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Abstract 
Progesterone (PRG) and testosterone (TST) were impregnated on mesoporous silica (ExP) particles via supercritical carbon 
dioxide (scCO2) processing at various pressures (10–18 MPa), temperatures (308.2–328.2 K), and time (30–360 min). The 
impact of a co-solvent on the impregnation was also studied at the best determined pressure and temperature. The properties 
of the drug embedded in silica particles were analysed via gas chromatography (GC), attenuated total reflectance-Fourier 
transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and nitrogen 
adsorption. An impregnation of 1 to 82 mg/g for PRG and 0.1 to 16 mg/g for TST was obtained depending on the process-
ing parameters. There was a significant effect of pressure, time, and co-solvent on the impregnation efficiency. Generally, 
an increase in time and pressure plus the use of co-solvent led to an improvement in drug adsorption. Conversely, a rise in 
temperature resulted in lower impregnation of both TST and PRG on ExP. There was a substantial increase in the dissolution 
rate (> 90% drug release within the first 2 min) of both TST and PRG impregnated in silica particles when compared to the 
unprocessed drugs. This dissolution enhancement was attributed to the amorphisation of both drugs due to their adsorption 
on mesoporous silica.

Keywords  dissolution improvement · drug impregnation · green processing · mesoporous silica · progesterone · 
supercritical carbon dioxide · supercritical fluid · testosterone

Introduction

The poor aqueous solubility and dissolution rate of certain 
active therapeutic ingredients are still part of the major chal-
lenges in pharmaceutical development [1]. When delivered 
orally, hydrophobic drugs tend to show a dissolution-limited 

absorption and low bioavailability [2]. Therefore, it is cru-
cial that strategies are designed and developed to help over-
come the solubility issues of these problematic molecules. 
Several preparation techniques for the improvement of drug 
solubility have been evaluated in research including micro-/
nano-emulsions [3, 4], micelles [5], complexation [6], parti-
cle size reduction [7], prodrug or salt formation [8, 9], solid 
lipid nanoparticles [10], and immobilisation onto porous 
carriers [11]. Generally, it has been recognised that increas-
ing the specific surface area of a poorly water-soluble drug 
in contact with the dissolution medium could result in a 
better drug solubility profile [12] [12]. The impregnation 
of a therapeutic molecule onto mesoporous particles can 
improve the dissolution rate by increasing the surface area 
as well as due to the stable (pore network restricts drug re-
crystallisation) drug amorphisation [13, 14].

The mesoporous silica particles for drug delivery are 
highly attractive due to their desirable features including 
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biocompatibility, non-toxicity, high surface area, tuneable 
pore sizes, and stable and uniform pore structures [15, 
16]. Also, the surface of the solid carrier comprises free 
hydroxyl groups which are easily accessible for specific 
interactions (e.g. hydrogen bonding) with adsorbing mol-
ecules [17]. Mesoporous silica nanoparticles have been 
greatly applied as drug delivery vehicles in developing the 
treatment of several clinical disorders including diabetes 
[18, 19], cancer [20–22], hypertension [23], depression 
[24], bacterial infections [25], and osteoporosis [26, 27]. 
The use of delivery systems based on mesoporous silica 
allows for modifications to enable a controlled release 
of payload in response to internal/external stimuli such 
as pH, light, temperature, and glucose. Several clinical 
studies in humans have shown evidence of the safety and 
efficacy of silica nanoparticles [28]. In one trial with 16 
healthy adult participants, the oral delivery of ibuprofen 
via silica-lipid hybrid systems led to a 1.95 times improve-
ment in bioavailability [29]. Another study by Bukara et 
al. indicated the potential of ordered mesoporous silica to 
enhance the oral bioavailability of poorly water-soluble 
fenofibrate in 12 healthy volunteers, compared to a com-
mercially marketed micronised fenofibrate formulation 
[30]. Similarly, the trials on the use of ultrafine silica par-
ticles (7 nm) such as Cornell-dots (C-dots) for potential 
cancer imaging in metastatic melanoma or malignant brain 
tumours are currently ongoing [31]. Although there are 
still obstacles to overcome concerning the clinical trans-
lation of silica nanoparticles (e.g. long-term toxicology 
profile), their aforementioned advantageous structural and 
physicochemical properties still make them suitable con-
tenders as delivery vehicles. Also, their relatively higher 
stability in harsh conditions including the acidic gastric 
environment compared to other conventional systems like 
liposomes makes them highly attractive for the oral deliv-
ery of sensitive biotherapeutics [28, 32, 33]. It has been 
shown that therapeutics of different sizes can be immobi-
lised within the mesopores using an appropriate impregna-
tion method and desorbed through a diffusion-controlled 
mechanism [34, 35]. Various impregnation techniques for 
hydrophobic drugs on silica have been explored in litera-
ture which typically involve physical mixing [36], and 
solvent-based methods where loading is done by either a 
dropwise addition of concentrated drug solution [37–39] 
or suspension of silica into the drug-solvent solution [40, 
41]. The drug loading procedures into the mesopores of 
silica have been recently reviewed by Trzeciak et al. and 
Seljak et al. [42, 43]. However, these established methods 
usually present challenges that could restrict their use. For 
example, chemical/thermal degradation or residual solvent 
toxicity remains a concern with the preparation of for-
mulations via solvent-based processes [44]. Therefore, it 
is important to explore alternative processing techniques, 

such as supercritical fluid (SCF) processing, which has the 
potential to avoid most of these drawbacks [45].

