A theory of composing protocols

Laura Bocchi?, Dominic Orchard®®, and A. Laura Voinea®
a University of Kent, UK

b University of Cambridge, UK

¢ University of Glasgow, UK

Abstract In programming, protocols are everywhere. Protocols describe the pattern of interaction (or com-
munication) between software systems, for example, between a user-space program and the kernel or be-
tween a local application and an online service. Ensuring conformance to protocols avoids a significant class
of software errors. Subsequently, there has been a lot of work on verifying code against formal protocol spec-
ifications. The pervading approaches focus on distributed settings involving parallel composition of processes
within a single monolithic protocol description. However we observe that, at the level of a single thread/pro-
cess, modern software must often implement a number of clearly delineated protocols at the same time which
become dependent on each other, e.g., a banking API and one or more authentication protocols. Rather than
plugging together modular protocol-following components, the code must re-integrate multiple protocols into
a single component.

We address this concern of combining protocols via a novel notion of ‘interleaving’ composition for pro-
tocols described via a process algebra. User-specified, domain-specific constraints can be inserted into the
individual protocols to serve as ‘contact points’ to guide this composition procedure, which outputs a sin-
gle combined protocol that can be programmed against. Our approach allows an engineer to then program
against a number of protocols that have been composed (re-integrated), reflecting the true nature of applica-
tions that must handle multiple protocols at once.

We prove various desirable properties of the composition, including behaviour preservation: that the com-
posed protocol implements the behaviour of both component protocols. We demonstrate our approach in the
practical setting of Erlang, with a tool implementing protocol composition that both generates Erlang code
from a protocol and generates a protocol from Erlang code. This tool shows that, for a range of sample proto-
cols (including real-world examples), a modest set of constraints can be inserted to produce a small number
of candidate compositions to choose from.

As we increasingly build software interacting with many programs and subsystems, this new perspective
gives a foundation for improving software quality via protocol conformance in a multi-protocol setting.

ACM CCS 2012
= Software and its engineering > Specification languages;

Keywords Distributed protocols, Composition, Engineering, Process-calculi

The Art, Science, and Engineering of Programming

Submitted June 1, 2022
Published October 15, 2022

Dol 10.22152/programming-journal.org/2023/7/6

® © Laura Bocchi, Dominic Orchard, and A. Laura Voinea
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. 2, 2023, article 6; 28 pages.

https://doi.org/10.22152/programming-journal.org/2023/7/6
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

A theory of composing protocols

EJ Introduction

Protocols are everywhere. Whenever two entities need to communicate (perhaps via
function calls, or messages sent over a channel), a protocol can be used to ensure that
both parties effectively exchange information. Protocols can be seen as a specification
of communication, and as such have been leveraged for the purposes of verification in
programming languages, e.g., session types [23, 24, 7, 25], choreographies [11, 12, 37],
typestate [40], behavioural types in general [28, 19], and more.

There may be many protocols that a program has to conform to, capturing different
interactions between different parts of a system. Here we use the term protocol to
denote a specification of the interaction patterns between different system components.
For example, when considering distributed systems, a protocol may describe the
causalities and dependencies of the communication between processes. To give a
more concrete intuition, an informal specification of a protocol for an e-banking system
may be as follows: The banking server repeatedly offers a menu with three options: (1)
request a banking statement, which is sent back by the server, (2) request a payment,
after which the client will send payment data, or (3) terminate the session. We elaborate
on this example later, using it as a motivating example.

Much of the work on systematising the process of programming against a specifica-
tion assumes a monolithic view of protocols: a protocol is often given for the entire
system, explaining the communication between all parties involved. This up-front,
single point of definition runs contrary to the human aspects of real-world program-
ming, in which a programmer gradually pieces together their code, perhaps heavily
leveraging libraries, to reach their intended goal; programs are gradual compositions.

A view that is globally defined once does not reflect the real process of software
composition. In contrast, a view that defines lots of local protocols or sub-protocols
places the burden of configuring their interaction on the programmer: programmers
must themselves work in a situation where they have to consider many smaller
protocols and work out how they want dependencies between them to be resolved.
Instead, we propose that a flexible, non-monolithic notion of protocol composition
(and possibly recomposition, when a piece of code is refactored and rewritten, or
reused) is needed to support the engineering of protocol-dependent code. Ideally,
such a notion should support well-founded semi-automated protocol composition and
support implementation with formal guarantees.

This work lays a foundation for compositional protocol engineering based on a
notion of interleaving composition of protocols. An interleaving composition of two
protocols ‘weaves’ them together into a single unified protocol. This differs from
sequential composition, in which one protocol follows the other or one’s inputs are
coupled to the other’s outputs. It differs from parallel composition, which traditionally
(e.g., in CCS or CSP) describes a semantic interleaving of programs; our approach
calculates a single syntactic protocol specification.

We address, in general terms, the question of what a correct protocol composition
is, and introduce a syntactic definition of composition that characterises finite sets
of correct interleaving compositions, each representing a ‘good way’ to interleave
the component protocols with respect to domain-specific user-specified constraints.

6:2

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

The resulting approach gives a theoretical basis for protocol (re-)engineering based
on a process calculus with constraint annotations. Interleaving composition has the
purpose of enhancing the awareness of what a protocol means, and facilitating
reasoning about its properties. We give an algorithmic implementation of interleaving
composition supporting the process of defining protocols and inspecting the generated
compositions, and code generation of skeletons of processes following a given protocol
(composite or not). Code generation is based on Erlang/OTP gen_statem behaviour [1]
allowing code to be migrated in subsequent compositions and reused. Correspondence
of our protocol language with Finite State Machines (FSM) via directed graphs yields
straightforward links between protocols and FSM-structured code.

A related line of work defines composition as run-time weaving, for example applying
principles of aspect-oriented programming to protocol composition [41]. Unlike [41],
we statically derive protocol compositions that enable (human/automated) reasoning
and verification of their properties. Another related line of work is automata com-
position [18, 44, 21]. Team Automata [18, 44] provide several means of composing
machines via synchronization on their common actions, and give a formal frame-
work for composition. Unlike Team Automata, we express composition constraints
orthogonally to communication: instead of synchronization on common actions, we
use ‘asserts’/‘requires’ as contact points for composition, and reason about the prop-
erties of a composite protocol from the perspective of the application logic. The
resulting composition relation given in this work is not characterizable as one of the
synchronizations of Team Automata (discussed further in Section 6).

Unlike in aforementioned works, our protocols are mono-threaded. This is not
unusual in literature, e.g., session types are essentially mono-threaded [23, 24, 7].
Also real-world protocols, such as POP2, POP3, and SMTP, are described in their
RFCs as single state machines and have been modelled, without parallel composition,
as session types [9, 20, 27]. Still, one could use parallel composition as a basis for
defining protocol compositions (as in Team Automata), and this would yield general
and syntactically concise concurrent specifications. These concurrent specifications,
with all their interleavings, would be harder for a human to understand than a well-
specified interleaving composition. We explore an unusual approach to composition,
with the purpose of supporting a process of human understanding of what protocol
composition should be. Our novel approach is also reflected in the tool. The code for the
composition of two protocols is not the composition of the existing implementations
(plus some adaptor code) — as one would expect. The tool generates new code via: (1)
automated generation of a stubs of the new composite protocol, and (2) migration of
relevant parts of the old code — besides the stub infrastructures — into the new code.
This yields simple mono-thread code that are still close to the protocol’s structure.

11 Motivating example
The banking protocol discussed earlier in this section can be formally specified as S in
Figure 1 using a process calculus notation. Sy repeatedly (via a fixed point ut) offers

(denoted &) three options: option statement is followed by a send action (denoted !)
of a message with the bank statement, option payment is followed by a receive action

6:3

A theory of composing protocols

statement : !|statement.t
Sgi= ut & payment :?details.t
logout : end

k : lid.?tan. ® ol T
ok : pr.lid.?tan. fail . 1

Sp:= ?pin. ®
fail : end

M Figure 1 Banking (Sz) and PIN/TAN authentication (S,) protocols. The arrows show the
desired dependencies: entering the loop in S; requires correct PIN authentication
(i.e., at ok, first occurrence in S,) and each payment iteration in Sy requires TAN
authentication. (i.e., at ok, second occurrence in S,).

(denoted ?) with details of the payment, and option logout is followed by termination
of the protocol (denoted end). After each of the first two options, the control flow
goes back to the initial state (via t).

Assume now that we want to extend Sz with two-level authentication: one level for
accessing the service and one additional level for each payment transaction. Concretely,
we wish to compose S with the PIN/TAN (Personal Identification Number/Transaction
Authentication Number) protocol modelled in Figure 1 as S, which offers two-stage
authentication. The first stage is pin authentication: the server receives a pin and
decides (@) whether to continue (i.e., ok) or terminate (i.e., fail). If ok is chosen,
the protocol enters a loop (i.e., ur) that manages multiple TAN authentications,
supporting multiple transactions requiring an additional level of security. In the loop,
the server sends an identifier id for which the client must send back a tan. The server
notifies the client about the correctness of the tan with either ok or fail.

