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INTRODUCTION

The main purpose of this diséertation, is to
describe a new attempt to determine some characteris-
tics of the form factors describing Kb; decays, using
the D.K.P. formalism. Within the framework of V-A
theory, Kgs deca&s are. pure vector transitions and
characterized by two form factérs £’ and _£ which
are functions only of ts(ﬂv.ﬂr)z , the four momentum
transfer squared between the K and 4t meson, The stu-
dy of the form factors in k£3 decay is interesting
both because of the relativé simplicity of the theory

and the relative accessibility of the effects, induced

there were no strong'interactions, only f; would be
present, and it would be a constant. The strong inte«
raction effects can be gauged through the variation,
of j; and §£ , with the momentum transfer t.

Most of the studies dealing with k£3 decays,
assume that SU(3) is a good symmetry, and only later
incorporate the breaking of SU(B); usually through
the empirical parameter @ ; the Cabibbo angle.

A different approach in which symmetry breaking

can be incorporated is in the use of the D.K.P. for-

by strong interactions, to experimental measurement, If
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ﬁalism to describe the fields of the pion and the kaon.
One is led right from the start to a decomposition of
the hadronic matrix element which is different from
that given in the Klein-Gordon formalism. A way to

see the difference in the description of the mesons

is to say that because of the different dimension of
the D.K.P. field, various mass factors must be sepa-
rated out in order that the associated form factors

be dimensionless,

We shall show that if we assume the simul taneous
participation of three interrelated ( only two are
independent) D.K.P. currents, fhen a specific value
for (9 and AL can be obtained. The value of % (9)
is 1arge.and negative and equal to -1.6 , The value
of A. is - 0.018 ., These values aéree well with the
over all (quadratic)_fit made by Chounet, et al 10)
in 1972, but do not seem to agree well with the more
recent experiments. The assumption that )\_#0 implies
that the form factors _{f(f-) and )CO (€) should have
a quadratic t-dependence. Since most of the experimen-
tal data is given under the assumption that Ao =0
it is not possible to compare our results with thcse
experiments. One may expect experimental difficﬁlties
in the determination of £: . This happens because in

expressions for observed quantities one finds the



factor Lmﬁ/w\“][}-/ f'+] . Thus, the hadronic

effects expected due to the presence of f_ are

expected to be small. The fit for the experimental
detefmination of :f(o) will depend‘on wether one
assumes a constant or linear t-dependence behaviour
for the £_ form factor.

The D.K.P. analysis of 14*3 decays, incorpora=
tes from the begiﬁing an SU(B) symme try breaking term
by requiring that ’h%l# My . The particular model
we use, illustrates a mechanism through which two of
the Kﬁg decay parameters can be understood.

A very important problem which is left unanswered
is the normalization values one is to attribute to 3&(6L
(_{o(o)) ( or more precisely £ §um O¢ ) and f_. How-
ever, we discuss the possibility of determining :F.,.(O)SW‘QQ
in terms of the K13 decay masses ( My, M, 5 My )

In an informal way we discuss and make some observations
concerning 'ﬁ(o)wec concluding that it could be
possible that the D.K.P. formalism would help to un-
derstand this problem of normalization.

Comparing our results with other models used
in the study of ng decay we can say the following:
Pole dominance, gives slopes (ZA*, )o) which are posi-

tive and determined by the masses of the exchanged



particles, i.e. >!+=m3t/rmk,§, and A = M?q/mi 3
Thus if M < 0 (as in our case), then the pole dominan-
ce model cannot be valid. On the other hand the
Callan-Treiman result which, in a certain sense, re-
flects how badly SU(3)symmet;y is broken, agrees

very poorly with our result that requires a rather

more radical departure from SU(B) conservation,



I THE D.K.P. FORMALISM

Introduction.-

To begin the present chapter,'we want to describe

1)

the D.K.P, formalism °, for non-interacting spin-0
fields. As was stressed by Kemmerl), the meson equations
will appear as equations of the Dirac type, but will
involve matrices ébeying a different scheme of commu-
tation rules than those corresponding to the Dirac
matrices. The equations of motion are first order
matrix-differential equations resembling the Dirac
equation,

The A@ matrices appearing in the first-order
linear differential equation are four 16X16 mafrices.
The algebra of the p matrices has three irreducible
representations and these are one, five, and ten-dimen-
sional representations respectively. To each represen-
tationﬂcorresponds a field determined as usual by their
spin. It turns out that the D.K.P. field ’%(x7 consist
of three irreducible fields, the first is the trivial
f =0 field, the second one represents spin-0 mesons
and the third one describes spin-1 mesons. In general
the D.K.P. formalism describes spin-0 and spin-1 mesons,

having a non-vanishing rest-mass.




After it was shown that the simpler Klein-Gordon
formalism for spin-0 particles was equivalent to the
D.K.P., formalism for free fields, as well as for the

2)

field interacting with electromagnetism , and for

the field interacting with the Dirac field 3), interest
in the D.K.P. formalism has not been very great in the
past. It wasﬂuntil it was Suggestedh), that this equi-
valence between thé two formalism might not hold for
certain particular cases, that interest in the D.K.P.
formalism arose again. As was pointed out then, it is
with the introduction of interacpions that differences
between the two formalism can appear.

For l<}3 decays, the mesons involved, are the
kaon and fhe pion. Experimentally, their masses have
beeen found to be quite different, i.e.; m, = m;?Z.?’xmf.
This mass difference is considered to be a measure of
the SU(3) symmetry breaking. Since the D.K.P. formalism
mixes the meson masses in a way, that does not occur
with the Klein-Gordon formalism,We naturally consider
the former method to be the correct way to incorpo-
rate directly the symmetry breaking, in the study of
meson decay processes. We will take advantage of this

inequivalence in this Thesis to study meson<=p meson <~

LV processes.



l‘l)‘ D.K.P. Theoretical Models.

We will study the case of spin-0 mesons, but much
of the formalism is similar to the case of spin-1l mesons.
The Lagrangian density for the free D.K.P. field

is

f()():f:]:rx) L ¢ a‘“ﬂr‘—m]ff'lx) (1)

where{3 -matrices satisfy the relation

{SrYEv(B)*F‘@)Y3v/3" - ?'J?Sa.% 8)\9(3F | (2)

and

i AIJ Y) (3)
_ 02 '
nN= 203"~ | (4)

satisfies

NNt ettt
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From this Lagrangian we can write the equations

of motion

4:3'*(3'“/)1/()() - m /f/(ﬂ = 0 (5-a)
) ';rh[s" + m fgb'cx) =0 (5-b)
rd

and we can also write the vector current:

; o M
Yoz i Fo ply -
(6)
an immediate consequence is that this current is conserved

0

ﬂy‘—o | (7)

[

However, if we are interested in two different
-
D.K.P., fields, ﬁh(!)euul APz(x), we can define))

the expression

(xr;f . 'E_“" ﬁP’)b, (X) - (8)

and we see that the divergence of this current



is not conserved if Y}'\| # mz .

We note that for the Klein-Gordon fields *ﬂ and

£f , we can also define
- >
Fo o¥ ap - | (10)
2 - 'fz P Y)'
the divergence of this current is given by
? 2F: (W2e 2y, Y (11)
r ' z)"&a2 ‘f, |

where we have used the Klein-Gordon equation.
The above considerations are an indication that

the D.K.P. formalism may yield in some cases different

results than those obtained with the Klein-Gordon formalism.
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It is known 6) thhat in the presence of conserved
currents, the D.K.P. formalism, for spin-O0 and spin-1
particles, is equivalent to the Klein-éordon and Proca
formulations respectively. It was pointed out recemn-

tly h), that when there is a broken symmetry relating the
fields of a meson of one mass to a meson of another mass,
this no longer holds in general. Therefore the difference
in the resulfs may be cpmpared with experiment,

The matrix element of the Klein-Gordon current

above, (10) can be expressed in momentum space as:

' | : .\
U — LY ()
2(EE.)™

It will be useful to define the matrix element of an

antisymmetrical current with respect to the interchange

feof, as:

<Plefm>52(E:E,z_y/“ EPZF - F;H] L

In momentum space the matrix element of the

D.K.P. current If (8) is given by:
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/2 M H
<e\J’le>=;’-[’g";‘3~] [é—- + b
@ “ LB Es 2 m, (14)

here v, cel g are messan fidiel wnd forel resrona.

In anaiogy with (13), let us define the matrix

element of the antisymmetrical D.K.P. current.

EIE;_. ml

, | Ya p P r
<, Iy [ 2] [;’: B (15)

This current, can be expressed in terms of the

ﬁ" as (51)
\),(Jx):.i/}z;—lx')?ﬂ’“//;()t) - (16)

where ¥ is the charge-conjugation. matrix. In the parti-
cular representation we will choose below for the /3_

matrices, the matrix ‘¥ satisfies

¥
'tfxr:[s"#’c ! T EC = (17)

if we choose for the /)r‘ﬂle particular representation
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and we have
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If we let the fife component D.K.P wave func-

tion be given by

3 ros -4'*ﬂx . (21)
{ . .
P(x) = (5‘,,) o U (p) €
where
-4 P°
l ip
w(p) = iPp? (22)
Vem? ’ it
m

and

- l il Egl Syl A
\L(P):V.i——;.:'n__,;‘[‘?i‘r:"ﬂ/”imj (23)
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Ehe following relations can be satisfied for particu-
lar represanaLinhs of the Dirac r -matrices, with
choice (18) above and with and replaced by ﬂ

g an '

and 7 respectively:

=y BT=pT, AT
o (20)
(O B )

ﬂ‘:‘pK for L(=.l'3.,3 and /30='ﬂ° , and where T
means the transpose matrix, -~ means the complex
conjugate transpose matrix, i.e. A+: {A—r)‘*,

The particular relationships that follow with

our choice (22) and (23) are
U(p) U(P) = |

u(p) Uu(-p)=o.

(25)

The D.K.P. equations can be expressed as



3]
C

,l
(P, - ) &P faties)

and

(26-b)

ty
o

a”’(P7%'7”)

When £ # PL , that is when the mesons have diff-

erent masses, we obtain: .

Zt"m,)um): --!—— [_'tu,mz -+ GP,,] o (27)
. 2 W4,

for the vector current matrix element, we have:

M H
o (ol | f, n _ﬁ_
u(r) (3 Uig) = 2 [ ™, m, ' (28)

and for the antisymmetric vector current matrix element

-, " p p
wit) " wp) = 4 o %] (2)
I .
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We can now define the phenomenological D.K.P.

current as

= c N p*

Tr= B J&+ &b Jb + ﬁc Jc (30)
S ro .

where the matrix element for Jc is defined to be

proportional to:

(B -0y W) wen)

and Ko b o Aare the corresponding coupling constants.
9 %D
rl 5
<ﬂL}c\ﬂ>is not independent of ( ‘1% ) and ( 15 ), and
can be expressed as a linear combination of those two

currents. If we notice that ( 27 ) can be expressed

in the form

2

where -to = (Yﬁ,'\"mq_)Z and 1t =z (f -F ) J

P
we can define(@L)lﬂ)to be given by
e

i - (
[““-7“1 (‘C° f) (Q""l)

FEad o Dmm (a )

(31)



wl =

where we have chosen the same normalization constant
t g
as we had for )a and Jb in (14 ) and ( 15 ).

We shall assume throughout that only these three
vector-like currents contribute to the decay processes
we are going to consider. The choice of what currents
to consider has been the subject of much discussion
for and against the argument that the D.K.P. formalism,
when used to describe ng decays, leads to a more
satisfactory theory for the KQJ form factors than
does the conventional Klein-Gordon formalism. There
: i) . a ¢
is the group that only considers Ja and Ac
and who take the stand that the D.K.P. formalism yields
qualitatively different results than tliose obtained
by the traditional Klein-Gordon theory. On the.other
hand there is the opposite view 8) held by those
who, essentially view the D.K.P. formalism as
equivalent to the Klein-Gordon formalism this group

i JF d 4 1
considers o An Jb only.

