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ABSTRACT

Three different types of group representations have
been considered together with their possible applications.
These are atom and bond representations which are topolo-
gically-relevant representations of the molecular symmetry
group, projective representations which, although still
composed of sets of unitary matrices, obey a modified group
multiplication rule and corepresentations which consist of
sets of matrices half of which are unitary and half anti-
unitary.

Atom and bond representations are defined as reducible
representations of a molecular point group which serve to
describe the topological structure and composition of a
molecule. They are amenable to computer storage and methods
are given for resolving these representations into irredu-
cible representations which correspond to eqﬁivalent sets of
atoms or bonds. It is shown how bond representations can be
derived from atom representations and a set of tables of
both atoﬁ and bond representations is included. Appli-
cation to additivity formulations of molecular properties
is indicated, together with structural details of molecules
and the identification of bending, stretching and redundant
vibrational modes.

All different representation groups of the point
groups are established and their character tables presented.
These enable the construction of equivalent alternative sets
of projective representations as well as to provide an easy
route to the determinatioﬁ of deuble and space group repre-

sentations. The construction of the representation group



clears up incompatabilities in already published literature
on character systems for projective representations and shows
that of all different methods available for the construction
of these representations this one is most likely to be free
from errors. The availability of alternative representation
groups allows greater scope for the processes of ascent and
descent in symmetry. Correlation tables are provided for
the representation groups as well as tables of the symmetrized
squares and cubes of projective representations.

The set of single and double valued corepresentations
for each black and white magnetic group is identified with
the vector representation of one or two abstract groups of
known structure and character table. This facilitates the
construction of the character tables (complete sets of which
are presented for the first time) and reveals that in those
cases where one abstract group is sufficient a formal character
theory for providing symmetrized powers of corepresentations
can be established, contrary to recent indications. Two‘
types of cases are found where it is convenient to transform ',
Wigner‘é corepresentation matrices and it is shown that normal
group theoretical analysis can only be applied to Wigner's
first type of corepresentation if his concept of physical

equivalence is replaced by a group theoretical concept.
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CHAPTER 1

INTRODUCTION TO REPRESENTATION THEORY

HISTORICAL REVIEW

The first development of the concept of a "group"

arose from the theory of algebraic equations. The problem
was to find the solutiohs?ﬁl,)(z, cese00 X to an algebraic
equation of degree n,

Xn—l o.o.na+alx+a =O

n
g5 a
n a 0

n-1
with arbitrary coefficients, a,. In 1771, Lagrange (1)
discovered that these solutions for equations of degree two,
three, or four were interpretable in terms of sets of permu-
tations on two, three, or four elements which had the pro-
perty that composition of two permutations belonging to the
set resulted in a third permutation of the same set. He
recognised that substitutions and permutations were a
special case of lineér substitutions and could be represented
as a group of linear transformations or permutation matrices.
Cayley in 1878 (2), noted that abstract groups and
hence all groups could be regarded as permutatioﬁ groups.
These ideas were further developed by Gauss in 1801 (3) and
Abel in 1829 (4). The real importance of the group concept
for the theory of algebraic equations was established by
Galois in 1830 (5), who first used the term "group theory".
Klein in 1876 (6) and Lie in 1893 (7) extended the group
concept to other domains in mathematics. Instead of
permutations, the group elements now acquired a more general
meaning as transiormations, or symmetry operations on

geometric figures. The first general set of group postu-

lates were given by Kronecker in 1870 (8).



The central figure in the history of group represen-
tation theory is Georg Frobenius who created the theory of
group characters and much of representation theory. His
tfirst paper on the matrix representations of groups was
presented at the November 18th, 1897 meeting of the Prussian
Academy of Sciences at Berlin, where he was led to his dis-
coveries by his analysis in 1896 of the group determinant.
Dedekind (10) introduced this idea of group determinant and
proposed its study to Frobenius. The problem concerning
the group determinant was as follows:

