
Champion, Théophile, Bowman, Howard and Grzes, Marek (2022) Branching
Time Active Inference: empirical study and complexity class analysis.
Neural Networks, 152 . pp. 450-466. ISSN 0893-6080.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/98200/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.neunet.2022.05.010

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/98200/
https://doi.org/10.1016/j.neunet.2022.05.010
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Neural Networks 152 (2022) 450–466

a

b

2
m
C
a
b
T
w
F
c
c
a

(

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Branching time active inference: Empirical study and complexity class
analysis
Théophile Champion a,∗, Howard Bowman b,a, Marek Grześ a

University of Kent, School of Computing, Canterbury CT2 7NZ, United Kingdom
University of Birmingham, School of Psychology, Birmingham B15 2TT, United Kingdom

a r t i c l e i n f o

Article history:
Received 23 October 2021
Received in revised form 26 March 2022
Accepted 10 May 2022
Available online 20 May 2022

Keywords:
Active inference
Variational message passing
Tree search
Planning
Free energy principle

a b s t r a c t

Active inference is a state-of-the-art framework for modelling the brain that explains a wide range
of mechanisms such as habit formation, dopaminergic discharge and curiosity. However, recent
implementations suffer from an exponential (space and time) complexity class when computing the
prior over all the possible policies up to the time horizon. Fountas et al. (2020) used Monte Carlo
tree search to address this problem, leading to very good results in two different tasks. Additionally,
Champion et al. (2021a) proposed a tree search approach based on (temporal) structure learning.
This was enabled by the development of a variational message passing approach to active inference
(Champion, Bowman, Grześ, 2021), which enables compositional construction of Bayesian networks for
active inference. However, this message passing tree search approach, which we call branching-time
active inference (BTAI), has never been tested empirically. In this paper, we present an experimental
study of the approach (Champion, Grześ, Bowman, 2021) in the context of a maze solving agent.
In this context, we show that both improved prior preferences and deeper search help mitigate the
vulnerability to local minima. Then, we compare BTAI to standard active inference (AcI) on a graph
navigation task. We show that for small graphs, both BTAI and AcI successfully solve the task. For
larger graphs, AcI exhibits an exponential (space) complexity class, making the approach intractable.
However, BTAI explores the space of policies more efficiently, successfully scaling to larger graphs.
Then, BTAI was compared to the POMCP algorithm (Silver and Veness, 2010) on the frozen lake
environment. The experiments suggest that BTAI and the POMCP algorithm accumulate a similar
amount of reward. Also, we describe when BTAI receives more rewards than the POMCP agent, and
when the opposite is true. Finally, we compared BTAI to the approach of Fountas et al. (2020) on the
dSprites dataset, and we discussed the pros and cons of each approach.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Active inference extends the free energy principle (Friston,
010; Pitti, Quoy, Lavandier, & Boucenna, 2020) to generative
odels with actions (Champion, Grześ, & Bowman, 2021; Da
osta, Parr, Sajid, Veselic, Neacsu, & Friston, 2020; Friston, FitzGer-
ld, Rigoli, Schwartenbeck, Doherty, & Pezzulo, 2016) and can
e regarded as a form of planning as inference (Botvinick &
oussaint, 2012). This framework has successfully explained a
ide range of brain phenomena, such as habit formation (Friston,
itzGerald, et al., 2016), Bayesian surprise (Itti & Baldi, 2009),
uriosity (Schwartenbeck, et al., 2018), and dopaminergic dis-
harge (FitzGerald, Dolan, & Friston, 2015). It has also been
pplied to a variety of tasks such as navigation in the Animal AI

∗ Corresponding author.
E-mail addresses: tmac3@kent.ac.uk (T. Champion), H.Bowman@kent.ac.uk

H. Bowman), m.grzes@kent.ac.uk (M. Grześ).
https://doi.org/10.1016/j.neunet.2022.05.010
0893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
environment (Fountas, Sajid, Mediano, & Friston, 2020), robotic
control (Pezzato, Corbato, & Wisse, 2020; Sancaktar, van Gerven,
& Lanillos, 2020; Wirkuttis & Tani, 2021), multi-vehicle con-
trol (Butz, Bilkey, Humaidan, Knott, & Otte, 2019), the mountain
car problem (Catal, Verbelen, Nauta, De Boom, & Dhoedt, 2020),
the game DOOM (Cullen, Davey, Friston, & Moran, 2018) and the
cart–pole problem (Millidge, 2019).

Active inference builds on a subfield of Bayesian statistics
called variational inference (Fox & Roberts, 2012), in which the
true posterior is approximated with a variational distribution.
This method provides a way to balance the computational cost
and accuracy of the posterior distribution. Indeed, the variational
approach is only tractable because some statistical dependencies
are ignored during the inference process, i.e., the variational
distribution is generally assumed to fully factorize, leading to the
well known mean-field approximation:

Q (X) =

∏
Q (Xi)
i

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2022.05.010
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.05.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tmac3@kent.ac.uk
mailto:H.Bowman@kent.ac.uk
mailto:m.grzes@kent.ac.uk
https://doi.org/10.1016/j.neunet.2022.05.010
http://creativecommons.org/licenses/by/4.0/

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

w
X
p
f
r
a
c
t
c
L
t
b
s
m
l
P

f
o
p
(
e
t
p
t
o
w

U

P
a

p
p
T
e
C
t
c
H
B
o
a
o
a
i

i
p
n
a
a
a
t
g
i
p
c
a
t
l
t
A
P
w
d
a
i

2

r
d
l
t
p
l
S
a
i

M
o
d
I
t
b
r
T
C
i
&
2

s
e

here X is the set of all hidden variables of the model and
i represents the ith hidden variable. Winn and Bishop (2005)
resented a message-based implementation of variational in-
erence, naturally called variational message passing. And more
ecently, Champion, Grześ, and Bowman (2021) rigorously framed
ctive inference as a variational message passing procedure. By
ombining the Forney factor graph formalism (Forney, 2001) with
he method of Winn and Bishop (2005), it becomes possible to
reate modular implementations of active inference (Cox, van de
aar, & de Vries, 2019; van de Laar & de Vries, 2019) that allows
he users to define their own generative models without the
urden of deriving the update equations. This paper uses a new
oftware package called Homing Pigeon that implements such a
odular approach and the relevant code has been made pub-

icly available on GitHub: https://github.com/ChampiB/Homing-
igeon.
Arguably, the major bottleneck for scaling up the active in-

erence framework was the exponential growth of the number
f policies. In the reinforcement learning literature, this ex-
losion is frequently handled using Monte Carlo tree search
MCTS) (Browne, et al., 2012; Schrittwieser, et al., 2019; Silver,
t al., 2016). MCTS is based on the upper confidence bound for
rees (UCT), which originally comes from the multi-armed bandit
roblem, and trades-off exploration and exploitation during the
ree search. In the reinforcement learning literature, the selection
f the node to expand is carried out using the UCT criterion,1
hich is defined as:

CT (s, a) = q(s, a) + Cexplore
P(s, a)

1 + N(s, a)
, (1)

where q(s, a) is the value of taking action a in state s (i.e. q
here is not the variational posterior), Cexplore is the exploration
constant that modulates the amount of exploration, N(s, a) is the
visit count, and P(s, a) is the prior probability of selecting action
a in state s. This approach has been applied to active inference in
several papers (Fountas et al., 2020; Maisto, Gregoretti, Friston, &
Pezzulo, 2021). Fountas et al. (2020) chose to modify the original
criterion used during the node selection step that returns the
node to be expanded. From equation (9) of Fountas et al. (2020),
one can see that the UCT formula has been replaced by:

U(s, a) = −G̃(s, a) + Cexplore
Q (a|s)

1 + N(s, a)
(2)

where U(s, a) indicates the utility of selecting action a in state
s; N(s, a) is the number of times that action a was explored
in state s; Cexplore is an exploration constant equivalent to Cp
in the UCT criterion; Q (a|s) is a neural network modelling the
posterior distribution over actions, which is trained by minimiz-
ing the variational free energy and G̃(s, a) is the best estimation
of the expected free energy (EFE) computed from the following
equation:

G(π, τ) = − EQ (θ |π)Q (sτ |θ,π)Q (oτ |sτ ,θ,π)

[
ln P(oτ |π)

]
+ EQ (θ |π)

[
EQ (oτ |θ,π)H(sτ |oτ , π) − H(sτ |π)

]
+ EQ (θ |π)Q (sτ |θ,π)H(oτ |sτ , θ, π) − EQ (sτ |π)H(oτ |sτ , π),

using sampling of 3 (out of 4) neural networks2 used by the
system. Note that Q (a|s) in Eq. (2) specializes P(s, a) in Eq. (1), by
providing the probability of selecting action a in state s. One can
see that U(s, a) in Eq. (2) has been obtained from UCT in Eq. (1),
by replacing the average reward by the negative EFE.

1 This version of UCT comes from Silver, et al. (2016).
2 Fountas et al. (2020) used neural networks to model the likelihood mapping
(oτ |sτ), the transition mapping P(sτ+1|sτ , aτ), the posterior over states Q (sτ),
nd the posterior over actions Q (a |s).
τ τ

451
More recently, Champion, Bowman, and Grześ (2021) pro-
osed an online method that frames planning as a form of (tem-
oral) structure learning guided by the expected free energy.
his method, called branching-time active inference (BTAI), gen-
ralizes active inference (Champion, Grześ, & Bowman, 2021; Da
osta, et al., 2020; Friston, FitzGerald, et al., 2016) and relates
o another recently introduced framework for inference and de-
ision making, called sophisticated inference (Friston, Da Costa,
afner, Hesp, & Parr, 2021). Importantly, the generative model of
TAI enables the agent to trade off risk and ambiguity, instead
f only seeking for certainty as was the case in Champion, Grześ,
nd Bowman (2021). In this paper, we provide an empirical study
f BTAI, enabling us to explicitly demonstrate that BTAI provides
more scalable realization of planning as inference than active

nference.
Section 2 reviews the BTAI theory, with full details presented

n Champion, Bowman, and Grześ (2021). Then, Section 3 com-
ares BTAI to standard active inference in the context of a graph
avigation task both empirically and theoretically. We show that
ctive inference is able to solve small graphs but suffers from
n exponential (space and time) complexity class that makes the
pproach intractable for bigger graphs. In contrast, BTAI is able
o search the space of policies efficiently and scale to bigger
raphs. Next, Section 4.2 presents the challenge of local minima
n the context of a maze solving task, and shows how better
rior preferences and deeper tree search help to overcome this
hallenge. Lastly, Section 4.3 compares two cost functions, gclassic

nd gpcost , in two new mazes. In Section 5, BTAI was compared
o the POMCP algorithm (Silver & Veness, 2010) on the frozen
ake environment; and the experiments suggest that BTAI and
he POMCP algorithm accumulate a similar amount of reward.
lso, we describe when BTAI receives more rewards than the
OMCP agent, and when the opposite is true. In Section 6, BTAI
as compared to the approach of Fountas et al. (2020) on the
Sprites dataset, and we discussed the pros and cons of each
pproach. Finally, Section 7 concludes this paper, and provides
deas for future research.

. Branching Time Active Inference (BTAI)

In this section, we provide a short review of BTAI, and the
eader is referred to Champion, Bowman, and Grześ (2021) for
etails. BTAI frames planning as a form of (temporal) structure
earning guided by the expected free energy. This form of struc-
ure learning should not be confused with representational or
arametric structure learning that is currently developed in the
iterature (Friston, et al., 2016; Friston, Parr, & Zeidman, 2018;
mith, Schwartenbeck, Parr, & Friston, 2020). The idea is to define
generative model that can be expanded dynamically as shown

n Fig. 1.
The past and present is modelled using a partially observable

arkov decision process (POMDP) in which each observation (Oτ)
nly depends on the state at time τ , and this state (Sτ) only
epends on the previous state (Sτ−1) and previous action (Uτ−1).
n addition to the POMDP which models the past and present,
he future is modelled using a tree-like generative model whose
ranches are dynamically expanded. Each branch of the tree cor-
esponds to a trajectory of states reached under a specific policy.
he branches are expanded following a logic similar to the Monte
arlo tree search algorithm (see below), and the state estimation
s performed using variational message passing (Champion, Grześ,
Bowman, 2021; Friston, Parr, & de Vries, 2017; Winn & Bishop,
005).
At the start of a trial, the model contains only the initial hidden

tate S0 and the initial observation O0. Then, the agent starts
xpanding the generative model using an approach inspired by

https://github.com/ChampiB/Homing-Pigeon
https://github.com/ChampiB/Homing-Pigeon
https://github.com/ChampiB/Homing-Pigeon

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

u

e

u
W
(
d
n
t
m
p
m
d
o

Fig. 1. This figure illustrates the expandable generative model allowing planning
nder active inference. The current time point (the present) is denoted by t . All

times before t are the past, and after t are the future. States in the future
are indexed by multi-index (action sequences), with each digit indicating an
action, e.g. S(11) . The future is a tree-like generative model whose branches
correspond to the policies considered by the agent. The branches can be
dynamically expanded during planning and the nodes in light grey represent
possible expansions of the current generative model.

