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Abstract
It is commonly recognized that Landauer’s bound holds in (irreversible) quantum
measurement. In this study, we overturned this common sense by extracting a single
spin from a spin–spin magnetic interaction experiment to demonstrate that Landauer’s
bound can be broken quantitatively by a factor of 104 ∼ 1010 via quantum spin
tunneling. It is the quantum limit (�/2 ≈ 10−34 J · s), rather than Landauer’s bound,
that governs the performance of a spin qubit. An optically-manipulated spin-encoded
quantum computer is designed, in which energy bound well below kBT to erase
a spin qubit at the expense of a long spin relaxation time is theoretically sensible
and experimentally verified. This work may represent the last piece of the puzzle in
quantum Landauer erasure in terms of a single spin being the smallest and the closest
to the quantum limit.

Keywords Quantum computer · Qubit · Landauer’s bound · Spin · Quantum spin
tunneling

1 Introduction

Quantum computing expressed by unitary operation is notably reversible whereas the
projective initialization needed to initialize the system in an entangled state and the
projective measurement needed to recover classical information from the computation
are not. Landauer’s bound [1] limits these irreversible operations so that the increased
number of computations per joule of energy dissipated will come to a halt around 2050
[2, 3].

Landauer’s bound was proposed in 1961, when Landauer argued that information
is physical and that the erasure of a bit of classical information requires a minimum
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energy of �E = kBT ln 2. Profoundly, Landauer’s principle defined the ultimate
physical limit of computation [1].

In March 2012, Landauer’s bound was experimentally verified by Bérut et al. in
a single silica glass bead (2 μm diameter) as a Brownian particle. The particle was
trapped in a double-well potential. The mean dissipated heat was observed to saturate
at the bound in the limit of long erasure cycles [4]. In June 2012, Alexei et al. reported
the first experimental test of Landauer’s principle in logically reversible operations,
in which they measured energy dissipations much less than Landauer’s bound (at the
sub-kBT level) whereas irreversible operations dissipate much more than Landauer’s
bound [5].

In 2014, Jun et al. verified the bound in a fluorescent particle (200 nm). They
demonstrated using small particles in traps and reducing the exerted work to the
Landauer limit during erasure [6].

In 2016, Hong et al. extended the principle to orientation-encoded information and
measured an energy dissipation of 4.2 zeptojoules in a single-domain nanomagnet
(comprising more than 104 spins). They used a laser probe to measure the energy
dissipation when a bit was flipped from off to on [7].

In May 2018, a team led by Feng reported a single-atom demonstration of Lan-
dauer’s principle in a fully quantum system (Fig. 1a), in which a trapped ultracold
40 Ca+ ion was used as an atom qubit (comprised of its two internal states) [8]. The
erasure procedure was completed with the heat reservoir (the ion’s own vibrational
modes) and the work involved was measured [8, 9]. In June 2018, Gaudenzi et al. also
extended Landauer’s principle to the quantum realm in a collective Sz = ±10(20μB)

giant spin at 1 K, with a superconducting quantum interference device (SQUID) [10].
In March 2020, Saira et al. measured Landauer’s bound at 500 mK [11]. In June

2020, Çetiner et al. measured Landauer’s bound in ion channels, which are smaller
than the florescence molecules [6] but larger than the spins [12].

In March 2021, Holtzman et al. showed that Landauer’s bound is enforced by the
contraction of the physical system’s phase-space volume during the bit erasure and
then suggested that, if the energy of the system is precisely known, it is possible to
implement an erasable bit with no thermodynamic cost in a Hamiltonianmemory [13].
However, they also pointed out that their proposal is of a purely theoretical nature and
any uncertainty in the energy (i.e., the knowledge of the system’s energy is limited in
any realistic situation) results back in Landauer’s bound [13]. In April 2021, Chiribella
et al. found that even a logically reversible quantum operation (running on a physi-
cal processor operating on different energy levels) requires energy and quantified the
upper and lower bounds [14]. Their bounds are present even if the evolution is entirely
reversible [14]. Remarkably, their bounds can be compared quantitatively with the
classical Landauer bound, which is present when the evolution is irreversible [14].
In November 2021, Georgescu reviewed 60 years of Landauer’s principle and sum-
marized that this principle imposes a fundamental energy bound on both irreversible
bit operations in classical systems (which is the traditional domain of Landauer’s
principle) and even the reversible operations of quantum computation in spite of the
distinction between these two operations [15].

