ A gV 1w sV OMAENG Y §
+f;w 1'(1/w'r)}. |
Now let T
T AA I A
It follows that y ¢ = E,and v £-9=§§'
so that
CUy-y ytey-veatelwtaey
=Y vy - é'(y‘y)ﬁsB _ sS(treat.) adj
= 83 (E) ‘
way' -0yt 3 2 el

1l

Adjusted SS (treatments) -
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Thus the adjusted treatments SS and the SS for error can

be expressed in terms of matrices, ¢ and , Which reduce
respectively to the matrices ¢ and ¢y defined by Pearce and

~

Jeffers (1971) when w = 1 for homoscedastic models.

4.4 Estimation and analysis when group variances are unknown

The quantity nji denotes the number of times the jth
treatment occurs in block 1i. For each j, we assume that

there is at least one value of i for which nji > % If each

treatment is replicated in exactly one block, and each block
has only one treatment occurring more than once, then b = t.
Otherwise, b'may be greater or less than t. This includes
extended block designs and also the designs where some or all
‘blocks may not contain all the treatments. Block sizes are

unequal in general as before.

_ 2
(Yiji = Y3320y = By ok (2551 = €15°)%

Since E { z
i k

: 2 . .
(yijk - yij.) /(rj—b) is an unbiased

1,2,.0.,%. TPor j £ 3j', s.° and

J

j'2 are independent. When nji =0 or 1l in a cell, the

contribution to the SS for éjz and to its d.f. from this cell

]

estimator of o.7 , ]

S

will be zero. Bartlett's xz-test can be used to test the
homogeneity of error variances.

For any experiment under the model (15), the estimators
of the linear parameters and other stafistics may be calculated

with the help of the formulae given above using estimated

weights Sj = 1/31.2 in place of the actual weights. Such

estimators and other statistics including test-statistics

using estimated weights can then be adjusted for bias by
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Theorem 1 (section 2.1.4).

4,5 Recovery of inter-block information

Patterson and Thompson (1971) provided a method of
modified maximum likelihood for recovery of inter-block
information for incomplete block designs when block sizes are
unequal. The same method may be used for mixed hetercscedastic
models with random block effects as stated below.

The model is the same as that in (15) with the exception
that the block effects, Bi’ are now random variables with
mean, B, and variances, 05 2. Then the variance of the

observation vector Y 1is given by

N . 2 2 2 > 2 2. .2
var(Y) = diag (01 +Gﬁ ,...,01?+0p """at*og ”""Ut'+0ﬂ )

~

= H , say. As

2 - o2 . .
E{?'i(yijk-yij-)-}»(rj-b) j Y it
ik
follows that s.2 = 2% {¥:: - y---)z/(r--b)
J i g 1k 1J J
remains an unbiased estimator of 032, 3 2 1;2450s3% 3 a0d
sj2 and Sj'2 are independent when j # j'.

The estimator of"g2 is obtained from the logarithm of
the likelihood function of S Y where S = I -4 '(A A')7ta |
which is given by

L = const. - % Zlogs_  -%Y (SHS)Y.

B

Here the quantities E,are the non-zero latent roots of H S

and A"%3enotes a generalised inverse of A aa&}kaégau,aMRWL

o~

The'modified maximum likelihood estimator of 082

is then obtained by solving the equation
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555 =-%#E+%B=0

where B = y' (sus)™® (sES)™?Y and E = tr (sHs)™? )

~ oy on ~ o ~

The solution, 082, will be in terms of 032.

The estimator, 382’ using the estimated weights can be ad-
justed by using Theorem 1.
Pinally, the treatment estimators using the interblock

information are obtained by solving the weighted least squares

equations:

A- '- .A-
To=(apta HThapty

~

A

where H is H when gjz and 082 are rcplaced by their corres-

~ o~

ponding estimators.
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CHAPTER 5

RANDOMISED COMPLETE BLOCK DESIGNS

For known group variances, the weighted least squares
estimators of the linear parameters and the corresponding
analysis are given. The MINQUE and almost unbiased esti-
mators (AUE) of the error variances are derived. A theorem
on the expectation of functibns of correlated x2—variates
is proved. The covariance between any two of the AUE's is found
to be negligible. The test-statistics using estimated
weights are adjusted for removing bias. Finally, expressions
for joint confidence intervals of contrasts of both the treat-

ment and block effects are provided.

5.1 Estimation and anlysis when the error variances

are known

Let the linear model be

Yig = Bit Ty iy

(4 = 1;RyunssB T .4 = 152s3s0ast)
where Bi is the effect due to the ith block, fj the effect
due to the jth treatment and eij the error term having mean
zero and variance 032. _ The errors are assumed to be inde-
pendent of one another. This is a special case of the model
(6) in section %.1.1 with the restrictions that nyy = 1 for
all i and j and that the interaction term is now the error

term.

The weighted least squares estimators (WLS) of the

linear parameters and the sums of squares can therefore be
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obtained from the corresponding expressions of section 3.1.2

and are given below.

~
A ~

The WLS estimators Tj =T and B i = gwjyij/gwj =y

are unbiased for the parameters 75 and (B ; F ij Tj/Wj)

o~

respectively. Thus P i is biased for Bi unless ij Ty 0

in the population although any contrast XciBi is unbiased

for the corresponding parametric contrast Zci Bi‘

A

Furthermore, var ('%) = 032/b = 1/bwj and var ( Bi) =

(r/ ij) which is a constant.
The three (corrected) sums of squares (SS) for the

analysis of variance are

-~

SS (treatments) = bifwj(y.j - y..)2
ob - D
“and SS (error) = iﬁiwj(yij - Pgv = Fiy ¥ T

with d.f. (t-1),(b-1) and (b-1)(t-1) respectively, where

Yok &= 000 W

Jy.j/w. and w, = ij.

Analysis of variance table

Source of

variation s P 5.8 E(MS)
Blocks b-1 we Z(y;e=ye) | L4we 2B 4-8)Y
(b-1)
Treatments t-1 waj(y.j—y..)2 1+b2wj(rj-1)2/
(t-1)
Error (b=1)(t-1) Zij(yij-yi.
& 2
-y0j+ylc) l
Total(corrected) (bt-1) ) LA .

(ijY ‘.j)g/bw.
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o Xl |
When the F-test Aindicateasignificant differences among

the treatment or block effects, the difference between any
two of the treatment or block effects can be tested by the

normal test because

A

2, = (1 -t )/ {(1/bwy) + (1/bwy )} %

-~ ~ _L
and z, = (Bi —32)/ {2/w.} 2 are both standardised normal
variates undn G wwll #7ﬁﬂﬁuwm

5.2 Estimation of weights

If the error variances are not known, these have to
be estimated from the sample for use in computing the
required statistic. s.

The maximum likelihood estimator of 032 is given by

o~ b ~ ~ p) |
5. % L2 (Fi5 = V40 = ¥e5 +5:)7/0
which involves the error variances. Russell and Bradley
(1958) showed that the iterative solution to this equation

converges for all j. The limiting solution is zero for

any one j = p, say. The other estimators are

2 . .
. = ?_ (yij = y-j == yip + y.p) /b > J;ép, Jl By sy Tia

J

The non-zero estimators are thus correlated and their
distributional properties are difficult to obtain.

The minimum norm quadratic unbiased estimator (MINQUE)
of sz is obtained below.

Let Y be the vector of observations arranged treatment

by treatment; then the model can be written in the form

Y= 8" z+D B+s
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as in section 4.1. The over-all design matrix is singular
and 1' T = 0 by the constraint, To obtain the projection

matrix we need a generalised inverse of the matrix

< “A.>( A' - D') which can be obtained by a method given

by Rao (1973, p.225) as used in section 3%.1.3. But a
simpler method is to re-parameterize the treatments by an
orthogonal transformation and thereby transform the design
matrix into one of full rank*. For this let us consider

Helmert's transformation of treatment parameters given by

_ ii = €
where
_ 1 1
S— 7?' . 7'2' O . ° ° . . . O O
1 1 2
.% 73 -73 L] L] L] . L] O O
o 1 il 1 . gt-l)
Yo t-1) Yt(t-1)Yt(t-1) t(t-1) t(t-1)
. - JE 1 1
L_ /:t_ /_t- /—t Ll L] * L] '/_-:t ¥ t
(91>
= 32 .’
say, with ¢, @s the last row of c. Since Co T = O by the

constraint, the last element of Il is zero so that

T

-~ O .
31= ("6'),say. The matrix c is orthogonal so that
c'c =1 = c¢ ¢' and furthermore cll = D Hence,

~

¥ This was suggested by Professor S. C. Pearce.
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9 1
: D), now a matrix

! P c,) (u2.) =c.| Thus the model red 4
1 1 . 1
Y= A ¢g1,+D B + ¢
]
= X 0 + €,
1
say, with the design matrix X = (A 'ci

of fuld rank.

1] ] ] 1
As D A ¢y f i Sl = 0 and clsl =

R A ¥

" di T i
ClbIt ¢y < 0
(XX')____ 0:’--7..?.-&0-00-0 =
St By,
whence - = -
1 s
(ext) L= |0 Bowtsliug. . 0.,
~ : 1
9 4

.}t-l’ we have

® 50005000

o

-~
L B

ct
? H
o’

where Eb is the identity matrix of order b and J is a

matrix with all its elements equal to unity.

-1

dHJ]
ot

I

~

X' (XX') 1x=

seaen

1
I, - 3%

~

ot

Iy

and the projection matrix S is given by

-1 1 rb(t-l):[ =(t-1)J
) b )

§ = I-X (X)L = B

=b I +dy

1 1
b*% v Tlv~®

b

o~

b*

v

_me

—?}b+g

b

b

Thus, we have,

.

o e o 2 .~b~Ib+g—b

’”b(t‘lX}b”&éQ%

|

where Jb is the square matrix of order b with all its elements

equal to 1. It is easily observed that SY is the vector

~

of residuals.
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Now let F = (fij) with fij as the square of the

(i,j )th element of the projection matrix S, 8 = (012,...,

1
012""’Qt2”"’°t2) , the vector of error variances, each

2 . 3 —_ 2 - -
cj being repeated b times, and v -{ (311 ¥y ¥ +
)2

21 ‘
yao 9 eo e o0y (ybt bl ybc Y y_t + y..) } ) the VeCtOI' Of

.

squares of residuals. Then the MINQUEBofcj2 are cobtained

from E 5

tq

Adding the b equations for ojz, we have,

| 2 2 2, _-1-':. 2 %
%?‘;2 (b2(b-1) % + bZ(b=1)g, %+ vuvs + b7 (b=1)(E-1)F+. ... *D(D 1)}

o 1=
= 2 y-- i y- - y. = yoo
$al 1] 1. J
or,
b-1 - 2 2 2 2 o @
2 0% eee +(3-1)%0 4%+ o0 407 ) =855

8aY, J = 1;25¢0040s All the t equations can be written

together as

'{(t2 - 2t)~It + Jy ¥ (cl yoees °t2) =
2
t 2 2"
=1 BB #reeiBy)

If we writg the inverse of the coefficient matrix as

«l, +8Jd,, then o and g are given by

¢ = 1/t(t-2) and B = - 1/t°(t-1)(t-2).
The MINQUE of ojz is then obtained as
;" =1 1/(b=1)(t-1)(t-2) 3 {(t°-1t) I (yij—yl--
1=
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Ehrenberg (1950) mentioned two unbiased estimators of 0j2

and this is one of them. This was also obtained by Russell
and Bradley (1958) in a different way.
' These estimators are obviously correlated and difficult

to handle algebraically.

A simpler estimator called an almost unbiased estimator
(AUE) was provided by Horn et al. (1975). They gave a method
of obtaining an AUE from a MINQUE. Later on, Horn and Horn
(1975) showed that the AUE possessed a smaller mean square
error than the MINQUE in a wide range of situations.

In this case, the method of Horn et al. gives the
AUE of °52 as

2 2 -1
(Sj /b) (l-kjj)

[4)]
I

o -1
(sz/b) { 1- (b+t-1)/bt }

where kjj = (b+t-1)/bt is the jth diagonal element of

X' (xx')"%.  Unlike MINQUE, AUE is always positive. The

covariance between sj2 and sj,z(j#j') is negligible as is

shown in section 5.4.
b

If we let u; = Yij = Yi- SO that u. = f ui/b, then

the random variables u; are independently and normally

distributed on the assumption of normality of errors, and

2 =2 -2 ¥ 2
var (ui) = (1-2/%) Oj + 0/t where 0 < = I Uj &,
1
Replacing 5° by 032 as an approximation, we have

var (ui) = 032(1—1/t) so that the distribution of sz =

o’

) (u.--u.)2 may be approximated by that of X 20‘.2(1-1/1:)
F (o) sy a
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Johnson (1962) recommended that F = sz/Sj,2 £3£3)
might be regarded as an F-statistic with (b-1) and (b-1)

d.f. for testing the hypothesis: Gj = Gj' when b > 5.