As long as there 'is no convincing way of showing
what currents to use, we consider that the proper "pheno-
menological attitude" is to take into account all three
currents. In what follows we are going to choose par-
ticular values of the coupling constants jla L,cC
/

to analyse the semi-leptonic kaon decay process (see

Appendix for details and conventions), f(-}ﬂ‘/q % .




1-2) D.K.P. Phenomenological Analysis of K 4Ls Form Factors. -

From the phenomenological D.K.P., expression
for the meson current (30) we are going to analyse
the particular values we obtain for the relevant
(see Appendix) quantities appearing in the expression
for the form factors_ﬁ_ y £ and gf (Appendix equations
(139),(141) ) by choosing particular values for the
coupling constants ih,b;c appearing in (30).

For the process K-> L VYV it is customary to
parametrize ( see Appendix p.,84) the matrix element
of the vector meson current and to assume it to be
proportional to.

H
(latf ) £ UE) + (l=P ) f () F)

where j; and f; depend only on t, in a way that has

to do with the (virtual) strong interactions. If we

identify «¢,| T/[pY in (30) with

{[(+/’)f1t)+l* )f/f)] (33)

2 (EE;

e sl bzl
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we obtain the foliowing relationships for the form

factors:

£ (t) = [(m +m)/f(t} m-m )k (t)] -
) +

and

F(t) =~

2(mom )" m«*”%

(35)

These relations mean that the ratio of form factors is:

Xt >-; ) _mlwpiha =t (Roelosth,

7C{t) - to ﬁa‘*‘ (m:-m,}) be

(36)

It will be useful to have an expression for the

divergence of 3gﬂjﬂ terms of the ﬁi ;JE&,%C' Using (30)

we can express the matrix element of 9 op as:

K J
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Va

4?!3 T ley= [MMKJ (qnjm ) (mk'm,,)(t;t) ﬁq+

K

T \"to C(W‘u-mﬂ)z—-f]fb -+ (37)
T

y = [T ] [
\/? [ ] &

We see that there are three interesting values for t, namely

t=t, t=(me-my)  t=o 08

4)

In the work of Fischbach et, al where
- . H o _

they do not consider b , it is argued that the
value of t where the divergence vanishes; i.e.t:t;
indicates the possibility of a meson resonance with
a mass value around J%?Q:623.7 mev. On the other hand

. 8) , . r
Willey et, al 'do not see the reason to consider J¢ and
as a consequence, the divergence does not vanish at
any particular value for t. In reality, the argument

_ . ) o 8)
between Fischbach ety al and Willey et, al
can be traced down to their different assumptions.

M
Note that JC can not be constructed out of

general invariance considerations., It has a phenome-

nological origin. In terms of the D.X.p. fields,



’% and y; y it can be expressed as:

J,'u = . 2" (72')%)

(39)

and has the form of a derivative current. On the other

hand it can Se argued phenomenologicaly that there

is no strong a priori reason to exclude either Jé or
Jc « We shall néw make some particular assumptions

concerning the values of K; 3 &é and ﬁc o
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1-3) Particular Values of the '&l Coupling Constants and

the Corresponding Values for the Kis Parameters.-

In order to study what values to choose for
4& ; &b and &c we shall consider various possibi-
lities. To begin with, the simplest assumption to make
is that only one of the three currents making up 5:ﬂ
in expression (30), is relevant, in the description
of K&s decay. If this is so, and_we consider that the
/CI_B functions {}: ; §) are to be calculated when the
momentum transfer vanishes; i.e., t = 0O , we obtain,
the values shown in TABLE 1 at the end of this section
where, in each case we assumed that only one coupling
constant, JL; y, did not wvanish, in order to coqsider
only one current at a time. Present experimental esti-
mates seem to favor the choicé K,“;éo 3 ﬁ-‘:ﬁcro- In this
case,whén ﬁa is taken to be unity, we obtain for the
ratio of the form factors at t = O , the value Y(ﬂ =-0.6
which is in good agreement with some experiments per-
formed after 1971 (see Appendix pp., 95, 98, and 100 )

If we consider next that only two of the three
currents defining the D.K.P. currents:fﬁL) are meaning-

ful,we obtain for the Iﬁ{; parameters the values 5hown

in TABLE-II at the end of this section.
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Another case is when the three currents are
considered simultaneously. It can be seen, when all

the coupling constants are equal that one obtains:

)[ = mk ~ 'q : ( (40)
* o
T

LBt Tr ., . B (41)

and

= v -1, 6 (42)
2 My

For the sake of completeness we show in table
IIT at the end of this section, the wvalues of the
KIB parameters when the meson masses are equal; i.e.,
M, = My .
The above values for the l(gzparameters are
very rough estimates and are only meant to help to
find the best particular combination of the ﬁ; coupling
constants. Nevertheless it may be useful at this
stage to look ( cf TABLES I, II, and III pp., 26
and 27 ) at the experimental values of these parame-

ters (see the Appendix p.p. 93-100).




If the concept of SU(3) symmetry is meaningful
for the analysis of the l&gj parameters, then their
true values are considered to be close to the numbers

omn wxel

one éalculates when one considers sU(3) to bektenstr=

3 ﬁuedi If this is the case,J& vanishes (see Appendix

p.,86 ,and it is assumed that the true value for f
should be a small number compared with f , which takes
-+
a value in SU(3) theory unity.
If one assumes SU(3) conservation it can be seen
from TABLE I that the acceptable choice is when only

JF

B is present. Nevertheless, since symmetry breaking

is large, we shall take the point of view that the
three currents should be considered simultaneously
using a pérticular linear combination determined by
the *££ parameters. The concrete way we shall do
this is going to be treated in the next section, but
before we do this, we would like to end this section
with an illustration. If we consider that the form
factors ,é and ‘£ are t-independent and are deter-
mined by relations (34) and (35) it can be seen from

the Appendix, that the branching ratio

(k> 7rv)
(&5 qgey)

(43)
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can be expressed (from Appendix, eq (54) ) by the

relation

,—/4“3) _ 2
I (ke,) = 0. 064 +0.127F10) + 0.019F0) (L)

where we have'neglected terms in ;\+ .

Subtituting the 1{ values in TABLE I we find

K«a #D | ﬁé#ﬂ
I~ (Kusz)
r(Keg) 0.57 - 0.b9

Performing the same operation with the }L values

in TABLE-II we obtain, using (36);

45/44#0 45144'#0 ﬁc;ﬁé?{D

7 (Kp3)
r(Key) 0.5k 0.50 0.45

where we have used in all the calculations, the masses
of M, + and of M go -
The values shown above should be compared with

+
the experimental /7ﬁw7z;kg)value 9) for ™~ i.e.;

r(Kuy) .
;7%5;). = 0.663 + .018 (45)



TABLE-T

B, 0 ﬁb#o
My +Mp M =M
a + A
v L2 A 0.63
[ Mg = m
- 2 j-.—.. p
Vv -0 6% Ny
.MK-an ™M, 4
Fr-2r g Tamy
o M=
(a4 -0 6 N ?.
where
A

Az 2 (MK?YITT)



where

where

-1

TABLE-TITI

fuz k # 0

j_ - My +Mp
+

; /n
A =2 {mu’hﬂ.,)

byt o hedo B i=hy, Fo
) 0 /

- 00 -0 w|
? 7

My, = mf?’

Ka."?'f‘)’c #o

KF{‘# 0
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IT A TWO CUKRENT ANALYS1S IN THE D.K.P. FORVALTSM, -

One may adopt the point of view that there are
really two fundamental currents (12) and (13). Thus
there will only be two coupling constants, and from

(30), we can express the phenomenological D.K.P. cu-

rrent as:

TF: __L.... " .'Lh.z, K2H+ [zm, + L - i]gﬁ«" |

o e (46)
where
Lot [ farhrcionyze] (47)
and
% ) ( b+ hb)m, +(h b)) m, + b, %T-;%
Q-W), . 'to-t T (48)

™, M g

In what follows we will analyse the consequen-
ces of the above scheme, comparing the phenomenologi-

cal parameters used to analyse all the ICX processes,
3
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assuming that k(f) and %Fﬁ) are smooth functions of\
t o

The particular parametrization we will choose
for the D.K.P. vector currents, will have a specific
effect on the dynamics of the processes we shall study.
The decision.of which parametrization to use is a
phenomenological one, which will have te be confronted
with the data. Wé will see that our parametrization
is compatible with a quadratic-fit of both polariza-
tion experiments and Dalitz plot data, obtained by
Chounet, et al 10).
if we define

I(fi) - [2”’ jﬂj ' (49)

Z(Mﬁuz)h

and

M ! [‘ ~ ]3
- v | 2m, + t - .
I(-l " 20mm,) L om, (50)

we can express Sfﬂ in (46) as follows:

M

. _ |
jn b Im + ¢ 1(-) (51)
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In the analysis of K’Q; decays;

K = 7 + 2 4+ v
(1) (2) (3) (4)

the matrix element of the vector current defines the

.
y

<cm v k> :zfﬂz-l*ﬂ)ﬂé(f)q.(i)z-ﬂ)ﬂf_(fj

form factorS'f; and } ( see Appendix Eq(107 ) )

Comparing the above expression with (51) it follows

that
L6 = (7»;) hot) (52)

and

Vy

Fly)=- (zmm )[am +ﬂ:+~m,,,]j(t)

(53)

In what follows we shall determine+ A and

}Yt) in terms of the meson masses \wk and §“¢/. These
will turn out to be very important quantities. These
results will be obtained phenomenologically from the
speciflic parametrization of the D.X.P. currents that
*N.B. for the definition of the parameter A\

and ,l{t) see the Appendix. p., 90 .
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we have chosen and some normalization assumptions.
If we consider g(t) to be fairly constant
with respect to t, and we assume that ; varies

linearly with t, i.e. ;

£y = F (o) [l-f- . .
‘mz N
"~ (54)
we can compare this with (53). It follows then that
we can express X_.in terms of‘mk and Y , as:
2.
O Gl
(3*’%"’”’”")(7’1“*-77?

= - 0.0179

(55)
)

This value should be compared with the experimental

( over a;l fit ) value 10):
A 0.03 * 0.08 ‘ 6
- = . * 3 e 0.05 (5 )

obtained from polarization and Dalitz plot experi_
ments.

On the other hand, from the above expresions
for f+ and f , we obtain for X = 5. / 4, the
relation

t,~-T
, 27, + =
F(e) = - 3 "”*‘“”77 g )
2'7nu {x(f) ) (57)

If g(t)~ h(t), it can be seen, that inside

the physical region, i.e. i

2 2 .
Ct £(m-m ) we
gs - K 7r’



have

©) ~ -1, - 2 :
X (o ey < T0t) < —~1.43 ~ }'me"mlf)_] (5%)

Thus the variation of ‘} is about 15% within the
decay region. This crude estimate is inside the limits
within wich ;(f) has varied in most of the measurements

performed before 1970 10) , and resulting in

_25 }(0)&0 (59)

but is not compatible with the majority of values found

for ¥ after 1972% , for which

-1.5<¢ ¥ ¢ o (60)

Assuming linearity, the fits 9) (1975) to all

the experimental values for )4 s ) and 1£w)are shown

0

in the next table:

+N.B. see Tables B-2, C-1 and D-1 in the Appendix.




