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ABSTRACT The rate of development of robotic technologies has been meteoric, as a result of compounded
advancements in hardware and software. Amongst these robotic technologies are active exoskeletons and
orthoses, used in the assistive and rehabilitative fields. Artificial intelligence techniques are increasingly
being utilised in gait analysis and prediction. This review paper systematically explores the current use
of intelligent algorithms in gait analysis for robotic control, specifically the control of active lower limb
exoskeletons and orthoses. Two databases, IEEE and Scopus, were screened for papers published between
1989 to May 2020. 41 papers met the eligibility criteria and were included in this review. 66.7% of the
identified studies used classification models for the classification of gait phases and locomotion modes.
Meanwhile, 33.3% implemented regression models for the estimation/prediction of kinematic parameters
such as joint angles and trajectories, and kinetic parameters such as moments and torques. Deep learning
algorithms have been deployed in ∼15% of the machine learning implementations. Other methodological
parameters were reviewed, such as the sensor selection and the sample sizes used for training the models.

INDEX TERMS Gait analysis, exoskeletons, orthoses, machine learning, deep learning, wearable robotics,
gait phases, locomotion, moments, joint angles.

I. INTRODUCTION
A plethora of wearable robotics devices that interface
with humans, for varying medical and functional purposes,
are being developed including exoskeletons and orthoses.
An exoskeleton is an electro-mechanical device comprised
of actuators, sensors, and controllers that provides torque to
joints [1]. The provision of the supportive torque allows for
physical actions to be performed with more ease and lower
strain. Dating back to the 1960s, exoskeletons have been
initially designed and developed for military use [1]. Gen-
eral Electric Company, developed Hardiman I exoskeleton,
to augment the endurance and strength of the soldiers, leading
to what was described as the ‘union of man and machine’ [2].
Half a century later, exoskeletons evolved to serve more pur-
poses including industrial applications [3], rehabilitation, and
restoration of gait for patients with Spinal Cord Injuries [4],
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Cerebral Palsy [5], and Multiple Sclerosis [6] to name a
few. These exoskeletons are designed to support the upper
limbs, lower limbs or the full-body and can be passive,
active or quasi-passive [7]. Amongst the existing state of
the art industrial exoskeletons is BLEEX, Berkeley Lower
Extremity Exoskeleton, which is a seven degree of freedom
exoskeleton. Actuatedwith linear hydraulics, it enables heavy
load lifting in industrial settings [8]. The MIT exoskeleton
is another quasi-passive exoskeleton for heavy load lifting,
comprised of springs and dampers instead of actuators. It acts
as an intermediator, transferring 80% of the load from the
person to the ground [9]. HAL-5, Hybrid Assistive Limb,
by the University of Tsukuba, is a full-body exoskeleton
targeted for healthy people as well as patients and can
enable paraplegics to walk by decoding their intentions [10].
MINDWALKER uses brain generated electroencephalogram
(EEG) and electromyogram (EMG) signals to control a
series of elastic actuated full-body exoskeleton targeted for
paraplegics [11].
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Orthoses are another category of assistive and correc-
tive technologies, sometimes used interchangeably with
exoskeletons. However, there is a difference between the two.
According to Herr, the purpose of orthosis is to assist those
with pre-existing pathologies, contrary to exoskeletons which
augment human capabilities, including healthy people [12].
Orthoses can also be passive [13] or active [14]. In the
MIT labs, an active ankle-foot orthosis for drop-foot gait
treatment has been developed [14].

Lower limb exoskeletons, when used as assistive devices,
have two primary applications: (i) rehabilitation and gait
training, or (ii) locomotion assistance to help perform daily
life activities [15]. The control strategy, which specifies
the way the exoskeleton moves and interacts with the user,
is therefore based on the exoskeleton’s application, as well
as the condition of the patient using the device. Trajectory
tracking is a type of control strategy, whereby an exoskeleton
allows the patient to walk following a pre-defined gait trajec-
tory pattern, often obtained from a healthy person. Assist as
needed, is another control strategy whereby the support given
by the exoskeleton is variable and dependent on the user’s
need. The level of assistance provided may be dependent on
phase of gait, the level of effort exerted by the patient, and the
stage a patient is in their recovery journey [15].

The control scheme is often a multi-level hierarchy, con-
sisting of low, mid and high levels of control. The high level
of control is responsible for user intention detection/event
estimation. The mid-level is responsible for exoskeleton state
transitions, based on the intention/event detected. An exam-
ple of a mid-level controller is a Finite State Machine (FSM).
The low-level is where user motion is tracked, and stability is
ensured. Force, position, or impedance control are common
low-level controllers [16]–[18]. Being at the top of the control
hierarchy, intention detection and gait event estimation have
a crucial contribution in the control and functionality of the
exoskeleton and there have been numerous techniques used
to analyse gait for their estimation.

Controlling exoskeletons is one for the most recent uses
of gait analysis, which has already been used in vari-
ous clinical and non-clinical applications for a long time.
In clinical applications, gait analysis is used for rehabil-
itation assessment [19], and diagnosis of pathology [20].
In non-clinical applications, gait analysis is used in sports,
for post-injury recovery monitoring [21] and performance
evaluation [22], in security, for biometric identification and
authentication [23]–[25], in safety, for elderly fall detec-
tion technologies [26], and in wellbeing, for emotional state
identification [27].

Gait analysis involves measuring or estimating a range
of parameters, including spatial-temporal parameters,
EMG activity, kinematic, and kinetic parameters duringwalk-
ing or performing other locomotion activities [28]. To per-
form this analysis a range of wearable and non-wearable
sensing modalities are used. Wearable sensors include
inertial measurement units (IMUs) with accelerometers
and gyroscopes, goniometers, electromyography (EMG),

electroencephalographs (EEG), and foot pressure sensors.
Non-wearable sensors include ground reaction force (GRF)
plates and motion capture systems [28], [29].

Measurements from the wearable sensors are then pro-
cessed to derive gait parameters. Researchers experimented
with numerous algorithms for processing the sensor data.
Examples include conventional thresholding algorithms to
detect gait phases using angular velocity [30], musculoskele-
tal models to estimate intention using EMG [31], and numer-
ous machine and deep learning techniques.

These gait analysis techniques have been reviewed, thor-
oughly compared and analysed in several published works
in literature over the past few years. The advantages and
disadvantages of multiple sensors used for gait phase detec-
tion have been reviewed, considering the number of phases
that need to be detected, the location the sensor is placed
and the computational algorithm used to process the sensor
readings [32]. Wearable sensors have also been compared to
conventional laboratory systems for analysing gait, as a pro-
tentional substitute to these systems [33]. Parameters of gait,
machine learning algorithms and challenges in gait analysis
for clinical and non-clinical applications were reviewed [28].
Some authors focused on reviewing a category of
computational algorithms for gait analysis, such as intelligent
predictive systems [34], or deep learning algorithms [29],
while others focused on a specific category of algorithms
and sensors, such as artificial intelligence using inertial
sensors [35].

Despite these papers being published quite recently,
between the years 2016 to 2020, none of them is solely
focused on gait analysis techniques for the high-level control
of the lower limb exoskeletons and orthoses. Before 2002,
the number of papers published on exoskeletons where fewer
than 30 per year and the cumulative number of papers pub-
lished was lower than 500. By mid-2019, the cumulative
number of papers was approaching 4000 [36].With this expo-
nential increase in research, it is desirable to have a systematic
review focused on gait analysis for controlling lower limb
robotics, deploying intelligent algorithms and techniques in
particular.

Machine learning (ML) algorithms have multiple advan-
tages that encourage their use over conventional gait analyses
methods. Gait is temporal and the relationship between its
parameters is non-linear. ML algorithms are capable of map-
ping relationships between inputs and outputs of non-linear
systems [37]. When compared to conventional methods and
heuristics used for analysing gait, ML algorithms are better
at handling data variability. This is particularly important
when analysing pathological gait which exhibits high levels
of inter and intrasubject variability [38] ML implementa-
tions resulted in predictions with higher accuracy [38]–[40],
as a consequence reducing torque prediction error [41].
They have had lower prediction time errors [38]. ML algo-
rithms have also demonstrated adaptability, as they were
able to form predictions under dynamic speeds [41] Further-
more, they shorten the time for tuning controller parameters
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compared to manual tunning. The tuning of the parameters of
the exoskeleton controller when used by different patients is
necessary to accommodate for variations in patients’ gait tra-
jectories and strength capabilities, leading to more effective
rehabilitation [42]. SomeML algorithms obviate the need for
hand-crafted, or expert-selected features [43].

The numerous advantages of ML algorithms and their
increased use were the impetus for this review paper, which
will focus on research that has used intelligent algorithms
(machine and deep learning), for the analysis of gait for
the control or the potential control of active lower limb
exoskeletons and orthoses. This paper will discuss the dif-
ferent gait parameters and features current researchers are
detecting to be used for those robotic devices as well as
the different sensors they have included in their designs.
The information is organised into five sections. Section II
of the paper will present background information on the
topics reviewed. Section III will elaborate on the research
methodology adopted rationalising the criteria by which the
papers have been included or excluded. Section IV will
include a review of the included papers. The papers are
organised into subsections based on the parameter they are
detecting/predicting. Within these subsections, the papers
would be further aggregated based on the type of intelligent
algorithm used. Finally, Section V will have a discussion and
conclusion.