As sz/sz(l—l/t)zb sj2{ 1-(b+t-1)/bt } /°j2

(1 = 1/t) = {b =) sj2/032,

we may assume that (b-1) sjz/cj2 is approximately a.x2—

variate with (b-1) d.f.

5.3 =~ A Theorem on the expectation of functions of.

correlated x 2—variates

When the estimators of the error variances are
~mutually correlated, the Theorem 1 (section 2.1.4) due to
Meier needs to be generalised for use in the adjustment of

statistics. The generalised form is given in

Theorem 2. Let \ﬁxj be x 2—variates with vj dsfssy J = 1,25

PR Let these variates be mutually correlated and vj be
large. Let f(xl,...,xt) be a rational function with no
singularities in the range O SXjseeesXi s @ Then

asymptotically in vy

j’
_ , t 4 bzf(xl,...,xt)
E {f(Xl,...,Xt) =.f(1,ooo,l) + O} -‘;— %)
: J
1 .=1
all xJ
2
) : d f(xl,s..,xt)
+% y I E(x;-1)(x -1
all x;=1
J

+ terms of order lower than O'{Xz(l/vi%{)ﬁ'}_
jk :
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Proof: As a rational function, f is the quotient of two
polynomials and as such admits partial derivatives of all
orders., By the non-singularity assumption, these derivatives
are all finite within the range (0,%® ). The Taylor's series

expansion of f in Xj about its expected value 1 is thus given

by
n 1 3
f(Xl’...’Xt) = f(l,oco,l) + I?zl ;"! [(Xi"‘l) '6‘)‘(; + LI Y +
(xg - 1) — | f (16)
X ol l Seem—— ("’1'"")"" Rn . . . . . 0 . . ° . . 16
t éxt]

The term Rn is the remainder given by
1 3 : 3 n
Rn = -ﬁ-' (Xl—l) {q .+ eeoe + (Xt_l)b'Yt'

‘{f(El,ooo,gt) - f(l’o-.,l)}
where Iij—l|< | xj-l |  and the differentiation is done

before the resulting exprescsions are evaluated at xj=l and

xj= Ej for all j. Using the multinomial expansion, the

remainder term can be written as )
(h,v..., k)
1

R, = £y z (xh—l)(xi-l) 55 (xj—l)(xk—l) f@:l,--yit )

(h, .-,k)
where f denotes the nth order partial derivative of f

with repsect to the variables in some order (including
repetitions) and the sum includes all possible pure and
mixed n-factor terms in the Xj's. It is shown below

that E(Rn) —3> 0 as n —> @,

By the generalised triangle inequality, we have



IE(Rn)I ¢ (1/nt)is IE [(xh—l) ...(xk—l)

, (hyenk) (Dyiegk)
U et ) L, 2 ayd ) ] |

< (l/n!)z‘ {ﬁE {(Xh—l)2...(xk-l)2}

"

(Bpvy k) (hpoik)

E{f(é‘l,---,«it)-f(l,---,l) }

by the Cauchy-Schwarz inequality. Moreover, since (xj-l)zz,o,
we get '

o 5 2n 2n 1/n
E {(xh-l) ...(xk-l) } g | E(xh-l) s E(xk—l) } ;

by the generalised Holder's inequality (see Rao, 1973, p.55).

Consequehtly,

2n 2 :
IE(Rn)I < (1/n1) ¢ I{E(Xh-l) }‘1/211...{ E(Xk-l) n} 1/2n

(By0pX) (1 yowy ) 1/2
E {f(El,---sEt) - f(l,...,l):!z

For large vj’ it follows that Xj is normally distributed
with mean = 1 and variance = 2/vj. The joint distribution
of the xj's is thus asymptotically multi-variate normal
having the form

kexp{- (X-1)'z " (X-1)/2)

where k is a constant; X is the vector of the variates Xj’

1 the vector of unity and y the dispersion matrix of X.

-~
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hand
The last expectation in the right,side of |E(R, )| can

there fore be written as
' -1 ( k) (h...k}\z
k S Lexp (- 1) Trorn/2n e RS -£ L lnax -
- (h-ee k)
As all the partial derivatives of f exist, f(5,...%) does not
exceed a finite quantity M within the range of integration.

Hence , this integral cannot exceed

| (h...k) " .
K AM-£ (1,0, e S exp (-(X-1) 27T (X-1)/2)mdxy

which is a constant. Thus this expectation is bounded.
Again, by the formula for central moments of the

normal distribution, we have,

; 2
B (x;-1) "= (20)1/ v M

= c(1/ vjn)(Zn)n,

for some constant ¢, on neglecting terms of order (1/n).

Thus,

IE(R&3 | € (Cg/nt) T (1/vhvi .. vivk)1/2nn/2

= ~[:cl/(n/2)! 71 5 (AN e Vk)l/2 if n is even

[cg/nl/2 {(n-1)/2 Y 1]z (1/vh...vk)1/2

if n is odd, |

L

up to the same order of approximation, where Cyr Cp and Cy
are positive constants. Hence | E(Rn) l —> 0 as n—> ® .,

This means that E(Rn) —> 0 as n —> ® ,

It follows from above that the expectation of a term

in the multinominal expansion is of order (1/v ne e Vk)l/z.
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Hence, the theorem follows if we take the expectation of

(16) and keep terms up to Y= 2,

A consequence of the theorem is that the adjusted

statistic,

. |
% 8P (X yeenyX, )
Plxyeens®y) = I - e |t Il
3 ¥ X i#k
all x.=1
. XJ
2
 “Ff(Xy 5ee9X,)
E(x.-1)(x,~1) g :
J dx.6x
J k
all xj=l. .

is free from terms of order {1/(Vij)l/2} and thus
approximates its theoretical value f(l1,...,1), more closely
‘than the statistic f(xy,...,x;) itself. When E'{(xj-l)
(xk-l)}is negligible, the adjustment reduces to that obtained
by Theorem 1 due to Meier (1953%).

5.4 Covariance between sj2 and Sk2 (i#k)

We have, S.° = g ( L e )2 _
b J - i=1 le yic y.J yo. =
I ((’:.L "'e-o"'eo-+€no)2 and
< R
S 2 = % (€;,- €;.-€E. +E€ )2 so that
k - $=1 ik i* 'k °° -
O 2 2 w 4
E(SJ 5,7) = B {a (& =8 - € gt €..)° I (8, -€;.=€. + &) }
= E [Z( Thi )2 z (e,k_e,k)? + L (el =€, .} Z(E -
i J J i 1 i J 37
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+ %f-&.)Q Z(Eik'e'k)z 4 gleq e.02312 _ 2
i i i
Z"( %--&.)2 iz(eik-e.k)(ei.—€°')

- B {:(gij -e. ;) (e5.-e.) :EL CI e.k) 2zi(s =€) (g amens)

+ 4 Z(e -€.

N J j)(ei._e..) i (eik-e'k)(ej_'—s“)]

To find the expectations of the individual terms we observe

that
: 2 1 2 1
(1) (e, .-€..)° = (1=%) Z e..“°= = I Ze €
i 1 J b 3 1J b it 8 ij &
. . A
(1) X g €ey) =(15) %k T % I Teikeg?

‘. 2. rl 1 1 ;3
(1ii) (€;e=€..)=(=, - YIEZ e .+ % L LI g €., -
i 1 t2 btﬁ ij ij t2 . g ij ik 2

PN L I €3 € ’
(i,§)A(g,k) 192K

- 1 1 2 1 A . %
(lV) z(e ')(e'o—eoo) = (_ - """‘) € . s P 26, z

i ij77% i t bt? 1] t i 1Jk% ik bt i# 2
€ii €L, Zg . L I e 4

J ¥ bt i 13§ k#j ik
_l.1 2 1
and (v) iz(e x~Eox) (850 5") = (% - ) ’fik + T Ifik
Co1 U1 KEA
T Eii~ Trov vEs - Ty e
I#k ij bt 1752,211(?-2]{ bt ielk ij;ék : o LBRARY «_

¢/’ER°>\/S/

Expectations of the nine individual terms are then

given as

2 g." 2. %
§,)° 1 = (b-1)%0 S0

(a) E {Z(e ~€ o )2 % ( g~ ;

4 ij J i 1k
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1,1 1
(b)) B(z(gy-ep)® 5 (g -e.)? 1 =27 02)
1 i

1
4 2 2 2 C— S
E(Zeis  + I Zess€piaret Z €13 ) + 2.2 BE T €::¢,:7)
g ifg TJ TRITEEG gy 1K LA S AL R Y
b2 -2b+1) p-1)2 ) )
= S o 4+ 2 0.2 1 9,2,
! S 5
. T 1,,1 1
(C) E {:}]:_(eij— 9,3) 12 (eik_eok)(ﬁio = €oo) } = (l"' ‘B)('E' - -St)
2
b-1
2 2 g 32
E( Ze. . Le . = t o .0
( 1 13 4 ik ) J k
3
b’ -2b+1
2 By | 2 AZen 4
p-1)2 2 2
+ 5= 0y A - from (b) by interchanging the
% ik Y
roles of j and k.
2 2 (b-1)? 4, 12-2b+3
(e) E { Z(ei-— €se)° } - E(:z € o ) + e
i b i b
2
E( 2 2e;. " ¢ %)
itg 2"
b=1)2  3b , £ g212  b2=2b+3 F g 2,2 4
= L2 (RO =2l g% .%)°b(b-1)/t
b t J J b i J
2
_ b Z1 { 2 wal)
% j 9
2 : A I | 3
(f) E{ Z( Ei-"goo) 2 (Eik" 8'k)(€ i.— €..) }: (-_E - -B-_t)(_..z - ,_.___2_
i al t bt
( 2 2 (1 1 - 2 2)
E( Tes, )22 e )+ (73723 )BE (X €, T e, .
i ik ij e | t bt” < i ik 34k iJ




3
b -2b+1oﬁ

' /s
(h) E { %( %j-'ej)(ii" €oo) f.(si.- €se) 4 = __;;?_~ ]

- 2 ;P °k2 from (f) by interchanging the roles of
k7 .

PIE 3 B
A-iamre fven) A o111
T L T £2  bt? bt bot°

2 2
B{. T & )
i 1J ik
» 0.%0 k2 5 1
——l—r(b—b—l-i-b)o
4

Utilizing the above nine expectations and simplifying, we

get
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2 -2 '
1 2. 2 O30 . 2 4(p-1)2 4 2 1
. BI8,%8. %) & ~depdic { Thel) = § w, [Youlinld, ¥
- j Pk . " 2 b
(b°-2b+1) (£-2) i "
+ b3t3 ( cj + 0 )
2 o
(b-1) 2bgb-12} 2 5 g.2 g 2 2, b°-1 2,2
- 5 . O 2,0 O L7 )+ Yo.
+{ b21;2 b2t3 (0341{1{3 2k+ k Jiék J ) bz‘t4(i J )
3 . 2 P 2 2
. o 2g¢g R T -
3 P EER - - (0j +0 .7,
neglecting the terms of order 1/t2, 1/b2 or 1/bt.
Also,
1 ) a1 2
2 2 2y . (B=1Y¥"- 2, 2, 0© 2 E
2 E(sj JE(S,°) = N {o j (1-2) + <} Lo “(1- =)
+ &Z/t}
=2
2 2 2 4 2 2
= G o (-5 - ) g (oy” +oy")
so that
' 2 . 2 2. 2 . 2. .2
i = -~ =
,Ecov (Sj » Sy ) { E(Sj Sy ) E(Sj )E(Sk J3j6 = 0,

up to the same order of approximation. Thus, we have

cov(sjz,sk2) = 0
up to the order l/tz, l/b2 or 1/bt.

It fbllows from above and section 5.2 that Bartlett's
Xz-test using sj2 may be used for testing equality of group
variances. The bikelihood ratio test and sphericity test

(Shukla, 1972) may also be used.

5.5 Ad justment of the test-statistics

Let xj = 332/ ojg where Sj2 is the AUE of 032,

J =2 1;2,swesks Then the estimated weights are:



105

%j = 1/sj2 = l/xjo j2’ the 4.f. Vj = (b-1). Let w.= Z;j‘

It follows from the previous section that Cov (Xj’xk)
=0 for j#k up to the order 1/b2, l/t2 or 1/bt. Hence, the
ad justments of the statistics using estimated weights to
remove the bias of order 1/(b-1), by using Theorem 2 will
be the same as that by Theorem 1 due to Meier (section 2.1.4).
Such adjustment for one test-statistic (§6) was given in
section 3.2.2 for the more general case of the two-way
classification with proportional cell frequencies. The
ad justed test-statistics for the'special case of randomised

block designs are stated below using some of the expressions

derived in that section.