Let G be a finite group with elements 819 8o see &

where g1 is equal to the identity. Associated with each

element g4 is a variable X i = X 84 where the polynomial @

in X 1 Xn is defined by

=1 o1 el

xglgl Xglgz Xglgn
_ Xo o1 X -1 -1

O XKy «eee X )= sy 8585  eeees nggn
X -1 X v} - S

g&n1 Enéo ceece &nén

and X g.g =1 denotes X, for k such that g. g % g
i85 K . 183 K

Frobenius recognised that the decomposition of the group
determinant into irreducible factors was egquivalent to the
decomposition of the regular representation into irreducible
representations and that the degeneracies of the represen-
tations corresponded to the degrees of the factors in the
group determinant. He also realized that matrix repre-
sentations of groups were important from a practical point

of view, since many groups have their natural representations

in terms of matrices. Examples of these include the groups



i .

which are isomorphic to groups of geometrical operations

in three-dimensional space, or those representing groups of
operations in quantum mechanics operating on the vectors of
a Hilbert space.

Burnside, in his book of 1911 (1l1) rediscovered
independently the chief results of Frobenius's early papers.,
However, he achieved his results from the theory of hyper-
complex numbers which provided the link between the theories
of finite and continuous groups; the link was made through
the idea of the algebra of a finite group. This was based
on the recognition of that special class of hyper—complex
systems, the elements of which could be expressed in the
form

b

8. . €. .
i,Jj=1 .

where the n2 basis elements eij can be multiplied according

to the rule
i3 %k < Sjk €ij
Reflecting upon the mathematics of the nineteenth
century, J. Pierpoint wrote in 1904 (12)
"The group concept, hardly noticeable at the beginning
of the century, has, at its close, become one of the funda-
mental and most fruitful notions in the whole range of our

science",

1.2, WHAT IS A REPRESENTATION?

A representation of an abstract group, G, is a homo-
morphism‘# of G onto a group T of non-singular linear operators

acting on a finite-dimensional vector space, V, in a complex



field. Let ¢ g = Tg for all elements g of G. Then when ¢
is a representation

X) = X WV gl,g2 € G and VXEV

Tgl(TgZ Tgng
An identity operator, TE is defined such that
TEX=X VXEV
e
Also T,7°X =T, ;X vVeeG and ¥ X €V
If the mapping ¢> e« G—FT conserves the multiplication

laws of a group i.e.

¢ (g1) ? (8,) = & (g18,)
for any pair of elements 819 8o in G, then it is a homo-
morphism. If ¢ is an isomorphism the matrix images of G
are called the faithful representations of G. Choosing a
basis function {X| consisting of linearly independent
vectors Xﬁl’ X2, ...)(d spanning the space V, matrices

rﬁx(g) can be defined such that

4
gXL:J;XJ' Fx(g).LJ. (i =1,2,....4)
IQE((g) is said to be the ﬁatrix representing g with respect
to the basis (X| in the representation ¢ . The set of all
distinct matrices rg((g) is a matrix group and is the homo-
morphic image of G under the mapping g—> rl((g). The
kernel of the homomérphism is those elements of G which are
mapped onto the unit matrix.
If {X| and <y| are two bases of V defined such that

¥ = L X §

3 ¢ LK

d
(k =1 to a)
=1

and S is a non-singular matrix then

Fy(g) - s7t PX (g) S



for all elements g of G. That is toc say a change of basis
Leads to the matrix group rl((g) and ij(g) which are equi-
valent. It is always possible to choose a basis <z| inV
such that r1Z(G) is a unitary matrix group obeying the
relationship N |
&™)y = [T @)y

where the asterisk denotes complex conjugation.

If ¢ is a representation of G such that T =¢G is a
group of non-singular linear operators acting in a vector
space, V, then U will be an invariant subspace of V under T

if U is a vector subspace of V and

Tg X € U for all Tg € T and all X€ U
If V has no proper invariant subspace under T then ¢Jis an
irreducible representation. If V can be split up into the
direct sum of subspaces, each of which is invariant under T
aﬁd each of which is the corner space for an irreducible
representation of G, then ¢ is said to be completely reducible.