Monte Carlo tree search (Browne, et al., 2012), where the selec-
tion of a node is based on expected free energy. More precisely,
the node selection is performed recursively from the root until
reaching a leaf node. At each level in the recursion the selected
node maximizes the UCT criterion:

UCTJ = −ḡJ
exploitation

+ Cp

√
ln n
nJ  

exploration

,

where J is a multi-index representing a sequence of actions, SJ is
the hidden state reached after performing the actions sequence
described by the multi-index J , n is the number of times the par-
nt of SJ has been visited, nJ is the number of times the child (SJ)

was selected, and ḡJ is the average cost received after selecting
SJ . In what follows, we denote by J :: U the multi-index obtained
by adding the action U at the end of the sequence of actions
described by the multi-index J . Once a leaf node (SJ) is selected
for expansion, all its children states (i.e., all SJ::U) are added to the
generative model. The future observations (i.e., OJ::U) associated to
those hidden states (i.e., all SJ::U) are also added to the generative
model. Next, the evaluation step estimates the cost of each state-
observation pair (SJ::U ,OJ::U). In this paper, we consider two kinds
of cost. First, the standard expected free energy that trades off risk
(over observations) and ambiguity:

gclassic
J ≜ DKL[Q (OJ) ∥ V (OJ)] + EQ (SJ)[H[P(OJ |SJ)]],

where J = I :: U for an arbitrary action U , and V (OJ) is a
distribution encoding the prior preferences over observations of
the agent, which is generally parameterized by a vector C or
452
learnt using a Dirichlet prior (Sajid, Tigas, Zakharov, Fountas, &
Friston, 2021). Second, we also experiment with the following
quantity:

gpcost
J ≜ DKL

[
Q (SJ)

⏐⏐⏐⏐ V (SJ)
]
+ DKL

[
Q (OJ)

⏐⏐⏐⏐ V (OJ)
]
,

where V (SJ) is a distribution encoding the prior preferences of
the agent over the environment’s states. Note that gpcost

J depends
on both the risk over observations and the risk over states. The
reader is referred to Appendix B for a derivation of gpcost

J from the
Free Energy of the Expected Future (FEEF) introduced by Millidge,
Tschantz, and Buckley (2021). Lastly, the cost of the best action
(i.e., the action that produces the smallest cost) is propagated
towards the root and used to update the aggregated cost of the
ancestors of SJ .

Finally, during the planning procedure, the agent needs to
perform inference of the future hidden states and observations.
This is performed using variational message passing (VMP) on the
set of newly expanded nodes, i.e.

{
SI::U ,OI::U | U ∈ {1, . . . , |U |}

}
,

ntil convergence to a minimum in the free energy landscape.
e refer the interested reader to Champion, Grześ, and Bowman

2021) for additional information about the derivation of the up-
ate equations. Also, since this paper only considers inference and
ot learning (i.e. the model does not have Dirichlet priors over
he tensors defining the world’s contingencies), the generative
odel is different from the one presented in the theoretical pa-
er (Champion, Bowman, & Grześ, 2021). Therefore, we provide a
athematical description of the generative model, the variational
istribution and the belief updates in Appendix A. We summarize
ur method using the pseudo-code in Algorithm 1.

Algorithm 1: Branching Time Active Inference
while end of trial not reached do

sample an observation (Ot) from the environment;
perform inference using VMP and the newly acquired
observation (Ot);

while maximum planning iteration not reached do
select a node to be expanded using the UCT criterion;
perform the expansion of the generative model from
the selected node;

perform inference on the newly expanded nodes using
VMP;

evaluate the cost of the newly expanded nodes using
gclassic
J or gpcost

J ;
back-propagate the cost of the nodes through the tree;

end
select an action to be performed;
execute the action in the environment;

end

3. BTAI vs active inference

In this section, we benchmark BTAI against standard active in-
ference as implemented in Statistical Parametric Mapping (SPM),
cf. Friston (2007) for additional details about SPM. First, we do
this in terms of complexity class and then empirically through
experiments of increasing difficulty.

3.1. BTAI vs active inference: Space and time complexity

In this section, we compare our model to the standard model
of active inference (Da Costa, et al., 2020; Friston, FitzGerald,
et al., 2016). In the standard formulation, the implementation
needs to store the parameter of the posterior over states sπ

τ for
each policy and each time step. Therefore, assuming |U | possible

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

h
s
u

a
s
o

n
e
t

t

c
N
t
t
F
t
o

m
s
2
m
e

e
a
i
c
r
t
w
t
p
p

u
t
a
t
a
p

s
p
o
t
t
i

Fig. 2. This figure illustrates the difference between AcI and BTAI in terms of space complexity class. The time goes from top to bottom, we assume two actions
at each time step, t denotes the current time point, and each circle represents the storage of the |S| parameters required to store a categorical distribution of a
idden state. Black nodes represent the nodes that must be stored in BTAI (under a full expansion of the tree), while the red nodes represent AcI’s extra costs of
torage. This extra cost comes from the fact that in AcI, one needs to store posterior beliefs for each time step and for each policy, while in BTAI, the tree allows
s to compress the representation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
i
‘
m
f
c
a

3

o
e
b
t
t
f

o

w
f
o
p
r

p
p
b
u
t
t
H
o

ctions, T time steps, |π | = |U |
T policies, and |S| possible hidden

tate values, the space complexity class for storing the parameters
f the posterior over hidden states is O(|π | × T × |S|). This

corresponds to the number of parameters that needs to be stored,
and it is a problem because |π | grows exponentially with the
umber of time steps. Additionally, performing inference on an
xponential number of parameters will lead to an exponential
ime complexity class.

BTAI solves this problem by allowing only K expansions of
he tree. In BTAI, we need to store |S| parameters for each time
step in the past and present, and for each expansion, we only
need to compute and store the parameters of the posterior over
the hidden states corresponding to this expansion. Therefore, the
time and space complexity class is O([K + t]×|S|), where t is the
urrent time point. This is linear in the number of expansions.
ow, the question is how many expansions are required to solve
he task? Even if the task requires the tree to be fully expanded,
hen the complexity class of BTAI would be O

(
[|U |

T−t
+ t]× |S|

)
.

ig. 2 illustrates the difference between AcI and BTAI in terms of
he space complexity class, when BTAI performs a full expansion
f the tree.
Additionally to the gain afforded by the structure of the tree,

ost practical applications can be solved by expanding only a
mall number of nodes (Schrittwieser, et al., 2019; Silver, et al.,
016), which means that MCTS and BTAI approaches will be even
ore optimized than in Fig. 2 because most branches will not be
xpanded.
One could argue that there is a trade off in the nature and

xtent of the information inferred by classic active inference
nd branching-time active inference. Specifically, classic active
nference exhaustively represents and updates all possible poli-
ies, while branching-time active inference will typically only
epresent a small subset of the possible trajectories. These will
ypically be the more advantageous paths for the agent to pursue,
ith the less beneficial paths not represented at all. Indeed, the
ree search is based on the expected free energy that favours
olicies that maximize information gain while realizing the prior
references of the agent.
Additionally, the inference process can update the system’s

nderstanding of past contingencies on the basis of new observa-
ions. As a result, the system can obtain more refined information
bout previous decisions, perhaps re-evaluating the optimality of
hese past decisions. Because classic active inference represents
larger space of policies, this re-evaluation could apply to more
olicies.
We also know that humans engage in counterfactual rea-

oning (Rafetseder, Schwitalla, & Perner, 2013), which, in our
lanning context, could involve the entertainment and evaluation
f alternative (non-selected) sequences of decisions. It may be
hat, because of the more exhaustive representation of possible
rajectories, classic active inference can more efficiently engage
n counterfactual reasoning. In contrast, branching-time active
453
nference would require these alternative pasts to be generated
‘a fresh’’ for each counterfactual deliberation. In this sense, one
ight argue that there is a trade off: branching-time active in-

erence provides considerably more efficient planning to attain
urrent goals, classic active inference provides a more exhaustive
ssessment of paths not taken.

.2. The deep reward environment

In this section, we introduce a canonical example of the kind
f environment in which BTAI outperforms standard active infer-
nce. This environment is called the deep reward environment
ecause the agent needs to navigate a tree like graph, where
he graph’s nodes correspond to the states of the system, and
he agent needs to look deep into the future to differentiate the
avourable path from the traps.

At the beginning of each trial, the agent is placed at the root
f the tree that corresponds to the initial state (S0) of the system.

From the initial state, the agent can select m actions leading
immediately to an undesirable state, and n actions leading to
seemingly pleasant states, for a total of n + m actions. If one of
the m undesirable actions is selected, then the agent will enter
a bad path, in which (at each time step) n + m actions are
available, but all of them produce unpleasant observations. While
these m undesirable actions that lead directly to terrible states
should be straightforward to avoid for any reasonable agent, the
n seemingly favourable actions present an additional challenge.
Indeed, only one of those n actions will be beneficial to the agent
in the long run, and all the others are long-term traps.

We let Lk with k ∈ {1, . . . , n} be the length of the kth
seemingly good path. Once the agent is engaged on the kth path,
there are still n+m actions available, but only one of them keeps
the agent on the right track. All the other actions will produce
unpleasant observations, i.e., the agent will enter a bad path. This
process will continue until the agent reaches the end of the kth
path, which is determined by the path’s length Lk. If the kth path
as the longest of the n seemingly good paths, then the agent will

rom now on only receive pleasant observations independently
f the action performed. If the kth path was not the longest
ath, then independently of the action performed, the agent will
eceive painful observations, i.e., the trap is revealed.

To summarize, at the beginning of each trial, the agent is
rompted with n seemingly good paths and m obviously bad
aths. Only the longest of the seemingly pleasant paths will
e beneficial in the long term, the other are traps, which will
ltimately lead the agent to an undesirable state. Fig. 3 illustrates
his environment. Also in theory, this task does not have any
erminal states, and the agent will keep taking actions forever.
owever, in practice, each trial is stopped after a fixed number
f action-perception cycles.

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

t
p
a
a
(
s
t

w
m
p
c
d

(
l
i
s
t
t
t
l
p
p
p
m
W
i

3

t
S
w

Fig. 3. This figure illustrates a type of environment in which BTAI will outperform standard active inference. Typically, this corresponds to environments in which
here are only a small number of good actions. In such environments, BTAI can safely discard a large part of the tree, and speed up the search without impacting
erformance. Note, S0 represents the initial state, Sb represents a bad state, Sg represents a good state, and S ij is the jth state of the ith seemingly good path. The
bove picture assumes that the longest path (which is beneficial in the long-term) is the path starting with the state S11 . Its length (L1) is equal to two because
fter performing two actions (i.e., the one leading to S11 and the one leading to S12), the agent is certain to receive pleasant observations. Importantly, any other
seemingly) good path starting with a state S i1 with i ∈ {2, . . . , n} will turn out to be a trap. A trap is simply a state from which all actions lead to an undesirable
tate (Sb), e.g., Sn1 is a trap. Note, at each time point, the agent must pick from the m + n possible actions, e.g., when reaching S11 there is only one action keeping
he agent on the right track, but all the other actions (i.e., m + n − 1 actions) lead to a bad state.
Table 1
This table presents the three deep reward
environments on which experiments will be run.
Environment L1 L2
Easy 2 3
Medium 4 5
Hard 7 9

3.2.1. The easy, medium and hard deep reward environment
In this section, we present three instances of the deep re-

ard environment in increasing order of complexity (i.e., easy,
edium, and hard). These instances will then be used to com-
are BTAI and (standard) active inference. To specify an instance
ompletely, it is sufficient to provide the number of obviously
etrimental actions (m), the number of seemingly good actions

(n), and the length of the paths that follow from the seemingly
good actions, i.e., Lk for k ∈ {1, . . . , n}.