Here, Landauer’s bound will be studied in a single spin as the smallest among
various information carriers, as shown in Fig. 1b. In the era of quantum computing,
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Fig. 1 a A quantum computer acting on few spin qubits, whose state can be represented by a point on the so-
called Bloch sphere. At the start of an erasure, the spin is equally likely to be in either of the up/down states
(corresponding to the center of the Bloch sphere) and thus has a maximal entropy S = kB ln 2. The qubit
ends up in a pure quantum state (a point on the Bloch sphere’s surface), in which it has a zero entropy S = 0
[9]. This information erasure is an irreversible manipulation of the created information, i.e., the “Maxwell
demon” [4] or the observer that “created” the information loses the ability to extract work from the system
if the information is already “burnt”. This energy bound is achievable even if a computation is carried out
by a complex quantum circuit with many individual unitary gates [13]. bVarious experimental verifications
of Landauer’s bound in different information carriers at their respective operating temperatures. This study
on a single spin may represent the last piece of the puzzle in quantum Landauer erasure

one naturally wonders if there is a way around the bound considering that quantum and
classical bits are fundamentally different [9]. We will attempt to answer this question
in this article.

2 Position-encoded information

The statistical-mechanical formula for the free energy F is: F = −kBT ln Z , where
kB is the Boltzmann constant and Z is the partition function [16]. In one-dimensional
Brownian motion, the position-encoded system (a solid particle as an information
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carrier trapped in a chamber with impenetrable walls as shown in Fig. 2a) can be
approximated as one in internal thermodynamic equilibrium at each given value of
the coordinate x of the particle. The subsystem formula is: F(x) = −kBT ln Z(x),
where F(x) is the subsystem free energy at x, and Z(x) is obtained by summation of
the microstates at x [16, 17].

For a bit of position-encoded (classical) information in Fig. 2a, the information
carrier for “random data” is equally likely to be in the L or R chamber, i.e., the
probabilities are P(L) = P(R) = 1/2. After erasure, the carrier is assuredly reset to a
fixed reference state (the L chamber in this case): P(L) = 1; P(R) = 0.

Thework to push the information carrier (with two possible positions) to the desired
half (L) is:

W ≥ F(x) = kBT ln 2, (1)

where Z(x) = 1
2 since the information carrier has only two possible positions in the

chamber.
Interestingly, the above operation could be performed by a “Maxwell’s demon” that

consumes energy to observe the position of the carrier and insert the partition, where
the consumed energy still equals the work exerted for erasure.

3 Orientation-encoded information

A single-domain nanomagnet, comprising more than 104 spins [7] and being large
enough to be treated as classical [10], was used to represent a bit of datum by encoding
its (magnetization) orientation, as shown in Fig. 2b. Due to thermal agitation, the
orientation (x) of a magnetic moment fluctuates and may therefore take an arbitrary
direction. The probability [that is proportional to Z(x)] to find x at thermal equilibrium
can be deduced from Eq. 1. Hence, we have:

F(x) = −kBT ln Z(x) = kBT ln 2, (2)

where Z(x) = 1
2 since the direction of a magnetic moment is either “up” or “down”

along the easy axis. The two possible orientations of a magnetic moment are anal-
ogous to the two possible positions of a Brownian particle in the position-encoded
information system. In other words, these two information systems share the same
thermodynamics.

As a quantum computing paradigm, a single or giant spin can be used as a bit
of quantum spin information by encoding its spin orientation, as shown in Fig. 2c.
The spin angular momentum is quantized with only two possible z-components. At
efficiently low temperatures, direct tunneling via the ground state becomes relevant
and often provides the dominant spin relaxation channel [10]. As illustrated in Fig. 2c,
quantum spin tunneling through the barrier from “1” to “0” is combinedwith excitation
absorbing resonant phonons to reach the (tunneling) state and de-excitation emitting
a phonon to the ground state [10].
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Fig. 2 Comparison of the three erasure protocols. For a bit of position-encoded (classical) information (e.g.,
a silica bead [4], and a fluorescent particle [6]) in (a), the erasure (L) state is reached from the random data
state via the free state (the carrier can move freely between the two chambers) by removing the partition.
As an isothermal contraction, the erasure creates kBT ln2 (Landauer’s bound) by introducing a frictionless
piston and pushing it toward the L direction. For a bit of orientation-encoded (classical) information (e.g.,
a single-domain nanomagnet comprising more than 104 spins [7] and being large enough to be treated as
classical [10]) in (b), the erasure (Up) state is reached from the random data state by applying a magnetic
field B along z to overcome the barrier kBT ln2 (this field also tilts the potential). For a bit of quantum
spin information (e.g., a Sz = ± 10 giant spin [10] and a single spin in this work) in (c), the erasure
(Up) state is reached from the random data state by applying a small magnetic field B. In (c), the position
of a wavefunction (in blue) represents the (lower-lying) quantum energy level in contrast to the classical
double-well potential landscape (in red) that is needed for the Landauer erasure (Color figure online)

123



  378 Page 6 of 19 F. Z. Wang

The energy of flipping a spin undergoing a magnetic field B is:

�E↑↓ = �μB · �B = �μB · Bẑ = γ Ŝz B = γ B
�

2
(|↑〉 〈↑ | − |↓〉 〈↓ |), (3)

where μB is the Bohr magneton, γ is the gyromagnetic ratio of an isolated electron,