SCF can be described as a substance above its critical 
pressure and temperature, where it possesses density and 
diffusivity properties like liquid and gas, respectively [46]. 
Moreover, these physicochemical properties of SCF can be 
tuned by varying the operating pressure and temperature 
[46, 47]. Supercritical carbon dioxide (scCO2) is one of the 
most commonly used SCF because of its low critical tem-
perature (304.3 K) and pressure (7.38 MPa). CO2 is also 
inert, non-flammable, non-toxic, and readily available [47]. 
The tuneable properties of scCO2 make it very adaptable in 
pharmaceutical processing as it can be applied as an extrac-
tion agent, anti-solvent, solvent, and/or plasticiser for vari-
ous drugs and polymers [48–51]. The scCO2 has found its 
role as a substitute for organic solvents in the impregnation 
of drugs onto porous supports. Under scCO2 conditions, the 
adsorption process is typically a single-step method where 
the initial stage involves pressurisation of CO2 to allow for 
considerable drug solubilisation and easy dispersion of the 
solute throughout the adsorbing mesopore network. Follow-
ing depressurisation, the scCO2 is released, thus causing the 
solubilised drug to precipitate and remain within the porous 
matrix [52, 53]. A co-solvent is important with processing 
materials that are sparingly soluble in scCO2. For these 
instances, after the impregnation procedure, the scCO2 flow 
is sustained for an adequate time to allow for the complete 
removal of the solvent [54]. The impregnation of different 
drugs on porous silica via SCF processing has already been 
reported in the literature, and a few of those examples are 
listed in Table I.

In this work, scCO2 was employed for the impregna-
tion of progesterone (PRG) and testosterone (TST) onto 
mesoporous silica particles. TST (Fig. 1a) and PRG (Fig. 1b) 
are known as endogenous steroids, and they play a signifi-
cant role in sexuality and fertility.

The poor aqueous solubility of these sex hormones 
(approximately 10 mg/mL) limits their absorption and bio-
availability after oral intake [68, 69]. Both TST and PRG 
are classified as class II according to the Biopharmaceu-
tics Classification System (BCS) and class IIb as per the 
Developability Classification System (DCS) [70]. Until now, 
there have been several studies to improve the dissolution of 
PRG and TST, including the formation of cocrystals [71], 
cyclodextrin complexation [72–76], polymeric nanoparticles 
[77, 78], micro-/mesoporous materials [79–81], and micro-
nisation via rapid expansion of supercritical solution [82]. 
The supercritical impregnation process is a simple technique 
with several advantages over conventional methods, includ-
ing (i) homogenous distribution of active substance within 
the solid matrix, (ii) environmentally friendly technique for 
the reduction of waste and the use of toxic organic solvents, 
(iii) shorter processing times as there is no requirement for 
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an additional drying step, and (iv) any excess drug active 
can be recycled by avoiding cross-contamination [83]. The 
scCO2 processing parameters such as pressure, temperature, 
time, and the use of a co-solvent have a strong impact on the 
solubility and impregnation efficiency of hydrophobic drugs. 
The solubility behaviour of PRG and TST in scCO2 has 
already been detailed in the literature [82, 84, 85]. However, 
TST and PRG impregnation on mesoporous silica via scCO2 
processing has not been reported previously. Thus, the cur-
rent study aims to investigate the influence of processing 
parameters on the impregnation efficiency of both steroids 
onto silica with the view of exploring the scCO2 technique 
as a viable option in developing TST and PRG formulations 
with improved aqueous solubility. Thereafter, the physical 
properties of selected drug-loaded particles were charac-
terised using ATR-FTIR, XRD, SEM, DSC, and nitrogen 

adsorption. The dissolution rate of PRG and TST from the 
loaded silica particles was also investigated in this study.

Materials and Methods

Materials

Progesterone (> 99% pure; Pharmacia & Upjohn, USA), 
testosterone (> 99% pure; Pharmacia & Upjohn, USA), 
Mesoporous Exmere Plus silica (average particle size: 9 mm, 
specific surface area: 281 m2/g, pore diameter: 19.6 nm; 
Exmere Ltd., UK), Grace-9396 (9396) silica particles (aver-
age particle size: 200 mm, pore diameter: 450 nm; W.R. 
Grace & Co, USA), tetrahydrofuran (> 99.5% pure; ACS 
grade, Thermo Fisher, UK), and liquid CO2 (99.9% pure; 

Table I   The scCO2 Impregnation of Drugs Onto Silica-Based Carriers

Drug Silica Pressure (MPa) Temperature (°C) Drug loading (mg/g) Ref

Quercetin Silica microparticles 10 and 20 308.2 and 313.2 0.05–0.30 [54]
Ketoprofen
Miconazole
Terfenadine
Dithranol
Niclosamide
Griseofulvin