: .
Ké; 0.0288 4+ .0028

K;; 0.027 + .008 -0.009 + .007 ~0.45 + .1k

K;s 0.034 4 .oo§ 0.021 + .006 -0.17 + .10

Data obtained from:

Rev Mod Phys. Vol. 48, No. 2 Part II (1976).

TABLE OF OVER ALL LINEAR FITS TO Kﬂ} EXPERIVENTS
+ A, F o)
_f ¥
Ke. 0.0285 + .0043 _
|
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Quadratic Variation of the f+ and fo Form Factors.-

It is conventional to expand the form factors

in low order polynomials over the decay region:

. 2
Mg £ £ % (W’K'Wm)

LLet the form factors be expanded as

f.,. (£) = f:(o) [ [ + At§z+ ?‘,.: £i+_7
. & ”ﬂ;

and

?n,’, Y

_)E(f):fo(o)[l + >\°£2+ 7&;_{;_2_‘,_]
‘ >~

These parameters are related by

Floy = £, (0)

+ N.B. for the definition of ﬁ(t\ see Appendix
or see below,

(61)

(62)

(63)

p., 86
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2
"
A, T N, ot ¥re) =T
-
K d (64)

where
N £ (0)
e) =
.ft(o)
and
IR VAR W T .
’n@_m{%; . (65)
etc...

!
. V4 3 .

Since A#‘)b‘ 5 k+(}°) ,ee.. are the physically
relevant+ parameters an analysis will be biased if
terms jjllﬁ are retained to the same order as terms
in j; . It turns out that when one determines a term
in 'g(t) to a given order, the contribution from };
is in each case more accurately determined experimen-

\ 8 10) .
tally than that from F . This means that to se-

cond order, an analysis which retains ,X_ must also re-

tain A; .

+ N.B. see tile note 'in the Appendix concerning the di-lepton
amplitudes 0 and 1 to which } and } are directly
proportional,(sce p,, 87 ) ¢ *
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As can be seen from the Appendix the ﬁ, fform
factor is def'ined to be given by the matrix element of

the current divergence:

e 3" K> = (méom2) £ () {65)

From the theoretical point of view the“é and
ﬁ form factors can be seeﬁ+to correspond to two dyna-
mically independent amplitudes ( ot and 1 )

From the experimental point of view 6; and‘é
are generally less correlated in a Dalitz plot analysis
than are'ﬁ. and Ji .

The AT ="'/, rule requires+ the equality Af the
form factors in K+ and K° decay.

Iu-e. universality implies+ that the form factors
involving 77"/4.4) are the same as those involving 7ey .

The polarization experiments determine 7% (¢)
directly whereas the branching ratio experiments are
mainly sensitive to the slope of é (¢) :

N T A Wi
o ~ + + }'(0)

m? _m2
K whv

+ N.B. for more details sce Appendix. p., 87
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The value that we obtained in (57 ) for &w),
i.e. ;5 - 1.64 , leads to a negative value for the
slope (A, ) of }D , if /\4‘ 4 0.132. Fixing A, to

the value

Ay = 0.045
* ’ (67)
using ( 64 ), we obtain:
A= - 0.087 (68)
which is not at all negligeable. This wvalue for ko can
be compared with the following values+, obtained in
1972 by Chounet, assuming a linear variation of é .
Branching Ratio d»= - 0.015 + 0.01
Fit to Dalitz Plot Data A, = - 0.038 + 0.020 (69)
. 3 ] _ L +0.09
Fit to Polarization Data %..- 0.03 -0.0k

As we can see from the table on p., 28
taking into account all the measurements performed
lafter 1972, the ko value seems to be positive now.
Nevertheless, the value for XO is still not definitive
despite the numerous experiments performed to deter_
mine it.

When an analysis is made assuming a quadratic
variation of the form factors, A; has been found to

be positive, in the three instances it has been deter_

mined.

+ N.B. These are the values given by M K. Gaillard in
Proceedings of the XI Internationale Universitatswochen,
in Schladming ed. by P. Urban (pag. 283 Springer-Verlag
1972 }e
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The values found for }+ and X; in quadratic fits over

Keb data have been:

a) Chounet, et al (11)+; the results ob-
tained from the data of 6" high sta-

tistics experiments were

Ay, = 0.012 + 0.005
o (70)
M, = 0.0052 + 0.0013 |
,(xxiii).
b 2

b) Chien, et al a fit obtained

from a high statistics'(l6000) experi-

ment, gave

A\, = 0.026 4+ 0.006

' (71)
N, = 0.0045 + 0.0015
- c) Gjesdal, et al(XV1); a fit obtained

from a very high statistics (500,000)

experiment gave

A\ = 0.0246 + 0.0043
‘ (72)
)\+=

0.0014 + 0.0008

On the other hand the values found for ) and

X:in KFB fits were |

+ N.B. reterences given in Roman numbers arc listed in
the Appendix p., 101

++ N.B. the experiments were @ (1453)-(iii), (2707)-(iv),
(16000)-(viii), (4#2000)-(ix) and Basile, et al (4800), in
Phys. Lett, 26B, 542, 19063.
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a) Chounet, et al'(ll); to limit the number
of free parameters they used their )+
/ , )
and A+ values (see (70) ) as input to
' -
extract Ao and 70 ; they obtained for

a combination of Dalitz plot and pola-

rization experiments

Ao
,\I

[

-0.11 + 0,03
(73)

.0.0085 + 0.0065

(xxv)

b) Dally et al obtain in a high sta-

tistics (16000) fit to their experiment

A =-0.080 # 0.272

4
Al = -0.006 + 0.045 (74)

Those values should be compared with our values
. ]
shown below, for Xo and A, , for the three different

values of A, and A; shown in (70), (71) and (72);

using (64) and (65) we obtain:

(75)
with eq. (70); A, = -0.12 and M = 0.0076
with eq. (71); A°= ~-0,1006 and x = 0.0069
with eq. (72); A = -0.107 and A, = 0.0033

where we have used our value for k in (55) and for
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Xl6) , the expression in (57) (with the assumption
that g(t)~ h(t) ), therefore, it follows that (64)

and (65) can be written as:

T
D P il s i ¥ 0.132
£~ o 2y M- |7 (76)
and
1’ / ’"’r(r{' - (77)
- = > 0.0023%

LWy (Mt ) (M2 )

respectively. These are the relation we have used.
A quadratic fit (determination ofA‘,lil)o and
); ) has not been carried out with all the present data.
The last one, was worked out by Chounetii), taking into
account all the relevant data available before 1972.

We are next going to compare our results with
each one of the different types of measurements availa-
ble that can determine j(o) and A_ , or A, and 'A; .
For this purpose, due to the reason just mentioned,

we shall use ( except for the branching ratio results)

the experimental values given in reference (ii)
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2-2) D.K.P.Determination of the Branching Ratio for

the Charged [Mjp_ Decay Mode for a Quadratic variation
=D

‘of the Form Factors.-

The experimental measurements of the branching

i)

ratios for the charged kaons, gives the (fitted) value

+ :
_—r__'__{__l_{_/fj__)_, = 0.663 + .018 ,
“ 8

In a linear approximation for the form factors, with

the assumption that 1+ = 0.030, the over-all value foundi)
for }{o) is - 0.20 + .15 . This means that our value

of -1.64 for Y(o) will not give (78), assuming the same
value tor }+. The same situation will repeat itself

when we take a quadratic variation for the form factors.

‘To see this, let us write the branching ratio for charged

/
kaons in terms of )+ ,)i, A, and 30 , as follows

f(/(/t?)
rlke,)

2
- 2.021 Ay + 7.734 A/

! ’ 2 7 !
+ 0.5, + 66.85 ';1’+ + 1.565 Dy + 5.800 A, + 0.0032 2o 2,

! /
+ 0.098 (RLRg + 2, Pe) + 0.27A, 3, + 25.75 2,4, + 2.94 AF
' 2
% 62.8;’)1:' /1 + 37004, + 5.2478?* 4 10.0-36)4' + Lo.Wg ;1*2*'

+ 85.29 y’-
<

(79)




Our calculations for different values of‘2+ i }+

10 and ); are given in the following ‘table:

;\4_ 0.012 0.0246
M 0.0052 0.0014
Ao ~0.11 -0.107
/1; 0.0085 0.0038

+
?"((_g;—;—) 0.551 ' . 0.539

The first column corresponds to the values given
in ref(ii), the the second column to the values shown
ih (72) with the corresponding value for )o and 2; found
in (75). Qur value for the branching ratic of the charged
kaons, i.e. 0.539, does not compare well with the expe-
rimental value in (78). There has always been a dis-
crepancy between the values found for :?(o) and A+
(linear fit) in branching ratio measurements and those
values found for the same parameters in the Dalitz plot
density and polarization measurements.

In general terms the experimental results for
each kind of measurement (Dalitz plot density, bran=
ching ratio and polarization measurements ) has always
been so inconsistent (see relevant section of the Appen-
dix) to render very suspicious the world average valuesii)
for 1!M) and )_ or, }a and ); . Nevertheless the world

‘average values for %4,, and ’3("’ or Ao have been obtained
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in rcf(i)+, but in view of the poor agreement of many

of the experiments included in the world average, this

world average value should not be taken too seriously.

We consider also that the experiments on !(isdecays have

not ruled ou; a significant départure from strict linearity.
We are now going to compare our results for‘?{o)

with the Dalitz plot and the polarization measurements.

Comparison between the Kﬂj Dalitz plot.and pola-
rization measurements with the D.K.P. values for }(d
(Ao) and }\, (Aé)"

Polarization measurements have in the recent
past (before 1973).consistently given large negative
valuesfbf' ?u}- Only recently ( see»Appendix-D.{ 100)
not so large negative values have been published.

Notice that for'x(ﬂlaround -1,it generally im-
plies that %, 0 for )+< 0.045 .

For K:ﬁ polarization measurements the over-all
value.(before 1972), considering a linear fit, wasii)

xto) = -1.45 + .70, a combination of k;; and K23

: : . ] a s
polarization experiments the values obtained were

a) linear fit
Foy 0.0 4 0.7

A =0.18 4+ 0.15

+ N.B. see Pes 33



b) linear expension of )2 and f+

Fo) =-2.2 + 0.80

Ay 0.19 + 0.16

Ay = 0.01 & 0.09
with ;\_ z 0.
c) quadratic fit, with )” and 2; fixed as in (70)
%l0) =-1.9 + 0.6
/\u =-d.06 + 0.09
— 0.05
For K‘u‘; Dalitz plot measurements the values
obtainedii) for k’& together with l{o were:
a) linear fit
, 2"(0) =-1.5 + 0.5
o =0.10 + 0.13
b) linear expantion of fo and .6. $
}(0) =-1.6 + 0.6
A, = 0.10 + 0.12
Do =-0.03 + 0.08

with A

- ;
L& 0 .

. - / : :
c) quadratic fit; for 7«+ and ')+ fixed as in

(70)
X0y =-1.3 + 0.5
A. =0.0 + 0.13
- 0.07
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For a combination of Dalitz plot and polarization

. g N & §
measurements the values obtained in an over-all fit )

-was s
a) linear fit
F0) =-1.6 + 0.4
J =0.11 + 0.10
b linear expansion of and
) Xp fo .&

¥0) =-1.7 + 0.35
- 0.7

Ay = 0.11 + 0.014
- 0.07

Ag =-0.03 + 0.09
— 0.04

with A_Z o .

/ .
c¢) quadratic fit, for A, and )+ fixed as in (70)

+
%¥le) =-1.50 + 0.40

A

-0.03 .+ 0.08
- 0.05

or
Ao =-0.11 + 0.03

/
2o

All the values given above show an excellent

0.0085 + 0.0065
agreement with our values for 2/0) and )_ $ }(o): -1.64
and »., =-0.018 '

If we consider all the K; measurements performed
i)

up to the prosentl‘ we can notice that of a total of eight

. : : +
experiments quoted in ref (1) only one has obtained a

positive rE[o) .