An important result in representation theory is ob-
tained from Schur's lemma which states:

"If r1(g) and.rT,(g) are two irreducible representations
of G such that

F’(g) 58 =8 F"(g) for all elements g of G
then either S equals zero or 1s a non-singular matrix and
M(g) is equivalent to fﬁf(g)".

A consequence of this is the fact that‘a representation
is irreducible if and only if, the only matrices which commute
witlh all matrices of the representation are scalar multiples
of the unit matrix. In adaition r1(g) is an irreducible

representation if and only if




lal
1 i l X  (8;)
IGI i=1 ¢

where ‘GI is the order of G andeqﬁ(gi) is the character of
[ﬁ(gi) i.e. the trace or the spur of the matrix.
Other essential theorems about group representations
include
1. The number of representations of a group is equal to the
number of conjugacy classes,T , where each conjugacy
class consists of the set of elements of the type
X—ng where X runs through all the elements of the group,
Ge
2e The sum of the squafes of the degeneracies of the
irreducible representations of G is equal to the oraer
of G.

Ja Two irreducible representations are orthogonal if

G i * X ik

1

where rwl(gj) o is the (pg)-th element of the
matrix representative of gj in the representation

rﬂl with di equal to the dimension of =, Also

g ik

1 iffﬁl is identical tor‘k

1]

Il

. i, .
C 1frﬂ is not equivalent tor1k
4. The matrix representatives reproduce the group multi-

plication table c¢f elements of G.

1.3 EXTENSION OF THE CONCEPT OF A REPRESENTATION

OF A FINITE GROUP

Ordinary or vector representatives as discussed in the
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previoué section have important applications in numerous
physical problems, as will be seen in following sections.
However, the concept of a representation can be extended in
several different ways to deal with physical properties that
so far representation theory has not been able to explain.
One of these problems is the inclusion of the effects
of electron spin into the molecular or crystal system Vector
representations correspond to the single-valued representations
of the spherical rotation group and describe systems that
have zero or integral spin. However, if the total angular
momentum, J, has half-integral values (i.e. the ions have an
odd number of electrons) the required fepresentations of the
rotation group must be double-valued. This means that the
quantum number, j, forms a basis for the character of the
rrepresentation under a given symmetry operation, if j is an
integer, the character of the rotations through an angle &

is given by

X () sin (j + )
sin &

and X, (o) =X (x+ 27T)

therefore 2TT is the identity operator. For half-integral
values of j,

X (ox+ 2TT) ==—)< ()

W (o 4TT) = X ()

hence 4TT is now the identity operation. This leads to the
concept of the double group, which was in fact introduced
by Frobenius (13) calling these groups binary groups and
producing character tables for them. Bethe (14) realized

the application of double groups to systems of ions with an




odd number of electrons, and calculation of these double-
valued representations was given by Opechowski (15).

Other types of representations that are of use in
physical problems are the so-called "representations up to
a factor" or projective or ray representations. The concept
of projective representation was introduced by Schur (16,17).
They play an important role in the theory of non-symmorphic
space groups, and are quite generally of importance for many
quantum-mechanical systems because gquantum-mechanical states
are described by rays rather than by vectors of a Hilbert
space. Such systems are systems of particles with half
integral spin (i.e. in connection with the double groups
previously mentioned) and those of charged particles in an
electromagnetic field (in connection with gauge trans-
formations).

If one non-singular n by n matrix D(g) is assigned

to each element g of a group G such that

D(g;) D(g,) =@ (g7,8,) D (g18,) . |
(where Q2(gl,g2) is a complex number) for all g, and g, in
G, then the set of matrices D (gl), D (gz) esese 18 called
an nth degree projective representation of G and the constants
OJ(gl,gZ) is called the factor system. The projective rep-
resentations of a finite abstract group, G, can be found by
a mapping process from a covering group of G called the
rebresentation group.