Silica aerogel 18 313.2 300
603
242
44
0.1
63

[55]

Ibuprofen MCM-41 type mesoporous silica 20–30 313.2 314–386 [56]
Mangiferin Mesoporous SB-300 silica beads 10–30 312.2–323.2 0.06–0.74 [57]
Benzoic acid
Fenofibrate

Silica aerogel 17 313.2 55–158
263–644

[58]

Palladium Mesoporous silica SBA-15 8.5 313.2 - [59]
Clotrimazole Ordered mesoporous silica MSU-H 25 and 50 373.2 120–340 [60]
Spironolactone Fumed silica 20 313.2 - [61]
Flurbiprofen Hydrophilic silica aerogel 18 313.2 180 [62]
Nisoldipine Fumed silica 15–25 309.2–318.2 - [63]
Breviscapine Mesoporous silica nanoparticles 13–19 308–338 - [64]
Meropenem MCM-48 silica nanoparticles

MCM-41 silica nanoparticles
6 279.2–281.2 350

250–310
[65, 66]

Piroxicam Mesoporous silica particles 30 393.2 150 [67]
Fenofibrate OMS-L7 ordered mesoporous silica 10–20 307.2 324–659 [35]

Fig. 1   Chemical structures of 
testosterone (a) and progester-
one (b)

a b
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BOC Ltd., UK). All other chemicals used in this work were 
of analytical grade and used without further purification.

Methods

scCO2 Impregnation of PRG and TST onto Silica

The scCO2 processing was carried out in the static mode to 
obtain PRG/TST-loaded silica using an apparatus supplied 
by Thar Process Inc., Pittsburgh, PA, USA, as described 
in detail elsewhere [86]. For drug loading experiments in 
scCO2, known quantities of the TST or PRG and a fixed 
amount of the mesoporous silica (700 mg) were sealed 
separately in a porous filter paper (85 mm pore size; Fisher 
Scientific, UK) to minimise the direct contact between both 
materials. Then, the bags were placed into a beaker and 
transferred inside the high-pressure vessel pre-heated to 
208.2 or 328.2 K (± 2 K). For experiments involving the use 
of co-solvent, 10 mL of tetrahydrofuran (THF) was intro-
duced into the bottom of the vessel before placing the beaker 
in the vessel. Liquid CO2 was pumped from a cylinder via 
a cooling unit into the vessel to the desired pressure (10 to 
18 MPa). The vessel content was then allowed to equilibrate 
for a specified time between 30 and 360 min at a constant 
pressure achieved via an automatic back-pressure regulator. 
Afterwards, the vessel was slowly depressurized at a rate of 
1.2 MPa/min and the drug-adsorbed particles were recov-
ered. The amount of PRG or TST loaded onto silica (mg/g) 
was measured by solubilising a known amount of the for-
mulation into methanol (MeOH), followed by concentration 
analysis using ultraviolet–visible (UV–Vis) spectroscopy 
(Cary 3500 UV–Vis spectrometer, Agilent Technologies, 
UK) at 240 nm.

Characterisation

The residual solvent in the samples prepared in the presence 
of THF was determined by gas chromatography (GC). An 
Agilent 6850 GC system (Agilent Technologies, Waldbronn, 
Germany) was used to perform the analysis with a liquid 
autosampler. Samples were introduced in a split/splitless 
injection port to a HP-1 (30 m length × 0.32 mm i.d., 0.25 μm 
film thickness) column and detection was performed using a 
flame ionisation detector (FID). The column oven was pro-
grammed with an initial column oven temperature of 303.2 
K and held at the same temperature for the total run time 
of 6 min. The injector and detector temperatures were kept 
at  473.2 K and 523.2 K, respectively. Helium was used as a 
carrier gas with a head pressure of 0.054 MPa resulting in an 
initial column flow of 3.2 mL/min and an average velocity of 
50 cm/s. Helium was also used as a makeup gas for the FID 
detector. The makeup gas flow rate was 5 mL/min, whilst for 
hydrogen and nitrogen the flow was 5 mL/min and 10 mL/

min, respectively. Samples were injected by the instrument’s 
autosampler with an injection volume of 1.0 μL, and deion-
ised water was used to rinse the syringe between injections. 
The residual solvent in the sample was determined with the 
help of a previously prepared calibration curve of THF in 
ethanol at 10, 20, 30, 40, and 50 mg/mL concentrations. For 
the residual solvent analysis, 100 mg of drug-loaded silica was 
dispersed in 10 mL of ethanol in a closed vial and sonicated 
for 30 min prior to the injection in GC.

DSC analysis of PRG, TST, and drug-loaded ExP parti-
cles was performed using a DSC823e calorimeter (Mettler 
Toledo, LLC, Leicester, UK). For each run, 3 to 4 mg of 
sample were weighed and hermetically sealed in the alu-
minium pan. The sealed pans were then heated at a rate of 
10 K/min after placing them in the DSC. The DSC data was 
collected under a constant flow of nitrogen (40 mL/min) over 
the temperature range of 295 to 475 K.