We want to compose the banking and authentication protocols into a single proto-
col where their actions follow a specific interleaving: access to the banking service
requires a PIN authentication, and each payment instance/iteration requires an extra
TAN authentication (see dotted arrows in Figure 1). This specific interleaving entails
an authorization property, which we later express and ensure by using assertion anno-
tations. Moreover, we want tools that facilitate engineering of programs implementing
interleaving compositions. For example, we want to obtain a skeleton implementation
for the banking and PIN/TAN protocol, and in a second stage we want to reuse the
code when composing banking with a different multi-factor authentication protocol,
e.g., offering other options besides TAN, such as keycard authentication.

1.2 Contributions
In Section 2, we define a process-calculus-based notation for protocols with ‘assertions’.
Assertions specify contact points and constraints between component protocols, to be

checked statically. In Section 3, we give a definition of interleaving composition that
is relational, as there may be many valid interleaved protocols (or even none). In Sec-

6:4

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

tion 3.1.1 we provide two less restrictive definitions of interleaving composition via two
additional rules, weak branching and correlating branching that capture more scenarios
but enjoy a weaker fairness properties. In Section 4, we prove that our composition
relation returns correct interleaving compositions, namely: (behaviour preservation)
interleaving compositions only perform sequences of actions that may be performed
by either of the component protocols; (fairness) interleaving compositions eventually
execute the next available action of each protocol; (well-assertedness) interleaving
compositions always satisfy requirements prescribed by the assertions in the protocols
being composed. Thus, we establish that the composition relation produces sets of
protocol compositions that are correct-by-construction. Our definition is sound but not
complete, as discussed in Section 4.4. In Section 5, we introduce a tool for protocol
engineering in Erlang, which implements interleaving composition, generation and
protocol extraction to/from Erlang gen_statem code. Section 6 discusses related work.

[FJ Asserted Protocols

We introduce a language of protocol specifications to abstractly capture essential
features of sequential computation: sequencing, choice, and looping. Our protocol
language somewhat resembles Milner’s CCS [36] or the 7-calculus [39], but without
parallel composition or name restriction, and has some relation to Kleene algebras [32]
but we provide more general patterns of recursion via recursive binders rather than a
single closure operator. Generally, two protocols can be composed in several ways,
each reflecting a possible interleaving of the actions of the two protocols. Not all such
interleavings are meaningful depending on the scenario or domain. The protocol
language therefore includes a notion of ‘assertions’ which can be used to capture the
behavioural constraints of a protocol to guide interleaving composition in a meaningful
way; they act as a specification of minimal ‘contact points’ between protocols akin to
pre- and post-conditions. Following an explanation of the syntax and various examples,
we give an operational model to the protocol language which serves to explain both
the program semantics which it abstracts, and the meaning of the assertion actions.

Definition 1 (Asserted protocols) Asserted protocols, or just protocols for short, are
ranged over by S and are defined as the following syntax rules:

S == pS action prefix
| +{1;: Si}icr branching
| ut.S fixed-point
| t recursive variable
| end end
| assert(n).S assert (produce)
| require(n).S require } assertion fragment
| consume(n).S consume

where p € & ranges over prefixing actions, 1 € £ ranges over labels used to label each
branch of the n-ary branching construct, t ranges over protocol variables for recursive

6:5

A theory of composing protocols

protocol definitions, and n € A ranges over names of logical atoms used by assertions.
The sets of actions &, labels &, and names A are parameters to the language and thus
can be freely chosen. Furthermore + ranges over a set of operators O used to represent
branching choice and thus can also be instantiated.

The prefixing action provides sequential composition (in the style of process calculi).
Branching is n-ary, taking the form of a set of protocol choices with a label I; for each
choice. Looping behaviour is captured via the recursive protocol variable binding ut,
which respects the usual rules of binders, and recursion variables t. Protocols can be
annotated with assertions to introduce guarantees assert(n), requirements require(n),
and linear requirements consume(n): assert(n) introduces a true logical atom n into
the scope of the following protocol, require(n) allows the protocol to proceed only
if n is in the scope (basically consume(n) presupposes require(n)), and consume(n)
removes the truth of logical atom n from the scope of the following protocol.

We assume variables to be guarded in the standard way (they only occur under
actions or branching). To simplify the theory, we assume that: (1) nested recursions
are guarded, ruling out protocols of the form ut.ut’.S, with no loss of generality
since ut.ut’.S is behaviourally equivalent to ut.S[t/t’], and (2) in ut.S variable t
occurs free at least once in S, with no loss of generality since e.g., ut.?pay.end is
behaviourally equivalent to ?pay.end. Unless otherwise stated, we consider protocols
to be closed with respect to these recursion variables.

Remark 1 (Language instantiation) In the examples we often instantiate the prefixing
actions & to sends T and receives ?T capturing interaction with some other concurrent
program, i.e., p € {IT,?T} where T is a type (e.g., integers, strings), and instantiate
choice + to a pair of polarised choice operators: + € {®, &}, either offering of a choice ®
or selecting from amongst some choices &. This yields a session types-like syntax similar
to the one used by Dardha, Giachino and Sangiorgi. [16].

Examples often colour assertions green and labels purple for readability.
21 Assertion examples

Consider a payment process ?pay.end that receives a payment and terminates, and a
dispatch process !item.end that sends a product link and terminates. We can interleave
these two protocols in two ways: ?pay.!item.end (payment first) or !item.?pay.end
(dispatch first). By using assertions, we can require that payment happens before
dispatch: below, I; asserts the logical atom paid as a post-condition to receiving
payment while in I, the sending action depends on the logical atom paid as a pre-
condition, and in doing so consumes it.

I, =?pay.assert(paid).end I, = consume(paid).!item.end

The only interleaving composition of I; and I, that satisfies the constraints posed by
the assertions is: ?pay.assert(paid).consume(paid).!item.end.

6:6

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

Linear constraint consume(n) models a guarantee that can be used once, whereas
non-linear constraint require(n) does not consume n. Using a mix of linear and non-
linear constraints, we can model a prepaid buffet scenario where a payment remains
valid (hungry) for several iterations until the meal ends (end):

ut.&{hungry : require(paid).!food.t, end : consume(paid).end}

Example 1 (Asserted banking and PIN/TAN) The informal requirement on the bank-
ing and PIN/TAN example discussed in the introduction can be modelled using assertions.
An asserted version of the banking protocol, given below as Sy, uses require(pin) to ensure
a successful PIN authentication before accessing the banking menu; consume(tan) to
require one successful TAN authentication for each iteration involving a payment; and
consume(pin) to remove the PIN guarantee when logging out. Assertions assert(pay) and
consume(pay) ensure TAN authentication only happens in case of payment.

statement: !statement.t
Sy = require(pin).ut.&{ payment: assert(pay).consume(tan).?details.t
logout : consume(pin).end

In the asserted authentication protocol S, below, assert(pin) and assert(tan) provide
guarantees of successful PIN and TAN authentication, respectively:

ok: assert(tan).r
fail: r

S = ?pin.® ok: assert(pin).ur.consume(pay).!id.?tan.GB{

fail: end
2.2 Protocol semantics

The semantics of a protocol is given in Definition 2 in terms of an environment that
keeps track of guarantees, and lets protocols progress only if stated guarantees can
be met by the environment. The semantics is up to the structural equivalence rules
given below, where S[ut.S/t] is the one-time unfolding of ut.S.

ut.S =S (where t ¢ fv(S)) ut.S =S[ut.S/t]

Definition 2 (Operational semantics) The semantics of protocols is defined by a la-
belled transition system (LTS) over configurations of the form (A,S) where A ranges
over environments A C A (sets of logical atoms), with transition labels { ::=p | +1|
assert(n) | require(n) | consume(n) and the transition rules below:

A4,p.8) > (4,8) (Inter)
A+) = (A,S) GeD (Branch)
(4, assert(n).S) ==, (AU (),) (Assert)
(A, require(n).S) S, (4 5) (neA) (Require)
(A, consume(n).§) 2™, A\ (n},S) (neA) {Consume)

4,9) > @A,
(A, ut.S) 5 (A7, S/[ut.S/t])

(Rec)

6:7

A theory of composing protocols

Rules (Inter) and (Branch) always allow a protocol to proceed with some action,
resulting in the appropriate continuation, without any effect to the environment.
Rule (Assert) adds atom n to the environment. Rules (Require) and (Consume)
both require the presence of atom n in the environment for the protocol to continue.
Although (Require) leaves the environment unchanged, (Consume) consumes the
atom n from the environment. In (Rec), S’[ut.S/t] means that the recursive protocol
is unfolded by substituting ut.S for t in S’.