Ŝz = �

2

[
1 0
0 −1

]
is the quantum–mechanical operator associated with spin- 12 observ-

able in the z axis, and � is the reduced Planck constant.
Superficially, this new energy bound of flipping a spin is decoupled from the

environmental temperature T , but, taking the giant spin as an example, (phonon-
mediated/assisted) quantum spin tunneling is still coupled to the ’surrounding world’,
including the environmental temperature T [10]. Namely, the spin relaxation time, τrel
approximately follows Arrhenius’s law: τrel = τ0exp

(
U

kBT

)
, where τ0 = 10−8 s, U

is the activation energy determined by the tunneling channel and τrel ≥ 100 s as T
decreases to 1 K [10].

4 Experiment of spin–spinmagnetic interaction with quantum spin
tunneling

Extremely weak magnetic interactions between the two ground-state spin-1/2 (1μB)

valence electrons of two 88Sr+ ions across a separation (d = 2.18 ∼ 2.76 μm) were
reportedly measured as shown in Fig. 3 [18]. The two ions were trapped in a linear rf
Paul trap with a radial trap frequency (� = 2π × 2.5 MHz) and laser-cooled to 1 mK
[18–20]. The measurement takes full advantage of the quantum lock-in method [19]
to spectrally separate weak signals from noise.

In this experiment, it was found that the spin–spin magnetic interaction obeys the
inverse-cube law and spin entanglement was observed [18]. As the smallest magnet
(the Bohr magneton), a spin ( �μB) applies a magnetic field to another spin. While the
two spins are aligned along the line connecting the two ions [18], the strength of the
magnetic field is:

B = μ0

4π

2μB

d3
= (0.88 ∼ 1.79) × 10−13 T, (4)

where μ0 is the vacuum permeability constant.
According to Eq. 3, we have the energy of flipping a spin:

�E↑↓ = μB B = μB
μ0

4π

2μB

d3
= (0.82 ∼ 1.66) × 10−36 J. (5)

This energy represented by 2�E↑↓
h = 2(0.82∼1.66)×10−36 J

6.63×10−34 J·s = (2.47 ∼ 5.01) mHz
matches the measured frequency range (2–5 mHz) in the spin–spin magnetic interac-
tion experiment [18].
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Fig. 3 Extremely weakmagnetic interaction between the two ground-state spin-1/2 (1μB ) valence electrons
of two 88Sr+ ions was reportedly measured [18]. This magnetic interaction can then impose a change in
their orientation. The two ions were laser-cooled to their ground state and entangled across a separation
(d = 2.18 ∼ 2.76 μm). An ion will absorb more photons if they move toward the light source and the net
result is a reduced speed of the ion, which is equivalent to cooling the ion since the temperature is a measure
of the random internal kinetic energy. Although |↑ ↓〉 and |↓ ↑〉 are indistinguishable, the measured energy
splitting (in mHz) between the two entangled Bell states |ψ ±〉 = (|↑ ↓〉 ± |↓ ↑〉)/√2 in this experiment
can be used to verify the calculated energy �E↑↓ of flipping a spin in Eq. 5. This experiment is such an
excellent example in (high sensitivity) quantummetrology with the aid of DFS (decoherence-free subspace)
that it would be almost impossible to directlymeasure amagnetic field of this strength since it is six orders of
magnitude smaller than magnetic noise [18]. A single spin can be switched reliably with a typical detection
fidelity of 98% [18]. A redraw courtesy of Shlomi Kotler (the Hebrew University of Jerusalem)

A fault-tolerant quantum computer with imperfect quantum logic gates in practice
needs to perform long computations without succumbing to some inevitable errors
and noise, which raises a good concern in reliability or error probability. We stress
that a single spin can be switched reliably (with a typical detection fidelity of 98% in
the presence of magnetic noise that is six orders of magnitude greater than the applied
magnetic field) [18]. The spin evolution was restricted to a decoherence-free subspace
(DFS) that is immune to collective magnetic field noise [18] since the two qubits “see”
the same (time-dependent) magnetic noise from the environment, whose wavelength
is much larger than the separation d (Fig. 3). Since DFS encodes information through
its sets of states, then it can be viewed as a quantum error-correcting (QEC) code to
protect the two entangled spins against errors (decohering processes).

