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(i)

ABSTRACT

This thesis deals with weighted (generalised) least 
squares estimation and analysis for some common experimental 
designs with the error variance heteroscedastic with respect 
to the levels of one factor, namely, the treatments or (for 
split-plot designs) sub-plot treatments. The simple 
regression model with error variance heteroscedastic with 
respect to the values of the independent variable, is also 
considered briefly. The observations in any of the analyses 
considered are grouped in such a way that the error variance 
is constant within groups but varies from group to group.

On the assumption that the group variances are known, 
the weighted least squares estimators of the linear para­
meters and the corresponding analysis (Aitken, 1934-35; 
Plackett, I960, pp. 47-49) are provided for each design or 
model. An expression for joint confidence intervals of 
parametric contrasts for the heteroscedastic models is also 
obtained. The estimators of the linear parameters and other 
statistics usually involve actual weights, the reciprocals 
of the group variances.

The actual weights are not usually known. The esti­
mators of the group variances are therefore derived for each 
design or model. for some designs, the minimum norm 
quadratic unbiased estimators (Rao, 1970; 1973, pp. 303-
305) of group variances are independently distributed as

pmultiples of x~* For other designs, almost unbiased
estimators (Horn et al., 1975) of group variances have
negligible bias and are approximately independently distri-

2buted as multiples of x • Reciprocals of



(ii)

these estimators are used as the estimated weights.
The weighted least squares estimators of the linear 

parameters or variance components and other statistics 
including test-statistics using estimated weights, are 
generally biased. It is shown in the thesis how a major 
part of the bias can be removed; the procedure stems from 
a theorem due to Meier (1953). The estimators and other 
statistics using estimated weights are adjusted accordingly.
A modified form of this theorem is also proved for correlated 
estimators of the group variances. A small Monte Carlo 
study conducted for completely randomised designs showed 
that the performances of the adjusted statistics are more 
or less satisfactory.

The designs and models covered in this thesis are: 
completely randomised designs, the general two-way model 
with proportional cell frequencies, general block designs, 
randomised complete block designs, latin square designs, 
split-plot designs with two treatment factors and the 
linear regression model. For the first three designs, 
both the fixed-effects models and random or mixed models 
are considered whereas only the fixed-effects models are 
dealt with for the remaining three designs.
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INTRODUCTION AND PRELIMINARIES 

1.1 Introduction
In the classical least squares theory, the error 

variances are assumed to be equal. For linear homoscedastic 
models, the least squares estimators of the parameters have 
some optimality properties as given in the Gauss-Markoff 
theorem (see John, 1971, p. 34). When the error variances 
differ and their values or relative values are known, 
the same properties are satisfied by the corresponding 
generalised (weighted) least squares estimators.

CHAPTER 1

functionally related to the error variance, variance-stabili­
zing transformations can be used to remove heteroscedasticity 
(see Bartlett, 1947, and others). Hoyle (1973) gave a 
detailed account, with bibliography, of different types of 
transformation and their uses. It has been observed from 
experience that such transformations often normalise the 
data so that the F-test remains valid.

different even if there is no reason to believe that the
errors are non-normal. In animal-breeding experiments, the
litters may originate from different Sfieci-ee and the error

b'uejl tb b'fe.ed.variance may vary from speoies ta_ra-p-eeios-» If several
persons having different skills take measurements on the same 
Objects, then it ÌS not unr°nsnnnhlp +n flRRi’mP that t.ViP
errors of measurement havê tft-e— same variance— ’*«¥.e-a-e-n-pe-rswi.
Batches of chemicals used by an experimenter may have come 
from different sources and the error variance may differ

For variable unknown error variances, when the mean is

However, the error variances may sometimes be

from source to source.
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Sometimes the treatments may not be reproduced 
exactly for repetition. There are then treatment errors 
which may have different variances for different treatments.
In the data given by Fisher (1966, pp. 67-69) for a set of 
variety trials, Yates and Cochran (1938) found that one 
variety, Trebi, of Barley accounted for much of the variation 
due to varieties. Snedecor and Cochran (1967, p. 324) gave 
some examples of unequal variances due to treatment errors. 
Zyskind and Kempthorne (I960) considered treatment errors 
having unequal variances and found expectations of sums of 
squares over permutation distributions for some designs.

The concept of inequality of group error variances is 
thus quite old. In the late thirties, Bartlett (1937) 
proposed a method for testing the homogeneity of group 
variances for one-way models. Later on, Hartley (1950) 
gave a short-cut test. Han (1968) suggested a few methods 
for testing homogeneity of correlated variances. Russell 
and Bradley (1958), Johnson (1962), Han (1969)» Maloney and 
Rastogi (1970) and Shukla (1972) dealt with the test of homo­
geneity of group variances in two-way models and Curnow (1957) 
with that in split-plot designs for only two sub-plot treat­
ments .

Box (1954a and 1954b) derived some results on distri­
butions of quadratic forms in normal variates and applied 
these to study the effect of inequality of group error 
variances on the F-test in one-way and two-way classifications. 
He found that moderate differences in error variances did not 
seriously affect the test for equal replications while much 
larger discrepancies were observed for unequal sample sizes.

Draper and Guttman (1966) utilized Box's results from 
a Bayesian point of view in one-way fixed effects models
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when only two different group variances are suspected.
For heteroscedastic models, Box showed that the usual ratio 
of the error mean square to the treatment mean square was 
approximately distributed as a constant times an F-variate. 
Assuming some prior distributions of the means and variances 
of the populations, Draper and Guttman obtained estimators 
of the constants of such test-statistics. Applying standard 
analysis to some examples of unequal group variances, they 
concluded that "serious errors can result if the effects of 
unequal variances are ignored".

The problem of testing equality of two means when 
group variances are unknown and unequal, was first discussed 
by Behrens (1929) and Fisher (1935, 1939); the latter pro­
vided a method for such a test with the help of fiducial 
distributions of the parameters concerned. Welch (1938)
suggested an approximate test based on the assumption that a

2
linear function of two independent x -variates is approxi­
mately distributed as a constant multiple of a x-varia'te. 
Scheffe (1943) gave an exact solution to the Behrens-Fisher 
problem,in terms of interval estimation on the basis of a 
t-distribution. Welch (1947) suggested an asymptotic 
solution in which error of the first kind was held approxi­
mately constant.

Ghosh (1961) considered estimation of parametric 
functions in one-way models with unequal group variances and 
obtained a generalisation of Scheffe's (1943) result. Using 
Ghosh's result, Ghosh and Behari (1965)•derived expressions 
for point estimators and confidence intervals for treatment 
contrasts in randomised block designs with groups of treat­
ments having different variances.

Approximate test-criteria for testing equality of
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several means when group variances are unequal, were first 
given by James (1951) and Welch (1951). Using two successive 
Taylor's series expansions, James derived the following 
approximate expression for the a0® point:
X ( a )  [ 1+ (3 xU) + t+l) Kl/Cr^^-l) } (l-riwi/Zriwi)/2 (t2--!) ];
the weighted treatment sums of squares, using estimated 
weights, are to be compared with this quantity for testing 
equality of treatment means. In this expression y2 (a) is 
the value of X with (t-l) degrees of freedom (d.f.) at the 

level of significance, t is the number of treatments, r^ 
is the number of replications for the ith treatment, and the
estimated weight kb is the reciprocal of the variance of the
ith sample. Proceeding in the same way, James (1954)

. obtained approximate test criteria, again based on the x2
distribution, for tests of linear hypotheses for univariate
and multivariate heteroscedastic models.

V/elch (1951) provided another asymptotic solution,
based on an P-test, to the above problem. He obtained the
cumulant generating function of P = {x2/ (t-l)}/(y2/f ) » the

1 2ratio of two mean x 's , and took the expectation of P over 
X22 . He then compared the cumulants, up to order{1/(r^-1)},
of the terms of the resulting series with the corresponding 
terms of the cumulant generating function of the weighted 
treatment sum of squares; he suggested that the statistic
{Zriwiyd-(iriwiyi.)2/^riwi}/(t-l){l+2(t-2)Z ( i/(ri-l)x

(l-r.w./Er.w.)2/ ^ 2- 1)}
with Yj.as the mean of the ith sample, .is approximately dis­
tributed as a central P under the null hypothesis with d.f. 
(t-l) and f = (3 E{l/(ri-l)Kl-riw./Eriwi)2/(t2- 1)} _1.

Brown and Forsythe (1974a) proposed an approximate
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d.f. solution to the same problem. As both the numerator
t t

and the denominator of the statistic • (y • .-y. .)2 >?£ (1-r ■/n)/wt
1 1 1 1 1

with y.. = Zy^./t and n = Zr^, 
have the same expectation, they suggested, following 
Satterthwaite (1941), that this statistic is approximately 
distributed as an P with (t-1) and f0 d.f. under the null 
hypothesis where fQ= l/[z c^2/(r^-l) 3with

= <l-ri/n)/wi>/{ E(l-ri/n)/wi }.
Prom a Monte Carlo study, they found that the performances 
of their test-statistic and that of Welch (1951) were satis­
factory for more than 10 observations per group and were not 
unreasonable for samples of sizes down to 5. They also 
offered some suggestions for evolving an improved test- 
statistic which would be useful in all situations including 
small samples. Brown and Forsythe (1974b) showed that their 
test-statistic mentioned above could be derived by combining 
orthogonal contrasts of treatments. The method was extended 
to two-way designs with unequal cell variances. They also

a.proposed a method of obtaining joint confidence interval for 
contrasts between treatment means.

2Chakravarti (1965) showed that Hotelling's T— 
statistic could be used to test the hypotheses in respect 
of linear contrasts of the treatments in one-way hetero- 
scedastic models. Such tests are valid when the number of 
treatments does not exceed the minimum number of replications.

For one-way models with unknown group variances, 
Spj^tvoll (1972) derived an approximate expression for the 
joint confidence interval of all contrasts of the treatment 
means. If  ̂is any such contrast, then this joint confidence

* - A « j  i
/s. A

4> £- + A 9

interval is
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with as the estimated standard error of the estimator
\p of iJj and A ={aFa(t,b) }2. The expressions for a and to
in terms of individual d.f. were obtained by equating the
first two cumulants of E F(l,r^-1) to those of a F (t,b).

i
For two-way heteroscedastic models, some methods of

testing hypotheses were suggested by several authors besides
Brown and Forsythe (1974b) mentioned above. Graybill (1954)
considered randomised complete block designs assuming the
errors to be heteroscedastic between treatment effects and
correlated within each block. Subtracting the data for any
one treatment from the corresponding data for each of the

2other treatments, he showed that Hotelling's T— statistic 
could be used for testing the 'treatment differences. The 
test is valid when there are more blocks than treatments.

Siotani (1957) dealt with replicated randomised 
complete block designs assuming the amors in any one experi­
ment to be correlated and heteroscedastic but independent 
between the designs. Following Graybill (1954), he obtained
tests of significance for main effects and interactions based 

2again on a T— statistic.
Robinson and Balaam (1967) considered the same model 

as that of Graybill (1954) for each of a number of replicated 
complete block designs and gave a method of analysis, based 
on likelihood ratio tests, that uses the independent contrasts 
of observations under each treatment.

Schlesselman (1975) proposed a procedure for choosing 
a power transformation of observations of the replicated two- 
way designs when the usual assumptions of analysis of variance 
are not satisfied. To obtain such transformations, he 
suggested a weighted combination of Tukey's statistic for
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removable non-additivity and the t-statistic for testing 
the slope of log (sample cell variance) on log (sample cell 
mean). His method was then empirically compared with that 
of Box and Cox (1964). Point estimates for both procedures 
were emprically found to be the same on the average over 
many sets of data obtained through simulation.

Duby et al. (1975) gave a method for analysing the 
data of two-way designs when the cell variances are functions 
of the cell means. The method is based on Wald's (1945) 
large sample test criterion.

For general heteroscedastic linear models, Williams 
(1967) derived approximate variances of weighted least squares 
estimators using estimated weights based on equal replications. 
Bernent and Williams (1968) extended these results to the case 
of unequal replications.

Williams (1959, pp. 67-70) and Draper and Smith (1966, 
pp. 77-81) discussed weighted least squares method for esti­
mating the linear parameters of heteroscedastic regression 
models. Jacquez et al. (1968), Rao and Subrahmaniam (1971) 
and Jacquez and Norusis (1975) undertook Monte Carlo studies 
on the efficiency of the weighted estimators of the parameters 
of linear regression models with unequal group variances.

For the experimental designs considered in this thesis, 
it is assumed that the error variance is heteroscedastic with 
respect to the levels of only one factor, namely the treat­
ments or (for split-plot designs) sub-plot treatments.
For the regression models, the error variance is assumed to 
be heteroscedastic with respect to the values of the inde­
pendent variable. Thus the error variance is constant for 
the group of observations under each level of treatments or
each value of the independent variable and varies from group
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to group. The methods are also applicable when the error 
variance is heteroscedastic with respect to the levels of 
any other main effect.

When the error variance is the same within a group of 
observations but varies from group to group under a linear 
model, some methods are available for estimating the error 
variances from a sample. The estimators of the error variances 
may then be used for obtaining the weighted least squares 
estimators of the linear parameters. Such weighted estimators 
will generally be biased. Similarly, use of estimated weights 
introduces unknown bias in other statistics including test- 
statistics for the analysis of data with heteroscedastic models. 
In this situation, one method is to remove much of the resulting 
bias of such weighted estimators and statistics for these to 
be of practical use.

In this thesis, the weighted least squares analysis 
(Aitken, 1934-35; Plackett, I960, pp. 47-49) is given for 
each of several common designs, assuming the group variances 
to be known. The estimators (Rao, 1970, 1973» pp. 303-305;
Horn et al., 1975) of the error variances are obtained.
The 'weighted least squares estimators of the linear para­
meters and other statistics using estimated weights are 
adjusted for removing a major portion of the bias with the 
help of a theorem due to Meier (1953). A report on a 
small Monte Carlo study on the adequacy of the adjusted 
statistics for one-way heteroscedastic models is also given.
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1.2 General principle of weighted (generalised) least
squares analysis when the error variances are known

Let us consider the heteroscedastic linear model

Y = x 'b + £ ..................  (1)
#V »W «V

twhere Y is the vector of observations, X the design matrix,
3 the vector of linear parameters and e the vector of errors
such that E (e) = 9 and var dia§ (ai>a2> = Y*

2say, the error variances, ^being the diagonal elements and 
n the number of observations. The error variances may not 
be all distinct. The matrix Y is non-singular.

If the error variances are known, then the weighted 
least squares estimator of the parameter vector 3 is obtained 
by minimising the quadratic form e V e= (Y-X ^  Y 3)•
Taking the'derivative of the right hand side with respect to 
3 and setting it equal to zero, we get

X V"1 X* 3 = x V_1Y ............  (2)

as the normal equations for finding the weighted estimator
3 of 3. such equation was first given by Aitken (1934-35)
and then the principle was further developed by others,
e.g. Goldman and Zellen(1964),to cover different cases.
When V=a2 I , this reduces to the normal equations of the
simple least squares procedure.

Nov/ define the weighty ̂  = l/o? ,i= l,2,...,n,
1 6and V =w , a diagonal matrix with w. as the diagonal

•V <V -i-

elements. Also let w ^ 2X = A andw<̂ zY=Z where w^ 2
~ ~ ~ JLis the diagonal matrix with w^a as the diagonal elements.

Then var(Z)=I and the normal equations (2) become

A A a - A Z .
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These are the normal equations of the simple least squares 
in transformed data so that the estimators possess optimality 
properties as mentioned at the beginning of section 1.1.

It also follows that the sum of squares (SS) due to
~ i ~» <$the estimates, namely SS (3) = 3 A Z =3 X w Y and the SS due 

to error, namely SS (E) = Z* Z -3 A Z = Y w^Y - 3 X w^Y =e V ,
u >V >V <\/ *V <V »W »V »V *V *** 'W ^

withe=Y-X 3, are independent. Moreover, since £ {SS(3)> - 

3'X V-XX'3 + rank(X*) and E{SS(E)} = n- rank (X ),
<w «v <v ^

the SS due to estimates and the SS due to error are distri­
buted as non-central and central' x2 variables respectively

I
with the corresponding degrees of freedom given by rank (X ) 
and n-rank (X*). Thus the usual F-test can be used to test 
the hypothesis:

3 - 0
r *  •

(See Plackett,1960,pp.47-49) 
c\Uo bz tsMj-J- <x

1.3 Methods of estimation of weights
5Sj&) Ĉ Uj-

As we are considering group variances, the variance 
model of the error term in equation (1), when the obser­
vations are arranged treatment by treatment, can be written 
as

var Ce) - V » VjoJ + .... + ...........  (3)

where the quantities a? are the group error variances, and 
the matrices V. are diagonal matrices having the form 
V. = diag(0, . . . ,0,1, .. .1,0,. . . ,0) . The matrices V. are
idempotent and orthogonal, and sum to I.«V

Such a model was given by Neider (1965, 1968) for 
variance components under orthogonal block structures.
There the matrices V- defined m strata of the analysis. 
Similar variance component models were considered by Hartley 
and Rao (1967) and Patterson and Thompson (1971, 1975).



11

The following are the methods of estimating cv‘

(i) The MINQUE method of Rao (1970, 1973)

Rao defined the minimum norm quadratic unbiased 
estimator (MINQUE) of a,2 by the quadratic form Y A. Y-L ~  A , 2where A. are matrices chosen in such a way that tr(A.U) is 
minimised for all i. Here

U + « + a
and the minimisation is subject to the condition that

» 2 2 E (Y Y) = . In general the estimates of cr̂ depend
2

on the choice of . Rao (1973) recommended that ou should 
be chosen approximately proportional to cr̂ 2 wherever possible.
In the absence of any prior information about cu2 , 
may be taken to be unity.

As tr (A.IJ) is the square Euclidian norm, the method 
is called 'minimum norm'.

Rao (1970) gave a computational method for obtaining 
such estimates. Let the projection matrix be S = I - X 1 
(XX.1 )~X = (s. .)» A~ being any generalised inverse of A.
«V #»/ w 1
Further let v be the vector of squares of the residuals given

2 2 2by S Y, 6 the vector of variances > • • • » an an  ̂2 = (sij } *
1 2Then the MINQUEs of a • are obtained from the equation 

F 5= v when F is non-singular. He also suggested that ther*< »v <v
group error variances can be estimated by solving the reduced 
equations obtained by adding the set of equations which 
correspond to the same variance,

Mallela (1972) derived necessary and sufficient 
conditions for F to be non-singular. In this thesis, the 
coefficient matrix of the reduced equations for estimating
the group variances will always be non-singular.

Horn et al.(1975) suggested almost unbiased estimators of 
variances and showed how these could be obtained from corresponding 
MINQUE's.
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(ii) The method of maximum likelihood

Under the assumption of normality of errors, the
likelihood function of the observations is given by

—1 /2
L = (2*)~n/2 |V | exp {- £ (Y - X 1 !),V 1(Y - x ’ 3 ) }.

*v »y A» *y »w

The maximum likelihood method of estimating the linear
parameter vector 3 gives the same normal equations as the
weighted least squares procedure. Following Hartley and
Rao (1967), we find the equations for obtaining the maximum

2likelihood estimators of as

, -i■ „ . W btr (V —  ) + (Y - X (?) — —  (Y - X 63=0; i-1,2, . .,m,
baiZ ~ ~ ~ bcr i 2 ~ ~

***
where 3 is the v/eighted least squares estimator of 3 .
The estimated variances are usually in terms of the estimators 
of the linear parameters and may be evaluated by an iterative 
method when the process converges.

(iii) The method of modified maximum likelihood

Patterson and Thompson (1971; 1975, pp. 197-207)
proposed the method of modified maximum likelihood for 
estimating variance components » • • •» \  » as in (5), but
with V singular in general. They suggested partitioning of*v
the data into two parts - one represented by the transformed
observations (residuals) S Y and the other by Q Y
where Ol is such that cov (SY,QY)= 0. The variance components

•V A/ ry «v

were then estimated by maximising the likelihood of SY 
and 3 by maximising that of QY . Patterson and Thompson«V
(1975) suggested that the estimate of o? should be obtained 
by equating Y (SVS) 'V. (SVS)+Y to its expectation, i=l,2,...,m.
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An iterative method was suggested for finding the actual 
estimates. Here A4 denotes the unique Moore-Penrose

A-/

(Moore, 1920, 1935; Penrose, 1955) generalised inverse of A.

(iv) The method of Nelder (1968)

As proposed by Nelder (1968) for the same model (3) 
in a different context, a-2 can be estimated by equating the

I tsums of squares Y R V.RYto their expectations, i=l,2,...,m,
A/ Al A/ 1 A/ A#

where R= I-X (XV-1X )+XV 1 (see Patterson and Thompson, 1975). 
Almost all the authors cited above suggested feedback of 
information for estimating the linear parameters.

It was shown by Patterson and Thompson (1975) that a 
single iteration in the solution for their estimate is equi­
valent to the MINQUE procedure and that their method gives 
the same results as those of Nelder's method.

In view of this fact and also because of the simpler 
algebraic procedure for obtaining MINQUE possessing some 
desirable properties, we have considered only the MINQUE 
method of estimation of the group variances in most of the 
cases studied in this thesis. The method of maximum like­
lihood estimation is also considered in some cases where 
simple expressions could be obtained for such estimators. 
Almost unbiased estimators (Horn et al.,1975) of error vari­
ances are also obtained from corresponding MINQUE's for two 
designs.
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COMPLETELY RANDOMISED DESIGNS

For fixed-effects one-way models with known unequal 
group variances, estimation and analysis are dealt with by 
the weighted least squares method. The estimators of the 
group variances are obtained and the test-statistics, using 
estimated weights, are adjusted for removing a major part 
of the bias of such statistics. A formula for a joint con­
fidence interval of all contrasts of treatments and a report 
on a small Monte Carlo study are provided for such models. 
Finally, estimation and analysis for mixed and random models 
with unequal group error variances are discussed.

2.1 One-way fixed-effects models
2.1.1 Weighted (generalised) least squares analysis when 

the group variances are known

It is assumed that there are t treatments of which the 
ith treatment is applied to r^ plots in an experiment. Let 
the observations of such an experiment be expressed by the 
linear model :

y^j=]L+ê j ; j =1,2 , . . ., ,r^>l; i = l,2,...,t........ (4)
where ^  is the population mean for the ith treatment and 
the error term having mean zero and variance a which in 
general differs from treatment to treatment. The errors are 
assumed to be independent of one another. For the ith treat­
ment, there are r̂  observations, which are different in 
general. *

* Suggested by Dr I). A. Preece

CHAPTER 2
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Let n = £ r•.

If 1 (yll»’*#»yl̂ » ,ytl» • • • »ytr ) is the
column vector of observations arranged treatment by treat­
ment, then the above model can be written as 

Y = x'e + e
+* A/

where Bis the column vector of treatment means, X the 
design matrix and e the column vector of errors. The 
design matrix is of full rank = t and

var (e) = diag (c^2 , . . . , c^2 , . . ., ô .., ot3 = V , 
say. The variance model can be written as

V = a 2 V, +rJ JL + 04
where V. = diag(0, . . .,0,1, . . . 1,0, .. .,0) with unity occurring

i — 1
Ther^ times after £ places in the main diagonal.k ~ 1

matrices V. are symmetric, idempotent and independent, and •̂1
sum to I.

•s#

By (2) of section 1.2, the normal equation for 
estimating JÛ  by the weighted least squares method is given
*>y

riwilJi = wiYi- » i = l,2,...,t.
AHence, . ; i = l,2,...t .

Here, we have used the convention that the dot suffix of a 
small letter denotes the mean and that of a capital letter 
the total over the corresponding variable suffix. This 
convention will be followed all through. The weight 

1 / o ̂ , i — 1,2,...,t •
The estimators of the treatment means are thus inde­

pendent of the weights and also of each other.
The sum of squares (SS) due to the estimates is givent

by SS(Est.) = £ viYî /ri

with t degrees of freedom (d.f.) and that due to error by
SS (E) = w .y. ,2 " £ ^iYif/ri ij x



16

EE f .2
ij 1 u ij 7 i J

with (n-t)d.f. Under the hypothesis of the equality of the 
treatment means i .e . JUc -jti, the model at (4) reduces to 
y..=J! + • rihe weighted least squares estimator of the
general mean is then given by

p = EwiYi>/Eriwi
and the corresponding sum of squares by

SS due to mean = (Ew^Y^)2/Er^w^
with 1 d.f. The sum of squares due to treatments corrected 
for the mean is thus obtained as'

SS(treat) = iwiYi*/ri - (Ew^.f /E^w.
= ZWiri ^ i ’ - y..)2

with (t-l)d.f., where y-* = Er̂ ŵ ŷ , ./Er^w^
»V

Since y-jr̂ i + ei. and y* •= H + e** from the model at 
(4) with [1 = EriwilJi/Eriwi and e.. £ i ./ E r ^ ,
we have, E {SS (treat)} = E r ^  2 + E r ^ E f e ^ -  e..)2

= Eriwi CPi-fD2 + (t - 1)

E{SS(E)} ■= E{|? Wjfy^.-yj.)2 }

“ 6{ij M ' i j  ' V ’*'1
= n - t .

Analysis of variance table

Moreover,

Source d.f. SS E(MS)

Treat. t-1 Ew-r-(y•. - y.•)2
t ~ 2 

1+ Ir-w. (H.-|I)/(t-l)i 1
Error n-t EEw. (y. . - y . . ) =• • i w n  3 i 3 lj) J 1



bi° a, 1* -
Once an P-test has shown significant differences amongA

the treatments, a normal test can oe used to test the diffe­
rence between the ith and jth treatment means using the fact 
that z = (yi--yj.)/[* 1/riwi + 1 * */r;jWjj 5

l¿-vw&v hi yuM bfrp
is a standardised normal variate^ Ratio of this normal variate 
to the square root of the error mean square is the corresponding 
t-variate with n-t d.f.
2.1.2 An exact test for equally replicated treatments

when the group variances are not known.
JUAl TLt t r  cArMfvWoXicvuà ¿c K AÂ AjL<ts>Jb-4 •
Let yk= (y^p» • • • ,ytk) ' le' the vector of t observations

at the kth replicate,k =1,2 r. Then the vector y^ is
distributed as multivariate normal with mean vector (Up •

2
and dispersion matrix £ = diag (a^,...,o't

Let C be any (t-1) x t matrix of rank (t-l) such that 
C 1=0 where l is the vector with unity as its elements.

Let z — c y^ « Then z-j. is distributed as multivariate
normal with mean vector, C]J, and dispersion matrix C £ C

i pwhere C£C is non-diagonal. Hotelling's T-test is
applicable here. The vector z, is the vector of (t-l)i\
independent contrasts of t observations of the vector yk •

To test the hypothesis of equality of treatment means 
is the same as to test the hypothesis: C jl = 0 .
Thus,

17

2 ' -1T - r z. s x z.
Pis the Hotelling's generalised T-statistic with (r-'l)d.f.

for a (t-l)-dimensional distribution, where
r r ,

z. = £ z,/r and S = £ (zv - z.)(zv ” z*) / (r "
rs* 2 »W K +" -j J\. »N» ^ -*x ***

oHence, T (r-t+1)/(r-1)(t-l) is a central P-variate with 
(t-l) and (r-t+1)d.f. under the null hypothesis.
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The test-statistic is independent of the choice of the 
matrix G (see Anderson, 1958, pp.110-111). The test is

«N»

only v/hen r >.t.
The test was first given by Chakravarti (1965).

2.1.3 Estimation of error variances
For unknown error variances, the above test is not 

applicable when the replications r^ are not all equal and/or 
when r <t. In such•situations, one may use estimators of the 
error variances in place of the actual ones. It is well-known 
that r.p i  ps. = £ (y. .-y.,) /(r. - 1) is an unbiased estimatori «)

o pof . It is shown below that s^ is also the MINQUE.

(i) The maximum likelihood estimator
From.section 1.3, we obtain the maximum likelihood

estimator of o • as
ri
 ̂ (ypn -  y^» )  /v± ~ 1 , 2 , . . . , t .

This is the familiar maximum likelihood estimator (MLE) of 
2 for the ith population when considered singly. The 

estimators are independent of one another.