We write: (A,S) /A if (A,S) 4 (A’,S") for no £,A’,S’; (A,S) 4 (A’,S") for a vector
- ¢ ly) .
(=1,,...,0,if (A,S)— ... (A,S"). We say that (A", S’) is reachable from (A, S) if

14 - .
(A,S) = (A,S) or (A,S) — (A’,S’) for a vector £. We omit labels and target states
where immaterial.

Definition 3 (Stuck state & progress) State (A,S) is stuck if S # end and (A, S) /.
A protocol S enjoys progress if every state (A’,S’) reachable from (@, S) is not stuck.

A protocol may reach a stuck state when it does not have sufficient pre-conditions in
its environment A. In Example 1, S; does not enjoy progress because the pre-condition
expressed by require(pin) cannot be met; similarly, S, does not enjoy progress because
of unmet pre-condition consume(pay).

2.3 Well-assertedness

Assertions are key to generating meaningful compositions of protocols. Following the
labelled transitions semantics, we define a judgement which captures the pre- and
post-conditions of a protocol implied by its assertions. We use the notation A {S}A’
reminiscent of a Hoare triple where A and A’ are pre- and post-conditions of S.

Definition 4 (Well-assertedness) Let A be a set of names. Well-assertedness of a
protocol S with respect to A is defined below, as an inference system on judgements of the
form A {S}A’, where A’ is the set of names (logical atoms) resulting after the execution
of S given the set of names A.

A{SIA’ Viel.A{S}A AU {n} {S}A/
2psa P e st Noa T A fassent(m sy
AU {n} {S}A’ [ire] A\ {n} {S}4’ neA[]
AU {n} {require(n).S}A’ require A {consume(n).S}A’ constime
A{STAUA’ — _
auestaon Y Tenga e agaleall

[assert]

We write A {S} when A {S}A’ for some A’ (i.e., when the post-condition is not of interest).
We say that S is very-well-asserted if @ {S}. We say that a state (A, S) is well-asserted if
S is well-asserted with respect to A.

Protocols S, and S, in Example 1 are not very-well-asserted but they are well-asserted
with respect to {pin, tan} and {pay}, respectively.

We now consider some properties of well-asserted protocols. Proofs are in ??. Firstly,
protocols that do not contain assertions are very-well-asserted:

6:8

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

Proposition 1 (Very-well-assertedness) If S is generated by the grammar in Defini-
tion 1 without the assertion fragment then it is very-well-asserted.

Next, well-asserted protocols can have their environment weakened, akin to pre-
condition weakening in Hoare logic:

Proposition 2 (Environment weakening) If A {S} and A C A’ then A’ {S}. Hence,
0 {S} implies A {S} for all A.

Next, Lemma 1 states that the redux of a well-asserted state is well-asserted, more-
over the postconditions are not weakened by reduction:

Lemma 1 (Reduction preserves well-assertedness) If A {S}A’ and there is a reduc-
tion (A,S) 4 (A”,S") then A" 2 A’ . A" {S'}A".

Lemma 2 (Well-asserted protocols are not stuck) If A {S} and S is closed with re-
spect to recursion variables (fv(S) = @) then (A, S) is not stuck.

Next, Lemma 3 shows that if a protocol “gets stuck”, this is because it does not have
enough preconditions to proceed. Thus, the protocol needs assumptions that may be
provided by other protocols it could be composed with. Lemma 3 follows by induction
on the length of a protocol’s execution, combined with Lemmas 1 and 2.

Lemma 3 (Progress of very-well-asserted protocols) If S is very-well-asserted (i.e.,
0 {S}) and closed then it exhibits progress.

We next introduce protocol composition, which produces protocols that are mean-
ingful with respect to their assertions (i.e., that exhibit progress).

) Interleaving Compositions

We compose protocols by computing syntactic interleavings. We derive the ‘interleaving
composition’ (IC) of two protocols S; and S, via a relation with judgements of the
form: T;; Tg; A F S; oS, S where S is the resulting composed protocol, and A
is the set of names (i.e., assertions) provided by the environment to S. We let T
range over recursion environments, defined as possibly empty lists of distinct protocol
variables t. Lists are concatenated via the , (comma) operator, which is overloaded to
extend a list with a single element, e.g., written T, t. In the judgements, we use two
recursion environments T; and Ty to keep track of the free protocol variables in S;
and S, respectively in order to handle composition of recursive protocols. We use an
underlining annotation t to denote variables that were used to merge two recursive
protocols into one recursive IC, and predicate unused(T) that is true if all variables in
T are not used (i.e., not underlined), and false otherwise. The ‘used’ annotation t is
instrumental in handling composition of nested recursions, as explained later.

Definition 5 (Interleaving composition) IC is defined by the judgements in Figure 2.

6:9

A theory of composing protocols

T; TRy A S 08,»S Tg; T3 AFESy 08>S

act/sym
T; TR; AEp.S;08S,>p.S Tp; TpR; AFES; 05, b8 [act/sym]
T,; Ta; AU{n} FS; 05,8 .
L 1R { JFS1 08, i [require]
Ty; Tg; AU {n} F require(n).S; o S, >require(n).S
Ty; Tr; A\N{n} FS;08,p8 neA
[consume]
T,; Tg; A F consume(n).S; o S, > consume(n).S
T,; Ta; AU{n} Sy 05,8
L R { } 1 2 [assel‘t]
T.; Tr; A F assert(n).S; o S, >assert(n).S
Viel T;;Tp;AFS;08,58!
7 [bra]
Tp; Ty AF+{li:Si}ier © Sy > +{l; 1 S }igy
Tp,t1; Ty A Sy o uty.S, »S A{ut,.S} A{ut.S} fv(ut.S)=0
[reci/rec3]
T.; Tr; A Fut,.S; o uty.Sy > ut;.S T;; Tr; A F ut.S o end b ut.S
T; 71,8, Ty; AES[t/t1] 0 Sy »S unused(T,) (reca]
rec2
T; T1,t,Ty; AFput.S; 05, > S
teT, VteT, —
=L ="K [call/end]

T,; TR AFtote>t Tp;Tg; Al endoend>end

B Figure2 Rules for iterleaving composition of protocols

In Figure 2, rule [act] is for prefixes, [sym] is the commutativity rule, and [end]
handles a terminated protocol. By combining [act] and [sym] one can obtain all
interleavings of two sequences of actions.

Rule [require] includes the continuation of a protocol only if a required assertion
n is provided by the environment. Rule [consume] is similar except the assertion
is removed in the precondition’s environment. Conversely, [assert] adds assertion n
to the environment of the precondition. Rules [require], [assume], and [consume]
may enforce a particular order in actions of an interleaving. For example, the reader
can verify that the composition of ?pay.assert(p).end and consume(p).!item.end pro-
duces (only) one interleaving ?pay.assert(p).consume(p).!item.end that is obtained
by applying [act], [assert], [sym], [consume], [act], and [end].

Rule [bra] is similar to [act] but the continuations are composed with each branch.
For example the composition +{l; : end, 1, : end} o !Int.end with initially empty
environment produces the following two interleavings:

+{1; :!Int.end, 1, :!Int.end} (applying [bra], [sym], [act], [end])
'Int.+{l; : end, 1, : end} (applying [sym], [act], [act], [sym], [bra], [end])

Rules [recr] and [rec2] allow two recursive protocols to be composed. The compo-
sition of two recursive protocols, say ut,.S; and ut,.S,, yields a recursive protocol
where the recursion body is the composition of the two recursion bodies, and only one

6:10

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

of the two protocol variables is used, either t; or t,. For example, the composition of
ut;.'p1.t; and ut,.!py.t, yields e.g.,

uti.!ps.!lpo.t; (applying [rect], [act], [sym], [rec2], [act], [call])
uty.lps.lpy-ty (applying [sym], and proceeding as above)

Rule [rec1] picks t; as name for the interleaving composition, records t; as the
end of the T; list and continues with the composition of the recursion body S; with
ut,.S,. The premise A {ut,.S} ensures well-assertedness of the arbitrary repetition
of S, that is ut;.S (the composition rules only check that S is well-asserted). Rule
[rec2] completes the merge of two recursions, with calls to t, in this instance being
redirected to t, (via a substitution). Variable t; is in the right recursion environment
T,,t;, Ty, namely a list of protocol variables, followed by unused t;, followed by a list
of unused protocol variables T,, yielding a protocol with just one recursion. In the
premise of [rec2], t; in this instance becomes used.