+ N.B. Borreani, et al Phys. Rev 140 B,1686 (1965) gives
:5[0) =1.28 + 2.h




On the othier hand of the eight experiments three are

not compatible with our value for Z(o) :‘the latest

i) —_—

. experiment in the Data Card Listings (page 72 ) ,has

such a big error band thatLis also compatible.
0 L . i)
For the KP& polarization experiments we notice

that there are five experiments on record (see page 80

of ref(i) ).

X0

-1.2 + 0.5 . Auerbach (1966)
-1.6 + 0.5 - Abrams (19638)
-1.81 + O;S Longo (1969)
-0.385 + .105 Sandweiss (1973)
0.178 + .105 Shen (1975)

It can be seen that the two most recent (but
they are also the ones that have the highest statistics)
experiments, are far from a value of -1.6 for XIO’- while
the other three are in good agreement with that value,.

The individual Dalitz plot density measurements
performed after 1972, are not in good agreement with

our value of £(0) = -1.6

To summarize:

The result given here for ¥{ﬂ (-1.64) and for
A— (-0.0l?Q) are in very good agreement with the values
given in ref (ii). In other words with experiments

performed before 1972,
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This agreement does not continue for most of
the (high statistics) experiments made after 1972,
‘'where one finds that Xo is mostly positive. Since
almost all of the prerimental fits assume that 1_1();
and consecuently, with only one:exception+, all assume
that £+ and,ﬁ have a linear t-dependence, this means
that we can not compare our value for A_ ( A_ =-0.018)

with experiment,

+ N.B. Dally et al see page 39
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2-3)Discussion on Alternatives to Broken SU(3) Symmetry. -

The Cabibbo theory is supposed to be valid in
the limit of exact SU(3)-symmetry. Since '}‘Y‘lk-# .
the symmetry.is badly broken in Kﬂ3 decays. Unfortu-
nately it is not known how the symmetry breaking should
be taken into account. |

The empirical supression factor for strangeness-
changing weak amplitudes is the Cabibbo angle, which
is considered to be related in an unknown way to sy-
mmetry-breaking éffects in the hadronic weak current.

From the way the D.K.P. formalism leads to the

mixing of the meson masses,we may observe that in

/

l(23 decays, ,Ef(o);(,m G could be connected with
the meson masses. Strictly speaking one could say
that the lepton masses are also involved since the
minimum t value is {;:an and therefore, one is dea-
ling with a factor}i(@qﬁ). To disregard this effect
in I<e3 may be justified‘on account of the smallness
of the electron mass, buﬁ ﬁay not be such a good
approximation for K/u3 because 'mp,\.m,r .

‘fkm sim O, is connected with Kg3 decays, and

}_}(o)cu; O, with 7T'ea y i.ec mrt, e ety . In the

D.K.P. formalism £ (o) = ﬁ{w — (see(52) ).
+ ;ﬁ;



Hence v2

/&(07 Mt ] ey 3& (0) [ Qc (/(+~>('T°e*u)

Mo
and . Vi , )
M T —_ F. %ot
Loy W,—,—o] > f enb. (I Tre )

where we assumed the same ‘ﬁ(o) for both reactions.

Let
A )
™m _{l 2 2
2 | — 5
K(W[Q)(—): (Yn, 17"2,7)”.2)
WMa
(m,— m, + Lv)
where Yﬂ,_ and an are the initial an final mesons
respectively.
Hence® .fz (YHK+))n o ) is associated with
. ' .
l<€3 decays and Jl(ynn+,7nnﬂ) with TTe3 decays.

We have the same function associated with each process.

In an effort to determine {Ll phenomenologically , we
could ( SU(S) symmetry considerations should not be

used here) set

_Q(mk*‘% and 'Q(mﬂ*’mﬁo) = constant
i The .

(80)

+ N.B. we have neglected m-©o .



If by some means we could set
2 2 ‘
cm -
AN K)ano) + Nl (YH"+)Tnno\ =1 (81)

from (80) we obtain

/2

N o)
%[0) = [”m,] SLlw,, 2)
- [ %}\/Zcmrf. (82-a)

Relation (81) is suggested from the good agreement

with experiment of the Cabibbo relation.

o) « 2
C&S (9exp + WQQ’)‘P N/ l

it is possible to find simple forms for the JU' s

such that (81) is obeyed, the simplest is

N m,myy = (FE) = comsT.

(82-b)
we have
2L 2
m ™M
%—”3) 4 [ B8 = 1.0098
it Mt

which is not far from 1. This suggests that it may

be possible to replace the Cabibbo assumption that
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requires the same parameter 6% for strangeness-chan_
ging ( SimB. ) and strangeness-conserving ( Ce» 0, )
processes, by the assumption that requires the same
JL function for both processes.

In general, different decay processes would in
general lead to different Jl- functioné. However one
could introduce the hypothesis that decay processes
with the same number of meson states, irrespective
of the electric charge of the mesons, would have the
same ‘fl function. For example f(g3 would lead to
the same ) function as-lC;3

The relation 'szmrr valid when SU(3) is a con-
served symmetry, could be replaced , in theipresence
of symmetry breaking, by the weaker requirement that

.Jl for K decays is the same as for 77/ decays.

We have seen that if one uses the D.K.P. for-
malism, mass factors appear, which were not present
in the Klein-Gordon approach. If we adopt the point
of view that their appearence is a reflection of a
SU(3) symmetry breaking effect, an alternative view
to SU(B) symmetry maybe possible in which all masses
take their experimentally observed values, and such
that the choice of the D.K.P. currents, automatically

lead to the observed parameters for the I<£ form factors
‘ 3
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This may lead to interesting future investiga-
tions concerning partial conservation of currents in
the sense that matrix elements of the divergence of
the D.K.P. current may have -a "dip" or perhaps exact
Zeros,

With respect to this, we would like to mention
an interesting pqint connected with the zero's of the
divergence form factor. If ,f(d is given by the qua-
dratic approximation

* L t*
/0{0)(/+)0w1 + A “m—4)
7 T

and we ask at what value it vanishes, then it is clear

that this happens when t is given by

2-
[_ /\o -+ \J >‘0"L{’\é 'WILH_

ﬁ =

This gives two vélues where the matrix element
of the divergence of the vector current (involved in
Kia decays) vanishes. It may happen that these zeros
are meaningful inside or very near the physical t-region:
for example, if ﬁ(t) has a double root, then ( 83 )

reduces to

2 7\0 2 z
- -m S = i
t ¥ (2”% ( %o)w%«
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if

This restriction is compatible with the experimental
values for ), and ), (see é., 39 ). On the other hand
. this suggests a reason for ?; to be an order of mag-
nitude smaller than IAJ and on the other hand gives

a reason why A; has always been found (experimentally)
to be positive.

The pole dominance model requires that )o and X;
be given by

Po = y /mk (X >0

i -] )

and

; 2 2

A =2 {m”/mé}rlﬁ
also offers an explénation for the positivity of A;
and the different order of magnitude between /\‘I;, and )\o
but is a relation that is considered to be wvalid out-
side, and not near the physical region of t. Actually
if Mg~ 1 Gev, t~ B(m.-m ) .

It may be possible to consistently unify this
two points of view, After all, both are gross appro=-
ximations dealing with two different t-regions.'A be-
haviour of ;ﬁ depicted in the following figure

AN

oo
o

-(0)

+

>
&
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indicates how this might arise.

This may open up a field of research to help us

" understand the peculiar behaviour of kaon decay pro-

cesses through a study of the divergence form factor

for small as well as relatively large values of t.
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A-1) Notation, Conventions and Formulae, -

a) Metric, *f, Matrices, Related Properties and De-

finitions.-

i) The metric tensor g is given by

7 = = :—3 ;j 00] (81‘)
P K

This corresponds to

-2
o 2 Mo o o :(t,)’-)
a-bza”p zah, -a-b e ry
B, Voft,-%)
ot = p*=m" o = G X ’
. - = ”,_ = X x)
x = (x,9,2) = (X,%X2,X3
h.f, = 8- bl 4 T
» - - %;f (:aaﬁxn) a?—xz /%3
/ - ¢t
= 24 4 29, 4 % | B4
It X, 3)(2 3}3

r‘
ii) The [J' matrices in the Dirac equation

6 H
‘(-)1%“/%‘)()’777 /}b(X):O (85)

satisfy the anti-commutation relations

Eouvy) _ yHEHY, uUpnH o BY
{5/3,}’ A (86)




A convenient representation of the Dirac

matrices is

- o ;
I 0 _
\(‘0:(0—-!) r" -& 0

-
where (@ denotes the 2x2 Pauli spin matrices
0-4'
.. ol 0.2: / g° =
- /o 4 0 o -t

In this realization for the X‘ matrices we have
0 b

thus -

)”“'f:: )‘°3"‘J’0 (87)

The matrix X&- is defined as

s 5 ool - f 2 1)
peps o, w2, /)

PR

+ N.B. In this section, we shall follow very closely
the book:Elementary Particle Physics by S. Gasiorowicz
J. Wiley & Sons. Inc. 1966,



iii) Traces of the Y matrices.-.

Some traces that shall use and which can be veri-
fied from the explicit representation for the 'romatri-

ces .above ( they are true for any representation) are?’

,—r"'v{x‘,a}"-o

Te {T‘F‘ﬂﬁz it ?,.w

R AL

valid for ,A,U,OL =0,0,2,3, 5%

and

Tr { odd number of Y 's } = 0
Tr { X} with less than four other Y 's }: 0

excluding &f and where all indices are different.
Hence the trace of the product of ¥ ﬁ matrices differs

from zero only if the indices are equal 2 by 2 :

T'_ {fr‘ }11) n( Y{’}: 4 [c}l;v cje(/i - 3,;,( %“ﬂ 7 ?/"/’ %wx]

(88)
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it follows that:

T {96/%;/} - f [ - (09 (b1 (0160

(89)
(}{'5 = CL”;‘ )

Let § be the completly antisymmetric ten-

dep
sor with 4 indices. It is defined to have the proper-

ties

Eppy = + 1

E/“u(/g = (-1) i " {pvoc/;? = Perm. {01',2/3}

where v1 °~ is the number of permutations of the indices,

therefore
AR AL
and
{M"MW} w«/;T{X‘f}
:’7L‘€,ma</3
Hence

/1/{3* AT = €y O b Sy

(90)



b) Normalizations and Projection Operators.-

i) Normalization of plane wave states
" In calculating YTIZ (transition matrix squared)
for non-relativistic potential écattering,one may

use plane waves described by

- S
1 i U

i :W‘I 8 (non-rel)

which are normalized to 1/V particles per unit volume.
In the relativistic case, the wave functions are nor-
malized to l/V per unit volume and they are proportio=-

nal to Vl

I AP X
i v (5e7) €
’ eb Pk S r— BOSON
ik L N i
S Iﬁ‘) 2

Fermion

—>

/ l
— — ; (v=1)
V2ey! VZE
the proportionality factor may be different for fer-

mions and bosons or may be the same depunding on

the choice for the normalization of the spinors
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ii) Spinor normalizations, completeness relation,

and the energy projection operator.