All three instances have five obviously detrimental actions
m = 5) and two seemingly good actions (n = 2). However, the
engths of the two good paths (i.e., L1 and L2) change from one
nstance to the other, and the reader is referred to Table 1 for a
ummary. In all the environments considered, L2 > L1, therefore
he first path is a trap that will lead to an undesirable state, and
he second path is the one that should be taken. Also, to identify
hat the first path is a trap, the agent must be able to plan at
east L1+1 steps ahead, since before that the two seemingly good
aths are identical. Importantly, an agent trying to evaluate all
ossible policies L1+1 steps into the future, will have to store and
rocess: 343 policies for the easy instance, 16,807 policies for the
edium instance, and 5,764,801 policies for the hard instance.
e conclude this section with Fig. 4 that illustrates the easy

nstance of the deep reward environment.

.3. BTAI vs active inference: Simulations

In this section, we compare BTAI and active inference on the
hree instances of the deep reward environment presented in
ection 3.2.1. The Matlab code running an active inference agent
as implemented by modifying the SPM demo called: DEMO_
454
Fig. 4. This figure illustrates the easy instance of the deep reward environment
used to compare BTAI and AcI. It contains two seemingly good paths (n = 2):
the first of length two (L1 = 2) and the second of length three (L2 = 3).
Upon reaching the end of the first (and shortest) path, the agent can only
reach undesirable states, i.e., the first path is a trap. In contrast, when reaching
the end of the second (and longest) path, the agent can only reach pleasant
states, i.e., the second path is beneficial in the long term. Importantly, the entire
graph of the easy version contains more than 300 nodes, and is only partially
represented. The exhaustive graph is obtained by adding undesirable states (Sb)
until each node has n + m children, e.g., S0 has m = 5 unrepresented children
and S11 has six of them. Finally, the medium and hard versions of the deep
reward environment can be obtained from the easy version by lengthening the
two seemingly good paths.

MDP_maze.m, and is publicly available on GitHub at the following
URL: https://github.com/ChampiB/Experiments_AI_TS, in the file:
matlab/graph_navigation.m.

Table 2 shows the result of our simulation in which a standard
active inference agent is run on the three deep reward envi-
ronments presented in Section 3.2.1. Since the behaviour of the
simulation is deterministic, only one run was executed. If the
agent successfully selects the longest path, we report P(goal) = 1,

DEMO_MDP_maze.m
DEMO_MDP_maze.m
DEMO_MDP_maze.m
https://github.com/ChampiB/Experiments_AI_TS
matlab/graph_navigation.m

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

p
w
a

d
p
p
d
q
t
a
n
e
d
o
i
l
n

4

e

w
y
a
d
f
s
h
t
e

4

a
p

4

(
(
t
a
m
t
e
s
t
p
n
s

f
b
b

v
a

Table 2
This table shows that the active inference agent was able to plan three and
five time steps ahead to solve the easy and medium deep reward environments.
However, because of the exponential space complexity, SPM runs out of memory
when trying to plan eight time steps ahead to solve the hardest deep reward
environment. The last column reports the time (in seconds) required for running
one simulation of the graph environment using SPM.
Environment Policy size P(goal) P(trap) Time (s)

Easy 3 1 0 14.79
Medium 5 1 0 1177.05
Hard 8 Crash Crash Crash

Table 3
This table shows that BTAI was able to solve the three deep reward environ-
ments with at most 20 planning iterations. The reported time corresponds to
the average runtime of one simulation, and the standard deviation is reported
after the symbol ±.
Environment Planning iterations P(goal) P(trap) Time (s)

Easy 10 1 0 0.112 ± 0.008

Medium 10 1 0 0.193 ± 0.007

Hard 10 0.5 0.5 0.356 ± 0.020
15 0.49 0.51 0.536 ± 0.052
20 1 0 0.836 ± 0.075

otherwise, we report P(trap) = 1. Lastly, the simulation was
run on a standard laptop with 16 GB of RAM, if the agent ran
out of memory, then we simply report a ‘‘crash’’ in the table.
As expected, the agent successfully solved the easy and medium
environments, for which it was required to plan three and five
steps ahead. However, for the hardest version, the agent was
supposed to store and process more than five millions policies
and the associated beliefs over both: policies and hidden states.
This is intractable using only 16 GB of RAM and standard active
inference runs out of memory because of the exponential (space)
complexity class.

The C++ code emulating BTAI can be found in the file
experiments/main.cpp of the GitHub repository previously dis-
cussed (ChampiB/Experiments_AI_TS). The hyper-parameters used
in the code are described in Appendix D. Since action selection
in BTAI is stochastic, we ran 100 simulations. We report the
probability of the agent selecting the longest path as: P(goal) =
number of successes

100 . Simulations where the agent failed to select the
proper path are reported as: P(trap) =

number of failures
100 . We ex-

erimented with various numbers of planning iterations, starting
ith ten iterations and increasing this number by five until the
gent was able to solve the task.
Table 3 shows the results obtained by BTAI on the three

eep reward environments presented in Table 1, and the hyper-
arameter values used in these simulations are reported in Ap-
endix D. As expected, the agent successfully solved the three
eep reward environments. Ten planning iterations were re-
uired for the easy and medium environments, and twenty for
he hardest one. The ability of BTAI to find the best policy
mong more than five millions policies with only twenty plan-
ing iterations is explained by the sparsity of the deep reward
nvironment, i.e., the vast majority of the policies are clearly
etrimental to the agent. Note that this sparsity is characteristic
f many complex tasks such as chess. For example, a chess player
s frequently faced with (chess) positions where twenty to forty
egal moves are available, but one move is almost forced, i.e., if
ot played, the player will almost surely lose the game.

. BTAI empirical intuition

In this section, we study the BTAI agent’s behaviour through
xperiments highlighting its vulnerability to local minimum and
 e

455
ways to mitigate this issue. The goal is to gain some intuition
about how the model behaves when: enabling deeper searches,
providing better preferences, and using different kind of cost
functions to guide the Monte Carlo tree search. The code of those
experiments is available on GitHub at the following URL: https://
github.com/ChampiB/Experiments_AI_TS, in the file: experiments/
main.cpp.

4.1. The maze environment

This section presents the environment in which various sim-
ulations will be run. In this environment, the agent can be un-
derstood as a rat navigating a maze. Fig. 5 illustrates the three
mazes studied in the following sections. The agent can perform
five actions, i.e., UP, DOWN, LEFT, RIGHT and IDLE. The goal is
to reach the maze exit from the starting position of the agent.
To do so, the agent must move from empty cells to empty cells
avoiding walls. If the agent tries to move through a wall, the
action becomes equivalent to IDLE. Finally, the observations made
by the agent correspond to the Manhattan distance (with the
ability to traverse walls) between its current position and the
maze exit, i.e.,

M(x, y) =

N∑
i=1

|xi − yi|,

here M(x, y) is the Manhattan distance between x ∈ RN and
∈ RN , x is the position of the agent, y the position of the exit,
nd in a 2d maze N = 2. Fig. 5 (left) illustrates the Manhattan
istance received on each cell of a simple maze. Taking maze (A)
rom Fig. 5 as an example, if the agent stands on the exit (green
quare), the observation will be zero or equivalently using one-
ot encoding3 [1 0 0 0 0 0 0 0 0 0], and if the agent stands at
he initial position (red square), the observation will be nine or
quivalently [0 0 0 0 0 0 0 0 0 1].

.2. Overcoming the challenge of local minima

In this section, we investigate the challenge of local minima
nd provide two ways of mitigating the issue: improving the prior
references and using a deeper tree.

.2.1. Prior preferences and local minimum
In this first experiment, the agent was asked to solve maze

B) from Fig. 5, which has the property that the start location
red square) is a local minimum. Remember from Section 4.1 that
he agent observes the Manhattan distance between its location
nd the maze exit. The Manhattan distance naturally creates local
inima throughout the mazes, i.e., cells of the maze (apart from

he exit) for which no adjacent cell has a lower distance to the
xit. An example of such a local minimum is shown as a blue
quare in Fig. 6. The presence of such a local minimum implies
hat a well behaved agent (i.e., an agent trying to get as close as
ossible to the exit) might get trapped in those cells for which
o adjacent cell has a lower distance to the exit and thus fail to
olve the task.
Next, we need to define the prior preferences of the agent. Our

ramework allows the modeller to define prior preferences over
oth future observations and future states. However, we start
y assuming no preferences over the hidden states, i.e., V (SI) is

3 A one-hot encoding of a number n ∈ {0, . . . ,N} means representing n as a
ector of size N + 1, where the nth element is equal to one and all the other
re set to zeros. In this paper, we assume a zero based indexing, i.e., the first
lement is at index zero.

experiments/main.cpp
ChampiB/Experiments_AI_TS
https://github.com/ChampiB/Experiments_AI_TS
https://github.com/ChampiB/Experiments_AI_TS
https://github.com/ChampiB/Experiments_AI_TS
experiments/main.cpp
experiments/main.cpp
experiments/main.cpp

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

f
e
c
t

e
F
u
m
t
m

4

o

Fig. 5. This figure illustrates the three mazes used to perform the experiments in the next sections. Black squares correspond to walls, green squares correspond
to the maze exit and red squares correspond to the agent starting position. Finally, the numbers displayed on each cell of maze (A) correspond to the Manhattan
distance between this cell and the exit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
.

Fig. 6. This figure illustrates the notion of local minimum (i.e., the blue cell) in
the context of maze (A). Local minima correspond to cells (apart from the exit)
for which no adjacent cell has a lower distance to the exit. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

uniform. We define the prior preferences over future observations
as:

CO = σ
(
γ v

)
with v =

[
|O| . . . 2 1

]T
where |O| is the number of possible observations (10 in maze
(A) from Fig. 5), γ is the precision of the prior preferences, and
σ (·) is the softmax function. The above prior preferences will give
high probability to cells close to the exit and will exhibit the local
minimum behaviours previously mentioned.

Using these prior preferences, we ran 100 simulations in maze
(B) from Fig. 5. Each simulation was composed of a maximum
of 20 action-perception cycles, and was interrupted when the
agent reached the maze exit. Note, the results might vary from
simulation to simulation, because the actions performed in the
environment are sampled from σ (−ω

g
N), where σ (•) is a softmax

unction, ω is the precision of action selection, g is a vector whose
lements correspond to the cost of the root’s children (i.e. the
hildren of St) and N is a vector whose elements correspond to
he number of visits of the root’s children.

Table 4 reports the frequency at which the agent reaches the
xit. The hyper-parameters values are reported in Appendix D.
irst, note that with 10 and 15 planning iterations, the agent was
nable to leave the initial position (i.e., it is trapped in the local
inimum). But as the number of planning iterations is increased,

he agent becomes able to foresee the benefits of leaving the local
inimum.

.2.2. Improving prior preference to avoid local minimum
In this second experiment, we modified the prior preferences

f the agent to enable it to avoid local minima. We first change
456
Fig. 7. This figure illustrates the new prior preferences of the agent over the
future states. Black squares correspond to walls, the darkest red corresponds to
high prior preferences (really enjoyable states), the brightest red corresponds to
low prior preferences (annoying states) and the last kind of red corresponds to
medium prior preferences (boring states). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 4
This table presents the probability that the agent solves maze (B), and the
probability of the agent being stuck into the local minimum. The reported
time corresponds to the average runtime of one simulation, and the standard
deviation is reported after the symbol ±. Importantly, when the agent reaches
the exit of the maze the simulation is interrupted, i.e., the simulation contains
less than 20 action-perception cycles. This explains why performing 20 planning
iterations is faster (0.233 s), than performing 15 planning iterations (1.030 s), i.e.,
the simulations with 15 planning iterations (that fail to solve the maze) contain
20 action-perception cycles while the simulations with 20 planning iterations
(that successfully solve the maze) contain less than 20 action-perception cycles
Planning iterations P(exit) P(local) Time (s)

10 0 1 0.701 ± 0.022
15 0 1 1.030 ± 0.070
20 1 0 0.233 ± 0.018

the cost function from the expected free energy gclassic
I to the

pure cost gpcost
I , which allows us to set nontrivial preferences

over states (in the previous section, these were set to uniform).
Specifically, the prior preferences over hidden states will be of
the form:

C S = σ
(
γw

)
,

where γ is the precision over prior preferences, and w is set
according to Fig. 7. Finally, the prior preferences over future
observations remain the same as in the previous section, and once
again the hyper-parameters values are reported in Appendix D.