The attenuated total reflectance-Fourier transform infra-
red (ATR-FTIR) spectra of the drug and free/loaded silica 
were obtained using a Spectrum Two FTIR spectrophotom-
eter (Perkin Elmer, UK). Approximately 1 to 2 mg of the 
sample were uniformly spread on the surface of a single 
reflection horizontal ATR accessory with a zinc selenide 
(ZnSe) crystal. The spectra were collected in the transmis-
sion mode over the range of 4000–400 cm−1. Each spectrum 
was comprised of 16 scans with a resolution of 8 cm−1.

The X-ray diffraction (XRD) analysis on PRG, TST, and 
drug-adsorbed ExP particles was conducted using a Bruker 
D8 Advance diffractometer (Bruker GmbH, Karlsruhe, 
Germany) in a theta-theta reflection mode with copper K-α 
radiation. Each sample was scanned in the 2θ range from 2° 
to 55° with the step size of 0.02° of 2θ. The data collection 
and interpretations were performed using DiffracPlus and 
the EVA V.16 programme, respectively.

The nitrogen adsorption and desorption isotherms were 
obtained at a relative pressure (P/P0) range of 0.05 to 1 on 
a Gemini 2380 instrument (Micromeritics Instrument Cor-
poration, UK) for both free and drug-impregnated silica 
particles. The samples (100–150 mg) were degassed with 
nitrogen at 313.2 K for ~ 12 h prior to the measurements. The 
specific surface area (SSA) was calculated using the multi-
point Brunauer–Emmett–Teller (BET) model whilst the total 
pore volume and distribution were estimated by the Barrett, 
Joyner, and Helena (BJH) model [87, 88].

In vitro Dissolution Studies

The desorption rate of PRG and TST from drug-loaded silica 
was evaluated in pH 6.8 phosphate buffer solution (PBS) 
containing 1% sodium dodecyl sulphate (SDS) at 310.2 K. 
SDS is an anionic surfactant that is commonly added in 
the media at concentrations above its critical micellisa-
tion concentration (CMC) to overcome the sink limitations 
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when determining the dissolution of hydrophobic drugs or 
formulations containing such molecules [89]. The dissolu-
tion of unprocessed TST and PRG in the release media was 
also investigated to allow for comparative data. Accord-
ingly, 50 mg of drug-loaded ExP particles or the equivalent 
amount of pure PRG/TST was suspended in 15 mL of des-
orption media and stirred at 100 rpm. At regular time inter-
vals of 2, 5, 10, 15, 30, 45, 60, 90, 120, 180, and 240 min, 
3 mL of the release media was removed and replaced with 
the same volume of fresh PBS. Samples were then filtered 
and analysed by UV–Vis spectroscopy at 240 nm to quantify 
the drug release. The drug release experiments were carried 
out in triplicate and the percentage drug content in the media 
at each time point was calculated using Eq. (1):

where D%: drug release (%), Cn: corrected concentration 
(mg/mL), VPBS: volume of dissolution media (mL), and the 
“Impregnated mass of drug” relates to the total theoretical 
amount of drug in the sample.

Results and Discussion

scCO2 Impregnation of PRG and TST on Silica 
Particles

Both PRG and TST impregnation on silica were performed 
in scCO2 under various pressures and temperatures to deter-
mine the best parameters for drug loading.

(1)D% = 100 ×
C
n
× VPBS

Impregnated mass of drug

Effect of scCO2 Processing Parameters on Drug 
Loading

The use of porous silica as carriers for therapeutic mole-
cules is relatively common especially amorphous silica as 
used in this study because of its reduced toxicity in com-
parison to the crystalline form [42]. The effectiveness of 
the scCO2 technique for the impregnation of PRG and TST 
on mesoporous silica particles was investigated by varying 
the working pressure, temperature, and equilibration time. 
The data collected for PRG adsorption studies is presented 
in Table II and it indicates that there was mainly an effect of 
pressure and time on the amount of drug loaded onto silica.

At a constant time and temperature, an increase in pres-
sure from 10 to 16 MPa led to an increase in PRG loading. 
However, this enhancement was either limited or absent 
when the pressure was increased from 16 to 18 MPa (i.e. 
an increase in pressure from 16 to 18 MPa led to either 
no change or a reduction in the PRG adsorption at a fixed 
temperature and time). Generally, at a specific pressure and 
time, the increase in temperature from 308 to 328 K resulted 
in reduced drug adsorption. This reduction in PRG loading 
was greater at 10 MPa than for the experiments conducted at 
higher pressures (16 and 18 MPa). At isobaric and isother-
mal conditions, a longer equilibration time always resulted 
in a significantly higher PRG loading. Further experiments 
were conducted using high pore size silica to determine 
if that leads to an increase in PRG adsorption at 16 and 
18 MPa, and 308.2 and 328.2 K. The increase in pore size 
had an inverse effect on the drug loading as evident from 
Table II where PRG adsorption ranged from 6.4 to 9.2 mg/g. 
It is believed that there is a threshold value of pore size for 