The Dirac equation may be written for spinors U (£>0)

and 19(E¢0) as:

(F-m) uip) =0 . (91-a)
(f +m) Fp) = 0 (91-b)
where
—px ipx
) ume€ Lwpme)

(x) = 3
Dirac /277 &

on the other hand the spinors are normalized to read

L = | wty = (92-a)

<l

=
m

£
m

PEIRS /uf»l): (92-b)

This choice leads to the completeness relation

(r) —r) (rn — v
A, * Ao = % [u (P) “/m—'t?/p)’?ﬂ(ﬂ)]:’

— (r)

(r)
(A+ )‘(/;: é U,((p) l/l/s (p)

where

12 e R L

(/\-)qﬁg-rz CAVNCAT




cr) — (r)

(/\_)o(ﬂ = ;i V= (r) U; (r)

are the projection operators /4+ and A_ and may be

written in the form

/
/\ = = (M+/) (93..&)

+ 2m

and

/ .
o= [m“/) (93-b)

and obey the relations

2 _
I\t :'/\“; A+A,:A-‘A4—"0
A+ u = u /\*Qﬁ = 0
ALu =0 A=V

iii) Trace relationship for the Dirac spinors.
We shall be interested in the calculation of the

differential probability J»f‘Ui,E3) for the semi-lep

tonic decay kf¢77{13) , it will be necessary then
) (z) (3) (¥)



to sum /<f/77i>}2 (the square of the probability
amplitude) over all polarization states of the lep-
tons. In cases such as this one we can replace the
sum over the polarization states of the lepton by
a sum over the 4 basis states by introducing the pro=-
jector on the positive ( negative) energy which
cancels the contribution of the negative (positive)
energy states ( see p.,59 ). Calculations are greatly
simplified by this procedure.

Let us consider a complete set of spinor states
constructed out of the four basis spinors describing

states with positive and negative energy and spin up

and down, and denote them by the symbol (‘; then

let
—, P
wiz 1u’) and w' = <cu’f
In the basis of the vectors [U') , a linear operator

;/ is represented by a matrix
%'J-E (L///;>

we assume the closing relation

Zi Jiyx fad =2 /

al



where the sum is over all basis vectors, We have then

geil iy = g .. T {F]

in particular this implies that

§ cuwlflu> -7 {4 (o)

all

in terms of the projection ( [<><d] ) operator
for negative energy states A. ( we will need this

since we consider the current I*j) ):

Lq&;fﬂ&:éu/c{[-ﬂ_]u’ | (95)

all

:7:{;“—/)/1_}

the prime on the E: symbol means summation over po-
larization states. where the minus sign in front of

). takes into account the normalization A} V= -l

c¢) Transition Matrix Element and the Differential

Decay Probability.,-

We have mentioned before that the weak Hamiltonian



is assumed to be of the current X current form;

W

_ G y - ))
H —V{ﬂ/“ﬂmm , (56)

where J;(x) is the total weak current. It is connec-
ted to the S-operator by the usual perturbation ex-

pansion

J": j..c' /’/w -+ 0(&2) (97)

In addition to the matrix element of titis S-operator
we may also define matrix elements of the T-operator
(to form the transition matrix element <f[7T/4) )

by

(y)
Cs1516> = g+ am? e\ <l Tho
(98)

where )ﬂﬁﬁﬂis the following normalization factor
3

e _ﬂL,, TCT/_L_ __i.

-~ // 3k [ y
N7 o ork o g

(99)
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we shall be interested in dealing with the reaction

/('; 70 j'fl/ we have

//) {2) /3) /"/)

(Mgflf‘/)

v, / I / )
- —— ==
A = oo b

in the K’ center of mass system (E,=my);

(K!’ I'Tuetl)

/ /\e
/\/1/[’7"

u 217 £62577V9;?7V§%f7

I

(100)

%_ R
where the star in.4E; means the energy of the j

particle with respect to the kaon rest mass system.
The relation between the T-matrix element and

the matrix element of the Hamiltonian ( using (97)

and (98) ) is:
- 1y) 5
Jh' +imtf (ﬂj_p,.)/fq/T/,') = /f«' _‘-/,l‘; 'Yy /»{/uu/1>

* — A
/’x) = (x)
'L/w ‘7:\ Jx)

N ®

neglecting terms of order 61 . This implies that
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¥ .oa :
.(M')‘* J{(&_p,)<f | H 9] i> =+ am S(@~P;)N<HTIA>
Ly | L3

(101)

The matrix element of the weak interaction Ha-
miltonian density can be written down in the most ge-
neral form, following invariance arguments. If all
the normalization factors (%) for the fermions

(’:‘E) for the bosons, are taken out, the rest is a
Lorentz ihvariant and may involve (when fermions are
involved) the spinors of the fermions (baryons and/or
leptons).

In what follows we shall set up the formalism

to decribe a general semi~leptonic meson decay of

the form

Ma>m 4 25+ U
(102)

it is depicted in the following figure
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and we shall assume it is a 0 —> 0" meéonic transi-
tion.
The S-matrix element describing the particular

kinematical configuration of process (102) is:

: ' +
<&,"3,i’41 Seﬁ ]P,> = .+ 6 jdq)( 28] [ﬁ{x) | 2y (,ozlmj[,)x)]@
‘ vz'!

s »
J}M = ﬂ(x)+-¢ifx)
- ! —
lep. had. . (105)
The matrix element of the lepton current can direc-

tly be found to be

2. ix(Rfy)
| my M,

A
A - A i YU (2
<03,F~|\X”()}0> = (;—;)3 g, E4] u.u(f’*l)r((-\‘rs')l(})e

(106)

In order to use a common normalization for the lep~-
tons one assumes wnufo ; a term with the form [V%%]
will appear in such a way that the neutrino mass
will be canceled out.

The most general form of the mesonic matrix ele-
ment is given by

1 | ixl@-ﬂ)
<P1’[ﬁ, [X)}p.>:—3 —_— ﬁ(f’upz)e
)Y (zm W A
1 e :




where ;{(P.,@_) is as yet an unépecified vertex function.'

All we know about }a is that is a lLorentz vector. This
matrix element of the hadron current can be parame-
trized in terms of two form factors ( one for each

momentum vector available).

t, 041,
A-2 )Transition Matrix Element for the reaction K27 A"V

We shall be inte?ested in the Decay Kf,ﬂojt),
when we calculate ( in the next sectién) the Dalitz
plot density [ (& ,E;).

The interaction is a pufely vector one. The ma-~
trix element of the hadronic current can be parametri-

zed such that

1

)
Flru,e) = 0t foo + BT Le)

h) A
- ;/ [ 14+8) #1e) + (4-F2) £1e)] (107)
) 2
where 2z (4-0)16-1) = hth -2k
/7
= (%+’3)1

> >

-
:m,tz ‘fZE} //i‘/’z@pj‘ ()V’U:o)

+ N.B. As it is known in this dissertation we are
dealing precisely with the study of this function . We
are of the opinion that the D.K.P. formalism (through
the inclusion of the derivative current %: ) is able,
in a natural way, to yield more information on A,
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+
and !

A (108)

Therefore using (107) we can write thie hadronic
strangeness-changing vector current matrix element as

)
T )| l//\/x) [ kth)> =
e

3

(i)

- 1'1(/;'{:)
hth)fre) +ln-n) f/f)}é’,

/
A
JiEE, (105)

()
where %(o) symbolizes the strangeness changing vec-

tor current.
Subtituting ed.4106) and eq., (109) in eq.,( 101).

we can write the invariant T-matrix element as

Tzep|Tli> = - G5mE
V2

3 ) )‘ - N \
(217) l/%gz; <ol Vioy " [k*y (L) );(Ifﬂ.)n&i(%)

(110)

Uy () 2 U, 2) o W(B) 2 A (4,05)

where we have introduced the Cabibboassumptioni.e.Shg.

+ N.B. Historically £ and £ were used first, but
more recently , and ¢ where introduced.
&




iy o

Finally, taking into account that QZ:/%~/§'@
and using the Dirac equation the invariant t-matrix

element can be written in the form

eswmb (2500) L) (1) (B+£) Vs ()

T= —
(111)
where
(5:7”_& (1=Fe))
2
and
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A-3)Basic Theoretical Framework.-

12)
The current-current theory of weak interactions

is consistent with most of the present knowledge of
weak interaction phenomena. The'underlying assumption
is that a perturbation expansion in terms o¢f the weak
couplinhg constant is possible due to the smallness

of G.+ Since a theory of higher order weak interactions
is not available, it is not possible to write down an
interaction Lagrangian (in the sense of electromagne-
tic interactions, for example, where this can be done)
and the best one can do, is to write down an “"effective"
Lagrangian; the corresponding matrix elements are theﬁ
assumed to describe lowest order weak processes., It is
in this spirit that one may write the effective weak

S-operator in the conventional way.

an
' q ¢ + . "
=1 - L-% jdxo\x’I{x)ﬁcx x)Ial(x

(112)

+ N.B. llere G (has dimensions, (energy)x(volume) )

is the Fermi co“stant. The values given by K.Xleinkn-
echt in the 17—International conference in H,E. Phyv-
sics (lLondon 1974) was for the Fermi coupling constant

derived from the pm=~decay _Lq 3
G = (1.43383 + .00003)X10 " “erg-cm
and from fA-decays

-4Q
Gﬂ = (1.413 + .002)X10 4 erg-cm3
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corresponding to an intrinsic four-fermion interac-
tion. In principle mesons are taken into account if
we assume that they can, in some way, be thought of
as bbund states of fermion-antifermion systems, 1like
for example, the formation of a quark-antiquark state.
If we assume that intermediate boson do not
exist one can approximate the weak interaction proce-
sses via the direct coupling of the weak current with
it self. Usually it is assumed that the interactions
involving the weak processes are local in naturet
For small momentum transfers the available empirical
information has been in good accord with the assump-
tion that the structure tenéor has the most simple

form:

/ %)

AN '
i 3" f (x-x9) (113)

+ N.B. A fundamental problem of weak interactions

is the discovery of a complete theory for which the
Fermi theory (which in a certain sense, we are pre-
sently discussing) is the low energy limit. In the
theory of weak interactions the Lagrangian is a phe-
nomenological Lagrangian, a low energy description
of weak interactions. The intermediate vector boson
theory is an alternative low energy description of
the weak interactions.




which leads to the four fermion Fermi model and which
has been found to be a good first approximation for
low energy processes. That is one way to couple direc-
tly the weak currents to each other. The self-coupled
weak current I;(X) is assumed to be separable into

two parts and to be of the form

chadrons) clepTons)
L,x) = (x) + /Q)f”
A (114)

and where it is assumed also, that to lowest order
in the weak coupling G, the leptons may be treated
as free particles, if we disregard the electromapgnetic
interactions.Which can be calculated to any order.
Usually the following is assumed: 12)
(a) only vector and axial-vector currents
contribute.
(b) phenomenological current-current V-A Lagran-
gian,
i) existence.of a phenomenological lepton
weak current.
ii) locality of lepton production; the fer-
mions are produced at the same vertex.
iii) local non-derivative coupling.
iv) first order terms of weak interactions

dominate.
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(¢c) final state interactions are ignored
(d) violation of C and P, but CP invariance.
(e) translation invariance and (restricted) Lorentz

covariance.