Tables 5 and 6 summarize the results of the experiments with
and without the use of prior preferences over hidden states,

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

t
c
w
p
g
t
t
t
h
A

p
m
f
d
w
t
i
t

l
s
i
g
t
a
e
d

P

w
t
o
t
a

5

e
f
r
t
c
w
r
i
o
a
t
b
n

o
r
l
t
t
r
a
A
t
e
c
s
v
A

5

t
p
s
w
o
a

l
i
a
a
e

5

M
a
i
P
2
a
f
o
t

Table 5
This table presents the probability that the agent solves maze (B), and the
probability of the agent being stuck in the local minimum. In this table, the agent
was not equipped with prior preferences over hidden states. The last column
reports the (average) execution time required for running one simulation and
the associated standard deviation.
Planning iterations P(global) P(local) Time (s)

10 0 1 0.683 ± 0.024
15 0 1 0.983 ± 0.030
20 1 0 0.217 ± 0.002

Table 6
This table presents the probability that the agent solves maze (B), and the
probability of the agent being stuck in the local minimum. In this table, the
agent was equipped with prior preferences over hidden states. The last column
reports the (average) execution time required for running one simulation and
the associated standard deviation.
Planning iterations P(global) P(local) Time (s)

10 0 1 0.749 ± 0.045
15 1 0 0.181 ± 0.018
20 1 0 0.288 ± 0.092

respectively. As expected better prior preferences lead to better
performance when less planning iterations are performed. Spec-
ifying prior preferences over hidden states requires the modeller
to bring additional knowledge to the agent, and might not always
be possible. However, when such knowledge is available it can
improve the agent’s performance. This illustrates the value of
the BTAI approach, which enables preferences to be specified for
observations, as does active inference, as well as for states.

4.3. Solving more mazes

Up to now, we focused on maze (B) from Fig. 5 to demonstrate
hat both improving prior preferences and deepening the tree
an help to mitigate the problem of local minima. In this section,
e extend our analysis to mazes (A) and (C). Table 7 shows the
erformance of the BTAI agent in maze (A) when using gclassic

I and
pcost
I as cost function. When gpcost

I was used as a cost function,
he agent was only equipped with prior preferences over observa-
ions (i.e., uniform preferences over hidden states). Table 8 shows
he results of the same experiments but on maze (C). As usual the
yper-parameters values used for those simulations are given in
ppendix D.
Tables 7 and 8 seem to indicate that both gclassic

I and gpcost
I

erform similarly on the maze environment, and require approxi-
ately the same amount of time to be computed. The similar per-

ormance of gclassic
I and gpcost

I may be surprising to the reader. In-
eed, gclassic

I contains an ambiguity terms, i.e., EQ (SJ)[H[P(OJ |SJ)]],
hich should be helping the agent. In contrast, gpcost

I contains
he risk over states with uniform prior preferences over states,
.e., DKL

[
Q (SJ)

⏐⏐⏐⏐ V (SJ)
]
, which should not be helpful (because of

he uniformity of the prior preferences).
However, in the maze environment the ambiguity of the like-

ihood mapping P(Oτ |Sτ) is identical for each possible hidden
tate Sτ . Indeed, each state corresponds to a cell, and each cell
s at a fix Manhattan distance from the exit. Thus, each state
enerates with high probability the observation corresponding
o the Manhattan distance between the state’s cell and the exit;
nd generates with small probability any other observations. For
xample, the likelihood mapping of an imaginary maze could be
efined as follows:

(Oτ |Sτ) = A =

[0.05 0.05 0.9
0.05 0.9 0.05

]
,

0.9 0.05 0.05
457
here P(Oτ = i|Sτ = j) = Aij. Importantly, each column of A has
he same entropy, therefore the agent does not care about which
bservation is made, i.e., they are all as ambiguous. This is why
he ambiguity term is in fact not helpful in the maze environment,
nd why gclassic

I and gpcost
I produce similar performances.

. The frozen lake environment

In this section, we evaluate our agent on the frozen lake
nvironment introduced by OpenAI (Brockman, et al., 2016). The
rozen lake environment can be represented as a 2D grid with r
ows and c columns. Each cell in the grid is either a frozen surface
hat can support the agent’s weight or a hole on which the agent
annot step without receiving a heavy penalty. One of the cells
ith a frozen surface contains a frisbee that the agent needs to
ecover, i.e., this cell is the goal state. For our purpose, each cell
s associated with a number describing its location, and the agent
bserves only its location in the lake. The agent can perform four
ctions (i.e., UP, DOWN, LEFT, RIGHT) at any point in time. Actions
hat would lead the agent to leave the lake (through the external
oundary), are equivalent to doing nothing and the agent does
ot move.
In terms of the reward function, the agent receives a penalty

f minus one each time it steps on a hole. Otherwise, the agent
eceives a reward between zero and one. This reward increases
inearly as the agent gets closer to the frisbee location, where
he distance between the agent and the frisbee is measured using
he Manhattan distance as for the maze environment. Note, the
eward received by the agent is maximum when the agent stands
t the frisbee location, for which it receives a reward of one.
lso in theory, this task does not have any terminal states, and
he agent will keep taking actions forever. However, in practice,
ach trial is stopped after a fixed number of action-perception
ycles. Figs. 8(a) and 8(b) present the lakes in which the upcoming
imulations have been ran. For reproducibility, we provide the
alues of the hyper-parameters used throughout this section in
ppendix D.

.1. BTAI on the frozen lake environment

Table 9 shows the results obtained by the BTAI agent on
he lake of Fig. 8(a). In short, the BTAI agent required twenty
lanning iterations before it was able to solve this task. Each
imulation takes an average of 7.870 s of computational time,
hich correspond to approximately 7.870/30 ≈ 0.262 seconds
f thinking (i.e., inference, planning and action selection) per
ction-perception cycle.
Table 10 shows the results obtained by the BTAI agent on the

ake of Fig. 8(b). In short, the BTAI agent requires fifty planning
terations to be able to solve this task. Each simulation takes an
verage of 19.187 s of computational time, which correspond to
pproximately 19.187/30 ≈ 0.639 seconds of thinking (i.e., infer-
nce, planning and action selection) per action-perception cycle.

.2. POMCP on the frozen lake environment

In this section, we compare BTAI to the partially observable
onte Carlo planning (POMCP) algorithm introduced by Silver
nd Veness (2010). The code implementing the POMCP algorithm
s available at the following URL: https://github.com/ChampiB/
OMCP. Briefly, the POMCP agent performs MCTS (Browne, et al.,
012; Schrittwieser, et al., 2019; Silver, et al., 2016) to select an
ction at each time step, and carries out inference using a particle
ilter (Doucet, Johansen, et al., 2009). Table 11 shows the results
btained by the POMCP agent on the lake of Fig. 8(a). In short,
he POMCP agent was able to reach the frisbee 97% of the time

https://github.com/ChampiB/POMCP
https://github.com/ChampiB/POMCP
https://github.com/ChampiB/POMCP

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

g
(
o
c
p
h
i
t

Table 7
This table presents the probability that the agent solves maze (A) from Fig. 5, and the probability
of the agent falling into the local minimum. Both cost functions gclassic

I and gpcost
I lead to the above

results in maze (A). The last two columns report the (average) execution time and the associated
standard deviation of running one simulation with gclassic

I and gpcost
I , respectively.

Planning iterations P(global) P(local) Time (s) for gclassic
I Time (s) for gpcost

I

10 1 0 0.310 ± 0.032 0.287 ± 0.022
15 1 0 0.423 ± 0.008 0.432 ± 0.011
20 1 0 0.567 ± 0.026 0.579 ± 0.023
Table 8
This table presents the probability that the agent solves maze (C), and the probability of the agent
falling into the local minimum. Both cost functions gclassic

I and gpcost
I lead to the above results in

maze (C). The last two columns report the (average) execution time and the associated standard
deviation of running one simulation with gclassic

I and gpcost
I , respectively.

Planning iterations P(global) P(local) Time (s) for gclassic
I Time (s) for gpcost

I

10 1 0 0.498 ± 0.053 0.460 ± 0.019
15 1 0 0.696 ± 0.063 0,664 ± 0.075
20 1 0 0.920 ± 0.091 0.833 ± 0.038
Fig. 8. (a) and (b) illustrate the lakes used to perform the experiments of the present section. The black squares correspond to the external boundary of the lake, the
reen square corresponds to the frisbee location, the red squares correspond to the agent starting position, the orange squares correspond to local minima of the lake
not all local minima are represented), and the dark blue squares correspond to the holes in which the agent can fall if not careful. Note, these environments contain
ver 100 states, i.e., one for each cell within the external boundary. Finally, in (b) the green path corresponds to the path taken by the BTAI agent, the red path
orresponds to the path selected by the POMCP agent (see the results in the main text), and the blue path corresponds to the shortest path connecting the starting
osition to the frisbee location. By the ‘‘shortest path’’, we mean the path that is passing through the smallest number of frozen surfaces without passing through a
ole. (c) shows the cumulative reward (CR) received by the agent when following the green, red or blue path. The x-axis corresponds to the number of time steps,
.e., number of action-perception cycles, for which the agent follows the green, red or blue path. We see that all three paths have almost identical values. (d) shows
he CR obtained along the green, red and blue paths minus the minimum cumulative reward (MCR) at each time step, where: MCR = min(CRgreen, CRred, CRblue). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
when using one thousand planning iterations. At which point,
each simulation takes an average of 40.444 s of computational
time, which correspond to approximately 40.444/30 ≈ 1.348
seconds of thinking (i.e., inference, planning and action selection)
per action-perception cycle. This seems to indicate that BTAI is
able to solve this first lake four times faster than the POMCP
algorithm.

On the lake of Fig. 8(b), the POMCP agent picks the red
path, while the BTAI agent chooses the green path. As shown by
Fig. 8(c), even if BTAI reaches the goal state while POMCP does
458
not, the cumulative reward obtained by both agents is almost
identical. This means that both agents collect a similar amount
of reward.

Interestingly, the approach receiving the largest amount of
reward depends on the number of time steps in each simulation,
i.e., the length of each episode. Fig. 8(d) illustrates when BTAI is
receiving more rewards than the POMCP algorithm, and when
the opposite is true. To sum up, if a simulation is composed
of between one and fifteen time step(s), both approaches are

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466
Fig. 9. This figure illustrates the dSprites environment, in which the agent must move all squares towards the bottom-left corner of the image and all ellipses and
hearts towards the bottom-right corner of the image. The red arrows show the behaviour expected from the agent. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
t

Table 9
This table presents the probability that the BTAI agent solves the lake of Fig. 8(a),
and the probability of the agent falling into a local minimum of the EFE. Where
by ‘‘falling into a local minimum’’, we mean that the agent gets stuck into
cells of the lake (apart from the exit) for which no adjacent cell represents a
frozen surface that has a lower distance to the exit. The last column reports the
execution time required for running one simulation and the associated standard
deviation.
Planning iterations P(global) P(local) Time (s)

10 0 1 6.991 ± 0.459
15 0 1 7.820 ± 0.577
20 1 0 7.870 ± 0.707

Table 10
This table presents the probability that the BTAI agent solves the lake of Fig. 8(b),
and the probability of the agent falling into a local minimum of the EFE. Where
by ‘‘falling into a local minimum’’, we mean that the agent gets stuck into
cells of the lake (apart from the exit) for which no adjacent cell represents
a frozen surface that has a lower distance to the exit. The last column reports
the (average) execution time required for running one simulation, as well as the
associated standard deviation.
Planning iterations P(global) P(local) Time (s)

30 0 1 12.810 ± 1.071
40 0 1 15.589 ± 0.766
50 1 0 19.187 ± 1.317

Table 11
This table presents the probability that the POMCP agent solves the lake of
Fig. 8(a), and the probability of the agent falling into a local maximum of the
reward function. The last column of the above table reports the execution time
required for running one simulation and the associated standard deviation. Im-
portantly, this table can be compared with Table 9 that presents the performance
of the BTAI agent on the same lake.
Planning iterations P(global) P(local) Time (s)

100 0.52 0.48 3.852±0.227
500 0.89 0.11 20.550±3.054
1000 0.97 0.03 40.444±3.232
2000 0.93 0.07 83.156±8.844

equivalent. If a simulation contains between sixteen and twenty-
three action-perception cycles, BTAI will accumulate more re-
wards than the POMCP algorithm. If the simulation has between
twenty-four and thirty-two time steps, then the POMCP agent
will accumulate more rewards than BTAI. Lastly, if the simulation
contains more than twenty-three action-perception cycles, BTAI
will accumulate more rewards than the POMCP agent. Thus, in the
long run, the POMCP algorithm selects a reasonable but slightly
suboptimal path. This might be due to the small difference of
cumulated reward obtained along the optimal path and the path
taken by the POMCP algorithm. Also, this may be worsened both
by the large number of time steps required before to see any
difference in accumulated reward between those two paths, and
the variance of the MCTS algorithm (Veness, Lanctot, & Bowling,
2011).
459
Note, the blue path in Fig. 8(b) is the shortest path connecting
the starting position to the goal state, but is never optimal in
terms of cumulative reward. This is because the blue path makes
a detour through an area of the lake with low reward, while the
green path makes a longer detour but passes through an area with
higher rewards. Finally, if the reward received by the agent upon
reaching the frisbee (i.e., green square) is increased sufficiently,
then the POMCP agent gains incentive to cross the hole separating
it from the frisbee, i.e., POMCP will accept a large penalty for an
even greater reward.