II. BACKGROUND INFORMATION
A. GAIT FEATURES AND RELATED PARAMETERS
According to Whittle, gait is a technical terminology used
to describe ‘the manner or style’ we walk in [44]. Multiple
parameters are observed when studying or describing gait.
These parameters often have normal ranges for healthy gait
with variations due to several factors such as anthropometric
parameters (i.e. age, height and limb lengths) [45]. Param-
eters for pathological gait often deviate from these ranges.
Each of the parameters included in this section has been
detected, predicted and analysed for the control of lower limb
robotics by using different mechanisms and techniques.

1) GAIT PHASE
There are cycles of events that periodically repeat during gait.
Each cycle has a stance phase, where the lower limb is in
contact with the ground, and swing phase where there is no
contact. The stance phase can be divided into four periods:
(1) loading response: begins with heel strike, and is also
known as initial contact, (2) midstance: when the foot is
flat on the ground as a result of a dorsiflexion moment
(3) terminal stance: when the heel begins lifting from the
ground, and (4) pre-swing: marks the last period of con-
tact with the ground before the foot is lifted into the swing
phase. The swing phase is further divided into three more
periods: (1) initial swing, (2) mid-swing and (3) terminal
swing. In total, the number of phases in a gait cycle is
seven. This sequence of events happens to the right and
left foot alternatingly, resulting in the forward movement.

FIGURE 1. Phases in the gait cycle.

During a single gait cycle, there will be periods of double
support, when both legs are in contact with the ground and
single support, where one leg is in contact only [45]. Gait
phases are part of the spatio-temporal parameters of gait [28].

2) JOINT ANGLE
The hip, knee and ankle joint angles periodically change
every gait cycle. Their values are often measured in the sagit-
tal plane, where the greatest movement is observed, compared
to frontal and transverse planes [45]. The joint angles are
considered a kinematic parameter of gait [28], and their first-
and second-time derivatives, which are angular velocity and
angular acceleration, are often observed/reported as well.

3) TORQUE / MOMENT
The moment of force refers to rotation caused by the appli-
cation of force. The magnitude of the moment depends on
the magnitude of the force applied and the shortest distance
between the location of the force’s application and a ful-
crum/pivot. This distance is also called lever arm. There
is a slight difference between moment and torque, moment
results in bending and torque in rotating and twisting. Since
the mathematical formula for both is the same, they are
often used interchangeably [46]. In the case of biomechanics,
a moment of force happens for instance when the muscles
contract, causing the knee joint, which is an example of a
pivot, to rotate. Internal moments can be passive due to the
tension in soft tissue, or active due to the contraction of
muscles (eccentric, concentric, and isometric contraction).
External moments are due to external forces such as gravita-
tional force. The rotational impact of these moments on joints
is the net sum of all the individual moments, internal and
external [45]. Moment is categorised as a kinetic parameter
of gait [28].

4) LOCOMOTION MODE
Locomotion modes refer to several physical activities such as
ground-level walking, standing up, sitting down, ascending
and descending a slope, ascending and descending a staircase.
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5) INTENTION
Intention in the field of human robot interaction has been
defined as ‘‘the need for the robot to have knowledge of some
aspect of the human’s planned action in order for the robot
to appropriately assist toward achieving that action [47]’’.
Intention can be measured at the central nervous system level
based on the brain’s electrical activity, or at the peripheral
nervous system level based on the muscle’s electrical activity
or based on interaction forces between the human and robot
which can be measured with force sensors. Intention can have
discrete states, where it can be used to trigger the start of
a certain movement or transition between discrete control
modes, or continuous states such as the desired position
trajectory [47].

The two most common neural correlates reported
by researchers for measuring intention from the brain
are Movement-Related Cortical Potentials (MRCP) and
Event-Related Desynchronization (ERD) [48], [49]. These
neural correlates can be measured using electromyography
(EEG). MRCP, first discovered by Kornhuber and Deecke,
has multiple components including Bereitschaftspotential
(BP). It begins around two seconds before the start of vol-
untary movement [50]. Meanwhile, significant ERD was
observed to happen one second before movement initiation.
ERD involves the reduction of spectral power of the alpha
and beta bands, which have frequencies in the ranges of 8 to
13 Hz and 14 to 30 Hz respectively [51]. Two other neural
features have been listed in He et al review paper on existing
brain-machine interfaces used for lower-limb exoskeletons
and orthoses control which are the rate of neuronal firing and
Steady-State Visual Evoked Potentials (SSVEPs) [52].

Similarly, muscles are effectors to these commands, con-
tracting as a result. Muscle electrical activity can bemeasured
via surface electrodes, and voluntary activity initiation can
be detected shortly before the joint torque. This time delay
between the activation of a muscle and the generation of force
is referred to as electromechanical delay [53].

B. MACHINE LEARNING ALGORITHMS
An algorithm is a list of procedures to transform an input into
an output. When the procedures are unknown, thus cannot
be explicitly programmed, it is possible to approximate the
transformation using machine learning algorithms. Machine
learning algorithms approximate the procedures of trans-
formation by learning patterns between inputs and outputs.
The patterns are learned by being exposed to large amounts
of data in a specific subject domain. Learning is achieved
when a pre-selected performance metric is optimised, such
as the accuracy of predicting the output. Machine learning
algorithms can be broadly categorised based on their style
of learning [37]. The three main categories are supervised,
unsupervised and reinforcement learning. Supervised learn-
ing algorithms require input and target output data. This type
of learning involves continuously comparing the algorithm’s
generated output with the target output until the error between
both is minimized [54]. Meanwhile, unsupervised learning

doesn’t require target output data. The algorithm attempts to
find inherent patterns within the structure of the data [55].
Reinforcement learning also doesn’t require target output
data. It learns via a reward system [56]. Some of the machine
learning algorithms include:

1) SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) is an algorithm used for both
classification and regression problems. First developed by
Boser et al. [57], this supervised machine learning algorithm
can separate linearly separable classes or features with a
hyperplane. If for instance two classes can be separated by
a linear line known as hyperplane, as in Fig 2, the opti-
mal hyperplane is chosen to be the one that maximizes the
distance between itself and the classes. The objective is to
maximize the margin. If the classes are not linearly separable,
they can be transformed into higher dimensions where they
are linearly separable, or kernels can be used [57]–[60].

FIGURE 2. Support vector machine.

2) DECISION TREES
Decision trees are another type of supervised machine learn-
ing algorithms used for classification. They have a hierarchi-
cal tree-like structure starting with a root node. Each node
is divided into multiple branches with attributes. These nodes
are referred to as ‘impure’ and continue dividing based on the
attribute’s value until they reach the leaf node, an indivisible
‘pure’ node that represents a single class [60], [61]. ID3 [62]
and C4.5 [63] are examples of popular decision trees.

3) NEURAL NETWORKS
Neural networks are connectionist networks, heavily inspired
by the neurons of the brain [64]. The history of neural net-
works began with McCulloch and Pitts mathematical approx-
imation of a neuron in 1943 [65], followed by Rosenblatt
perceptron in the 1960s [66]. Neural networks consist of
input, hidden and output layers. Each layer contains nodes,
also called neurons. A single node in the hidden layer receives
an input value from the previous layer. The node performs a
non-linear mathematical operation and outputs an activation
value. The mathematical operation is known as an activation
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FIGURE 3. Simplified decision tree.

function such as a sigmoid function or tanh function. The
activation value of this node is dependent on the input value,
and the weighting to the node. The values of the weights are
adaptive and change as the neural network is learning. If the
input influences the generation of the output, a high weight is
chosen, leading to a high activation value. Otherwise, a low
weight is chosen. The multilayer perceptron (MLP) is a fully
connected feed-forward neural network, where a node in a
particular layer is connected to all the nodes in the previous
layer and all the nodes in the preceding layer. Nodes within
the same layer are not connected. This topology allows for
parallel computations [60], [67], [68].

The radial basis function neural network (RBFNN) is
another type of neural network. It differs however from MLP
as it can have only one hidden layer. The mathematical com-
putation at the nodes is also different. The nodes calculate the
Euclidian distance between the input and pre-defined proto-
types, which can be pre-set using an unsupervised algorithm
such as the k-Means algorithm. Once the Euclidian distances
have been calculated, a nonlinear Gaussian function is used
as the activation function to calculate the output. The closer
the data point is from the prototype, the greater its influence
on the output, since the output of the Gaussian function would
be close to one. The further away the data point is from the
prototypes, the lower its influence on the output since the
output of the Gaussian function would be close to zero [69].

Both of the aforementioned algorithms are supervised
learning algorithms and are parametrized by weights, there-
fore, the values of these weights are selected to maximize the
performance. The backpropagation algorithm, among others,
is used for updating the values of the weights. It starts by
measuring the error between the output of the algorithms
compared to the target output. The errors computed, also
referred to as cost, could be the cross-entropy error or the
squared error. Afterwards, the derivative of the error with

respect to the chosen weights is calculated. The objective is
to minimize this error, and this is achieved by updating the
weights based on the calculated derivativewith every iteration
until the error is minimized and satisfactory performance is
attained. This process is also referred to as gradient descent,
which is a type of optimization [70].

4) DEEP NEURAL NETWORKS
Deep feedforward neural networks are essentially neural net-
works with many hidden layers. The number of hidden layers
determines the model’s depth [71].