(1) Adjusted F-statistics

(a) Significance of treatment effects
The F-statistic using estimated weights for

testing the significance of treatment effects is given by

b g“wj (35 = yo)2 / (4-1)

>
I

A

1 A

& -
EZWj (yij = ¥y = Yag ¥ Yeo)/(b=1)(t-1)

(b-1) TSS/E SS,

say, with (t-1) and (b-1)(t-1) d.f., where TSS and ESS
denote, respectively the treatments SS and error SS using

estimated weights. Then the adjusted F-statistic is

2/\
~ ~ 1 t 3P
i) = = 1 using estimated
B heajl =By = pg T Ny °
: 3. weights
all x. =1
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with
N
3 "By bl ,  d°mss 3 ESS
o= { (BSS)® ————— - (ESS)(TSS)
. 3 2
3 % (ESS) 3 xy 3 X,
3ESS  ¥TSS :
-2(ESS) + 2 (TsS) c%?§§)} coee e e (A7)
axj axj J

where MT SS)

J J
3 Xj
11 x, =1
all x
y (ESS) : . .
— = = L WY (Y amYs =Y ety )+ Bw Ty
3 i 414713 1 J iy 4 474
J
all x.=1 o~ ~
J (Yi; = Yi.7Ye3*Y-)s
32(TSS)
A w 5
= 2bw.(1-F.)(y.s=5e.)
) J J J
d x.
J
all x.=1
and
2
3 (ESS) - #
w7 = 2 § wj(l—fj)yij(yij—yi.—y.j+y..)
J
all x.=1
J

~

_2 -f.l-f- e A\, .=V. —'.-~.c
z %WJ 5123075 5(¥4 555 -V 5470 0)

ith f. = w./wW. »
w 3 wJ/w

(b) Equality of block effects

The F-statistic using estimated weights
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- for testing the equality of block effects is given by

A o) 2
We g (yi--y--)/(b - 1)
F2 = Fay

X V’V\.(y. .—;- ."yo
lJ 3 ) B

j+§..>2/(b-1><t-1)

(t+ - 1) BSS/ESS,

say, with (b-1) and (b-1)(t-1) d.f., where BSS denotes the

block SS using estimated weights. The adjusted F-statistic

is
A A 62/\
F2 = F2 - %-l F2 using estimated
S E weights
J all x =1 GRSy
A
> °F,
where ~ 1is given by (17) above with (b=1) and TSS
d x7 :
J

replaced by (t-1) and BSS respectively. The two additional

partial derivatives are

6 (BSS) o~ -~ 2 ;- ~
et mnnt == Iw(yj.-y..)=2L L w. L (y5.-y..)

3 X i i3 973

all x,=1 (Vij=yi.7Ye5*y--)
and

a2(BSS) . ~ o ™~ “

L = 2 ? wj(yi--y-.) A{ (y5e-y..)+2 fj(yij—yi-
J

all x.=1
J

-~

-y-j+y-.) } o+ 2% zwjfj(yij—yi-—y-j+y--){ £,(¥5 575

-y.j+y..)+ 2(l~fj)(yi.-y..) '
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(ii) Adjustment of the normal test-statistics

(a) A Treatment difference
EYYTIT SN &
The\normal test-statistic using estimated

weights for testing the difference between the jth and kth

treatments is

P&

z) = |y.j

ol

1 1 ~
O VA e ow )+ This s in
j

the same form as that for testing the difference between two
treatments in the one-way model. Hence, the adjusted normal

test-statistic is given, from section 2.1.4, by

1
2

'zl(adj) ={| Yoy Vey | /(l/bwj+l/bwk) } x

1
{1_% ~ X
(l/wj+l/wk

2 [1/(1)-1 )'&;j 2+l/.( b-1‘)63k2]}.

(b) Difference between block effects
approrirmate
The normal test-statistic using estimated

weights for testing the difference between the hth and ith

A = . 2 . A
block effects is z, = | Yy, (adj) -Ayi.(adg) | / (2/w)?
-~ . B A 2 A z
where yi.(adg) = g ijij 5 ;:fj(l—fj>(yij_yi.) from

A ~ A )
section 3.1.4 with fj = wj/w. . This statistic is a special

case of the corresponding test-statistic of section 3%.1.5
A
and so the adjustment of Zg is obtained as

z2(adj) = zé{ 1- % fj(l—fj/4)/(b—1)'} .

5.6 Multiple comparison

For this design, the error sum of squares depends

on weights., Thus, the square root s of the mean square

A

error as well as o~

1

depends on the estimated weights.
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So, the expression (5) of section 2.1.5 for estimating
Joint confidence intervals of parametric contrasts, needs

to be modified. The modified form is

A 62 { 6233) A D S 263 ao-a }
where D = Ss o % — = S B we——
L S dx. b ¥dx 2 By By
J J J J
and g
1 3°D
D(adj) = D - I r. -1 il using estimated weights.
J d X
d

all x.=1
J

(i) Treatment contrasts

Let Ui — cjy.j with Z cj = 0 be an estimate of

the treatment contrast V¥ 1 =1 ey Ty Then the joint

confidence interval of all contrasts wl is given by (18) with

v1,8= [(3-1)F , { (£-1),(b-1)(-1)} }%' e bl

v

s = {BSS/(b-1)(t-1)} ¥ ana 9§, = (2 c,2s.2/0)".  he

individual derivatives are

ds dESS , a
—1 /2 {ESS(b-1)(t-1)1} % A
oK . ox :

J J

all %=1 all szl
¥s 3°ESs } ESS\ 2
3 =t T ( ) / 2 s%(b-1)(t-1)} /2s
5 x.° ) x.°2 ij

J j

a”xk-l

(b=-1)(t=1)




/2

0 xz
B 3
all x.=1
Doy
dESS 3 “ESS
and being given in the previous
90X 9 X 2
J J
all o= all x.=1
- % i
section.,

(ii) Block contrasts
In the same way, the joint confidence interval
of all contrasts w2 =3c; By, of block effects is given

by (18) with ¥ = ¥,, §= [(b-1) P _{ b-1, (b-1)(t-1)} ] z,

o=

ro-l=b-l, s= {(BS5/(0-1)(+-1)} % ana o) = (¥ c;%/w.)%.

2
The two derivatiwes | bs/'bx.j] and [} 25/ sz] are given

all x.=1 all x.=1
J J

avove and the other two derivatives are

~ A 2 ‘;,S' x
2 2= Zc. & . e o
do v, / éxa} ( c; %) fJ / 2w
arl x.=1
d

and



11 x.=1
all x,

\
| |
3268 /ax2 | = (2eD)Pr (38, /4 - 1) Jw.E 1
Ppgl R | T AEes PR L
|
|
A A i
The quantities fi (adj) are used in computing Voo ;

\

5.7 Summary measures of dispersion

Since the variances of the treatment estimators are
in the same forms as. those in the one-way model, the
estimated summary measures of dispersion of the estimated

treatments are obtained from section 2.1.6 as

1

.t
Estimated A.M. = bt I sj2

1

1t 51/t t-1 :
Estimated G.M.(adj) = b (w 55 ) { 1+ T(b-1) }

1
and

t t A «
Estimated H.M.(adj) = ;*‘ { 1+22% f£.(1-£.)/(v-1)1

We 1 J J

The estimated block effects have constant variance and so

no summary measure of dispersion is needed for them.




CHAPTER 6

LATIN SQUARE DESIGNS

A method for solving the normal equations to find
the weighted least squares estimators of the linear para-
meters, is given along with a procedure for the corres-

ponding analysis on the assumption that the group variances

are known. The treatment estimators are found to be orthogonal

to those of other linear parameters whereas the estimated row
and column effects are not orthogonal to one another. The
MINQUE and AUE of group variances are obtained. The AUE's
are found to be approximately independent of one another.

Ad justment of the test-statistics using estimated weights,
for testing hypotheses about the treatments is provided for.
removing bias. Similarly, other test-statistics can be

ad justed. Pinally, expressions for joint confidence inter-

vals of. treatment contrasts are’ given.

6.1 Estimation and analysis when the error variances

are known
Let the model for a t x t latin square design be

Vi = By *Y 5+ %t &yx

where Bi is the effect. of the ith row, Yj the effect of
the jth column, Tt the effect of the kth treatment and eijk
the error term having mean zero and variance sz. The
errors are assumed to be independent of one another.

The suffices, i,j and k, individually assume values

from 1 to t but collectively assume only £2 sets (triples)

of values depending on the design chosen.

— |

oy g

T T
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Let Y be the vector of observations arranged treat-
ment by treatment, the observations within each treatment
beihg arranged row by row. Consequently, the column effects
are randomly distributed among the observations in Y.

Then the above model can be written as

YT=4 T4+D B +DyY + € c e e e . (19)

~

where é', Qi and Pé are the design matrices for the treat-

ment, row and column parameters respectively, T is the

vector of treatment effects, § the vector of row éffects,

Y the vector of column effects and gthe'vector of errors.
2 2 2

Then var (E) = diag (ol yeeey 095000, 0,500, 0 t2) and

o !
1 t=0=1 vy, 1 being the vector all elements of which

are unity.
The weighted least squares normal equations for

estimating the linear parameters are given by (20) where
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..K A
iy = & 7y
L - 4=
.ol. . =) > o o
. . g > VuK
T I Wk e © o e ©°o o o ..vwl erA e ° o © o ° o @ v.H.
4+ N A4 R o0 W0
wl = X N PA A
J !
Il
_ 1
- + —~ +2 — +
e e o o o o o e o & e e o o = @ o o o o o o o
<p < T <o) P \
I e f
it .
= S = e
. . L]
. . .
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. . .
° e e o & o o o o L4
e« & & & & e o o o . . L]
. .
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- l
~ + o < ®
3 = = = =
~ 2
—~ 42 . R e & ¢ & e ¢ © o =
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W = 1/(332, We = T Wy as before and (il""’it) and

(Li,...,z t) are random permutations of the numbers, L2,
...t, based on the random distribution of the column effects
as mentioned above.

From (20), the individual normal equations are

A

(A twk-rk + W X B 3t Wi z Yj = WkY..k, k= 1s2500asts

-~

A -~

yj: Iw, Ty +2:wki8 gt W Yj = ?k wkyijk; g 1T~ SRR, 1

Here also (hl""’ht) and (kl""’kt) are some random permu-
tations of the numbers, 1l,2,...,t, depending on the design

matrix.
A -~

Using the constraints I W T g = 0 =X Bi =7 Yj’ the

three sets of ecuations reduce,'respectively, to

Tk_—.yrogk kzl’g,cot,t
Bi = yi.. - ZWijj/W. i = 1,2,0-.,t
and Yj =Y.y, - Zwki Bi/w. J = 1,25000st.
where yj.. = I wkyi;k/w. and yo. = I wkyi.k/w.
ik J Je ik J

Thus the treatment estimators are the ordinary least

squares estimators and are orthogonal to those of row and

column effects. The last two estimators are anﬂwmaamu&.
The reduced normal equations for the

column effects are given by

S S RO P T——
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~ ~ 2- ’2 ~ 2
Yy - wkl( thj‘Yj)/w " cow wkt( ngy j)/w "

= y. -Ewkiyi../w.

| i
J B leBy iy lin The coefficient matrix is of full rank

and the solution can be obtained by the method of pivotal

condensation. Similarly, the reduced normal equations for
B ; are

' W ‘ w

- ( hy ) ( ht)

B . = 2 5 2 o

i=1,2,...,%t, and the solution can be obtained in a
similar wa&.
The sums of squares (SS) are
2

SS (treatments) = I ; WeXuoy = 5L WoFon with t d.f.
(uncorrected) e k K k

SS (rows & cols.)

TB: I W Y:i:t+t I ;. I Wy Visr &« & » (21)
;1 ik k71 jk 3 J ik k’1jk

with (2t-2) d.f.
and
2
88 (Brror) = % W Vi - SS(treatments) - SS(Rows &
ijk +J
cols.) with (t-1)(t-2) d.f.

Putting By =B for all i and ¥y j = 0 =1, for
all j and k and proceeding in the same way as in section

3.1.1, we get the corrected SS (treatments) to be equal to

~ & b . oy
t é W (Yoo = Veoo)  with (t-1) d.f. where y... = ( ﬁ Yo oq whe.)-

To obtain the SS(columns) adjusted for row effects,
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we put Yj = 0 for all j. Then the model reduces to

yijk = Bi + T +'€ijk with the suffix j playing no role.
This model is the same as that of randomised block designs
with unequal group variances. Hence, from section 5.1,

we have,

~

SS (treatments) ignoring Y 4.7 t 2 wk(y.k~y;..)2

with (t-1)d.f. and
SS (Rows) ignoringYj = Wy 2(yi.; - Yoew)

with (t-1) d.f.
It follows that

~ -~

2

SS (Columns) adjusted for rows
i

with (t-1) a.f. Similarly,

(21) - w. 1z (y.j.—y..-)2

SS (rows) adjusted for columns

with (t-1) d.f.