Table II   scCO2 Impregnation of 
PRG on ExP Silica

* Adsorption on 9369 silica

Sample Pressure (MPa) Temperature (K) Time (minutes) PRG loading (mg/g)

P1 10 308.2 30 6.8 ± 0.4
P2 10 308.2 120 14.9 ± 1.4
P3 10 328.2 30 1.2 ± 0.01
P4 10 328.2 120 2.3 ± 0.2
P5 16 308.2 30 7.8 ± 0.3
P6 16 308.2 120 24.3 ± 1.3
P7 16 328.2 30 8.0 ± 0.2
P8 16 328.2 120 21.9 ± 0.04
P9 18 308.2 30 5.7 ± 0.2
P10 18 308.2 120 23.7 ± 1.4
P11 18 328.2 30 4.6 ± 0.2
P12 18 328.2 120 21.7 ± 0.6
P6* 16 308.2 120 9.2 ± 0.8
P8* 16 328.2 120 7.8 ± 0.6
P10* 18 308.2 120 7.1 ± 0.6
P12* 18 328.2 120 6.4 ± 0.7
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the complete filling of the channels [90]. Pore sizes lower 
or higher than the threshold either restrict the diffusion of 
drug molecules or result in an underutilization of the total 
pore volume [91]. 9396 silica particles contain larger pore 
sizes than ExP which may lead to incomplete packing inside 
the pores due to already-loaded PRG molecules and restrict 
further pore occupation. Hence, further experiments were 
performed using only ExP particles.

The effect of time on PRG loading was further studied 
with experiments at 18 MPa and 328 K (Table III). The 
drug loading on silica improved significantly (i.e. from 5 to 
82 mg/g) when the equilibration time was increased from 
30 to 360 min.

Similarly, the findings reported for TST adsorption in 
Table IV show a greater effect of pressure and time on 
drug loading.

There was a rise in the TST loading on silica with the 
increase in pressure and time, whilst the rise in temperature 
from 308 to 328 K led to lower TST adsorption. Overall, 
the PRG loading onto ExP was significantly higher than that 
for TST.

The differences observed in the TST and PRG loading on 
silica and the effect of the pressure and temperature can be 
linked to disparities in drug solubility at a given condition in 
the scCO2. Kosal et al. reported solubility of PRG and TST 
in scCO2 at pressures of 8.1 to 25.3 MPa and temperatures 
between 328 and 333 K [85]. Their findings showed that 
the solubility of PRG is higher in scCO2 than TST and the 
solubility of both improves as the pressure or the solvent 
density increases. On the other hand, raising the tempera-
ture leads to a decrease in PRG/TST solubility due to the 
reduction in the density and solvation power of CO2. Thus, 
it could be theorised that the adsorption of PRG/TST on 
silica observed in this study was solubility limited. In this 
work, the increase in pressure from 10 to 18 MPa at constant 
temperature favoured drug solubility, resulting in the sub-
sequently increased adsorption of both drugs on silica. The 
improvement in drug adsorption with increased equilibration 
time indicated that a minimum contact time is required for 
optimum loading efficiency. Further experiments for TST 
adsorption were not conducted as its adsorption was found 
to be extremely limited in comparison. Experiments with a 

co-solvent were assumed to be a better strategy to improve 
TST loading which is discussed in the following section.

Effect of Co‑solvent on Drug Loading

The influence of co-solvent on the scCO2 adsorption of PRG 
and TST onto silica was studied at pressures of 16 MPa 
and 18 MPa and at temperatures of 308 and 328 K in the 
presence of THF for a contact time of 120 min. These co-
solvent experiments were omitted at 100 bar due to the 
comparatively limited drug loading at this pressure. THF 
was selected as an appropriate co-solvent as it is an excel-
lent solvent for both TST and PRG when compared to other 
common organic solvents such as acetone and ethanol [92].

As noted in Table V, there was a general increase in PRG 
loading with the addition of co-solvent aside from the study 
conducted at 16 MPa and 328 K where there was no change 
to the drug impregnation. At the contact time of 120 min, 
the PRG adsorption increased from 24 mg/g (without co-
solvent) to 53 mg/g with the addition of THF. Similar to 

Table III   Effect of Processing Time on scCO2 Impregnation of PRG 
on ExP Silica

Sample ID Pressure 
(MPa)

Temperature 
(K)

Time (min) PRG loading 
(mg/g)

P13 18 328.2 30 4.6 ± 0.2
P14 18 328.2 120 21.7 ± 0.6
P15 18 328.2 240 43.9 ± 3.8
P16 18 328.2 360 82.0 ± 1.7

Table IV   scCO2 Impregnation of TST on ExP Silica

Sample Pressure 
(MPa)

Temperature 
(K)

Time (minutes) TST loading 
(mg/g)

T1 10 308.2 30 0.2 ± 0.02
T2 10 308.2 120 2.2 ± 0.1
T3 10 328.2 30 0.1 ± 0.02
T4 10 328.2 120 0.4 ± 0.03
T5 16 308.2 30 1.1 ± 0.03
T6 16 308.2 120 5.1 ± 0.1
T7 16 328.2 30 1.6 ± 0.2
T8 16 328.2 120 4.4 ± 0.2
T9 18 308.2 30 1.6 ± 0.1
T10 18 308.2 120 5.0 ± 0.3
T11 18 328.2 30 1.2 ± 0.1
T12 18 328.2 120 5.8 ± 0.3