As a popular technique to raise (or “pump”) electrons from a lower energy level
in an atom or molecule to a higher one, optical pumping was also used here to pump
electrons bound within the ions to a well-defined quantum state |↑ ↓〉 or |↓ ↑〉, as
shown in Fig. 4. The frequency and polarization of the pump laser determined the
sublevel in which the electron was oriented. This experiment displayed the ability
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Fig. 4 Optical pumpingwas used to create andmanipulate the spin qubits. A circularly polarized on-resonant
422 nm laser cyclically pumped the two electrons bound within the two ions to a well-defined quantum
state |↑ ↓〉 or |↓ ↑〉, followed by a spin rotation [18]

of coherent electromagnetic radiation (having wavelengths below one millimeter) to
effectively pump and unpump these electrons. The infrared 1092 nm and 1033 nm
lasers acted as repump lasers [18]. Generation of entangled Bell states of the form
|ψ ±〉 = (|↑ ↓〉 ± |↓ ↑〉)/√2 was done using a Sörenson-Mölmer entangling gate
[18].A pure quantum state represented by theBloch vector can be located bymeasuring
its projection on an equal superposition, e.g. the (|↑ ↓〉± |↓ ↑〉)/√22 basis (i.e., y) if
rotating it around x, via a parity observable. These collective rotations do not change
the relative orientation of the spins, leaving the spin–spin interaction invariant [18].
The parity observable measures the coherence between |↑ ↓〉 and |↓ ↑〉: it is +1 if the
spins are aligned and −1 if they are anti-aligned.

In magneto-optical traps (MOTs), the actual temperature is (10 ∼ 30)TDoppler [21].
The minimum Doppler temperature is:

TDoppler = ��

2kB
= 1.05 × 10−34 J · s × 2π × 2.5 × 106 s−1

2 × 1.38 × 10−23 J · K−1 = 5.07 × 10−5 K,

(6)

where � is broad natural linewidth (measured in radians per second), hence the cal-
culated temperature is T = (10 ∼ 30)× 5.07× 10−5 K = (0.51 ∼ 1.52) mK, which
agrees reasonably with the measured temperature of 1 mK. Landauer’s bound can be
expressed by the Doppler temperature as kBT ln 2 = kB(10 ∼ 30) × TDoppler ln 2 =
(0.96 ∼ 2.87) × 10−26 J at 1 mK.

Therefore, Landauer’s bound near 0 K was quantified by the Doppler temperature.
Landauer’s bound

[
(0.96 ∼ 2.87) × 10−26 J

]
at 1mK is 10−5 times Landauer’s bound

(3 × 10−21 J) at room temperature (300 K) as it is proportional to the temperature.
Noticeably, according to Eq. 5, the input energy [(0.82 ∼ 1.66)×10−36 J] to erase

a spin quantum datum is 10−10 times Landauer’s bound
[
(0.96 ∼ 2.87) × 10−26 J

]
at

1mK. This verification simplymakes full use of themeasured data from this spin–spin
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experiment backdated to 2014 in a completely different (magnetic-interaction) context
[18], whose authors wrote to us “It’s exciting to hear that our work is useful in new
areas of research that we were not aware of when doing the experiment.” after we
shared this manuscript with them.

Although the spin–spin experiment [18] is in a completely different (magnetic-
interaction with the inverse-cube law) context, it equivalently includes a com-
plete erasure protocol and gives the measurement of the work involved, as
shown in Fig. 5. This equivalence is based on |↓ ↑〉 = 1√

2
(|ψ +〉 − |ψ −〉) =

1√
2

([ |↑ ↓〉+|↓ ↑〉√
2

]
−

[ |↑ ↓〉−|↓ ↑〉√
2

])
. This complete erasure protocol has all the nec-

essary steps as defined in [8]: at the start step of erasure, a circularly on-resonant
422 nm laser was used to cyclically pump the two electrons bound within the two ions
to amaximally mixed quantum state (see Fig. 4 for details): the spin is equally likely to
be in either of the up/down states (corresponding to the center of the Bloch sphere) and
thus has a maximal entropyS = kB ln2; at the mediate step of erasure, the (optically)
created qubit is then erased by the (tiny) magnetic field produced by another spin; at
the end step of erasure, the qubit ends up in a (ground) quantum state | ↑〉 (a point on
the Bloch sphere’s surface), in which it has a zero entropy S = 0. The measurement
of the applied magnetic field whose strength is six orders of magnitude smaller than
magnetic noise was conducted with the aid of DFS (see Fig. 3 for details) [18].

To verify the completeness (start/erasure/end) of the erasure protocol, onemay com-
pare the spin–spin experiment [18] and the single-atom demonstration that completed

Fig. 5 Although the spin–spin experiment [18] is in a completely different (magnetic-interaction) context,
it equivalently includes a complete erasure protocol and gives the measurement of the work involved. In
information erasure, the work one needs to do in order to reset a bit register irrespective of its initial state has
to compensate for the illustrated entropy drop �S [8, 9]. Rabi flopping between the two levels illuminated
with light exactly resonant with the transition occurs at the Rabi frequency [22]
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the erasure protocol to support quantum Landauer principle [8]. Essentially differ-
ently, in this study of a single spin as the smallest information carrier, we attempt to
overturn the common sense that Landauer’s bound holds in quantum measurement.