Convolutional neural networks (CNN) are a type of deep
neural network that commonly uses 2D images as input data.
The CNN has a kernel, that is smaller than the size of the
original image. This kernel is scanned across the image per-
forming a mathematical operation, the convolution operation,
between the kernel and a portion of the image. This results
in the formation of the next layer in the network also called
feature map. Feature maps are analogous to hidden layers
in ANNs. But unlike hidden layers in ANNs which have
nodes that connect to every single input, in CNNs, a group
of inputs the size of the kernel would be mapped to a single
point on the feature map. This is one of the special features
of CNN referred to as sparsity of connections. The sparsity
of connections due to convolutions causes a reduction in the
number of parameters in the model, thus a reduction in the
memory storage space and the computational power required.
Another special feature of the CNN algorithms is parameter
sharing. To produce a single feature map, the same set of
weights are used across the entire image. Weights are only
changed when producing feature maps that extract different
features. In addition to convolution layers, there are also
other pooling layers. After several alternating convolution
and pooling operations, the final feature map is unrolled to a
fully connected hidden layer to generate the output [71], [72].

While CNNs aremorewell suited for 2D input data, there is
another category of deep learning algorithms that works bet-
ter with sequential data that are 1D,which are recurrent neural
networks. Recurrent neural networks (RNN) have recurrent
connections whereby previous outputs are used for the cal-
culation of current output. Long short-term memory (LSTM)
algorithm is a type of gated RNN. Its architecture consists
of cells with an input, output and forget gate. LSTMs have
the capability of learning long term dependencies, meaning
that they can generate output depending on input data that
happened much earlier in time [71].

III. METHODS
A. RESEARCH IDENTIFICATION
We have conducted a systematic review. This review is a
‘systemic’ way of exploring existing literature. It starts with
choosing a set of keywords, along with Boolean operators,
to try and extract only the most pertinent papers in literature.
Since our focus is to review papers that implemented intelli-
gent machine learning algorithms for gait analysis to be used
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with lower limb exoskeletons and orthoses, the choice of key-
words should reflect the topic. They should be general enough
not to miss applicable literature and encompass the varying
techniques, sensors and terminology researchers use in their
research but restrictive to eliminate irrelevant research. The
keywords we have chosen are:

(exoskeleton OR orthosis OR orthotic) AND (gait OR
locomotion) AND (recognition OR classification OR predic-
tion OR intention OR selection OR detection OR discrimina-
tion OR partitioning OR segmentation OR estimation) AND
(‘‘machine learning’’ OR ‘‘deep learning’’ OR ‘‘artificial
intelligence’’ OR ‘‘neural’’ OR ‘‘fuzzy’’).

B. DATABASES FOR RESEARCH EXTRACTION
The aforementioned keywords have been used to extract
papers available in two databases: IEEE and SCOPUS. Ini-
tially, PubMed was also included but no relevant papers
appeared in the search.

C. INCLUSION AND EXCLUSION CRITERIA
In addition to the keywords, an inclusion and exclusion cri-
teria has been used to further filter the results. Research
published between the years 1989 to May 2020 written in
the English language were included. Results were limited to
journal and conference papers only. There were a few studies
on SCOPUS were the full-text paper was not available or
inaccessible by us, hence were not included. The total number
of papers identified with this inclusion and exclusion crite-
ria was 226 papers. Afterwards, duplicate papers available
on both databases have been removed, reducing the papers
down to 172. These papers have been analysed based on
abstract only, manually removing less relevant or irrelevant
papers i.e., the scope of these papers have no significance
to our review. Some reasons that resulted in the exclusion of
papers include the use of prostheses rather than orthoses or
exoskeletons, upper limb rather than lower limb robotics, and
absence of intelligent machine or deep learning algorithms.
Results were further limited to research articles excluding
conference papers. 41 out of the 64 full-text articles that we
assessed for eligibility were included in this review. We have
reviewed the full text of these papers focusing on the parame-
ters the researchers are considering, the intelligent algorithms
they used, the sensing modalities, the types of subjects they
have tested/trained their algorithms on and the overall per-
formance of their systems. This process is visually illustrated
in Fig 4.

IV. RESULTS
In this section, the 41 papers that met our inclusion/exclusion
criteria will be reviewed. The aspects that will be reviewed are
the performance of the algorithms, the data used for training
and validation of the algorithms, and the signals/sensors used
to obtain the predictions. The parameters will be discussed
in the following order: (1) gait phase, (2) locomotion mode,
(3) trajectory and joint angle and (4) torque and moment.

FIGURE 4. Flowchart on the methodology of article selection.

A. GAIT PHASE
The magnitude of assistive torque provided by the active
exoskeleton or orthosis may vary according to the phase of
gait [41], thus detecting some or all phases is a desidera-
tum. A wide variety of wearable sensors have been used for
this, as well as a plethora of algorithms. Furthermore, the
granularity of the phase detection varied, from as low as two
phases up to eight phases. This section will include a list of
machine learning algorithms used for gait phase detection.
The identified phases and the overall performance have been
discussed in detail.

1) NEURAL NETWORKS
A multilayer perceptron neural network (MLPNN) is imple-
mented by Jung et al. [39], to detect two gait phases: stance
and swing. These phases are used to control their exoskeleton
ROBIN-H1, designed for the rehabilitation of stroke patients.
Pitch orientation and angular velocities were measured by
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several sensors and were used as input to the MLP. Ground
truth labels were obtained using force plates. The MLP
had one hidden layer with growing nodes that increased
from 5 to 50, and the MLP was optimised using the
back-propagation algorithm. To analyse performance, clas-
sification success rate (CSR) was used. CSR accounted for
three types of errors: early classification, delayed classifi-
cation and erroneous classification. The authors considered
erroneous classification error the most dangerous for robotic
control and a potential cause of injury. Offline and online
tests were conducted based on data from healthy subjects. The
average CSR rate for the offline test was 97.75%, higher than
online tests which scored 90.75% on average.

An MLPNN is implemented by Ma et al. [73], as a com-
parison to the kernel recursive mean square method (KRLS),
to detect four phases of gait: heel strike, flat foot, heel off, and
swing. The average classification rate of theMLPNN for 3, 5,
and 10-fold cross-validation were 83.17%, 82.42%, 83.23%.
The MLPNN had a lower performance compared to KRLS,
by 2.33%, 3.62%, and 3.04% of KRLS’s classification rate
for 3, 5, and 10-fold cross-validation.

A neural network is implemented by Kang et al. [41] to
estimate the percentage of the gait cycle, for controlling a
bilateral hip exoskeleton. Instead of having discrete phases,
gait was considered a continuous variable and the percentage
of gait phase was detected with their model. The authors
experimented with different combinations of sensors to train
a neural network with one hidden layer and 20 nodes. They
found that using all sensors combined resulted in greater error
than using the hip encoder and thigh IMU only. This may
be because of the simple architecture of the model used.
Three models were evaluated: a generalized/independent
model (trained on data from multiple users and tested on
data from an unseen user), a user-specific/dependent model
(trained on data from a single user and tested on unseen
samples from that user), and a semi-dependent model (trained
on data from multiple users and tested on unseen samples
from one of the users it initially trained on). The three
models were compared to a time-based estimation (TBE)
model that uses FSRs, under varying gait speeds. For
steady-state speeds, there wasn’t a significant difference in
performance, and the generalized model had the highest
error even compared to TBE. However, under dynamic and
extrapolated speed dynamic movements, the user-specific
and semi-dependent models had higher accuracies compared
to TBE, reducing estimation error by 23.4% and 26.3%
respectively. Enhanced estimation caused the torque gener-
ation error to decrease by 32.4% (p < 0.05) for the depen-
dent model and 40.9% (p<0.05) for the semi-dependent
model. The best performance was for the semi-dependent
model.

An adaptive neural-fuzzy inference system (ANFIS),
which is a combination of Takagi-Sugeno fuzzy infer-
ence system and neural networks, is implemented by
Hua et al. [74] for detecting two phases: stance and swing.
Their objective was to develop a lower limb exoskeleton

that withstands lifting of heavy loads. Predictions utilized
plantar pressure readings and their first and second deriva-
tives. A trapezoidal membership function was used. The
authors demonstrated the model’s generalization potential as
they have segmented gait phases under various locomotion
modes.

AnMLPNN is implemented by Nazmi et al. [75], to detect
gait phases: stance and swing using EMG signals. Two
types of optimization algorithms have been compared. One
achieved optimization in shorter duration, the scaled con-
jugate gradient (SCG) algorithm, and another resulted in
higher accuracy and lower MSE, the Levenberg-Marquardt
(LM) algorithm. Numerous features have been derived from
the muscle activity for training the neural network including
the use of mean absolute values (MAV) only, use of mean
absolute value and waveform length (group 1), and use of
mean absolute values, waveform length, RMS, SD and inte-
grated EMG (group 2). Using the LMoptimization algorithm,
the accuracy usingMAV features was 78.6%, for group 1 fea-
tures was 82.3%, and for group 2 features was 87.4%. This
indicated that using the greatest number of features lead to
more accurate predictions.

A backpropagation neural network (BPNN) is imple-
mented by Zhang et al. [76] to detect five phases of gait.
The authors evaluated the effect of variations in the load
carried by the users on the EMG activity, and the ability of an
algorithm trained on data from users carrying one load level to
perform accurate predictions when tested on data from users
carrying multi-load levels. EMG data has been collected from
users carrying multiple loads as a percentage of their masses
(0%, 20%, 30%, and 40%) while walking on a treadmill at
three different speeds. The authors found out that intra-load
testing, which is training and testing a model using data
from users carrying one load level, had higher accuracy
than inter-load testing, which is training a model using data
from users carrying one load level and testing it using data
from users carrying another load level. This proves that mus-
cle activity changes when varying the loads, and stresses
the importance of training the algorithm with data from
multi-load conditions to maintain the performance of the
exoskeleton in various conditions.