6. The dSprites environment

The dSprites environment is based on the dSprites dataset
(Matthey, Higgins, Hassabis, & Lerchner, 2017) initially designed
for analysing the latent representation learned by variational
auto-encoders (Doersch, 2016). The dSprites dataset is composed
of images of squares, ellipses and hearts. Each image contains one
shape (square, ellipse or heart) with its own size, orientation, and
(X, Y) position. In the dSprites environment, the agent is able to
move those shapes around by performing four actions (i.e., UP,
DOWN, LEFT, RIGHT). To make planning tractable, the action
selected by the agent is executed eight times in the environment
before the beginning of the next action-perception cycle, i.e., the
X or Y position is increased or decreased by eight between time
step t and t + 1. The goal of the agent is to move all squares
towards the bottom-left corner of the image and all ellipses and
hearts towards the bottom-right corner of the image, cf. Fig. 9.

Since, BTAI is a tabular model whose likelihood P(Oτ |Sτ) and
ransition P(Sτ+1|Sτ ,Uτ) mappings are represented using matri-
ces, the agent does not directly take images as inputs. Instead, the
metadata of the dSprites dataset is used to specify the state space.
In particular, the agent observes the type of shape (i.e., square,
ellipse, or heart), as well as a coarse-grained version of the shape’s
true position. Importantly, the original images are composed of
32 possible values for both the X and Y positions of the shapes. A
coarse-grained representation with a granularity of two means
that the agent is only able to perceive 16 × 16 images, and
thus, the positions at coordinate (0, 0), (0, 1), (1, 0) and (1, 1)
are indistinguishable. Fig. 10 illustrates the coarse grained rep-
resentation with a granularity of eight and the corresponding
indices observed by the agent. Note that this modification of the
observation space can be seen as a form of state aggregation (Ren
& Krogh, 2002). Finally, as shown in Fig. 10, the prior preferences
of the agent are specified over an imaginary row below the
dSprites image. This imaginary row ensures that the agent selects
the action ‘‘down’’ when standing in the ‘‘appropriate corner’’,
i.e., bottom-left corner for squares and bottom-right corner for
ellipses and hearts.

The evaluation of the agent’s performance is based on the
reward obtained by the agent. Briefly, the agent receives a reward

of −1, if it never enters the imaginary row or if it does so at

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

f
g
s

t
i
r
o
f

P

I
b
i
o
t
c
e

6

T
p
u
w
t
o
c
i
t
t
X

Fig. 10. This figure illustrates the observations made by the agent when using a coarse-grained representation with a granularity of eight on the input image. On the
left, one can see an image from the dSprites dataset and a grid containing red squares of 8 × 8 pixels. Any positions in those 8 × 8 squares are indistinguishable
rom the perspective of the agent. Also, the bottom most row is an imaginary row used to specify the prior preferences of the agent, i.e. the green square is the
oal state and the orange squares correspond to undesirable states. Finally, the three tables on the right contain the indices observed by the agent for each type of
hape at each possible position. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
he antipode of the appropriate corner. As the agent enters the
maginary row closer and closer to the appropriate corner, its
eward increases until reaching a maximum of 1. The percentage
f the task solved (i.e., the evaluation metric) is calculated as
ollows:

(solved) =
total rewards + number of runs

2.0 × number of runs
.

ntuitively, the numerator shifts the rewards so that they are
ounded between zero and two, and the denominator renormal-
zes the reward to give a score between zero and one. A score
f zero therefore corresponds to an agent always failing to enter
he imaginary row or doing so at the antipode of the appropriate
orner. In contrast, a score of one corresponds to an agent always
ntering the imaginary row through the appropriate corner.

.1. BTAI on the dSprites environment

In this section, we evaluate BTAI on the dSprites environment.
he hyper-parameters used in this section are presented in Ap-
endix D. Briefly, the agent is able to solve 88.5% of the task when
sing a granularity of eight, cf. Table 12. To understand why BTAI
as not able to solve the task with 100% accuracy, let us consider
he example of an ellipse at position (24, 31). With a granularity
f eight, the agent perceives that the ellipse is in the bottom-right
orner of the image, i.e., in the red square just above the goal state
n Fig. 10. From the agent’s perspective, it is thus optimal to pick
he action ‘‘down’’ to reach the goal state. However, in reality,
he agent will not receive the maximum reward because its true
position is 24 instead of the optimal X position of 31.
As shown in Table 13, we can improve the agent’s perfor-

mance, by using a granularity of four. This allows the agent to
differentiate between a larger number of (X, Y) positions, i.e., it
reduces the size of the red square in Fig. 10. With this setting, the
agent is able to solve 96.9% of the task. However, when decreasing
the granularity, the number of states goes up, and so does the
width and height of the A and B matrices. As an effect, more
memory and computational time is required for the inference and
planning process. This highlights a trade-off between the agent’s
performance and the amount of memory and time required.
Indeed, a smaller granularity leads to better performance, but
requires more time and memory.

6.2. Fountas et al. approach on the dSprites environment

In this section, we experiment with the approach of Fountas
et al. (2020). The code used in this section is available on Github
at the following URL: https://github.com/ChampiB/deep-active-
inference-mc. First, we trained the agent for around two days
on a Nvidia Tesla P100 GPU. After the training process, we ran
100 simulations on the original dSprites environment with both
CPU and GPU. Table 14 reports the percentage of the task solved
460
Table 12
This table presents the percentage of the dSprites environment
solved by the BTAI agent when using a granularity of eight,
cf. Fig. 10. The last column reports the average execution time
required of one simulation and the associated standard deviation.
Planning iterations P(solved) Time (s)

10 0.813 0.859 ± 0.868
25 0.846 0.862 ± 0.958
50 0.885 1.286 ± 1.261

Table 13
This table presents the percentage of the dSprites environment
solved by the BTAI agent when using a granularity of four. In this
setting, there are 9 × 8 × 3 = 216 states. The last column reports
the average execution time required of one simulation and the
associated standard deviation.
Planning iterations P(solved) Time (s)

10 0.859 3.957 ± 4.027
25 0.933 3.711 ± 4.625
50 0.969 5.107 ± 5.337

Table 14
This table presents the percentage of the original dSprites envi-
ronment solved by the approach of Fountas et al. (2020). The
last column reports the average execution time required of one
simulation and the associated standard deviation. Importantly,
this table can be compared with Table 13 that presents the
performance of the BTAI agent on a simplified version of the
dSprites environment.
Computation type P(solved) Time (s)

CPU 0.798 17.811±19.143
GPU 0.841 5.467±5.706

and the average time required for running a trial. Running the
CPU simulations took on average 17.811 s per simulation. This
is around three times longer than the GPU counterpart, which
required an average of 5.467 s per simulation. Fountas’ agent was
able to solve up to 84.1% of the task, which is less than the 96.9%
achieved by the BTAI agent in the previous section.

However, it is important to acknowledge the differences be-
tween the present paper and Fountas et al. (2020), as well as the
differences between the two environments on which those ap-
proaches have been evaluated. First, our approach is not equipped
with deep neural networks, and is therefore unable to deal with
images as input. Additionally, our agent was not asked to learn
the environment’s dynamics, instead, our agent was provided
with a model of the environment since we are focusing on plan-
ning. In contrast, the agent of Fountas et al. (2020) was able
to successfully learn the environment’s dynamics directly from
images and then do the planning.

To conclude, our approach was able to solve 96.9% of a simpli-
fied version of the dSprites environment, and the agent of Fountas

https://github.com/ChampiB/deep-active-inference-mc
https://github.com/ChampiB/deep-active-inference-mc
https://github.com/ChampiB/deep-active-inference-mc

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

e
r
r
t
G
s
a
a
i
b
b
a

7

t
f
t
G
l
p
p
f
e
b
(
p
v
a
d
p
m
b
t
p
s

b
l
m
e
t
i
s
a
t
e
p
a
a
a
a
t
p
a
w
t
w
c
e
a
r

m
t

a
m
a
a
e
m
i
w
A
&
c
t

t
p
b
o
c

i
i
o
2
h
i
t
t

e
b
r
b

t al. (2020) was able to solve 84.1 % of the original dSprites envi-
onment. Additionally, our approach was provided with the envi-
onment’s dynamics, while the agent of Fountas et al. (2020) had
o learn it, which took around two days on a Nvidia Tesla P100
PU. Another, important trade-off is between interpretability and
calability. Indeed, the tabular representation of the likelihood
nd transition mappings makes the BTAI agent very intuitive
nd easy to understand. However, this tabular representation
s also the main bottleneck blocking BTAI from solving image
ased environments. Similarly, the deep neural networks used
y Fountas et al. (2020) make their approach highly scalable, but
lso reduce the interpretability of the approach.

. Conclusion and future works

In this paper, we provided an empirical study of branching
ime active inference (BTAI), where the name takes inspiration
rom branching-time theories of concurrent and distributed sys-
ems in computer science (Bowman, 2005; Glabbeek, 1990; van
labbeek, 1993), and planning was cast as (temporal) structure
earning. Simply put, the generative model is dynamically ex-
anded and each expansion leads to the exploration of new
olicy fragments. The expansions are guided by the expected
ree energy, which provides a trade off between exploration and
xploitation. Importantly, this approach is composed of not two,
ut three major distributions. The first is the prior distribution
or generative model) that encodes the agent’s beliefs before
erforming any observations. The second is the posterior (or
ariational) distribution encoding the updated beliefs of the agent
fter performing some observations. And the third is a target
istribution over future states and observations that encodes the
rior preferences of the agent, i.e., a generalization of the C
atrix in the standard formulation of active inference proposed
y Friston, FitzGerald, et al. (2016). An important advantage of
his generalization is that it allows the specification of prior
references over both future observations and future states at the
ame time.
We compared BTAI and standard active inference theoretically

y studying its space and time complexity class. This study high-
ights that our method should perform better than the standard
odel used in active inference when the task can be solved by
xpanding the tree only a small number of times with respect
o an exhaustive search. Second, we compared BTAI to active
nference empirically within the deep reward environment. Those
imulations suggest that BTAI is able to solve problems for which
standard active inference agent would run out of memory. In-

erestingly, active inference offers an Occam’s window (Da Costa,
t al., 2020) for policy pruning, i.e., a policy is pruned if its
osterior probability is very low w.r.t. the current best policy. This
pproach provides a way to reduce the amount of space used by
ctive inference, since the policies with low probability and their
ssociated beliefs over states can be discarded. However, a direct
pplication of Occam’s window will not solve the exponential
ime complexity class because the posterior probability of all
olicies still needs to be evaluated. It seems that a new AcI-based
lgorithm would be required to use the potential of Occam’s
indow. As elaborated upon in Section 3.1, one might argue
hat there is a trade-off between branching-time active inference,
hich provides considerably more efficient planning to attain
urrent goals, and classic active inference which provides a more
xhaustive assessment of paths not taken. This might enable
ctive inference to more exhaustively reflect counter-factuals and
easoning based upon them.

Also, BTAI was studied (experimentally) in the context of a
aze solving task and we showed that when the heuristic used

o create the prior preferences is not perfect, the agent becomes
461
vulnerable to local minima. In other words, the agent might be
attracted by a part of the maze that has low cost but does not
allow it to solve the task. Then, we demonstrated empirically that
improving the prior preferences of the agent by specifying a good
prior over future hidden states and deepening the tree search,
helped to mitigate this issue.