(ii) The MINQUE of error variances
ofSince X' is„full rank=t, we have

/V ^

x ' U x ’)"1!. = diag (J / -----,J / )^  ~ wll rl ~rt t
where J is the square matrix of order r. with unity as its

r-* 3? 1
elements.
Hence, the resulting projection matrix S is given by

/V»

S = I - X ' (XX* r 1 X^  /v

= (ly, " Jy, / T. , ...... ,1-p ~ /y, )^P1 ^l ^̂l ^ t  rt
where I , is the identity matrix of order r.. The elements

- l  1
of the vector SY are the observed residuals.
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Then the normal equations for obtaining the MINQUE, a^2 
of a. 2 are given by F s = v where P is the matrix of the1 »y *y —
squares of the elements of the projection matrix, 6 is the vector 
of variances with 2 repeated r^ times,

and v is the vector of the squares of the residuals
2 ~- yi.) . The ith set of equations involving 2 is

given by

(1 - 1/r^)2 h 2 ♦ (Tl - i) V / a = (Xu - n - ) 2

(1 - b r p 2 ;,2 * frj - l)^2/ 2 = (yir. . yi 0 :

whence, on adding the equations,
rim J- q„ 2 . . 'Z " 1)^ij - Y*) ^ riJ=1

° i ? +9 1 1 j ü j I • • j L= Si
Thus the MINQUE of ai is the familiar unbiased estimator, si t 

2of for the ith population when considered individually.
We shall denote the MINQUE of o^ by s^‘ Like maximum
likelihood estimators, the estimators are also inde­
pendent of one another. As is well-known, the variate 
(r--l)s.^is distributed as X2 with (r.-l)d.f.

Feedback of information is not necessary for the
treatment estimators since these are independent of error

2variances. Bartlett's X -test can be applied to test the 
homogeneity of error variances in any particular situation.

2.1.4 Adjustment of the test-statistics using estimated 
weights

The F-statistic in the analysis of variance of the 
weighted least squares and the normal test-statistic for
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testing the difference between any two treatment means, 
involve actual weights, the reciprocals of error variances.
If the estimators of error variances are used in place of 
actual ones in these test statistics, then bias will be 
introduced. It is difficult to obtain the magnitudes of 
these biases analytically. But, since the estimators of 
error variances are independent, bias of order £{l/(r̂ =-l)} 
can be eliminated by adjusting these statistics with the 
help of the following theorem due to Meier (1953)*
Theorem 1 ♦ If x^,i = l,2,...t, are independently distributed 
random variables with probability density functions

f (x . ) 
1

(R .)* 
r C i )

f c i  - 1) ~k n .x .
e  1 1 Oix 00

and R(x^,...,x^) is a rational function with no singularities 
for 0 < x i,...,x_t < oo then E[R(x-p . . . ,x̂ _) ] can be expanded in 
an asymptotic series in the l/n.. In particular

t 1 _ ? b R
i

i

i=l "i
The result is based on Taylor's series expansion of the

+ 0( ) . 
all xi=l 1

function R(x^. ,,x^). This theorem implies that the adjusted
statistic R [ i r ̂ p

xl,‘*,xt j “ 2 [“ xT J ’ ^eing iree from terms
b  x ift/lX ^-1

of order ( ) ,  approximates the actual value, R [l,.**,l jof 
the function more closely than R [x^, ... ,x^ j itself. In 
practice, actual weights are to be replaced by0the corres­
ponding estimated weights in the term £ n., i L b*i - i a.

2 / 2  ?In our case, x^ = s^ / where s. is either the
1 x^=l

MINQUE or the MLE of o±2, i = l,2,...,t The estimated
2  2weights are: wi = l/s± = l/x±0± , .and ni = r̂  - 1 .
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(i) Adjusted F-statistic
The error SS using estimated weights based on the

S S. w (y - y .)
1 0 u

MINQUE/iof error variance* is

p , (y.? A - y * • ) ,= E {s (yii-yi.)2/ £ — U — --- } = n - t,
i j J 3 i

a constant. Similarly, the error SS using the estimated 
weights based on the MLE is also a constant. Thus, only 
the treatment SS is to be adjusted for adjusting the F-statistic.

The weighted treatmentA SS using estimated weights
A

Sriwi(yi-
~ v2- y.. )

= i (ŷ  • - y..) + z rk ( y]r. - y .. )2
2 1x. a •X • X

M i  x a 2 xk k

where «1 ■
A*v

and y.. =! E ri V i /  S rit i •

Now, we have
i_(y±.

A
-y.. )2 2r. / ~ v2 i (y^.-y..)

axi a • 2 2̂  °X X^ w.

and 9( yk • -y • • )2 2ri
A a

(yk.-y. • )(yjL*-y* • )

*i a ,2 X
p A

x^“w.

where A
w. Z r±w . 

1 1 1
Thus

3 (Tr.SS) 
3 x.

i-ity-y..) 
2 2 

°i Xi

v 2
+

2 r^ (y^-y..)

2 v ± ( y ± . ~ y . . )

M i2 2 ̂  a • x . ■ w . u x x

o . 3X x^ w.

rk (yk .-,..)

xk ° k

ri(yi.-y. • )'
a.2x.2 x x

Taking partial derivative of this again and putting x_̂ = 1 for
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all i and simplifying, we get, 

32(Treat,SS)
2

where

3 x.l

w. = l r^w^

= 2 v'itn.-y--5 C1
all x^=l

Hence, by the above Theorem 1, treat. SS (adj)

riwi
w.

.2 . r 2riWi= 2 r.w.iy^-y..) - z -;_J- (yi.-y..) (1-
1
t

1 ri
r . w .l l£ riwi(yi.-y.. ) { 1 - — IT ^  ” “>•—  ) >w.

r . w .l l
AW.

Thus, F (adj)
(n - t) { E riwi(yi.-y. . )2}

r . v/.
1 - n - 1 (‘ ~ H )w. '

(t-1) {E E Wi(yi . - y ^ ) 2 }
i a

with (t-1) and (n-t) d.f.

(ii) Ad;justed„normal test-statistic
let ; = ly*. - yk. I / <l/r ^  t + V rkik 1 "

be theAtest-statistic using estimated weights ibr testing the
difference between the £th and kth treatment means.

Then the partial derivatives are given as
-  2 2

3 z
3 x.- = I y &r-yk ' I Ai)( -

£ xk ° k _ \-3/2 »,
k r.l

and
r 2 ̂£5.o3x. x y .--yk- I

* * ° * \ v .  2>-5/2^ °+ k ic

all x .=1l

r . r .i i
allx^ =1

i i "5/2 2 23 ly £.-yk. I U A  £ w £, +l/rkwk) /4r± w± ; i = & or k .
Hence, by the Theorem 1, we have, on simplification,
/\z(adj)= z !-3 ( l/r£( - 1  )w£2+l/rfc2(rk-l)wfc2} / 4( l/r £ w £ + '£

ì/irv^ ) 2
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It is observed below from the Monte Carlo study that 
these adjusted test-statistics are more or less robust with 
respect to differences in error variances,
Ratio of the adjusted normal statistic to the square root of error 

mean squares is the corresponding adjusted t-variate with n-t d.f.
2.1.5 Multiple comparison

Scheffe (1959» pp. 68-70) developed a method of 
multiple comparison assuming the error variances to be 
constant. For the heteroscedastic models if we proceed 
in the same way, we find that the probability is (1 - a) 
that the values of all contrasts, , of the population means, 
simultaneously satisfy the inequalities
(tp ~ S S <5"̂ ) i \p ¿r (ip + S ŝij) ) 

where S = ’{(t-l)F (t-l.n-t) V  ,

s is the square root of the error mean square of the
Aweighted least squares analysis, \p = Sciyi<(Eci = 0)

is an unbiased estimate of =̂£ĉ |Î  and p, is the standard
error of • A A ~ |

This follows from the fact that if ip s (iK , . . . )** ± 4

is an unbiased estimate of \J> = ij>q) *, the vector of
independent contrasts of the population means, then the

A 2 estimates, ^^,are independent of s and
( ij>- i(0 1 B 1 (\jj - \p)/qs2 = F (q n - t)

q

where B = var (i|0-
From this it follows that the probability is (1 - a) 

that for all ]}

h' rjj- h1 ij> IfiqF^ (q^n-t)}2 s (n Bh)2

This can be written as |{ _ ^  £ {qFo<(q,n-t) }*s ^

where h sc that o'.* {var(J)}2=
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 ̂ t t
In actual practice, if ^ = i c.y.. with z c. = o,

1 1 1 1 1is an estimator of the contrast $ =£ ĉ p.̂ , then

I U o i2a.2/ri)}

2 2 ^ 2  If we replace by an estimator, s_̂  or a -̂ > then
C-A 0-Athe resulting quantity, , will not be unbiased for V ’ 

Once again the bias of order i £ l/(r^-l)) can be removed
A 1

from ^  with the help of Meier's theorem.

Since .20'

*Xi‘
ci ai

r.

4
I1

ci <*i

ri

2 , -3/-

all x.=i
1
2 , J C;4s;4

V “dj)-e(ci *i /rpiM l*3 l x (ri-15
Z (ci2si2/ri) 
i

-a

2using the MINQUE of cu as the estimator. Since the mean
2square error s , computed from sample, is a constant, no 

adjustment is necessary for that. Thus, the expression 
for the estimator of the joint confidence interval of all 
contrasts is given by

^ - Ss crj (adj)-'f' - i|> + Ss cr-(adj) *
r (5)

For the example considered by Spj^tvoll (1972), the 
joint confidence interval at the 10fo level of significance, 
for the contrast - |I2 , is [19.3,33.3 ] obtained by the

pabove method using MINQUE of ai . The corresponding joint 
confidence intervals obtained by Spj^tvoll and by the method 
of Brown and Forsythe (1974b) are [l7.5, 35.1 ] and 19.8,
32.8 ] respectively. The MLE of ° produces a slightly
larger confidence interval.
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2.1.6 Summary dispersion measures of the estimators 
of the linear parameters

Dispersions of the individual treatment estimators are 
not comparable because of the differences in error variances. 
In order to have an idea about the overall dispersion of all 
the estimators, we consider summary measures of dispersion.

The weighted least squares (WLS) estimators of the 
treatment means are the same as those of the least squares 
(LS) method but their variances differ between the two pro­
cedures. The estimators are uncorrelated in both the methods 
so that the dispersion matrix of the estimated treatment means 
is a diagonal one in both the .procedures.

Since the covariances are zero, three measures of 
location of the variances of the estimators may be taken as 
summary dispersion measures. These are the arithmetic mean 
(AM), geometric mean (GM) and harmonic mean (HM). All three 
measures take the variance of each estimator into account 
and represent dispersion per treatment. The AM is the 
(l/t)th part of the trace of the dispersion matrix of the 
estimators and GM the tth root of their generalised variance.

The measures and their estimators for the two methods 
are as follows:

(a) Weighted least squares estimation
Here, var (yi) = /t± ; i = 1,2,. • • , t.

Hence, 2 2
AM = £ ~ ~  /t, GM = ( 7r ~ ~ ) 1,n and HM = t/ Z r.w.

ri ri
1 / 2with w^ = / 2

2Since AM3- GM ̂  HM on the assumption that each o  ̂ > o, the 
last measure i.e.,HM is the smallest.of the three in the 
presence of differences in error variances.
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All the measures have the same value when the replications r^
are proportional to the corresponding population variances 

i . e . , each C.^/r. _Lfc> I/Iie ticuii
t

i.e., each <j\ /r^ is the same constant.
The estimated AM = (l/t) Z s. /r. is an unbiased

1 2 l/tThe estimated GM = ( tr Si ) is not
r .

estimator of the AM.

unbiased for GM. Since
9 (Est.GM) 
3 xi2

t-1
( TT -—  )

all xi=l ri

the estimated GM with the adjustment for bias is given by
2s. v t  t-i i

Est. GM (ad j) = (*— —  ) (1 + — * E ---- )r .l ^i-2 1

Also since 3 (Est. HM) 
29 x .

= - 2tfi (1-f j)/ Z riwi , the

all x^=l
estimated HM with adjustment for bias is

A

Est. HM (adj) = (t/z riw±) { 1 + 2 z f± (1 - f±)/(r± - 1)}
^ ^where f. = r^w^/ Zr^w^ and f^ r^w^.

(b) Least squares estimation 1
2 2Here var (y..) = o /r. , where a is assumed to be the

constant variance of all the populations. Hence AM =
(L ^ - Z — ’ GM =a ^(^r- and HM = to^/n where n = z r^. 
t r.

2If MSE = Z (r.-l) s. /(n-t) is the mean square error of the 
1 1 MSE _ 1

LS analysis then the estimated AM - t ri , estimated
1

GM = MSE ( tt and estimated HM = t(MSE)/n are the unbiased
l

estimators of AM, GM and HM respectively.
When the treatments are equally replicated, the 

estimated AM of the WLS method equals that of the LS method 
and the leading terms of the estimated GM(adj) and the 
estimated HM (adj) of the WLS method do not exceed the



esimated GM and the estimated HM respectively of the 
LS method.

2.1.7 The Monte Carlo study

In order to observe the adequacy of the theoretical 
results, a small Monte Carlo study was conducted. Combi­
nations of some sets of values of replications and error 
variances were considered for each of 3, 5 and 8 treatments.
The results on all possible combinations of the following 
3 replication groups, 3 error variance groups and 3 treat­
ment mean groups for 5 treatments are given below. The 3 
replication groups, (6,6,•••6), (3,5,6,7,9) and (9,7,6,5,3), 
will be denoted by R(l), R(2) and R(3) respectively, the 3 
treatment mean groups, (10,10,* * • 10), (12,11,10,9,8) and
(9,10,12,10,11) by T(l), T(2) and T(3) respectively and the 
3 error variance groups, (1,1,* '*,1), (3,2,1,!,!) and 
(■£■,1,4,1,!), hy V(l), V(2) and V(3) respectively.

Only one table contains results on the probability 
of exceeding percentage points of the main tests for each 
of 3,5 and 8 treatments.

2.1.7.1 Sampling experiments

For the linear model (4) of section 2.1.1, the 
observation, y. . was assumed to be normal with mean, p. , andc]2 2 variance, . For each set of values of r^, p^ and cr̂  ,
1000 distinct sample realisations were made at each run and the 
analysis was carried out for each sample in double precision 
on the University of London computer, CDC 7600, in FORTRAN.
The normal samples were obtained with the help of the sub­
routines, G05AEF(A,B) and G05BBF, developed in package forms

27
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by the Numerical Algorithm Group (NAG),

2.1.7•2 Power of Bartlett's chisquared test on the
homogeneity of error variances

Monte Carlo powers of this test were calculated over 
1000 samples each and are given in Table 2 which shows that 
the powers are almost independent of the treatment differences 
as is expected. Data of the first row of the table show 
that the probabilities of exceeding the percentage points 
in the absence of differences in the error variances, are 
close to the nominal values. The power of the test is rather 
small even when the differences in error variances are quite 
large. The power appears to be larger in the equi-replicate 
case.

2.1.7.3 Confidence intervals of orthogonal contrasts
j oint

In order to investigate the behaviour of the^confidence 
intervals of contrasts, two sets of four possible orthogonal 
contrasts stated in Table 1 below, were considered.

Table 1. Two sets of orthogonal contrasts

Set Contrasts

I (i) yi - y2 (ii) yx + y 2 -2 y 3
(iii) y1+y2rP5 ~3y4 (iv) y1+y2+y3

II (i) y 1-y 5 (ii)
(iii) ^ 1+ ^-( H>+^) (iv) 4y5_(y1+y2+P4+ii5)

For computing confidence intervals of the treatment contrasts, 
the expression in (5) of section 2.1.5 was used for WLS method



and that given by Scheffe (1959» P.69) used for LS method.
It has been observed from the sampling experiments 

that the mean confidence interval is virtually independent of 
the treatment differences. Table 3 gives the average confidence 
intervals of the above contrasts over 1000 samples each when all 
the treatment means are the same for both the LS and WLS methods. 
The table shows that the mean intervals by LS procedure are more 
or less the same as those by WLS method using MINQUE for all 
contrasts in the absence of differences in error variances as 
is to be expected. For the WLS method, the MLE always pro­
duces somewhat larger mean confidence interval than the MINQUE. 
Mean confidence intervals involving fewer means are usually 
smaller than those involving larger numbers of means except that 
the last 3 contrasts of set I have approximately the same mean 
confidence interval by WLS method for most of the replication 
groups when group variances differ.

In presence of differences in error variances, the WLS 
method often produces smaller mean confidence intervals than 
the LS method especially when larger samples are associated with 
larger variances.

It is observed from the last 3 columns of the table that 
if the sample sizes are such that the ratios of the error 
variances and the corresponding replications are the same, 
then the mean WLS confidence intervals are almost always 
substantially smaller than those of the LS method. The effect 
of such proportional replications on the WLS method appears 
to be the virtual elimination of the inequality of the error 
variances and of the replications as is evident from comparison 
of the second and third columns with the last two columns.

29
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2.1.7.4 Empirical size and power of some tests of
significance

In order to observe the empirical size (Brown and 
Forsythe, 1974a) under the null hypothesis, and power
under the alternative hypotheses, the following tests were 
considered:

(i) The usual LS F-test ignoring differences in 
error variances

(ii) The usual t-test for testing the difference between 
\  and

(iii) The weighted least squares F-test (adjusted and 
unadjusted) using both MINQUE and MLE of group 
variances

(iv) The normal test (adjusted and unadjusted) using 
both MINQUE and MLE of group variances

Table 4 presents the results of these tests over 1000 
samples at 5c!° and Vfo nominal sizes; it gives the empirical 
sizes under the null hypothesis and the maximum and minimum 
powers under the alternative hypotheses. As is well-known 
the usual LS F-test shows marked discrepancies between the 
empirical and nominal sizes under the null hypothesis.
The empirical size is much larger than the nominal one when 
smaller numbers of replications are associated with larger 
variances but the former is somewhat smaller than the latter 

in the opposite situation. The observed sizes of the 
WLS F-test (unadjusted) using either MINQUE or MLE of 
variances are always much larger than the corresponding 
nominal sizes. For equally replicated treatments, and for 
situations where larger samples are associated with larger
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variances, the differences are negligible when the test is 
adjusted by Meier's Theorem (Theorem 1). In other cases, 
there are slight variations especially for a nominal size 
of 1 fo. Both the methods of estimation of variances produce 
the same size in the equi-replicate case but the MLE pro­
duces slightly larger sizes than MINQUE when sample sizes 
are not the same.

Like the LS P-test, the usual t-test for testing the 
difference between and Pg shows large discrepancies 
between the empirical and nominal sizes. For the normal 
test (unadjusted), the discrepancies are even larger. 
Adjustment of the normal test using the MLE of variances, 
does not improve the situation to a satisfactory level.
The performances of the normal test (adj) using MINQUE of 
variances are much better although there are still some 
differences especially for a nominal size of 1$.

Under the alternative hypotheses, the maximum powers 
of all the P-tests are as large as possible at both levels 
of significance. Their minimum powers are also large except 
that the last treatment group coupled with the last error 
variance group produced moderate minimum power for the Y/LS 
P-test (adj) at the lc/> level of significance. Maximum 
powers of t and normal tests are also large. The minimum
powers of these latter tests are small because the minimum 
difference between U j and  ̂ is small and one sample size is 
small. In general, powers of the Y/LS tests with adjustment 
were found to be quite large although these are somewhat 
less than the corresponding LS tests in some cases.
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Table 5 gives the probabilities of exceeding the 
percentage points, of the main tests under the null hypo­
thesis for each of 3» 5 and 8 treatments. The table shows 
that the WLS P-test (adj) using either MINQUE or MLE is more 
or less robust with respect to variations in error variances 
and sample sizes. The performance of the normal test (adj) 
using MINQUE is also not far from robustness if the sample 
sizes are not too small. The usual E-test and t-test show 
wide differences between the nominal and empirical sizes.

2.1.7.5 Concluding remarks

The WLS P-test (adj) using either MINQUE or MLE of 
the group variances is more or less robust with respect to 
differences in error variances. The normal test (adj) using 
MINQUE of variances for testing differences between two treat­
ment means is also not far from robustness. Performances of 
these tests are sometimes better if larger samples are asso­
ciated with larger variances. These tests are therefore 
recommended for testing appropriate hypotheses when Bartlett's
pX -test reveals that the group variances differ.

The Y/LS formula appropriate for heteroscedastic models, 
using either MINQUE or MLE of group variances, often gives 
smaller mean joint confidence intervals of treatment contrasts 
than the usual LS method, especially when larger samples are 
associated with larger variances. The WLS method is there­
fore recommended for estimating joint confidence intervals of 
treatment contrasts when there are different error variances.

A minimum sample size of 4 can usually be expected to 
give more or less satisfactory results especially when larger 
samples are associated with larger variances.
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2.2 One-way mixed models and random models with
unequal group variances

Let the mixed model he
y±3 = a+ T i + e ij 3=1 »2 ,----,r± ; 1*1,2,....,t,

where a is the general constant,t  ̂ the random effect of the 
ith treatment having mean zero and variance °x and e . . the 
error term having mean zero and variance . Treatment 
effects are assumed to he independent of one another and
of the errors which are also assumed to he independent of one 
another. This means that the observations y. . are correlatedJ
within a treatment and independent between treatments, 

t
Let n = E r. as before.

1 1

2.2.1 Estimation of variance components and the 
analysis when error variances are known

From the above model, we have,
y..= a + T i + e i*

y.. = a + t + e ..
♦V

under the notation of section 2.1.1 with x =  ̂ p A riwi *

Since E { ^  . - y±.)2 }

= E { 2 ( ei1 - e ±.)¿}
3

= ^ - D  "i" ’
s±2 = 2 (yi3 " '2
1 3=1 1D

r .iE (yi • - ŷ .) /(r^-1) is still unbiased for o\ for

the mixed model stated above.
pTo obtain an estimate of a , let us consider the 

weighted treatment sum of squares, 2 riwi(yi*y * *) » which

vías obtained in section 2.1.1.
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Since t . and e.. are independent, we have,

E{ E riwi(yi. “ y*-} }

= E {E T±vii (t ̂  - T ) + (e i. - e ..) }
i 22 X r . w,= (t - 1) + 0 T ( w. - ---—

with w. E r. w . •l l.
Hence, an unbiased estimator of is given by

2 2 r r. w. ¿ < 1 1
w.°-x riwi^yi-" y **)2 - t + l > / (w.

2when the actual weights = l/n^ are known.

Also, E (weighted within sum of squares)
= E <EE wi(yij- yi#)2 )

= E (EE w.(e. . - e..)2}

= (n - t) 
as before.

To show that the above two sums of squares are inde- 
pendent, we need only show that ( e • • - e . ) and (e . - e . . )1 J 1 -a-

are independent.
e

E i j
Now cov( ei .-ei.)(ei.- £••) = E {(e.^ - ,1̂ r—  )

. . yr.w.e.
( ^  )i E r . w .l l
a±2
r .l

r . w . a. i r i
w. r^

a.i
ri

riwiai 
w. r^

= o.
Hence, under the assumption of normality of errors, the 
above two quantities are independent.

^ pIt follows that E r w  (y - y..) is distriouted as a 
central y2 with (t-1) d.f. under the hypothesis that cx̂ = o
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pand that E£w.(y. . - y.) is always distributed as a central1 1 J 12X -variate with (n - t) d.f. under the assumption of normality 
of errors and that the two sums of squares are independent. 

Hence,

E riwi^yi- " y * * )2/(-t-l) 
wi^yij “ y±.)2/(n-t)

is a central F-variate under the null hypothesis:
= 0, with (t-1) and (n-t) d.f.

2.2.2 Adjustment of the F-test statistic and the estimator of 
2aT . using estimated weights

2Since the estimators s^ of error variances are again 
independently distributed as gamma variates, Theorem 1 due to 
Meier may be applied for adjustment of bias.

The expression of the F-statistic is the same as that 
of section 2.1.1 so that the adjusted F-statistic using 
estimated weights is also the same, namely

F(adj) =
r . ft.. v r v. * , ~ s 2 2 - , . . 1 1 »(n-t) U  vi_w± (yi. - y..) } { (1_~W T ‘’}

(t-1) ^  w± (yi3 - yi#)'
ij

with (t-1) and (n-t) d.f.
Now the estimator of aT using the estimated weights

is
5 2T

2 A= {2 riwi(yi. - y. . ) - t+1 }/(w. -
2a 2E r±wi
w.

) = A/B

say, with w. = £ riwj_‘ adjusted estimator is

(adj)=aT2- E ~ r 1
1 1  L Sxi

A>, 2 ~ 2 ¿a T using estimated weights,
all x^ = l

where
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a2<rT2
& x. 1

2
<XllZ£-l

1 B2b 2A BA 3 2B 2 B ^ B  2 m i_B_\ 2
B3 ‘ » x .2 " 7 2 - - - - -  I f T V  ’1 ox. o x.JX. 11 1

all x.=ll

the individual derivatives being
bA 
bx.l  J riwi^i--y-) ’

all x±=l

' *2a 2 rivvi(l-fi)(yi.-y.. ) , B
x .l = -riwi+riwi

all x±=l all x^=l
7 2 2(2 f. - Z r. w . /w . )l l l ' J

and 52B
» * 1

2riwi _ 2riwi { fi + (1_fî
all x.=ll (2fi~ Zr?wi2/w.2)}

with fh = r^w^/w. .

For the random model:

e
i j

with as random variables having mean zero and variance,
paT , if we proceed in the same way as above, we get the same

Oestimator of aT and the same F-test for testing the signi­
ficance of ax. But the above analysis is not valid ifT •

a 2have non-zero mean because separate estimator of °'T is not 
available in that case»



Table 2. Monte Carlo powers of Bartlett's chi-squared test on the homogeneity
of error variances

Error
variance

group

Treatment and replication groups

T ( 1 ) T(2) T ( 3 )

R(l) R(2) R(3) R(l) R(2) R ( 3 ) R(l) R(2) R( 3 )

5 $> 1 $> 5 C/o I/o 5 Jo 1°/o 51° 1 io 5 lo Vfo 57° I/o 5/o I/o 5/o 1 io 5/ó I/o

v ( D
V (2)
V (3)

.059 .010 

.553 .302 

.546 .322

.063 .015 

.502 .273 

.532 .321

.049 -012 

.414 .161 

.535 .314

.041 .007 

.557 .288 

.550 .335

.045 .011 

.529 .259 

.504 .301

.053 .014 

.401 .177 

.499 .305

.054 .004 

.540 .284 

.559 .316

.047 .015 

.502 .275 

.532 .309

.049 .009 

.414 .180 

.546 .315
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Table 3. vWean confidence intervals of two sets of orthogonal contrasts; letters LS

A
denote least squares method and YJLS weighted least squares procedure; 
numbers 1 and 2 after V/LS stand for MINQUE and MLE respectively of 
group variances

Error Vnriancc ani Replication groupa

V( 1) V( 2 ) V(3) V ( 2 )

a<i) n(2) R(3) R(l> R(2) p.(i) K<1) R(2) RO) (10 10,6,3.0)

LS VLSI 'WLS 2 LS W LS 1 WLS2 LS WLS1 WLS 2 LS NLS1 WLS2 LS WLS 1 KLS2 LS V/L31 WLS 2 L3 Y/I.S1 WLS2 LS 7/LSI \7LS2 LS V/L31 V/LS 2 LS >7 LSI Y/LS2

3.81 3.S5 4.22 4.84 4.86 5.32 3.32 3.37 3.69 4.43 6.10 6.68 4.78 8.02 8.79 4.38 S. 26 5.76 4.48 3.38 3.70 5.71 4.09 4.48 3.86 2.92 3.19 3.53 3.73 3.99

6.60 6.60 7.32’ 7.26 7.« 8.13 6.32 6.33 6.96 7.67 8.22 9.00 7.17 9.77 10.70 8.34 7.59 8.32 7.76 11.42 12.51 8.56 11.76 12.88 7.36 11.15 12.22 8.51 6.44 6.87

3.33 9.45 10.35 9.34 9.41 10.30 9.82 9.99 10.94 10.85 8.83 9.67 9.22 10.08 11.04 12.95 8.65 9.48 10.98 10.31 11.29 11.01 10.20 11.18 11.43 10.93 11.97 17.24 9.CO 9.61

12.05 12.17 13.33 10.73 10.81 11.84 16.08 16.16 17.71 14.00 9.32 10.21 10.60 10.08 11.04 21.21 10.95 11.99 14.17 10.45 11.45 12.65 9.70 10.63 18.71 12.72 13.94 27.88 11.90 12.69

3.81 3.91 4.28 4.42 4.39 4.81 4.39 4.45 4.87 4.43 4 .96 5.44 4.36 6.88 7.54 5.79 4.46 4.89 4.48 2.76 3.02 5.21 3.17 3.47 5.11 3.11 3.41 7.07 3.77 4 .02

3.81 3.82 4.19 3.S8 3.94 4.37. 3.86 3.93 4.31 4.43 4.29 4 .70 3.8 3 4.58 5 .02 5.09 4.16 4 . S6 4.48 3.86 4.22 4.57 3.91 4.29 4.49 3.89 4.26 6.12 3.73 3.9S

5.39 5.46 5.98 5.88 5.91 6.48 5.85 5.95 6.52 6.26 6.58 7.21 S .« 1 8.32 9.11 7.71 6.10 6.68 6.34 4.74 5.19 6.93 5.05 5.53 6.80 4.99 5.47 9.35 5.30 5.65

12 .05 12.19 13.35 12.32 12.64 13.85 12.25 12.30 13.48 14-00 12.81 14.03 12.17 13.86 15.19 16.15 12.50 13.70 14.17 22.31 24.45 14.52 22.61 24.77 14.25 22.09 24.20 18.09 11.72 12.51



Table 4. Probabilities of exceeding percentage points under null hypothesis and maximum and minimum powers under 

alternative hypotheses, for Se. and 1'» nominal sizes, of some tests of significance; letters LS-F stand 

for the usual IS F-test, WLS-F for weighted least squares F-test using estimated weights, t for usual

t-test and Nor for normal test using estimated weights; numbers 1 and 2 denote estimated weights based 

on MINQUE and MLE respectively of error variances

Proba bilities of exceeding percentage points under null hypothesis Power

alter

hypot

under

native

heses

Test1

Error variance and replication groups

V(l) V (2) * V (3)

R(i-) R(2) R(3) R(l) R(2) RC3) R ( l) R(2) R(3) 51 11

S % 11 51 11 51 11 51 11 51 11 51 11 5 % 11 51 11 51 1% Max. Min. Max. Min.