In [rec2], condition unused(T,) prevents erroneous ‘flattening’ of nested recursions.
For instance, in the composition of S; = ut.p.t and S, = ut;.q.uty. + {1; : t1, 15 : to},
merging t with both t; and t, would yield the undesirable derivation S = ut.p.q.+{l; :
t, I,.t} where S does not preserve the behaviour of S,. Behaviour preservation is
formally defined later on; for now, observe that S, permits successive choices of
the label 1, without any intervening actions, whereas S requires an intervening q
action (and p action) between any successive choices of label 1,. See ?? in ?? for
some derivations of interleaving compositions of S; and S,. The requirement that t
precedes only unused variables T, (captured by predicate unused(T,)) also prevents
‘criss-cross’ substitutions when composing two protocols with nested recursions which
can also violate behaviour preservation in similar ways to the case observed above.

Consider now the composition of a recursive protocol with a non-recursive one
e.g., S = ut.p;.t with S, = p,.end. We do not want to derive the following protocol:
S = ut.p;.p2.t The problem with S is that it allows execution py, ps, P1, P2, - - - Where
action p, is repeatedly executed, while S, only prescribes one instance of p,. Such a
derivation would not preserve the behaviour of S,. Our rules do not allow derivation
of S above because rule [call] checks that the component protocols share protocol
variable t (i.e., they are both recursive and correctly merged).

Another undesirable composition of S; = ut.p;.t and S, = p,.end is one where S;
‘comes first’ yielding S’ = ut.p;.t which, morally, behaves as S, after an infinite loop.
If this were a composition, it would violate a second property we discuss formally later,
fairness, requiring each component protocol to be able to proceed until it terminates.
S’ is not derivable thanks to [rec3], which only allows a recursive protocol to be
introduced in an interleaving composition when the non-recursive component has
already been all merged (i.e., it is end). We can, e.g., derive the following composition
of $; and S,, where the terminating protocol S, comes first (hence satisfying fairness):

po.ut.p;.t (applying [act], [sym], [rec3]).

The premise fv(ut.S) = 0 of [rec3] prevents it being used inappropriately in case
of nested recursion, e.g., to prevent composition of ut,.p;.ut,.p,.t; and g.end to
produce (via [rect], [act], [sym], [rec3]) ut.p;.q.uts.py.t,, which violates behaviour
preservation (discussed later) by repeating an action q from a non-recursive context.

A theory of composing protocols

3.4 Variations on the branching rule

The branching rule of interleaving composition can be viewed as a distributivity
property: sequential composition after a control-flow branch can be distributed inside
the branches. Algebraically, we can informally describe this distributivity as follows,
for a 2-way branch (sans labelling): (S; +S5)o T =(S;0T)+ (S, 0 T). Such a property
is familiar in Kleene algebra models of programs and program reasoning [32] and
monotone dataflow frameworks in static analysis [30]. Since interleaving composition
generates a set of possible protocols it would be more accurate to express this property
in terms of set membership rather than equality (for simplicity of the analogy, this
elides the fact that each composition o is itself a set):

(S1+85)oT > (S;0T)+(Sy0T) (distributivity)

In this section we consider two variants of this distributive behaviour for composition
called (1) ‘weak branching’ and (2) ‘interchange branching’ which can be summarised
via the algebraic analogy as variants of distributivity, respectively:

(Sl +52)0T = (SloT)+52 A (51 +S2)OT > 51+(SZOT) (Weak)
(S1+S2)0(T1+T2) 3 (S10T1)+(Sz0T3) (interchange)

In (weak), composition distributes inside one branch but not the other. In (inter-
change), composing branches with branches has a ‘merging’ effect on the branches
rather than distributing within. (The ‘interchange’ terminology comes from similar
properties in category theory [31]).

We motivate and discuss each variation from the protocol perspective. In the rest of
this section we introduce two additional composition rules: [wbra] for weak branching,
and [cbra] for interchange branching (which we will refer to as correlating branching as
it better reflects the effects of the rule on the protocols). Note that these two variations
grow the set of possible interleavings, rather than shrinking it: they provide more
general composition behaviours but do not exclude the more specialised behaviours.
For generality of the theory, the derivation of interleaving composition can apply any
branching ([bra], [wbra], [cbra]). For practicality, our tool allows engineers to choose
the kind of branching to use in any specific scenario (as shown in Section 5).

3414 Weak branching for “asymmetric” guarantees

Weak branching allows partial execution of some protocols being composed even if
there are not sufficient assertions to continue, as long as all protocols are completely
executed in some execution path. For example, protocol Sz below needs assertion n
to proceed. Assume we want to compose Sz with a protocol S, which can provide n
in only one of its branches ok. Protocol S, may be an authentication server, granting
or blocking access to Sz depending on a password pwd. That is, for some S’:

Sy = ?pwd.® {ok:assert(n). end, ko: end} Sg = require(n).S’

Since we want the actions of Sz not to be executed after selection of label ko, we want
interleaving composition to generate the following protocol:

S = ?pwd. ® {ok : assert(n).require(n).S’, ko : end}

6:12

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

Protocol S,p is not attainable using the rules of Definition 5: the derivation blocks com-
posing require(n).S’” with the second branch’s end in the empty environment.! Instead,
we introduce a ‘weak branching’ composition rule to allow asymmetric guarantees:

Definition 6 (Weak branching) Weak branching composition of protocols is derived
using the judgements in Definition 5 and the additional rule [wbra]:

I=1,Uly ILhNnIzg=0 I,#0
Vi€l Tp; Tp; AES; 0S»S! Vielg. Ty; Tp; AES;0S A A A{S;}
Tp; Tp; A F+{li 2 Si}ier © S > +{li 2 Si}ier, Ul 2 Si}ier,

Precondition I, # §) ensures that each protocol’s actions are executed in at least one
execution path, and is key to the fairness property introduced in Definition 9. Hereafter
we denote with >, derivations obtained using the judgements in Definition 5 only and
>, for derivations with the additional rule [wbra].

Example 2 (Weak IC of banking and PIN/TAN) Consider the banking and PIN/TAN
protocols in Example 1 (p. 7). Interleaving composition of S and Sy using > returns an
empty set. When using v, instead, we can derive the following interleaving composition
modelling a banking/authentication protocol that satisfies the requirements specified in
Section I.1.

payment : Spn,
ok : assert(pin).require(pin).ur.&{ statement:!statement.r,

=?pi
Spa =?pin. & logout : consume(pin). end
fail : end
ok : assert(tan).consume(tan).
Span = assert(pay).consume(pay).!id.?tan. ?details.r,

fail: r

34.2 Correlating branching
Correlating branching allows two protocols to be composed by ‘correlating’ each branch
of one with at least one branch of the other.

Consider two branching protocols: S; offering two services s1 and s2, and S, offering
two kinds of payment p1 and p2. When composing S; and S,, we can correlate s1
with p1, and s2 with p2, using assertions:

S; = @{sl:assert(one).end, s2 : assert(two).end}
Sy = @{pl:consume(one).end, p2: consume(two).end}

We would like to obtain the following composition:

S — s1:&{pl : assert(one).consume(one).end},
12— s2: ®{p2 : assert(two).consume(two).end}

'If we start from a non-empty environment {n} we can derive ?pwd. & {ok
assert(n).require(n).S’, ko: require(n).S’}. However, initial assumption {n} means that access
to Sy is granted regardless of the authentication outcome.

6:13

A theory of composing protocols

Composition rule [bra] is too strict and returns an empty set for S; and S,. Weak
branching [wbra] is also not useful in this case, producing the interleaving below,
which does not capture the intended correlation:

pl: e{ s1 : assert(one).consume(one).end, s2 : assert(two).end },
p2: e{ s1: assert(one).end, s2 : assert(two).consume(two).end }

Definition 7 introduces a further rule [cbra], to allow for correlating compositions.

Definition 7 (Correlating branching) Correlating branching composition is derived
using the judgement in Definition 5 with the addition of rule [cbra] below:

Viel.J;#0 AU Ji=J
Vied; T.;Tg;AES;o SJ’. >S;; ViedJ\J; T.;Tg;AES; o SJ’. A
Tp; Tr; AF+{li: Si}ier © +’{1j/ : S§}jeJ > +{1 : +/{1j/ : Sijtjes tier

The first premise requires that: (1) each branch of the first protocol can be correlated
with at least one branch of the second protocol (J; # @), and (2) each branch of
the second protocol can be correlated with at least one branch of the first protocol
(U;; J: = J)- This precondition is critical to ensure the fairness property we introduce
in Section 4 (Definition 9). Rule [cbra] allows us to obtain S;, as the interleaving
composition of S; and S, above, modelling the intended correlation.

Hereafter we denote with >, (resp. »,.) derivations ob- Pw
tained using the judgements in Definition 7 with the addition ¢ <
of rule [cbra] (resp. [cbra] and [wbra]). The inclusion relation Ps Pwe
between the different kinds of judgement is shown on the right < ¢
(with »; and »,,. being the most and least strict, respectively). Pe

Properties of interleaving composition

In this section, we give the main properties of interleaving compositions. First, we give
some general properties of well-assertedness and algebraic/scoping properties (i.e.,
sanity checks). Then, we give behaviour preservation and fairness, both formulated
using a semantics of ‘protocol ensembles’ (a semantic counterpart of syntactic compo-
sition). Hereafter, we will denote with > any kind of judgement in {»,, >, >., >, }-

41 Well-assertedness of compositions

Critical for the validity of our approach is that interleaving compositions preserve the
constraints of assertions:

Proposition 3 (Validity) If T;; Tg; O S, o S, b S then S is very-well-asserted.