Moreover, BTAI was compared to the POMCP algorithm (Silver
& Veness, 2010) on the frozen lake environment. This comparison
was based upon two lakes each having their own topology. In
terms of performance, both approaches successfully solved the
simplest lake. On the hardest lake, BTAI and the POMCP algorithm
received a similar amount of reward. Also, we described when
BTAI receives more rewards than the POMCP agent, and when the
opposite is true.

Additionally, BTAI was compared to the approach of Fountas
et al. (2020) on the dSprites dataset. The experiments show that
our approach was able to solve 96.9% of a simplified version of
the dSprites environment, and the agent of Fountas et al. (2020)
was able to solve 84.1% of the original dSprites environment.
However, our approach was provided with the environment’s
dynamics, while the agent of Fountas et al. (2020) had to learn
it, which took around two days on a Nvidia Tesla P100 GPU.
Another, important trade-off is between interpretability and scal-
ability. Indeed, the tabular representation of the likelihood and
transition mappings makes the BTAI agent very intuitive and
easy to understand. Unfortunately, this tabular representation
is also the main bottleneck blocking BTAI from solving image
based environments. Similarly, the deep neural networks used
by Fountas et al. (2020) make their approach highly scalable, but
reduce the interpretability of this approach.

The present paper could lead to a large number of future
research directions. One could for example add the ability of the
agent to learn the transition matrices B as well as the likelihood
matrix A and the vector of initial states D. This can be done in
t least two ways. The first is to add Dirichlet priors over those
atrices/vectors and the second would be to use neural networks
s function approximators. The second option will lead to a deep
ctive inference agent (Millidge, 2020; Sancaktar & Lanillos, 2020)
quipped with tree search that could be directly compared to the
ethod of Fountas et al. (2020). Including deep neural networks

n the framework will also open the door to direct comparison
ith the deep reinforcement learning literature (Haarnoja, Zhou,
bbeel, & Levine, 2018; van Hasselt, Guez, & Silver, 2015; Lample
Chaplot, 2017; Mnih, et al., 2013; Silver, et al., 2016). Those

omparisons will enable the study of the impact of the epistemic
erms when the agent is composed of deep neural networks.

Another, important direction of research would be to learn
he prior preferences of the agent (Sajid et al., 2021). Those
references are encoded by the vector C , and could be learned
y incorporating a Dirichlet prior over C . Also, the incorporation
f this Dirichlet prior leads to an augmented EFE that could be
ompared with the standard formulation of the EFE.
Moreover, while the present paper is based on standard active

nference that advocates that actions maximize both reward and
nformation gain, it would be interesting to design a version
f BTAI based on meta-control (Marković, Goschke, & Kiebel,
021). Meta-control is a hierarchical model where higher-level
idden states constrain decision making at lower levels. Interest-
ngly, Marković et al. (2021) argue that it may be beneficial for
he agent to switch on and off its exploration tendency based on
he current context.

Another direction of research will be to set up behavioural
xperiments to try to determine which kind of planning is used
y the brain. This could simply be done by looking at the time
equired by a human to solve various mazes and compare it with
oth the classic model and the tree search alternative. Finally,

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

o
i
e
r

i
p
f
r
t
r
t
w
T
a
K

D

c
t

A

b

A

d
p
r

e
t
h
s
3

p

m
n

D
k
t
t
t
b
f
p

P

P
P

Q

L
a
t
f
b

V

w

V

I
i
w
t
d
p
t
d
f

ne could also set up a hierarchical model of action and compare
t to the tree search algorithm presented here. One could also
valuate the plausibility of a hierarchical model of action by
unning behavioural experiments on humans.

Finally, a completely different direction will be to focus on the
ntegration of memory. At the moment, when a new action is
erformed in the environment and a new observation is received
rom it, all the branches in the tree are pruned and a new tempo-
al slice (i.e. a new state, action and observation triple) is added
o the POMDP. In other words, the integration function simply
ecords the past. This exact recording of the past is very unlikely
o really happen in the brain. Therefore, one might simply ask
hat to do with this currently ever growing record of the past.
his would certainly lead to the notion of an active inference
gent equipped with episodic memory (Botvinick, Ritter, Wang,
urth-Nelson, Blundell, & Hassabis, 2019).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

We would like to thank the reviewers for their valuable feed-
ack, which greatly improved the quality of the present paper.

ppendix A. The theoretical approach of this paper

This appendix describes the generative model, the variational
istribution and the update equations used throughout this pa-
er. For full details of vocabulary and notation the reader is
eferred to Champion, Bowman, and Grześ (2021).

The generative model can be understood as a fixed part mod-
lling the past and present, and an expandable part modelling
he future. The past and present is represented as a sequence of
idden states, where the transition between any two consecutive
tates depends on the action performed and is modelled using the
-tensor B. The generation of an observation is modelled by the

matrix A, and the prior over the initial hidden state as well as the
rior over the various actions are modelled using vectors, i.e., D

and Θτ , respectively.
Concerning the second part of the model (i.e., the one mod-

elling the future), the transition between consecutive states in the
future is defined using the 2-sub-tensor B(•, •, Ilast), which is the
atrix corresponding to the last action performed to reach the
ode SI . The generation of future observations from future hidden

states is identical to the one used for the past and present.
For the sake of simplicity, we assume that the tensors A, B,
and Θτ are given to the agent, which means that the agent

nows the dynamics of the environment (cf., Table 15 for addi-
ional information about those tensors). Practically, this means
hat the generative model does not have Dirichlet priors over
hose tensors. Furthermore, we follow Parr and Friston (2018),
y viewing future observations as latent random variables. The
ormal definition of the generative model, which encodes our
rior knowledge of the task, is given by:

(O0:t , S0:t ,U0:t−1,OI, SI) =

∏
I∈I

P(OI |SI)P(SI |SI\last)

P(S0)
t−1∏
τ=0

P(Uτ)
t∏

τ=0

P(Oτ |Sτ)
t∏

τ=1

P(Sτ |Sτ−1,Uτ−1)

a

462
Table 15
Branching time active inference notation.
Notation Meaning

T , t The time horizon and the current time step
Oi:j , Si:j , Ui:j The set of observations, states and actions between time

step i and j (inclusive)
A The matrix defining the mapping from states to

observations

B/D̂τ

The 3-tensor defining the mappings (a priori) between
any two
consecutive hidden states and the parameters of the
posterior over Sτ

D/D̂0 The parameters of the prior/posterior over the initial
hidden states

D̂I /Ê I The parameters of the posterior over future
states/observations

C S /CO The parameters of the prior preferences over future
states/observations

Θτ /Θ̂τ The parameters of the prior/posterior over actions at
time step τ

σ (·) The softmax function
Cat(·) and Dir(·) Categorical and Dirichlet distributions

where I is the set of all non-empty multi-indexes already ex-
panded, and SI\last is the parent of SI . Additionally, we need to
define the individual factors:

P(S0) = Cat(D) P(Uτ) = Cat(Θτ)
(Oτ |Sτ) = Cat(A) P(OI |SI) = Cat(A)
(Sτ |Sτ−1,Uτ−1) = Cat(B) P(SI |SI\last) = Cat(B[Ilast]).

where Ilast is the last index of the multi-index I , i.e., the last action
that led to SI , and B[Ilast] = B(•, •, Ilast) is the matrix corresponding
to Ilast . We now turn to the definition of the variational posterior.
Under the mean-field approximation:

Q (S0:t ,U0:t−1,OI, SI) =

t−1∏
τ=0

Q (Uτ)
t∏

τ=0

Q (Sτ)
∏
I∈I

Q (OI)Q (SI)

where the individual factors are defined as:

Q (Sτ) = Cat(D̂τ) Q (Uτ) = Cat(Θ̂τ)

(OI) = Cat(Ê I) Q (SI) = Cat(D̂I)

astly, we follow Millidge et al. (2021) in assuming that the
gent aims to minimize the KL divergence between the varia-
ional posterior and a desired (target) distribution. Therefore, our
ramework allows for the specification of prior preferences over
oth future hidden states and future observations:

(OI, SI) =

∏
I∈I

V (OI)V (SI)

here the individual factors are defined as:

(OI) = Cat(CO), V (SI) = Cat(C S).

mportantly, CO and C S play the role of the vector C in the active
nference model (Friston, FitzGerald, et al., 2016), i.e., they specify
hich observations and hidden states are rewarding. To sum up,
his framework is defined using three distributions: the prior
efines the agent’s beliefs before performing any observation, the
osterior is an updated version of the prior that takes into account
he observation made by the agent, and the target (desired)
istribution encodes the agent’s prior preferences in terms of
uture observations and hidden states.

Finally, the update equations used in this paper rely on vari-
tional message passing as presented in Champion, Grześ, and

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

l
c

i

A

Fig. 11. This figure illustrates the generalized inner product Z = W ⊙
[
V 2, V 3

]
, where W is a cube of values illustrated in red with typical element W (i, j, k). Also,

the vectors Z and V i
∀i ∈ {2, 3} are drawn in blue along the dimension of the cube they correspond to. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
Bowman (2021) and Winn and Bishop (2005) and are given by:

Q ∗(Sτ) = σ

(
[τ = 0] lnD + [τ ̸= 0] lnB ⊙ [D̂τ−1, Θ̂τ−1] + lnA ⊙ oτ

+ [τ = t]
∑
J∈cht

lnB[Jlast] ⊙ D̂J + [τ ̸= t] lnB ⊙ [D̂τ+1, Θ̂τ])
Q ∗(Uτ) = σ

(
lnΘτ + lnB ⊙ [D̂τ , D̂τ+1]

)
Q ∗(OI) = σ

(
lnA ⊙ D̂I

)
Q ∗(SI) =

σ
(
lnA ⊙ Ê I + lnB[Ilast] ⊙ D̂I\last +

∑
SK∈chI

lnB[Klast] ⊙ D̂K
)

where oτ is the observation made at time step τ , Ilast is the
ast action of the sequence I , cht is the set of multi-indices
orresponding to the children of the root node, and chI is the set
of multi-indices corresponding to the children of SI . For additional
nformation about ⊙, the reader is referred to Appendix C.

ppendix B. Derivation of gpcost
J

In this appendix, we provide a derivation of gpcost
J from the

Free Energy of the Expected Future (FEEF) introduced by Millidge
et al. (2021):

g feef
I = DKL [Q (OI , SI)|| V (OI , SI)] ,

by assuming the following factorizations for the variational pos-
terior:

Q (OI , SI) = Q (OI)Q (SI),

and target distribution:

V (OI , SI) = V (OI)V (SI).

Starting from g feef
I , we use the definition of the KL divergence, the

linearity of the expectation, the log property ln(ab) = ln(a)+ln(b),
and the two assumptions described above to get:

g feef
I = DKL [Q (OI , SI)|| V (OI , SI)]

= DKL [Q (OI)Q (SI)|| V (OI)V (SI)]

(factorization assumptions)

= EQ (OI)Q (SI)
[
lnQ (OI)Q (SI) − ln V (OI)V (SI)

]
(KL divergence definition)

= E
[
lnQ (O) − ln V (O) + lnQ (S) − ln V (S)

]

Q (OI)Q (SI) I I I I

463
(log property)

= EQ (OI)
[
lnQ (OI) − ln V (OI)

]
+ EQ (SI)

[
lnQ (SI) − ln V (SI)

]
(linearity of expectation)

= DKL [Q (OI)|| V (OI)] + DKL [Q (SI)|| V (SI)]

(KL divergence definition)

= gpcost
J .

Appendix C. Generalized inner product

Generalized inner products. Given an N dimensional tensorW and
M = N − 1 vectors V i, the generalized inner product returns
a vector Z obtained by performing a weighted average (with
weighting coming from the vectors) over all but one dimension.
In other words:

Z = W ⊙

[
V 1, . . . , VM

]
⇔ ∀xj ∈ {1, . . . , |Z |},

Z(xj) =

∑
x1∈{1,...,|V1 |}

xM∈{1,...,|VM |}

V 1
x1 × · · · × W (x1, . . . , xj, . . . , xM) × · · · × VM

xM ,

where |Z | denotes the number of elements in Z , and the large
summand is over all xr for r ∈ {1, . . . ,M} \ {j}, i.e., excluding
j. Also, note that if |W |V i ∀i ∈ {1, . . . ,M} is the number of
elements in the dimension corresponding to V i, then for W ⊙[
V 1, . . . , VM

]
to be properly defined, we must have |W |V i =

|V i
| ∀i ∈ {1, . . . ,M} where |V i

| is the number of elements in V i.
Fig. 11 illustrates the generalized inner product for N = 3.