To identify the dominant factors in our problem, we rewrote (the spin part of) the
two-ion Hamiltonian in the spin–spin experiment [18] as:

H = 0.5�
(
ωA,1σz,1 + ωA,2σz,2

)
︸ ︷︷ ︸

MagneticNoise(kHz)

+2�ζσz,1σz,2︸ ︷︷ ︸
Spin(mHz)

−�ζ
(
σx,1σx,2 + σy,1σy,2

)
.︸ ︷︷ ︸

RabiFlopping(kHz)

(7)

Hereσ j,i is the j ∈ {x, y, z}Pauli spin operator of the ith spin,withinwhichσz,1 σz,2
does not cause any spin-flips and acts as a phase gate in quantum computing whereas
σx,1σx,2 and σy,1σy,2 lead to Rabi flopping of |↑ ↓〉 ↔ |↓ ↑〉; ωA,i = 2μB Bi/2�,
where Bi is the external magnetic field. The spin–spin interaction strength is ζ =
μ0μ

2
B/4π�d3, which is consistent with Eq. 5. The first term on the right-hand side

of Eq. 7 describes the Zeeman shift of the spins’ energy due to the magnetic field
fluctuations, which is equivalent to kHz in the spin Larmor frequency ωA,i (i = 1, 2)
[18] that characterizes the precession of a transverse magnetization about a static
magnetic field. The second term describes the spin–spin magnetic interaction, which
is equivalent to 2–5 mHz, as shown in Fig. 3 [18]. The third term results in a collective
spin flip, inwhich spin rotation is performed by pulsing a resonant oscillatingmagnetic
field, resulting in a Rabi frequency in kHz, as shown in Fig. 5 [18]. Both the spin
Larmor frequency in the first term and the Rabi frequency in the third term are on the
same kHz order, they largely cancel out each other due to their opposite signs. Owing
to this cancelation, it is possible to single out the tiny magnetic field (the two spins
apply to each other) for the measurement in the presence of magnetic noise that is six
orders (resulting from kHz

mHz ) of magnitude greater than it [18]. It is the second term
(the spin–spin magnetic interaction at 2–5 mHz) that is at the focus of our study.

Even if we conservatively use the Rabi frequency on the kHz order (rather than
2–5 mHz we used above) to calculate the energy of flipping a spin, we can still safely
say that the input energy to erase a spin quantum datum is 10−4 times Landauer’s
bound

[
(0.96 ∼ 2.87) × 10−26 J

]
at 1 mK.

An analytical model to explain the above experimental verifications follows.

5 Spinor wavefunction of an isolated electron

The Schrödinger-Pauli equation for an isolated electron (the smallest magnet being
an info carrier shown in Fig. 6a) is:

i�
d|�
dt

= Ĥ |�〉 , (8)
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Fig. 6 a Quantum spin tunneling penetrates the thermal energy barrier (Landauer’s bound) and provides a
“shortcut” for spin reversal, which is different from classical information manipulations. The cost in erasing
a bit does not come from “climbing a barrier”, but rather from compressing phase space with dissipative
dynamics. b Heisenberg’s time-energy uncertainty relation (TEUR) [23, 24] is used to define information
quantitatively from ameasuring perspective: the smallest error in measurement is 1 bit. The higher the input
energy is, the shorter the time is needed to write/erase a bit of information and vice versa. At the origin
(t = 0), there is a very high, but narrow energy barrier. This new definition of information is an important
part of our theory in the sense that it is the quantum limit (�/2 ≈ 10−34 J · s), rather than Landauer’s
bound, that governs the performance of a spin qubit in terms of the energy time product being a constant, as
vividly illustrated here. That is, energy bound well below kBT to erase a spin qubit at the expense of a long
spin relaxation time is theoretically sensible and experimentally verified due to this unchanged product (the
shaded areas). Our new definition of information based on Heisenberg’s principle allows us to determine
the trade-off between energy and speed of manipulating a spin qubit

where the spinorwavefunction is |�(t) 〉 = C+(t)|↑〉+C−(t)|↓〉, and theHamiltonian
is Ĥ = −γ B �

2 (|↑〉〈↑| − |↓〉〈↓|) according to Eq. 3. Substitutions into Eq. 7 give:

i�
(
Ċ+|↑〉 + Ċ−|↓〉) = − γ B

�

2
(|↑〉 〈↑| − |↓〉〈↓| )

(
C+|↑〉 + C−|↓〉)

= − γ B
�

2

(
C+|↑〉 − C−|↓〉), (9)

[
Ċ+
Ċ−

]
= i

2
γ B

[
1 0
0 −1

][
C+
C−

]
= i

2
γ B

[
C+

−C−
]
. (10)
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The WKB (Wentzel–Kramers–Brillouin) approximation rewrites the (complex-
valued) spinor wavefunction as:

|�(t) =
[
C+(t)
C−(t)

]
=

[
C+(0)e�(t)

C−(0)e−�(t)

]
. (11)