(21) - w. ?(yi..—y...)‘




Analysis of variance table

Source defe SS9 SS d.f. Source
. ~ 2

Treatments t-1 Sy =% zwk(y..k—y..J 51 t-1 Treatments
Row(igno- t-1 S,=v. 2(}1..-y..J2 S4=w.§(y. - t-1 Col.(igno-
ring cols.) - J ring rows)

~ 2

Ys v
Col.(adj. t-1 (21) - S, (21) - S4 t-1 Rows(adj.
tfor rows) for cols.)
Error (t=-1)(t-2) S3 (By subtraction) S3 (t-1)(t-2) Error

' L 1 T ° 5
Total (corr.) t- WY 5 5k -( W
2
Yeop) /i,

8TT
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g(‘a,XE‘fZaL

If an F—testﬁ;ndicates significant treatment

effects, difference between any two treatments can be
tested by the normal test as z =‘(¥2 - ; k)/(l/th +

L :
1/tw,)® is a standardised normal variate amdi ﬁtqudlljfﬂﬁuw'

02 Estimation of weights

Assuming normality of errors, the maximum likelihood
estimators of the linear parameters are obtained from the
same normal equations as for the weighted least squares

(wLs). The estimator of 0'k2 is then given by

~

ok = é (Yije = T = By =Y 5/t

involving the WLS estimators of the linear parameters.
An iterative method may be used il convergent. But such
estimators are not likely to be of any use for our purpose.

The MINQUE of 0,° is obtained below.

Since the overall design'matrix of the model at (19)
is singular, let us re-parameterize the treatments and
column effects by Helmert's transformation given in section
Seds Thus

T =¢Cr1 and Y =20Y ,
1 1

say, where C is the matrix of transformation defined in

section 5.2. Then the model (19) reduces to

- .

- ] 1 E 1 E 1 | IO ‘|
E(Y)= (4 ¢ ¢ Dy :D,08) =y = X9,
Y
<0
o ...-‘

say, in the extended form of the notation of section 5.2.

It follows from the same section that
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1

'_ r . O L] O ] _th ' "1 % : :
L] . L] o s 0 L] o & 0 L] L] '\ . . e 4 0 L] L] .
9) « $1. 0w 9 ol ¢
. L d L] e o 0 ’\I‘.t.l. . L] 9 ..%-E-t ¢ 9
2 L8 T c
f 0 W@ .z
with It as the identity matrix of order t. Thus, we have
LI _]; 1 _:_L_ ! { 1— !
X (XX )X =504 A& -%4 Jp A+ DD =% Dol Do+DoDs
i | laa T § e AL v
=3 | A P il eyl Y By par o wll
a. : : 3[12 .;I't. . QAI'\J
Y 2 : : :
Myt Moy = = Iy

~where the off-diagonal elements Mij in the last term are
square symmetric matrices of order t with unity occurring
randomly only once in every row and in every column and zero
elsewhere on the basis of the random distribution of the
column effects as stated in section 6.1. Here Jt is the

of ovdur t i ol

square matriwaith all its elements equal to unity.

It follows that the projection matrix is given by

-
1 | -
G~].2 ‘ g . L] L] L L] 9‘21:
v (il_t : (j?t e o o o o P

where E is the square matrix of order t with (t-1)(t-2) as
the diagonal elements and (2-t) as the off-diagonal ele-

ments, and Gij are the square symmetric matrices
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with (2-t) as the diagonal elements and 2 as the off-
diagonal elements except that (2-t) occurs in place of
2 randomly once in every row and in every column in the
positions of unity of the corresponding‘Iﬂij matrices.

It is easily verified that (I - X (XX )7'X) Y is the

~veow . ~

vector of residuals.

Now let the matrix F = (fij) with f; . as the square

J
of the (i,j)th elements of the projection matrix,

: : _
§ = ( 012,..., 012,..,653%2) be the vector of error

~
variances, each dkz being repeated t times, and y the

vector of squares of residuals. Then the MINQUE of sz
is obtained by solving the equation FS = v.

Adding the t equations for Ok2 we get

2

t
4 [{2(1;-2)2 012+4(3-2) 0 121 + oov + L (8-2)%(8-1)%

+(t-2)2(t—l) 0k2 } o+ e +1 2(t—2)2c t2+4(t-2)0 t2 }]

2
= I (yijk =¥y, T Ve, m Ve t 2V e
1J :
or,
2
2 2 (£-2)(%-1) _ 2 ot
0, + 0,7+ v 5 O+ eee + 0.°= 571775

. sl J s s o + o e + 2 s oo =

say, k = 1,2,.4.,%. All the t equations can be written

together as

A2
Et f {t ) ( g1 s°°°r 04

' ' ) 1
Al 2 2 2

g 2) = t (Sl ,82 ,-.,S¢ )a
2(t-2)

- G

If we write ( dI + BJ.) as the inverse of the coefficient
o o~ U




matrix, then gand g are given by

o = 2/t(t-3) and B = - 4/t°(t-1)(%-3).

2

The MINQUE ofO’k is then obtained as

0 = A1/(3-1)(3-2)(£-3) ) { (£5=8) T (3= ¥5.eT+

ij Je
> 2
.—-yo ok+ 2yoa-) o 2 izjk(yijk"yi.o-y'j'—y'nk + 2yo oo) }
2y _ 2 - 2
As E(Sy ) = (1/t)ck (t-2)(t-3) + 2 ¢ “(t-2)/t so that
LA 2 Ao 2
E (2 Sy ) = g°(t-1)(t-2), it follows that E (o K ) = Oy
1
: - 2 2
as is expected. Here 0~ = T o % /%
These estimators are correlated and not in a convenient
form for algebraic treatment. We therefore consider the

almost unbiased estimators (AUE) proposed by Horn et al.

2

(1975).  The AUE of o¢,° is given by

2

& -1
k

= (1 - n)7ts 2/t

‘ -1
= (8,%/%) {1 - (3t-2)/t%)
where hy, = (3t—2)/t2 is the kth diagonal element of

x' (xx' )" 1x.

+ = - c 00 - e - @ e =
Now .let uij yijk - y j so that u

Yeo o = 2y.... Then the random variables uij are normally
distributed on the assumption of normality of errors.
Since the covariance between any two sﬁch variates is of
order (1/t2), these variables may be considered to be

approximately independent of one another for large t.

2

o 2 -
Again var (uij) = 0, (L -4/t + 2/t“)+ 2 © 2/t.
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2

If we replace 62 by o, as an approximation, then var

(uij

Consequently, the distribution of Sk2 = L (uij - U.. )2

) = 0k2(1—2/t) on neglecting a term of order (l/tz).

may be approximated by that of ¥ 25 k2(1—2/t) with (t-1)

d.f.
As Skz/ 0k2(l-2/t) =t s2 { 1-(3t-2)/t° } / 0k2(1—2/t)

= (t-1) skz/ ckz, we may assume that (t—l)skz/ 0k2 is appro-

ximately a xg—variate with (t-1) d.f.

6.3 Covariance between sk2 and sm2 (k # m)

2 2
we have, (Sk ) = izj (yijk-yic .—y.j.-y. ok'{' 2y. 00) =
€ }2
- A - -( € =
.z. {(eijk eock) ( €ila eoc-) ( lj. -l:) and
1)
SE=3 (¢ ev. )-( €. Cave Jull © € )}2°
m—-.. keijm" o-m - ioa"" e e | ojo"' LR SO 'tha't
1J
1 25 2y_ = : \2 % € ?
e - € -
2B (5,28,2= T2 B[ { 3 (e - e Tl Lm0
b iy b |
‘ 2
+ jZ( S €es) =2 1§ (e i3k~ e.,k)(e s €.0u)
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T T BN N | 1

. '€ 5 u (€
.'u)+..- ( u v

uv

(€eye

For derivation of the expectation, a break-up of the

individual terms will be useful. This is given below.
2 2
' 1 1
(a) (€, =€ep )= X €., (1=-%)-5 LI € _ €
ij ijk k ij ijk t t ijAuv ijk uvk
( Yo e (2oT)eeI (B Te e
(b) Il Eis= Esse) = E s 2 - .3)+ .2 P ¥
i i ijk 1qk t t t i jkfqw ijk digw
= .
- ,3 I € €
t 1 jkAT gw ijk “raw
2 2 (l_.:.l'.) .l.
(c) A e ”v'~€"‘):2:§ K32 G B g2 :(Z T ¢ jvj€ kvu)
v ijm v 1j#ku
1
= 29 3 I € €
t i jkAuvw ijk “uvw
(d) . .z (€ ijk EZ-.k)( ei,o"" Eooc)
1J
ot 2| 1
= 2 T oes .y + I € ) €so™ 42 B . B € 1
k . i
t t 1] t i3 leuv#jk iuv % ijfuv ijk
€ -lg DI > b e
uvk t ij ijk iju iju
iju#ijk
(e) ..Z(ei..-e 000)( EoJ-"'Eoo-)
1
1 2 2 1
- L e = I € ~n I
= 2 . 3 R ( B P g en o)
t ij ijk ot ijk ijk™ t ij ik, uw ijk Tujw
ijkAujw
L
- .5 z z By o, B
E ijkAuvw 13k " uvw

The break-up of any other term is equivalent to one of the

above.
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In all, expectations of %6 terms need to be evaluated.
But the expectations of all but the nine terms listed below
-are of order (l/t2) and can be neglected for our purpose.

The expectations of the nine terms that matter are as

follows:
2 2.
3 " = - _-2 20’2
(1) E {.; ( eijk E"k) k(& uvm 8"m) b= (¢ 1) (jk m
ij uv
2 2
(ii) E { z ( €44k~ E;.k) z (e o €...) !}
ij u
1.zl 1 2
- E\f=, - = 4 2
(12" T3 (o et ) E(Te, Y %
t t ij ijk ij ijk uv#ij uvk
( i °) 24 B( el
+ B T €a g X y 3 } + .4 E(Z L:€yuq B
ij ijk iju 4 ju t ijfrs ijk rsk
ufk
| 2
= ($-1)($%+t-1) ¢ . 4/t7+ (3-1)%0 .2 T ou /42
k k
u#k
|
1
2 2 |
|

(111) B { 3 (eji 6ep) Z(eugem enn) } = (+-1)(£2+%-1)

i] v

okg/t3+(t—1)2 o 2 5 ¢ 2/t2 from (ii)

k u#k u
2 |
(iV) E { .2}( eijk— quk) z (Euvm"s ..m)(€ u..—e .Ao.) }
.l;_] uv
1. ,1 1l 2 2
= - TYWE = = L€ i E
=(1 - %) tz)E( ik .
1.] uv
2 2
- (t_l) Uk Om /t
2
(V) E { Z_: ( ei—]k— e"k) Z. (euvm.— Ee 'm)(e -vo"' e.--)}
1] ¢ uv
2 2 |
=(t*1)2 o) Op /t from (iv)
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2 2
(vi) E{ 3z ( e ee ) T (€ swm€eea) } = (£-1)(£%+t-1
uv eU.VHI € m 1 ¥ 1 € )( )

2,.3 2 2 2 ,.2 -
S, /t7 + (t-1) o I Oy /tS from (ii)

k#m
(vii) E { ( )2 3 ( | )2}— £-1) (£%+1-1
vii pX £ i C * Vo z €ejem Eone = f = +t-1)
uv J
cmz/t3 +'(t—l)20m2 % okz/t2 from (ii)

k#m

i % 2. 2
(viii) E {3z (e - Eoe ) 2 (€ yup.= €aep ) €ree=€ veel)}
ol uvm m ij ijk k i }
:@fﬂloke om2/t from (iv)
(ix) ( )2 ( ) ( ..o )
iX E{ Z € - € oo z € 2 21, E e Ee 0™ ECoeoo
o uvm m ij ijk k Jj
:(t-—l)2 o e o 2/t from (iv)-‘
k m

Utilizing the above expectations and simplifying, we

get,

8 1 8
1 2 .2y & 2 2, \2/4-8 2 2
w2 B (5,7 8. =72 [ oy o (t-1)°(1 ) + (o Kk mikd "

+om2k;zém' 0,2) 2(t=1)2/%° }

+ terms of order (l/tg)
2 2 - 2 2
=0y 0, (1- 10/%)+ 25 (o & T )/t)

neglecting terms of order (l/tz). Again,
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1
2 5(5,2) B(S.2) = { 0,2(1-5/846/42)+(25 /1) (1-2/1)} { o ,°

2
(1-5/t +6 /t2)+(2 & /t)(1 - 2/%) )

2 2 52 © B 2
= 0" 0,7(1-10/%) + 2 (0" +o Wt

up to the same order of approximation. Hence,

3

2 o 2y S mpe 2
2 cov(Sk 'Sp ) = £2 { E(Sk

2 2 2
" 5,°) - B(S,7)E(S,") } =0

and conseguently

cov(skz,s 2) = 0

m

up to the order (l/tz).

It follows from above and the previous section that
Bartlett's xz—test using sk2 may be used as an approximate

test for equality of group variances.