2) DEEP NEURAL NETWORKS
A long short termmemory algorithm and deep neural network
(LSTM-DNN) is implemented by Zhen et al. [77], for the
detection of two phases: stance and swing. The detection
was based on acceleration signals obtained using an inertial
measurement unit. The LSTM had 36 units with its output
feeding into a DNN. The LSTM-DNN was tested under three
pre-defined speeds, obtaining accuracies greater than 91.8%
and F-scores greater than 92%. The LSTM model on its own
had lower performance, with accuracies greater than 86.8%
and F-scores greater than 86.4%.

A deep memory convolutional neural network (DM-CNN)
is implemented by Wang et al. [78] to detect four phases of
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gait, using foot pressure sensors and IMUs. Phase classifica-
tion using the multi-modal approach (i.e., training the model
on data frommultiple sensors) achieved a higher performance
than using the single-mode approach (i.e., training the model
on data from a single sensor). Also, classification with accel-
eration signals alone was better than with pressure signals
alone.

A type of recurrent neural network (RNN), called
non-linear autoregressive with external inputs (NARX),
is implemented by Jung et al. [39]. The performance of
NARX was slightly lower than the MLPNN, with an offline
CSR of 97.05%, and an online CSR of 91.93%. The NARX
however, had fewer unstable regions, which are oscillations
in the output, compared to the MLPNN. According to the
authors, segmenting the data into individual strides for train-
ing may have resulted in discontinuities in the gait pattern,
affecting the performance of NARX.

3) DECISION TREES/RANDOM FOREST
A logistic model decision tree (LMT) is implemented by
Farah et al. [79], for the detection of four gait phases: loading
response, swing, terminal swing, and push-off using knee
angles, thigh angular velocity, and acceleration. The chosen
LMT model was a J-48 decision tree, with terminal nodes
performing a logistic function. The criteria for node splitting
of the C4.5 decision tree was followed. Its size was 1643 con-
taining 822 nodes. The authors also included a transition
sequence validation and correction algorithm (TSVC) post-
classification, for the removal of erroneous or misclassifi-
cations. This increased the training and validation accuracy
which were 98.76% and 98.61% respectively. The F-score
for the validation set was 0.97. It was noticed that a large
proportion of false negatives were due to transition periods
during the phases.

A random forest (RF) algorithm is implemented by
Pasinetti et al. [80] to detect two phases of gait: stance and
swing, using time of flight cameras. The authors had the
cameras embedded in two crutches, that need to be used
when walking with the exoskeleton. Each one of the crutch
cameras monitors the contralateral leg. The depth images
collected by the camera are processed to separate the leg
and floor from the environment. A plane detection algorithm
identifies the floor’s surface which is used as a reference
for measuring distances between it and other objects, i.e.,
foot. The percentiles of those distances are used as features
for classification. Two variations of algorithms have been
implemented, a random forest (RF) comprised of decision
trees, and a sigma-z random forest. Sigma-z RF is a variation
of RF, as it accounts for uncertainties such as measurement
error, and for variances in the data collected that can occur
if there is similarity/overlap between features of separate
classes. Sigma-z outputs a classification, in addition to a
confidence value for that classification. A trade-off between
classification accuracy and the number of unclassifiable sam-
ples was evident, and it depended on the choice of admittance

threshold. The RF and sigma-z RF had accuracy values
of 81% and 87.3%.

4) FUZZY LOGIC
A Fuzzy logic algorithm is implemented by
Chinimilli et al. [81] to detect four gait phases. Their goal
was to create an adaptive virtual impedance control for a knee
exoskeleton. Ground contact forces measured with smart
shoes were input to a fuzzy logic algorithm comprised of
partial trapezoid and triangular membership functions. The
classified gait phase, in addition to the locomotion mode
(will be further described in the next section), were used as
inputs to a gaussian mixture model (GMM) that outputted
appropriate stiffness and damping ratio for the control of
the exoskeleton. While the classifier’s performance has not
been recorded, the performance of the automatic impedance
tuning that relies on the outputted gait phase and locomotion
mode has been assessed in comparison to constant impedance
and finite state machine. The assessment involved measur-
ing the EMG of the vastus medial, in addition to the step
length and cadence using a motion capture system. The auto-
matic impedance control showed desirable results, decreas-
ing the EMG activity level, shortening the step length and
increasing the cadence with respect to the two other control
modes.

Fuzzy logic is implemented by Chen et al. [82], for
the detection of four phases using foot pressure data.
Their exoskeleton, HEXO, is controlled using hybrid con-
trol: adaptive impedance control (AIC) in stance phase and
active-disturbance rejection control with fast terminal sliding
mode control (ADRC-FTSMC) in swing phase. The fuzzy
logic algorithm for phase detection had a sigmoid member-
ship function.

A fuzzy logic algorithm is implemented by Huo et al. [83],
for gait phase detection. E-ROWA is an exoskeleton that sup-
ports walking by generating appropriate torque according to
the phase of gait. The authors also detect locomotion modes,
which is discussed in the following section.

5) K-NEAREST NEIGHBOUR
The k-nearest neighbour (KNN) method is implemented by
Chen et al. [84], to detect 8 gait phases. The recognition
was based on multiple sensors including joint angle sensors
that measure the angle of the hip, knee, and ankle joints, and
plantar pressure sensors.

A KNN is implemented by Wang et al. [78], for the detec-
tion of four gait phases. KNN’s performance was lower than
three other algorithms, DM-CNN, N-HMM, and HMM. Its
accuracy was 88.5%, 8.6% below the highest performing
algorithm, while precision and recall values were 81.5% and
82.5% respectively.

A KNN is implemented by Zhen et al. [77], for the
detection of two gait phases. They’ve experimented with
seven values of K, ranging from 2 to 30, and have set the
distance parameter to be the Euclidean distance. The algo-
rithm’s performance has been tested at three walking speeds.
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The KNN had the worst performance compared to LSTM-
DNN, LSTM, and SVM. Its accuracy ranged between 69%
and 76% while its F-score between 70% and 77%.

A KNN is implemented by Zhang et al. [76], for the
detection of five gait phases. The KNN algorithm had a lower
performance than BPNN.

6) HIDDEN MARKOV MODEL
A hidden markov model (HMM) is implemented by
Manchola et al. [40], to detect four gait phases using a single
IMU placed on the instep of the foot. The classification with a
HMM utilised gyroscope signals in the sagittal plane, instead
of acceleration signals that require a Kalman filter to address
the issue of drift. The Baum-Welch algorithm was used for
model training and the Viterbi algorithm for gait phase recog-
nition. Two types of trainings have been performed: inter-
subject/subject-specific training (SST), were the algorithm
was trained on data from a single user then tested on unseen
samples from that user, and inter-subject/standardised param-
eter training (SPT). For healthy users, SPT involved training
the algorithm on all healthy users and testing it on unseen
samples of a one of those healthy users. For patients, the algo-
rithmwas trained on healthy users but tested on a patient. SST
had higher accuracy values than the SPT, and this difference
was more pronounced for the healthy subjects than for the
patients. The SST accuracy was 81.44% for healthy users
and 78.06% for patients, meanwhile, the SPT accuracy was
76.91% for healthy users and 76.36% for patients. Despite
both training approaches, the accuracies for HMM were still
higher than the threshold-based algorithm also implemented,
which is a finite state machine that classifies gait based on
detecting peaks, troughs and zero-crossings of accelerometer
and gyroscope signals.

A HMM and N-HMM were implemented by
Wang et al. [78], as a comparison to DM-CNN. Both the
N-HMM and HMM had lower accuracies than DM-CNN
model, scoring 96.2% and 92.3% respectively.

7) SUPPORT VECTOR MACHINES
A SVM is implemented by Ma et al. [73], as a compar-
ison to the kernel recursive least-square method (KRLS)
and MLPNN, to detect four gait phases. The SVM had a
Gaussian kernel function and was optimised using particle
swarm optimization. The SVM’s accuracies for 3, 5, and
10-fold cross-validation where 83.00%, 82.69% and 83.29%.
Its performance was lower than the KRLS.

A SVM is implemented by Zhen et al. [77], for the detec-
tion of two gait phases. Four kernel functions were used:
linear, rbf, sigmoid and poly with the rbf kernel resulting in
the highest performance. The SVM was outperformed by the
LSTM-DNN and LSTM model. It was slightly higher than
the kNN.

A SVM was implemented by Zhang et al. [76], and com-
pared to BPNN, KNN, and SVM. KNN and SVM demon-
strated lower performance than the BPNN.

8) PRINCIPAL COMPONENT ANALYSIS
A probabilistic model is implemented by Tanghe et al. [85]
for the prediction of four phases of gait before they occur. The
authors implement a probabilistic principal component analy-
sis (PPCA)model which predicts initial contact, flat foot, heel
off, and toe off events along with joint trajectories. The train-
ing dataset was based on healthy participants walking without
an exoskeleton and validated on two data sets: one for healthy
participants walking without an exoskeleton and another for
healthy participants walking with an exoskeleton. For the
reported results, zero-error means the phase was predicted
0.2s before to the actual event. 9ms was themaximummedian
error for the exoskeleton-free validation dataset across all
four phases. The median errors for the dataset involving the
exoskeleton were higher, reaching 15ms for initial contact,
and 33ms for toe-off. Heel off was themost challenging phase
to predict.