The time evolution takes place under �E↑↓ = μB B = 1
2γ �B in the presence of

Landauer’s bound LB = kBT ln2 so thatB = Bz +δB, where Bz is the (real) magnetic
field (along the z axis) and δB is an imaginary magnetic field [to which the thermal
perturbation (Landauer’s boundLB ) translates itself in the electron’s rest frame]. As
far as the imaginary perturbation magnetic field δB is concerned, it acts in a direction
opposite of the (real) magnetic field Bz and thus is mathematically ascribed as a
negative value. Without losing generality, �E↑↓(t) is assumed as a positive constant
E during −tE/2 ≤ t ≤ tE/2. Then, we obtain:

�

(
t = tE

2

)
=i

1

�

t∫
−∞

(
−γ B

�

2

)
dt

∣∣∣∣
t=tE/2

=i
1

�

t∫
−∞

[
�E↑↓(t) − LB

]
dt

∣∣∣∣
t=tE/2

=i
1

�
(EtE − LBtL). (12)

Then, Eq. 11 simplifies to:

|�(t = tE/2)〉 =
[

C+(0)e�(t)

C−(0)e−�(t)

]
=

[
C+(0)ei

1
�
(EtE−LBtL )

C−(0)e−i 1
�
(EtE−LBtL )

]
. (13)

Equation 13 shows that, underneath the potential hill (E < LB), behaving like a
free and oscillating wave, the single spin with less energy tunnels through the energy
hill and appears on the other side with a probability |�|2 to complete a reversal in the
spin–spin magnetic interaction experiment [18]. A similar (quantum spin tunneling)
phenomenon was observed in a collective Sz = ±10(20μB) giant spin [10].

InEq. 13, it is (EtE − LBtL) that defines thewavefunction. In otherwords, although
LB � E , it is the energy-time product, rather than any of these four parameters (E ,
tE , LB , or tL ) individually, that determines the behavior of the spin datum. We see
that the probability of tunneling is affected more by (EtE − LBtL) than by C+/−(0).
It seems that the quantum erasure differs dramatically from its classical counterpart.

In dissipative dynamics, erasing a bit of information requires probability concen-
tration in phase space, which leads to Landauer’s bound. In Hamiltonian dynamics,
it is possible to take a particle from say the left well to the right one at zero cost (or
as low as you want) [13]. Therefore, the problem in a Hamiltonian memory may be
that, at the same time, the particle in the right well goes to the left well (or somewhere
else—in any case it does not stay on the same well). Fortunately, the tunneling in
the spin–spin magnetic interaction experiment [18] is irreversible since the energy is
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input by applying a magnetic field that only favors and flips a spin with the opposite
direction and a single spin can be switched reliably with a typical detection fidelity
of 98% [18]. As mentioned above, a similar phenomenon (the spins can tunnel to the
opposite side of the potential barrier, thus leading to an effectively lower activation
energy for the spin reversal) was also observed in a collective Sz = ±10(20μB) giant
spin [10]. That is, the erasure of the spin datum in the giant spin experiment [10] and
the spin–spin experiment [18] is not pure Hamiltonian dynamics and the probability
concentration in phase space can still be seen.

6 Using Heisenberg’s principle to define information

To further interchange information with energy over time, we used Heisenberg’s time-
energy uncertainty relation (TEUR) in 1927 [23] to define information, as illustrated
in Fig. 6b. From a measuring perspective, one bit of information is the smallest error
in physical measurement. A bit of information is quantitatively defined as follows:

1(bit) = 1

�
�E�t, (14)

where we embraced a new interpretation of the TEUR: a quantum state with spread
in energy �E takes time at least �t to evolve to an orthogonal (distinguishable) state
[24].

Note that the above mentioned “one bit of information as the smallest error in
physical measurement” should not be interpreted as “the smallest error one makes is
one bit when mapping the measured analog value to a discrete sequence of digits”.
Here one bit is physically a quantum as the minimum amount of a conjugate pair
of observables (energy/time) involved in an interaction. According to Heisenberg’s
TEUR, this amount corresponds to Planck’s reduced constant (� = 1.054571817 ×
10−34 J · s) that defines the quantum nature of energy and relates the energy of a
photon to its frequency. Ergo, this new definition of information reflects the essence
of quantum physics: the magnitude of the physical property can take on only discrete
values consisting of integer multiples of one quantum (a multiple of Planck’s reduced
constant). Also note that �E�t/� is unitless, which does not violate the definition of
information in units.

This energy-time product is ultimate for a bit of information no matter what kind of
information carrier (a bead, an atom, an ion, a nanomagnet, a giant spin, a single spin, or
a photon) is used and what mechanism [classical physics (electrical, magnetic, optical,
chemical or even mechanical), or quantum physics] is used to encode/manipulate it.