6.4 Ad justment of the test-statistics

2

2 2 2
Let x, = sy /0k where s, is the AUE of o,, k= 1,2,

k

s A - 2 2

eoyte Then the estimated weights are: Wy = 1/sk = 1/xk o
the number of d.f. is."’k = (t-1) and E (xk) = 1 approximately.

It follows from the previous section that cov(xk’xm) = 0 up

to the order (l/tz) for k # m. Hence, the adjustment of
the statistics can be made with the help of Theorem 1 of

section 2.1.4.

(i) Adjustment of F-statistics
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The F-statistic using estimated'weights for testing

equality of treatment effects is given by

A

PN
- .t 2 w (yoo == y..-) /(t—'l)
P = s - = (£-2)TSS/ESS

ESS / (t-1)(t-2)

say, with (t-1) and (t-1)(t-2) d.f., where TSS and ESS denote,
respectively, the treatments SS and error SS using estimated
weights. The treatments sum of squares is in the same form
as that for randomised block designs. The adjusted

F-statistic is

2
! % P :
P (adj) = F - (t-1) 2. |yx 2] using estimated weights
' k=1 k
all szl
3°F
where dx. 2 is given by (17) of section 5.5 with (b-1)
replaced by (t-2).
Also from section 5.5, 3 (758) 1 = - % wk(y..k-§...)2 and
> 5 |
all xk=1
e | = 2% Wy (1—wk/w.)(y..k— Yeee) « When the expression
3 X '
k

all Xk:l

for ESS is obtained for any particular experiment, those for

; >,
QW ESS and &wiéﬁ%l can be similarly found.
d X
3 x k
k
all xkzl all xkzl

Finally, once the adjusted Rows SS and Columns 35 are
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obtained for an experiment, we can proceed in the same
way as above for adjusting the F-statistics in order to
test equality of row effects and that of column effects.
omale
(ii) Ad justment ofﬁnormal test—statistic for

testing treatment differences

oy /3
The normal test-statistic using estimated

weights for testing the difference between kth and mth treat-

~

~ i
ments is Z = | Yeeyp™ Yeoop | /(1/twk + l/f%m)z. This

is in the same form as that for the randomised block design.

Hence, from section 5.5, we have

z (adj) = 2 [1 -0 3/4(8-1) ¥ (/w2 + 1w %) (1 wy + l/wm)] .

6«5 Multiple comparison of treatment parameters

As the error sum of squares depends on weights, the
joint confidence interval of all treatment contrast ¢ =

pX ck'rk (2 c) = 0) is given by (18) of section 5.6 with

~n

i

0 =Zc  Yeen S = [(t-l) P d{t—l,(t—l)(t—Z)}] Z  and
. N

s = [ ESs/(t-1)(t-2) ]2. The partial derivatives are

r—

3 s : | 1
— = 3y ESS , o _ =5
téxk . [""‘"‘axk/Z{ESS (t-1)(t-2) } ]
all xk:l all szl |
— 5 . |
2 e :
2By | = [{5—-@%‘3 - = A s2<t—1><t-2>}/2s<t-1><t-2>} ‘

S

all xkzl all xkzl



y ot
2 g 2.5 2 g%
BX"’ = ¢, 0,2 2t( xc 20 2 t)
k
all Xk=l
and
325 ° 3/2
i, = - ck2 ok2/4b2( Xck2<5k2/t) s
2
d Xy
all %=1 .

1
i Here c$ = ( chzskz/t)z.

Also from section 5.7, the three summary measures of

dispersion of the treatment estimators are

Estimated AM = g

5 1/%
Estimated GM (adj) = (1/t)( LEN (1+1/%)

and

~

: % S &
Estimated HM (adj) ={ 1 + 2 3 £ (1-f,)/48-1) Y /w.
1 S

A B o "~

with f, = wk/w.
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CHAPTER 7

SPLIT-PLOT DESIGNS

We consider here the usual split-plot designs with
error variance heteroscedastic with respect to the levels
of the sub-plot treatments. The weighted least squares
estimators of the linear parameters are derivea and the
corresponding analysis is given on the assumption that the
group variances are known. Estimators of the group vari-
ances having negligible bias, are obtained. The co-
variance between any two such estimators is found to be
negligibie. The estimators of the linear parameters and
test-statistics using estimated weights, are adjusted for
bias., Expressions for joint confidence intervals of
contrasts of linear parameters are provided for each factor

and interaction separately.

7.1 Estimation and analysis when the error variances

are known

Let us consider the following model for split-plot
experiments having blocks each of which comprises a replicate
~of the whole-plot treatments; and whole plots each of which

comprises a replicate of the sub-plot treatments:

I t

Yijk =
(i =1,2’..',b; j =l’2,...,c; k:l,2,...’t)

where Bi is the effect due to the ith block, Y j; the effect

due to the jth whole-plot treatment,11'ij the whole-plot
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error, T, the effect due to the kth sub-plot treatment,
6 K j the interaction effect between the jth whole-plot

treatment and kth sub-plot treatment and E‘ijk the sub-

plot error. The errors are assumed to be all independent

of one another. It is also assumed that E (n 'ij) = ) =
1 1 '2 1 ) _ !2

E (e ijk), var ( n ij) = 0 and var (e ijk) = Ol

Thus the heteroscedasticity of the error variance is assumed
to be associated with the levels of the sub-plot treatments.

The above model can also be written as

Yije = Bi t v3* Tt Sy5 tese o0 0o

1

nij

N2 12

+ so that var (e ijk) = o "+ 0 4

1
where ¢ ijk = €1 jk

o k2’ say; Curnow (1957) considered this model with only

two sub-plot treatments; he showed how to test for the
-equality of the two consequent group variances.

Let the constraints on the linear parameters be:
lglwk T = 0 = § Yj = g Skj = i Wi 6kj = IX W8 K where the

weight wy = 1/ °k2’

Let Y be the vector of observations arranged

systematically such that

FA S AR EERRRE P ST RREREF ATS RRRREP FS EEEEERAERTRRE

A SETRRREPA TS TRRRER AR
Then the model (22) can be written in matrix notation

as
!

1
where X is the overall design matrix, B the corresponding

~

vector of all linear parameters and € the vector of all
-~

errors. Thus we have,
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. 2 2 % 2
Var(s)=dlag(01 ,cao,ol ,ooo’ot ,.."ot )=
say, and
-1 i
Y' = dlag (Wl,...,Wl,.o.,W_t,...,Wt).

By (2) of section 1.2, the weighted least squares normal

equations are given by (23).




‘=

e ¢k 2 >

™
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From this the individual normal equations are obtained as

A ] ~

Tt bew,t +bw, I Yj+ b ow % ij+ cw, B 0T WY ey
k = l,2,ooa’t
PN ~ ~\ ~
vk b I w T+ bw. Yy 4 b i Wy ij+-“h231 :zika'fk;
jzl,...’c.
1

A ~ -~ ~
kaT e+ bwk Y; + bwk akj + Wy LB gy = ka'ik

j = 1,2,...,0
k= )2 0nnygh

-~ ~' ~

B CIWp T, + W Eyj + LI Wy 8 3 + CW. Bi = Zkaé'k;

K K
i=1,2,...,0b
A ~ ~ ~"
o 3 — . - pu. =7Iw y
Using the constraints, Zw, T, =0=18 . =1 T, & s ki rH
J J
-~ | .
=xZw, 8§ ., we get the estimators as
g * KJ

A -~

T = Ve YT 2 Vi }/We = Teger By = R SRVA R
1

~

Yiee and ij = y.jk = Fenp = y.j where w, = X Wi The

' k
3 2 ~ 2
corresponding sums of squares are bc I ¥y .. K bw. Y. 50
k J

cCW. I }2 and b ¥ s w (y -y - ; )2 in that order

. » ioo ; k".jk -ok oj. .
i J ok

To obtain the corrected sums of squares, let Bi = B

for all i and let us ignore all other main effects and inter-
actions. Then the model reduces to yijk = B + eijk‘

From this, the weighted least squares estimator of B is B

= Zwa..y/w. = V... and the corresponding sum of squares

~

is bcw.y2..e . Consequently, the corrected sums of squares



(SS) are given by

SS (sub-plot treatments) = bc Zwkyz..k - bcw.?z... =
k

be T Wy (¥e. ~F...) with (t-1) a.f.
K

~ 2

SS (whole-plot treatments) = bw. (;-j-'Y_._)

with (c-1) 4.f.

]

~ 2
L B yook+y-o-)

SS (interactions) = b ¥ z;wk(y.'jk olt £F

with (c-1)(t-1) d.f.

2 2
~ 2
)

S5 (blOCkS) = CW. yi.. - ch.h.yo s = CWo, z. (&i- ._pooc
&

-t

with (b-1) d.f.

To find the SS for whole-plot error we consider the

whole-plot weighted totals Yi = X wkyijk = W. Y. .. Where

J° k
§ij' is the weighted mean for the (i,J)th whole plot,

1 =2 142450egd) J = Ls5ereqgle These totals have constant
variance as shown below. The whole-plot totals may there-
fore be considered to be the data from a simple randomised

block design and so the SS for whole-plot error may be

written as % f... - § ..e/b = ?.
i;g( i3 3 Yy /b -3

~

2 ~
yioc o y.

=W Z 2 (;’--o el
iy 1

plot analysis in the above procedure is in sub-plot units
and the whole-plot totals are the weighted totals. Hence

SS for whole-plot error is given by

_ ) 2 . Lo d " ~ _ ~ ~ 2
SSE) = wey x(Fyge = Vyee ~Vege v )/ 2
e We D T (i e = Fie =y Fy.e.)?
o ‘yij. i. y._.. yooo
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with (b=1)(c-1) d.f. This is the blocksxwhole-plot
treatments interaction SS (corrected).

Finally, the sub-plot error SS is obtained as

388, =1 vy - SSE;, - SS due to all the estimates

'wk(yijk - §ij' - ¥esk +‘§'j’)2’
on simplification, with c¢(b-1)(t-1) d.f.

It follows that 51" is unbiased for g, under the
constraints. The estimators of the other main effects are
not unbiased but their contrasts are unbiased for the corres-
ponding parametric contrasts. If we define gkj = (Mjk -

o~ ~

Feo jo = Foge + Yees )y then ij is an unbiased estimator of
6kj’ The wvariances of the estimators are:

var (15k) = okz/bc, var ( Ei) = 1/cw., var (y j)

=1/bw. and var ( Ekj) = (l/wk - 1/w.)(c=1)/bec.

The estimators of the levels of each of the three
factors are independent of one another. But the inter-

~

action estimators ij are mutually correlated.

Expectations of the sums of squares under the con-

straints are as follows:

(a) Whole-plot analysis
In view of the‘constraints, the model for the
weighted totals of the whole-plots is given by

o - | ~
Yij‘ = w.( By + Yy ngy te ij'>

where Yij‘ = % "3 5k and €y4e = i €43k wk/w..
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Dividing both sides by w., we have

1 ~

¥39, T By ¥y Bl gg ¥8 g BRGEE g F Wigg
say, where }ij. = Y;;./w. and 5y = 0. This is the

model of ordinary randomised complete block designs with

1 1
var ( nij) = iy = 5 gl 2wk2/w.2 = g 2, say, which is a

constant.,

It therefore follows that

2
)

E {SS (blocks) } }

I

We E{C z. (y'i"—y.‘.
i -~

= W.C 3 ( B3 —-3.)2 + (b-1) ¢ 2w.
i
E { 3S (whole-plot treatments) } = we Bl DEY (§.j.—§...
: J
= w.b 3 sz + (c-1) g 2 w.

and

w.E{zz(}... . :
i3 1J i | J

I

E (SSEl)

w. (b=1)(c-1) o c 3

(b) Sub-plot analysis

Prom the model (22) we have, under the constraints,

yljkz B.+ 'Y_:+ Tk+ ij‘l‘ €.jk, yo.kz B.+Tk+ E o

-~ L -~

y--tz 8i+Yj+€ijc ’ yioo:Bi +€ioo, y.j.-6.+

J J
Yeeo = Be + €... wWhere ey = L € ijk/w. ) € 40 =
Z Wy Ei.k/w' s Eege = IWy e.jk/w. and € ... =L W, € .. /W,

It then follows that

)2

}

k,




and

E (sub-plot treatments SS)

E (Interaction SS)

E (SSEZ)

I

b E {
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: ~ 2
=bc B gw (1) +e .oy —€00s) }

2
= bc b3 Wk Tk + (t-l) »

~

2% Wk( GRJ +€°jk =€ Oj'

- € ook+ 2000)2}

2
b p vy 85 * (c—l)(ﬁ—l)

¢ (t-1)(v-1).