9) KERNEL RECURSIVE LEAST SQUARE METHOD
A kernel recursive least square method (KRLS) is imple-
mented by Ma et al. [73], for gait phase detection, using
the knee and hip joints angle as input. The accuracies of
gait phase classification for 3, 5, and 10-fold cross-validation
where 85.49%, 86.04%, and 86.26%.

B. LOCOMOTION MODE
Identifying the locomotion mode is essential for robotic
devices that provide assistance with daily life activities. This
is because each activity requires specific assistive require-
ments, and identifying themode allows for smooth transitions
between the different activities. Locomotion modes can be
classified into static or dynamic modes. The main static loco-
motion modes are sitting and standing. The main dynamic
locomotion modes are straight level walking, ascending
stairs, descending stairs, ascending slope, and descending
slope. Some authors detect mode transitions, such as sitting
to standing or level walking to ascending etc. Often, iden-
tification of locomotion mode is performed in conjunction
with gait phase detection, pre-or post-identifying the current
phase.

1) NEURAL NETWORKS
A BPNN is implemented by Song et al. [86], for locomotion
mode detection. They detected 4 static, and 11 dynamic
modes, a total of 15 locomotion modes including sitting,
standing, level walking, level walking with weight etc. They
used IMUs and foot pressure sensors to acquire signals, from
which they extracted time domain, frequency domain and
energy features. A total of 141 features have been extracted,
including mean, variance, correlation coefficient, wavelet
energy entropy, SMA, Fourier series and maximum values.
Some features are more suited for classifying static modes
such as leg angles, and others for dynamic modes. Three
neural networks were developed with three layers each. The
first to classify whether the mode is static or dynamic and
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contained 5 input, 25 hidden, and 1 output node. Depending
on the outcome, a static mode or a dynamic mode neu-
ral network followed. The static neural network constituted
of 20 input, 100 hidden and 1 output nodes while the dynamic
had 40 input, 200 hidden and 1 output. The authors found it
easier to classify dynamic modes, as they have larger inherent
differences in their patterns than static modes. An example
of common confusion is between standing and sitting with
a load. For single-mode classification, the overall accuracy
was 98.28%. The accuracy of multi-mode classification,
which involves transitioning between modes was lower.

An ANN is implemented by Islam and
Hsiao-Wecksler [87], to detect: level walking, ascending
stairs/ramp, and descending stairs/ramp, for controlling their
Portable Powered Ankle-Foot Orthosis (PPAFO) using IMU
and foot pressure sensors. Calibration was performed with
every step due to drift, specifically at the zero-acceleration
stage (mid-stance). The foot pressure sensors assisted in
identifying mid-stance for calibration.

The input of a three-layer neural network were six tapped
delays of vertical foot velocity and angle measurements,
both derived from IMU. There were 10 nodes in the hidden
layer and 3 nodes in the output layer. The authors performed
subject-specific training and their accuracies were between
97.8% and 100%. They have also measured the time required
to detect a transition, as a percentage of the gait cycle. This
represents how much of the gait cycle elapsed before a mode
transition is detected. Mode transition were detected in the
swing phase of the transitioning step, within 28% of the gait
cycle for the stair mode and 16% of the gait cycle for the ramp
mode.

Backpropagation neural network (BPNN) and radial basis
function neural network (RBFNN) are implemented by
Wang et al. [88], to detect six locomotion modes with IMUs
and plantar pressure sensors. The architecture of the BPNN
and RBFNN consisted of 20 nodes for input, 12 nodes for
hidden layer and 6 outputs. The BPNN’s performance was
superior to RBFNN, with an accuracy of 93.3% compared
to 91.2%.

2) SUPPORT VECTOR MACHINE
A support vector machine (SVM) is implemented by
Wang et al. [88], to detect six locomotion modes. The
SVM outperformed two algorithms, the RBFNN and BPNN,
achieving an accuracy of 96.5%.When the linear and polyno-
mial functions were compared as choices of kernel functions,
the linear kernel resulted in better performance.

An SVM (with gaussian kernel) is implemented by
Villa-Parra et al. [89], for locomotion intention prediction
based on EMG. The authors used muscle activity of the trunk
and compared it to that from the lower leg, for predicting
the intention to perform several locomotion modes such as
flexion-extension of the knee, standing up, sitting down etc.
The authors reported accuracies ranging between 76%-83%
and 71%-77% for lower limb and trunk muscles respectively.
The impetus for comparing the accuracy from the different

types of muscles was to measure how comparable trunk
muscles were to lower limb muscles in their ability to make
accurate locomotion intention predictions, and if they can
be used as an alternative to lower limb muscles which are
often affected by pathologies or weakness for patients with
preserved trunk muscle activity.

An SVM is implemented by Goh et al. [43], as a com-
parison to a Spectral Representation Learning Model (SSRL)
for the detection of four locomotion modes with EEG. Prin-
ciple Component Analysis (PCA) and F-score (FS) were
used for dimensionality reduction. SVM-PCA and SVM-FS
performed worse than SSRL. SVM-FS still performed better
than SVM-PCA.

3) DEEP NEURAL NETWORKS
Deep neural network (DNN) and convolutional neural net-
work (CNN) are implemented byHua et al. [74], for detection
of 6 locomotion modes. They have experimented with several
machine learning algorithms, includingDT, DA, KNN, SVM,
EM which were pre-processed with kPCA to reduce the
dimensions of the input features. The deep learning algo-
rithms outperformed ML algorithms, requiring a lower dura-
tion (20 ms) to perform the computation, and achieving 52%
higher efficiency, without the need of kPCA. The authors
implemented the stacked autoencoder DNNs, optimized with
genetic algorithm particle swarm optimization (GA-PSO)
and achieved accuracies around 99%. Prior to optimization,
the accuracies where 97.2%.

A spatio-spectral representation learning model (SSRL)
is implemented by Goh et al. [43], to detect four loco-
motion modes using EEG signals: level walking without
an exoskeleton, level walking with an exoskeleton at zero,
low, and high torque support modes. Inspired by the weight
sharing feature of convolutional neural network, the authors
implemented a SSRL with 3 hidden layers, that include a
spatial layer, a spectral layer and a fully connected layer. Data
from 27 healthy male subjects was collected from 20 EEG
channels. The models were trained either with wide spec-
tral frequencies (WS) which range from 1-42 Hz or promi-
nent spectral frequencies (PS) which range from 8-30 Hz.
They compared the SSRL with two other machine learning
algorithms, random forest and support vector machines with
radial basis function kernels. Also, the authors reduced the
dimensionality of data for the latter two algorithms, using
principal component analysis (PCA) or F-score (FS). The
SSRL-WS had the highest accuracy, 77.8 ± 1.8%. The accu-
racies of SVM-FS, SVM-PCA and RF-FS algorithms for
the wide spectral frequencies where 74.3 ± 1.6%, 64.3 ±

1.8%, and 65.9 ± 1.8% respectively. The accuracies when
using the prominent spectral frequencies were lower, but the
algorithms still had the same order of performance, with
SSRL achieving 72.9 ± 1.7%, while SVM-FS, SVM-PCA
and RF-FS achieved 70.2 ± 1.6%, 54.8 ± 2.0%, and 58.9 ±

1.7% respectively. The results showed that when comparing
the dimensionality reduction algorithms, FS which relies on
handcrafted features was better than PCA. However, using
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TABLE 1. Gait phase.
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TABLE 1. (Continued.) Gait phase.

SSRL obviated the need for handcrafted features and still
performed better. Also, the spatial parameters of the network
allowed to deduce the roles of the different brain regions
in controlling gait, contributing to our understanding of the
topographic organization of the brain.

4) FUZZY LOGIC
A fuzzy inference algorithm is implemented by
Chinimilli et al. [81], to detect three modes: level walking,
uphill and downhill walking. The algorithm relies on the
detected heel strike (right leg) and knee angle derived from
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IMUs on thigh and shank. The number of locomotion modes
they’ve detected was limited by the experimental apparatus
which involved a treadmill only.

A fuzzy logic algorithm is implemented by Parri et al. [90],
to detect seven locomotion modes for the control of a hip
orthosis. A threshold-based algorithm is first used to cate-
gorise whether a mode is static or dynamic using hip angles.
If the mode is static, the mode is identified. Static modes
include sitting, standing and the transitioning between the
two. If the mode is dynamic, a fuzzy logic algorithm is used
for its detection. The dynamic modes are classified into level
walking, ascending and descending stairs. The classification
is based on hip joint angles, and centre of pressure measured
by sensitive insoles. A gaussian function is used as a mem-
bership function. The authors opted to avoid subject-specific
training as they wanted to produce a generalized model,
therefore the membership values were based on data from
6 subjects with varying speeds and assist modes. The effect
of inter-subject variability had a noticeable impact on the
decline of performance for one of the subjects which was
taller than the others.

A fuzzy logic algorithm is implemented by Huo et al. [83]
to detect five modes of gait. The Mamdani fuzzy inference
system has been specifically implemented with bell-shaped
curves asmembership functions.While wearing the E-ROWA
exoskeleton, four healthy participants were asked to walk
under normal and simulated abnormal gait, with the simulated
abnormal gait demonstrated by locking the flexion of one
knee joint. Accuracies were greater than 97.7% for normal
gait and 97% for abnormal gait. The authors reported the
latency of detection (with modes detected at the start of the
step rather than the end of it) was less than 32 ± 8.3% of a
step.