LS-F .043 .007 .048 .008 .049 .010 .073 .020 .182 .077 .037 .004 .095 .033 .081 .038 .099 .031 1.00 1.00 1.C0 1.00

WLS-F1(unadj) .096 .029 .153 .065 .152 069 ..114 .032 .201 .094 .122 .044 .136 .045 .164 .072 .162 070 1.00 .91 1.00 .*77

WLS-Fl(adj) .040 .011 .OSO 020 .058 028 .039 .012 .056 .028 .041 .012 .052 .020 .065 .026 .061 018 1.00 .77 1.00 .53

WLS-F2(unadj) .096 .029 .166 077 .170 078 '.114 .032 .216 .105 .129 .050 .136 .045 .175 .079 .182 076 1.00 .91 1.00 .77

WLS-F2(adj) .040 .011 .054 022 .062 028 .039 .013 .062 .032 .045 .013 .052 .020 .069 .030 .065 020 1.00 .77 1.C0 .53

t .044 .00S .042 007 .049 008 .143 .052 .247 .124 .093 .036 .024 .005 .007 0.0 .012 .001 .97 .IS .88 .05

Nor 1 (unadj) .070 .031 .116 052 .06S .021 .075 .029 .133 .058 .070 .031 .093 .039 .107 .061 .075 .021 .93 .21 .81 .11

Nor l(adj) .049 .021 .061 .025 .057 .018 .062 .018 .075 .040 .062 .021 .069 .024 .076 .026 .060 .014 .97 .13 .86 .06

Nor 2 (unadj) .100 .041 .159 .034 .087' .029 .100 .041 .181 .100 .083 .033 .116 .052 .139 .082 .091 .03 3 .98 .28 .74 .15

Nor 2(adj) .073 .030 .106 .044 .070 .023 .076 .028 .121 .053 .06S .031 .097 .038 .103 .053 .072 .022 .98 .19 .81. .10



Table 5. Probabilities op exceeding percentage points under the null hypothesis, for 
51° and l1° nominal sizes, of the usual P- and t-tests, the Y/LS P-test (adj) 
using MINQUE or MLE of error variances and the normal test (adj) using MINQUE,

for 3 > 5 and 8 treatments.

No .  of 
treat­
ments

Error
Replications

L S P-test WLS P-test(adj) using t-test Normal test
variances MINQUE MLE for

}X2

(adj) using 
MINQUE for
M 1 = ^2

5°/° 1$ 5/° 17° 57° 11° 51° H° 51° 11°

3 (2,l,i) (4,4,4) .059 .015 .038 .008 .038 .008 .076 .019 .  066 .027
- (8,6,4) .040 .004 .040 .011 .039 .012 .059 .012 .061 .015

(4,6,8) .098 .030 .045 .015 .047 .018 .114 .042 .058 .027

5 (3,2,l,i,i) (6,6,6,6,6) .073 .020 .039 .013 .039 .013 .143 .052 .062 .018
(9,7,6,5,3) .037 .004 .041 .012 .045 .013 .093 .036 .062 .021
(3,5,6,7,9) .182 .077 .056 .028 .062 .032 .247 .124 .075 .040

8 (4,3,2,1,1, ( 6 , 6 , 6 , 6 , 6 , .077 .025 .056 .024 .056 .024 .223 .099 .053 .013
l ,  i  n  
2 » 3 » 4  ) 6,6,6)

(16,14,12,10, .031 .010 .054 .022 .059 .024 .130 .055 .057 .021
10,8,6,4)
(4,6,8,10,10, .234 .110 .053 .022 .064 .025 .293 .167 .063 .021
12,14,16)
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CHAPTER 3
CELL

GENERAL TWO-WAY MODEL WITH PROPORTIONALaPREQUENCIES

In this chapter, two-way models having proportional cell 
frequencies and unequal, group variances are considered.
On the assumption that the error variances are known, esti­
mators of the linear parameters of the fixed-effects models 
are obtained and the analysis is given for two sets of con­
straints on the linear parameters. The MLE and MINQUE of 
group variances are derived. The estimators and test- 
statistics using estimated weights are adjusted for bias. 
Formulae for estimating joint confidence intervals are 
provided for contrasts of both main effects and interactions.

Two-way random models with unequal group variances are 
also considered for estimation of variance components; the 
corresponding analysis is given for both known and unknown 
weights. Finally, some simpler tests are discussed for 
two-way fixed-effects models With equally replicated treatments.

3.1 Two-way fixed-effects model

3.1.1 The model

In order to keep uniformity with the general terminology 
of the thesis, we shall refer to one of the two factors as 
treatments and the other as blocks. The model will cover 
experiments where block effects constitute a factor in which 
the experimenter is interested in addition to the treatments. 
For example, in an experiment where several persons work with 
the same set of machines, the experimenter may be interested 
in observing differences between machines as well as persons
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and both factors may be of equal interest, even though one 
is designated "blocks'*.

When the block effects are meant to eliminate from 
observations heterogeneity in any direction, they will not 
usually be of interest. In a variety trial in the field, 
varieties are of prime importance and blocks are introduced 
mainly to remove the heterogeneity.

We shall consider the non-additive model:

y.., = 3 . , + 5.. + £ .^ljk i o id ijk

i—l,2,...,b ; j—l,2,.,.,t ; k—l,2,...,n^.
(6)

where is the effect of the ith block, t . the effect of the 
L , J

jth treatment, 6. . the effect of the interaction between the* J
ith block and jth treatment and e . t h e  error term having1 JK2mean zero and variance o. . The errors are assumed to be 
independent of one another. The variances of the errors 
under the same treatment are assumed to be the same but differ 
from treatment to treatment. The number n ..( }1) of obser- 
vati'ons in the (i,j)th cell is assumed to be proportional 
to the marginal totals, that is,

nij N, . N., /N..“*• J
where N. = in.., N.. = 2 n. . and N.. = £2 n. .. This

j •> i ^  ij 13

includes the case of equal number of observations per cell.
Let there be two types of constraint on the linear

parameters of the model:
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Constraints (I)

Constraints (II)

0 £ 6 . . for all j 
i 13

= Z n..w. 6 .. for all i 
-j J <3 ^ <3

= £ £ n. .w .6 . .i j  ̂ 1‘1

0 = £ 5. . for all j
1

£ <5. . for all i13

Z S 6 i3 
1 3 J

where the quantities w. = l/a • are the weights. TheJ J
constraints (I) which are more arbitrary than the usual 
constraints (II), facilitate the test for block effects as 
•is shown below. There is no constraint on the block effects 
3  ̂which include the general parameter. Different sets of 
constraints imply different values of the parameters.

3.1.2 Estimation and _________ analysis when the group
variances are known

Let Y be the vector of observations arranged treatment 
by treatment. Then the model (6) above can be written, in 
matrix notation, as

Y = X V + e *1/Iwhere X is the design matrix, 3 the vector of all linear
*V .

(3.cv»J< X - b"t -
parameters and e the vector of errors? A The vector Y is 
given by

Y = ( y m ,.. ; Y i i n 1 1 ,Y 2 Ll’ * * ’ y 2 ln 2 * * * ’ y b t  V  * * * , y b t n b t )
so that

2 2 2 2 var (Y) — diag (cr-j_,..,,o' b ~ j • * 5 0 -j- * * * -(j ) = Y ,
say. Then V-1 = diag ( w .. . ,w .. , , ,  . . . ,w.fc).

Prom equation (2) of section 1.2, we get the normal
equations given at (7) for estimating the linear parameters.
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r • • I• • •r*3 •r-o • • • • •
i—i -P tH i l  H rH C\l CM P P« • r— 1 1—» Ü i—1 i i

> <  • • •r-3 • • •r-̂ H • • • >H • • •• • >H • • •i—1 P & rH rH CM CM P P
l _ L _ s CH Î~J S > > > ?■* ___ Î _ J

h
rH CM P

1—1 ü i—1 CMP rH ■Sk — i—1 _ — - f-Q<H m» • • ? C0,l<0 • « ? K3 l < o * «. ? «o . • . . . 1 *o . , . .
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Prom these the individual normal equations are obtained as

V  h - j w j V w j  +wi  P i / i . i  = w.iY - . i - ; i  • ...........tj i ij ij

f i0W3Ti ^ n i .wj B;+ P i .w.?. = p.Yi-. ; 1 = 1,2,...,3 3 3 13
Vi

h r  ni j V o +ni j V i +ni.iwi si.i “ wi Yi.i- 1 = 1 ’ 2 ............b3 3 ID 3 13
3 ~ 1 » 2 t

Using the constraints given by
EN..w .t . = 0 = £N. $ ■ = In. .w.6. .
j  3 3 3 i  1* 1 -j 13 3 13

= En. . 6 . .
-i 13 13

for all i 

for all j

along with the proportionality conditions, we get the esti­
mators as '

A

= y • j • > 3 = 1 » 2 ,..., t
Ew .n. .y. .,= j -3. .13J13
in. .w.
3 13 3

= J ± . ., i = 1,2, . . .£

say, and
~ J
6. . = (y. .. - y . . . - y. ..) . 
1 3 ,y 3

1
Finally, ^  = (yiJk - B* - ^  - «1;j) = (yljk - yi r >

from the last normal equation. Here, we have used the usual 
convention that the dot suffix of a small letter denotes the 
mean and that of a capital letter the total over the corre­
sponding variable suffix. This convention will be followed 
in the sequel.

The corresponding sums of squares for the above three
r\ p

types of estimators are E(w . Y. . ./N .), E{ (Ew.Y. ..) /£ (n. .w.)}
i J i ,i J J J J

and EE ni iw iyi-* ̂ yi j * " ^i’* ” Y- j*) in that order,13
To obtain the sums of squares corrected for the mean,

let us assume that ^ for all i, T. - 0 for all j and
J
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§• • = 0 for all i and j . Then the model reduces to 

yijk ~  ̂+ eijk *
The weighted least squares estimator of the general 

mean 3 is given by
3 = s w.Y,../EN..w. = y ... ,

say, and the corresponding sum of squares by ■
( ,E w, Y. .. )2/ ZU. .w. .3 .3 3 ' 3 3 3

with 1 d.f. Then the above three sums of squares (SS) 
corrected for the mean are:

SS (Treat.) = Sw.Y?. ./N. .) - (Ew.Y.,.)2/EN.,w,J J J  J J J J J

31 N*jwj(y *j* ~ y *••

with (t-1) d.f.
SS (Block) = EiEw.Y. .)2/En, .w, } - (Ew ,Y.,.)2/£ N-,w,j J J j l / t J  J J -j J o

1 3
with (b—1) d.f. and

SS(Int.) =Einijw;)yii.(yi r -y1..-y.JJ+ (Ew.Y.j.) A H
3

. .w .3 3

= K n iowj(yi y  - yi-- - y -j- + y ---)
2

with (b-l)(t-l) d.f.
To get the corrected SS due to the interactions, we are to 
add the SS due to the mean because the SS due to all linear 
parameters is a fixed quantity.

Finally, the sum of squares due to error is given by
s s (e ) \ ' r x i - yi r )2

with (N.. - bt) d.f.
It follows that the estimators of the linear para­

meters are not unbiased under any of•the two given sets of
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constraints. If we define 6 .. = (y... - y ... - y...+ y.,
then *-*. . is unbiased for the interaction effect <$. . under  ̂J i 3
constraints (I). The estimated treatment contrasts are 
unbiased for the corresponding parametric contrasts under 
both sets of constraints. The estimated block effects 
contrasts are unbiased for the corresponding parametric 
contrasts under constraints (I) only.

The variances of the estimators are:

Var (x.) = a.2/N.. , Var (3±) = 1 / \ n w13 3
and Var (5jj) = a.2(l/ni3 - 1/H..) - (lA.n^w. - '

The treatment estimators are independent of one
another and also the estimated block parameters are inde­
pendent of one another under the .usual assumption of normality 
of errors. The interaction estimators 6 .. are not inde-■*" J
pendent since

coy - - U / p i j w  - 1/0 . « ) ior j / k

Cov ( " b ’V  = - (1/N -.iW,i "1AH. 3Wj) for3 3
and

Cov ( £^,6^) = 1/ZN. jW j  for i / £ and j / k •

Expectations of the sums of squares under the two sets
of constraints are given below.

Under constraints (l), we have from model (6)
- 3  . t ^6 , i

y 13 13 13. > y<

^i** 3. + i + e. . . and y ,i l

3 , t
" * + 3 '

•w
3 . + T + e. . .

/V
where 3. = £Éh/b, e u..= fn^w^ ejj/ 21 j_ jw j » e3* j ^  3
%. .w .e. . ,/ZN. .w.. and t = EN. ,w .t / N..w ,. Thus we have 
-j J J <] J d
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~ p ~ pE {SS (Treatments) } = EN..w .(t. - t ) + EiE N. .w . (a . . .-a . ..) ' )
J J J 3 3 v J

= (t-l)+ E N. .w.( T. -T )'

and

E {SS (Blocks) } = EE n, .w .(3 , - 6. )2 + E{ EEn, ,w, (e , . & • • )2-LJJ-*- ^ -j J J ^
= (b-1) + EEni-jw -j( 3 i - 3 . )2

E { SS (Interactions ) ( = EE n . ,w . <5 . . 2+ E^EE n . .w . (a . .. - a,.-
J J J J J J “*■

e .j. + e • • •) }

= (b-l)(t-l) +ZX n1;jw 3ii32
~ Osince E (EEn. .w.( a a .. ) ̂ } = b(t-l) and13 3 IJ i

a»
E {EEni,w,(e ±, a . .)( e - a...) }= (t-l). Finally,

n . .
E (SS (Error) > = E E W .E( 2 (e -e,,.)2} = (N..-bt) *

ij 2 ' k=i 1J
Under constraints (II), we have from model (6)

i j - ! y-5-= B- + To + e -r •
and v... = 3.+ T + e ...

yij- ■ h  + t. + 6. . + a 3 13
**

yi* * - + t + 6̂ . + â
++

where 6'. =l* E n . .w . 
3 13 J

6 . .An. .w .. 13/ j 13 3
~ z

E {SS (Treatments) } = (t-l) + E N.. w .(t . - r)as above,J J J

E {SS (Blocks) } =E E n . . w J  .- B.+ 6..)2 +J J

E {EE n,,wAc ... - a...)d}J J

= (b-1) + EE ni -w.(3i-3 . +6* i*)2»
13

rE {SS (Interactions)} =£E n^ .w. (5 ^,-6^) +13 3 13
E {EE n . .w . ...-£ ...- £...+ £...)>13 3 13 i J

and
= (b-l) (t-l) +Xi n13w3(«i3-

E {SS (Error) } = N.. as above

The analysis of variance table is given below.



Analysis of variance table

Source of 
variation

d. f. SS E(MS) under 
constraints (i)

E (MS) under 
constraints (ll)

Blocks b-1 j(y±‘--y* **) l+IIni . w ) 2/(t-l) 1+Iini ŵ^(g ±-3 .+ 6i,)2/(b-])

Treatments (t-1) ~ 2IN. jW.(y. ̂ .-y...) l+lN.^w^(x^-x)2/(t-l) l+lN.rw^(x T) 2/( t-1)

Interactions (b-D(t-i) zrni3wj(yi r ' yi " ' l+IIni;.w^6i;j2/(b-l)(t-l) 1+z2 n13wjfe
y. ̂ • +y • • •)2 /(b-1)(t-1)

Error N . b t ZEZV yijk-yi r )2 1 1

Total
(corrected) N. . - 1 IZE wj5/ k - f ,

^  V i
_________________ __________

-p*



50

It is evident from this table that the differences 
in block effects cannot be tested in the presence of inter­
actions under constraints (II).<*> %x- iul

When the F-test^indicates significant differences among 
the treatments, block effects or interaction effects, the 
difference between any two of the treatments, block effects 
or interaction effects can be tested by the normal test.
In fact the variates

>  ( t - Tk )/0/M.3Wj + l/N.k»k)'k k'
>= ( 3.- 3^)/( N..d/N.. + 1/N^ .)/£ N..w.)

and

Z3
r.(«ij- <̂ k )/ i (N- * A V  1) (l/N. jWj+1/N.^.w^)} for j A

(^ r * £ d )/{ (N“ /Ni+N../N£ .)(l/ii . .w.-i/zN.w.) } ~h
for i/- ^

{(N -*/Nirl)/K,,w. + (N../%-l)/N.kwk ”

(N. ./N. +N. ./N^. )/£ N..W-;  ̂ for A  & and
3 A

are all standardised normal ■

Ratios of these normal variates to the square root of 
the error mean square are the corresponding t-variates with 
N. . - bt d. f .
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3.1.3 Estimation of weights

The estimators of the linear parameters and the test- 
statistics involve weights, the reciprocals of the error 
variances which are usually unknown. One procedure in 
such a situation is to use the estimated weights in place of 
actual weights and remove the major part of the resulting 
bias of the estimators and other statistics as done for one­
way models.

(1) Maximum likelihood estimators of the error variances

The likelihood function of the model (6) is given by

L = (2 ir)-H--/2T(o.2)'JJ- / 2exp { -i (yijk-8i- y *  ii>2 > •ik
Taking partial derivative of logg L with respect to the 

linear parameters, we get the same normal equations as those 
for the weighted least squares procedure and hence the same 
estimators.
Also, we have

3loge L
9 o 2 J

N. . i ^ ( —1 ) ru /vi 2
I 2 - 2  " 7 ^ 4  = 0

j 3 ik
2whence the maximum likelihood estimator (MLE) of 0 . is

J

O 2 __ 1_ (v ,, 't 2• j N LE ^ijk - ypp ; 
W *j ik

/\ A. /V|

.y j j — 1,2,...t,

since $.+T .+ 5. . = y. .. from the last normal equation of the i .1 i .1 J i .1
I

weighted least squares in section 3*1.2. For j £ j', a •“
A J
a 2
j’and are independent
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(ii) The MINQU5 of error variances
Prom the model of section 3.1,2, we have

(XX )=
N. nll • * * * nbl nll* * * * nbl

N *t nlt * * * * nbt nlt--- nbt
nll---nit Nl.

nbl---nbt

n11 nIt

Nb. nbl nbt
n11 n11 n11

nbl nbl nbl

nlt nlt nIt

nbt nbt t nbt^
To find a generalised inverse of (XX ), we consider the bt x bt
matrix obtained by deleting the first (b+t) rows and (b+t)
columns of (XX ). Let it be denoted by D. Then D is diagonal

«V<v ^

and has full rank. Its inverse is given by

D = diag (l/n-^ >» • • »1/nbl > • • • » ̂ - / ’ ' * * ’ ̂ /^bt ̂ *
Then according to Rao (1973, p.225), a generalised inverse of 
(X£*) is obtained if we increase the order of D"1 by inserting 
rows and columns of zero from where the dependent rows and 
columns were removed. Thus, a generalised inverse of (XX ) is 
given by

(XX ) 0
0
0

0
D:-i
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From this, we have

X«(XX')~X = diag(j / , ...,J /
" ~~ ~ "nll nll ~nbl nbl ~nlt nlt

~nbt^nbt^
where J is the square matrix of order m with unity as its ni
elements.
The projection matrix S = I - X'(XX')-X is thus given by+* »v »W +*

S = diag(l - j  / ,1 - J  / - Jn /n )
~nll ~nll nll ~ n21 ~ n21 n21 ~ nbt ~ nbtnbt

where is the identity matrix of order n. The product
SY gives the observed residuals.

Let F be the matrix whose elements are the squares of
the elements of the projection matrix, v the vector of squared

2residuals and 6 the vector of the variances ( a. being repeatedJ
N.j times). Then according to Rao (1970), the MINQUE of a ?  
are obtained from the equation F <5 = v.

*V As

we get
Adding the equations involving a. and simplifying,J

sj = n  (yijk - *ij.>

or b \ j
s 2 = £ £ (yi - Y-m   ̂ “ ^); «5 = 1 > 2,..., t.J i | c   ̂ J • J

o 2Unlike the MLE, s. is unbiased for cr.". Here also, the
2 2 /  'estimators s. and s .». are independent when j f- j .<3 J

If the number of observations in any cell is unity, 
then the contributions from that cell to the degrees of 
freedom and to the SS for calculating either MLE or MINQUE

Oof a. , will be zero. Thus* in order to get an estimate
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pof o. , the inequality n.. > 1 must he satisfied for at j ID

least one cell for the jth treatment.
2As the estimators s. are independent, Bartlett's32X -test can be applied for testing the homogeneity of error 

variances in this case also. n
iD ,It is obvious that the variate E (y. y. . \2 isj 1J^ 1J • /

2 2distributed as x with (n.. - 1) d.f. so thatt) - J2 2 2(N.j - b) s. /a. is distributed as ^ with (N.j - b) d.f.

3.1.4 Adjustment of the estimators of the linear parameters

Since the estimators of the treatment parameters do 
not involve weights, no adjustment is necessary for these. 
Estimators of the block effects involve weights which also 
occur in the expressions of the estimators of interactions. 
To remove a major portion of the bias when estimated weights 
are used in the estimators of the linear parameters, the 
estimators have to be adjusted by Theorem 1 due to Meier.

p pLet x. = s. /a- • Then the estimated v/eight
Aw p p p. = 1/s - = 1/x. a- . The MLE of a. may also be used in1 j 0 J
defining w.. The estimators, using estimated weights, of J
block and interaction effects are

ei V i ~ =  “ij5 i

and

ij (yij* “ yi' -  y - y  + y ...)

with y... =
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Since
r* -I

ax,J all x .=1 3

= 2 f. (i - f.Hy... -

the adjusted estimator of 3̂  is given by

t
3 =

3i(adj) = y±.. - 2 f ̂ (1-f ̂ ) ( y ^ . - yi..)/(N.^ - b)

with f . = n. .w./ n̂. .w . = N. .w./ N.:w; by the proportionality 3 13 3 - j 13 3 3 3  J J
2condition, (N. ,-b) as the d.f. for the estimator of a. and 

J J

f. = N. .w ./eN. .w .. Similarly, •
J J J J J

y... (adj) = y... - 2 £ f .(1-f•)(y.•.-y...)/(N..-b),
1 0 J J J
A

o that j (ad 3 ) = y^. - yi..(adj) - y... + y...(adj).

3.1.5 Adjustment of the test-statistics

(i) Adjustment of F-statistics
The error sum of squares (SS) using estimated 

weights based on the MINQUE of error variances is

'£
3

{E E  ( y
ik ijk b)] } = N..-bt,

a constant. Similarly, the SS due to error, using the 
estimated weights based on MLE of error variances is also 
a constant. Hence, no adjustment of the error SS is necessary 
for removal of bias of the F-statistics.

The SS(treat.) using estimated weights is

E n . ,w.(y. .. - y...) '. This is exactly in the same form as 3 3 3
that of the SS(treat.) using estimated weights in the one-way
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model with unequal group variances (section 2.1.4).
Hence, the adjusted SS(treat.) using estimated weights will 
be of the same form as that in the one-way model and it is 
given by

Adjusted SS(treat) = zN. .w. (y.,ry...)2 { 1-2(1-f,)/(N. . - b)}J J J J J

Thus, the adjusted F-statistic for testing treatment differences 
is given by

F, (adj) = (N. .-bt) ZN..w.(yl j=l J J ..)2( 1 -
2 < 1 - f 3 )

N. ,-b J
> /(t-1)

{ E £ E ^ . ( y  .D -  y ID )2 >

with (t-1) and (N.. - bt) d.f.
To find the adjustment for. the other two sums of 

squares, we see that

(8 )

(£n. .W.y. .. y. ,.Sn . .w . )/x .̂ (£ n. .w.)^ Txl a 2  v. ID DJiD J1D i ID D" D i ID DJ j J J tJ

and
2~ *6 yq
•Sx.2 2 1 f.i)(yV ' yij' ̂

all x .=1 J
Similarly,

=!ii■a*, 5 i  ( f-jwjy-r-y-r f-dwd)/xj2( f-a'V2J j J t) J

and
*2

¡L3X 2 
D

= - 2 fj(i - fj)(y*•• - y*j-)

all x .=1 J
The estimated block SS is given by
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Est. SS(block) = 2Sniiw .(y^.4 - y...)'

so that
b [Est.SS(bl)] _ __

bx .3 *-•

13

r y ?  f l j 4 - y . . . ) 2+ 2 ^ ni/ .
3 3

A A ~ \

(y~ - y...)^(yi--'y ' d3x .3
and

•y {Est.SS(bl) > 
a 2 

3' all x .=1 3

* 2 -y --)2+4 S . i w.if.i(yi--Jy-")(yi.r-y -.i"y^ - +i-')13 3 3 13

+ 2iEf i j w/ / (yi r ' yi''y - r +y-")2+^ f i o wifj(1-f3)(yi--'y - " )

(yi r ' yi " " y M- +
Thus

Est. SS(bl.)(adj) ^ ni/j(yi - - y --)2 - H h *13 3 3

*b Est.SS(bl)
i x . 23

using estimated weights

all x .=1 3
■ ^ nijwj(yi - - y-13

•)2(1 - 2m -r ) -2^^n..w.f. (y. • .-y. ..- N.^-d ' ± . 1 3 3 3 Ji3 Ji

y»y+ y*-)(zN. ,-b
J

A /N.

- 4££ni^jf^(yjL. .-y.«- )(yij«-yi« »-y» y + v -
1 3

( s  ¥ 77^ b ) } * - * ( 9)J
with (b-1) d.f.

The adjusted E-statistic for testing differences
in block effects is thus given by



58

F9(adj) =
(N..-bt) (Est. SS(bl. ) (adj)} 

(b-i){ - yl r )2 J

with (b-1) and (N..-bt) d.f.
The estimated SS due to interactions is given by

Est. SS(lnt) = fEnijW^yi^.(yi^.-yi..-y.;i.4-y...)
ID

so that
^fest.SS(Int) } (-1)

3 x . D
= E n. .J. ij 2 2 Jio*VJ,iji dx-. a- J d D D

? yi.i.(yir's'i--‘y -.r+y'

A A

vv  ̂ *3( y . . . - y . . . )- u  n. .w.y. . vJl J '
ij ^  J ^  ----5 T ----

J

and
 ̂ lEst.SS(Int)}

dx . D
2 = 2 r1nijwjyi r (yij--yi - - y - r +?- " )

all x .=1 D
Ax Ax

+ 2s,nijwjyij-
*xj

all x.=l 
J

Ax A

fs2(yi- ••)
-  -------------

all x .=1 D

Hence, Est. SS (Int) (ad j ) = EE ni .w, (yA , .-̂ ..-y...+y. ..)'
ID

D N ’D b
* ^iEst.SS(lnt)} 

_ 2 
*XD

all x.=l
J

(using estimated weights)
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= I2ni/j yij-(yi r ^ i - ‘y -r + *•••> {1-2(1-fV ( N - r b -
1 )

3 NT b
.(10)

on simplification, with (b-l)(t-l)d.f.