Table V   Effect of Co-solvent on scCO2 Impregnation of PRG on ExP 
Silica

Sample ID Pressure 
(MPa)

Temperature (K) THF (mL) PRG loading 
(mg/g)

P17 16 308.2 - 24.3 ± 1.3
P18 16 328.2 - 21.9 ± 0.04
P19 18 308.2 - 23.7 ± 1.4
P20 18 328.2 - 21.7 ± 0.6
P21 16 308.2 10 52.7 ± 5.4
P22 16 328.2 10 20.6 ± 1.0
P23 18 308.2 10 35.1 ± 1.2
P24 18 328.2 10 27.7 ± 0.9
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previous findings, a temperature increase had a negative 
impact on PRG impregnation at a given pressure. Surpris-
ingly, the impact of pressure was not as apparent as the 
increase in pressure at 308 K resulted in the reduced drug 
loading, whereas there was only a slight increase in PRG 
impregnation at 328 K.

The impact of the addition of co-solvent on the TST 
impregnation on silica is presented in Table VI.

The increasing effect of co-solvent on drug loading 
was also observed for TST. As presented in Table VI, the 
absence of THF resulted in only 4 to 6 mg/g of TST impreg-
nation, whereas the introduction of co-solvent improved the 
adsorption significantly resulting in the TST loading of 7 to 
16 mg/g. Like the PRG adsorption studies, the TST impreg-
nation was higher at a lower temperature and there was a 
reduction in the amount of TST adsorbed with the change 
in pressure from 160 to 180 bar. In general, the rise in TST 
and PRG loading observed with the use of co-solvent can 
be linked to the increase in drug solubility in the binary 
solvent system. The application of scCO2/co-solvent mix-
tures is known to improve drug solubility by altering the 
solvent density and increasing the solute–solvent interac-
tions [93–95]. However, the increase in both the temperature 

and pressure can also result in diminishing the impact of 
co-solvent, possibly due to improved solvent–solvent inter-
action leading to the overall reduction in the solvent power 
of the binary mixture for a solute [96]. This may explain why 
an increase in pressure at both temperatures led to the low 
impregnation of both TST and PRG.

Characterisation

The presence of solvent residues in a pharmaceutical for-
mulation may result in product instability and an increased 
risk of toxicity. Hence, it is imperative to assess if there 
are any remnants of organic solvents in cases where they 
are needed for product preparation. The retention times for 
ethanol and THF in GC were found to be at 3.6 and 5.2 min 
respectively. The calibration curve of THF was plotted in 
ethanol as presented as an inset in Fig. 2 and it was used to 
determine the residual solvent in formulations after process-
ing. A representative GC chromatogram of PRG-adsorbed 
silica is presented in Fig. 2. The chromatograms collected 
for the formulations showed only the EtOH peak at 3.6 min, 
suggesting an absence of THF in the sample solution. THF 
is a class 2 solvent with a permitted daily allowance (PDE) 
of 7.2 mg/day [97]. The data obtained from GC suggests the 
absence of THF in the formulations or presence in extremely 
small quantities that is below the PDE limit.

Based on the adsorption data, the PRG- and TST-loaded 
ExP particles were prepared in the presence of the co-solvent 
at 16 MPa and 308.2 K for 360 min. The drug loading for 
TST and PRG on silica at these processing conditions was 
approximately 16 ± 1.3 mg/g and 64 ± 1 mg/g, respectively.

DSC was performed to investigate the physical state of 
PRG and TST impregnated on silica after scCO2 process-
ing. The thermograms for unprocessed and scCO2-processed 
drugs, and ExP, along with the drug-adsorbed formulations 
(PRG-ExP and TST-ExP), are presented in Fig. 3.

Table VI   Effect of Co-solvent on scCO2 Impregnation of TST on ExP 
Silica

Sample ID Pressure 
(MPa)

Temperature (K) THF (mL) TST loading 
(mg/g)

T13 16 308.2 - 5.1 ± 0.1
T14 16 328.2 - 4.4 ± 0.2
T15 18 308.2 - 5.0 ± 0.3
T16 18 328.2 - 5.8 ± 0.3
T17 16 308.2 10 15.8 ± 1.3
T18 16 328.2 10 11.3 ± 0.7
T19 18 308.2 10 10.4 ± 0.4
T20 18 328.2 10 7.3 ± 0.8

Fig. 2   Residual solvent determination (inset: THF calibration curve)
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The thermograms of unprocessed PRG and TST showed a 
sharp melting peak at approximately 406 and 424 K, respec-
tively, due to their characteristic crystalline nature [92]. DSC 
analysis was also performed on PRG and TST processed 
at 308.2 K and 16 MPa. The thermograms presented in 
Fig. 3 showed similar onset of melting/melting peaks for 
both drugs. This indicates that CO2 processing had no effect 
on the thermal properties of TST and PRG, and both drugs 
retained their crystalline nature. The DSC thermogram of 
ExP displayed no peaks, confirming its amorphous nature. 
The disappearance of PRG and TST melt peaks on the DSC 
of drug-loaded particles indicated the amorphisation of the 
impregnated drug.