5) RANDOM FOREST/DECISION TREE
Decision tree is implemented by Novak et al. [91], to decode
intention of gait initiation and termination of gait, without
the use of physiological signals. Instead, the authors used
IMU and pressure insoles. Gait initiation is when a person
in steady state begins walking. It is divided into two parts:
onset which includes events that happen in preparation to
toe-off, approximately 0.5 s before the foot begins to lift
from the ground, and toe-off which is when the foot is fully
lifted from the ground. Gait termination is when a person is
walking and decides to stand still. In the last step before a
person completely stops, the parameters of gait are altered
thus it is possible to detect the intention to terminate gait
during that step. Decision trees have been tested based on
within-subject and subject-independent trials. Within-subject
trials yielded better results than subject-independent trials.
The use of IMU and pressure sensors separately and com-
bined as input to decision trees have also been compared. For
detecting gait termination, the IMUs were found to perform
better. However, pressure insoles were still needed for gait
termination detection, particularly for segmentation of gait
cycles. For 80% of the within-subject classification trials,

gait termination intention was predicted prior to the actual
event. The results reportedwhere based on offline testing. The
usefulness of this research will be in assisting a user with their
first step upon detection of their intention to walk or terminate
this assistance when they desire to stop walking. The authors
remarked that the effects of an assistive device, such as an
active orthosis, on ‘masking’ intention is yet to be evaluated.

A random forest (RF) algorithm is implemented by
Goh et al. [43], to detect four locomotion modes with EEG.
Pre-processing involved dimensionality reduction using
F-score (FS). RF-FS algorithm performed worse than the
SSRL model to which it was compared.

6) MULTIPLE KERNEL LEARNING
Multiple kernel learning (MKL) algorithm is implemented
by Zhang et al. [92], to decode intention for performing
four locomotion modes using EEG. 64 channels of electrodes
were used and placed according to the 10-20 international
system. The modes were forward walking, stopping, turn-
ing left and turning right. The brain was segmented into
13 regions, and the algorithm has been tested on two par-
ticipants, one with healthy gait and another with a spinal
cord injury. The role of the brain regions was also studied,
by looking at the weightings of the MKL parameters. The
frontal and front-central regions, particularly, the MFC and
RFC had the highest weighting indicating the largest role
in intention/limb control. However, the exact precedence of
those regions differed in the healthy and SCI participants,
with the healthy participant having the highest weighting in
MFC followed by the RCF region, while the SCI participant
had the reverse order. Two experimental sets to evaluate the
model were designed, the first consisted of a single session.
The model had a 74.5% detection accuracy for the healthy
participant and 68.4% for the SCI participant. Another
experimental setup consisted of nine sessions over 30 days.
The classifier was set to detect walking and stopping only.
The accuracy was greater than 90% and the weighting of the
regions changed with training, indicating cortical plasticity.
The weighting and accuracy increased with the progression
of the sessions. Also, out of the four modes classified, the
stopping mode was detected with the greatest difficulty.

7) SPARSE DISCRIMINANT ANALYSIS
Linear discriminant analysis (LDA) is implemented by
Gui et al. [93] to detect intention for four locomotion modes:
stopping, level walking, accelerating, and decelerating. The
authors relied on cognitive and peripheral signals. LDA
relied on brain generated Steady-State Visual Evoked Poten-
tials (SSVEP) as input features. The output of the LDA is used
by a central pattern generator to generate the exoskeleton’s
trajectory. The recognition rate of steady-state (ROS) was
92.40%. The time delay, also called the duration of transient
state (DOT), was 1.7 seconds. The authors discussed the
effect of increasing the locomotion modes from four to eight
on the quality of SSVEP, which reduced ROS to 70%. The
transitioning between the four discrete modes was performed
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using EEG, whereas continuous locomotion speed control
was performed using EMG. EMG was the input to an admit-
tance model and the reader is advised to refer to the paper for
details on that.

Sparse discriminant analysis (SDA) is implemented by
Lopez-Larraz et al. [94] to identify gait initiation inten-
tion. Their exoskeleton is intended to assist patients with
incomplete spinal cord injuries. From the generated EEG
signals which were cue-guided, event-related desynchroniza-
tion (ERD) and movement related cortical potential (MRCP)
features were derived to be used with their model, with
SDA being also used for feature selection. The model was
tested on data from 3 healthy participants and 4 SCI patients.
The experimental protocol contained four parts: ‘‘rest’’, then
‘‘preparation’’, then ‘‘attempt movement’’ and ‘‘movement’’.
The accuracy for decoding the intention of healthy users
was higher than those with SCI, 88.44 ± 14.56% compared
to 77.61 ± 14.72%. It was also observed that frequency
ERD features where more commonly chosen over temporal
MRCP features.

8) CANONICAL CORRELATION LEARNING
The canonical correlations algorithm (CCA), an unsupervised
learning algorithm, is implemented by Zheng et al. [95]
to decode intention for three motion patterns. The fea-
tures the authors used are steady-state visual evoked poten-
tial (SSVEP). They have performed offline and online
experiments. The offline experiments involved visual stim-
uli followed by intention classification. This experimental
design relied on EEG. The online experiments involved both
visual stimuli followed by performing physical motions that
included squatting, walking then standing. This experimental
design involved multimodal data as input features, including
foot pressure and joint positions. Both experimental designs
achieved a classification accuracy of over 90%.

C. MOMENT/TORQUE
Torque and moment are kinetic parameters of gait that have
been detected with a few machine learning algorithms as
follows.

1) NEURAL NETWORK
An MLPNN is implemented by Ma et al. [73], to predict hip
joint assist torque to support the extension and flexion of the
hip. To assist in extension, torque needs to be provided at two
phases: heel strike and flat foot. To support flexion, torque
needs to be supplied at two other phases: heel off and swing
phase. The authors developed a generalisedmodel, whichwas
trained on one group and tested on another. When compared
to the kernel recursive least-square method, the MLPNN’s
mean square errors were twice as large.

A radial basis function neural network (RBFNN) is imple-
mented byGui et al. [96], to output passive and active torques.
This method is an alternative to the hill-type model, often
used for deriving torque from EMG activity. The torques
are input to a motion controller, the extended Slotine-Li,

that controls an assist-as-needed exoskeleton. Two neural
networks are used, one that uses motion states as input and
outputs passive torque, while the other uses motion states in
addition to processed EMG signals as input and outputs active
torque. The first RBFNN is trained with the muscles relaxed
until a satisfactory steady-state error level is reached. Subse-
quently, the second NN is trained while asking the subjects to
perform voluntary active torque and keeping the parameters
of the first NN constant. The outputs are compared against
measurements with torque sensors. The authors calculated
torque in swing phase only, due to the unavailability of force
plates. The use of the Slotine-Li scheme obviated the need
for the calibration of EMG signals. For ‘activity-based neu-
roplasticity’ to occur, the delay between estimated and actual
torques need to be below 300ms. This has been achieved as
the time delay ranged between 174ms and 305ms. In future
work, the authors suggest using high density EMG.

A neural network is implemented by Xiong et al. [97],
for internal joint moment prediction using EMG signals and
joint angles. An elastic net was used to eliminate noise and
redundant features in the input, preceding the neural network.
This lowered the computational load and allowed for real
time prediction. The data of 8 healthy subjects obtained from
an online dataset was used to train the NN. The outputs
were compared to joint moment values calculated via inverse
dynamics, which the authors noted is a source of limitation
since the calculated values do not account for the presence of
errors between them and the actual internal torque.

An extreme machine learning neural network (ELM) is
implemented by, Xiong et al. [98], to predict joint moments.
A hill-muscle model is used to determine which features are
necessary for the ELM to perform predictions. The authors
were able to calculate moments for flexion and extension
of the hip and knee, abduction and adduction of the hip,
and the plantar and dorsiflexion of the ankle. The variance
accounted for (VAR) was used to evaluate the performance.
Results showed that using muscle activity, muscle actuate
joint angles, and angular velocities (instead of joint angles
and angular velocities) results in the best performance, with
VAF of 89.67 ± 5.56%. Using EMG alone lowered VAF by
82.83%. This indicates the inadequacy of relying on EMG
signals alone for joint moment calculation. The performance
achieved without foot pressure sensors demonstrates that they
are not needed.

2) KERNEL RECURSIVE LEAST-SQUARE METHOD
Kernel recursive least-squaremethod (KRLS) is implemented
by Ma et al. [73], to predict hip joint assist torque. It has been
compared against MLPNN, with MLPNN performing worse
than KRLS.

D. JOINT ANGLE AND TRAJECTORY
Joint angles and trajectories are considered a kinematic
parameter of gait and have been primarily predicted using
neural networks and principal component analysis.
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1) NEURAL NETWORK
An artificial neural network (ANN) is implemented by
Kutilek and Farkasova [99], to predict joint angles using
cyclograms. The authors used a neural network trained with
backpropagation to predict future joint angles. The inputs to
the neural network were current joint angles (for a single
joint), angular acceleration, weight, and age. They trained a
separate neural network that uses inclination angles calcu-
lated using PCA, in addition to the angles of two joints as
inputs. Hip-knee predictions were found to be more accurate
than ankle-knee predictions. The neural network that uses
inclination angles also performed better. In another paper
published a year later, Kutilek and Viteckova [100], also use
the 2nd moment of area (x-axis and y-axis) as additional
inputs.