When dealing with crystal systems that have magnetic
properties, 2 new type of group must be introduced whose
representations are called corepresentations. Normally,
the symmetry elements of the group leave the time averaged

atomic positions and electronic charge density invariant,



= -

However, if the crystal possesses unpaired electrons it is
possible for the equilibrium state to have a nonvanishing
time averaged magnetic moment density as with ferromagnetic,
antiferromagnetic, and ferrimagnetic crystals. Shubnikov
(18) introduced the idea of antisymmetry by introducing an
extra co-ordinate into the crystal system which is only
allowed to take one of two values to deal with these magnetic
structures. These new series of groups are called the black
and white magnetic groups where the operation of antisymmetry
occurs in half of the elements of the group. The other type
of magnetic groups are the grey groups where the operation of
antisymmetry is itself an element of the group and describes
paramagnetic or diamagnetic crystals where the time averaged
magnetic moment is zero.

In fact this operation of antisymmetry is the operation
of time inversion, € , and as shown by Wigner (19) is an anti-
unitary, antilinear operator, since the effeét of €& on the
wave function is to change it into its complex conjugate.

All representative matrices so far discussed have been unitary

obeying the condition
~J .
D(g) D(g*) =1 for all elements g of G

However, in this case due to the fact that half of the

symmetry elements of the magnetic group are antiunitary, this
leads to a new set of multiplication rules for their corepre-
sentations. If u is a unitary operator and a an antiunitary

operator of G then

D (ui) D (uj)

D (uiuj)
D (u) D (a) =D (u a)

D (a) D (u) =D (a u)
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D (a;) D' (a;) = D (aja)

where the asterisks denote complex conjugation.

It can now be seen that a special type of algebra has
been introduced to deal with the various types of represen-
tations of finite group mentioned above. However, this
restricts the mathematics of representations to the extent
that a lot of manipulations and theory used when dealing with
vector representations is no longer applicable. One of the
main results of the following work is the recognition of these
special types of representations as ordinary representations
of finite abstract groups. Since when the restrictions on
these representations have been lifted it is possible to
formulate a fuller and more accurate account of the physical
properties described by these irreducible representations.
Chaptérs 3, 4 and 5 deal with the study of projective repre-
sentations and their application to double groups and space
groups. Chapter 6 deals with the theory and applicationg
of corepresentations in magnetic systems. As will be seen,
this approach also clears up demonstrable errors in previously
published mutually incompatible results between various sets
of projective representations and leads to much simpler calcu-
lations when dealing with either projective representations or
corepresentations. The creation of the representation groups
needed to find the projective representations of the point
groups also produces more abstract group tables than are

readily available.

l.4 SOME APPLICATIONS OF REPRESENTATION THECRY TO CHEMICAL

AND PHYSICAL PROBLE!S

The foundations of the application of group theory




(more precisely representation theory) in quantum mechanics
were laid around 1930 principally by Weyl (20) and Wigner
(21 ,22), From early work on crystal-field theory by Bethe
(14) and on electronic band structures by Bouckaert,
Smoluchowski and Wigner (23) it became apparent that the key
to much of the expbitation of symmetry in the quantum mechanics
of a molecule or solid lay in the irreducible representations
of the classical point groups and space groups.
One of the pasic chemical problems is always the
determination of the structure of a molecule or crystal
i.e. how atoms in a molecule are related to each other in
space, and how these individual molecules are related to one
another in a crystal lattice. The first part of the following
work deals with these atom and bond representations. Aton
"and bond representations of a molecule are defined such that
they are the reducible representations of the molecular point
group spanned by the sets of atoms or bonds in the molecule.
One of thevfundamental theories to group theoreticél
applicétions was enunciated by Wigner (21). He showed that
for a system belonging to an abstract group G, any wave function
HJ(T) of the system must belong to, i.e. must transform
according to, one or other of the irreducible representations
rﬁi of G. That is to say the wave function of a particle
or quasi-particle in a molecule or crystal must be one
component of a basis of one of the irreducible representations
of G of that molecule or crystal. The degeneracies of energy
levels can be predicted since they are determined by the
degeneracies of the irreducible representations of G.
Wigner applied this theorem to the classifiéation of the

normal modes of a vibrating system, and showed how any normal
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mode transformed according to one or other of the irreducible
representations of the group of the symmetry operations of
that molecule. Also exactly how many normal modes there

are belonging to each of the irreducible representations of
the group and to find the exact form of each of the normal
modes i.e. to find the normal co-ordinates.