?? details the proof. A corollary of Proposition 3 and Lemma 3 (progress of very-
well-asserted protocols) is that interleaving compositions enjoy progress:

Corollary 1 (Progress) If T;; T; O FS; o S, > S then S enjoys progress.

6:14

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

4.2 Algebraic and scoping properties

We consider algebraic properties and notions of open and closed protocol with respect
to recursion variables. Appendix ?? details the proofs of these results.

Composing closed recursive protocols yields closed protocols. This property is a
corollary of a more general property, that free variables are preserved by composition:

Proposition 4 If T;; Tg; A FS; o Sy > S then fv(S;) U fv(S,) = fu(S).

That is, the free variables of a composed protocol are exactly the union of the free
variables of the protocols being composed.

Corollary 2 (Composition preserves closedness) For all A,S and closed protocols
S1,89, if T;; Tr; A F Sy 0 Sy > S then S is a closed protocol.

A useful algebraic property is that composition has end protocols as units:

Proposition 5 (Interleaving composition has left- and right-units) For a protocol
S where A {S}Afv(S)=0thenT;; TR;A+Soend>Sand T;; T;AFend oS »S.

4.3 Behaviour preservation and fairness of protocol ensembles

In Section 3, we gave a syntactic definition of interleaving composition, which enacts
the dependencies implied by assertions in protocols, and provides a blue-print of
an implementation. In this section, we consider ‘protocol ensembles’, which can
be understood as the semantic compositions of two asserted protocols. Semantic
compositions have a behaviour that is similar to parallel composition (e.g., as in
CCS), but unlike parallel composition the two asserted protocols cannot communicate
with each other, i.e., there are no internal 7 actions. All interactions in a semantic
composition are directed towards other endpoints. Semantic composition provides a
more general and somewhat familiar notion of composition, which we will use as a
reference to analyse the properties of interleaving compositions.

Protocol ensembles, ranged over by C, are defined as follows:

cC == S | S|IS

By defining C as either asserted protocols S (which may be interleaving composi-
tions) or semantic compositions S || S, we obtain a common LTS for comparing the
behaviour of interleaving and semantic compositions. For simplicity we limit the theory
to the composition of two protocols. The extension to n protocols is straightforward
e.g., based on labelling each protocol and its actions with a unique identifier.

The LTS for protocol ensembles extends the LTS for asserted protocols: it is defined
over states of the form (A, C), transition labels ¢ (as for asserted protocols), and by
the rules in Definition 2 plus the following two rules:

(4,5,) 5 (4,8)) (4,5,) > (4,S))

(Com1)

; ; (Com?2)
(A,S11185) = (A, S11152) (A,511182) = (A, 811155)

6:15

A theory of composing protocols

. . ¢ .
We write (A, C) — if (A,C) — (A’, C’) for some ¢,A’, C’. Protocols in C do not commu-
nicate internally, but may affect each other by changing or checking A.

Behaviour preservation Fix an LTS for protocol ensembles (Q, L, —) defined on the
set Q of states s of the form (A, C) and labels L. We use the standard notion of
simulation [39] to compare protocols of interleaving compositions and protocol en-
sembles, using protocol ensembles as a correct general model to which interleaving
compositions need to adhere.

Definition 8 (Simulation) A (strong) simulation is a relation Z C Q x Q such that,

¢ ¢
. /. /s . /. / / /
whenever s;%s,: V{ € L,s| : s; — s implies 3s;, : s, — s, and 8] Z s,,.

We call ‘similarity’ the largest simulation relation. We write s; <'s, when there exists
a simulation £ such that s;%Zs,. We say that C; preserves the behaviour of C, with
respect to A if (A,C;) S (A, Cy).

Theorem 1 (Behaviour preservation of compositions - closed)
@; @,A l_Sl 082 >SS = (A,S)S(A,Sll|82)

Therefore, interleaving compositions will only show behaviour that would be allowed
by a protocol ensemble. Clearly, protocol ensembles allow more possible executions
than an interleaving composition, which is only one of the possible interleavings. The
proof of Theorem 1 is by induction on the derivation of S and, although the statement
assumes closed protocols, some inductive hypotheses in the proof (e.g., premises
of [rect] or [rec2]) require reasoning about open protocols. The proof hence relies
on a property (Lemma ?? — Appendix ??) on open protocols: (roughly) given two
protocols and one of their interleaving compositions, any action of the interleaving
composition is matched by an action of the ensemble of the two protocols, and this
property is preserved upon transition. Note that, while environments T; and Ty are
trivially empty in Theorem 1 (closed protocols), they have a key role in proving ??
(open protocols): they include the variables of each component protocol that have
been bound in a derivation, and give critical information of the scope and structure of
the original component protocols in that derivation. ?? details the proof.

Fairness Fix an ensemble of two protocols S, ||S; and any of their interleaving
compositions S. By fairness, each action of S, (resp. S;) can be observed in at least
one execution of S, possibly after a finite sequence of other actions by S; (resp. Sy).
In the following, we write (_,S) to denote (A, S) when A is immaterial.

Deﬁnltlon 9 (Fairness) S is fair w.r.t. Sy and S; on A, lf Vie {0,1} and any t transmon
(,S;)—>(S{) there exists 7 such that: 1) (A,S);— 1|)—>(S|1 ll) 2) (A, S)—> A’,s),
and 3) S’ is falr with respect to S and Sll—il onA'.

Theorem 2 (Fairness of compositions) If §; §; A Sy o S; > S then S is fair w.r:it. S
and S, on A.

6:16

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

A key aspect of fairness (Definition 9) is that it fixes £ and then requires at least one
execution in which /¢ is eventually executed by S. This implies that although not all
possible future branches include all parts of the protocols being composed, some will.

Definition 10 (Strong fairness) S is strongly fairw.r.t. Sy and S; on A, ifany i € {0,1}

.. 14 7 e T !
and all transitions (_,S;) — (_,S{) and (A, Sj1—;|) L>, there exist v/, r”’ with (A, Sj1_;)) 5
(—’Slll—il) and either:

1) ' =7 (ie., I is a prefix of ¥), or
2) r'=7Fr" (ie. T is an ex prefix of r’)

such that (A, S) LA (A’,S") and S’ is strongly fair w.r.t. S! and Sl’l_i| on A’

By Definition 10, any action of a composition can be matched by an action of the
protocols being composed, and this property is preserved by transition. Vectors 7,
r/, and r” are used to universally quantify on 7 and yet allow for the cases where ¢
comes before (1) or after (2) 7 in the composition. It follows a stronger fairness result
for compositions using only [bra] that only holds for », judgements.

Theorem 3 (Strong fairness of compositions with »>.) If0; ; A Sy o S; >, S then
S is strongly fair with respect to S, and S, on A.

Appendix ?? details the proofs.

Example 3 (Fairness and weak branching) Consider a simpler variant of the proto-
cols in Section 3.1.1 (omitting password exchange and continuation):

Sy, = @&{ok:assert(n).end, ko : end} S = require(n). end
Ssz = @{ok:assert(n).require(n).end, ko : end}

Observe 0; 0; O F S, 0 Sg pSag and B; B; @ Sy © Sg >, Syz. We show that Sup is a fair
composition w.r.t. S, and Sy on @, but it is not a strongly fair one.

First focus on fairness. S, can move with either label ® ok or @ ko. In either case (0, S5)
can immediately make a corresponding step with ¥ empty. If Sz moves, that is by label
require(n), then for some environment {n}:

require(n)

({n},Sp) — (0, end) (D

There exists a sequence of transitions with labels 7 = & ok, assert(n) such that

@ ok,assert(n) & ok,assert(n) require(n)
—_

(@,Sg) ({n}, end) @,5) ({n}, require(n).end) —— (@, end)

and ; @; @ I end o end >, end. In the case above, we could select a ‘good’ path of S,
and S,p that allows the transition with label require(n) to happen.
Focus now on strong fairness and again, consider the step in Equation (1) by Sg. Now

. . - k .
we can pick an arbitrary 7, say, ® ok, such that (0,Sg) AN (0, end). Looking at S,g,
there is no prefix nor extension of ¥ = @ ok that allows a require(n) step by Sz once the
branch ko is taken. Therefore, S,p is not strongly fair with respect to S, and Sg on 0.