. i® . B
)

E{Ezlzwk(eijk-eij'-e'jkdkE'j' }




Analysis of wvariance table
Source d.f. 85 E(MS)
i
y 9 ~ 2 . 2 2
Whole-plot c-1 bw. I (y.j. - ¥sis) Weo “+ bw. ZY 5 /(c=1)
treatments J
. ~ ~ -~ ~ 2 2
Errory (b=1)(c=-1) W i %(yij.-yi..—y.j.+y”3 W.o
: ~ 2 2
Sub-plot t-1 be I Wy (Yoo = yeou) 1 + be w, Ty /(t=1)
treatments .
- . 2 o
Interaction (e=1)(t-1) by gwk(y.jk—y.j.—y..k+y;J 1+ Dbrzws kj /(c=1)(%-1)
~ ~ 2
Error, c(b=-1)(%-1) I Wk(yijk_yij'_y‘jk+y2% 1
Total (corr.) bet-1 T Iw 2 - bew.y e
— ./ kyijk .y...

ovT
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o xl.twt
If the F—testAindicates significant main effects

and interactions, the difference between any two levels
of any one of the factors or between any two interaction
parameters can be tested by the normal test. Because,

the variates

zZy = ( ; - z 2)/(1/bcwk + 1/bew, )%,
2y = ( vy - )/@/ow)E ey = (B - B /(2w

and

( ij - Euj)/'{ (c—l)(l/wk+1/wu)/bc} % for k#u

-

z, = ( akj - Ekv)/'{z(l/wafl/w.)/b} for j#v

( 6kj - Euv)/ {(c-l)(I/wk+1/wu)/bc + 2/bw.y %
' for k#u and j#v

are all standardised normal urden K null 47fdﬁ340m

Te2 Estimation of weizhts

Since there are no replicated observations in the
cells, independent and unbiased estimators of. the error
variances are not available for the design. But we can
obtain approximately independent estimators having negligible
bias as follows.

The method of simple least squares yields the

estimated error of the usual model as

A

eijkz (yijk—yioo _yojlc+yooc)‘

- 2 _ 2 ,
Let Sk e Zi ZJ(}rijk - yiov_ yojk o yaot) © rlhel’i

E(Skg) = & []);5: { ( eijkﬂ Ei.')__( E'jk-e"')} ZJ




-

5 1 2 " 2 ) 1
= be [Ok‘(l" b T ¢t bot) T TF (l - %)
or
B(S,%/bc) = 0,%(1 - 1/b = 1/ct + 1/bet),
. -2 2 2 ; :
on replacing o = 20'k/t by o, as an approximation.
Let us now define
2 _ 2 -1,
Then s £ has a negligible bias as an

k

estimator of o 2, The bias is .of order (1/ct - 1/b2), It Aas
been vernifuied ket Si K G obmost unbicsed 2otimaler (AVE, Hern et ol -, 1975) of G2

To find the approximate distribution of S let

u - yio. SO that Ue = yojk - yooo 0 Then -the

i T Yijx
random variables u;, i = 1,2,...,b, are independently and
normally distributed under the aésumption of normality of
EXYTOTrS. Moreover,

2

i3k — € i)

I
b=
™

I

var (ui)

qkz + 0 2/ct -2 okz/ct

1l

ckz(l—l/ct)

on replacing 5;2 by ckz as an approximation as before.

b
)2 = g (u.—u.)2

ThU.S . z (yijk - yia."‘ y-jk + yo-n i

i=1
is approximately distributed as X2 gkg(l—l/ct) with (b-1)
a.f. so that S, °/ 6. 2(1-1/ct) is approximately distributed as

2 with c(b-1) d.f.

Since 5,%/ o %(1-1/ct)= be 5,2 (1-1/b=1/ct+1/bct)/
oy (1-1/ct) = g c(b-1)s,°/ 6,7} {be/(be-c)} (1-1/b-1/c+

1/bet)/(1-1/ct) = c(b-l)skg/g k2’ we may assume that



14%

c(b—l)skg/ ckz is approximately a xz—variate with c(b-1)
Aot

It is shown in the next section that the covariance
between the two estimators, Sk2 and sm2 (k # m), is negligible
SO that, by the normal approximation for large d.f., they

are approximately independent.

7.3 Covariance between sk2 and srr2 (k # m)

i3 2_ O =
We have, s, = f ; { ( € g < €.jk)—( € ee=€oud) }

( Y+ ozl 2 -2c1 ( €y
zz € 2 27, € o +° G € 006 Eooe - C € . == vele
i ijk Jk i 5 i i.k k

s 2
( e..."' e_c-o) and S = 2 z ( € . ) +oC z (€ s
i m a % uvim v e u

2
‘-Ecoa) _20 z( eu.m—eaom)( euOO-EQOO)‘

u

The individual terms may be partitioned as follows:

2
(a) y 3 ( e €o 33 )
i 1jk jk
S (1-%) - F s )
= ‘T B €14 )T D BN R T Epantiaa
i3 ijk g . & jk €gjk
(b) similarly, 5z ( eyym-eoym). =L I eiyg(l- &)
u v Wy S
-tx0z 2 euvm €rvi)
Y- u#gr
(C) & Z ( Eitc— Eoo.)z
i
B 1 .
2 - - SBIN
= IIZesl 5 -3 W Sy S G ST
i %k ijk (ct bet ct £ (jk) # (rs
r ]
E € 5 LXZXIXZle,, €
ijk irs bet ijk uvm

(1k)#(uvm)




(a) Similarly, ¢ I (¢

z
u

2
o - eooa)
u u

5 1 i 3

- +
v;nf Svm ( ct2 bctz) ct2

1 )R D YD A A M

£ € )=
uvm - urs §Z§§ {wwem)£(19k) uvm

(f) Similarly,

z
u

ik~ e.ok)(e °°= 6...)
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(%X D)

u

(vm) # (T8 )

€
ik

(zlaz);(uzv) i vk v ; § “igk 3 mfékgijm
x5y - Sead(E g 6o
vzeusm ( %? i %E%) i %{z;( 5 “uvm jiv uam)
5 k§m “uvk -

In all, the expectations of nine terms are to be

evaluated. But four of the expectations are negligible

up to the order of approximétion given below.

five expectations are as follows

(1) E {2532 (e 1, €3
ij ijk jk

2
302(b~1) o O

(i1) B {3
L

J

)2

2 2
m

2
2 eg gk €rgp) @ 4 [ gyeemEgss

The other

)2

}



= (b-1)(b2c-bc+2b-1) ¢ °2/bt%+c(b-1)%g o° 3 2 /42,
K S x b

L ‘ . 2 .
(lll) E {Z 2‘ ( € lak— onk) r X (E uVm— eovm>( eu-.— 8.-0)}
1 ) u v

c(b—l)zc;kZO'mg/t

2 A 2
- E.Vm) @ %( ei.._ Eoo.) }

2 jpl
Loy Fé:

(b—l)(bgc—bc+2b—l) o 2/bt2+ c(b—l)2 o
m
k#£m

m

from (ii)

. 2
(v) E {22(€ = Ee ) 22(€-~’€'- )(e-.'-" E.c.'.-)}
a9 v uvm v i3 ijk Jjk !
= c(b-1)° ©,° o °/t from (iii)
m
Thu S5 E (s, 2,8 2) = S5z 2(p-1)2 ;. 2, °
= b k 'm = 1 © - Ok Op

+ C(b—1)26; T d; /t2

m#k

2

2 2y

2 o/t = 2¢(b-1)
m

2 2 2
-2 c(p-1)%% "0 4 /t + c(b-1)% .

o Z 2
Ox o /t }

+ terms involving reciprocals of cubic expressions in
b,c and/or 1

G2
1 2 4 o
DT T S . JE 2 2
= % Om 1+ 32 b ct ot Cox *og )

b s neglecting

terms invelving reciprocals of cubic expressions in b,c and/

OF "G
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2 2
e Sm o0 . oL_2 42
Also E ( el 0 BNt (L =% "¢t T bect )
be be
5 2
o 1 1 2 g 1
p— e 2 - = oy m— gl - -
ot (7)) 1 e ATy T T et vl R §
8 2 4 =2
2 2 =, - 5 - o 2 2
= 9 (AT 2Ty Ty ) ggm (o o)
2 2
_ . Sx. Snp
up to the same order of approximation. Hence cov( sbe )=OamL

consequently, cov (sk2,sm2) = 0 to the same order of

approximation.
. w9 g B
ow let x, = s, /o s k=1,2,...t. Then the

estimated weights are &k = 1/sk2 = l/xk okz, the number

of d.f. is \3 = ¢(b-1), and E(xk) = 1 approximately.

A t ~
Let We = ): W, e
1 k

It follows from the above that cov (xk,xm) = 0 for
k # m up to the order-of reciprocals of cubic expressions
in b, ¢ and/or t. Hence, the use of Theorem 2 (section
5.3) for adjustment of the statistics concerned will pro-
duce the same results as those by using Theorem 1 due to

Meier (section 2.1.4).

T.4 Adjustment of the estimators

To obtain the adjustment of the statistics concerned,

we need the following derivatives:

~
~

Vs xe a()_‘,w;) /w) 1

9 Xk ) Xk k

x2A2
KW
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o8
0 Y= 2 A A A
ije = - _ _ 20D
and : > 4 4 (w.yijk X wkyijk)(wkw' X, W )
- O X W
k
so that
d Vi1 23
-—;—;—l = -fk(yijk yij.) and 3.5 »
k ' 8. 2
Tk
all xkzl all xk=1
= 2 fk (1 - fk)(yijk - yij.)
where f, = wk/w. Similarly, 90J4,, = -fk(yi'k—y...),
9 Xy
& . all x,=1
) 2yi - " §' k
: = 2 £ (1-£ ) (ygepVy-e)s ¥
Bxk 9 Xy
gll xk=1 all xk=l
= —fk(y'jk y'j.) ’
52
a y.- -~ a yn-o
— = - - a] " e
> = 2 fk(l fk)(y'jk y'j.)’
Bxk \ 3 Xy
all xk=1 all xk=l
= -fk(y..k - Yeaso)
82V.. ' o | L A
and > = 2 fk(l—fk)(y..k—y...) where y .. = 3 Wy
k
all xk=1
yi.k/w. . f’j. = Zwky.jk/w. and ye.. = Zwy.. k/w. .

As the estimators of the parametérs for the sub-plot



148

treatments do not involve weights, no adjustment is
necessary for these. The adjusted forms of the other

estimators using estimated weights are

.’3 A 2 t A A A
By (8d3) = yiee - o) 3 Tk (1-£)(y5 1 = V3-2) >
1% = e z " -
Y (adj) = Tes, oy £ (1 fk)(y-dk y-j.)
and
pén ~ 2 “ A a uD :
6KJ(adJ) = 6kJ + C(b—l) kE fk(l—ik)s kJ

A
~

where f, = w, /w. and 81y = Fegy = Veg, = oo ¥ Voo

3o

15 Ad justment of the test-statistics

(i) Adjustment of the F-statistics
(a) ~Whole-plot analysis
The F-statistic using estimated weights for
testing the significance of whoie—plot treatment effects is

given by

A A A A P
-~

Lol
e " ¢ 2 et o e 2
Fl = b(b"l) z(ycj‘ . y..o) / 2-: 2' (yijo—yi- .-y.j‘-’-y. nn)

A i)
J
= b(b-1)WTrSS/WESS, say. The adjusted F-statistic is

given by
~ A _!'-________ t 8 2%11 s .
Fl(adg) = By ¢ (b-1) kgl = > using estimated
. - k
all xk=l
where
7, b(b-1) 2 5 °2(wrss)
= ——— {(WESS)
2 YVY " 3 2
S (WESS) 9 %Xy

weights,
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- (WESS) (WTSS) 2 (WESS) d (WESS) 3 (WrSS)
' : oy - 2 (WESS) I 3 %
OB k k
2
| 5(WESS )
N Z(WTSS) > X, } gty R (24)
all xk=l

the individual derivatives being

5 (WTSS) = ~ ~ ~
s e = —2fk z.(y.j.- yoc-)(ycjk_y-jo _y"k+y"’)7
RS J
all xk=l
32(WTSS) ~ ”
m 2 I 2(Feir=Fos ~Feort Feod + 4F, (1-F.) -
2 A k y.jk J.j. yl .k y. ec k -Lk
3 Xy J ‘
all x; =1 . - ” 13
;;(y.j.—y...)(y.jk ey Yoo *yees)
3(WESS) - - o~ ~ 5
| | = B B B ;(yla.—yl. —y.j.+y...) - 2 Iy z
- i 1
9 Xy
all xk=l
. - +
Uik Vi kY 5671 Py Vi, Y507 )
and
32( “NESS) ) S -~ .
—— [F 2 5 2L (Y T gtV e ek V4,4, Ty
9 Xy 1
all xlzl
<
~ 2 _ ~ o e ""’ I
- Yeoo)” + 4 £, (1- ﬂ{)ZZ(YiJ > yi°"y'j,*y'°')(yijk—yi.k Ve ik



+y;ak"yij. +yino+ ij._ yaoa).