In general terms it is expected that strong
interaction renormalization effects will modify not
only the effective coupling constants but the space-
time structure as well of the weak processes. It has
become standard practice to express the'strong inte=-
raction renormalization effects, for hadronic currents,
by form factors, which in general, depend on Lorentz
invariant combination of four-momentum variables that
characterize the particles participating in a given
- process,

If we agree to write the (bare) interaction La-
grangian in the current-current form, then the weak
interaction process is usually classified into four
different categories. Théy are, the purely-leptonic
processes, the strangeness-conserving semi-leptonic
processes, the strangeness-violating semi-leptonic
processes, and the non-leptonic weak interactions.
The two currents assumed to describe all the possible

interactions are: the leptonic weak current

N ”’—@,f}\(lﬂ})m if;ﬁ(lﬂ})# (115)
< r
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where 7@ and 7%% are the fields of muon and its anti;
neutrino ( and similarly for fé and 7%E ), which has
been written in the usual maximum parity wviolating

V-A form, with left handed neutrinos, and right handed
anti-neutrinos. The other current contains the hadro-
nic part of ﬁhe weak interactions. With regard to semi-
leptonic processes, in which we are really going to

be interested here, there is evidence for the follo-
wing isospin selection rules: | Aj?}:l, Ay =0

and Iﬁf\ = Yy , AY #£ o0 where % is the hyper-
charge. We can take account of them by assuming that

the hadronic weak current is the sum of two currents;

an isovector current (I = l); which is hypercharge-
conserving AY=0 and an isospinor current (I = %),
that is not hypercharge-changing - Ay#o. The first

of these two currents transforms like an I-spin rai-
sing (or lowering) operator, i.e.; containing, for
example, the algebraic properties of the charged pions,
for instance, it can take an initial neutron state
into a final proton state. The second current in the
total hadronic current transforms as a v-spin raising
operator, i.e.; containing the algebraic properties

of the charged Kaons; as an example, this operator

can take an initial lambda state into a final proton

state.




All that has been said above, is the basis of

the theory of Cabibboll) which we shall briefly des-
cribe. It will be assumed that zﬁ} is formed out of
a vector current and an axial-vector current, i.e.;

ﬁ>5\4 i A) (116)

The basic Cabibbo postulates are:

a) The weak currents are members of a single self-con-
jugate octet. This characteristic has to do with the
transformation properties of the current-operator un-
der rotations in SU(3)-space. This means that the vec-
tor and axial-vactor currents transform like fhe‘infi-

nitesimal generators of SU(3). The octet of vector

, . J
currents consist of eight operators { (Jj = 1,....,8),
where
(1142) (2)
=V, fiV
A A A (117)
carry the quantum numbers S = 0, I = 1, and I3 =+ 1,

where S is the strangeness quantum number. They may
&
be thought of as the -7/ - members of the vector

curfents. On the other hand



carry the quantum numbers S=1, I=%, and 13= + %. They

3
correspond to the K~ members of the same octet.
16 *i (3)

Similarly, V)‘é H s \/) and VA(S’) correspond
respectively to the k°(§b), 7° and v7° members of
the octet. The vector currents with upper indexes
4,5,6,7 charge strangeness, and are assumed to be
conserved only when SU(B) is conserved. Furtheremore,

: P
the axial octet operators /\> (J:l,....8) are assumed

o) . 12) g

to exist. Again AA'fLA) are the 71~ members of
the octet of axial currents, etc...

One usually assumes that the hadronic weak cu-

rrent ﬁ} is made out of two pieces, one correspon-

ding to AS=0 and the other to As =%t one writes

V) = & V,(bs=0) + b V), (45=21)
: ' : (119)

and
A, = Q' A, (ps=0O) + b A,(bs=h)

(120)



where

\/AIAS:O) N V/

| (7 ) 1§)
(e, - o V& t/‘VA

b 4
i
N
K
N e

\//\(As:f!) .

and similarly for ‘%l . The following selection ru-

les have been taked into account:

AQ =+ 1 ; AI:’::I “for OS=0
" and

AQ s 1 ’ AI} =_‘!"_‘5' for AS :_i 1
b) Also Cabibbo makes the assumption that a = a' and

b=b' .

c) It is required that the electromagnetic weak decay
coupling G,‘ has the .same value as the complete ha-
dronic weak coupling "strength". This is assumed to

be expressed by dﬂfbﬂz:/ . This relation can be used
to define the so called Cabibbo angle, i.e.; a = cos B
and b = s5m@ . Histofically it was introduced to
take into account the differences in "strength" be-

tween the AS=(O processes (like g%, ﬂoe*ue ) and
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the As=*/ processes (like I<+->/7°€-/Ue, ). Expe-
rimentally, the Cabibbo angle varies between 0.27

and 0.21 depending on the type of process observed,
The 1974 world average fit to all the experiments gave
a value centered around 0.230 (quoted by K. Kleinkne-

cht, see foot note page 72.

To summarize, let us say that the neutrino fi-
elds ( to first order in G ) are considered to be
free fields, on the other hand, the charged leptons
are assumed to bé interacting fields but only with
respect to the electromagnetic interactions where
perturbation theory is applicable. The hadron current
cannot be specified in detail except in models (1like
the quark model): however, an important hypotesis is
that it belongs to a multiplet of local currents ful-
filling a strict group algebra at equal times. The
group algebra of the total weak current reflects the
universality of lepton aﬁd hadron couplings. Univer-
sality is interpreted to mean that the vector part
of ﬁ} is coupled to ,F> with the same strenght as
_ﬂ) is coupled to itself.

Since the hadrons appear to have a non-trivial
extension in space, this makes the current operator

ﬂ} non-local. This may be expressed by the form
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factors. The very structure of the hadrons must be
accounted for in terms of these form factors.

The main cbjective of this dissertation will
be to determine part of the structure of the form
factors appearing in the parametrization of the ma-
trix element of the weak hadronic curreﬁt that is
responsable for the decay process 4 v/ab A4 . In
the method we employ, SU(3) symmetry breaking is

assumed from the start.
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A-4) Semi-lLeptonic Meson Decays.-

In this thesis we are mainly interested in two
meson decays: K< 7”2‘) and [T 7Ly . As we have scen
the first involves a factor G sin@ the latter the
factor G cos@ . In the SU(3) symmetry limit (’qr:Ym%)

the matrix elements for both decay processes must be

essentially the same.

A—ha) Definition of the form factors for Kokrdecavs‘-
=3

The invariant transition matrix element for Kﬂ
3

decay is given by (110).

2 g i - ;
’ % $in® (2WIVEER <l Vol Y @ ¥ ued) W
)

where we have a 0--—> O transition. It follows that
only the vector part, of the hadronic strangeness-chan-
ging weak current is involved.

For k&a decay, we have

K —y JF -+ /ﬁ -+ l%{
(f) %) (B) (%)
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where § is an electron or muon, Qﬁ their correspon-
ding neutrino, and K and g are charged or neutral
kaons and pions respectively. The assumption that the

lepton current enters the matrix element in the form

¥V<ﬂ4>ma(1+ v o, (8)

sugests that a possible form for the hadronic vertex

function is the vector function

T [V, [Kk(p) D> :;{/\(P.,Pz)

so that it can be contracted with the former current.
The matrix element of the hadronic vector curfent is
assumed to be a function of only A and B , the

kaon and the pion 4-momenta. One can parametrize the

matrix element as follows (see (107) ):

3 >
(2m) VEEe cauylvt k> = /f/t) P +;§rt) /;‘A

(121)

where T = (ﬂ—~ﬂ 72 , and the form factors are functions
of t only. This follows from Lorentz covariance.

The principal aim of experiments on.K/Q3 has
been to determine the form factors as functions pf

thhe invariant momentum transfer
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A
t = (@‘Pz) (/)/"Pz))\ 2 (122-a)
t = Vn,féfmf o E,; (122-1b)

where t has been calculated in the coordinate sys-
. . . . . _ -
tem where the kaon is at rest, i.e. P =(0,74 ),

The range of t in the physical region is

2 2
Yieg = 1T £ (¥ -7
2 =) (123)

The form factors are assumed to be smooth func-
tions of t and to have no singularities within the
decay region.

The aspects of theoretical interest in form
factors are related to the difficulty in the task
of calculating their mafhematical fform from relati-
vistic field theory.

In a phenomenological model one tries to for-
mulate a technique of parametrizing the experimental
data in the most economical way. Progress in the

knowledge of the behaviour of the form factors with t
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is correlated with the progress of our theoretical

me thods.

The decomposition of the matrix element in two
2 >
linear combinations of f, and F2. is absolutely arbitrary.

: o~ ~
One usually introduces the form factors f+ and }

defined by the hadron transition matrix element

CoTTN RN
() WEE, ST |V ) | Koy = o

’ (124)
" } N o~ ;
o Dl oy 4 60-0) {-(t)]
4+t§'l K oy A Ve
where F:H-ii; 5 is the appropiate SU(3 )

structure constant. In the limit of exact SU(3) where
the masses are degenerate and the current is conserved
one finds

~

7(+(0) = constant (125-a)
~

} (o)

-

{
C

(125-b)

More often one expresses the matrix element ( 124 )

in terms of the form factors }. (t) where
—~+



f/ .
L) = £ L S"-t(ﬂ | (126)
- G4y, W
7~

A convenient normalization for f;(o) is

~/

flo) = |

+

exact SU(3) symmetry then implies

f-\» (o) = —Ifz': (127-a)
for k$~> me 2 Y
and

£, (o) = 7 (127-b)
for +

In the limit of perfect SU(3) symmetry, \/>~ is
considered to be a conserved current, and therefore

we expect that in (124), the following relations hold:

£ 04) # 0 ,  fey=o  £fo
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if we have a perfect SU(3) symmetry. This follows
from the divergence of ‘VA which can be seen to be

proportional to

2 2
(0,5~ 0, )g t) +t § (), (128)
if the divergence vanishes then

f__ (t)i=o when P'ﬂ‘ - P;'

The matrix element of the divergence of the current

V)_ is given by
v 2
(any’ YE,E, <ﬂ'le)]97\VA(X)}k[T’,)) =1 -{(u‘lg‘m;) i, (t) +

+ T f-__ [t)} e—ix' (P -0) (12
) 29)

and in a sense, it can be seen to be of the order of the
SU(B) breaking. A useful parametrization is defined by

the, so called, divergence or scalar form factor

S 25 (8) & S $(D) . (130)
0 2 7z
'm,‘-m,",




The matrix element of the divergence of the current can

be parametrized as

L2’ \¢E, E, <T(R)] aav,\]K (P)D = (m «*m,'f: )}o{t)

(131)

1t is interesting to note that f; and J; are
connected with the ]~ and Cyﬁtransition amplitudes.
f (f) is the form factor corresponding to the trans-
= .
verse current (spin one exchange), J;(“f) is the form

factor corresponding to the longitudinal part of the

current (spin Zero exchange). This can be seen as follows:
Expanding (124 ) in the centre of mass of the lep~
tons (&) v ), we have:

?