A radial basis function neural network (RBFNN) is imple-
mented by Mazumder et Al. [101], to generate gait trajecto-
ries. The authors use joint angles derived from IMU signals,
gait phases and stride times that are calculated based on EMG
signals, and foot pressure sensors as input to the RBFNN.
The model was trained based on data from 5 healthy subjects
and is capable of adapting to the user’s pace of walking and
anthropometrics.

RBFNN and MLPNN are implemented by Lee et al. [102]
for the calculation of joint angles, using EMG signals. Their
focus was the use of joint angles of a healthy leg to predict the
joint angles of a pathological leg with an orthosis, or even a
prosthetic. Two neural networks have been used, an RBFNN
which uses EMG signals from the rectus femoris to predict
knee joint angles of the healthy lower limb and an MLPNN
which uses the output of the RBFNN to predict the hip and
joint angles of the pathological lower limb. The experimental
setup included measuring joint angles during level walking,
sitting and standing off a chair, with an average accuracy
of 97.5% and an absolute average error rate of 0.25◦.
A generalized regression neural network (GRNN) and

BPNN have been implemented by Xie et al. [103] for the
calculation of joint angles. EMG, hip joint angles, and plan-
tar pressure were used as inputs. Their primary algorithm
was the GRNN and was optimized with the golden-selection
algorithm. The transfer function was a gaussian kernel.
Wavelet denoising was also implemented since high fre-
quency signals contribute to the instability of data affecting
the output of the GRNN. Meanwhile, the BPNN was trained
with the Levenberg-Marquardt algorithm. The GRNN had
a shorter prediction time than the BPNN, 2.38s compared
to 16.029s respectively, for very similar correlation coeffi-
cient values.

An Elman neural network is implemented by
Wang et al. [104], to detect knee joint angles using EMG.
The signals were recorded during leg extension exercises at
various speeds, with and without load. A multilevel wavelet
decomposition was performed followed by the calculation
of the correlation dimension. The correlation dimension of
wavelet coefficients (WCCD) was used with the Elman
neural network. Since the neural network receives feedback,

it has a memory component to it. The WCCD was compared
against time-domain feature extraction algorithms, IEMG
and RMS, and frequency-domain feature extraction algo-
rithms, MNP. The RMSE was the lowest for the WCCD
method. Furthermore, the Elman Neural network outper-
formed other algorithms, including BPNN, LSSVM, GRNN.
The authors also reported that at higher speeds of the exten-
sion exercises the RMSE was larger. However, when compar-
ing exercises with and without load under constant speeds,
having load resulted in lower RMSE.

Three MLPNN are implemented by Gomes et al. [105]
to generate trajectories for a lower limb orthosis. The first
neural network performs inverse dynamic approximations,
calculating torque variations. The second neural network
performs an optimization to calculate the adapted step time.
The third neural network calculates the trajectory that will be
the input to the orthosis’s position controller. The trajectories
outputted by the third neural network include a value for
position, velocity, and acceleration. Since the zero-moment
point criterion is considered in this design, as well as the
interaction forces between the user’s limb and the orthosis,
the user can voluntarily alter their walking pattern, such as
increasing their speed while preserving the stability.

An autoencoder neural network (AENN) is used by
Wu et al. [106], for the prediction of hip and knee joint
trajectories. These generated gait patterns will be used by
their lower limb robot SLEX and are based on the walking
speed as well as 21 body parameters. A Gaussian regres-
sion process (GRP) with automatic relevance determina-
tion (ARD) is used to map the relationship between walking
speed (desired) and body parameters to spatial-temporal fea-
tures. Spatial-temporal features are used by the AENNwhich
outputs joint trajectories for the knee and hip angle. This
process allows for individualized gait trajectories based on
the person’s particular body parameters, allowing the sharing
of the exoskeleton by multiple users.

2) DEEP NEURAL NETWORK
A recurrent neural network (RNN) is implemented by
Boudali et al. [107] for hip and knee joint trajectory pre-
diction during transitioning locomotion modes such as level
walking and ascending stairs. The authors used the angular
position and velocity of a cane, to predict the angular posi-
tion of the contralateral foot. A RNN was used for dynamic
mapping and was compared against the least square method,
which performed static mapping. The RNN not only had
better performance but was capable of producing predictions
duringmode transitions (i.e., not limited to predictions during
steady state), which was a limitation of the least square
method. Introducing the position and velocity of an arm to
the model further lowered the RMS errors of the predictions
which were 1.36◦ and 2.48◦ for the hip and knee joints
respectively, for experiments involving intra-subject training.
Accuracy was greater for intrasubject mappings than for
inter-subject mappings.
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TABLE 2. Locomotion mode.
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TABLE 2. (Continued.) Locomotion mode.
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TABLE 3. Torque and moment.

3) LEAST SQUARE METHOD
The kernel recursive least square method is implemented by
Ma et al. [73] for hip assist torque prediction, outperforming
the MLPNN. The mean square errors for five trials where
between −11.18 and −13.41.

The least squaremethod is implementedBoudali et al. [107]
for hip and knee joint trajectory prediction. This method
resulted in larger RMS errors when compared to the RNN.
Furthermore, it was limited to performing static mappings
rather than dynamic mappings.

4) PRINCIPAL COMPONENT ANALYSIS AND BEST LINEAR
UNBIASED ESTIMATION
Complementary limb motion estimation (CLME) is used in
some wearable robotics, particularly for patients with hemi-
plegia, in which a healthy limb is used to produce a reference
trajectory for a pathological limb based on a mapping func-
tion. The reference trajectories produced could be angles or
trajectories. Vallery et al. [108], evaluated the use of CLME
which either uses principal component analysis (PCA) or
best linear unbiased estimation (BLUE) for the generation
of trajectories, comparing it to impedance control (fixed tra-
jectory) and zero-torque control. Their evaluation was based
on a few criteria, which included monitoring the amount of
power delivered by the exoskeleton in the different control
modes, as well as the distortive impact of this method on
the muscle activity and the kinematics of gait. Compared to
impedance control, using CLME showed to produce more
natural walking patterns. PCA-CLME also performed worse
than BLUE-CLME.

Probabilistic principal component analysis (PPCA) model
is implemented by Tanghe et al. [85] for the prediction of gait
trajectories. The model is capable of predicting motions over
a short time horizon but fails for longer time horizons.

PCA is implemented by Hassan et al [109]. The
authors investigated the efficacy of synergy-based control,
also referred to as complementary limb motion estima-
tion (CLME). Intended for patients with hemiparesis, the
kinematics of the healthy limb and an assistive canewere used
to estimate the reference trajectory of the limbwith weakness.

The reference trajectory was the input to a proportional dif-
ferential (PD) controller, which controls a single limb HAL
exoskeleton. Synergies of the limbs of healthy people were
first identified to be able to map the relationship between
the healthy and affected limbs of patients with hemiparesis.
Synergy-based control was compared to autonomous control.

E. OTHER
The intention to perform dorsiflexion has been decoded using
EEG signals by Xu et al [110], for controlling a motorized
active foot orthosis. The authors aimed to control the dorsi-
flexion of a motorized ankle-foot orthosis by having the user
imagine dorsiflexion to provide timely stimulation that will
promote cortical plasticity for stroke patients. The importance
of appropriate stimulation timing correlates with the Hebbian
rule that states that ‘neurons that fire together, wire together’.
Using locality preserving projections (LPP) and a linear dis-
criminant classifier (LDC), movement related cortical poten-
tials (MRCP) were detected. The LPP-MRCP performed a
signal versus noise classification and two consecutive ‘sig-
nal’ classifications indicate an MRCP. The classifier was
tested on 10 healthy subjects, with a true prediction rate of
73.0 ± 10.3%. To evaluate whether cortical plasticity was
induced, transcranial magnetic stimulation (TMS) before,
right after and 30 minutes post the 15 min BCI-MAFO was
performed. The 87.2% increase of MEP post BCI-MAFO
demonstrated cortical plasticity.

V. DISSCUSION AND CONCLUSION
This systematic literature review presented an overview of
intelligent algorithms used to obtain parameters of gait for
controlling wearable lower limb robotics, such as exoskele-
tons and orthoses. While unified in their goal of support-
ing the body in walking and performing various locomotion
activities, they varied in their control algorithms, functional
purpose and sensors used.

A. GAIT PARAMETER
Several classification and regressionmodels have been imple-
mented for the identification of gait phases, locomotion
modes, torque/moments and joint angle trajectories. The type
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FIGURE 5. Four main gait parameters have been detected or predicted
using intelligent algorithms for the control of lower limb robots. The pie
chat illustrates the distribution of the gait parameters in the reviewed
papers. A large proportion of papers are on gait phases.

of parameter that needs to be detected will depend on several
factors including (i) the type of control. Gait phases for
instance can be used for switching between discrete control
modes, while joint trajectory prediction can be used as feed-
forward to the controller, to enhance stability by compensat-
ing for the time delays. Having future information about the
trajectories or intent can allow smoother transitions between
the control modes [85]. The type of parameter detected is
also dependent on (ii) the functional purpose of the exoskele-
ton. For example, intention derived from muscle activity can
be mapped to a discrete number of control modes. This is
appropriate for neurorehabilitation applications where the
intention information is used as a ‘trigger’ to initiate timely
and appropriate movement of the exoskeleton. Other modes
of neurorehabilitation and other functional purposes may
require mapping the intention derived frommuscle activity to
a continuous signal, such as the desired joint torque [47]. The
functional purpose and type of control would in turn depend
on (iii) the patient’s condition and disease. An exoskeleton
can be used for locomotion assistance, and/or rehabilitation
where it can be used as compensation due to limb ampu-
tation or paralysis, or for promoting complete or partial
neural recovery caused by neurological injuries, including
strokes [47]. These factors should be taken into consideration
when choosing the parameter.