The ATR-FTIR spectra of ExP, PRG, TST, 
scCO2-processed drugs, and drug-loaded particles are pre-
sented in Fig. 4. As a result of the similarity in their struc-
tural composition, both PRG and TST do not show many 
differences in their ATR-FTIR spectra. Similarly, there were 
no differences in the ATR-FTIR spectra of scCO2-processed 
drugs and unprocessed TST/PRG. As presented in Fig. 4, the 
characteristic peaks corresponding to the stretching vibra-
tion of carbonyl groups appear at 1699 and 1661 cm−1 for 
PRG, and at 1656 cm−1 for TST. Also, the peak attributed 
to conjugated C = C stretching is observed at 1615 cm−1 
(PRG) and 1612 cm−1 (TST) [98–100]. On the other hand, 
the ATR-FTIR spectra of PRG-ExP and TST-ExP overlap 
with that of unprocessed ExP particles, without displaying 
any significant peaks for the impregnated drugs probably due 

to proportionally higher silica content in the formulated sys-
tems. In general, the absorption bands near 1070 cm−1 relate 
to the stretching vibrations of Si–O bonds, whilst bands at 
800 cm−1 are related to the bending vibrations of Si–O bonds. 
The bands near 450 cm−1 are attributed to bending vibrations 
of O-Si–O bonds [101, 102]. In general, vibrational spectra 
of amorphous materials (e.g. ExP particles) show broader 
and merged bands compared to crystalline solids owing to 
the lack of long-range order and the presence of various 
molecular conformations/intermolecular arrangements [103]. 
Although no bands related to TST and PRG could be seen 
between 400 and 2000 cm−1, band merging is evident in the 
CH-stretching region (2800 to 3100 cm−1) on the spectra of 
drug-loaded particles. The FTIR spectra of TST/PRG-loaded 
particles also suggest a weak interaction between the drug and 
silica, possibly via van der Waals and hydrogen bonding forces.

The XRD analysis was performed to investigate possible 
changes in the crystalline structure of both scCO2-processed 
TST/PRG and the drug after loading on ExP particles. 
The diffractograms of PRG and TST (unprocessed and 
scCO2-processed), ExP, and drug-loaded particles are pre-
sented in Fig. 5. The major diffraction peaks of PRG and 
TST appeared in the 2θ range of 10.7 to 17°, therefore sig-
nifying the crystalline nature of both molecules [104, 105]. 
Moreover, diffractograms of processed and unprocessed 
drugs were identical confirming that the scCO2 process-
ing in the absence of mesoporous silica did not cause any 
changes to the crystal structure of both actives. The XRD 

Fig. 3   DSC thermograms for 
TST, PRG, ExP, TST-ExP, and 
PRG-ExP

340 350 360 370 380 390 400 410 420 430 440 450 460

-15

-10

-5

0

5

10

)
g/

W(
w

olf
tae

H

Temperature (K)

TST-ExP

PRG-ExP

ExP

PRG-SC

TST-SC

PRG

TST



AAPS PharmSciTech          (2022) 23:302 	

1 3

Page 9 of 15    302 

diffractograms obtained for free and drug-loaded silica 
showed no sharp peaks which is the characteristic of the 
amorphous form and confirm the absence of ordered crystal-
line structure [106].

The XRD data collected for PRG-ExP and TST-ExP par-
ticles confirm the findings observed with their DSC ther-
mograms and indicate that the impregnated drugs are in the 
amorphous form, whereas scCO2 processing of TST and 
PRG in the absence of mesoporous silica does not cause 
any changes to their crystalline nature.

Nitrogen Adsorption Experiments

Nitrogen adsorption analyses were performed to determine 
changes in the surface properties of particles after drug 
impregnation. The BET isotherms in Fig. 6 showed the 
porous nature of both loaded and drug-free particles [107, 
108].

The Type V isotherm for drug-free ExP remained 
unchanged after the impregnation of PRG and TST. The 
Type V isotherm is typically uncommon with the shape of 

Fig. 4   ATR-FTIR spectra for 
ExP, PRG, TST, and drug-
loaded silica
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Fig. 5   XRD diffractograms of 
ExP, PRG, TST, and drug-
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the curve signifying weak interactions between the adsor-
bent (silica) and adsorbate (nitrogen) [107]. The specific 
surface area (SSA) calculated by the BET model along with 
the pore volume and diameter deduced by the BJH model for 
these silica particles is summarised in Table VII.