AMAEE, <T(B) |V (0)|K(R)D = M e
=2 o { VF;T? 0

(132)

- -
(P VEE, <TE) | VoY [kyy = 2 8 &, (1)

(133)

We can see that the first relation above is valid

in the following way: |
In the center of mass of the leptons



't = ?|2+!722;w?.p‘ {”L = ({7'_?2)2'_ (

= (f=Pp)"
o)
- 2
- (En"Ez)
therefore

J?F~ = E"'EEQ. !

we have also

(BHE,) (R B)) = (EE, T2 (wbw®)

hence

2 2
w.o .
e -Wy

\j-t——, /

E"+E.z::

using now

2 2

3{_({'): W ™ [fo(t) ._.. 5:4 lf)]

T

(134)

(135)

(136)
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we obtain {ﬂ+/;)A /+ [t) + (C'/;)) % (¢t) =

o 2
LHK =

{/44/;,)) + “i’Z (- /,7))}f/z‘) + (' Wz/ f/é)

it can be seen that when.,k:o y the above relation

reduces to

g 2
f{E”EZ” /EE)ZJ/ /t) + ——fa’/'/E ~£,) ()
i (137)
using eq (134 )and. eq(135), the term multiplying f;
vanishes and we obtain (132).
To verify eq(133), all we have to do is note

that

{zr) V4EE, (ﬂ//z)/wu}/u/’)) {(ﬂﬁz); ;,,[,o /)Zf/{)f

?
W ik — L(f =3 =2

a TAG-0,) £ 1#)




B

will reduce to eq (133) if we notice that in our refe-
rence system

- - -) - -> -

> > -2
f-fzo end B 4L =28 +RY

/@ = 2}%

In Kja decays, one usually introduces the ratio

off and £ and define the parameter
= +

(138)

¥ (t) Z L0 ”mkz“m’:zf’iff’*f+’é)}
£ (t) t £ 14}
-
Due to the limited experimental statistics for
KJ3 events, one usually assumes some simple model for
the variation of j; and £_ with respect to t. Since
the range of t covered in KJS decays is rather small,
one may hope that the behaviour cf the form factors in
the physical region is relatively smooth. Historically,
j; and J{ were assumed to have a linear t dependence.,
It is possible, however, to analyse the experiments in
terms of Jﬁ, and jg which are associated to the ampli-
tudes that have definite spin and parity. We can start
by assuming that f; and j{ have a linear t dependence

and write

)ﬁ(f}:;ﬁ/ﬁ (/-/—Af:g—_
- - ™2
i (139)
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hence

}(f):/}(o)—f-_/f.;n% (140)

with the following relations between the six parameters

Fio) = £ 100/ 4 o) (141)

and ./L = A_ - ‘A_+ when _A_+ ee I .
On the other hand, if we assume that j* and j%

have a linear t dependence, f will have the form
o

fo/f): 7{”) [/4'/\0;”%) (142)
-
and we can noticé that these assumptions are incon-
sistent with a linear expansion for jC_ .
Assuming the above parametrization for_égand f;

to analyse the data, it seems, that the analysis depends
on %+and'; in a much more sensitive way that on )-, i.e.
}_ is determined with much less precision. Nevertheless

the variation of £ with t in /(padecay cannot be ignored

-
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since the energy release is of the same order of magnitude
as the hadron masses.

In this thesis, we take the point of view that the
apparent discrepancy between the polarization, and bran-
ching ratio and Dalitz analysis, reflects insufficient
consideration of a posible quadratic variation with 4
of the form factors. In this thesis we adopt the point
of view that }_# 0 . In our model, it turms out to be
completely determined by the hadronic masses .

The parameters Xt and i}(b), can be measured

in different independent ways.,

A-4b) Experimental determination of the Kg‘ form factors
]

There are four types of measurements one can per-

form to obtain information.

(1) The measurement of Dalitz plot density for ‘(es
decay allows one to determine £+(f) . More specifiically
one can measure A4_ and k; . Most experiments are
concerned only with a linear dependence Qf f; (t) and
measure )4_ , see table ( A-1) below.

In general, the overall agreement between various
experiments has been rather poor, and thus it is not
clear how meaningful is the world average. The inclusion

of a quadratic term in the expansion of -{ (f) s 1. €.
+

+ N.B., see main text eq., (55).
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>+ , reduced the discrepancy between various experi-

ments (sce ref. (ii) ).

(2) An analysis of the Dalitz plot+in Kﬂsdecay can
yield information on both }+ and } ( or f* and J[° _)‘
Unfortunately, these two parameters seem to be strongly
correlated, and the answers that one obtains depend on
the parametrization useq.

The most recent ’<N3 experiments.have had a suftfi-
ciently large number of events to do a parameter indepen-
dent fit, i.e. analysis of the distribution in a small
enough band of EE’ so that the variation of the form
factors in this band can be ignored. The fitted wvalue of

f.‘z and } ( or fo ) in individual bands can then be
used to extract the T dependence of these form factors,

The recent K4-and l(oDalitz plot analysis ex-
periments are summarized in Table (Bl,Z) below. Special
attention needs to be paid to the various assumptions on
the dependence of the form factors for the selection of
the experimental values in table ( B-2) because of the

reviousl mentioned correlation.
P

(3) For the branching ratio ”?' , defined by
(¥e)

[ (Kes)
= 43)
IRQ*/&) 7 (ke | (143

+N.B. For the theoretical method see p., 104
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the experimental data is summarized in table (C-1 ).

There are some inconsistencies between various

-’
measurements of r[k --977—0/1""‘)) . For example, the
o
value of ﬂ% mfor K seems to be greater than the wvalue
¥
of ﬂ? for K* . One can probably summarize by saying

(#¢)

that the experimental situation on branching ratios is

still far from settled, and is probably too early to

conclude that the difference between ﬂ? for Ko and
€
!
K™ has been definitely established. r
(&) The measurement of the muon polarization in

K—=> T M Y decay tests the extent to which time
reversal invariance 1is a good symmetry principle, by
requiring the polarization to be in the M T plane.
Furthermore, for every point of the Dalitz plot, there
exists a direction along which the muon is totally
polarized, and this direction is completely specified
by the value of :E(t) . Thus measurement of this
direction corresponds to a measurement of }(é). Several
recent measurements of muon polarization for bothl<o

and K7* yoar MoV decays are summarized in table {D-1)

below.
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A-l4c) Experimental data

a) K: Dalitz plot and pion spectrum data.-

The f form factor can be neglected for Ke
- 3
because it appears in the calculations multiplied by
2
the kinematical factor Egﬂglo
My

The j; term is usually assumed to be linear

in t. The linear parametrization has usually the form

Fe) = £ 1+, _;ht..;j

The A+ values seem to be consistent and the

average over all the spectra experiments is i)

+
Ke. Ay = 0.0285 + 0.0043 (14k-a)

N
® o

>‘+= 0.0288 2 0.0028 (l’-‘h-b)

Next we show a list of the recent data for wev

decays involving kf and l{orespectively.



h)

TABLE A-1

K% )\+ Data K: )\+Data
3
(ii ) 0.026 + .008 (ii ) 0.017 2 007
(iidi ) 0.045 + .015 (viii) 0.050 + .010
(iv ) 0.027 + .010. (ix ) 0.023 + .005
(v ) 0.029 + .011 (x ) 0.022 + .01l4
(vi ) 0.027 + .008 (xi ) 0.055 + .010
(vii ) 0.025 + .007 (xii ) 0.019 + .013
(xiii) 0.040 + .012
(xiv )  0.0270 + .0028
(xv ) 0.044 + .006
(xvi ) 0.0312 + .0025
‘{ Dalitz plot and .pion spectrum data. -

M3
In this case the f—_ form factor can not be neglec-

ted. This is usually taken into account through the

',\f parameter defined as

TE ff =) [ +J&t/m;}

where /}(03: £~h)/4ﬂ(ﬂ and _A = A~ )* for A+<<‘
In most experiments it is assumed that ﬁ_ depends
linearly in t and that ,E is constant.
On the other hand it has been found that A+ and

}‘(o) are strongly correlated.



(id )

(xvii )
(xviii)
(xix )
(xx )
(xxi )

(xxii )

© © © O O O O

Data

.ol43
.050
.024
.006
.025
.027
.025

|+

o N N N O

R b b N S

TALLE B-1

.017
.018
.022
.015
.017
.019
. 030

TABLE B-2

0

K

3

(i1 )
(xxidii)
(xxiv )
(xxv )
(xxvi )
(xxvi )
(xxvii)

(xxviii)

0
KFa
(ii )

(xxix )
(xxiii)
(xiv )
(xxv )
(xxx )
(xxvi )
(xxvi )

(xxvii)

C(xxviii)

M, Data

0.08
0.085
0.11
0L6
.076
.030
.0L6

o © O ©

2(0) Data

0.030

I+ 1+ i+ 1+

[+ [+ |+ I+ 1+ |+ 1+ |+ |+

.01

.015
.04

.008
.00k
.003
.030

12

.61
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c) Branching ratio experiments.-

Here one determines either A¥ or }@,, since

they cannot be known at the same time. The mathe_
matical relationship between.these parameters

ii)

-+
as given by Chounet, et al is; for K7 :

2
= 0.646 + 3.801 A, + 6.812 Ay + 0.127 F(o)

@) (145-2)

7
+ 0.476 %(o) A, + 0.019 ) / 1+ 3.700),
+ 5.478 )%

and for KO:

2

= 0.645 + 3.546 A, + 5.932 X, + 0.125 Z(o)

el 3 (145-1b)
+ 0.L372@)Q, + 0.019 Xy / 1 + 3.457 2,

+ b.779 2%

If we make the approximation that A* is very
2 .
small and neglect X* , the Particle Data Group i)

+
give the following relationship for K' ¢

I,

S
o 0.6457 + 1.4115 X3, + 0.1264 %) + 0.01912%(o)
!

+ 0.0080%,%(0) (146-a)

and for K° :

- 0.6452 + 1.3162 X, + 0.1246F(®) + 0.0186 2o
1re) -

+ 0.0064 %, %o (146-b)

From this relationships we can determine )+ (;Uﬂ)
in terms of ?0ﬂ ( )+). Results are usually quoted
as values of}YM at fixed A+ . We list these results

in the table below. The method used to evaluate
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these parameters, is to substitute the measured

in (146-a) or (146-b).

experinental number for th)
1

o>
depending on wether one is dealing with t{ or with
Ko . In this compilation of data F-Q universality

is assumed.,

In a fit over the available data i) ( up to

1975), and assuming that A+ is fixed to the value,

} S 0.030, the values of IR and }{O)')\
+ (me) £

are.;

TABLE-C

o+ 0
k- K
: 0.66 0.18 0.696 0.01
() 3 % 90 + 7
_¥(0) -0.20 4+ 0.15 0.09 + 0.13
AO 0.014 + 0.012 0.038 + 0.011

where the )\ and (o parameters are related as
o

follows

(147)
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TADLE C-1

-
K- % (0) -
(iii ) ~0.35 & .22 for 0.45 + .015
(xvii) -0.81 + .27 for 0.028
(xix ) 0.0 + .15 for 0.03
|(° :f;(O) At

(xxix) -0.5 + .5 for 0.02
(xii ) 8.5 £ for 0.19 + .013
(xxx ) -0.08 + .25 for 0.02

0 oan analve i . ii) . .

In an analysis made in 1970, in a linear

+
fit over the available ,R'(pe) data they found for iK
|
@(K*) 626 9
= Ko .0

e 0 * 0,019
that

)\, = 0.000 ; X = -0.17 + 0,15

Ay = 0.030 ; X = -0.53 + 0.18

N, = 0.0ks ; ko - 0. 71 0.20

J
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0
and for K

(K°)
R = 0.684 + 0.018
(Me)

they found that
A, =0 ' ; %) = 0.30 + 0.15

where the H results reffer to mean values and )\_‘:O
rNe)

d) K polarization experiments.-

M3
The polarization measurements deal with the ave-
rage of }(t) over the t range of the experiment. They
measure ), directly.
The over all value given in ref. ( ii ) for expe-

riments performed before 1972, was:

¥0) +
J

i
!
N
o
+
N

I
D)
e
oo

|+
H
t

where

¥(t) = 2to) (| + N t)

KEN >

< LIBRARY . _
A
VERS
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TABILE D-1

Ve
o

K ¥ (0) K ¥(0)
(4i ) -1.45 + .70 (xxix) -0.385 + .105
( xxi) -0.64 + .27 (xxx ) 0.178 + .105
( vii) -0.25 + 1.20

e)Over all fits to the KI‘"S experiments., -

The fits to all the different kinds of K/“3 expe-
riments are given in ref. (i). The values for ,\4 ; )‘o

and ‘¥(o) are:

TABLE B
+
Kﬂs ' K;s
As 0.027 + .008 0.034 + .006
Ao -0.009 + .007 0.021 + .006

+ .14 -0.17 + .10



References for the Experimental Data.