For testing the equality of block effects, the

P-statistic using estimated weights, is

& e ~ o, = -4 44
F, = c(c-1)y (yi..- Yeoud/ L X (yij.-yi..—y.

1 1 3

~ D
j.+y...)
= c(c-1) WBSS/ WESS,

say. The adjusted F-statistic is then obtained as

ZA
A N E 3 T ‘
F, (adj) = B, = e f¥=1) % 7;;—?— using estimated
= weights,
all xkzl
where 32F2/ axkz:] is given by the right hand side of
all xk=1
(24) above with b(b-1l) and WTSS replaced by c(c-1) and WBSS
respectively, and with a (WBSS) = -2f X(yi..—y...)
aX], i
all xk=1

~

(yi.k—yi..+y..k+y...)

az(“TBSS) 2 o~ o~ 2
all xkzl
%(yi"')’- o) (yi'k-yi. .-Y° °k+y' ee)y
2
[}(WESS/ 8 %) ] and 3 2(\‘IESS/a Xy being given above.
all xkzl all xk=1

(b) Sub-plot analysis

For testing the significance of sub-plot treatment



effects, the F-statistic using estimated weights is

- 4w, £, (1-3f, /2) i ?

A ~ 2 2,3 . -
]j3 sy C(b l) bC lz{ wk(yook y'oo) / . . ‘Ik(yijk—yijo—ynjk
i jk
% 2
2 +y'jl)
= bc“(b-1) TSS/ESS,
say, The adjusted F-statistic is
“ 5 X 2% 2
by = _ 5 . .
F3(ad3) Py c(b-1) y d F3/ X, using estimated
' all xkzl weights,
where z?f;/a xkZ is given by the right hand side of |
' |
all xk=1 i
(24) with b(b-1), WSS and WESS replaced by be2(b-1), TSS
and ESS respectively. The individual derivatives concerned
are:
5 (758) B 3°78S ~ 2
= = WAFe o ~Foan) s o = 2 wk(l—fk)(y.kju,‘
an ) Xk ‘
all xk=l all xk=l
d(ESS) 5B ~ . ﬁ
= -w Vi sp =y Ve +Ve -
Bxk k i ijk 71 Jjk Je
all xkzl B :
and
5 °ESS ~ 5 o
Y = 2w (1-2f,) X I (yijk—yij.—y.jk+y.j.)
Xy 1)
all Xk:l
|
|



For testing the significance of the interaction

effects, the F-statistic using estimated weights, is

B (e gy =F o5 =F eg#T e e)?
z z Jos,, Ty e eV oo e o6
& . be(b-l) L. .
4= T % % T2
= be(b-1) . ISS/ESS,
c - 1 :

say. The adjusted F-statistic is

k=1

ail s =] weights,

k

where ‘: 32F4/8 sz is given by the right hand side of

ol X = 1 2

(24) with b(b-1),WTSS and WESS replaced by be(b-1)/(c-1), ISS

and ESS respectively. The individual derivatives concerned
are
3ISS _ = ~ 2 _
= -w I (y.jk—y.j.-y..k+y...) +2 33wl
3 Xy J jk
all x, =1 ey Fos e Yooy tyee )
a Xk._ .jk --jo -.k o o o )
2_31§§ = 2w, (1-2f.) 5 ( e o e
2. - Wk k Z yOJk J.j. ycok yc..
o Xy J
all xkzl

& ~ 3 2
-4 § g wkfk(l-jfk/Z)(y.jk—y.j.—y..k+J...)

]

and 2ESS/ 3 xki} and [j 32ESS/3 xy2 ] are given above.

all Xk:l all Xk=l

% 1 t [ .
4 (adj) = Fp = o(p-1) % ['8 F4/'axk2] using estimated
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(i1)  Adjustment of the normal test-statistics

For testing the difference between 2 sub-plot
treatment effects, the, normal test-statistic using estimated
weights is in the same form as that for testing the difference
between two treatment effects in the‘one-way model. Hence,

ksrnale
from section 2.1.4, the adjustedAnormal test-statistic is

;l(adj) =2, {1 - 31 /w el /w 2)/he(b-1) (1w +1/w )7 )

where

A

~ A - i
EIE N R Tll/ (l/bcwk + 1/bcw2 ) L

Also for testing the difference between either two
whole-plot ‘treatment effects or two block effects, the,normal
test-statistic using estimated wéights is in the same form as
that for testing the difference between two block effects in

randomised block designs. Hence, from section 5.5, we have

y(aas) = (| vy(aai)- v yaap| s2/ohoFy (1 - xf
(1-£,)/4c(b-1)}
and
25(adj) ={ | gy(adj)- g ,(adj) l/(z/ca.)'%} (1 - p %
(1-£,)/4c(b-1))

where Y j(adj) and B i(adj) are as given in the previous secti

Finally for testing the difference between two inter-

vran~ale
action effects, the normal test-statistic using estimated

weights is given, from section 7.1, by

~

k

One

T s




154

b

>

A

o y(aai)- 8 5(aas) |/ € (e-1) (LA #1/w,)/bo} *
for k # u

’~

%, = |§kj(adj)- 8, (add) | / {2(1/wk+l/w.)/b} Z for j £ v

~

16, ;(adj)-

o 2>

av(@dd) |/‘{(C-l)(lz;k&l/&;)/bc+2/b;,} z

for k #uand j £v

—

and the adjusted form of this test-statistic by

24-{1-3/4c(b-1)(1/%k+1/ﬁu)} for k £ u
2, (adj) 3 Je(b-1)= I B /fo(b-1) ) #
z,(adj) = z, {1-A /c(b-1)- /c(b-1 for j #v
4 4 k m}ékBm
%
z,{1- £ L./c(b=1)- T H /c(b-1)}
4 ik, nfk,u B
B for k Zuand j#£v
where
A = 3(1+fk ) /4(l+fk) #5y (l—fk)/(1+fk)
B = 3f °f 2/4(1+5, )%+ £ £, (1-F V/(1+f, )
m “m "k k m k m k
L, = 3P./4w,2G+2f, (1-f, )/bu.G
1 L 1 1 8
H_ = 3f °/b°6%w.% + 2f_(1-f_)/bGw.
6 = (c-1)(1/w+1/w,)/bc+2/bu.
and ) 2
P, = {(c—l)/bc+2fi JBY <.

7.6 -~ Multiple comparison

As the error mean squares for both the whole=plot
analysis and sub-plot analysis depend on weights, the

formula (18) of section 5.6 is appropriate for finding the
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joint confidence interval of contrasts of the linear

parameters.
(i) Whole-plot treatment contrasts
The joint confidence interval of all contrasts
wl = zdj'Yj with Z dj = 0 of the whole-plot treatment para-
meters is estimated by the formula (18) of section 5.6 with
b= ¥y S= [(e=1) B L e-1,(b-1)(c-1)} ] %, s = (w.(VESS)/

(b=1)(c=1) 1%, *.ml = c(b-1) and 6 ~ = (5 d.2/bw.)%.
J Y 1 J

A

The quantities -yj(adj) are to be used in computing y,.

The partial derivatives concerned are

aoa .
—1 =31 (za%/ow)®
axk J
all xkzl
-
9 C , 5 ¥ 3
— = (2 d ) ® £, (3f,/4 - 1)/(bw.)®
L T
all Xk=1
- =[s {(3 WESS/ ¥x,)/ 2 WESS - £,/2} ]
BXK , .
©Tall xkzl all xkzl
and
5°%s ~ooa 52WESS
S = [S{ fk(l—fk)/4) + '——-‘J—é—' / 2WESS
09X i ) Xk
all xkzl
’; g :
- (¥ESS Y /4 (wss) ) :] ,
Bxk

all X, = 1.
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r 2y
A NESD and —i—i%§§ being given in the
9 *x 9%y
all xkzl all xkil
i ti H o= w,/ dif =W, /W
previous section. ere f = wy/w. and T = w. /w. .

(ii) g-contrasts

Similarly, the joint confidence interval of all

B-contrasts y, =rg; B with 3 g; = 0 is given by (18) of

section 5.6 with ¥ = ¢ 09 S = [Kb_l) P a{ b-1,(b-1)(c-1) }] %’

A = 13 ~
s = {w. (WESS)/(b-1)(c-1)1} %, r-1 = c(b-1) and g~ =
A 1 A lp 2
( Zgi2/cw.)§. The quantities Bi(adj) are to be used in

computing wz. The two partial derivatives, [ia - ]
9 X
k

32sﬁ ' all xkzl

axkd

and
all xk=l
are given above in (i) and the other two derivatives are
Yo 2\% -
= (2 g;7)% £, /2(cw.)

all x, =1

and

o L i
. = ()71, (3£,/4-1)/(cw.)* .




(114 )~

WB =Ic

given by formula (18) of section 5.6 with V¥ =¥ 39

V5 =

w
ll

{z ckz

Sub-plot treatment contrasts
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The joint confidence interval of all contrasts

k "k

Ck y..k,

{Ess/c(b—l)(t-l)}'%, r,-1 =

s 2/bc }%
k .

[ (t-1) P

The partial derivatives concerned are

A

90"
1

-3

9 X

and

k
all

all =1

. 2
ESS
=[{_—
3%y

2
Cx %k

2
/2bc(z cy

k4/4b

8 ES8 /2 Ess(b-1)(c-1) c}

0Xy

ka

o k/bC)

( ch O'k

/Zsc(b-l)(t—l)] ;

c(b-1) and ’

b3
2

2 150372,

N
g

A

Vg

of the sub-plot treatment parameters is-also

{ t-1,c(b-1)(t~-1) } ]%}

]

all ==l

(_&-——-> /25%c(b-1)(t-1)

all xk=

1
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3 °Ess

and — being given in

5 X 4
k d Xy
all xk=1 all xk=l
the previous section.

(iv)

Interaction contrasts

If ¢4 = LI ckj ij
N
then var( V¥

is an interaction contrast,
4) = var (I I )

s 2
.8, .) =
J ka?

L Zeyy varl i)
+Z X Zc,. c_. cov ( P E D+ 2z zCrs 6.8 8 s 8 1)
j kAuw kj "uj kj» uj K AV kj “kv kj’ o kv
+¥L L L XcCyp.
k£u, j#v kJ

Cuy COV (s Kj® 5uv) i Gk/wk - G/w.,

p -7
say, where G, = j Cy 3 (e-1)/bc - I chjckv/bc and G

JAV
2
=2 Z ¢, 5 (e-1)/bc + I X Zc, . c . (e=1)/bc + (Z £ I c . cC
kj j kfu kj "uj k AV kj "kv
+LIIZc . e )(2/b-1/bc).
KAu AV kj "uv

A
o ° =
Y

- A
Thus, using estimated weights, the standard error of y 4 is
) S ~ _%_
) ( ZGk/wk - G/w.) 2.

The joiht confidence interval of all interaction

contrasts w4 is given by (18) of section 5.6 with

i

#

s = { ESS/c(b-1)(t-1) }

<

i
vo= ¥, s= [ (e-1)(t-1) F_{ (e-1)(t-1),c(b-1)(t-1) 3} ]%,
, and I‘j—l = ¢(b-1). The quantities
Ekj (adj) are to be used in computing ﬁ 4°

The two partial
derivatives
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2 2
[ 98/ 3%, ] and [ 8 “s/9 x; ]
all xk =1 all xkzl
are given above in (iii). The other two partial derivatives

concerned are

80$
X - (Gk/wk - Gfk/w.)/ZT
a *x
all xkzl
and
_ A .
3%0]
v /2
3
B 2.2 2 )
. ; = {61 (1-1y ) /w. = (6 = 61,7)/4Tw,* } /T
k
‘all xkzl

with f, = wk/w. and T = ZGk/wk - G/w. .

Pinally, the three summary measures of dispersion
given at the end of the previous chapter can be used as those

for the estimators of the sub-plot treatments.
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CHAPTER 8

LINEAR REGRESSION WITH UNEQUAL GROUP VARIANCES

A linear regression model with error variance hetero-
scedastic with respect to the levels of the independent
variable is considered here. On the assumption that the
group variances are known, the expressions for the weighted
least squares estimators of the linear parameters and the
corresponding analysis are given. The usual variance of a
group of observations is taken as the estimator of fhe corres-
ponding group variance in the population. The estimators
of the linear parameters and test-statistics are then

adjusted for bias.

8.1 Estimation and analysis when the error variances are known

Let the simple linear regression model be

Yia

J=G+B}F,..+€

3 ij

(j=l,2,...,ri,ri >l; 1:1,2,000’]’{)

where o is the intercept, B the regression coefficient,
the values x; are the fixed values of the independent variable

X and € 1j is the error term having mean zero and variance

o 2. The errors are assumed to be independent of one

i

another. Let n = Zx'i.

By minimising % ¥ (y.