6:17

A theory of composing protocols

4.4 Completeness

We discuss completeness of our composition rules: for every ‘good’ execution of S; || S,
(i.e., non-terminating or reaching state end || end), can we obtain an interleaving
composition of S; and S, that yields that execution? At present the answer is negative.
For example, S, and S, below produce no interleavings (not even with »,)

Sq
Sp

?pwd.assert(login).?quit.assert(n).consume(login).end
ut.&{balance : require(login).!bal.t, finish : consume(n).end}

while it may be desirable to obtain:

) balance : require(login).!bal.t,
?pwd.assert(login).ut.&§ _ .
finish :?quit.assert(n).consume(n).consume(login).end

The IC above cannot be derived because [rec1] prevents composition of recursive with
non-recursive protocols. A simplistic modification of [rec1] to allow composition of
t,.S; and S, (with Top(S,) = @) would produce ut.?pwd.assert(login).&{...} which
is not behaviour preserving (the password request is repeated). Similar tweaks to
[rec2] have the same problem. With more complex rules, we may possibly allow
weak composition of S, with S only for syntactic subterms of S, that terminate
(e.g, after the finish branch). Extending our rules in this direction, and investigating
completeness, is future work. At present using »>. we can still compose S, with a
modified S, e.g.

?pwd.assert(login).ut,.&{void : t,, quit :?quit.assert(n).consume(login).end}

[Implementation

To illustrate the proposed approach, we have implemented a tool for Erlang that offers
interleaving composition of protocols, code generation, and protocol extraction.

Interleaving composition is defined as a function producing zero or more protocol
compositions, giving an algorithmic implementation of the relation in Definition 5.
Following the variations on the branching rule, the tool offers strong, weak, correlating,
and weak/correlating (denoted All in the table) composition. The user can select the
kind of branching they wish to use. Looking at Example 1, the strong composition of
banking and authentication protocols returns an empty set as expected. When opting
for weak composition instead, the tool outputs one IC, equivalent to Example 2:

Ml Listing1 PIN/TAN Banking Protocol rendered in our Erlang AST for protocols

bank_pintan() ->
{act,r_pin, {branch, [{ok, {assert, pin, {require, pin, {rec, "r",
{branch, [{payment, {assert, pay, {consume, pay, {act,s_id, {act,r_tan,
{branch, [{ok, {assert, tan, {consume, tan, {act, r_details, {rvar, "r"}}}},
{fail, {rvar, r}I}}},
{statement, {act, s_statement, {rvar, "r"}}},
{logout, {consume, pin, endP}I}}}}},
{fail, endP}1}}

6:18

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

H Table1 Number of compositions for branching rule variations; running example in grey.

No | Protocols Strong Weak Correlating All
1 | service(), login() (o} 1 0 I
2 | s1(), s2() (Section 3.1.2) o I 2 3
3 | i1(), i2() (Section 2.1) I I I I
4 | http(), aws_auth() (from [26]) 0 6 o 6
5 | login(), booking() (o} I 0o I
6 | pin(), tan() (o} I 0 I
7 | pintan(), bank() o I (o) I
8 | resource(), server() 1 1 I 2
9 | userAgent(), agentinstrument() (o} (o} 2 2
10 | bankauthsimple(), keycard() (o} I 0 I
II | auth_two_step(), email() (o} 9 o 9
12 | sa(), sb() (Section 4.4) 0 12 2 14

Offering all four composition options (corresponding to »,, >,, >, >, in the theory)
instead of offering only the less restrictive weak/correlating branching »,,., may
improve the relevance of compositions returned. As observed in Section 3.1.2, using
[wbra] in a context where we need to correlate branches likely returns irrelevant
compositions (e.g. row 12). One way to reduce the number of irrelevant compositions,
is to introduce more assertions. In fact, one of the aims of the tool is to support step-
wise understanding of the protocol via progressive use of assertions. An alternative
would be to annotate branching instances with the different options, which would
further increase relevance of the returned results. This is left for future work. Table 1
shows the number of interleaving compositions obtained for each variation of the
branching rule for a suite of examples. The suite includes: ad-hoc examples to validate
the theory (rows 1 - 3, 7, 12), examples from literature, such as the HTTP example
from [26] (row 4), and other examples inspired from real-world applications such
as Gmail’s two-steps authentication (row 11). By appropriately selecting composition
options and assertions, the tool returns a small number of interleaving compositions.
The number of compositions increases in examples with recursions, especially nested
recursions as can be seen in rows 4, 11, which would require some additional assertions
to choose among the interleavings.

Code generation takes a protocol definition and produces an Erlang stub. Protocol
structures (action, sequence, choice) can be represented as a directed graph and then
as finite state machines that transition based on the messages received. The finite
state machines are used to generate a stub that uses the Erlang/OTP gen_statem [1],
a generic abstraction which supports the implementation of finite state machine
modules. Not only is it convenient to represent the protocol as a state machine, but
gen_statem offers some useful features. Internal events from the state machine to itself
are a good way to represent branches that make a selection among some choices.
‘Postponing events’ and timeouts provide functionality for further implementation of
the generated code stubs. Actions and branches are represented as events that trigger
a state transition. We use function declarations to represent incoming events, and
function applications to represent outgoing events. Each state has its own handler

6:19

A theory of composing protocols

function used to send an event to the state machine. When the event is received the
corresponding state function is called and the transition to the next state is made.
The default generated event is an asynchronous communication (called a ‘cast’ in
Erlang/OTP parlance). For sending actions and selecting branches, the event type is
internal, an event from your state machine to itself. End is represented by the terminate
function of a gen_statem module, whilst the fixed-point and the recursive variables dictate
the control flow of the state machine. State variables must be declared by including
them in a record definition — pata. Following Frama-C [15], we represent assertions
as specially formatted comments. For example: {assert, pay} is represented as an Erlang
comment %assert pay. These comments are positioned before code that implements the
state to which this assertion acts as a pre-condition in the protocol. Listing 2 shows
an excerpt of the code generated for the PIN/TAN Banking protocol, bank_pintan(),
containing the states generated for the first action and branch.

B Listing2 PIN/TAN Banking State Machine

state1(cast, Pin, Data) -> {next_state, state2, Data}.
%assert pin

%require pin

state2(cast, ok, Data) -> {next_state, state3, Data};
state2(cast, fail, Data) -> {stop, normal, Data}.

%assert pay

%consume pay

state3(cast, payment, Data) -> {next_state, states, Data};
state3(cast, statement,Data) ->{next_state, state10,Data};
%consume pin

state3(cast, logout, Data) -> {stop, normal, Data}.

Protocol extraction and migration. Protocol extraction generates protocols from
code via a static analysis of Erlang modules implementing state machines using either
gen_statem, Or gen_fsm behaviour. When assertions are expressed using the comments
illustrated above, they are also extracted. The obtained protocol can be annotated with
extra assertions as necessary and composed with another to obtain a more complex
protocol. The extraction option preserves local code that can be migrated when
generating a new stub. For example, starting out from an existing implementation of
banking, we can use the tool to extract the protocol Sz, obtain a composition with Sy,
and generate a new module where pre-existing code for banking can be migrated.

Re-engineering. To extend the banking/authentication server with a keycard au-
thentication option, we can compose the PIN/TAN Banking Protocol with e.g., the
keycard protocol below. Assertions ensure that the branching for TAN or keycard au-
thentication is plugged in (using assertion keyp) to the payment option of the PIN/TAN
protocol, and that TAN authentication in PIN/TAN protocol is plugged only in the tan
branch of the keycard protocol (using assertion otp):

M Listing3 Keycard Option Protocol

keycard() -> {rec, "v", {require, keyp, {branch, [{tan, {assert, otp, {rvar, "v'}}},
{keycard, {rvar, "v'}I}}}

By adding an assertion of keyp and a consume of otp at the beginning of the branch
payment of the PIN/TAN Protocol one would obtain the desired extension using the
weak composition option. Our tool can then be used to generate a stub for the extended
protocol and migrate reusable code from the implementation of the PIN/TAN Banking

6:20

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

Protocol to the new implementation. These features satisfy the requirements laid out
in Section 1.1: supporting re-engineering driven by the composition of protocols. The
tool generates stubs from ICs, extracts protocols, and reuse code upon composition
with different protocols. See our artifact for the complete benchmark [10].

I Related Work and Conclusion

There is a vast literature on protocol specification (both theory and practice, e.g.
see the survey of Lai [34]). Most techniques provide a monolithic view of protocols.
We studied protocol composition using ‘assertions’ to specify contact points and
constraints between the protocols. We have given correctness in terms of behaviour
preservation, fairness and well-assertedness, and shown that all compositions enjoy it.
There are three main lines of research that relate to our work.

Firstly, software adaptors give typed protocol interfaces between software compo-
nents [45]. The idea is similar to the structured view of communication in session
types [24], with the notion of duality capturing when opposite sides of a protocol
are compatible. Composition in these works is about sound composition of protocol
implementations, whereas we address the (upfront) creation of composite protocols.