The adjusted F-statistic for testing differences in 
interaction effects is thus given by

A (N..-bt) { Est. SS (Int) (adj)}
F*(adj) = ---------------- -------------  p

(b-D(t-i) m s  (yijk-yi r )2}

with (b-l) (t-1) and (N..-bt) d.f.

(ii) Adjustment of the normal test-statistics
t iaajXl. ' •

weights, 
treatment

The normal test-statistic, using estimated r*-
for testing the difference between the jth and kth 
effects is

A {1/H *JWJ 'kWk } *

This is in the same form as the corresponding normal test- 
statistic in the one-way model with unequal group variances. 
Hence, the adjusted normal test-statistic will be of the same 
form as that in one-way model (section 2.1.4) and it is 
given by

z1(adj) = z1 i 1-3 [l/N.^H -b)w 12+l/N.^(N.k-b)w^] /

4(1/N. jw.+l/N.kwk )2>

The^normal test-statistic using estimated weights for 
testing the difference between the ith and Jlth block effects 
is
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A

Z2~
e jl N. . N. . :^(adj) - (ad;j) /& N . ^ )  2( j —  + )

= h (s N • jwj)2 ’ say-

Since 3 Z a

ail x .=1 J

H N..w.
d d  ̂

(ZN.j W ^ )s

N. .v/,
(i- - ^ - ‘L- ) ,

4s N . w .d J

it follows that

| 3i (ad j )-3£(ad j ) |
s2(ad3)= f'r:--- tit— r( ̂  • • ( i , 1__'l?!XWTwT N„ . 'i

{ 1 - E 
3=1

ii(l - f,/4)
N . . - bd

0 J
A.

3Here, var {p .(adj) } has been approximated by var (3. )=^E n. . w .1 j 13 J
since the former is difficult to find analytically.

ASimilarly, if we approximate var {S —  Cadj)} by
var (5 ..)» the^normal test-statistic using estimated weights a J
for testing the difference between the (i,j)th and ( ,k)th 
interaction parameters is given by

Z3

|«i<s( a a j ) - « i k ( a d j )  | / t  ( N . y W 1 . - l ) ( l / M . j W . j + l / N . kwk ) } 2

for j ¡t k
•V
\\.(adj)-6^.(adj) | / {(N../Ni+N../NJl .) (l/N .w .-l/z N. .ŵ )}

for ±¡4 1
A A

a.

¿j (adj )- \ ( a d  2 ) I /( (N-./N^-D/N. .w. + (H.. /%.-!)

/N.kwk-(H../Ni+N../N£.)/EH. .w.}2 for i/Z & j/kJ 0
(i-fiJVVG f £3--ic

The corresponding adjusted normal test-statistic is
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Z5(ad j ) =

Z. 1 - 4K.2uwu2(K.u-b)(l/H.jw.+

l/>I.kwk)2) for j ^ k
A ^

Z
A

Z

1 + /(N.r b) ♦ u;3 ou
t3 

3

(Pi+q £+2)/4P} /P(N.u-b)

for i/ £

1 + 2 H + Z (p +q +2)f  ̂1 - f - 3f, . m //•/iN i t u u ^m=k, j u ( A A )

for i / £ .and j / k

where Gu = f/. {1 - ?u[ 1 + 3f ̂ A d - f  •)] } /(1-f .) (N.u -b),

Hm = {Pi-fm2(Pi+^ +2)2/4fm2P }
/P(N.m-b),

P = (Pi/^tj+qi./̂ k_Pi"qJl~2)» pi = (N. ./N±.-1)
. and

q £ = (N../N.t - 1). .
Ratios of these adjusted statistics to the square root of error 

mean square are the corresponding adjusted t-variates with N.-kt d f.
3.1.6 Multiple comparison

The inequality (5) of section 2.1.5, may be used to 
estimate the joint confidence intervals of contrasts of treat­
ment, block or interaction effects.

(i) Treatment contrasts
Since the estimators of the treatment parameters 

and their variances are in the same forms as those for the
one-way model, the formula with necessaty adjustment obtained
. A Am  section 2.1.5 is also applicable here. If iJj = Z c . t . is•** J J
an estimate of the treatment contrast, = E c -t •, then the**• J O
estimated joint confidence interval for all ^^ 4s given by 

\jj ] ~ S-̂ s cr* (ad j ) £ \p ̂  l + S-̂ Sg ~ (ad j )

where S-, =  ̂(t-ljp^ (t-l,N. .-bt)} f s = square root of mean
square error and
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Aa^(adj) ={ 2(c 2S 2/u ) >2 il + i Z -J-g-
4 4c . s .

j=l N.J(N.--b)

ïtc/s^/N..)
1 -2

} using the MINQUE of °j^ as the estimator,
A A

Approximating the variances of 3.(adj) and 6 . . (adj)1<U «L.
by those of 3 . and 6. . respectively, we get the estimated1 1 J
joint confidence intervals of 3-contrasts and interaction 
contrasts as follows.

(ii) 3-contrasts

If 'P 0 = £ C .3 . , then var (ip0) = var ( Z C •$ . ) =2

Z (C. 2/ Si. .w. ) = d/ EN..w. where d = Z (C . 2N. ./N,,) by the - ^ J - * J « J  -!

l l ir l

1 - J ~u v J 3 3 i
proportionality condition. Thus a~ = d̂  (iN. ,w,)"2.^ T T

A 1... r
2 j

The-estimated joint confidence interval for all 
contrasts ^  is then given by

/V
~  /V

- S2S o~ (adj) < ^2 < if» 2 + S2 S ajj ad*̂

where S = i (b-l)?^ (b-1 ,N..-bt) } 2, a~ (adj) =

1 . " ^ (1 - f f.)>
j J J j=l N *j"b D

(d/ E N. .w . ) 2 { 1 + £

and 3̂ (adj) are used in computing

(iii) Interaction contrasts

If \p = ££ c. .6. . is the interaction contrast, then 
2 ij 13 13

*v*

var (I,) = .clk

oov(ii r Jlk) * ̂  ifijOtJ 0OT< * i A . d )+
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«V/ «V

c ov ( 6. .,6 „, ) = EQ.(N,.w.) -1- Q ( EN.,w.)-1 where Q, = E c, ? XJ X,J1 J J J  J J D X J
2 ,(N../N,.-1) -E 2 c•.Cn . and Q = 2 2 c .̂ (N../N,.-1) + E E E

1 l ¿i 13 ^  i j 0 i j/k

c. .c.k(N. ./N. .-1) - E E Ec-.c,. - E E E E c, .c , . id ik i ^  . id I D ijk £ , ^ k ID I k Thus the

estimated standard error of  ̂̂ is given by

a a = (E Q^N.-w,)"1- Q( EN..W.) 1 } .
ip 3 D J J J J J

The joint confidence interval for all interaction 
contrasts \p ̂  is then estimated by

/V A A AIp 3 ~ saj (adj)^ 5  ̂ \|>5 + S5 s aj ^(adj)
i  A

where S = { (b-l)(t-l) F [ (b-1) (t-1), N. . -bt] } , 6 . . (adj) are
Aused in computing ip  ̂and

(ai3) = hi * [ 1+ N-/Vj( h2j(1+N-ji'jh2/ 4hl )

- N-j"jh3j J /hjCN.^-bi]

L2j 'D'V"D'Dwith, h-ĵ = ( E Q,/N. ,w .-Q/ e N. .w . ), hg . = Q -/(it. %  . )2+ Q/( £ N • î i ) ̂

and
h3j = +

3.2 Two-way random models .

Let the random model be

yijk = pi + T j + 6 i j + e ijk
(i = 1,2 , . . . , b ; j = 1,2 ,... , t ; k = 1>2,...,n^ .. )

where fh is the random effect of the ith block having mean
py and variance o , t . the random effect of the jthp D 2treatment having mean zero and variance  ̂ij randora

effect of the interaction between the ith block effect
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and the jth treatment effect, having mean zero and variance 
2

a , and e • the error term having mean zero and variance 
2

o j . All the random effects and the errors are assumed 
to be independent of one another.

3.2.1 Estimation of the variance components and the 
analysis when error variances are known

Prom the above model we have,

yi r  = 8 i + « i3 +<= ij- , y = 6 • +
t ,6 e
j + + *r ’

yi • • = ./ Zn..w. = 3 ± + x + 6 ±. + . and y...
0 0

3« + i + 6.. + e •• •

ik i k
Since, E  {ZE(yi .k-yi ..)2 } = £ E  {Z_(  . ) 2 } = Z ( n ± . - l )

aj2=(N. j-b) aj2, the quantity ££ • )2/(N. ̂ -b) is
ik

2still the unbiased estimator of a . ; j = l-,2,...,t.J
b AT p

Now E (Treatments SS) = E { E N. .w.(y. .-y...) }
0=1 0 0

= E ( ^N..v/.(t .-t )2 } + E <E N. ,w,( 6. 6. . )'
a 3  J  J  - j  t )  «3 J

+ E {EN. .w ,( e . .. - e .. )
J J J

= (t-1) + (w. - EN.,2w ,2/w .) ( aT2 +a6 2/b),
J J

" J H- / rwith w.
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E(Blocks SS) = E {EE n±  ̂ w ^ y ^ . -  y ...)2 >
ID

= E { Lin, ,w.( 3 . - 3.)2) + E{SE n, .w.(6 , .-6 ..)2}
•i -i t) tJ »1 »1ID ID D

+ E{££ n^w.. (Ei# .-e. . .)2 >

= (b-1) + cjg2 ZU w.il-1^ )  + a6 2(z N.,2w 2/w.)(l - 1/b)
j D J D J 0

since E ( 3^- 3.)2= a£2(l ~ ) and E(6^_- <5..)2

0̂ (1 - 1/^)( SN. .2w.2/w2.)
J

and

E (Interactions SS) = E  {ZE n. .w.(y. .,-y.,.-y...+y...) }
-j J J J J

= E u i nijwj( { i r '  i-‘ s ’} ••)2> + B m  nijv'j 

( ei r "  ei,*_ e * r +e #,,) }
= (b - l)(t - 1) + Or. 2(1 - 1/̂ b) (w. - E N. .2w,2/w.)o D J

since E  (<$..-<$ )2 = ^  2 (1 - 1/b) ; E C 5 . . - 6 ..)2

= a62(l - 1/b)( EN. .2w.2/w2.)

and E («$..- 6 . . ) ( 6 • . - 6 . . ) = (N. .w ./w. )a. 2(l - 1A>).
J J J J ^

Prom these'expectations, it follows that the unbiased estimators 
of the other three variance components are given by

o 2 = i> {Interactions SS - (b-l)(t-l)} /(w. - ZN..2w.2/w.)
6 D J J

x(b-l),

a_2 = {Treatments SS - Interaction SS/(b-l)}/(w.-EN.?w-/w.)T *■ j J
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and

o = b(Blocks SS - b+l)/^b-l)w. -{ Interaction S3 - (b-l)(t-l)}
/(w.2/ s N . y  -l)

1/ 2when the actual weights, w. = ' o. , are known.J J

Finally E (Within (Error) SS} = E{ZEE w . i k ~ yii*)2 ^

= E w ( £ -c .) }

= (N.. - bt)
as before.

It can easily be shown that (p . -e -̂s •) is uncorre-1 J-K- 1 J

r  w 7 -----  —  x w ijlated with (£. ..- e • • • ) > ( e j. • • - e •••) and ( £  ̂.. - e^ • •

e. .. + e...). Hence, by the assumption of normality of errors, D
the error SS is independent of the treatments SS, the blocks
SS and the interaction SS. Similarly, the last three sums
of squares are also mutually independent. Furthermore, each
of these three sums of squares is distributed as non-central
X times a constant while the error SS is always distributed 

2as a central ^ •
The hypotheses can thus be tested in the following way.

To test the hypothesis, H-̂ : = 0, we see that

F = Interaction SS/(b-1)(t-1) 
Error SS/(N..-bt)

is a central F-variate under the hypothesis with 
(b-1)(t-1) and (N..-bt) d.f.

For tests of significance of a n d , we are to 
consider two cases .

Case I: = 0 •
In this case, it follows that
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(i) { Treatments SS/(t~l) }/{ Error SS/(N..-bt) }

and (ii) { Blocks SS/(b-l) > / ( Error SS/(N..-bt)>

are central E with corresponding d.f. under the hypotheses,
H2 : = 0 and = 0 respectively.

Case II: / 0,
In this case, cr̂ occurs in the expectations of both the 

treatments SS and the blocks SS.
To test the hypothesis H2 : aT =0, v/e find that

{ Treatments SS/(t-l) } / i Interaction SS/(b-1)(t-1) )

= P {t-1,(b-1)(t-1) } l+{ ot2(w .- SN?jw ^2/w.)/(t-l)> /

{1 + a; (w.-£ N.2w.2/w.)/b(t-1)}J J J
= p[ t-1, (b-1) (t-1)] under the hypothesis H2: = 0.
This test is valid also when or = 0.o
On the other hand, since

{ Blocks SS/(b-l) }/ {Interaction SS/(b-1)(t-1) }

F{ b-l,(b-l)(t-l) } 
2... 2

1+ { w.o^/b + A }/ {1 + ^
(w. - SN. ■ w. /w.)/b(t-l)}

where A = {EN.,2w .2 - (w. - N.^w / )/(t-1) } /bw. ,
J J J J

it follows that the hypothesis = 0 cannot be tested
in this way when og £ 0.

,T 2,„ 2

3.2.2 Adjustment of the test-statistics and the 
estimators of variance components

Since the estimated error variances are independently
pdistributed as multiples of  ̂_ variates, the test-statistics 

and the estimated variance components using estimated weights 
can be adjusted as before to remove the bias of order
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( ^ ) '

3 J

(i) Test-statistics
The F-statistic for testing H^: = 0 is the

same as that for testing the significance of interaction 
effects in section 3.1.2. Hence, the adjusted F-statistic 
using estimated weights will also be the same, (section 3.1.5) 
i. e.,

(N..-bt) {Interaction SS (using estimated weightskad j-) } 
F4(adj)= ---------------------- 7--------------------------------

(b-l)(t-l){ ^ ^ ^ . ( y ±jk - yi r )2 )

with (h-l)(t-l) and (N..-bt) d.f. where the interaction SS 
(using estimated weights?, adj-) is given by equation (10) of 
section 3.1 *5.

Similarly, for testing Hg: a = 0 when = 0, the 
adjusted F-statistic using estimated weights is given, as 
in equation (8) of section 3.1*5, by

a S 2 . 2 U - fj)(N..-bt) SN. .w..(y. . .-y...) i 1- N.j-b }A J J J J
l?5(adj)= --------------------- ------------------------- —

( t - i )  { i s e  w"3 ( y i .k -  y i r ) 2 )

with (t-1) and (N..-bt) d.f., where f. = N.,w ./% N..w..J J J J J
When o,  the adjusted F-statistic for testing

Hg: = 0 is more complicated. The F-statistic using esti­
mated weights is

* (b-1) { Treatments SS using estimated weights j.
F6 = “  

Interaction SS using estimated weights
with (t-l) and (b-1 ) (t-1) d.f.

A

Both the numerator and the denominator of F^ depend on 
estimated weights. Hence
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F, (ad;j) = F, - S
jN ‘j~b

* 2<*6> using estimated weights,
i x t

 ̂  ̂all x .=1
J

Denoting the treatments SS and the interaction SS, 
both using estimated weights, by TSS and ISS respectively, 
we have

* 2 ( V b - 1
ftx,2 (ISS)3

J

{ (ISS)'
ft 2TSS

- ISS.TSS
is 2ISS
8 x . ‘ 0

2 ISS

where

ft ISS ft TSS
3 x . ft x . + 2  TSSJ 3

* (TSS)
8 x3

ft ISS
j

= - y---5 -
all x.=l 

J

(ISS)
* X3

-£ n. .w .y. ..(y. .-y...-y. ,+y... ) + _• 13 3 13 13- i .1 J
all x.=l 

J

l ] n±3wjy±D':rd (yi r ‘yi " ' y,r +y---) • » • . (ID

and

ft2 (TSS)
8 x. 2 ^.jWjiy.j.-y***) (i - fj)

all x-.=l 3
ft2 (ISS)

ix.'3 2(1- V  i nijwjyi r (yi r * yi--'y - r +y---)
all x .=1 3

- 2 } ? ni jwjyi j-f j(yi r  "yi- "y • .i •+y • 12 5i 3
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When a =0, the adjusted F-statisxic using estimated 
6

weights for testing = 0, is given, as in section
3.1.5, by
a (N..-bt) {Blocks SS(using estimated weights & ad j')}
F?(ad j )=------------------a--------------- ?---------------(b-l) miw.(yiJk - yi r ) } ■

with, (b-l) and (N..-bt) d.f. and the clocks SS(using estimated 
weights l ad j-) is given by the equation (9) of section 3-1.5.

As shown in the previous section, the hypothesis H^:
Og = 0 cannot be tested in the presence of interaction 

variance o  ̂ ,

(ii) Adjustment of the estimators of variance components

2 ..The estimator using estimated weights, of a  ̂ is

A 2a „
b I SS - (b-l)(t-1)

•  ___  ____

b-l w. -(£N.2w .2/w.)J J

with w. = EN, .w , so that J t)

t 1
V (aaj) <  ~ A  7^

where

 ̂ 2
)

* x .2
using

estimated weignts

xj=1

 ̂ 2

* X .2J (b-l)A5
A 2 - A {ISS - (b-l) (t-1) }

* x .2 0

2 A
TSx.‘D

- 2A ~ ~  + 2 {ISS*Xj ^Xj (b-l)(t-l)}(|| )'

with A = w. - ^N. • w. /w.,
J J
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3A
bx . 

2

,T 2N. .w.w. - EN. .2w .2
N ‘jWD ( 1 -----^ --- 2----w.

(13)

all x .=1 J

52A
5x.‘

f .
= —i { 2 w .2 - 6 N. .w.w. + 4 N. .^w,2 + 2 EN. -2 ^ J c) d J J

all x.=l 
2

w. (1-f.)} J J (14)

and 3 (ISS) n and &2ISS
8 x . isx .2L 2 J J J

are given by the equations (11)

all x .=1 
2

and (12) respectively.

all x .=1 J

In the same way, the adjusted estimator using estimated 
2weights, of a is given by

oT 2(adj ) =
TSS - ISS/(b-1)
* ™T 2^2/^ - E N. .-bw. -EN..W. /w. t 2

J J

t 1 
E 1

A 2 ■*2 **
a ( ° T  )

*«i2

using estimated weights 
where

all x .=1 J

i i i A  = i
 ̂x .2 A'

2 S
{ * T ^ 2  ~ AB°x .

2

3 2 A
* x .20

- 2A * A * B
 ̂x . ^ x . D J

+ 2B( &A/ 3Xj) } ,

B = TSS - ISS/(b - 1),

foe
* x5

- N. .w,(y. . .-y...) + b-1
J J J

all X,=l d
i nijw/ij
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(yi r -?i..-y.r  + y-.) - f J ni / j yi r V yi r ' V - - y -,r+y- " )i 3

& 2B 
T H T  3 J

2 u. jwj (y* j *-y* • •) (i-i’j) - b-i ni3w/ i r

all x.=l
J

(yi r -yi.-y.r  + y..-> - 2 p i j V i / j (yi r ' yi""y-d- + ~y - " )

- 2 ? ? nijwiyi r fj(1'f3)(yi r _yi'-y-r  + y-” 5i 3

and and --
1

o> [M
>

> __
1

L “ j J *x> J
are given by the equations

all x .=1 J all x.=l J
(13) and (14) respectively.

Finally, the estimator using estimated weights, of
2 . ap , is

/s
3e2 = b(BSS - b+l)/(b-l)w. - {ISS - ( b-1 )(H^(w.2/ 2 N^w^-l)

so that
A. Q A O

r  ̂2i 2
* aB using

= 3b“ - I N.-b » x .20 J estimated weight
* all x.=l J

\2 X 2 b r ^2(b s s ) . z -TjX b s s )
where “ R3x.2 - (b- •

<}Si—1 1 L -v 2 aOx. 3 X.
3

- 2f.(1-fj) (BSS-t+1)}

i ■& 2(ISS) 1 S' CMOCM

C5 9 x .2 c2
-- O (ISS- b-1 t-1) - -?r
3x .2 CT3 3

a C b ISS j 2 » C ’
3 x . C5 3x / 3 3

2
) (ISS - b-1 t-1 ) j

3 x .J
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with C = (w. 2/ E N . 2w 2 - 1) ,<3 0
r  *50

3xj j = 2 N. ,w .w. (w.N..w.
J J J J

all x.=l D
„ x T 2 2 w  , M 2 2.2

D J ' J J J ’

<?C
ax.

= - 2 N..w. { N. .w .C/ e N. -2w .2 + 2w. (w.N. .w .
J J  d d J J  d d

all x .=1 J2 2\/n „ „  2... 2 / v >T 2... 2- m .  .ZV!.Z)(1 - 2N.,^w,V s N..zw.z) / (iu..2w.2) } ,
d d  d d  d d  d d

^(BSS)
3 x.a

<v

all x .=1 J

i D ID D D

i'yjj.- n--- y-j-- ?•••>

* (BSS)
ftx.2D

•V »» ^
= 2 s ni-jŴ (yjL. .-y...) + 4 £ n^w.-f^(y±• .-y• • •)ID D D

all x .=1t)

<yi r ‘ yi— y-r + y~ - - ) * 2,E ,J ni j V / (yir"yi---y-r + y---)2 ̂ d
4 s s r i j ^ ^ w ^ f ^ l - f  ^ ( y ^ . - y .  . . ) ( y i  -  -  y ± . . “  y . j .  + y .  • • )

1 D ID

and M I S S )
a x . and

ft %SS) 
2

all x .=1 J
a x .D

are given by (11)
x .=1 D

and (12) respectively



3.3 Fixed effects models with equal replication

While the results of sections 3.1.2 to 3.1.6 are 
entirely applicable, some simpler tests are available in this 
case. These were first discussed by Robinson and Balaam (1967) 
for correlated and heteroscedastic errors.

The model is the same as that of (6) in section 3.1 
under the usual constraints (II), with the exception that 
the quantities n.. are now all equal to r. The proportionality 
condition is thus satisfied.

3.3.1 Test of significance of treatment effects

Taking the mean of the observations of the model with 
respect to the suffix i, we get under constraint (II),

y* jk = B * + T 3 +e * jk = Vi j + e*jk’ j=l»2,...,t ;
2k = l,2,...,r ; say, where var. (e. ) = o ■ /b, which differsJ

from treatment to treatment. Hence, this model is the same 
as that of the one-way model with unequal group variances.
Thus the methods of estimation and analysis described in 
Chapter 2 may be used.

The methods are also applicable when the number of 
observations per cell is constant for each treatment but 
varies from treatment to treatment.

3.5.2 Test of significance of block effects

Taking the mean of the observations under the model at 
(6) with respect to the suffix j, we get,
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0 p pk = 1,2, where var ( e. , ) = 2 a . /t which i1 .-K i 0 s a

constant so that this model is a homoscedastic one-way one. 
The usual least squares analysis can he used for testing the 
significance of block effects. The procedure holds good 
even if the number of observations is constant within the 
cells of each block but varies from block to block.

3.3.3 Likelihood ratio tests for significance of inter- 
actions and treatment effects

LetYik be the column vector of observations at the
kth realisation within the ith block, i,e., Y = (ysilk’ *
yitk^ ’ * = k = l»2,...,r. Let L be a (t-1) x t
matrix such that

L I  = 0  and LL = I, , .*v «V tv *V U -L

Then the elements of the vector = L Y ^  are (t-1) ortho­
gonal contrasts amongst the kth set of observations within 
the ith block. The matrix L will be called the matrix of 
orthogonal contrasts.

Then the model at (6) of section 3.1 can be written,

.Lk ~ l

as

lik ’

¿4 • »«■&•••C»C\J 1—1 il•H — 1,2,. .. , r ;

T t}1 ’ *± ~ ~ ̂ 6il’ * * * ’6 it^ ana_eik =

L (Eiik»•* *»eitk^] * then follows that e^k is distributed

as multivariate normal with mean vector 0 and dispersion 
matrix 2 where

2 2 f2 = L diag (a-, , ... ,a , ) L , which is non-diagonal.

We can now use the likelihood ratio (LR) tests of the multi-
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variate analysis of variance for testing the hypotheses 
(i) x = 0 and (ii) 6 . = 0 for all i.

Robinson and Balaam (1967) considered independent 
contrasts of treatment observations instead of orthogonal 
ones as used here. One advantage of using the orthogonal 
contrasts is that the LR test-statistics are invariant under 
such transformation of data.

The LR test-statistics given by them are as follows.

(i) H^: t = 0 i.e., t  . = 0 for all i.X ** x
LR test criterion for testing this hypothesis is

2 / b r  J = .(1 + t-T Z. . S _ 1 z '  . . ) 1
A + br Z..Z .

b r ,
where A = Z Z (Z.v - Z..) (Z., - Z.) = b(r - 1) S and*+ _Ì ** X K. ** X  ̂X K. X ~j.

r
Z, • = Z Ziv/T *-1 k=l ~1K
i i 2Since (br Z.. S Z ..) is Hotelling’s T , this is an exact

test, i.e., 

x2/br = (1 +
t - 1

Pbr-b-t+2 t-l,br-b-t+2

under the hypothesis

(ii) H-™,: 6. = 0 for all i = l,2,...b i.e., 6 . . = 0 for allJjX ~ X ** x j
i and j. The LR criterion for this test is given in the 
notation of Anderson (1958 , pt 208), by

I A|U _ -— — —
t-1,b-1,b(r-1) “ I A + B I

b Iwhere B = r Z (Z. . - Z . . ) ( Z . - Z . . ) , ̂ n «X ~ ~ x ~ *1=1
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Now -( br - 1 - i (b + t - l)}loge Vl,b-l,b(r-l) ^
2distributed asymptotically as X with (b-l)(t-l) d.f. 

For small sample, further approximations may be used.

To show the invariance of the LR test-statistics, 
let M be another matrix of orthogonal contrasts of treatment 
observations.
Then JV( is given by

M = C L
where C is an orthogonal matrix. This was stated by Shukla 
(1972) without proof which may be as follows.

Since M is a t x(t-l) matrix of rank (t-1), there 
exists a non-singular t x t matrix G , and an orthogonal 
(t-1) x (t-1) matrix R such that

(see Rao, 1973, p.20).
or,

M = R (I, ,jO) C~ ~ v~t—1I~ ~i = E C',I

.s asay,' where E = R is orthogonal and Cn = (I, -,;o) ii
«V r*t -i- AJ *sf Ü

a

(t-1) x t matrix of rank (t-1).
Now by definition, 0 = M 1* = E C-, 1 which implies that

f f f !C-l = 0, and I = M M = E C-, C-, E which implies that C-.C-, = I. 
Thus C-^is again a matrix of'orthogonal contrasts. Applying
this result once again we find that

where P is orthogonal and T is another matrix of orthogonal 
contrasts.

It then follows that by a suitable choice of the 
orthogonal matrix g, the matrix M can be written as

M - C L.



78

Now let X be the value of  ̂when M is used in place of L.J- „ ~
Then the vector of newly transformed observations is given
by

h k  ■ » Iik ■ .9 5 Jik c z ik

so that A 2 A r= 1 |G. A q'|__________ ^
|CAC' + br C Z..Z'..c'

|_Aj__________ X 2 / b r .
| A+br Z..Z ..|

Similarly, the expression of the other LR criterion,
U ̂  i b(r-l)’ a-1-s0 remains unchanged.