: N2 2
2 iy " a-—BXj) /o ;7» we get the

weighted least squares (WLS) estimators of the linear para-

meters as

~ . 2 . 2
o = (Iwyyye oWy T Wx TWXays )/ 1 WeX wyxy

- (2 wyx;) %)




2—(2 wixi)2}

B = (w. EW X ¥ e = Zwixiiiwiyi.)/{ Wel WX,

where.the weight Wy = ri/(riz, i=1,2,...,k and we = % W e

These are also given by Jacquez et al. (1968) for estimated
weights. They also empirically compared the efficiency of
such estimators with those of ordinary least squares and
maximum likelihood estimators. Jacquez and Norusis (1973)
empirically compared a few summary dispersion measures of
these estimators with those of the least squares estimators.

The sum of squares (SS) due to the estimates is

~

88 (Est.) =a 2 WY f~82 WXV

i

2 - ) \2
_ Q:wiyi.) , (ZWsX;¥5 -3 wiXiI:wiyr/w.,
We 2 2
rwix,© - (x Wixi) /W,
with 2 d.f. Assuming g = 0, the model reduces to yij
=0 4+ €, .. The WLS estimator of o is @ = X wiyi./w. and

1)
the corresponding SS = (2 wiyi.)g/w. with 1 d.f. Subtracting
this from SS (Est.) we get the SS for the regression

coefficient as

' - J
g8 ( B) = (Ziwixiyi. -Iwix; X wiyi./w.) / {x wox, -

.
( Zwixi) /we '}
with 1 d.f. The SS due to error is given by

- v g 2 < N e -
B8 (B) = 2325 wiyij/ri - 8S (Est.)

1l

— . 2 % 2/1, - 7. X -
{z 2 wiyij/ri - (B wyyy ) /we } = W wyxyy .
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2 2 2 2
(2 wyx;)( Zwyyge) d /o AwS Twix,® - (Zwyx)T wed

with (n-2) d4.f. AsE{ SS (B)} = B2{ % wixi2

-(z wixi)z/w. } , we can test the significance of the regression

coefficient by an F-test, that is
F = 8S (g) (n-2) / ss (E)

with 1 and n-2 d.f.

Since E ( E) = B and var (E y=1/{ ¢ wixi2

-(Z wixi)z/w. } , the corresponding t-statistic for testing

the hypothesis: B =8 o is given by

1
2

b= (B - B)IE wox,2~(Zwx;)2/m. ) F(n-2)%/ { s5(2))
with (n-2) a.f.
This latter hypothesis can also be tested with the help
of normal test-statistic because the variate u = ( E - B o)
{z wixi2 - ( Zwixi)z/w. }% is standardised normal umdn Ge nalt
ApotRaain .

8.2 Estimators of weights

Rao (1970) gave a set of equations for obtaining the

MINQUE of 612 for this model as an example. Since such

estimates may sometimes be negative, Rao and Subrahmaniam

(1971) proposed replacement of the MINQUE of 012

corresponding estimate Si2 = I (y;

J
on the observations of the ith group whenever the MINQUE was

by the
2

5 = yi.) /(ri-l) based

less than a small positive quantity. From a Monte Carlo

study, they found that for a few replications at many points,

the WLS estimators of the linegr parameters, using MINQUE

(with the above modification), were substantially more

2

efficient than those using 5.

However, the gains diminished
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when many replicates ( >8) were taken especially at fewer

points.

It follows from Rao and Subrahmaniam (1971) that the
2

almost unbiased estimator (AUE) of o ;7 is 2 (yij - a - é;ci)2/

: 2 > .
r;(1 - k;;) where k., = 1/n + (x;-x.) /i r;(x;-x.)" is the

ith diagonal element of‘}'Q§XJ)_%$ with X' as the design matrix

of the regression model and where g and B are the usual

least squares estimators of a and B respectiveiy.

The MINQUE of Oiz is too complicated. Even the AUE

does not possess the distributional property needed for adjust-

ment of the statistics concerned. We shall therefore use

si2 as the estimator of 012. Jacquez et al. (1968) used this

estimator for obtaining the estimated weights.

2

As is well-known, (ri-l)si2/ 0;° is distributed as

2 2

X2 with (ri—l) d.f., and s;° and s, are independent when

i# 3.

8.3 Ad justment of the estimators and test-statistics

. . e 2
Let z, = s, /cyi and the estimated weight w; = %/%i ]

i1=1,25s0e5k. Let we = % Wy Since the estimators si2
of the error variances are independent, the adjustment of
the statistics concerned for removing the major part of

the bias, can be made with the help of the Theorem 1 (section

2.1.4) due to Meier.

(i) Adjustment of the estimators of the linear

parameters

The estimated regression coefficient using

estimated weights is
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:\, _ A ~N A ~ ) A A 2 2
g = (w.z2 WiXiys o =L owyXg I wiyi.)/ {weZ wix;%=(2 w;x,)%}
= G/H9
say. The adjusted estimator is
A
2 2 X 1 3 =8
B (adj) = B - I 2 using estimated weights,
T e 9 24
all Zizl
where
"5 1 , 3°6 5 °H 56 » H
5 = {H —p5 - HG 5 =28 — —
3 2 92 d 24 87, 25
sH ]2
+ 2 G azi } Ea L] . L] L] L] . L] . L] L] . (25)

The individual derivatives are:

oG

= - W. WX o . " -— « W . e - o [0 W.X.
1( g §XiY5 7 WeX4Y5, X 2 W3Y4 YieL Wy 1)’
-

all zizl

- e

= Wy { wi(xi—l)yi. + 2(2;wixiyi.+w.xiyi.

gll zizl | = xiswiyi.—yi.zwixi}’

oH

_ ) 2 2
s = - wi(Z WX T wWexy T - 2% wixi) |

all z.=1
1

and

2 2
(X THwax, T-20 WXy } ?
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The estimated intercept using estimated weights is

c _ A . ‘A 2 g A o~ A = 2 “A 2
o = (gwyy . wyx, = gwix, Zwixiyi.)/*{ we Zwixs T=(3 wyx, )%}
= L/H,
say. The adjusted estimator is
2 & x 1 2° o
o (adj) = ao- I 1 2 using estimated weights,
I 985
. all zi=1
d “ :
where a2 is given by the right side of (25) with G
d 245
replaced by L. The individual derivatives are:
o L
- y 4
— = - wi(yi.z WXy +xi%; VY e=Xy TW KV
924
all z.=1 _
i xiyi'zwixi),
— = 9 wi(yi.z WX TR T B WY emXg DWIX Y
9 2y
all z_ =1 = XYy BWiXi),
o 32H
5 2z and éz.z are given above.
i i
all z.,=1 ‘ all z.=1
i i

(ii) Adjustment of the F-statistic

Por testing the significance of the regression
coefficient, the F-statistic using estimated weights, is

given by



5 o . 2 % 2 “ -
F = (n-2)/ [:{ w.r L Ty Yig = ( Zwiyi.) FAwezowxg® -

A
W,
e
T

A 2 A A A A 2
( zmixi) Y/ { w. Zwixiyi. - Zwixiizwiyi.} -1 ]

= (n-2)/(7/R - 1) ,

say. Then the adjusted F-statistic is

R . ko1 5 °F
P (adj) = F - g Ty e 2 using estimated weights,
. a
all z.=1
i
on 0
where 3 °F = - n - 2 Z(Ra_’l‘ TaR)
2 % 2 ' -
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The individuval derivatives concerned are:
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2 2 ) 2 R
(% WX, T ok owe X7 - 2 Xy Xwixi) + { w.EIwixi - (z WXy )}

- 2
(? yij/ri"yi.)} + ZMJ



167

and

= z -
2wy Lw, (Zwyxyyse + wexgyy. - x5 Twyyye

i ¢ i i

_ 2 2. 2 2
where M = {w. f:;:Wiyij/ri - (z’wiyi.) }oLozo owyx, T owex© -

2 2 2
2 x5 Twixs} o+ {wegwyx,t- (2 w.x:)Y (@2 Wiyij/

B Cory +we Iy /ey -2y, T Wiyys)
and J

P = (w. W X Y50 =D W X T wiyi.)(z WX ¥se + VWX Vg e

- xizwiyi.-yixwixi).

(iii) Ad justment of the t-statistic

For testing the hypothesis: g = B oo the

t-statistic using estimated weights is

1
2

~ %_ A A -
| 5 (adi)-8 ] (n-2)¥( 2 wixs A= (x wyxg ) )

$=
A ) }’A o A IS :\ i A A 5 n D ) 2
[{ZZwiyij/ri-(Zniyf) /e = AW IW XY W X T WY ) VAR R PR St

( Zwixi) w. } ]

A

._l_ ~ . A A A '});
= (n-2)*| B (adj)- Bol { w.2 wixiZ—(Z wixi)2 }/(T-R)*

=(n-2)% |8 (adj) - 8 | s/(2-R)?
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"~

say. The underlying assumption is that var{ g (adj)} is

approximately equal to var (B ). The adjusted t-statistic

1

has the form

N A k1 5 °%
t {adj) = t -1 ri-l ) z;' J using estimated weights
1
adil Z3 =1L
where
32% =1 azs _ _98 (Z)T _ oR >/( ) A ] 2
Z e A 2 3% 92 T 2 9 2 e
924 923 i i 2 .}
2 2
_3 R T R
o2 (2 e |
925 924 024
with [ 3s/ 92 = - W, (;;w X, 24w, X, 2-2%. ST WXy ) and
i] g P | oy | 5 s
all Zi=1
2 2
[ 3°s/ 8z, ]
all zi=1
= 2 w,( iw %2 + w. x < 2R Xs LW, X, ) and other partial
i i7i gl e

derivatives being given in (ii) above.
afpgramoln
(iv) Adjustment of theﬁnormal test-statistic

Thehnormal test-statistic using estimated

weights is

A

- 3
= 1B (adi) - B | ( zwyx;® - (z wyx)o/wey @
and its adjuéted form is
. g 224 _
u(adj) = u - E Dy aziQ using estimated
all z4 =1 weights,

~

[(W’X —f B ) /4A+w {%5 2_%.x 2—(14%1)Bi} ] /A

where ;¥4
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CHAPTER 9

CONCLUSIONS

In this chapter the main results of the thesis are

summarised and areas for further work indicated.

9.1 Summary“of the results

The error variance has been assumed to be hetero-
scedastic with respect to the levels of sub-plot treatments
in split-plot designs and the treatments in all other designs.
As a result, the treatment estimators as well as the corres-
ponding sum of squares obtained by the weighted least squares
method, have the same form for all designs excepting the non-
orthogonal general block designs. Orthogonality of different
kinds of estimators of the linear parameters is maintained
for all designs except.géneral block designs and latin square
designs where the estimated row and column effects are not
orthogonal  to one another. Three summary dispersion
measures are suggested for the treatment estimators.

The expression for computing joint confidence intervals
of parametric contrasts depends on both weights and error
mean squares of the weighted least squares anélysis. The
adjusted form of this expression for the first three designs
is different from that for the remaining three because the
error mean squares are independent of weights for the former
designs but depends on them for the latter designs.

As the replicated observations are available for at
least one cell under each treatment, the MINQUE of group

variances for the first two designs and their unbiased




171

estimators for the third design, are independently
distributed as multiples of )(2. This facilitates
adjustment of the estimators of the linear and other
pafameters and other statistics using estimated weights,’
for removal of bias. For the other three designs, the
AUE's of group variances have negligible bias and are
approximately independently distributed as multiples of
x2 and necessary adjustment of the statistics concerned
has therefore been made.

For random models of the first two designs, the test
of significance of a variance component is found to be the
same as that of significance or equality of the corresponding
fixed effects.

For split-plot designs if the weights are large,
then the error mean square of the whole plot analysis is
expected to be much larger than that of the sub-plot analysis.

The weighted coﬁsfraints on some linear parameters

facilitate certain tests especially for models with an

interaction term.

9.2 Discussion and further work

Adjustment of the statistics using estimated weights
based on reﬁlications is expected to yield better results
than that of statistics using other types of weights. It
is thus desirable that replicated observations should be
taken wherever possible for at least one cell for each group.
The adjustment of most of the statistics using estimated
weights has given rise to complicated expressions having
limited practical application. Empirical work may reveal

that some of the terms of such expressions are negligible
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in comparison with other terms, and this may lead to
simpler expressions.

A Monte Carlo study for one-~way heteroscedastic
models showed that performances of the adjusted test-
statistics are more or less satisfactory. Such study may
be undertaken to observe the adequacy of the adjusted
statistics of other designs.

Random or mixed models for the first three designs
were considered in this thesis. Other types of mixed or
random models may be investigated for these and other
designs with unequal group variances. Similarly, multiple
regression models with unequal group variances may be
considered.

Missing-value techniques and covariance analysis
have not been discussed in this thesis. These are other
topics for.which further work could be undertaken.

The problem of finding the optimum number of
replications as a balance between cost and adequacy of the
adjusted statistics may be investigated for some designs.

Finally, only a special kind of heteroscedasticity
of linear models has been dealt with in this thesis for
some common designs. Heteroscedasticity in general is

yet to be explored.
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