Secondly, protocol composition has been studied as the run-time ‘weaving’ of compo-
nent actions. Barbanera et al. study such a composition in the setting of communicating
finite state machines [2, 3]. Participants in two communicating systems can be trans-
formed into coupled ‘gateways’, forming a composite system. A compatibility relation
is based on dual behaviour of the two gateways. Safety of the resulting system is by
this compatibility, along with conditions of ‘no mixed states’ and determinism for
sends and receives. Building from this idea, later work studies synchronous CFSMs,
and replaces the two coupled gateways with a single one [5], and composition/decom-
position on global types in the setting of multiparty session types [4]. Montesi and
Yoshida study composition in the setting of choreographies [38]. Their composition
relies on the use of partial choreographies, which can mix global descriptions with
communication among external peers. Inspired by aspect-oriented programming,the
work in [41] supports protocol extensions with ‘aspectual’ session types, that allow
messages in session types to be matched and consequently introduce new behaviour
in addition to, or in place of, the matched messages. Unlike the above approaches,
we focus on a syntactic, statically derivable notion of composition. We use process
calculi to model protocols as simple (i.e., mono-thread) objects that can be used by
humans to reason about the desired application logic and generate/engineer modular
code. The work in [33] looks at composition of aspects and modular verification of
aspect-oriented programs, focussing on maintaining a relationship between models
and aspects. Various works look at composition of features into coherent software
systems [13, 22, 29, 46], focussing on resolving conflict stemming from feature inter-
actions. Instead, we focus on establishing primitives for humans to reason on what a
composite protocol should be, and support code generation.

The third pertinent thread in the literature defines syntactic compositions in the
form of Team Automata [18, 44, 43] or related calculi [44]. These works define

6:21

A theory of composing protocols

different ways of composing machines, primarily based on synchronising machines via
common actions. In contrast, our means of composition is via assertions (orthogonal to
actions) which express directional (i.e., rely-guarantee-style) dependencies. Our use of
assertions aims to reflect programming practice. Assertions are kept in our generated
code and can be used to enable protocol extraction and re-engineering, and as code
documentation. Our composition cannot capture the whole range of synchronisations
offered by Team Automata. Conversely, Team Automata cannot capture the range
of compositions in our approach. One can encode some interleaving compositions
as Team Automata, by modelling each assert(n)-require(n) or assert(n)-consume(n)
pair as a common synchronisation action. However, the options offered by Team
Automata (e.g., ‘free’, ‘state indispensable’, or ‘action indispensable’) do not capture
our requirement that synchronisation (i) always happens on assertion-actions and (ii)
never happens on communication actions (these are a separate syntactic and semantic
entity). Furthermore, our assertions do not imply immediate synchronisation: an
assert(n) can occur in a protocol some way before a require(n). Thus an attempted
encoding of Team Automata into our protocols, encoding synchronisation actions
as unique assert(n)-consume(n) pairs, would not preserve the behaviour of Team
Automata for all possible compositions (just those where ‘annihilating’ pairs appeared
contiguously). Thus, Team Automata and our approach overlap in some synchronising
behaviours, but not all. A formal study of such overlap is further work.

Unlike approaches to safe communication discussed above, we do not focus on
communication safety, which is an orthogonal concern. As discussed in ??, our pa-
rameterisable language allows us to inherit communication-safety properties from
session types by instantiating our protocol language to a session type syntax (e.g.
that in [16]), with asynchrony [14] and multiparty sessions [8].

We are working on a factorisation function that decomposes protocols, as a kind
of algebraic inverse to composition. This would allow us to ‘close the loop’, factoriz-
ing protocols into simple components for later (re)composition. We plan to extend
recursion to model quantified recursion and assertion environments as multisets.

Acknowledgements This work has been partially supported by the BehAPI project
funded by the EU H2020 RISE under the Marie Sklodowska-Curie action (No: 778233),
EPSRC project EP/To14512/1 (STARDUST), and EPSRC project EP/To13516/1 (Gran-
ule). We thank Christian Kissig for contributing with ideas and discussions, and the
anonymous reviewers for their feedback. Orchard is also supported by the generosity
of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program.

6:22

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

References

[1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

Ericsson AB. Stdlib, reference manual. https://erlang.org/doc/man/gen_statem.
html. Last Accessed 21.09.2022.

Franco Barbanera, Ugo de’Liguoro, and Rolf Hennicker. Global types for open
systems. In Massimo Bartoletti and Sophia Knight, editors, ICE ’18 - 11th Interac-
tion and Concurrency Experience, Madrid, Spain, June 20-21, 2018. Proceedings,
volume 279 of EPTCS, pages 4—20, 2018. do0i:10.4204/EPTCS.279.4.

Franco Barbanera and Mariangiola Dezani-Ciancaglini. Open multiparty ses-
sions. In Massimo Bartoletti, Ludovic Henrio, Anastasia Mavridou, and Alceste
Scalas, editors, ICE '19 - 12th Interaction and Concurrency Experience, Copenhagen,
Denmark, 20-21 June 2019. Proceedings, volume 304 of EPTCS, pages 77-96, 2019.
doi:10.4204/ EPTCS.304.6.

Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, and Emilio
Tuosto. Composition and decomposition of multiparty sessions. Journal of
Logical and Algebraic Methods in Programming, 119:100620, 2021. doi:https:
//doi.org/10.1016/j.jlamp.2020.100620.

Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Composing communicating
systems, synchronously. In Tiziana Margaria and Bernhard Steffen, editors,
ISoLA 20 - gth International Symposium on Leveraging Applications of Formal
Methods, Rhodes, Greece, October 20-30, 2020. Proceedings, Part I, volume 12476 of
Lecture Notes in Computer Science, pages 39-59. Springer, 2020. doi:10.1007/978-
3-030-61362-4_3.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically in-
terleaved multiparty sessions. In Franck van Breugel and Marsha Chechik, edi-
tors, CONCUR ’08, 19th International Conference on Concurrency Theory, Toronto,
Canada, August 19-22, 2008. Proceedings, volume 5201 of Lecture Notes in Com-
puter Science, pages 418—433. Springer, 2008. do0i:10.1007/978-3-540-85361-9_33.
Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically inter-
leaved multiparty sessions. In Franck van Breugel and Marsha Chechik, editors,
CONCUR ’08 - 19th International Conference on Concurrency Theory, Toronto,
Canada, August 19-22, 2008. Proceedings, volume 5201 of Lecture Notes in Com-
puter Science, pages 418—433. Springer, 2008. do0i:10.1007/978-3-540-85361-9_33.
Laura Bocchi, Hernan Melgratti, and Emilio Tuosto. Resolving non-determinism
in choreographies. In Zhong Shao, editor, Programming Languages and Sys-
tems, volume Lecture Notes in Computer Science of 8410, pages 493-512, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg. doi:10.1007/978-3-642-54833-8_26.
Laura Bocchi, Dominic Orchard, and A. Laura Voinea. A theory of composing
protocols, August 2022. doi:10.5281/zenodo0.7105666.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In Rocco De Nicola, editor, ESOP ’o7 - 16th
European Symposium on Programming, Braga, Portugal, March 24 - April 1, 2007.

6:23

https://erlang.org/doc/man/gen_statem.html
https://erlang.org/doc/man/gen_statem.html
http://dx.doi.org/10.4204/EPTCS.279.4
http://dx.doi.org/10.4204/EPTCS.304.6
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2020.100620
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2020.100620
http://dx.doi.org/10.1007/978-3-030-61362-4_3
http://dx.doi.org/10.1007/978-3-030-61362-4_3
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-642-54833-8_26
http://dx.doi.org/10.5281/zenodo.7105666

A theory of composing protocols

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Proceedings, volume 4421 of Lecture Notes in Computer Science, pages 2-17, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-71316-6_2.

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. ACM SIGPLAN Notices, 48(1):263—274, 2013.
d0i:10.1145/2480359.2429101.

Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. What’s in a
feature: A requirements engineering perspective. In José Luiz Fiadeiro and
Paola Inverardi, editors, Fundamental Approaches to Software Engineering, 1ith
International Conference, FASE 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4961 of Lecture Notes in Computer Science,
pages 16—30. Springer, 2008. do0i:10.1007/978-3-540-78743-3\ _2.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asyn-
chronous session types and progress for object oriented languages. In Marcello M.
Bonsangue and Einar Broch Johnsen, editors, FMOODS ‘o7 - oth IFIP WG 6.1
International Conference on Formal Methods for Open Object-Based Distributed Sys-
tems, Paphos, Cyprus, June 6-8, 2007, Proceedings, volume 4468 of Lecture Notes
in Computer Science, pages 1-31. Springer, 2007. do0i:10.1007/978-3-540-72952-5_1.
Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. Frama-C: A Software Analysis Perspective. In SEFM ’12
- 10th international conference on Software Engineering and Formal Methods,
Thessaloniki Greece October 1-5, 2012. Proceedings, volume 7504 of Lecture Notes
in Computer Science, pages 233—-247. Springer, 2012. doi:10.1007/978-3-642-33826-
7_16.