Naming of the dimensions. Importantly, we should imagine that
each side of W has a name, e.g., if W is a 3 × 2 matrix, then the
ith dimension of W could be named: ‘‘the dimension of Vi’’. This
enables us to write: Z1

= W ⊙ V 1 and Z2
= W ⊙ V 2, where Z1 is

a 1 × 2 matrix (i.e., a vector with two elements) and Z2 is a 3 × 1
matrix (i.e., a vector with three elements). The operator ⊙ knows
(thanks to the dimension name) that W ⊙ V 1 takes the weighted
average w.r.t ‘‘the dimension of V1’’, while W ⊙V 2 must take the
weighted average over ‘‘the dimension of V2’’.

In the context of active inference, the matrix A has two dimen-
sions that we could call ‘‘the observation dimension’’ (i.e., row-
wise) and ‘‘the state dimension’’ (i.e., column-wise). Trivially, A⊙

oτ will then correspond to the average of A along the observation
dimension and A ⊙ D̂τ will correspond to the average of A along
the state dimension.

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

t
h
t
T
B
p
v
b
i
u
v
n
w

Table 16
This table describes the hyper-parameters of the BTAI simulation.
Name Description

NB_SIMULATIONS The number of simulations run during the experiment.

NB_ACTION_PERCEPTION_CYCLES The maximum number of actions in each simulation, after which the simulation is terminated.

NB_PLANNING_STEPS The number of planning iterations performed by the agent.

EXPLORATION_CONSTANT The exploration constant of the UCT criterion.

PRECISION_PRIOR_PREFERENCES The precision of the prior preferences, i.e., γ in CO = σ (γ v), where v is a vector quantifying the preferences of the agent.

PRECISION_ACTION_SELECTION The precision of the distribution used for action selection, i.e., ω in σ (−ω
g
N) where g is a vector whose elements correspond

to the cost of the root’s children (i.e. the children of St) and N is a vector whose elements correspond to the number of
visits of the root’s children.

EVALUATION_TYPE The type of cost used to evaluate the node during the tree search, i.e., Gclassic
I reported as EFE or Gpcost

I reported as
DOUBLE_KL.
Appendix D. Hyper-parameters used during the simulations

Table 16 describes the role of the hyper-parameters of
he BTAI simulation. Table 17 describes the role of the
yper-parameters of the POMCP simulation. Table 18 provides
he value of each hyper-parameter used by BTAI in Section 3.3.
able 19 provides the value of each hyper-parameter used by
TAI in Section 4.2.1. Table 20 provides the value of each hyper-
arameter used by BTAI in Section 4.2.2. Table 21 provides the
alue of each hyper-parameter used by BTAI in Section 4.3. Ta-
le 22 provides the value of each hyper-parameter used by BTAI
n Section 5. Table 23 provides the value of each hyper-parameter
sed by the POMCP algorithm in Section 5. Table 24 provides the
alue of each hyper-parameter used by BTAI in Section 6.1. Also,
ote that the granularity of the coarse-grained representation
as set to four or eight.

Table 17
This table describes the hyper-parameters of the POMCP simulation.
Name Description

NB_SIMULATIONS The number of simulations run
during the experiment.

NB_ACTION_PERCEPTION_CYCLES The maximum number of actions in
each simulation, after which the
simulation is terminated.

TIMEOUT The number of planning iterations
performed by the agent.

EXP_CONST The exploration constant of the UCT
criterion.

GAMMA The value of the discount factor.

NO_PARTICLES The number of particles in the filter.

Table 18
This table presents the value of each hyper-parameter used by BTAI in
Section 3.3.
Name Value

NB_SIMULATIONS 100
NB_ACTION_PERCEPTION_CYCLES 20
NB_PLANNING_STEPS 10 or 15 or 20
EXPLORATION_CONSTANT 2.4
PRECISION_PRIOR_PREFERENCES 3
PRECISION_ACTION_SELECTION 100
EVALUATION_TYPE EFE
464
Table 19
This table presents the value of each hyper-parameter used by BTAI in
Section 4.2.1.
Name Value

NB_SIMULATIONS 100
NB_ACTION_PERCEPTION_CYCLES 20
NB_PLANNING_STEPS 10 or 15 or 20
EXPLORATION_CONSTANT 2.4
PRECISION_PRIOR_PREFERENCES 2
PRECISION_ACTION_SELECTION 100
EVALUATION_TYPE EFE

Table 20
This table presents the value of each hyper-parameter used by BTAI in
Section 4.2.2.
Name Value

NB_SIMULATIONS 100
NB_ACTION_PERCEPTION_CYCLES 20
NB_PLANNING_STEPS 10 or 15 or 20
EXPLORATION_CONSTANT 2.4
PRECISION_PRIOR_PREFERENCES 2
PRECISION_ACTION_SELECTION 100
EVALUATION_TYPE DOUBLE_KL

Table 21
This table presents the value of each hyper-parameter used by BTAI in
Section 4.3.
Name Value

NB_SIMULATIONS 100
NB_ACTION_PERCEPTION_CYCLES 20
NB_PLANNING_STEPS 10 or 15 or 20
EXPLORATION_CONSTANT 2.4
PRECISION_PRIOR_PREFERENCES 2
PRECISION_ACTION_SELECTION 100
EVALUATION_TYPE EFE or DOUBLE_KL

Table 22
This table presents the value of each hyper-parameter used by BTAI in Section 5.
Note, the number of action-perception cycles has been increased from 20 to 30,
because the agent cannot possibly solve the task with 20 actions (the lake is
too large).
Name Value

NB_SIMULATIONS 100
NB_ACTION_PERCEPTION_CYCLES 30
NB_PLANNING_STEPS 10, 15, 20, 30, 40 or 50
EXPLORATION_CONSTANT 2.4
PRECISION_PRIOR_PREFERENCES 2
PRECISION_ACTION_SELECTION 100
EVALUATION_TYPE EFE

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

B

B

B

D

F

Table 23
This table presents the value of each hyper-parameter used by the POMCP
algorithm in Section 5.
Name Value

NB_SIMULATIONS 100
NB_ACTION_PERCEPTION_CYCLES 30
TIMEOUT 100, 500, 1000 or 2000
EXP_CONST 3
GAMMA 0.9
NO_PARTICLES 100

Table 24
This table presents the value of each hyper-parameter used by BTAI in
Section 6.1.
Name Value

NB_SIMULATIONS 100
NB_ACTION_PERCEPTION_CYCLES 30
NB_PLANNING_STEPS 10, 25 or 50
EXPLORATION_CONSTANT 2.4
PRECISION_PRIOR_PREFERENCES 2
PRECISION_ACTION_SELECTION 100
EVALUATION_TYPE EFE

References

Botvinick, M., Ritter, S., Wang, J. X., Kurth-Nelson, Z., Blundell, C., & Hassabis, D.
(2019). Reinforcement learning, fast and slow. Trends in Cognitive Sci-
ences, 23(5), 408–422. http://dx.doi.org/10.1016/j.tics.2019.02.006, URL http:
//www.sciencedirect.com/science/article/pii/S1364661319300610.

otvinick, M., & Toussaint, M. (2012). Planning as inference. Trends in Cognitive
Sciences, 16(10), 485–488. http://dx.doi.org/10.1016/j.tics.2012.08.006.

Bowman, H. (2005). Concurrency theory: calculi an automata for modelling untimed
and timed concurrent systems. Dordrecht: Springer, URL https://cds.cern.ch/
record/1250124.

rockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et
al. (2016). OpenAI gym. arXiv:arXiv:1606.01540.

rowne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfsha-
gen, P., et al. (2012). A survey of Monte Carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1), 1–43.

Butz, M. V., Bilkey, D., Humaidan, D., Knott, A., & Otte, S. (2019). Learning, plan-
ning, and control in a monolithic neural event inference architecture. Neural
Networks, 117, 135–144. http://dx.doi.org/10.1016/j.neunet.2019.05.001, URL
https://www.sciencedirect.com/science/article/pii/S0893608019301339.

Catal, O., Verbelen, T., Nauta, J., De Boom, C., & Dhoedt, B. (2020). Learning
perception and planning with deep active inference. In ICASSP 2020 - 2020
IEEE international conference on acoustics, speech and signal processing (pp.
3952–3956). IEEE, URL.

Champion, T., Bowman, H., & Grześ, M. (2021). Branching time active inference:
the theory and its generality.

Champion, T., Grześ, M., & Bowman, H. (2021). Realizing active inference in varia-
tional message passing: The outcome-blind certainty seeker. Neural Computa-
tion, 1–65. http://dx.doi.org/10.1162/neco_a_01422, arXiv:https://direct.mit.
edu/neco/article-pdf/doi/10.1162/neco_a_01422/1930278/neco_a_01422.pdf.

Cox, M., van de Laar, T., & de Vries, B. (2019). A factor graph approach to
automated design of Bayesian signal processing algorithms. International
Journal of Approximate Reasoning, 104, 185–204. http://dx.doi.org/10.1016/j.
ijar.2018.11.002.

Cullen, M., Davey, B., Friston, K. J., & Moran, R. J. (2018). Active inference in
openAI gym: A paradigm for computational investigations into psychiatric
illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(9),
809–818. http://dx.doi.org/10.1016/j.bpsc.2018.06.010, Computational Meth-
ods and Modeling in Psychiatry URL http://www.sciencedirect.com/science/
article/pii/S2451902218301617.

a Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., & Friston, K. (2020).
Active inference on discrete state-spaces: A synthesis. Journal of Mathematical
Psychology, 99, Article 102447. http://dx.doi.org/10.1016/j.jmp.2020.102447,
URL https://www.sciencedirect.com/science/article/pii/S0022249620300857.

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv:1606.05908.
Doucet, A., Johansen, A. M., et al. (2009). A tutorial on particle filtering and

smoothing: Fifteen years later. In Handbook of nonlinear filtering. Vol. 12
(656–704), (p. 3).
465
FitzGerald, T. H. B., Dolan, R. J., & Friston, K. (2015). Dopamine, re-
ward learning, and active inference. Frontiers in Computational Neuro-
science, 9, 136. http://dx.doi.org/10.3389/fncom.2015.00136, URL https://
www.frontiersin.org/article/10.3389/fncom.2015.00136.

orney, G. D. (2001). Codes on graphs: normal realizations. IEEE Transactions on
Information Theory, 47(2), 520–548.

Fountas, Z., Sajid, N., Mediano, P. A. M., & Friston, K. (2020). Deep active inference
agents using Monte-Carlo methods. arXiv e-prints arXiv:2006.04176.

Fox, C. W., & Roberts, S. J. (2012). A tutorial on variational Bayesian inference.
Artificial Intelligence Review, 38(2), 85–95. http://dx.doi.org/10.1007/s10462-
011-9236-8.

Friston, K. J. (2007). Statistical parametric mapping: the analysis of functional brain
images. Elsevier.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature
Reviews Neuroscience, 11(2), 127–138. http://dx.doi.org/10.1038/nrn2787.

Friston, K., Da Costa, L., Hafner, D., Hesp, C., & Parr, T. (2021). Sophisticated infer-
ence. Neural Computation, 33(3), 713–763. http://dx.doi.org/10.1162/neco_a_
01351, arXiv:https://direct.mit.edu/neco/article-pdf/33/3/713/1889421/neco_
a_01351.pdf.

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., Doherty, J. O., & Pezzulo, G.
(2016). Active inference and learning. Neuroscience & Biobehavioral Reviews,
68, 862–879. http://dx.doi.org/10.1016/j.neubiorev.2016.06.022.

Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., van Wijk, B.
C., et al. (2016). BayesIan model reduction and empirical Bayes for
group (DCM) studies. NeuroImage, 128, 413–431. http://dx.doi.org/10.1016/j.
neuroimage.2015.11.015, URL https://www.sciencedirect.com/science/article/
pii/S105381191501037X.

Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation
and active inference. Network Neuroscience, 1(4), 381–414. http://dx.doi.org/
10.1162/NETN_a_00018.

Friston, K., Parr, T., & Zeidman, P. (2018). BayesIan model reduction. arXiv
e-prints arXiv:1805.07092.

Glabbeek, R. J. v. (1990). The linear time-branching time spectrum (extended
abstract). In CONCUR ’90, Proceedings of the theories of concurrency: unification
and extension (pp. 278–297). Berlin, Heidelberg: Springer-Verlag.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. CoRR, arXiv:1801.01290.