The above method is easily generalised to multi-way 
factorial designs with equal numbers of observations per cell 
and with unequal group variances.
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CHAPTER 4

GENERAL BLOCK DESIGNS

An additive fixed-effects model with unequal group 
variances is considered here for general block designs 
including both extended and incomplete block designs. 
Estimators of the linear parameters are obtained on the 
assumption that the group variances are known, and the 
corresponding analysis is provided. Canonical forms of 
two sums of squares are derived. When the group variances 
are not known, adjustment of estimators and test-statistics 
using estimated weights is suggested for removing bias. 
Finally, recovery of inter-block information is discussed.

4.1 Estimation and intrablock analysis when group variances
are known

Let the additive fixed-effects model be:

y. = ß . + t . + e . ^ljk i 2 ijk

i — 1,2,...,b 5 j — 1,2,...,t ; k — 1,2, » * • , n -j ̂ ^ 5̂

where (3. is the effect due to the ith block, t the effect 1 J
due to the jth treatment and the error term having mean

2zero and variance, a. , The errors are assumed to be inde- 
pendent of one another as before. Both incomplete and 
extended block designs are included in this model. Block 
sizes are unequal in general.

Let Y be the vector of observations arranged treatment 
by treatment; then the model can be written as

I = A + D ß +

(15)
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where x and 3 are the vectors of treatment and block effects
«V !respectively with the corresponding design matrices, A and 

D , and e is the vector of errors. E(e) = 0  and var( e) =
diag ( ^  ;^  , a 2 ’ t V ) = V, say.. The rank of the
overall design matrix is (b + t - 1).
Further notations ;

Let r = (r^,..,r^_) , the vector of replications of 
the treatments,

k = (k^,...,k^) , the vector of block sizes,
n = A D = (n ..)♦ the incidence matrix of treatments 

with the blocks,
w = (w^,...,w^) , the vector of weights with 

w3 = (1/<jj2)>
T = aY, the vector of treatment totals,
B = D V Y, the vector of weighted block totals 

with elements,
Bi ‘ | njiw jyi r  -

•s/ I 1 ~G = w T = 1 B , the weighted total of all obser-
vations and IT l in. , .

i j 3 1
Then, D l  = l = A l > D l  = k = n 1, Al = v = n 1 ,

*V «V »V

~R ‘ = r6 where the superscriptsk 1 = N = r 1, DI) = IrandAA*
AJ /V A/ A/ A# ^  A/ A/denotes~ A a diagonal matrix with elements of the vector as the diagonal
elements. The superscript, - 6, will denote the inverse
of such a diagonal matrix. Also I n •■ = r. and l n.. = k . . 

-, J **"

By (2) of section 1.2, the normal equations for
finding the weighted least squares estimators of the linear
parameters are given by

A , . t T / A _
( • ' ¿ • )  v ( a : d  ) (— ) = ( ' ¿ ‘ ) v Y •
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or,
_1 ' _1 »AV A • A V D

ft/
T A V"1 Y

_

D V-1 4* ; ? r 1 s'
*>/

D V-1 Y— r* rs

Now, A V 1 A* = w5 r 5, A V“1 d ' = w 5 n , D V ^ ' ^ n '  w 6
 ̂  ̂  ̂ <V «V #V «# . *V ««,

D V"1 D* = (n'w) 6 , A V-1Y = wS T and D V-1 Y = B « ̂ *V  ̂ »V *v «v/ «VS «v r*s r>t r* *» r*

The two sets of normal equations then become 

w5 r5 T + w 5 n g = w 5 T
^ ^ M <V # V » v

and
n' w5 t + (n'w)5 g = B It ^ ^ ** ~

a#
Eliminating £ from the first set of equations, we get the 
reduced normal equations for the treatments as

{ r 5 - n(n'w)-5 (n'w5 )} t = Q,
** A« «V «V ** *V  ̂ ^

with Q ■= T - n(n'w)~5 B as the vector of adjusted treatment
»V *V «V

totals.
Since { r 5 - n(n'w)-^(n'w5 )'} 1 = r^l - n(n'w) *n'w=0, 

a unique solution for the treatment estimates is not possible.
Following Tocher (1952), the singular coefficient 

matrix may be replaced by a non-singular one in the following 
way.

t assumingV/ e have, G = w'T = w' (r t + n g) = v/ /w «</ A/ »v ft

the constraint (n'w)' g = 0.ft/ «v *»/

Then, Q + r(G/w'r) = { r 5 - n(n'w)""5 (n'w5 ) + rv/'r̂
<V *V «V» fV •Vfti ft/

(1/w’r)}t
.-1 „ ~ ~

= fi ^
say, with ={r $ - n(n'w)_°n'w(S + rw'r$ (l/w'r)}.

^ ^ «V ft» ftf ft? ft/ ft» CO fti ft/ ^

It follows that ^ 1 = r so that fi r = 1.
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Thus the treatment estimators are obtained as

t = fl{ Q + r (G/w'r) } =  ̂ Q + 1 (G/w'r)
ana

It follows from the second set of normal equations that the 
sum of squares due to all estimates is

SS(Est.) = x ' vfi T +o ' B = t ' w6 Q + B ’(n'w)"^B
P  »v  ^^ »</ »V  ̂ <y

with (b+t-1) d.f.
Ignoring the treatment effects, the model reduces to 

Y = D* 3 + e
A/ <V »W ^

The weighted least squares estimator of g is now given by

£ = (n'w) B

and the SS due to blocks (uncorrected) ignoring treatment
effects by ~ , ~ ~

3 B = B (n'w)"°B with b d.f.
•sA ^  »SA

Similarly, the SS due to treatment (uncorrected) ignoring 
block effects is given by T r~̂  w ̂  T with t d.f.

A/ A/

As 1 w^Q = Q w<$ 1 = 0, the adjusted treatment sum of squares
^ *v ^ A/ A/ A»

is
Adjusted SS (treat.) = t w Q̂ = (ft 0. + l(G/w'r) } w ^ Q

* v  asa

’t ~i 6 ~= Q K w Q
• V  ASA

with (t—1 ) d.f., and the SS due to error is

SS(E) = Y ' V”1 Y - B'(n'w)“6 B - q ' fì' J  Q
ANA ASA ASA AN# Asa ASA

with (l\T-b~t+l) d.f. The above results reduce to those of 
Tocher (1952) when w = 1 for homoscedastic models.

ASA

The analysis of variance table is given below.



Analysis of variance table

Source d.f. SS SS d.f. Source

Block & general 
mean (unaaj) b ** i 6-

S n = B (n  * w ) B S.=T,r-5wlST
4 ~ »V iW

t
Treatments and 

gen.mean(unadj )

Treatments 
(ad j) t-1 ^ ^ T (S

s 2 =  Q n Q s 5= s 1+ s 2- s 4 b-1
Block 
(adD)

Error (N-b-t+1) S, = Y 'V_1Y
*S* <V *v

-  S 1 -  S 2
S 3 N-b-t+1 Error
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4.2 A special case

Let us consider an experiment where the number of blocks 
is equal to the number of treatments and where the ith block 
contains r(>l)plots for the ith treatment and only one plot 
for each of the other (t-1) treatments ; i = l,2,...,t.
Then

n = n'w5 =
—r

r 1 . . 1 = n ‘ , rlwl W2 • • Wt
1 r . . 1 W1 r2W2 • • Wt

• • • • •

• • • • •

1—1 1 . . r W1 W2 • • rtWt
_ -1

r = (r+t-1) l=k and n'w = { (r-l)w-.+w. , (r-l)w?+w. ,

... , (r-1 )vv,+w. ^
Consequently, if = (a..), the elements a,, are given•v J **■ J
by w±

“ii - ( « t - D  ( 1+L  ) - wi'
r2-l t 1

(r-l)w.+w. (r-l)w.+w.
J J

a . . = w . ID D
r+t-1 r-1 _____  r-1 _____  +

(r-1)w.+w. (r-1)w .+w.
X  J

W .
t l
Z (r-l)wk+w. 

k=l

and
a .. = w . a. ./w.D1 i ID D
(i 7̂ D = l»2,...,t)

Moreover,
t

and

T, = ry + 2 y±iJ i/j

B . = rw • v • • + £ w . v . .i rii* ^  D JiD

so that the adjusted treatment total for the jth treatment is
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q = T. - (r-1) B ./ {(r-1 )w.+w.} - e B, / {(r-1)J J J J k=l &

wk+w. }, j =
Here w. = s Wj .

4.3 Canonical forms of the sums of squares

The adjusted SS (treat.) and the SS due to error can 
he expressed in the same sorts of canonical form as used by- 
Pearce and Jeffers (1971) for homoscedastic models.

We have, Q = * Y -A D'(n'w)“ 6D V-1Y
»w »v

= A (I - d '(n'w)"6D V"1) Y
A /  AS, As, * V  ANA

- »W *V

say, with a = I - D (n'w) 5D V
V  _ a * .

Since D V_^l = n'w, it follows that <f> 1 = 0 =  I d and ̂ »>» «v  ̂ asa <v/ <v

(f, <j) = a . Thus 4> is idempotent but not symmetric.
♦v *v ^ ** f ** 1 r **Then, SS (treat.) adj. = Q ft w° Q<W «VAS,

' A ' o ’  6 A 7= y <)> A w A <J> y
^ A. A* A/ «W

A/ *V »J

t ={fiA<j)+lw'A (1/w' r) } Y ̂ #v  ̂ »V »M A/ A/ «V ^ I ? ^and var ( x) = {ft A <J>V + 1 w' A V (l/w'r)}^ A o
Ana <V A/ *V <V «v * > / ' ' *  _* ^

#»< / V

+ v/ 1 '  ( l / w ' r ) -i .~ ~ ~ /
Now let

^ — **  ̂t 1 *N/ l 6 AS,J = V <f) - <f> A ft w A<b
~ ~ W W M w

»V |
It follows that \p <p = \jj and ij> 1 = 0 = t|j D

-  *>A ASA A S A A S A  ASA A S ^ A S A

so that
i rr i ~ (~ i i T. ' 6.7Y  ̂ Y = Y V <f> Y - Y 4» A ft w A <f> Y

AS, ASA AS, ASA ANA »V

and y '(V 1 a
»V 'V <%A

- >  ) Y

= Y Y“1 Y - B (n'w)-5 B - SS(treat.) adj
ASA A V  AS, ASA ASA AS/ ASA

= SS (E)
t ~ i i ~ i 6 ~= Y d> A ft w A <j) Y

a v a s a  a-a  ASA asa a.a Asa asa

= Adjusted SS (treatments) •
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Thus the adjusted treatments SS and the SS for error can 
he expressed in terms of matrices, <j> and ijj , which reduce 
respectively to the matrices <{> and $ defined hy Pearce and 
Jeffers (1971) when w = 1 for homoscedastic models.

4.4 Estimation and analysis when group variances are unknown

The quantity n.. denote* the number of times the jtht)
treatment occurs in block i. For each j, we assume that 
there is at least one value of i for which n.. > 3. If each
treatment is replicated in exactly one block, and each block 
has only one treatment occurring more than once, then b = t. 
Otherwise, b may be greater or less than t. This includes 
extended block designs and also the designs where some or all 
blocks may not contain all the treatments. Block sizes are 
unequal in general as before.

Since E { l E ( y l j k  - yi r >2 } = E { \  Ek (£ijk " £i r )?) 

= (r. - b) a.2,

2 2s. = Z Z (y. .. - y . ..) /(r.-b) is an unbiasedj i k  J
2 2 estimator of a . , j = l,2,...,t. For j ^ j*, s. andJ Jps., ' are independent. When n.^ = 0 or 1 in a cell, the

2contribution to the SS for s. and to its d.f. from this cell
2will be zero. Bartlett's x -test can be used to test iHe-

homogeneity of error variances.
For any experiment under the model (15), the estimators

of the linear parameters and other statistics may be calculated
with the help of the formulae given above using estimated 

/s . 2weights w. - 1/s^ in place of the actual weights. Such 
estimators and other statistics including test-statistics
using estimated weights can then be adjusted for bias by
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Theorem 1 (section 2.1.4).

4.5 Recovery of inter-block information

Patterson and Thompson (1971) provided a method of 
modified maximum likelihood for recovery of inter-block 
information for incomplete block designs when block sizes are 
unequal. The same method may be used for mixed heteroscedastic 
models with random block effects as stated below.

The model is the same as that in (15) with the exception 
that the block effects, 3^, are now random variables with 
mean, 3, and variances, °p . Then the variance of the
observation vector J is given by

var(Y) = diag ( +ĉ  2, . . . ,cr 1 2 40̂  2 -----, 2, . ... , o ^ + o ^  2 )

H , say. As

E f l l  (yijk - yi r )2 ) = (rj ' b) ao2 ! ^

follows that s/ = | sk (yijk - yi r )2/(rr b)
remains an unbiased estimator of a. , j = l,2,...,t ; andJo 2s . and s ., are independent when j ^ j'.J ’ J oThe estimator of is obtained from the logarithm of
the likelihood function of S Y where S = I - A ' (A A ' ) x A ,«w  ̂ ^  ̂ ^
which is given by

h = const. -k Z log? - £  Y (SH S) Y . 
s S • ~ ~ ~

Here the quantities Lare the non-zero latent roots of H S* «y A/

and A-5denotes a generalised inverse of A
2The modified maximum likelihood estimator of a 

is then obtained by solving the equation
3
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dL
dv

= - i E + | B = 0

where B = y' (SHS)"3 (SHS)~*Y and E = tr r (SHS) * -,/>/ e*  \  J<v •
2 2 The solution, , will he in terms of °. ,

J

The estimator, cr̂, , using the estimated weights can be ad­
justed by using Theorem 1.

Finally, the treatment estimators using the interblock 
information are obtained by solving the weighted least squares 
equations :

~ * 1 i i A _-i
t  =  ( A H  1 A ) 1 A h 1 Y' *1/ ** '  ̂ «V»

A 2 2where H is H when a . and 0 ~ are replaced by their corres- ~ ~ 3 (3
ponding estimators.
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CHAPTER 9

RANDOMISED COMPLETE BLOCK DESIGNS

Por known group variances, the weighted least squares 
estimators of the linear parameters and the corresponding 
analysis are given. The MINQUE and almost unbiased esti­
mators (AUE) of the error variances are derived. A theorem

2on the expectation of functions of correlated x -variates 
is proved. The covariance between any two of the AUE's is found 
to be negligible. The test-statistics using estimated 
weights are adjusted for removing bias. Finally, expressions 
for joint confidence intervals of contrasts of both the treat­
ment and block effects are provided.

5.1 Estimation and anlysis when the error variances 
are known

Let the linear model be

*13 3 . + T . + e . . 1 D iJ
(i — 1,2,...,b ; j — 1 ,2,...,t)

where is the effect due to the ith block, T. the effect i J
due to the jth treatment and e . . the error term having mean

J
2zero and variance cr. . . The errors are assumed to be mde-0

pendent of one another. This is a special case of the model
(6) in section 3.1.1 with the restrictions that n . . = 1 for

J

all i and j and that the interaction term is now the error 
term.

The weighted least squares estimators (WLS) of the 
linear parameters and the sums of squares can therefore be
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obtained from the corresponding expressions of section 3.1*2 
and are given below.

A **
The WLS estimators t . = y. . and 3 . = Zw.y. ./Zw. = y. ,J J 3 1 -j P / j  3

are unbiased for the parameters t • and (3 . + Zw. x ./w.)3  ̂ 3 3 3
respectively. Thus  ̂. is biased for unless Zw. x • = 0

«3 t )#*/

in the population although any contrast is unbiased
for the corresponding parametric contrast ĉ. 3..

A 2 1 1Furthermore, var ( T.) = °. /b = l/bw. and var ( P .) =J J t)
(1/ ^w .) which is a constant.3

The three (corrected) sums of squares (SS) for the 
analysis of variance are

~ pSS (treatments) = bZw.(y. . - y..)
J J

s s  (blocks) = w. £ (y^. “ y. . )2 
and SS (error) = Z Z w ^ y ^  - y±. - y.^ + y..)

with d.f. (t-l),(b-l) and (b-l)(t-l) respectively, where
y.. = Zw.y.Vw. and w. = Zw..

J J J

Analysis of variance table

Source of 
variation d.f. s.s E(MS)

Blocks b-1
As 2

W .  z(yi.-y..) 1+w. Z (3 ±- 3. )2/ 
(b-1)

Treatments t-1 ** 2 
bEwj(y* ¿-y*•) 1+bZw . (x .-x)2/ 

J J

(t-D
Error (b-D(t-i) sswj(yir^i- 

-y.j+y••)2 1

Total(corrected) (bt-i) SZ w.y. . 2 - ri]
( Zw .Y ; - ) /bv/. 3 J
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When the P-test indicates significant differences amongA
the treatment or block effects, the difference between any 
two of the treatment or block effects can be tested by the 
normal test because

Z1 = "T k^/ U V b W j )  + (l/bwk )> 2
*v 1

and z9 = ( 3̂  - 3^)/ {2/w.} 2 are both standardised normal 
variates u, ^  c(j~ -rwdi. ■

5.2 Estimation of weights

If the error variances are not known, these have to 
be estimated from the sample for use in computing the 
required statistic s.

2The maximum likelihood estimator of o is given byJ

1 (y11 - yi. - y.i + y..) A  >i=l 1 J
which involves the error variances. Russell and Bradley 
(1953) showed that the iterative solution to this equation 
converges for all j. The limiting solution is zero for 
any one j = p, say. The other estimators are

~  2 = l i (yi.i - y ' -  yip y.p)Vb j/̂ P ì j-1,2,..,t

The non-zero estimators are thus correlated and their 
distributional properties are difficult to obtain.

The minimum norm quadratic unbiased estimator (MINQUE)
2of 0 . is obtained below.
Let Y be the vector of observations arranged treatment 

by treatment; then the model can be written in the form

A ' x + D ' 3 + e«V »V

( a1 : D-) ( ) + e
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as in section 4.1. The over-all design matrix is singular 
and 14 x = 0 by the constraint. To obtain the projection 
matrix we need a generalised inverse of the matrix

. ,~. . ; ( A' ♦ D* ), which can be obtained by a method given _ / ***** 7 
1) •

by Rao (1973, p.225) as used in section 3.1.3. But a
simpler method is to re-parameterize the treatments by an
orthogonal transformation and thereby transform the design

*matrix into one of full rank For this let us consider

where

s transformation of treatment parameters given by
T = C T

C = 1 1 72 "72 0 . . . ... 0 0

1 1 276 76 
• •

- 7-6 . . 
•

. . .  0 
•

0
•

• • 
• •
1 1

•
•
1

•
•
1

•
«

(t-l)
/t̂ t-l) /t(t-l)7t(t-1) 7 t(t-l) / t(t-l

1 1 1 . 1 1
/t /t /t . . . . . / t 7T

- ( • £ • >  * .

say, with c2 as the last row of c. Since c^ t  =  0 by the 
constraint, the last element of 3-̂ is zero so that

T „i o \= (***•),say. The matrix c is orthogonal so thatO /V

c'c = I = c c 1 and furthermore c^l = 0. Hence,

This was suggested by Professor S. C. Pearce,
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, • * 'T — (c -| . C p =?.)

)

!~ C 1 T. • -L *vO Thus the model

i i »Y = A C1 To + D 3 + e
A/ A» A/ •St

= x' 0 + £ ,
say, with the design matrix X = (a c -, D ), now a matrix 
of full rank.

i i i  iAs D A c-, = J c-, = 0 and e-. c-, = I, , we have

(XX’) =

whence

1 •c-, bl, cn 0
#*. U A il • 'V “ t-i 0

A/

............................................................................

0  • l l b

— 0 « b•st A/

-

(XX') 1= — i.h.vtvi..
0

... 9..
7 Ihx b

where is the identity matrix of order h and J is a 
matrix with all its elements equal to unity. Thus, we have,

X'(XX’)_1X= I I , t-1 jt 1b bt Jb

— It xb
1_
bt

I i _ I j t Xb bt db * * * *

I  I _ Jt xb bt b

■7 V  FT" Jb

I T T’t Xb ^ F  Jb

and the projection matrix S is given by

1 vS = I-X'(XX*) X = bt ^t-Dib-it-DJb

-b I>,+Jv, ~b b

-bl, +J. ,** U ** D « a

where is the square matrix of order b with all its elements 
equal to 1. It is easily observed that SY is the vector
of residuals
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Now let F = (f. .) with f . . as the square of the
2(i j )th element of the projection matrix S, 6 = (a t' ~ »s* rJ -L

2 2 ? fa ̂  » • • • » 0̂  » • • • » O-j- ' ) , the vector of error variances, each
no . ' being repeated b times, and v =( (^n “ Y f  “ y.p +
2 2 ' 

y . . )  * ---- (ybt - yb* - y.t + y-• ) } » the vector of
squares of residuals. Then the MINQUE^ofa . are obtainedJ
from P 6 = v .

Adding the b equations for a. , we have,d

— — 2 { b2(b-l) ĉ 2 + b2(b-l)a22+ ---+ b2(b-l)(t-l)¥+--- +b1(b-lX1}
b t

= e (yi, - y± - y. i + y. • )'i=i 13 1# D

or,
{ a 12 + ... + (t-l)2o 2 + ... +dt2 } = s 3 ’

say, j = l,2,...,t. All the t equations can be written 
together as

t

{ (t2 - 2t) J  + + Jt } (a^2, . .. , a +2) =

t (s12,...,st2)'b-1 V“1

If we write the inverse of the coefficient matrix as 
al, + 3J. , then a and 3 are given by

“ = l/t(t-2) and 3 = — l/t2(t-1)(t-2).
pThe MINQUE of 0 . is then obtained as

A 2 i/(b-i)(t-i)(t-2)} {(t2-t) E (yii-yi*-
i=l J

y. .+y.. )2 - ee (yi;j - yi- -y-j + y- -)2 >
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pEhrenberg (1950) mentioned two unbiased estimators of ° .t)
and this is one of them. This was also obtained by Russell 
and Bradley (1958) in a different way.

These estimators are obviously correlated and difficult 
to handle algebraically.

A simpler estimator called an almost unbiased estimator 
(AUE) was provided by Horn et al. (1975). They gave a method 
of obtaining an AUE from a MINQUE. Later on, Horn and Horn 
(1975) showed that the AUE possessed a smaller mean square 
error than the MINQUE in a wide range of situations.

In this case, the method of Horn et al. gives the
AUE of o. ast)

= (S,2/b) { 1- (b+t-1)/bt > 
J

-1

where k.. = (b+t-1)/bt is the jth diagonal element of
J J

X ' (XX* )~'*'X. Unlike MINQUE, AUE is always positive. The
2 2covariance between s. and s., (j/j') is negligible as isi) J

shown in section 5.4.
. b

If we let u. = y. . - y.. so that u. = £ u./b, thenl ‘'l.i  ̂i -r i

the random variables u^ are independently and normally 
distributed on the assumption of normality of errors, and

var (u. ) = (1-2/t) cr 2 + where ̂  2 = £
1 J i J

-  2 2Replacing o - \>y o . as an approximation, we have
2 2 var (u.) = o. (l-l/t) so that the distribution of S- =t) J

2 2 2 £ (u.-u.) may be approximated by that of X a. (l-l/t)i J* *J1
with (b-1) d.f.
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Johnson (1962) recommended that P = S.'VS.,2 (j/j1)J J
might he regarded as an P-statistic with (h-1) and (b-1)
d.f. for testing the hypothesis: a = o when b > 5.J J

As S,2/a,2(l-l/t)=b s,2i l-(b+t-l)/bt } /a 2J J J J
(1 - 1/t) = (b - 1) s.2/c.2,

2 2 2we may assume that (b-1) s. /a. is approximately ax -tJ J
variate with (b-1) d.f.

5.3 A Theorem on the expectation of functions of-
2correlated x -variates

When the estimators of the error variances are 
mutually correlated, the Theorem 1 (section 2.1.4) due to 
Meier needs to be generalised for use in the adjustment of 
statistics. The generalised form is given in

Theorem 2. Let v.x. be x -variates with v d.f., j = 1,2,J O  0
...,t. Let these variates be mutually correlated and v . be
large. Let f (x-̂ ,... »x^) be a rational function with no
singularities in the range 0 < x-̂ ,. . . , x ^ . Then 
asymptotically in J

E {f (xi,. .. ,x_k) = f(l,...,l) + i V
0=1 ô

b f (X-, , .. . ,x, )1̂ 
b x.:

+ it Z 2 E(x .-1) (x, -1)
j / k 3

b f (x1 , • . • , x_j_)
b x . 6 x,0 k

all Xj = l

all x.=l J

+ terms of order lower than 0 ^ z (l/v. v, )2  ̂*
J x\-jk
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Proof: As a rational function, f is the quotient of two
polynomials and as such admits partial derivatives of all
orders. By the non-singularity assumption, these derivatives
are all finite within the range (0,°° ). The Taylor’s series
expansion of f in x. about its expected value 1 is thus givend
by

f (x-p 

<xt -

••,xt) — f(l,...,l) +

5 -1 r1) -  -f (b/j • • * ij ■+ Rnòx t

nZ
r=l

1 
r ! (x-1) 4"

(16)

The term Rn is the remainder given by

& 1 n
Rn n! (xl-15 5 x1 •

+ ... + (xt-l)s—

where U.-il<t)

..,st) - f(l,...,l)}

x . —1 1 and the differentiation is done 3
before the resulting expressions are evaluated at x.=l andJ
x.= K. for all j. Using the multinomial expansion, the 3 3
remainder term can be written as

1
n! 2 (xh-l)(x.-l) (x^-1)(xk-l)

(hj.«..,lc)
^ (? i » • • t £t )

(h,..•,b)
- f(l,...,l)

(h, ,.,k)where f denotes the nth order partial derivative of f
with repsect to the variables in some order (including
repetitions) and the sum includes all possible pure and
mixed n-factor terms in the x.’s. It is shown belowJ
that E(R ) 0 as n --> 00 .

By the generalised triangle inequality, we have
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E(Rn ) * (1/n!) Z £ (Xĵ  1) « • • (X-̂  1)

(h,,..,k) (h,,..,k)
{ f( ?fc) - f(l,

* (l/n!)Z E {(x^-1)2...(xk-l)2}

(h,...,k) (h,,..,k)
E .̂) — f(l,•••»!) }

h

2

by the Cauchy-Schwarz inequality. Moreover, since (x.-l) £ 0,
J

we get 9 0 2n m  1/n
E { (xh-l)^...(xk-l)^ } <: { E(xh-1) ... E(xk-1) }

by the generalised Holder's inequality (see Rao, 1973, p.55). 
Consequently,

2n
|E(Rn) | ^ (1/n!) Z |{E(xh-l) }. 1//2 n . . . { E(xk-1) ” }’n , 1/2 n

(h,...,k) (h,...fk)
E {f(?1,...,?t) - f(l,...,l)}2

1/2

For large v.» it follows that x. is normally distributed J J
with mean = 1 and variance = 2/v-. The joint distributionJ
of the x.'s is thus asymptotically multi-variate normal i]
having; the form

k exp ( - (X - 1)'Z 1 (X - l)/2 }•v

where k is a constantj X is the vector of the variates x.,
J

1 the vector of unity and j the dispersion matrix of X.
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hand
The last expectation in the right-side o£ |E(Rn) | can 

therefore be written as
rh (h. . .k) 2

k /  exp { -  rx- i ) '  2 ~1 ( x - i ) / 2 H f lU ; - " . i > - £ c i , . . a ) W x , «^  ~ ~ ( A • • • k) J
As all the partial derivatives of f exist, f ( l , d o e s  not
exceed a finite quantity M within the range of integration.
Hence , this integral cannot exceed

k {M-f ̂ C i j ! .,1) ) 2 /••••/ exp { - (X-1) ' Z"1 (X-l)/2}TrdXj
which is a constant. Thus this expectation is bounded.

Again, by the formula for central moments of the 
normal distribution, we have,

nE { (x-1) }= (2n) !/ n!

= c ( l /  v-n)(2n)n,

for some constant c, on neglecting terms of order (l/n). 
Thus,

|E(H ) | i (C</n!) i (l/vhv1 ... V ,V k)1/2nn/2

[ 0l/(n/2)! ] s ( lA h V .  I1/2 iif n is even

[ c/n1/2 t (n-1 )/2 } l] Ï U / % . . .  v k )V 2

if n is odd,
up to the same order of approximation, where cQ, c^ and c  ̂
are positive constants. Hence I E(R ) I — 0 as n — > 00 
This means that E(R ) — > 0 as n — > 00 .