The proportion of the parameters in relation to all of the
papers reviewed is as follows: 35.6% gait phase, 31.1% loco-
motion mode, 24.4% joint angle and trajectory and 8.9%
torque and moment.

The maximum number of gait phases is eight, yet most
of the researchers detected a fewer number in their imple-
mentations. Approximately 50% of the papers identified four
phases, 30% identified two phases and only one implemen-
tation identified all eight phases. Some authors reported that
identifying a low number of discrete phases is sufficient for
their robotic applications. An alternative to finding a dis-
crete number of gait phases has also been presented, where
the percentage of the gait phase was determined instead.
This approach obviates the need to have clear features iden-
tifying the start and end of each phase.

As for locomotion mode identification, the number of
modes detected varied, from as little as one mode, where
intention for gait initiation was identified, to detecting

FIGURE 6. Number of phases identified in the reviewed papers.

fifteen modes which include standing, sitting, walking at
different speeds, walking up a slope, and other static and
dynamic states. Overall, the most commonly identified loco-
motion modes are level walking, ascending and descend-
ing stairs/ramp, and sitting/standing. The number of modes
should be dictated as per the device’s design, intended pur-
pose, and users.

Joint angles and trajectories have been identified by several
authors. A reference trajectory can be generated and used
as input to a controller. Complementary limb motion esti-
mation (CLME) was used, whereby joint trajectories of a
healthy limb are utilized to generate trajectories for a patho-
logical limb, such as in the case with patients with hemipare-
sis. The least commonly detected gait parameter was joint
torque/moment, only 8.9% of all the papers reviewed.

A few papers have identified multiple parameters together,
mostly gait phases with locomotion modes, while the remain-
ing papers detected one gait parameter only.

B. ALGORITHM
Two main types of algorithms have been used for param-
eter detection/prediction. Classification models were used
to identify a discrete number of gait phases or locomotion
modes, and regression models were used to predict contin-
uous kinematic or kinetic trajectories, for estimating joint
angles or torques and moments.

Some authors implemented several machine learning mod-
els which allowed for comparing their performance while
keeping other influential factors such as types of sensors,
signal processing, and type and size of input/testing data,
constant. A wide range of algorithms was used to detect
gait phases, including neural networks, deep neural networks,
SVMs, KNN, fuzzy logic etc. Accuracies for gait phase detec-
tion ranged from as low as ∼70% up to ∼98%.
Similarly, a wide range of algorithms were used for loco-

motion mode identification. Most of the implementations
that detected three locomotion modes achieved an accuracy
greater than 95%. The diversity of algorithms was lower for
torque and moment predictions, which were predominantly
predicted with neural networks. Similarly, neural networks
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TABLE 4. Joint trajectory and angle.
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TABLE 4. (Continued.) Joint trajectory and angle.

were primarily used for prediction of joint angles and trajec-
tories followed by PCA.

Approximately, only 15% of the papers reviewed imple-
mented deep learning models, mostly for gait phases. When
deep learning models such as LSTM-DNN, DM-CNN,
SSRL, and LSTM were compared to other shallow machine
learning implementations, they were found to outperform in
accuracy and F-score metrics. The presented results encour-
age further studies.

When reporting the performance of the machine learning
models, multiple performance metrics have been used includ-
ing accuracy, root mean square error (RMSE), F-score, pre-
cision and recall rates, as well as delay times. While included
in some, the duration of computation and the delay of the
prediction have not been considered by all the authors. For
real-time applications, this is a crucial factor to be considered
when choosing a model or a type of sensor, since even high
accuracy models cannot be used if the delay time for predic-
tions or computation durations are significantly large, making
real-time control of exoskeleton or orthosis not viable.

There have been numerous combinations of sensors to
measure data to be used as input for the models. Some
included wearable sensors such as IMUs, foot pressure sen-
sors, and EMG electrodes. While others used non-wearable
sensors such as Motion Capture Systems, and ground force
plates (measure ground reaction force). Although sensors in
smartphones have been used in gait analysis [111], they have
not been deployed in the papers included in this review. There
are advantages and disadvantages of each of the sensors and
the signals they measure. IMUs which measure acceleration
signals suffer from drift, and they have been remedied by
calibrating the value with every step. A method to address
this issue has been proposed by Qui et al. [112].

There have been single modality approaches where the
input of the algorithm is based on data from a single sensor
such as an IMU or EMG only and multi-modality approaches
where it’s a combination of multiple sensors. Optimal loca-
tion for sensor placement has been frequently studied [113].
There seemed to be preferences for specific sensing modali-
ties based on the parameter predicted. IMU sensors have been
commonly used for gait phase detection, whereas EEG has
been commonly used for locomotion modes and not for any
other parameter. Torque/moment and joint angle trajectory
predictions predominantly used EMG.

It’s important to make a distinction between sensors that
collect measurements to be used as input to algorithms, and
between those that collect measurements to segment data
collected by another sensor that will be input to machine
learning models, or to produce ground truth labels for super-
vised learning algorithms. One of the most commonly used
sensors for segmentation or labelling of gait phases is foot
pressure sensors. The same applies to other sensors such
as motion capture systems which were also either used as
an input or to compare the motion capture measurements
to those predicted by machine learning models, as motion
capture systems are considered the ‘gold standard’ for some
measurements.

There have been varied choices on whether the accelerom-
eter, gyroscope, or both would be used as well as the number
of axes considered. Also, the same measurement can be made
using multiple sensors. For example, joint angles could be
measured with a goniometer or motion capture system but
can also be derived using signals from IMU using quaternion
calculations. The choice of sensors will impact performance
when comparing wearable and non-wearable sensors. Thus,
algorithms trained with data from motion capture systems
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may demonstrate lower performance when data from wear-
able sensors are replaced in the actual implementation.

The type of sensor had an impact on detecting locomotion
mode. Implementations involving EEG or EMG sensors had
lower prediction accuracies, ranging between 68.4%-92.4%,
while implementation utilizing other sensors such as IMUs
had accuracies mostly above 90%. For torque and moment
prediction, EMG and joint angle sensors were predominantly
used.

C. TRAINING DATASET
In the identified studies, the number of participants in the test-
ing of the proposed models is very small (as little as one par-
ticipant in some cases). This will cause an issue particularly
for generalised models that need to capture the inter-subject
variability. The highest number reached to around thirty
participants. Other papers ranged around ten participants.
Studies have shown that algorithms that are trained on a
group of participants of people and tested on data from other
participants perform worse than personalised models, which
learned the gait patterns from a single person and was tested
on unseen data from that person. Ideally, achieving higher
performance with a generalised model is more desirable, yet
if inter-subject variability remains high even among people
of the same anthropometrics and gait conditions, leading to
lower performance when tested on ‘unseen’ subjects, indi-
vidual models may be needed.

The environmental conditions in which the training sets
were recorded also have an impact on the real-time perfor-
mance of the algorithms. Most of the data collected involved
experiments in labs, usually under constrained environments.
For some studies, walking speeds have been set (due to
using treadmills), others involved self-selected speeds. These
conditions may perturb natural gait patterns, which usually
experience more stochasticity and noise in real environments.
Therefore the performance of some of the models presents an
‘‘upper-bound on the performance’’ [114], and some deterio-
ration in performance should be expected.

D. FUTURE WORK
Robotic devices have been developing rapidly, so are the
models used for controlling them. This paper presents a range
of state-of-the-art models that have been currently used, and
the different parameters researchers have been investigat-
ing. Both classification and regression methods have been
successfully integrated with the controllers of exoskeletons,
as demonstrated by the papers that applied these algorithms to
control their exoskeleton. As previously discussed, the meth-
ods chosen are dependent on the type of controller, functional
purpose of the exoskeleton, and the disease and condition of
the patient. However, further research needs be conducted to
compare and contrast the methods. The integration of one
or multiple methods with controllers should also be further
investigated.

One of the important issues that needs to be addressed
is the lack of pathological gait datasets. This is a known
limitation across the majority of the papers, whereby

models presented need to be trained/tested on pathological
gait patterns. In the presence of pathological gait data, transfer
learning can be used to increase the model’s adaptability to
other gait patterns. Knowledge gained in identifying healthy
gait parameters can be transferred to pathological gait, par-
ticularly if the available datasets for users with pathologies
are small [115], [116]. The need for more training data is
not limited to including pathological gait. The models need
representative data to make accurate predictions. The data
sets need to include gait patterns obtained while the users
are wearing an exoskeleton, in zero-torque mode, or assistive
modes since this alters gait patterns. It should also include
users walking at a range of speeds.

Furthermore, the classification models used for detecting
gait phases or locomotion modes detect activities only. It may
be beneficial to develop algorithms that are capable of assess-
ing the activity [117], since that will enable evaluating the
current state of the user of the robotic device and monitor
how their gait progresses with its use. This goes along with
the need to develop explainable AI, which allows scientist
and clinicians to gain insight on how algorithms make their
predictions, but also further our understanding of gait anal-
yses. For instance, explainable AI is particularly significant
in decoding intention from brain signals, as this will increase
our understanding of the brain, and the role of its regions.

Human-robot interaction requires awareness of the state of
the user, which all of these algorithms can achieve. However,
there is also a need to enhance environmental awareness, such
as models that are capable of detecting the type of terrain the
user is walking on and adapt the assistance accordingly.
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