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep reinforcement learning with
double Q-learning. CoRR, arXiv:1509.06461.

Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision
Research, 49(10), 1295–1306. http://dx.doi.org/10.1016/j.visres.2008.09.007,
Visual Attention: Psychophysics, electrophysiology and neuroimaging URL
http://www.sciencedirect.com/science/article/pii/S0042698908004380.

van de Laar, T., & de Vries, B. (2019). Simulating active inference processes by
message passing. Frontiers in Robotics and AI, 2019, http://dx.doi.org/10.3389/
frobt.2019.00020.

Lample, G., & Chaplot, D. S. (2017). Playing FPS games with deep reinforcement
learning. In S. P. Singh, & S. Markovitch (Eds.), Proceedings of the thirty-first
AAAI conference on artificial intelligence, February 4-9, 2017, San Francisco,
California, USA (pp. 2140–2146). AAAI Press, URL http://aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/14456.

Maisto, D., Gregoretti, F., Friston, K. J., & Pezzulo, G. (2021). Active tree search
in large POMDPs. CoRR, arXiv:2103.13860.

Marković, D., Goschke, T., & Kiebel, S. J. (2021). Meta-control of the exploration-
exploitation dilemma emerges from probabilistic inference over a hierarchy
of time scales. Cognitive, Affective, & Behavioral Neuroscience, 21(3), 509–533.
http://dx.doi.org/10.3758/s13415-020-00837-x.

Matthey, L., Higgins, I., Hassabis, D., & Lerchner, A. (2017). dsprites: Disen-
tanglement testing sprites dataset. https://github.com/deepmind/dsprites-
dataset/.

Millidge, B. (2019). Combining active inference and hierarchical predictive
coding: a tutorial introduction and case study. PsyArXiv. http://dx.doi.org/
10.31234/osf.io/kf6wc.

Millidge, B. (2020). Deep active inference as variational policy gradients.
Journal of Mathematical Psychology, 96, Article 102348. http://dx.doi.org/10.
1016/j.jmp.2020.102348, URL http://www.sciencedirect.com/science/article/
pii/S0022249620300298.

Millidge, B., Tschantz, A., & Buckley, C. L. (2021). Whence the expected free
energy? Neural Computation, 33(2), 447–482. http://dx.doi.org/10.1162/neco_
a_01354.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
et al. (2013). Playing atari with deep reinforcement learning. CoRR, arXiv:
1312.5602.

http://dx.doi.org/10.1016/j.tics.2019.02.006
http://www.sciencedirect.com/science/article/pii/S1364661319300610
http://www.sciencedirect.com/science/article/pii/S1364661319300610
http://www.sciencedirect.com/science/article/pii/S1364661319300610
http://dx.doi.org/10.1016/j.tics.2012.08.006
https://cds.cern.ch/record/1250124
https://cds.cern.ch/record/1250124
https://cds.cern.ch/record/1250124
http://arxiv.org/abs/arXiv:1606.01540
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb5
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb5
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb5
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb5
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb5
http://dx.doi.org/10.1016/j.neunet.2019.05.001
https://www.sciencedirect.com/science/article/pii/S0893608019301339
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb8
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb8
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb8
http://dx.doi.org/10.1162/neco_a_01422
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/doi/10.1162/neco_a_01422/1930278/neco_a_01422.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/doi/10.1162/neco_a_01422/1930278/neco_a_01422.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/doi/10.1162/neco_a_01422/1930278/neco_a_01422.pdf
http://dx.doi.org/10.1016/j.ijar.2018.11.002
http://dx.doi.org/10.1016/j.ijar.2018.11.002
http://dx.doi.org/10.1016/j.ijar.2018.11.002
http://dx.doi.org/10.1016/j.bpsc.2018.06.010
http://www.sciencedirect.com/science/article/pii/S2451902218301617
http://www.sciencedirect.com/science/article/pii/S2451902218301617
http://www.sciencedirect.com/science/article/pii/S2451902218301617
http://dx.doi.org/10.1016/j.jmp.2020.102447
https://www.sciencedirect.com/science/article/pii/S0022249620300857
http://arxiv.org/abs/1606.05908
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb14
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb14
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb14
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb14
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb14
http://dx.doi.org/10.3389/fncom.2015.00136
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb16
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb16
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb16
http://arxiv.org/abs/2006.04176
http://dx.doi.org/10.1007/s10462-011-9236-8
http://dx.doi.org/10.1007/s10462-011-9236-8
http://dx.doi.org/10.1007/s10462-011-9236-8
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb19
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb19
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb19
http://dx.doi.org/10.1038/nrn2787
http://dx.doi.org/10.1162/neco_a_01351
http://dx.doi.org/10.1162/neco_a_01351
http://dx.doi.org/10.1162/neco_a_01351
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf
http://dx.doi.org/10.1016/j.neubiorev.2016.06.022
http://dx.doi.org/10.1016/j.neuroimage.2015.11.015
http://dx.doi.org/10.1016/j.neuroimage.2015.11.015
http://dx.doi.org/10.1016/j.neuroimage.2015.11.015
https://www.sciencedirect.com/science/article/pii/S105381191501037X
https://www.sciencedirect.com/science/article/pii/S105381191501037X
https://www.sciencedirect.com/science/article/pii/S105381191501037X
http://dx.doi.org/10.1162/NETN_a_00018
http://dx.doi.org/10.1162/NETN_a_00018
http://dx.doi.org/10.1162/NETN_a_00018
http://arxiv.org/abs/1805.07092
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb26
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb26
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb26
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb26
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb26
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1509.06461
http://dx.doi.org/10.1016/j.visres.2008.09.007
http://www.sciencedirect.com/science/article/pii/S0042698908004380
http://dx.doi.org/10.3389/frobt.2019.00020
http://dx.doi.org/10.3389/frobt.2019.00020
http://dx.doi.org/10.3389/frobt.2019.00020
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
http://arxiv.org/abs/2103.13860
http://dx.doi.org/10.3758/s13415-020-00837-x
https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/
http://dx.doi.org/10.31234/osf.io/kf6wc
http://dx.doi.org/10.31234/osf.io/kf6wc
http://dx.doi.org/10.31234/osf.io/kf6wc
http://dx.doi.org/10.1016/j.jmp.2020.102348
http://dx.doi.org/10.1016/j.jmp.2020.102348
http://dx.doi.org/10.1016/j.jmp.2020.102348
http://www.sciencedirect.com/science/article/pii/S0022249620300298
http://www.sciencedirect.com/science/article/pii/S0022249620300298
http://www.sciencedirect.com/science/article/pii/S0022249620300298
http://dx.doi.org/10.1162/neco_a_01354
http://dx.doi.org/10.1162/neco_a_01354
http://dx.doi.org/10.1162/neco_a_01354
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

T. Champion, H. Bowman and M. Grześ Neural Networks 152 (2022) 450–466

P

P

P

R

R

S

S

S

S

S

W

arr, T., & Friston, K. J. (2018). Generalised free energy and active inference: can
the future cause the past? Cold Spring Harbor Laboratory, http://dx.doi.org/10.
1101/304782, BioRxiv arXiv:https://www.biorxiv.org/content/early/2018/04/
23/304782.full.pdf.

ezzato, C., Corbato, C. H., & Wisse, M. (2020). Active inference and behavior
trees for reactive action planning and execution in robotics. CoRR, arXiv:
2011.09756.

itti, A., Quoy, M., Lavandier, C., & Boucenna, S. (2020). Gated spiking neural
network using iterative free-energy optimization and rank-order coding for
structure learning in memory sequences (inferno GATE). Neural Networks,
121, 242–258. http://dx.doi.org/10.1016/j.neunet.2019.09.023, URL https://
www.sciencedirect.com/science/article/pii/S089360801930303X.

afetseder, E., Schwitalla, M., & Perner, J. (2013). Counterfactual reasoning: From
childhood to adulthood. Journal of Experimental Child Psychology, 114(3),
389–404.

en, Z., & Krogh, B. (2002). State aggregation in Markov decision processes. In
Proceedings of the 41st IEEE conference on decision and control, 2002. Vol. 4
(pp. 3819–3824). http://dx.doi.org/10.1109/CDC.2002.1184960.

ajid, N., Tigas, P., Zakharov, A., Fountas, Z., & Friston, K. (2021). Exploration
and preference satisfaction trade-off in reward-free learning. arXiv, arXiv:
2106.04316.

ancaktar, C., van Gerven, M. A. J., & Lanillos, P. (2020). End-to-end pixel-based
deep active inference for body perception and action. In Joint IEEE 10th
international conference on development and learning and epigenetic robotics,
ICDL-EpiRob 2020, Valparaiso, Chile, October 26-30, 2020 (pp. 1–8). IEEE,
http://dx.doi.org/10.1109/ICDL-EpiRob48136.2020.9278105.

ancaktar, C., & Lanillos, P. (2020). End-to-end pixel-based deep active inference
for body perception and action. arXiv, arXiv:2001.05847.
466
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et
al. (2019). Mastering atari, go, chess and shogi by planning with a learned
model. arXiv arXiv:1911.08265.

Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H. B., Kronbichler, M.,
& Friston, K. (2018). Computational mechanisms of curiosity and goal-directed
exploration. Cold Spring Harbor Laboratory, http://dx.doi.org/10.1101/411272,
BioRxiv arXiv:https://www.biorxiv.org/content/early/2018/09/07/411272.full.
pdf.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et
al. (2016). Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587), 484–489. http://dx.doi.org/10.1038/nature16961.

ilver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs. Advances
in Neural Information Processing Systems, 23.

mith, R., Schwartenbeck, P., Parr, T., & Friston, K. J. (2020). An active inference
approach to modeling structure learning: concept learning as an exam-
ple case. Frontiers in Computational Neuroscience, 14, 41. http://dx.doi.org/
10.3389/fncom.2020.00041, URL https://www.frontiersin.org/article/10.3389/
fncom.2020.00041.

van Glabbeek, R. J. (1993). The linear time — Branching time spectrum II. In
E. Best (Ed.), CONCUR’93 (pp. 66–81). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Veness, J., Lanctot, M., & Bowling, M. (2011). Variance reduction in monte-carlo
tree search. Advances in Neural Information Processing Systems, 24.

Winn, J., & Bishop, C. (2005). Variational message passing. Journal of Machine
Learning Research, 6, 661–694.

irkuttis, N., & Tani, J. (2021). Leading or following? dyadic robot imitative in-
teraction using the active inference framework. IEEE Robotics and Automation
Letters, 6(3), 6024–6031. http://dx.doi.org/10.1109/LRA.2021.3090015.

http://dx.doi.org/10.1101/304782
http://dx.doi.org/10.1101/304782
http://dx.doi.org/10.1101/304782
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/04/23/304782.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/04/23/304782.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/04/23/304782.full.pdf
http://arxiv.org/abs/2011.09756
http://arxiv.org/abs/2011.09756
http://arxiv.org/abs/2011.09756
http://dx.doi.org/10.1016/j.neunet.2019.09.023
https://www.sciencedirect.com/science/article/pii/S089360801930303X
https://www.sciencedirect.com/science/article/pii/S089360801930303X
https://www.sciencedirect.com/science/article/pii/S089360801930303X
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb42
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb42
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb42
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb42
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb42
http://dx.doi.org/10.1109/CDC.2002.1184960
http://arxiv.org/abs/2106.04316
http://arxiv.org/abs/2106.04316
http://arxiv.org/abs/2106.04316
http://dx.doi.org/10.1109/ICDL-EpiRob48136.2020.9278105
http://arxiv.org/abs/2001.05847
http://arxiv.org/abs/1911.08265
http://dx.doi.org/10.1101/411272
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/09/07/411272.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/09/07/411272.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/09/07/411272.full.pdf
http://dx.doi.org/10.1038/nature16961
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb50
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb50
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb50
http://dx.doi.org/10.3389/fncom.2020.00041
http://dx.doi.org/10.3389/fncom.2020.00041
http://dx.doi.org/10.3389/fncom.2020.00041
https://www.frontiersin.org/article/10.3389/fncom.2020.00041
https://www.frontiersin.org/article/10.3389/fncom.2020.00041
https://www.frontiersin.org/article/10.3389/fncom.2020.00041
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb53
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb53
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb53
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb54
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb54
http://refhub.elsevier.com/S0893-6080(22)00182-4/sb54
http://dx.doi.org/10.1109/LRA.2021.3090015