It follows from above that the expectation of a term
1 /2in the multinominal expansion is of order (l/v v .̂) •
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Hence, the theorem follows if we take the expectation of 
(16) and keep terms up to v= 2.

A consequence of the theorem is that the adjusted 
statistic,

f (x, . . . , x , ) - e 1
3 VD

A f (X-j , • • •, x_£ ) 
-— ~2 o A

E(x^-l)(xk-l)
2 ̂ f( ,  .•,x^)
b x . 6 x,3 k

all x.=lJ

all x.=l. ,J
, 1/2is free from terms of order il/Cv^v^) ' } and thus

approximates its theoretical value f(l,...,l), more closely 
than the statistic f(x-^,...,x^) itself. When E i(x^-l) 
(xk~l)}is negligible, the adjustment reduces to that obtained 
by Theorem 1 due to Meier (1953).

2 25.4 Covariance between s  ̂ and s^ (jA)
2 u 2 We have, S. = E (y• --y,.-y. -+y..) =J i=l ± ” x «

Z ( £j_j-ei.-e. j+e. . )d and
P b pSk = E ( eik- e^.-e.^+e..) so that 

i=l

E(S .2Sk2) = E {E ( e..) E ( . -£ *k+ ^ •) ^

= E E ( e e .„•) E( e^- e*k) ’ + ^Li ID D l v ± r  *d p ei

-2 V V V  ■
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2 , 2
E( .^eik_£*k̂  + { e *'̂ } “ 2

r ( a.-e.. )2  ̂eak“ e,k ^ ei* £,,)i i

- 2 i(e±. -e. .)(e±.-e..) I (e ik- ^k)2"2 * ( \  j"e* -j) ( e± • £--)

4 Z( e. .-e. -He^-e. .) z (eik“e,k)(e i#“ e '•)

To find the expectations of the individual terms we observe 
that

(i) - d-i) ¿ i ‘ ij •«>e „ •

(ii) ?(eik-e-k )2=(l-^) ? eik2 1 1 b

(iii) i(c -0..)2=(i2 - i -5 ) SS I s "  e « - i-,i 1 t2 bx ij 1J t^ i j A  t)t

E E  E E e 0 v » (i,j)/(n,k) ^  lk

(iv) ei 3 - E .  j  ) ( e±. e..) - (t - bt) ^ e ij + t FEi bt

e n -i e oi- vu s e. . E E e • ,J bt i 1J i A j  lk
1 1  2 1

and (v) eik"e*k^ ei,_e* •) = t̂ “ bt^ Z.£ ik + t ?£ik

bt 5 i f ike*k " bt ii A  Eij ‘

Expectations of the nine individual terms are then 
given as

(a) E (l(Eij-e .3)2 ^ ( ^ k- ^ k)2 } = (t-l)2o ,2a k2
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1. ,1
(b) E {z( ? (ei.-e,#) * " bt2)

E ( Se: ̂ + E Ee 2 l.Z Z. eik2) + b2t2 Efe Z e, ,2e0,2)ii t  ̂ to i -+te -̂ L‘. '
1 / sl 1 D  ^  *• ‘J i  k / j V £

0 >3-2b+l> 4 Uizll2 2 „ 2, , 2 cr 7  + ,2 a. Z a .
bt J J M j  k

( C ) E {Z ( £ĵ  j £>, j ) Z ( £^ — e**) } (1- 1)(I _ I )' bM t bt

/ 2 2s JLL-D- ? 2
B< E±ei3 ±Eeik > * t a j a k

(d) E {z (£i.- e ..)2 .^(eik- e-k)2} =
b -2b+l 

bt2

+ - av2 Z a-2 from (b) by interchanging the
t2 jjfc “J

roles of j and k.

(e) E { z(e±.- e • •)2 } 2 i
(i cr h  + b -2b+3

-----7 2

e ( n  ej 2 e 2) 
i A  r

- i^Ol2 »  ( i «2)2 + f » .2)2b(b-l)/t4
b t4 J J b i J

b2-l , 2 s 2“74“  ( a i }V  3 J

(f) E { z( e-L'-e* • )2 E ^ i k " 9*k^ei* e "  ^ } “ t̂ bt^ . 2  ,.2 ^1 i  X D X

2 ,1 1
E< f i k  X  «  ®ii‘> + ^t5 'bt3 J k >
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+ ±2 - 3  E(i)/ Jeik et2k)- E< Eeik ? e ii) + b^t2 1/ p k K bt2 i * j A  1D

=w-r E ( E e., Z Z e. . ) 
b2t5 i lk i ¿ A  1D

b^-2b+l _ 4 . b(b-l)
bt- ak + Z a

d A

(g) E( £ (e -e. )(eu - c.Z ( ^ - e .*)2 > = (1- |)

<1 - be> E( ̂ i k 2 | eij2) = 0 /  °k2

(h) E { E ( e.j)( &L*- e..) 2 ( e±.- e.. )2 } b -2b+l ̂  
bt'2 '

b (*>-•; 2Llk a . v av from (f) by interchanging the roles of 
t3 J k/j k

j and k.

(i) E {i;(ei r e..)(ei.- «..) I (E ik~E • j,) (e ± —  e-•)e  ̂}

'1 - — )2jg( 2 e ^eik ) +(i - 2:__ _ —__ + 2--
*  ht) i u  i } ' t2 bt2 bt2' b2t;

2 2
E( 2 e± ■ e ik )

o.2o 2
■-a ■ V -- (b2 - b - 1 + , )

1
b

Utilizing the above nine expectations and simplifying, we 
get
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I  E ( S . V )  ■  i 0>-i>2- 4i^ 2 + A2 (b2-b -l+7 )}
\i D K b2 t t2 D

(b^-2b+l)(t-2)
b5t5 / 4 , 4 n( a . + ak )

1 b2t2 b2t5
2 a 2 3 k

b2-l, 2 \  2f(b-ir 2b(b-l)l , 2 v ^ 2 ^ 2 V „ 2 N , u -x/v„ c. \
(«j $ 3 %  + °-k / A a 5 )+ ^ (i°j 5
2 4
b ~ ta " a- “ (1- v - r) + a—  (<V v ),

2 2neglecting the terms of order l/t , l/b or l/bt.

Also,

b2 E(S.2)E(Sk2)
= 2= ibzl ) - { 0 2(1 2} +a_l } { a 2(1-

“  >
_ 2 + cr /t]

_2
„ 2 „ 2n  2 4 . a , 2 2 v
°j CTk (1" b " t )+ T  ( ffj + ak >

so that
i_cov (S.2,Sk2) = { E(S.2Sk2)-E(S •2)E(Sk2)}/b:L= 0,

up to the same order of approximation. Thus', we have

cov(Sj2,sk2) = 0
p pup to the order l/t , l/b or l/bt.

It follows from above and section 5.2 that Bartlett's
2 2X -test using s . may be used for testing equality of group3

variances. TKe Likelihood ratio test and sphericity test 
(Shukla, 1972) may also be used.

5.5 Adjustment of the test-statistics

Let x. = s.2/ a -2 where s .2 is the AUE of 2, 3 3 3 3 3
j = 1,2,...,t. Then the estimated weights are:
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w. = 1/s 2 = 1/x.a the d.f. v . = (h-1). Let w.= £w..J J J J J J

It follows from the previous section that Cov (x.,xv )J K2 o=0 for j^k up to the order 1/b , l/t^ or l/bt. Hence, the 
adjustments of the statistics using estimated weights to 
remove the bias of order l/(b-l), by using Theorem 2 will 
be the same as that by Theorem 1 due to Meier (section 2.1.4).

ASuch adjustment for one test-statistic (Fg) was given in 
section 3.2.2 for the more general case of the two-way 
classification with proportional cell frequencies. The 
adjusted test-statistics for the special case of randomised 
block designs are stated below using some of the expressions 
derived in that section.

(i) Adjusted F~statistics

(a) Significance of treatment effects
The F-statistic using estimated weights for 

testing the significance of treatment effects is given by

b 1 Wj ŷ * j “ y* *)2 / (t_1)3 ........... - - - ........ -______
£ *

wj (yij “ yi* " y *j + y* • )2/(b-D(t-i)

= (b-l) TSS/E SS,

say, with (t-1) and (b-l)(t~l) d.f., where TSS and ESS 
denote, respectively the treatments SS and error SS using 
estimated weights. Then the adjusted F-statistic is

P1(adj) = Fx - b-l
t
E
3=1

b F-
ò x3 .

using estimated

all x-j =1 v/eights
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with
OA

a *1 i-i

6 X . 2 (ESS)3
{ (ESS)'

& 2tss

i x.
- (ESS)(TSS)

S2ESS

5ESS &TSS
-2(ESS) 3x.

f6 ESS\
9x_ + 2 (TSS) [ 3 X . )  }

t)
(17)

where &(T SS)
3 x.

-  b ŵ  (y4 y - y * •) >

all x. = 1 
J

& (ESS)

* x. 0
= - | w3yij(yi r yi-“y -3+y-,)+\- w o V i 3

all x.=l J (yii -

and

&2(TSS)

i x J*

2
b (ESS)
8 x ■

= 2bw^(l-fj)(y.j-y..)‘

all x.=l 
J

= 2 ? Wj(1-f3)yij(yij-yi - yM +y--)

all x .=1 0
-2 2 iw;)f.(l-f;j)y1;j(yi r y1_-y..+y..)

1 d

with f . = w ./w. tJ J

(b) Equality of block effects

The E-statistic using estimated weights
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for testing the equality of block effects is given by

A

E,
w • z . )/(b -  i )

2 2 w.(y,,-y.,-y. ,+y..) /(b-l)(t-l) 
ij d J J

= (t - 1) BSS/ESS,

say, with (b-i) and (b-l)(t-l) d.f., where BSS denotes the 
block SS using estimated weights. The adjusted E-statistic 
is

A A 1
P2 “ P2 b-1 ?

A2F
6 x all x,=ld

using estimated 
weights,

where
b CF,

\  zo x .
is given by (17) above with (b-1) and TSS

replaced by (t-1) and BSS respectively. The two additional 
partial derivatives are

6 (BSS)

s x j
£ w.(y.,-y.,) - 2 1 1 w,f . (y..-y..) i J i j J J

all x .=1 
J

(yij-yi.-y-j+y--)

and
,2(BSS)

5 x /

= 2 Z w i(yi.-y..) { (y±.-y..)+2 f ^ y ^ - y ^

all x .=1 J
-y..+;..) } + 211 EWjf;j(yi r 'yl._y. ,+y..) { f j (y± -  •

+J *S>

-y*j+y’*)+ 2(l-f\ )(yi.-y..) } .
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(ii) Adjustment of the normal test-statistics

(a) A Treatment difference
The^normal test-statistic using estimated 

weights for testing the difference between the jth and kth 
treatments is

* ,1 1 2
•v I kT" + > • This is inzi = iy*j - y-k bw . 

J

A. *1bwk J

the same form as that for testing the difference between two 
treatments in the one-way model. Hence, the adjusted normal 
test-statistic is given, from section 2.1.4, by

zx(adj) ={| y.j-y.k | /(l/bw^+l/bwk)2}*

<:L- i  i i / ; . +i A ,  )* [ i / ( b - i f w / +i / ( b - i ) ; k 2 >j *■

(b) Difference between block effects
The^normal test-statistic using estimated 

weights for testing the difference between the hth and ith 
block effects is z? = | yh<(adj) - ^.(adj) | / (2/w.)2
whe re yi_(adj) = I f.y^ - — j l  f (1-f )(y. r y±>) from

2

section 3.1.4 with f . = w./w. . This statistic is a specialJ t)
case of the corresponding test-statistic of section 3*1*5

A

and so the adjustment of z2 is obtained as

z^adj) = z2 { 1- S f .(1-f /4)/(b-l) > .

5.6 Multiple comparison

Dor this design, the error sum of squares depends 
on weights. Thus, the square root s of the mean square

A
error as well as depends on the estimated weights.
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So, the expression (5) of section 2.1.5 for estimating 
joint confidence intervals of parametric contrasts, needs 
to be modified. 'The modified form is

it - D(adj)£Tj,<ijj + D (adj)

where D = Ss o  ̂ , S2D
òx/

ò X 2s 2 x3 ÒO*
= s  < s — K  + j .  — „ + —  l i t - }

and

D(adj) = D - Z
rj -1

ò x . 
3

>2d

2 0
tp & X  .  ̂X . & X

•(IH)

using estimated weights.

all x . =1 0

(i) Treatment contrasts

Let iji = f c y. with  ̂ c. = 0 be an estimate ofJ J J
the treatment contrast V -, = I c. t .. Then the joint■ J «3
confidence interval of all contrasts ^  is given by (18) with 

i> = itx , S= [(t-DF^ i ( t-1 ), ( b-1 ) ( t-1 ) > , r.-l = b-1,
_1_ o O J-s = { ESS/( b-1 ) ( t-1 ) } 2 and %  -, = (Z c / s , y b ) 2. TheJ J

individual derivatives are

Ò S

ax.
L 3 J -

all *lfl

ÒESS i
---- /2 {ESS(b-1)(t-1)) 2
ax3

all x, =1

J,2s

s x i

a2ESS /fcESSV 0
------ ( — ---- ) / 2 32(b-D(t-l) ) /2i
Ò X 3 x . ' 

3

allx1 (b-1)(t-1)

all Xjf 1
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6 x . 3
= 0 . 0  3 3

all x . =1J

S 2 / 2* » / « > ) *

and

\ 2- o 0* ___ _̂1
z

3 x3 j

4 4 , 2 / v 2.n 2/, s5//2-c . a. /4b ( E c . g . /b)3 3

all x .=1t)
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&ESS

8x5 j

and i 2ess

3 x .U 3 4
being given in the previous

all x,=l
J

all x.=l J
section.

(ii) Block contrasts

In the same way, the .joint confidence interval 
of all contrasts 'P ̂ = E c^g . , of block effects is given

by (18) with ^ = i>2, S = [ (b-1) F ^ { b-1, (b-l)(t-l)> ] %

r.-l = b-rl, s = ( ESS/( b-1) (t-1) } ^ and crj = (Z c.2/w.)'*‘.3 r2 x

The two derivatives \_  ̂s/^ x . 1 and fa 2s/^ x.2] are given3 3
all x.=l 3 all x.=l J

above and the other two derivatives are

Ja ; / Sx. = ( >: Cl2)* f, / 2 w.

and
all x .=1 3
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= ( Z c.2)*f.(If. / 4 - 1) / w *  .

all x.=lJ

The quantities y. (adj) are used in computing \p0.1 • <-

5.7 Summary measures of dispersion

Since the variances of the treatment estimators are 
in the same forms as. those in the one-way model, the 
estimated summary measures of dispersion of the estimated 
treatments are obtained from section 2.1.6 as

Estimated H.M.(adj) = ( 1 + 21 f (1-f )/(b-l) }

The estimated block effects have constant variance and so 
no summary measure of dispersion is needed for them.

Estimated A.M.

±, u OEstimated G.M.(adj) = b (it s. )
1 J

i/t t-1
{ 1+ t(b-1 ) )

and
t
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CHAPTER 6

LATIN SQUARE DESIGNS

A method for solving the normal equations to find 
the weighted least squares estimators of the linear para­
meters, is given along with a procedure for the corres­
ponding analysis on the assumption that the group variances 
are known. The treatment estimators are found to be orthogonal 
to those of other linear parameters whereas the estimated row 
and column effects are not orthogonal to one another. The 
MINQUE and AUE of group variances are obtained. The AUE's 
are found to be approximately independent of one another. 
Adjustment of the test-statistics using estimated weights, 
for testing hypotheses about the treatments is provided for 
removing bias. Similarly, other test-statistics can be 
adjusted. Finally, expressions for joint confidence inter­
vals of- treatment contrasts are'given.

6.1 Estimation and analysis when the error variances 
are known

Let the model for a t x t latin square design be

ijk = e , + y + T-i + e.13k

where 3- is the effect, of the ith row, y. the effect of a J
the jth column, the effect of the kth treatment and ej_<j]c

2the error term having mean zero and variance . The 
errors are assumed to be independent of one another.

The suffices, i,j and k, individually assume values
pfrom 1 to t but collectively assume only t sets (triples) 

of values depending on the design chosen.
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Let Y be the vector of observations arranged treat­
ment by treatment, the observations within each treatment 
being arranged row by row. Consequently, the column effects 
are randomly distributed among the observations in Y.

Then the above model can be written as

Y = A ' T + D ' B + D* Y + e ........ (19)•s# «X» **

I f Iwhere A , D-, and L)0 are the design matrices for the treat-
ment, row and column parameters respectively,t is the
vector of treatment effects, B the vector of row effects,
y the vector of column effects and e the vector of errors.

2 2 2 2Then var ( e) = diag (a-̂  ,..., o ̂  ,..., a ̂  ,..., a  ̂ ) and 
» «1 x = 0 = 1 Y»1 being the vector all elements of which

Ar A/ A/

are unity.
The weighted least squares normal equations for 

estimating the linear parameters are given by (20) where



tw, w.

twt wt.

W1 W1 • •

,VYt Wt . .

w.

V.'-,

V/.

w ,

V .

W. V/ . .*1
\v.

w-

w. w .11

V/ w . t 1

w£ w .

w
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•
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•
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•
•
•
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. . . . (20)
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w .J E w. as before and (i.,.. ., i^ ) and

(,..., H are random permutations of the numbers, 1,2, 
...t, based on the random distribution of the column effects 
as mentioned above.

Prom (20), the individual normal equations are
j-L. rw

\ : twk x k + wk E ^ i + w k Z Y j = wkY * • k ’ = 1 ’2 ’ * * * > “k •

5i; îwk* k + w - 5 i + » V  y j = .1 Viole’ i=1 .2. v . t .J 0-̂

Ewk T k + Ewk± 3 i + w - Yj wvŷkJi jk’ lk d
j —1,2 , . . . , t

Here also (h-L,...,ht) and (k-L,...,kt) are some random permu­
tations of the numbers, l,2,...,"t, depending on the design 
matrix.

Using the constraints I w^ t ^ = 0 =E B  ̂=E y ^, the 

three sets of equations reduce, respectively, to
A
Tk II *< • p? k = 1,2 ,.. . , t
•V/

= y±.. - Zwh.y
) / w -

l — 1,2,...,t

and
♦w

= y -i. - '•kj6 ±/ w . j = 1,2,...,t.

where
»V
Yi-. = .1 V ijk/w- and y.. = 

J • E
ik wicnjk/w - •

Thus the treatment estimators are the ordinary least 
squares estimators and are orthogonal to those of row and 
column effects. The last two estimators are nor\-en>fco<jonfJl.

The reduced normal equations for the 
column effects are given by
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Y .i - wk < ïwh.Y ,i)/w - - wk (£ w z Y ) /w ‘

= y*-j • - £ wR yi . ./w.J i
j = 1,2,...,t. The coefficient matrix is of full rank
and the solution can be obtained by the method of pivotal 
condensation. Similarly, the reduced normal equations for 
3  ̂ are

- ( X \  _ ( V )
3 i " V w . ( £wv B.)- ... -Aw2./

ki 1 (= wv . 3 i>

= y±--- Iwh y-i-/w -j J

i = l,2,...,t, and the solution can be obtained in a 
similar way.

The sums of squares (SS) are
„ 2 
k-k'--k - ...SS (treatments) 

(uncorrected ) £ = tZ wky *' k with t d.f.

SS (rows & cols.) - £ 3 ̂  £ wkyiik+ 1 Yi 1 wkyiik * * * (21)i jk J j J ik J
with (2t-2) d.f. 

and
2

SS (Error) = £ wk-yiik “ SS(treatments) - SS(Rows &i jk 2

cols.) with (t-l)(t-2) d.f.

Putting 3_̂ = 3 for all i and y  ̂ = 0 = x k for

all j and k and proceeding in the same way as in section 
3.1.1, we get the corrected SS (treatments) to be equal to

•jt £ wk(y..v - y... ) with (t-1) d.f. where y...
k = ( £ y - .k w/w.).

To obtain the SS(columns) adjusted for row effects,
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we put 0 for all j. Then the model reduces to

+ s with the suffix j playing no role.

This model is the same as that of randomised block designs 
with, unequal group variances. Hence, from section 5.1» 
we have,

2SS (treatments) ignoring Y .. = t x w k (y.. k~y.. .) 

with (t-l)d.f. and
2SS (Rows) ignoring Y . = w. ^(yi..-y...)J i

with (t-1) d.f.
It follows that

2SS (Columns) adjusted for rows = (21) - w. 2(yi..-y...)
i

with (t-1) d.f. Similarly,
»V -V 2SS (rows) adjusted for columns = (21) - w.^ (y..«-y...)'

J

with (t-1) d.f.



Analysis of variance table

Source d.f. SS ss d.f. Source

Treatments H1-P S1 = t ^wk(y“ k"y -**)2 si t-1 Treatments

Row(igno­
ring cols.)

t-1 S2=w. E(yi..-y...)
a#

SA=w. E(y., - 

> 2
y . •.)

t-1 Col.(igno­
ring rows)

Col.(adj. 
for rows)

t-1 (21) - S2 ' ( 2 D  -  s 4 t-1 Rows(adj. 
for cols. )

Error (t-1)(t-2) (By subtraction) S3 (t-1)(t-2) Error

Total (corr.) tZ-i
2

1 V'ijk -(Z

y ••k)2/ w•

118
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lI f  CL-

If an F-test indicates significant treatment
A-

effects, difference between any two treatments can be
/V ^tested by the normal test as z = (T - T ^)/(l/tw^ + 

jl a -
l/twk)2 is a standardised normal variatei*^Av -TVlÂ  ■

6.2 Estimation of weights

Assuming normality of errors, the maximum likelihood 
estimators of the linear parameters are obtained from the 
same normal equations as for the weighted least squares

p(WLS). The estimator of cr k ' is then given by

- & < ~ Y ,)/t

involving the WLS estimators of the linear parameters.
An iterative method may be used if convergent. But such 
estimators are not likely to be of any use for our purpose.

The MINQUE of is obtained below.
Since the overall design matrix of the model at (19) 

is singular, let us re-parameterize the treatments and 
column effects by Helmert's transformation given in section 
5.2. Thus

T = C t and Y = C Y ,
«V/ «V *s/

say, where C is the matrix of transformation defined in 
section 5.2. Then the model (19) reduces to

E (Y) (
f !A CL I)1 Px )

T~ O
• • i = x  e

*0
say, in the extended form of the notation of section 5.2. 
It follows from the same section that
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XX* « t -1 ‘ 0 * 0
Q

0

tl. . 0/v» u

0 * tlt-1

so that (XX') 1--
1 •

h h - h  2 • 0
•

2 : k h • 0
• *1

0 ! 0

with Î_ as the identity matrix of order t. 

x' (XX' )_1X = t { A ' A - t A ' J. A + D-!d ,A« «w »V *** #V_L

Thus, we have
I  .

“ t 52£t?2+?2~2 *

where the off-diagonal elements M. . in the last term arej
square symmetric matrices of order t with unity occurring
randomly only once in every row and in every column and zero
elsewhere on the basis of the random distribution of the
column effects as stated in section 6.1. Here Ĵ. is the 

*f o/dU tsquare matrix with all its elements equal to unity.
It follows that the projection matrix is given by

I - x'(XX')"1X= E G12 * * '• • • ®it

GJ.2 E . . .a#• ’ ' ’ ?2t •

‘lit ?2t E

where E is the square matrix of order t with (t-l)(t-2) as 
the diagonal elements and (2-t) as the off-diagonal ele­
ments, and G.. are the square symmetric matrices~ -L tl
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with (2-t) as the diagonal elements and 2 as the off- 
diagonal elements except that (2-t) occurs in place of 
2 randomly once in every row and in every column in the
positions of unity of the corresponding M. . matrices. 
It is easily verified that (I - X (XX )~^X) Y is the
vector of residuals.

Now let the matrix P = (f..) with f.. as the square 
of the (i,j)th elements of the projection matrix,

the vector of error2 2 i 26 = ( o » • • • s 0 ̂  ^
2variances, each being repeated t times, and v the

r
vector of squares of residuals. Then the MINQUE of
is obtained by solving the equation F <5 = v .

2 ~Adding the t equations for we get

{2(t-2)2 a 12+4(t-2) a x2 } + . . . + ' {  (t-2)2(t-1)2a fc2

+ (t-2)2(t-1) av2 } + ... +{ 2(t-2)2a ,2+4(t-2)a 2 }

f  (y
ij ijk h ..~ y-j. - y--k + 2?---y

or,
cr + o 2 ••• +

(t-2)(t-1) _ 2
2

2 t‘a k + ... + crt - 2 ( t-2 J

2 2 2 t^S/
r (yiik - y, -y• i + y--k + 2y...) = — --- ,
<,] 1‘* 3* K 2 ( t-2 )

say, k = l,2,...,t. All the t equations can be written 
together as

( t -3t T t S /  ̂ 2 ¿1 Sh  "*■ «f / l 0 ] » • • • » O' + /
« 2A 2 v t.

:t ^t 1 2(t-2)
/ „ 2 „ 2 q 2s
\ O j  J ^ 2  5 • • J °-j- /

If we write ( al+ + 3J.,_) as the inverse of the coefficient
< SiX  1*
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matrix, then a and gare given by

a 2/t(t-3) and 3 = - 4/v (t-1)(t-3).

A 2The MINQUE of o , is then obtained as

ck2 = {i/(t-i)(t-2)(t-3) ) { (t2-t) e (y-L^- y±---y‘

-y..k+ 2y...) - 2 t k + ^  ^  }1QK

As E(Sk2) = (1/t) 0-k2(t-2)(t-3) + 2 a 2(t-2)/t so that

E ( Z Sk2) = o 2(t-1)(t-2), it follows that E (a k2) = ak2

2 2as is expected. Here a = Z a k /t.
These estimators are correlated and not in a convenient 

form for algebraic treatment. We therefore consider the 
almost unbiased estimator*(AUE) proposed by Horn et al.
(1975). The AUE of a, 2 is given byK.

sk2 = a  - W V a

= (Sk2/t) { 1 - (3t-2)/t2)-1
2where hkk = (3t-2)/t is the kth diagonal element of 

X '(XX *)-1x .
**> n/A«

Now.let u . . = y . - y. .. - y.,. so that u. . =1J 1 j-K- J

y. • - 2y. . • Then the random variables u . . are normally
distributed on the assumption of normality of errors.
Since the covariance between any two such variates is of

oorder (l/t ), these variables may be considered to be 
approximately independent of one another for large t.
Again var (u± .) = ak2 (1 - 4/t + 2/t2)+ 2 5 2/t.
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-  2 2If we replace o by o k as an approximation, then var
2 2 (u..) = a (1-2/t) on neglecting a term of order (l/t ).13 x

2 v 2Consequently, the distribution of Sv = E (u. . - u.. )
* ij 1J

2 2may be approximated by that of x a ^ (1-2/t) with (t-l) 
d.f.

As Sk2/ ak2(!-2/t) = 1  bI { l-(3t-2)/t2 > / °k2(l-2/t)
2 2 2 2 = (t-l) sk / ak 5 we may assume that (t-l)sk / ak is appro-

2xiinately a x -variate with (t-l) d.f.

2 26.3 Covariance between ŝ  and sffl (k / m)

We have, (Sk2) = 1 (yiik"yi**“y *i."y **k+ 2y*"^ =13 ijk

I
ij

{ ( eijk “ e**k)“( ei**“ e •••)“( e -y- e ...) * and

sm - £_ { ( e i;jin- e--m)"( ej. • *“ e • * • ) ( G * j * £ •••) }ID
so that

t2 E (sk V )= t2 E [ { h  (e ijk- e --k)+ / <  E i---6 •••>'

+ X ( e • j • — e. • •) — 2  ̂( s i • k e •*k ) (e 1"  ̂ )
D J ij

-2 X ( e ^jk- e *»v)(e *-i*- e* • • )
ID

+ 2,.?( e,..- e ...)( e .,.-e ...) ] { X / e
vj ' i D

, 2+ Z( e ..-£...) + 2 ( e . .-e . . . )' U  - Yu v

uv
2

(e _ E )v uvm * *m

-2 X (e e..m )(e u> - e ..0-2 E ( e livm-e • -J
uv uvm uv uvm rrr
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( e.v.-e...)+2 I.(e u ..-e.-.)(e v .- e.••)]]•
uv

For derivation of the expectation, a break-up of the 
individual terms will be useful. This is given below.