(i) Rev Mod Phys 48 part IT (1976)
(ii)(world average value); Chounet, et al

Phys Rep 4C , 199 (1972)
(iii) Botteril, et al Phys Lett 31B , 325 (1970)
(iv) Steiner, et al Phys Lett 36B, 521 (1971)
(v) Chiang, et al Phys Rev D6, 1254 (1972)
(vi) Braun, et al Phys Lett 47B, 182 (1973)
(vii) Braun, et al Nucl Phys B89, 210 (1975)
(viii) Chien, et al Phys Lett 35B, 261 (1971)
(ix) Bisi, et al Phys Lett 36B, 533 (1971)
(x) Neuhofer, et al Phys Lett 41B, 642 (1972)
(xi) Albrow, et al Nucl Phys B58, 22 (1973)
(xii) Branderburg, et al Phys Rev D8, 1978 (1973)
(xiii) Wang, et al Phys Rev D9, 540G (1974)
(xiv) Bluménthal, et al Phys Rev Lett 34, 164 (1975)
(xv) Buchanan, et al Phys Rev D11, 457 (1975)
(xvi) Gjesdal, et al Nucl Phys B109, 118 (1976)
(xvii) Haidt, et al Phys Rev D3, 10 (1971)
(xviii) Ankenbrandt, et al Phys Rev Lett 2B, 1472 (1972)
(xix) Chiang, et al Phys Rev D6, 1254 (1972)
(xx) Braun, et al Phys Lett 47B, 182 (1973)
(xxi) Merlan, et al Phys Rev D9, 107 (1974)
(xxii) Arnold, et al Phys Rev D9, 1221 (1974)
(xxiii) Chien, er al Phys Lett ggg; 627 (1970)
(xxiv) Albrow, et al Nucl Phys Bikh, 1 (1972)
(xxv) Dally, et al Phys Lett 41B, 647 (1972)
(xxvi) Albrecht, et al Phys Lett 43B, 1393 (1974)
(xxvii) Donalson, et al Phys Lett 33, 554 (1974)
(xxviii) Buchanan, et al Phys Rev D11, bsy (1975)
(xxix) Sandweiss, et al Phys Rev Lett. 30, 1002 (1973)

(xxx) Shen, et al L.B.L. 4275 THESIS,
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A-5) Dalitz Plot Density.-

The three body decay K}3 can be charactrized
by only two variables: there are three final parti-

cles which means we have to consider 9 components of

momenta but there are four conservation equations(three-

momentum and energy), and the decay configuration is
defined to within a rotation in space so this elimi-
nates another three wvariables (the Euler angles), and
consequently we are left with two independent varia-
bles. The variables used for the Dalitz plot are Ex,
and £53 . One obtains the Dalitz plot density; [(£E3)
by summing over the polarization states of the leptons
and by integrating with respect to the neutrino momen-
tum and the angular variables. A convenient way of
expressing the matrix element of the hadronic current
will be to write it in terms of £ , f; and F instead
of in terms of P, and f, . Thus we change the parame-
trization of the matrix element of the hadron current

in (128) from

by >
(040 F,(8) + (0-0) £ ()

to

' >
(o6 [20-C- )00 }
(¥ b )

(148)
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Then the transition amplitude can be written as fo -
llows (see (110) ):

=Gsin [24, 17, 0g) { fl=31-Y) (S h) FOHE) v 1)
7
. (149)

We apply the Dirac equation to the term in /§+/4

e

Ly, Co0) 5V B, (1) o
y—
- my

m, u —*0

t:‘

anticommutes with =
I J;

hence, setting
mg
> — /-
g= = (1)
the amplitude can be written as

T:'Gf/ff&(l;g/f)) Uy, tey) (1-14) (‘,/,/7‘/5) U (5)
¢ (150)

<f/7’/l>+<f17/i>\

3

-—

Z
We have to calculate 177




+ .

r1f =TT . .
62 5okt |1, | Vil AN Ly (175
2

-—

x(ﬂ-f-f,()'t)j

—
—

G’ 4 rﬁl((sﬁ/,)(HK'S-)u,,au (1-¥,) ((H/ﬂ,)ﬁjg

(152)

where 2 i
cis %zsmec |25, 0] -
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We seek the differential decay probability,
df"(E”E}) ; the Dalitz plot density, so we have to
sum /‘TYZ' over all polarization states of the leptons:

for each lepton we have seen .in (93) that.

- — ) /
2 <n)u(ﬂ)=;;ﬂf’"+/)°<

%

hence, for the neutrino we have that’

On the other hand, we replace the sum over the
polarization states of the lepton by a sum over the
L basis (spinors) states by the introducticn of the
projection}nlthe positive energy states, which cancels
the contribution of the negative energy states. This
artifice makes it possible té considerably simplify
the caiculations.

We recall that in the basis of the vectors JUD

a linear operator ;K is represented by a matrix
%.. :=<4/;1{/J>
“J

and

£ eilgli = L4, Y




We have to calculate ZZITiz to obtain the Dalitz

plot density. The sum extends over all the spin direc-

tions of the leptons. Hence

s1TI" = 6" O (B0 ) u, T, (1-YR) (642
L‘\f"'/
}"1‘/2)7;”

/ff

=-G' T{ (p +/)('+5')

2WU

where we used (95). It follows that

2
g1t =28 T L@ s 0V ) tmfl))
Ymom v
2. ll"mf)

TS RNV AR RSV

2nunu
(154)
To calculate this, the traces of the products
of ﬂ matrices are involved. The properties and re-

lations that we need are in pp., 55-5§



The only non-zero terms are those containing

2 or kY- matrices, or the product of L4Y— matrices by

vf . The latter term has the form

o (P AR WA AP
the trace of which is

/./,'E/.L V4 f Ptﬂﬂvvﬂ“‘ p:ap = g

There remains the terms

To{m KE 5= dmep ety

¥ ¥
T {c /‘1{\7’%}: ame £ F,

which on adding gives

S}YQQ A&g/z ﬂ‘ e;

and

~'1} {/ﬂlz,ﬁ*/gg = - 4 /ﬂlQ ﬂr/%

2
5 AT - Lee -




hence

EIT}Z— u[%ETJ [7” (m, Qeﬂ" b)) O by 4 (m‘f—/[&]' ) Pq-@:(

(155)

' 4 + _
We evaluate 2 |T| in the K rest system,all the

energies evaluated here, except for E‘:YﬂK , WwWill be
. * ¥ +
designated as £ namely : f,. {)3 = W, E} 5 P'.pq = m, Eq

We have the following relations

2 ? 2 ) ¥ _ ”mf_ ¥
i’3+f>442f’3.ﬂ,:)fn,(—wnv—-ZvnK’c‘Z => .= *m‘([Ez EZ]

where
X 2 T — iy
2 My

is the maximum energy of the pion. The minimum energy
is

E - M (157)

therefore

/
¥
S 1T =280 2 (g Bep - mE Bl pr™) B
MMy,
(158)

where

{ -~ E _Ea%



1
and 25]7} can be written in the following form

¥ Ay ¥
AN ]___mmﬂ{[zE E, mE]+vn‘Q[_‘%'_Eﬁ]

7 v 2 4
+RE [ng (&~ B+ 1¥ e B |
4

(159)
’mx 2
(= {1~ }) ‘ 115}227%“«:5}2’
:?(l—ge’?) = *_"_‘%[;.g.)}}ﬁgl?ﬁ?]

hence we arrive to the expression

ZITIZ Gsm@] f’ u{/q-{-BRgrEJ}'Cl;!z}mK 60)

A=m, [7.5 »7,‘5 ]M’IJ T—E)

1 ¥ %
‘8 bd knj [:E; - EEL
A
2 /
C = My E,
4

We can now obtain the expression for the diffe-

rential decay probability: the Dalitz plot density

Ar(ez,s).c ‘"esz[A BR,Y+C/¥l ]Aeﬁe o)



It follows that when YWQ:WﬂeﬂeéﬂwH B and C, in

the above expression are small and thus ?i plays
no role in KQS decays. This is as long as jl is

small with respect to ?n:kgnﬁd

Since the form factors are functions of + st
? ? — ¥ = ¥
™y +MA% — & My E, y and therefore of Li .

it is also possible to determine their t dependence
without prior parametrization. Thus, one can do a fit
through the events in a band of constant EE% on the

Dalitz plot.
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A-6)_The Pion Energy Spectrum

We would like to calculate the ‘ﬁ/° energy spec-
trum, It is not necessary to assume any particular
t-dependence for the form factoré, because J; and,ji
are functions only of, ;o , the er energy, and the
integration is with respect to E;% the electron (muon)
energy.

" We calculated (161)

- ‘024 ‘y; r

since (162)
# ¥ =7
EA = bdz - EZ ﬂ.Cé
we obtain
2.2 2
G2

/
¥y #
0{/‘/5;;5}) e /bn,gf[ZW 5 - &y {ﬂm (4~ )+2%%Qeﬁ}

def dEF

/
#1u oG 7pr0

(163)
quy antﬂ/lf/j[af -/-é E%’ . dE;)‘

673
dff

(164)

it follows that



where

Q:Zwm::

b=-2m, {'m“ (mK—E:) +mym, R, (37;

(165) }
C=wm { ¥* 2 2
LR e B (me-6) + (mi 1a1EL
if we now set
B A
g ¥ WO (i -E; + ‘g)‘,)z-fm:)é
3 = = = b, (166-a)
s _ - 2
E*\mm— (WR-'EZ‘ ’@j/)—f—l!/j
- e = A, (166-b)
Z,(W‘(”Ez_ - /ﬂzr/)
and calculate the following integral
A,
il W ¥ _ a a3 ,3
A{(a 2 +EEX vl dEF = _3‘[&, sz +
b T a1
+_£ [-A,—Aij’f c[Al——Dzj
(167)

= (3. -52) [ = [ (5 +8,)- A,Az7;+%/b‘+az)+c:l



using the following relations

2
A ze) + T

2 M

/ -
/Al‘sz)’l”blb—;, - = (W —E-;)’L(Z" &)’; / 2¥llE e (168-d)
q e 2 N ‘—-‘q- {___i/)
we can write the integral in the form
A [j[ { (5 cue-e)™) e
/
(v +/ E, -é- “‘d - 2 b -
i ; /'—27‘)}'7(2{ k 7')( 52/ )}
4 C_é: (169)

¢
EZ

substituting this expression in (164), gives for the

pion energy spectrum

-——————df//f*) —.6,5;;?/”'/ z/(a,)[ { (%€ ”“*‘ ]

d ¥ (170)

+If__//f;/f {/M,E)[z—-«,,)}.pcb]
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+
For /Ce decay, the mass of the lepton can be
3

neglected, thus (168) reduces to

'3
8= E, (71o)
..)}
(171-v)
¥
A, +b2 = (wm, - Ez ) (171 e)
G 3 ¥, P’“’,.,/’l (1 1 i)
(D,485) = 0,05 /g (Whe-E]) 4 [P~ 91
<

On the other hand (165) becomes

o
&= 2w,
b= 2m” (my,-E") (172)
/
c :mf =
where
w,F 4, ¥
’/_ n s
£ = - £, (173)

20,

All these‘expressions can be used to write the

+
pion energy spectrum for KeB decay

) 2
dr _ 65w (2l m %, 3
def w3 (174)
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From this expression we can obtain informazion
about = ¥ ; ith i

ou )S‘/t) /ﬁ(Ez) ; even without any assumption
on the form of the t-dependence. All one has to do

¥

is to fix E; . This observation is usually put
into effective use at the time of the experimental
measurements. This has been discussed earlier in the

section dealing with the experimental determination

of the k&% form factors.
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