Ornela Dardha, Flena Giachino, and Davide Sangiorgi. Session types revisited.
Inf. Comput., 256:253-286, 2017. d0i:10.1016/].ic.2017.06.002.

Clarence Ellis. Team automata for groupware systems. In Proceedings of the
International ACM SIGGROUP Conference on Supporting Group Work: The Integra-
tion Challenge, GROUP 97, pages 415—424, New York, NY, USA, 1997. Association
for Computing Machinery. doi:10.1145/266838.267363.

Simon Gay and Antdnio Ravara. Behavioural Types: From Theory to Tools. River
Publishers, 2017. doi:10.13052/rp-9788793519817.

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2-3):191-225, 2005. d0i:10.1007/500236-005-0177-Z.

Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar Thiele, editors.
Abstract State Machines, Theory and Applications, International Workshop, ASM
2000, Monte Verita, Switzerland, March 19-24, 2000, Proceedings, volume 1912 of
Lecture Notes in Computer Science. Springer, 2000. d0i:10.1007/3-540-44518-8.
Jonathan D. Hay and Joanne M. Atlee. Composing features and resolving
interactions. In John C. Knight and David S. Rosenblum, editors, ACM SIGSOFT
Symposium on Foundations of Software Engineering, an Diego, California, USA,
November 6-10, 2000, Proceedings, pages 110-119. ACM, 2000. d0i:10.1145/355045.
355061.

6:24

http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1145/2480359.2429101
http://dx.doi.org/10.1007/978-3-540-78743-3_2
http://dx.doi.org/10.1007/978-3-540-72952-5_1
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1016/j.ic.2017.06.002
http://dx.doi.org/10.1145/266838.267363
http://dx.doi.org/10.13052/rp-9788793519817
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/3-540-44518-8
http://dx.doi.org/10.1145/355045.355061
http://dx.doi.org/10.1145/355045.355061

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93,
4th International Conference on Concurrency Theory, Hildesheim, Germany, August
23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science, pages
509-523. Springer, 1993. d0i:10.1007/3-540-57208-2_35.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based programming.
In Chris Hankin, editor, ESOP ’98, yth European Symposium on Programming,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122-138. Springer, 1998. doi:10.1007/BFb0053567.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous
session types. In George C. Necula and Philip Wadler, editors, POPL ’08, 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 7-12, 2008. Proceedings, pages 273—284. ACM,
2008. d0i:10.1145/1328438.1328472.

Raymond Hu. Distributed Programming Using Java APIs Generated from Session
Types. Behavioural Types: from Theory to Tools, pages 287—-308, 2017. doi:
10.13052/rp-9788793519817.

Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint
api generation. In Perdita Stevens and Andrzej Wasowski, editors, Fundamental
Approaches to Software Engineering, pages 401—418, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-49665-7_24.

Hans Hiittel, Ivan Lanese, Vasco T. Vasconcelos, Luis Caires, Marco Carbone,
Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, Anténio Ravara, Emilio
Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. Foundations of session
types and behavioural contracts. ACM Comput. Surv., 49(1):3:1-3:36, 2016.
doi:10.1145/2873052.

Michael Jackson and Pamela Zave. Distributed feature composition: A vir-
tual architecture for telecommunications services. IEEE Trans. Software Eng.,
24(10):831-847, 1998. d0i:10.1109/32.729683.

John B Kam and Jeffrey D Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7(3):305-317, 1977. d0i:10.1007/BF00290339.

Joachim Kock. Note on commutativity in double semigroups and two-fold
monoidal categories. arXiv preprint math/0608452, 2006.

Dexter Kozen. On kleene algebras and closed semirings. In MFCS ‘9o - Inter-
national Symposium on Mathematical Foundations of Computer Science, Banska
Bystrica, Czechoslovakia August 27-31, 1990. Proceedings, pages 26—47. Springer,
1990. do0i:10.1007/BFb0029594.

Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying aspect
advice modularly. In Richard N. Taylor and Matthew B. Dwyer, editors, Pro-
ceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2004, Newport Beach, CA, USA, October 31 - November 6,
2004, pages 137-146. ACM, 2004. d0i:10.1145/1029894.1029916.

6:25

http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.13052/rp-9788793519817
http://dx.doi.org/10.13052/rp-9788793519817
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1145/2873052
http://dx.doi.org/10.1109/32.729683
http://dx.doi.org/10.1007/BF00290339
http://dx.doi.org/10.1007/BFb0029594
http://dx.doi.org/10.1145/1029894.1029916

A theory of composing protocols

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Richard Lai. A survey of communication protocol testing. Journal of Systems and
Software, 62(1):21-46, 2002. d0i:10.1016/S0164-1212(01)00132-7.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980. d0i:10.1007/3-540-10235-3.

Fabrizio Montesi. Choreographic Programming. PhD thesis, Denmark, 2014.

Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In Pedro R.
D’Argenio and Herndn C. Melgratti, editors, CONCUR ’13 - 24th International
Conference on Concurrency Theory, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings, volume 8052 of Lecture Notes in Computer Science, pages 425—439.
Springer, 2013. do0i:10.1007/978-3-642-40184-8_30.

Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes.
Cambridge University Press, 2001.

Robert E Strom and Shaula Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Transactions on Software Engineering,
(1):157-171, 1986. d0i:10.1109/TSE.1986.6312929.

Nicolas Tabareau, Mario Siidholt, and Eric Tanter. Aspectual session types.
In Walter Binder, Erik Ernst, Achille Peternier, and Robert Hirschfeld, edi-
tors, MODULARITY ’14 -13th International Conference on Modularity, Lugano,
Switgerland, April 22-26, 2014. Proceedings, pages 193—204. ACM, 2014. doi:
10.1145/2577080.2577085.

Maurice H. ter Beek, Rolf Hennicker, and Jetty Kleijn. Team automata@work:
On safe communication. In Simon Bliudze and Laura Bocchi, editors, COORDINA-
TION ’20 - 22nd IFIP WG 6.1 International Conference on Coordination Models and
Languages, Valletta, Malta, June 15-19, 2020. Proceedings, volume 12134 of Lecture
Notes in Computer Science, pages 77-85, Cham, 2020. Springer International
Publishing. doi:10.1007/978-3-030-50029-0.

Maurice H. ter Beek and Jetty Kleijn. Team automata satisfying compositionality.
In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME ’03: Interna-
tional Symposium of Formal Methods Europe, Pisa, Italy, September 8-14, 2003. Pro-
ceedings, volume 2805 of Lecture Notes in Computer Science, pages 381-400, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/978-3-540-45236-2_22.
Daniel M Yellin and Robert E Strom. Protocol specifications and component
adaptors. TOPLAS 97 - ACM Transactions on Programming Languages and Systems,
19(2):292-333, 1997. d0i:10.1145/244795.244801.

Pamela Zave and Michael Jackson. New feature interactions in mobile and
multimedia telecommunications services. In Muffy Calder and Evan H. Magill,
editors, Feature Interactions in Telecommunications and Software Systems VI, May
17-19, 2000, Glasgow, Scotland, UK, pages 51-66. I0S Press, 2000.

6:26

http://dx.doi.org/10.1016/S0164-1212(01)00132-7
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/978-3-642-40184-8_30
http://dx.doi.org/10.1109/TSE.1986.6312929
http://dx.doi.org/10.1145/2577080.2577085
http://dx.doi.org/10.1145/2577080.2577085
http://dx.doi.org/10.1007/978-3-030-50029-0
http://dx.doi.org/10.1007/978-3-540-45236-2_22
http://dx.doi.org/10.1145/244795.244801

Laura Bocchi, Dominic Orchard, and A. Laura Voinea

About the authors

Laura Bocchi l.bocchi@kent.ac.uk.
Dominic Orchard d.a.orchard@kent.ac.uk.

A. Laura Voinea laura.voinea@glasgow.ac.uk.

6:27

mailto:l.bocchi@kent.ac.uk
mailto:d.a.orchard@kent.ac.uk
mailto:laura.voinea@glasgow.ac.uk

	1 Introduction
	1.1 Motivating example
	1.2 Contributions

	2 Asserted Protocols
	2.1 Assertion examples
	2.2 Protocol semantics
	2.3 Well-assertedness

	3 Interleaving Compositions
	3.1 Variations on the branching rule

	4 Properties of interleaving composition
	4.1 Well-assertedness of compositions
	4.2 Algebraic and scoping properties
	4.3 Behaviour preservation and fairness of protocol ensembles
	4.4 Completeness

	5 Implementation
	6 Related Work and Conclusion
	References
	About the authors