If Landauer’s bound at room temperature is used, the time needed towrite/erase a bit
of information (that is physically equivalent to the duration of the energymeasurement
in the TEUR [24] since energy is consumed throughout the write/erase protocol) is:

�t = �

�E
= 1.05 × 10−34 J · s

3 × 10−21 J
= 3.50 × 10−14 s. (15)
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This calculation result agrees reasonably with the Brillouin’s principle [25].
If we use the calculated energy of (0.82 ∼ 1.66) × 10−36 J of flipping a quantum

spin at the Doppler temperature (Sect. 4, the corresponding timescale is:

�t↑↓ = �

�E↑↓
= 1.05 × 10−34 J · s

0.82 × 10−36 J
= 128 s, (16)

which is surprisingly long but still agrees reasonably with the measured interrogation
time (total tunneling time) (2TBell = 67 s × 2 = 134 s) for the rotation of the Bloch
vector from the south pole toward the north pole through the equatorial plane (Fig. 3)
[18]. It is also consistent with a very long spin relaxation time (τrel ≥ 100 s) at 1 K in
the aforementioned giant spin experiment [10].

Historically,more than one definition of information existed [26–28], which implies
that information can be studied from different angles and its definition may not be
unique. In this study, our new definition of information agrees reasonably with the
above experiment [18]:

1(bit) = �E�t/� = 8.2 × 10−37 J · 134 s

1.05 × 10−34 J · s ≈ 1(bit) (17)

which unveils that the reduced Planck constant (� = 1.05 × 10−34 J · s) is the limit
for a spin qubit, below which quantum computing does not make sense.

The above analysis clearly shows that Landauer’s bound can be broken quantita-
tively in such a single spin [at the cost of a long spin relaxation time (tens of seconds)]
in terms of the bound being defined as the smallest amount of the energy used to
erase a bit of information. One can use the work of μB B = 0.82 × 10−36 J to
erase a bit of quantum spin datum in the presence of Landauer’s bound [kBT ln 2 =
(0.96 ∼ 2.87)× 10−26 J] at 1 mK. The former is 10 orders of magnitude smaller than
the latter.

The energy-time cost of flipping a spin according to Heisenberg’s TEUR agrees
with the spinor wavefunction analysis in Eq. 13. This cost is: �E↑↓�t↑↓ = 0.82 ×
10−36 J×67 s×2 = 1.10×10−34 J · s, which is very close to the Heisenberg limit (a.
k. a. the quantum limit): �/2 ≈ 10−34 J · s [23]. Among various information carriers,
a spin is the closest to the quantum limit (Fig. 7a).

Noticeably, in the giant spin experiment, thework required for the erasure of each bit
is still equivalent to the theoretical Landauer bound at the experimental temperature
of 1 K [10]. In spite of quantum spin tunneling, Landauer’s bound still holds in a
giant spin that is thought to be still too large to break Landauer’s bound since each
nanomagnetic bit is composed of eight spin-5/2 Fe3+ ions coupled to each other by
competing antiferromagnetic interactions to form a collective Sz = ± 10 (20μB) giant
spin. The distance to the (energy-time) quantum limit is indicated in Fig. 7a so we
can easily identify the two best performing ones: a single spin [18] and a giant spin
[10]. Remarkably, the energy–time cost of the former is orders of magnitude better
than that of the latter. This result indicates that the size of an information carrier still
matters in terms of using a certain quantum effect (e.g., quantum spin tunneling) to
improve the performance of a classical computing machine.
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Fig. 7 a The energy–time cost of various information carriers. A single spin in this study is the smallest and
the closest to the quantum limit. b A chain of evidence to support Landauer’s bound in a spin in terms of
the energy time product being a constant (closest to the quantum limit)

This section is a necessary part of our theory in the sense that it is the quantum limit
(�/2 ≈ 10−34 J · s), rather than Landauer’s bound, that governs the performance of a
spin qubit in terms of the energy time product being a constant, as vividly illustrated
in Fig. 6b. That is, energy bound well below kBT to erase a spin qubit at the expense
of slow operation is theoretically sensible and experimentally verified due to this
unchanged product (the shaded areas).

Heisenberg’s TEUR is relevant for the spin dynamics here and we used it to set the
maximum speed at which a spin can modify its energy by a given amount (in this case,
the splitting induced by the magnetic field). It is not for the thermodynamic energy
balance, which is solely related to the need of compensating for the entropy decrease
required to erase the bit no matter how quickly the process actually takes place.

7 Conclusion & discussions

This study depicts an optically-manipulated spin-encoded quantum computer (Fig. 1)
that is not bound by Landauer’s bound any longer and may represent the last piece of
the puzzle in quantum Landauer erasure.