(a' , Z ( £ijk" £,*k̂  10 J
2 2— E e (1— — ) — —  ̂ £

ij 13k *} t H M
e ei j k uvk

2 2 ,1 1 . 1
(b) Z( e,..- e...) = £ e l 2 . 3)+ 2 I (£ E eijk vt jk/i-w ijk i£w )

,3 E E e. .. b t . „ ink tr£wijk^r£w u

(c) 2 , /l _ 1 v 1
^ e *v .~ e*.. )= E £ (t2 t3 )+t2 E( _E E e ivj e kvu>v ijm v lj/ku 0

t5 . ?./ Z eijk euvw ljk^uvw 0

(d) E ( e i • £• . k) ( e — £•••)
10 Ok

.I _ 1 . 2 1
= H  t2' .l. eijk + t f.e ijk10 10 uv/jk

e . — ,2 E E e .1UV t . / 1]lj/fiuv d

e --2 £ e E euvk t ± . ijk iju iou
iju^ijk

(e) E ( £•••""£ •••)( £•.:• £•••)
id J •

1 2  1 
p E £ —t 10

2 1
. ijk t' ..k idk+ t3 E e ,,1_+ J.2 E

id
( E E £ . . , £ . )  

jkj uw u ŵ '
ijk/ujw

' t5 E £..-,£
ijk/uvw ijk uvw

The break-up of any other term is equivalent to one of the
above.
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In a 13, expectations of 36 terras need to be evaluated.
But the expectations of all but the nine terms listed below

2are of order (l/t ) and can be neglected for our purpose.
The expectations of the nine terms that matter are as 
follows:

2 .

(i) E i S ( e e. . ) S (e e“ m ) } ~ (t_1) a1 3 0 uv
2 n 2 a 2

k m

(ii) E { S ( e Z (e u **- £...) >
13 u

1. /I
“  (1 * ^  ^  ‘  ¡ i  E ( £  A  + A  uv^  % v k ) +

+ E( I Ei;jk L %;ju) ) + +4 E(S . E  ̂T -1 V T»oV ^13 1 3 U
u/k

1
t' 13 A s

2 2
'ijk “rsk

(t-1)(t2+t-l) (t-l)2a k2 £ °*u /t2
u/k

(iii) E { I ( ej_jk- &.*k ) £ ( e .y .- e.. .) } = (t-1) (t2 + t-l)
13

av2/t^+(t-1 a /  £ a „ V A  from (ii),2 2 2 / , 2
'k u/k u

(iv) E { £ ( e,*k ) 2 ( e mrm £ ,* m ^ £ n‘* £ ** * ̂ ^13 UV uvm m' ' u

/ 1W 1 1 v v 2 . e 2a  - t)(t - t2)E ( S e u v m )
10 0 uv

- (t-1) 2 2 2 
ak a m A

e t .? < Hjk- ^--k5 (13 0 uv e. .m )( e .y - — e. . . ) }

o 2 2
(t-D" <?k 0 m /_fc from (iv)
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2 2

(vi) E{ 2 (e -e.. ) 2 ( e ... - e ...) } = (t-1)(t2+t-l)
uv i

a m2/t5 + (t-1)2 2 ak2/t2 from (ii)
k/m

(vii) E { 2  ( e -e .. )2 Z ( e.,.- e...) } = (t-1)(t2+t-l)
uv j J

a 2/t5 + (t-1)2 a 2 2 a, 2/t2 m ' . ' m , j k 'k/m from (ii)

(Ylii) E { E ( e uvm-E.. ) E (e iJk- e..k )( Sj..- e ...)}
UV 1 J d

-(t-ifak2 am2/t from (iv)

(i x ) E { 2 ( e e *‘m ) /. ^ e ijk"e **k^ e*j* e***)uv x j u J

— (t-1)2 ak2 am2/t from (iv)

Utilizing the above expectations and simplifying, we
get,

1 p 2 I
t2 E <Sk sn ) = t2

2 2 , 8.
“ k o m ,a-l)2(i- t ) + (a /  _E„_ct /m/k

2 /J+ % 3  °k ) 2(t-l) /t k/m

k-+ terms of order (l/t )

“ k2 ” / « 1- 10/‘)+ 25 <° k2+0 m2)/^

neglecting terms of order (l/t ) Again,
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^2 E(Sk2) E(Sffl2) = { ak2(l-5/t+6/t2)+(2a2/t)(l-2/t)} { a ^

p 2(1-5/t +6 A  ) + (2 a /t)(l - 2/t) }

= ak2 am2(l-10/t) + 2 a 2( a k2 +a m^ A  

up to the same order of approximation. Hence,

?  oov(Sk2,Sm2) = \ n  E(Sk2Sm2) - E(Sk2)E(Sm2) } = 0 

and consequently
cov(s, 2,s 2) = 0 v k ’ m '

2up to the order (l/t ).

It follows from above and the previous section that 
p PBartlett's x -test using sk may be used as an approximate 

test for equality of group variances.

6.4 Adjustment of the test-statistics

2 2 2 2 Let xk = sk / a k where sk is the AUE of ak , k= 1,2,
a p / 2,.,t. Then the estimated weights are: wk = l/sk = l/xk *^ 

the number of d.f. is v k = (t-1) and E (xk ) = 1 approximately 

It follows from the previous section that cov(xk?xm) = 0 up
pto the order (l/t ) for k / m. Hence, the adjustment of 

the statistics can be made with the help of Theorem 1 of 
section 2.1.4.

(i) Adjustment of P-statistics
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The F-statistic using estimated weights for testing 
equality of treatment effects is given by

F = t £ w, (y. - y. . . )2/(t-l)
= (t-2)TSS/ESS

ESS / (t-1)(t-2)

say, with (t-1) and (t-1)(t-2) d.f., where TSS and ESS denote, 
respectively, the treatments SS and error SS using estimated 
weights. The treatments sum of squares is in the same form 
as that for randomised block designs. The adjusted
F-statistic is

F (adj) = F (t-1) £
t
Ek=l

2a f? using estimated weights

all x^=l

where
2 ‘J O
ÌIXt"2 is given by (17) of section 5-5 with (b-1)

replaced by (t-2). 
Also from section 5.5 a (TSS)

ò x.
- t wk(y.«k-y...; and

all x^=l

a (TSS) 
* x k2

= 2t W-, ( 1—w,/w. ) (y ..t_— y .  • • ) • When the expression

all x^=l

for ESS is obtained for any particular experiment, those for

can be similarly found,

v 1

M e s s ) and
—

s 2(e s s )
/*■»

» a V

Finally, once the adjusted Rows SS and Columns SS are
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obtained for an experiment, we can proceed in the same 
way as above for adjusting the F-statistics in order to 
test equality of row effects and that of column effects.

(ii) Adjustment of^normal test-statistic for 
testing treatment differences

The normal test-statistic using estimated 
weights for testing the difference between kth and mth treat-

A. ^  1ments is z = | y..k- y...ffl | /(l/twk + l/twm )2. This

is in the same form as that for the randomised block design. 
Hence, from section 5.5, we have

z (adj)
A

z 1 “{ 3/4 (t-1) } (l/wv  ̂ + 1 / % ) ( 1 / Wv +
-2

6.5 Multiple comparison of treatment parameters

As the error sum of squares depends on weights, the 
joint confidence interval of all treatment contrast \p =

Z c^ t k ( Z c^= 0) is given by (18) of section 5.6 with

\p =Zc, yk J * *k* = [ (t-1) F { t - 1 , ( t - 1 ) ( t - 2 ) } and

s = ESS/(t-1)(t-2) The partial derivatives are

& s

1
Xi

X-o
------1

b ESS 
Ò xk / 2 { ESS (t-1)(t-2) }

all xk=l all xk=l

.2Ò 3 C\JXs
O

------
i

■ Ò ESô
è x.

b ESS /2 s2(t-l)(t-2) } /2s(t-l)(t-2)

all xk=l all xk=l
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è a7 ____ $
Ò X, k /2t( E c ^ a / A ) '

all xk=l

and 
ò2o

A2 A
jL

i xi
2 2 /., 2 / v 2 2 /1 \

= " ck ak /4b ( Zck a k /*'
3/2

all X-. —1 a. o o iHere /t)2.

Also from section 5.7, the three summary measures of 
dispersion of the treatment estimators are

Estimated AM =  ̂ sv^/t^
1 K

? 1/tEstimated GM (adj) = (l/t)( ^s^.) (1+l/t)
and

Estimated HM (adj) 1 + 2 E f^ (l-fk )/(t-l) } /w.

with f^ = w^/w. •
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CHAPTER 7 

SPLIT-PLOT DESIGNS

We consider here the usual split-plot designs with 
error variance heteroscedastic with respect to the levels 
of the sub-plot treatments. The weighted least squares 
estimators of the linear parameters are derived and the 
corresponding analysis is given on the assumption that the 
group variances are known. Estimators of the group vari­
ances having negligible bias, are obtained. The co- 
variance between any two such estimators is found to be 
negligible. The estimators of the linear parameters and 
test-statistics using estimated weights, are adjusted for 
bias. Expressions for joint confidence intervals of 
contrasts of linear parameters are provided for each factor 
and interaction separately.

7.1 Estimation and analysis when the error variances
are known

Let us consider the following model for split-plot 
experiments having blocks each of which comprises a replicate 
of the whole-plot treatments; and whole plots each of which 
comprises a replicate of the sub-plot treatments;

y±ok = e i + y j + "ij + T k + s kj + e'ijk

(i = 1,2,...,b; j — 1,2,...,c; k = 1,2,...,t)

where is the effect due to the ith block, y . the effect1 J
due to the jth whole-plot treatment, p ’• • the whole-plotX J
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error, the effect due to the kth sub-plot treatment,
6 ^  the interaction effect between the jth whole-plot

Itreatment and kth s u b - p l o t  treatment and e . ... the S u b -1,] a
plot error. The errors are assumed to be all independent 
of one another. It is also assumed that E ( P  ̂ ) = 0 =
E (e ’i3k), var ( = o'2 and var (e = o'£.

Thus the heteroscedasticity of the error variance is assumed 
to be associated with the levels of the sub-plot treatments. 

The above model can also be written as

yi jk Pi + + Tk + 6 kj + e ijk • • • (22)

where e ijk = n-j +
fe . so that var1 J A < e i3k> =

'2 '2a + a k

= 0 k ’ saY * Curnow (1957) considered this model with only
two sub-plot treatments; he showed how to test for the 
equality of the two consequent group variances.

Let the constraints on the linear parameters be:

k£ \  Tk * 0 = s = Z wk «kj = ££ wk 6 k . where the

v/eight w, = 1/ Tk *
Let Y be the vector of observations arranged<v

systematically such that

Y = ( y i n > • • • »ybn »  • • • » y i d »  • * * ’ybcl’ * * ’ ’yllt’ * * *» 

yblt’‘ ‘,ylct’* **,ybct^ *
Then the model (22) can be written in matrix notation

as
Y = x '  3 + e

twhere X is the overall design matrix, 3 the corresponding'V A/

vector of all linear parameters and e the vector of all•v*

errors. Thus we have,
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2 2 2 2var ( £) = diag ( a ]_ »*•*» °t  ̂ = ~ ’

say, and
V = diag

By (2) of section 1,2, the weighted least squares normal 
equations are given by (23).
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From this the individual normal equations are obtained as
a ^  ^ I ^

V  bcwk T k +bwk s y j + b wk 1 5 k j + cwk Ef! 1 = " V  - ' k *3
k = 1,2 , . . . , t

V  b E wk  Tk + bw. Tfj + b l  wk 6kj+ w.re ± = ¡ V jV

j — 1 j • • • ) C •

« Kj= bwk T k  + bWk  U  +  bwk  S k.i + wk ES i  == w,Y.kx*jk

j — 1,2,..., c
k = 1,2 , . . . , t

c E w k T k  + ™- + EE wk  { k j  + c w - e i  = l wky i - k !

l —
A  «w +*

Using the constraints, E w, T = 0 = Eli = E y = E 6
k k 1 j  3 j

~ I= EEw, 6 . , we get the estimators as
kj *

T V = y- ■k> = kE w ky-j  k / w- = y - r *  ei = k wk y i . k / w - =

j±.. and 6 ̂  = y. - y. .k - y. ̂  where w.' = E wfc. The

2 ~  2corresponding sums of squares are be E y .. v , bw. E y.
k K D J

•w p ** p
cw. E y ... and b £ Ew, (y..v - y... - y. ..) in that order,

i  i  j  k k Jk k j

To obtain the corrected sums of squares, let 3^ = 3

for all i and let us ignore all other main effects and inter­
actions. Then the model reduces to y ^ k = 3 +

From this, the weighted least squares estimator of 3 is 3
= Ew,y..v/w. = y... and the corresponding sum of squares K. K.

~ pis bcw.y ... . Consequently, the corrected sums of squares
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(SS) are given by
2SS (sub-plot treatments) = be Ew^y

be £ wk(y.. y - y " . . . ) with (t-1) d.f.
k

SS (whole-plot treatments) = bw. 

with (c —1) d.f.

SS (interactions) = b £ “

*k - bcw.y2

2

with (c—1) (t—1) d.f.
~  2 ~  2

SS (blocks) = cw. £ y^.. - bcw.y...
i

CW. £ (y±.
i

with (b-1) d.f.

To find the SS for whole-plot error we consider the 
whole-plot weighted totals Ŷ ,.. = T. w^y^^ = w. y ^  . where

is the weighted mean for the (i,j)th whole plot.

i = 1,2,...,b; j = 1,2,... ,c. These totals have constant 
variance as shown below. The whole-plot totals may there­
fore be considered to be the data from a simple randomised 
block design and so the SS for whole-plot error may be
written as ££ (Y. .. - £ Y ,,./b - jY.,./c + £ j- Y.-./bc)2 

i o J i J J i j J

= w.2 £ £ (y. .. - y. .. - yl .. +*y...)2. However, the whole- 
i j  ̂ J

plot analysis in the above procedure is in sub-plot units 
and the whole-plot totals are the weighted totals. Hence 
SS for whole-plot error is given by

ssEĵ  = » /  r z (y, i-

» • E E (yi r  " yi'

- y .y + y • • •) / z wk

v2y . j • + y ♦..)



with (b-l)(c-l) d.f. This is the blocksxwhole-plot 
treatments interaction SS (corrected).
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Finally, the sub-plot error SS is obtained as

SSE2 = Y ' V - SSE1 SS due to all the estimates

on simplification, with c(b-l)(t-l) d.f.
It follows that yu.. is unbiased for 3  ̂under the 

constraints. The estimators of the other main effects are 
not unbiased but their contrasts are unbiased for the corres-

l/bw. and var ( 6^) = (l/w^ - l/w.)(c-1)/bc.

The estimators of the levels of each of the three
factors are independent of one another. gut the inter-
action estimators S, . are mutually correlated.■Kj

Expectations of the sums of squares under the con­
straints are as follows:

(a) Whole-plot analysis

y.. , - y... + y...), then 6V-; is an unbiased estimator ofK J K J
61... The variances of the estimators are:

A* O *+
var ( t k ) = ok Ac, var ( ß±) = l/cw., var ( y  ̂)

In view of the constraints, the model for the
weighted total of the whole-plots is given by
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Dividing both sides by w., we have

yij. pi + + n i j + e i j * e i + Y j + n ij ’

say, where y . .. = Y.../w. and E y i = 0. This is the

model of ordinary randomised complete block designs with
12 12 2 ? 2var ( n^) = a + 2 0k wk /w * = a » saY> which is a

constant.
It therefore follows that

E {SS (blocks) } = w. E { c E (y...-y...) }

2 2= W.c I ( 3 - — 3 -) + (b-1) O W.i
** QE { SS (whole-plot treatments) } = w. E { b e (y.^.-y...) }

0 J

and

2 2= w.b £ y . + (c—1)a w.
j J

•*» Af n
E (SSE-l) = w. E { E E ( y i j .  - y±.. - y . ̂ . + y . . . y  )

i J
= w. (b-1)(c—1)

(b) Sub-plot analysis
Prom the model (22) we have, under the constraints,

y *jk = »• - + Tk + 6k j + £ *jk ’ y * *k " B . + Tk+ e..k ,
A/

yi r  = %  + + eij- ’
<V A»
y±.. = 3 ± + e i.., y.j• = 3 • +

A/

Yj * £ ...and. J

ei r  = £wk e ijk/w -
A«

y... = 3 • + G • •. where ’  ̂i * • =

E wk ei k/w. . e.^. = Ewfc e.^k/w. and e ... =E w^e ..v/w.

It then follows that



E (sub-plot treatments SS) = be E'{ jw

= be E wk T

E (Interaction SS) = b E { ££ w,( ■K K J
*w

— e • • k + £•••)

= b £ LWk 6k<j2 + (c-

E (SSE2) = E { E E Ewk (

c ( T k +e 

:2 + (t-1)

' e ‘jk " e

-D(t-i) 

e 'jk + e

= C (t-1 ) (b-1).



Analysis of variance table

Source d.f. SS E (MS)

Blocks H1¿2 CW. E (y...- y ...) 
i

w. a2+ cw.j; ( g 3 . )2/(b-1)

Whole-plot c—1 ~ - 2bw. E (y. .. - y...) w.a 2+ bw. Ey-2/(c-l) Jtreatments

Error^ (b-D(c-i)
**# A# A« 2

w. 2 E (y. . .-y. . .-y. . .+y...) 
i j J J

2w . a

Sub-plot 1—1 1-p ~ 2be 2 wk(y**k - y*••) 1 + be iwk Tk2/(t-l)
treatments k

~ 2 OInteraction (C—1)(t—1) ^2 swk(y.jk-y* -j*-y-•k+y-**) 1 + b EE wk 6 k;j /(c-l)(t-l)
2Mi t-

Error£ c(b-l)(t-l) e e e wk(yi3k-yi r -y-jk+y-j! 1

Total (corr.) bct-1 2 E 2 wkyj_̂ k - bcw.y...2 140
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If the E-test^indicates significant main effects 
and interactions, the difference between any two levels 
of any one of the factors or between any two interaction 
parameters can be tested by the normal test. Because, 
the variates

1 = ( t k - T £)/(l/bcwk + l/bcwfc )2, 

z2 = ( Yj - Y h )/(2/bw.)2 , z5 = ( 3 ± - 3 m )/(2/cw.)
and

Z4 =

( ~ 6u;i)/ ( (c-l)(l/wk+l/v^ )/bc} 2 for k^u

( 6kj " 5kv)/ {2(l/wk+l/w.)/b } for j/v

( - 6UV)/ { (c-l)(l/wk+l/wu )/bc + 2/bw.}
for k^u and j/v

are all standardised n o r m a l .

7.2 Estimation of weights

Since there are no replicated observations in the 
cells, independent and unbiased estimators of.the error 
variances are not available for the design. But we can 
obtain approximately independent estimators having negligible 
bias as follows.

The method of simple least squares yields the 
estimated error of the usual model as

ijk ^ijk ~ ^i* * - y-nkU ̂

Let S,

+ y.••)
2

= 2. y -jk+l 0 J d
Then

E(S/) = E ? ? { ( eijk‘" ei‘*)~( £\jk“ £ }i J
2
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= be
1 2  2  ̂2 ]_ 

<r2(i " cT + FJt) + cT (l *" Tj)
or

E(Sk2/bc) = a k2(l - 1/b - l/ct + l/bct),
2 p pon replacing a Ec k/t by ak as an approximation,

Let us now define

sfc2 = (Sk2/bc)(l-l/b-l/ct+l/bct)"1 ; k = l,2,...,t.

Then ŝ 
estimator of a

ha s a negligible bias as an 
The bias is of order (l/ct - 1/b^) . itC O  l/Xillu O U 1  U -i • * --- ------  --  ' • J

'aJ L GUt ^  C U  u + j y i c w j u  < t t  c £ - , W n s )  c f  i f £ .

To find the approximate distribution of sk , let

u± = y±3k - yi-• 50 that u - = y-jk - y' Then the

random variables u. , i = 1,2,.'.. ,b, are independently and 
normally distributed under the assumption of normality of 
errors. Moreover,

var (up = E ( e^k ~ £ i " 5

o f  + o ^/ct - 2 op/ct

= tfk (1-1/ct)
-  2 2on replacing a by as an approximation as before.

2Thus e (y±jk ~ yi- y  • + y***) = £ (u^-u.)1 —  1 1
2 2is approximately distributed as ^ a^"(l-l/ct) with (b-1)

d.f. so that Sfc2/ ak2(l-l/ct) is approximately distributed as 
k 2 with c(b-1) d.f.

Since Sk2/ ô-2(1-1/ct)= be sfc2(1-l/b-l/ct+l/bct)/ 
o k2(l-l/ct) = { c(b-l)sk2/ ak2} {bc/(bc-c)} (l-l/b-l/c+

l/bct)/(l-l/ct) = c(b-l)sk2/a k2, we may assume that
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? 2 ? c(b-l)sk / is approximately a x “-variate with c(b-l)
d.f.

It is shown in the next section that the covariance
2 2between the two estimators, sv and s_“ (k / m), is negligible.K. in

so that, by the normal approximation for large d.f., they 
are approximately independent.

2 27.3 Covariance between sk and sm (k ^ m)

We have, sk.2 = E E { ( eiik - e. k)-( e±..- e ...) }c
i 3

-2 • -,2 ̂e i jk_ e * jk^ + c M  e i**~ £•••) “ 2 c 2 ^ ei.k e ' * k ̂1 j l i

( ei..- e ...) and smi 2 2 ( euvm e ’ vb2 + c 2  ̂e u* *' U V u

- £...) - .2 c x (u eu . m ~ e * * m M  e u• • m ) ( £ „ • * “ £ • • • ) •

The individual terms may be partitioned as follows:

(a) E E ( e-in
i 0 ijk E*jk£• nv)

2 . 1 
= 2 2 ^ijk (I" b) b E ( J ei3keJljk'

(b) Similarly, z z ( euvm- e*vm)2 =Z Z ef1Trm(l- bu v U V -uvm

" "E 2  ̂ 2 / 2 Euvm ervm^ ° v u f r

(c) c E ( ei 
i - £•••)'

Z Z Z (f-2
1

i ,1 k ijk vet bets) ct  ̂ ( E E E E  
i ( jk) £ (rs)

e e > _ ---p E E E E E E e eijk irs/ bet /. w/ N ijk uvm 0 ( 1 3 k) ?■ (uvm) 0
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(d) Similarly, c E ( e .. - e. . . )
u

z J £ Wm < ct;u v m bet2) + 7 7  H  £ z. . s su (vm) / (rs )

I E E E E E e£ £ )_ 1___ _ _ _ _ _ _ _uvm urs; , ,2 , w , . .. uvm iikbet (uvmj/iijk) J

(e) E E  ( e ik~" £‘ * k ̂  £ i  * *_ £ * **̂i 3

E E & ( ct bet) + ct ^
i  3 ljk

( 2 e. E e ) 
i  3 lvk

kst 1 1 1 1  e . e , " fet 2 E e . E E  E
(ijV (u v ) UVk i  3 i;*k i  j m^k1Jm

(f) Similar ly, E E  ( e u. m “ e**ni^e u*‘_e:***^

=  ̂  ̂ ( "ct ~ bet) + ctE ( E e E e . )
u v uvm u v UVffi j/v u^m

T— r E E E E bet e ___e bet E E e
(uv)^(ij) uvm UJra U v uvm

E E E u v k/m euvk •

In all, the expectations of nine terms are to be 
evaluated. But four of the expectations are negligible 
up to the order of approximation given below. The other 
five expectations are as follows

(i) E { s E (e e.jk^ 11 J u v uvm

2/, , n2 2 2c (b~l) ak am

2 2(ii) E { E e( Eijk“ e'jk^ 0 E  ̂ eu ..-e...) }
1 D u
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-  ( b - 1 ) ( b 2 c - b c + 2 b - l ) 0]r2 / b t 2 +  c  ( b - 1 ) 2a R2 E . a m2/ t 2 .m/k rn

2
(iii) E { H  ( t: ̂  jk- e* ) £ Z ( e U v m  e * vm^ ̂ e u" £ • * • )}

i 0 U  V

c(b-l)2 a k2a m2/t

(iv) E { Z E ( e uvm 6-ym' ' e' '-lu v x- e* )2° e ( • •- • • )2 }

= ( b - 1 ) ( b ^ c - b c + 2 b - l ) a 2/ b t 2+ c ( b - l ) ^  a  c E a k, 2 2 2 /, 2
m m k/m k

from (ii)

(v) E { z E ( e uvm" e.vm) ? ? ( £ijk" e 'jk^ e i? *“ £* * *
U Y 1 J 0

O(b-l)2 ak2 am2/t from (iii)

1
Thus b2c2 E (Sk2’Sm2) =

2 2 2 
° k ° m

+ c(b-l)24  E ^  /t2
*Wk m

*- 2 c ( b - l ) 2 a jj. a m / i  + c ( b - l )  a m ^  o k  ^  ' 2 c ( b l )

2 2 ,.2 i
o, a  t  j k m '

+ terms involving reciprocals of cubic expressions in 
b,c and/or t

1 2 4 o 1
“m2('1 + 7  " b ' 7C> + 7  < b k2+ 0 m 2), neglecting

terms involving reciprocals of cubic expressions in b,c and/
or t.
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S 2 $ 2

Also E ( — —  , —  ) = { o J  (1 " ^ " ci + )
1 2 , 2T

be be

^ s l ,  1 „ . 1 2 . 2 . s i  , 1 V
ct ^  b ) } { Om^^ b ct bet^ ' ct h  ' b )

CM1! ? I _ £ _ _4 52
0m ^1 b2 b ct  ̂ + ct

>sk
up to the same order of approximation. Hence cov\bc

2 2S rn ,

2 2consequently, cov (s^ >sra ) = 0 to "the same order of
approximation.

p pNow let xv = s, / 0 , , k = 1,2,...t. Then the"k “ k / ° k
a. 2 / 2estimated weights are wv = 1/s, = 1/x, av , the numberk °k

of d.f. is- v. = c(b-l), and E(xv ) = 1 approximately.D K
A. t A

Let w. = T. w,.
1 *

It follows from the above that cov (xv ,x ) = 0 foriv in

k / m up to the order of reciprocals of cubic expressions 
in b, c and/or t. Hence, the use of Theorem 2 (section 
5.3) for adjustment of the statistics concerned will pro­
duce the same results as those by using Theorem 1 due to 
Meier (section 2.1.4).

7.4 Adjustment of the estimators

To obtain the adjustment of the statistics concerned, 
we need the following derivatives:

a y ID ^  ' V i j i A O
3 x. 3 x, 0 k2 Ŵ,yijk | wkyijk^/

2a2xkw.
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and
32?. •__--IJjL =
3x,

2 4 4 (w'yijk -J
2* 2s- w. )

ak xk w -

so that

8 yi.i. = -fk(yijk - yij-> and
2 ~
3 yij.