There was a decrease in the adsorbed nitrogen, SSA, and 
pore volume for drug-impregnated silica particles, when 
compared to the BET of ExP alone. This could be attrib-
uted to the reduced accessibility of adsorbing nitrogen 
molecules resulting from the presence of the drug on the 
surface and in the pores of silica particles. The recorded 
decrease in values (surface area and pore volume) was 
larger for PRG-ExP than for TST-ExP confirming favoured 
PRG impregnation using this method. This concurs with 
the adsorption data presented earlier where PRG adsorp-
tion at studied conditions was higher on ExP particles than 
for TST. It is common to see changes to the BET pore size 
and surface area of porous particles after adsorption, as 
this is indicative of the presence of the drug molecules 
in the pores. However, the degree of change is depend-
ent on the quantity of drug adsorbed and the packing of 
pores by drug molecules (i.e. a higher adsorbed quantity 
may indicate high pore filling resulting in a greater dif-
ference and vice versa). The values reported in Table VII 
for TST-ExP were not significantly different to the silica 
particles itself which could once again be attributed to 
the low drug adsorption at the studied parameters. There 

was a slight increase in pore diameter for the drug-loaded 
particles when compared to the drug-free ExP. The BJH 
model is based on the cylindrical pore model and the pore 
diameter is calculated on the capillary condensation of 
the adsorbing nitrogen molecules in the pores. It does not 
consider any changes to the surface morphology which can 
be caused by the drug adsorption; hence, it can be unreli-
able in some cases; e.g. the BJH model can sometimes 
misinterpret adsorbate-associated surface imperfections as 
pores [109, 110]. Nevertheless, these results confirm the 
adsorption of PRG and TST on ExP as seen by the changes 
in SSA, pore volume, and nitrogen adsorption of particles 
after drug adsorption.

In vitro Dissolution Studies

The dissolution profiles of unprocessed and scCO2-processed 
PRG and TST, as well as for the drug-loaded particles (PRG-
ExP and TST-ExP), are presented in Fig. 7.

As shown in the kinetics data, the dissolution of 
impregnated PRG and TST was higher than that of the 
corresponding unprocessed and scCO2-processed drugs. 
The dissolution occurred rapidly within the first 15 min 
and then remained relatively constant for the rest of the 
study, alluding to the improved solubility of both TST 
and PRG due to the adsorption on mesoporous silica. The 
drug dissolution from ExP appears to follow a first-order 

Fig. 6   BET isotherms for ExP, 
PRG-ExP, and TST-ExP (inset: 
BET isotherm from P/P0 values 
between 0.8 and 1)

Table VII   Surface 
Characteristics for ExP, PRG-
ExP, and TST-ExP

ExP PRG-ExP TST-ExP

Quantity of adsorbed nitrogen (cm3/g STP) 848 ± 26 646 ± 18 833 ± 22
BET surface area (m2/g) 281 ± 7 193 ± 8 233 ± 10
BJH cumulative pore volume (mL/g) 1.30 ± 0.05 0.98 ± 0.03 1.27 ± 0.06
BJH pore diameter (nm) 19.6 ± 1.2 20.5 ± 0.06 22.1 ± 1.8



AAPS PharmSciTech          (2022) 23:302 	

1 3

Page 11 of 15    302 

(R2: 0.9665) kinetics suggesting a diffusion-controlled 
release of both drugs from silica particles [111]. The 
drugs on their own had an expected slower and lower 
dissolution over the same timeframe. The dissolution of 
both processed and scCO2-processed drugs followed a 
similar trend, where it gradually increased until a pla-
teau was achieved at 90 min with approximately 50–55% 
of the drug getting into the media. As mentioned earlier, 
the release of impregnated drugs was fast with ~ 80–90% 
obtained for both TST and PRG in the first 2 min in com-
parison to only 25% of unimpregnated actives. The high dis-
solution rate of drug–silica preparations can be attributed to 
the drug amorphisation along with the improved wettability 
[11, 112, 113]. An increase in the surface area due to the 
distribution of drugs in the micropores as well as favourable 
wettability permits accelerated penetration of the aqueous 
media into the capillaries on the porous particles resulting 
in the faster dissolution of both TST and PRG.

Conclusions

The impregnation of PRG and TST on silica particles was 
successfully achieved via a scCO2 process, where process-
ing temperature, pressure, time, and co-solvent and their 
impact on the efficiency of drug impregnation were studied. 
The processing parameters had a significant impact on drug 
adsorption that ranged from 1 to 82 mg/g for PRG and 0.1 
to 16 mg/g for TST. In general, changes in processing pres-
sure and time had a considerable impact on drug adsorption, 
and the incorporation of PRG and TST onto silica particles 
was greatly improved with a rise in time and pressure. Also, 
the use of THF as a co-solvent led to a further increase in 

drug impregnation. Whereas the impact of temperature was 
comparatively limited, an increase in temperature either led 
to no change or a decrease in drug adsorption. The drug 
loading on mesoporous silica for PRG was higher than for 
TST which can be attributed to the higher solubility of PRG 
in scCO2. The presence of TST and PRG at the silica surface 
was confirmed by nitrogen adsorption experiments and the 
amorphous nature of the drug was verified with DSC and 
XRD analysis. The adsorption of PRG and TST onto silica 
led to an improvement in their solubility in aqueous media 
with approximately 90% of the drug dissolving in the first 
2 min in comparison to only 25% of the free drug.
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