Without any circular reasoning, a chain of evidence for a single spin is shown in
Fig. 7b in terms of the energy-time cost being a constant (closest to the quantum
limit). Landauer’s bound exists at the Doppler temperature of 1 mK in the spin–spin
experiment [18], which is indispensable and imperative since �E ∝ T (T > 0). All
experimental datamatch their theoretically estimated counterparts at room temperature
(300 K) and the Doppler temperature (1 mK), respectively.
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In classical computing, the energy of erasing a bit of classical information remains
the same (Landauer’s bound) regardless of whether we are dealing with a bit of
position-encoded information, orientation-encoded information, or anything else. In
quantum computing, Landauer’s bound can be broken quantitatively although we still
need to “anchor” or “trap” an isolated electron (as a quantum spin information carrier
since an electron’s charge and a spin are inseparable) against thermal fluctuation with
an energy barrier greater than the classical Landauer bound. It is the quantum spin
tunneling phenomenon whereby a wavefunction can propagate through a potential
barrier (the classical Landauer bound) in such a quantum computer.

Today’s few-qubit quantum computers require large cooling machinery external to
the actual quantum processors whereas the fundamental energy requirement as given
by Eq. 5 merely represents a minor part of the overall energy bill. However, with the
progress of the quantum technology, the cooling energy is likely to scale less than lin-
early with the number of qubits, hence its proportion may become less dominant [14].
Nonetheless, such a spin-encodedquantumcomputermaybe slowalthough it can oper-
ate at the ultimate (energy) limit to computation set by physics, asmentioned in Sect. 6.

In future work, we will keep track of the new spin–spin magnetic interaction exper-
iment (as well as other ones similar to this) since the authors of Ref. [18] proposed a
redesign of the ion trap at high voltage (higher than 400 V) to facilitate weaker mag-
netic interactionwith larger inter-ion separations (currently 2.18 ∼ 2.76μm) [18]. The
challenge is that larger separations result in a diminishing signal-to-noise ratio and the
measurement accuracy needs to be further improved. Only in theory, it is possible to
use an arbitrarily small magnetic field to flip a spin whereas, in practice, this magnetic
field must have a lower bound [in analogue to the world record of the coldest tempera-
ture (3.8 pK) although, in theory, one can get as close as possible to absolute zero] and
the current world record (B = 8.8 pT) was made in this experiment [18]. Landauer’s
bound may be further broken by a new factor (currently 104 ∼ 1010 in this study).

Landauer’s bound is widely accepted as one of the fundamental limits in computer
science and physics, but it has still been challenged for using circular reasoning and
faulty assumptions [28]. In 2000, Shenker argued that Landauer’s dissipation thesis
(logically irreversible operations are dissipative by kB ln2 per bit of lost information)
is plainly wrong since logical irreversibility has nothing to do with dissipation [29]. In
2003, Bennett suggested that a no-erasure demon is subject to an extended formofLan-
dauer’s principle to refute Shenker’s argument and claimed that, although in a sense it
is indeed a straightforward consequence or restatement of the second law of thermody-
namics, it still has considerable pedagogic and explanatory power [30]. In 2005,Norton
pointed out that, due to the illicit formation, Bennett’s extension in order to exorcise
the no-erasure demon failed [31]. In 2007, Ladyman et al. defended the qualitative
form of Landauer’s Principle, and clarified its quantitative consequences (assuming
the second law of thermodynamics) [32]. In 2008, Sagawa and Ueda showed that Lan-
dauer’s principle is a consequence of the second law of thermodynamics with discrete
quantum feedback control [33]. In 2009, Cao and Feito illustrated some consequences
by computing the entropy reduction in feedback controlled systems [34]. In 2011,
Norton showed that the previous proofs selectively neglect thermal fluctuations that
may fatally disrupt their intended operation [35]. In 2019, Jordan andManikandan dis-
agreed with Norton and found the principle to be easily derivable from basic principles
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of thermodynamics and statistical physics [36]. In 2019, Norton argued that Jordan and
Manikandan were mistaken with their saying (dissipation is only necessitated when
logically irreversible processes are required) since the existence of thermal fluctuations
and the high thermodynamic cost of suppressing them are still unavoidable [37].

In light of the above research, wewill further investigate those direct/indirect proofs
[35] of Landauer’s principle to seewhether it is just a direct consequence or restatement
of the second law of thermodynamics (the information erasure results in a decreased
entropy). This investigation is important and necessary nomatter whether we still want
to regard Landauer’s principle as fundamental as the second law of thermodynamics.
We will also study whether it is possible to implement an erasable bit without ther-
modynamic cost by compressing phase space with dissipative dynamics [13, 38, 39].

In spite of plenty of mysteries with Landauer’s bound, we may have to presume
its demise based on our study (the bound is no longer the smallest amount of energy
of erasing a spin qubit) and the concerns (something is fundamentally awry in the
literature based on unsound, incoherent foundations/principles/methods/frameworks)
expressed by other researchers [28, 29, 31, 33–35, 37]. As well as having significant
practical importance, understanding the fundamental limits on what we can achieve
with our computing machines [24] is nothing less than understanding the limits of the
world inwhichwe live andpreparing for revolutions, such as post-quantumcomputing-
paradigm-shifts.
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