8
8 xk

__ L ' k J
all xk=l all xk=l

2 ffc (1 - ffc) (yj.^

where f k = w^/w. Similarly,
A

8 yi..
3 x

" ”fk^yi.k“y**#^

2~
3 yiJL • •

3x,
= 2 fk(l-fk)(yi-k-yi")>

k J
alj. xk=l
9 y* a____Jv
9 x,

all x^=l all x^=l

" "£k(y>jk “ y * j ̂  »

r 2 ~ i
3 y • 4

1
07 • • • --

--
-1

J •

- 8 x k 2 -

= 2 f k ( 1 _ f k ) ( y > j k _ y , o . ) ;

1
07 X 1__

__
_

all x^=l all x^=l

and
a 23 y . ..
~ 2 dX,

~ _ f k (y • • k ” y • • •)

= 2 fv(l-fk)(y..k-y...) where y±.. = £ ^k

all x^=l

^ A A

y i#k/w. , y.-j# = Zwky*jk/W ‘ and y -*- = Ewky-- kyw*

As the estimators of the parameters for the sub-plot
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treatments do not involve weights, no adjustment is 
necessary for these. The adjusted forms of the other 
estimators using estimated weights are

~ *3 i (adj) =  yi..
2

c(b-l) I fk a-fptyi.k - y ± - - )  >

A A 
•V A/

Y , (adj) =  y. .
3 J •

2

c(b-l) z a-fkXy.jk
A
A/

- y-j.5
and

A A 9 A

^Kj (ad j ) = *kj +
11

c(b-l) l k5
A A A

where f^ = w^/w. and «kj =  y •jk - y-j. - y--k + y.. . •

7.5 Adjustment of th e test-statistics

(i) Adjustment of the F-statistics
(a) Whole-plot analysis

The F-statistic using estimated weights for 
testing the significance of whole-plot treatment effects is 
given by

A,#«*
F-L = b(b-l) i(y..'

j
y. . . )2/ E 1

i j J

= b(b-l )YYTSS/WESS, say. The adjusted F-statistic is 
given by

P^adj) = Px - c(b_1) Ek=l

2*
3 F1
3 xi2 using estimated

all x^=l weight s,

where
2 A3 F-

K k
-b-i—  {(WBSS)2 
(WESS)5 9 x,2

all x^-1
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- (WESS)(WTSS) a2 (w e s s )
> xk2

- 2 (WESS)
3 (WESS)* (WTSS) 

3xk 5xk

+ 2(WTSS) ^
a(WESs)  ̂2

sxk / 1 _ ........  (24)

all xk==1

the individual derivatives being

3 (WTSS) 

9Xk
= “ 2 fk M y,j*“ y***^y*jk “ y,y  _y-*v+y-") g

all x^=l

3 (WTSS)

a x.
2 1Sfk2(y-jk-y-j.-y --k+ y-..)2 + 4fk (l-fk ) -J

all x^=l
z (y• j • - y «• •) *k+y’ * *

a(WESS)

a x.
= 2 fk 2 2 (y^..-yj..-y., +y...) - 2 fk z J

K i 3 J 3 ' * i j

all x^=l
tyijk‘yi'k‘y‘jk+y- -k5 (yij •"yi. .‘yT +*'J

and

3 2(WESS)
a xk

= 2 fk ? ? (yijk~yi.k~y \ik+y--k-yi.i.+yi..+yi 3 jk 1J

all x^=l

- y...) + 4 fk(l- fk ) « ( y i4.- yi---y -j.+y---)(yijk-yi.k-y -jk
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+ * - * - h v  * h

For testing the equality of block effects, the 
F-statistic using estimated weights, is

f 2 = c(c-i)? ( y i > # -  y . . . ) 2/ f  /  ( y i ^ - y i ^ - y - i . + y * » * ) '
i i o

= c(c-l) WBSS/ WESS,

say. The adjusted F-statistic is then obtained as

P2 (adj) = P2 - o(b_1} r
2 *

a P2
8 x. 2

all xk=l

using estimated
weights,

where 32F2/ dxk2 is given by the right hand side of

all x^=l

(24) above with b(b-l) and Y/TSS replaced by c(c-l) and WBSS 
respectively, and with a (WBSS) 

9 xk
= -2fk 2(yi..-y...)

all x^=l

and
92(WBSS )

axk = 2f/  i(yi.k-yi..-y --k+y---)2+ 4fka - f k )
all xk=l

5 ( y i . . - y . . - ) ( y i - k - y i . . - y - . k +y . . O ,

a(wess/ axk and

all x^=l

9 2(WESS/9 x* being given above.

all x^=l

(b) Sub-plot analysis

For testing the significance of sub-plot treatment
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effects, the F-statistic using estimated weights is

*3 = c ( b ' 1 ) bc ^ r' k < y i . i k - y i . r - y -.iK 1 J K

= be (b-1) TSS/ESS, 

say. The adjusted F-statistic is

jk ^ij*A 2+y-j 0

F5(adj) - F3 c (h-i) ^ 32V 3xk2 using estimated

Vall x.,_=l weights,

where O A  O3 F3/ 8 xk^ is given by the right hand side of

all xk=l

(24) with b(b-l), Y/TSS and Y/ESS replaced by bc2(b-l), TSS 
and ESS respectively. The individual derivatives concerned 
are:r ~i3 (TSS)

3 Xk _
** 2= - wk (y-*k-y*••) » 32TSS 

3 xk2
~ 2= 2 wk(l-fk)(y..k-y^

all xk=l all xk=l

9 (ESS)
3x, = - wv z 1 (y-i nv-y-i n -y ^ v + y ^  )k . ^ijk ^ij. ^-jk^-j

all xk=l
2ZEEwkfk(yi:jjt-yi r -y.ik^ . r )

and
3 2ESS
3 x, = ^ k ^ 1-2^ )  1  ? (yiak-yi r _y-jk+y- r )i J

all xk=l

4wkfk(1-5V 2) 1 E 2 (yijk-yij.-y -jk+y-j->‘-1 J K
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For testing the significance of the interaction 
effects, the F-statistic using estimated weights, is

2
A _ bc(b-i) 
4 ■ e - 1

? i wk(-v-jk-y-j--y--k+y---)'

S £ £ "k(yi.ik-yir_yu k +y-'r)2

_ bo£b_22 _ ISS/ESS,
c - 1

say. The adjusted F-statistic is

P4 (adj) = P4 - o(b_1} 3 54/ 3 xk using estimated 
all xk=l weights,

where 92i 4/ 3 xk2 is given by the right hand side of
cJlxk-=-l

(24) with b(b-l),WTSS and WESS replaced by be(b-1)/(c-1), ISS 
and ESS respectively. The individual derivatives concerned 
are

3ISS 
3 x. = s. <y\ik-y\-i.—y--k+y---> + 2 ? ,z V i

all xk=l

3 jk J * j . Jr,,k ^ * ’*' J £ "kAk

(y’jk“y •j*“y ’*k+y'’^ ’

3 2ISS
3 xk

= 2wlr(i-2fv) e (y. jk_y * j y**v+y..*)

all xk=l

•4 Z E wkfk(l-3fv/2)(y..v-y.^.-y..v+y...) ,
j k -fc jk 'k

and t>ESS/ 9 xk and 9 2ESS/ 9 xk2
-all xk=l

are given above

all xk=l
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(ii) Adjustment of the normal test-statistics

Por testing the difference between 2 sub-plot 
treatment effects, theAnormal test-statistic using estimated 
weights is in the same form as that for testing the difference 
between two treatment effects in the one-way model. Hence, 
from section 2.1.4, the adjusted normal test-statistic is(V

z^adj) = { 1 - 3(l/w ;2+l/ w 7 )/4c(b-1 ) (l/wk+l/w £)2 }

where

Z1 = T k - tJ /  (l/bcwk + l/bcw^ )2

Also for testing the difference between either two 
whole-plot 'treatment effects or two block effects, the^normal 
test-statistic using estimated weights is in the same form as 
that for testing the difference between two block effects in 
randomised block designs. Hence, from section 5.5, we have

z2(adj) = {
~ £ 1
Yj (adj)- y h(adj) /(2/bw.)s } { 1 - Z f k

(l-fv)/4c(b-l)>

and
z^(adj) = { ßi(ad j )- ß m(adj) /( 2/cw. )2 } { 1 - E 

(l-fk)/4c(b-l)}

where Y ^(adj) and 3 ^(adj) are as given in the previous section

Finally for testing the difference between two inter- 
action effects, the normal test-statistic using estimated' A
weights is given, from section 7.1, by
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|5kì(adj)- 6u^(ad3) |/ { (c-1)(l/wk+l/wu )/bc}
for k ^ u

|Sk .(a<äj)- äkv(adj) 1 / {2(l/wk+l/w.)/b> 2 for j ¡1

l«kj(adj)- 5uv(adj ) |/<(o-l)(ywk+l/wu )/bo+2/bw.} 2

for k / u and j ^ v

and the adjusted form of this test-statistic by

z4(adj)

^4 {l-3/4c(b-1)(l/wk+l/wu )}

A tz4 { l-Ak/c(b-l)- £  Bm /c(b-l) }

t
z4 { l - _ Z  L./cib-l)- 2 H /c(b-l) }

for k / u 

for j / v

i/k, u A , u
for k / u and j

where

A,. = 3(l+fk2)2/4(l+fk )'i+fki;(l-fk )/(l+fk )2 f 2

B.m
A Q A A /V /V

3fm fk A <1+fv > + f v ( 1 + f v )'m kv m'

Li = 3Pi/4wi2G2+2fi(l-fi)/bw.G

Hm
/V A A

3fm A  S w - + 2fm(1-fm )ASw.
A A

and
G

Pi

(c-l)(l/wk+l/wu )/bc+2/bw.

{ (c-1)/bc+2f.2/b } 2.

7.6 ' Multiple comparison

As the error mean squares for both the whole-plot 
analysis and sub-plot analysis depend on weights, the 
formula (18) of section 5.6 is appropriate for finding the
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joint confidence interval of contrasts of the linear 
parameters.

(i) Whole-plot treatment contrasts

The joint confidence interval of all contrasts
^ = Ed. Y . with £ d . = 0 of the whole-plot treatment para-* 3 3 3

meters is estimated by the formula (18) of section 5.6 with

rl> = ip±, S = [(c-1) F *{ c—1 j (b—1) (c—1)} ] %  s = (w.(WESS)/

(b-l)(c-l) } s, V.*»l = c(b-l) and a 7 = (£ d.2/bw.)2*3 f ]_ J
A

The quantities y ^(adj) are to be used in computing 

The partial derivatives concerned are
A

So
* 1
S x,

i fk ( E d j 2/bw. ) ,

all x^=l

2 * S o
1

S x.
(e dj2) * fk (3V 4 " D/ibw.)'®" ,

all x-£=l

S s
SXk

= [s {( S WESS/ axk )/ 2 WESS - fk/2 } ]

all x̂ .=l all x^-1

and
S 2s 
8 x2,

2.
s { fk(l“fk)/4) + / 2 WE SSS xn

all xk=l

-(■ 8 WESS
Sx

X *) /4 (WESS) }
k all x. = 1 k
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a Y/ESS 
3 xk

and 3 2WESS
ax.

being given in the

all xk=l all xk=l

previous section. Here fv = w,/w. and f, = w,/w.

(i i) b -contrasts

Similarly, the joint confidence interval of all 
3-contrasts y 2 = I gi 3 i with j gi = 0 is given by (18) of

r- .1section 5.6 with = iJj 2> S = [_(b—1) F a( b-1,(b-1)(c-1) ) J 2,

s = {w. (WESS)/(b-l)(c-1)} 2, r -1 = c(b-l) and ^J i|i
2

p ^ JL *( £g^ /cw.)2. The quantities B^(adj) are to be used in
9 scomputing ^2• The two partial derivatives,

and

3 x.

A
3xn

all x^=l

all xk=l

are given above in (i) and the other two derivatives are

3a

3 x. U  fk/2(cw-)1

all x^=l
and

32a'

3 xk
a -1-M 2= (£ gi^)2fk(3fk/4-l)/(cw.)2 .

all xk=l
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(ili) Sub-plot treatment contrasts

The joint confidence interval of all contrasts 
= Zck of the sub-plot treatment parameters is also 

given by formula (18) of section 5.6 with ip = ip y

Zck y,,k ’ S= C(t-D Pa i t-1, c (b-1 ) ( t-1 ) } ] 2,

s = {ESS/c(b-1)(t-1) } 2, r -1 = c(b-1) and 'a*J Y ’

{ 1 ck2sk2/bc } 2 .

The partial derivatives concerned are

do*\p 3
9 x, = ck2a k2/2bc(f ck 2o k2/bc)2,

all xk=l

9S
9 x. = - c 4 4/ , t2  2/ , 2 2/, ,3/2

i: ° k y4b c ( /bc) »k u k
ail xk=l

9 s
9 x

and

k

S2s

all xk=l

9 ESS 
3xv

/ 2 { ESS(b-l)(c-1) c } x2

all xk=l

9 x.
2 , 2r 8 ESS '

1 29xk 3xk
all xk=l

_ ( ^ /2s2c ( b-1 ) ( t-1 ) y

/2sc(b-l) (t-1)

all xk=l
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3 ESS
3 xi and 3 ZESS 

3 x,2
being given in

all xk=l all xk=l

the previous section.

(iv) Interaction contrasts

If ifn = EE c, . 6, . is an interaction contrast, 4 £ J ^3
 ̂ 2

then var(^4) = var (£ £ ckj 6^ )  = £ Eck . varfe )

“ k A  °k3 °u3 oov C + °kv’( « k r « k v )

\ 5 u .Ia  °ki °OT oov u kj’ °uv ) = £ GkA k “ G/w *>
•jsay, where Gv = £ c, . (c-l)/bc - £ £ c, .c, /be and Gk . kD j/v *v

= £ £ c, . (c-l)/bc + £ £ £c'kj j k/u 'kj uj (c-1 )/bc + (E E £ c, . c
k j/v 'kj kv

+k /  jA  °kj °uv)(2/b—1/bo)-

AThus, using estimated weights, the standard error of ^ 4 is

* = ( 2G}/Wk “ G/w *)

The joint confidence interval of all interaction 
contrasts ^  is given by (18) of section 5.6 with

* = *4, S= [ (c-l)(t-l) P a( (c-l)(t-l),c(b-l)(t-l) }]'“'.
x.s = { ESS/c (b-1)(t-1) } 2, and r .-1 = c(b-l). The quantities

J

6k  ̂ (adj) are to be used in computing  ̂/(. The two partial

derivatives
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[ 8S/ 3xk ]
all x^ =1

and [ a 2s/a X){2 ]
all xk=l

are given above in (iii). The other two partial derivatives 
concerned are

3at|>4
3 x.

= (Gk/wk - Gfv/w.)/2T

all xk=l

and

3X,
{Gfv(l-fJ/w. - (Gv - Gf 2)2/4Tw 2 } /T

3/2
k" * v̂ k uxk ' ' k

all xk=l

with fk = wk/w. and T = 2 Gk/wk - G/w.

Finally, the three summary measures of dispersion 
given at the end of the previous chapter can be used as those 
for the estimators of the sub-plot treatments.
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LINEAR REGRESSION WITH UNEQUAL GROUP VARIANCES

A linear regression model with error variance hetero- 
scedastic with respect to the levels of the independent 
variable is considered here. On the assumption that the 
group variances are known, the expressions for the weighted 
least squares estimators of the linear parameters and the 
corresponding analysis are given. The usual variance of a 
group of observations is taken as the estimator of the corres­
ponding group variance in the population. The estimators 
of the linear parameters and test-statistics are then 
adjusted for bias.

CHAPTER 8

8.1 Estimation and analysis when the error variances are known

Let the simple linear regression model be

° + e x i + E ij

(j — 1,2,... , r i5 r i > 15 i — 1 ,2,...,k)

v/here a is the intercept, 3 the regression coefficient,
the values x^ are the fixed values of the independent variable
x and e . . is the error term having mean zero and variance 

2
a ̂  . The errors are assumed to be independent of one 
another. Let n = Er . .

2 2By minimising E E (y. . - a - g x ^  '/a . , we get the
i j J

weighted least squares (WLS) estimators of the linear para­
meters as

a 2 2 ( Ewiyi. E wixi -ïw.x.ïw.x.y.J/i w.E w ^
(E WiXi)Z}
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and
2 23 = (w. lw±x±y±. - £ wixi 2 wiyi  ̂)/{ w.E -(e w ±*±) }l l*71

2where the weight w^ = r^/a ̂  , i = 1,2 k and w. = E w^

These are also given by Jacquez et al. (1968) for estimated 
weights. They also empirically compared the efficiency of 
such estimators with those of ordinary least squares and 
maximum likelihood estimators. Jacquez and Ilorusis (1973) 
empirically compared a few summary dispersion measures of 
these estimators with those of the least squares estimators.

The sum of squares (SS) due to the estimates is

SS (Est.) = a E wiy±. + 3E W p X ^1 X'1 1 .

fe wiyi .)2
W. 2 2E w.x. - (2 wiX.) /w.

with 2 d.f. Assuming 3 = 0, the model reduces to y. ."*• d
= a + e . .. The WLS estimator of a is a = E w.y../w. and<J -1- -U. 2

2the corresponding SS = ( I w.y..) /w. with 1 d.f. Subtracting 
this from SS (Est.) we get the SS for the regression
coefficient as

2

with 1 d.f. The SS due to error is given by
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(E wixjL)( Ewiyi.) }2/ {w^Ew^ 2 - ( E w^x^)2 w. } 

with (n-2) d.f. As E ( SS ( 3 ) > = 3 2 { E w^ 2
O-( E /w. } , we can test the significance of the regression

coefficient by an F-test, that is

F = SS ( 3 ) (n-2) / SS (E) 

with 1 and n-2 d.f.
•>* r\

Since E ( 3) = 3 and var ( 3 ) = 1/ { E ŵ x.̂
p-(E w^x^) /w. ) , the corresponding t-statistic for testing 

the hypothesis: 3 =3 Q is given by

t = ( 3 - 3q) iS wixi2“( £ w ixi)2/w.} ^(n-2)2/ { SS(E)} 2

with (n-2) d.f.

This latter hypothesis can also be tested with the help 
of normal test-statistic because the variate u = ( 3 - 3 )

p p i{ E w.x. - ( Ew.x.) /w. } 2 is standardised normal*^-^1 1  v 1 1 ' '

8.2 Estimators of weights

Rao (1970) gave a set of equations for obtaining the
pMINQUE of o. for this model as an example. Since such

estimates may sometimes be negative, Rao and Subrahmaniam
p(1971) proposed replacement of the MINQUE of by the

p pcorresponding estimate s. = E (y• . - y •.) '/(r.-l) based
j J

on the observations of the ith group whenever the MINQUE was 
less than a small positive quantity. From a Monte Carlo 
study, they found that for a few replications at many points, 
the WLS estimators of the lineqr parameters, using MINQUE 
(with the above modification), were substantially more 
efficient than those using s^. However, the gains diminished
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when many replicates ( >8) were taken especially at fewer 
points.

It follows from Rao and Subrahmaniam (1971) that the
2  ̂ a, 2almost unbiased estimator (AUE) of a . is Z (y.. - a - 3 x •) /

j J
2 2r ^ l  - k^) where k ^  = l/n + (xi~x.) /Z ri(xi~x.) is the 

ith diagonal element of X ,(XX')_^X with X' as the design matrix
*»■/ <v/ *v «w

A Aof the regression model and where a and 3 are the usual 
least squares estimators of a and 3 respectively.

pThe MINQUE of cn is too complicated. Even the AUE 
does not possess the distributional property needed for adjust­
ment of the statistics concerned. We shall therefore use 

2 2s^ as the estimator of ĉ  . Jacquez et al. (1968) used this
estimator for obtaining the estimated weights.

2 2As is well-known, (r^-l)s^ / is distributed as
2 2 2 X with (r^-1) d.f., and s^ and are independent when

i / j.

8.3 Adjustment of the estimators and test-statistics

2 2 A / 2 Let z. = s. /a • and the estimated weight w. = r/s. }1 1 3 .  1 1 1
A A 2i = 1,2, ...,k . Let w. = Z wi. Since the estimators ŝ  ̂

of the error variances are independent, the adjustment of 
the statistics concerned for removing the major part of 
the bias, can be made with the help of the Theorem 1 (section 
2.1.4) due to Meier.

(i) Adjustment of the estimators of the linear 
parameters

The estimated regression coefficient using
estimated weights is
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A /V A A 2 ^ p3 = (w.E wixiyi# - z wixj_ x W-ĵ y-L*)/ { w.E w±xi -(E w ^ )  }

G/H,
say. The adjusted estimator is

C Z k 1
3 (adj) = 3 - 1 i ^i-1

2 ~3 3
“i

3 z. using estimated weights,
all z.=ll

where
2~
9 3

3 Z;L2 " H

I—I ? 3 2G
H3 { H2

3 Zi

3 2H 3 G ft H
2 ' HG — 2 - 2H

3 z± 3zi *zi

+ 2 G
3H

9Zi } • (25)

The individual derivatives are

3G
3 z.l = -  wi (  ? wi x i y i . + w- x i n .  -  x i  L' " A '  -  wi x i h

all z^=l

32G

3 z i 2 J

all z^=l

= w± { wi(xi-l)yi. + 2( e wixiyi.+w.xiyi .

- x.i;wiyi.-yi.i;wixi}

3H

3Zi
2 2= - w^(E wixi + w,xj_ - 2 2  wixjL)

all z.=l i

and 92H
3z. 2 1

2 22 w. { w.x.(x.-1)+E w .x . +w.x. -2E w.x. }
■1 - I  1  1  1  3 -  J - . 1  1

all z. i 1
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The estimated intercept using estimated weights is
«s# ^  2  a  ^  a  a  2  ^ * 2a = (E wiyi.E ^ ±x ± - EWj_xi Zw±x 1y ± . ) /  { w. -( E w ^ )  }

= L/H,
say. The adjusted estimator is 
e £ k l
a (ad j ) = a - E -,

1 l x

~ 2 ~ 3 a
3*i J using estimated weights,

where o 2~ _3__a_
- A

all z ± = l

is given by the right side of (25) with G

replaced by L. The individual derivatives are: 

3 L
3 z±

all z.=ll

- w±(yi.E wixi2+xi2E v/iyi.-xi e wixiyi.

- x.y. sw.x.),i' i • l i' *

32L
3 z. 2

2 2

all z^=l

= 2 wixi +xi

- xiyi-!;wixi),

3H 32H
and 23 z± 3 ZiJ —» ’

all zi=l

are given above.

(ii) Adjustment of the F-statistic

For testing the significance of the regression 
coefficient, the F-statistic using estimated weights, is 
given by
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P = (n-2)/
Aw.

{ w.i i i- . A . 2 A A 2
( 2 Wj/i* ) > { w. E w±xi

( LVv̂ Xĵ )2} / { w. - 2 w±xi E wiyjL. } 2 - 1

= (n-2)/(T/R - 1) ,
say. Then the adjusted E-statistic is

k 1
F (adj) = P - 2 r.-1

1 1

2A 8 P
a 2i -i

using estimated weights,

all z.=ll

where 2 A 3 P
3Zi2

n - 2
R^ (T/R-l)'

2 (R 3_T 
' 3 z.

T 3 R 
3z-i )

/R(T/R - 1) + R2 3 2T TR 3 ^R
3 Zi

_^T _3R + 2T ^3_R_ )
3zi 3zi 3 z±

3 z.

The individual derivatives concerned are:

3T

3zi
w^ M, 3 R

3 z.
all z^=l all z±=l

- 2 Wj_ P,

3 2fl
32. 2

= w.l _2 wi ( (“ t y . h w .  Eri "3 j ri
II - 2 yi.£ w±y±-)

all z±=l
Q O Q Z

(Ew.x. + w. x t  - 2 x. Ew.x,) +{ w, Ew.x. - ( E w • x . ) }1 1 1 -1 X I  X 1 X X

(£ y^/Ti-y? j} + 2M
;
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and
82R

8 zi
= 2 { w± ( 2 + w.xiyi. - x± EWjy,

all z±=l

y ± . z wi x i ) ^  + 2 p  j

2 2 2 2 where M = {w. Z Zw;j.yii/ri “ (2 w.yi.) } { £ wix± + w.x̂  ̂ -
i j J

2 2 2 2 x± £ w ^  } + { W.£ w±xi - (£ w ^ )  } (£ £ W ^

and
n + w- £ y±/ri - 'vP

P = (w. Zwixiyi. -E\vixi£ w±yi. ) (z: v ^ x ^ .  + w.x±y±.

- x.Zw.y. -y.Zw.x.) . 1 x J 1 • 1- 1 1

(iii) Adjustment of the t-statistic

Por testing the hypothesis: g = g Q, the 
t-statistic using estimated weights is

| g (adj)-g Q | (n-2)2 { Z w ixi2-(z w±x±)2/w. } 
*fc —     .~  —,   --- - --- —....
[{ZZ wiyi2/ri-( aviyi.)2/w. }- {w. Z w ^ ^ .- Z w ^ s  w ^ .} 2/{w.2£ w ^ 2-

( Zwixi)2w. } ]

A /V

= (n-2)* | g (adj)- gQ | { w.2 \v±x± -(T. wixi) >/(T-R)
A

= (n-2) * |g (adj) - g Q | s/(T-R):- ,

Wj
P
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say. The underlying assumption is that var{ 3 (adj)} is 
approximately equal to var ( 3 )• The adjusted t-statistic 
has the form

k 1
t (adj) = t - E r .-1 

1 1
9J £
3Z1 using estimated weights,

all z^=l
where

jfi = t A ,  . _L£ ( 3 T - . - - L S y (T.H )2 _ B {
3 z- 3 z± 3 z± 3 z±

23 T 
3

3 R _ 2 
3z.2 2 (

3 T 3 R\
3Z±

) } /(T-R)

p pwith [ 3s/ 3z± J = - w±( E +w.x± -2x±z w ^ )  and
all z^=l

[ > 2s / 3 Zl2 ]
all z^=l

= 2 w.( Ew.x . 2 + w. x .2 - 2 x. Ew.x. ) and other partial i 1 1 1 1 1 1

derivatives being given in (ii) above.

C-AÂ
(iv) Adjustment of the normal test-statisticA

The normal test-statistic using estimated
weights is ✓"v

u = I 3 (adj) - 3 0 | ( £ w^ 2 - (e V V / w . } 2 

and its adjusted form is
k 1

u(adj) = u - | ri~l
~ 2 A3 u
a 2
Szi a

using estimated
all z^=l weights,

f-
- 2  = u - h h )  /4A+i'i - V i  ] /Ar/8 Z . 1

where
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with A = E wixi2 - ( X ) 2/w. , B± = (2xi — Z±*ixi)( z£±*±)
A A A

and fl = w^/w.
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CHAPTER 9 

CONCLUSIONS

In this chapter the main results of the thesis are 
summarised and areas for further work indicated.

9.1 Summary of the results

The error variance has been assumed to be hetero- 
scedastic with respect to the levels of sub-plot treatments 
in split-plot designs and the treatments in all other designs. 
As a result, the treatment estimators as well as the corres­
ponding sum. of squares obtained by the weighted least squares 
method, have the same form for all designs excepting the non- 
orthogonal general block designs. Orthogonality of different 
kinds of estimators of the linear parameters is maintained 
for all designs except general block designs and latin square 
designs where the estimated row and column effects are not 
orthogonal to one another. Three summary dispersion 
measures are suggested for the treatment estimators.

The expression for computing joint confidence intervals 
of parametric contrasts depends on both weights and error 
mean squares of the weighted least squares analysis. The 
adjusted form of this expression for the first three designs 
is different from that for the remaining three because the 
error mean squares are independent of weights for the former 
designs but depends on them for the latter designs.

As the replicated observations are available for at 
least one cell under each treatment, the MINQUE of group 
variances for the first two designs and their unbiased



171

estimators for the third design, are independently
pdistributed as multiples of x • This facilitates

adjustment of the estimators of the linear and other
parameters and other statistics using estimated weights,'
for removal of bias. For the other three designs, the
AUE's of group variances have negligible bias and are
approximately independently distributed as multiples of 

2X and necessary adjustment of the statistics concerned 
has therefore been made.

For random models of the first two designs, the test 
of significance of a variance component is found to be the 
same as that of significance or equality of the corresponding 
fixed effects.

For split-plot designs if the weights are large, 
then the error mean square of the whole plot analysis is 
expected to be much larger than that of the sub-plot analysis.

The weighted constraints on some linear parameters 
facilitate certain tests especially for models with an 
interaction term.

9.2 Discussion and further work

Adjustment of the statistics using estimated weights 
based on replications is expected to yield better results 
than that of statistics using other types of v/eights. It 
is thus desirable that replicated observations should be 
taken wherever possible for at least one cell for each group.

The adjustment of most of the statistics using estimated 
v/eights has given rise to complicated expressions having 
limited practical application. Empirical work may reveal 
that some of the terms of such expressions are negligible



in comparison with other terms, and this may lead to 
simpler expressions.

A Monte Carlo study for one-way heteroscedastic 
models showed that performances of the adjusted test- 
statistics are more or less satisfactory. Such study may 
be undertaken to observe the adequacy of the adjusted 
statistics of other designs.

Random or mixed models for the first three designs 
were considered in this thesis. Other types of mixed or 
random models may be investigated for these and other 
designs with unequal group variances. Similarly, multiple 
regression models with unequal group variances may be 
considered.

Missing-value techniques and covariance analysis 
have not been discussed in this thesis. These are other 
topics for which further work could be undertaken.

The problem of finding the optimum number of 
replications as a balance between cost and adequacy of the 
adjusted statistics may be investigated for some designs.

Finally, only a special kind of heteroscedasticity 
of linear models has been dealt with in this thesis for 
some common designs. Heteroscedasticity in general is 
yet to be explored.

172
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