Considering the electron in a hydrogen atom the
potential in which it moves is just the potential due to the
nucleus which is equivalent to a point charge. The system
as seen by the electron then has spherical symmetry and there- '
fore the electronic wave function must transform according to
one of the irreducible representations of the three-dimensional
rotation group. This means that its wave function must be a
basis of D‘E(upx) where o, g , ¥ are the Euler angles of some
rotation.when considering atoms more complicated than hydrogen
various approximations are involved. For example, the wave
function of the whole system is assumed to be able to be
expressed as a‘prodﬁct of the individual particle wave functions_
or rather as a properly antisymmetrized sum of products of
individual wave functions. The potential field seen by any
one of these electrons is assumed to be a radially-symmetric
field due to the nucleus and all the other electrons, which
is only an approximation. If the above approximations are
accepted then the individual particle wave functions will
transform according to the irreducible representations
Dz{cx,g ,3} . The application of atom and bond represen-
tations to the problem of the normal modes of a vibrating
system is discussed in chapter 2.

Again using Wigner's theorem, Bethe (14) applied it

in solid state physics in connection with the splitting of
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the atomic energy levels in crystalline solids. The
eigenvalues and eigenfunctions of an electron must belong to
the irreducible representations of the symmetry operations of
the Hamiltonian, H, of the system containing the electrons.
It is accepted that the wave function is not "a physically
observable property" of a system although it can be used in
the determination of the matrix elements which can then be
related to various physical properties of the system, where
the point group symmetry of the system will impose some
restrictions on the allowed forms of the wave function.
The Hamiltonian operator can be regarded as having the
symmetry of the crystallographic point group or space group.
In a similar way as when dealing with the normal modes of a
vibrating system, in the case of a free atom the appropriate
group is the three-dimensional rotatiqn group. If an atom
is part of a crystal structure the electrostatic potential
which is experienced by an electron in that atom will no
longer be spherically symmetrical but will have the symmetry
of one of the crystallographic point groups G. This often
results in the partial or complete 1lifting of the degeneracy
of the states of a given angular momentum guantum number.
All quantum numbers with the exception of the socalled
principal quantum number are indices characterizing irredu-
cible representations of groups. Group theory can, if the
symmetry of the crystal is known, give a qualitative des-
cription of the splitting.

This was extended, to include the effects of electron
spin, into the double groups by Opechowski (15). The wave
function of a system of iaenticél particles is either

symmetric or antisymmetric to the interchange of two identical
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particles. For Bosons, having integral or zero spin, the
wave function is symmetric and so is related to the single-
valued representations of the molecular or crystal poi?t
group Or space group. However, for Fermions, having half-
integral values of spin, the wave function is antisymmetric
and belongs to the double-valued representations of the
molecular or crystal point group or space group.

A useful application to the study of molecules was
made by Jahn and Teller (24) and Jahn (25). They found that
by considering only the orbital part of the wave function,
then with the sole exception of linear molecules, if the
electronic wave function belongs to one of the degenerate
representations of the molecular point group, the molecule
is liable to instability due to Vibrational interaction.

_ - Similarly, when considering selection rules in the
molecule or crystal system, if the wave functions ‘/i of

the individual atoms or molecules belong‘to the irreducible
representations of the appropriate abstract group, under a
physical intluence, represented by the quantum-mechanical
operator, P, a transition between states i and j is forbidden

if the transition probability is zero i.e.
*
(v Py atv -0
j i

j\Yj*P\Fi dT is a physical observable and hence belongs to
the totally symmetric representation of the group. Group
theory can find the condition that has to be satistied by
two states i and j between which transitiins are to be inves-
tigated. For an allowed transition, 3 j P}Vi must belong to

the totally symmetric, Al’ representation of the group. This
*

can be written as V)j'(P\Yi) hence the direct product of the
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two representations to which W/j* andP\Vi belong must contain
Al. WJ j* belongs to an irreducible representation but (P\Yi)
may be reducible. Therefore, the direct product representation
ofTDWji must contain the representation to which\yj* belongs
if the matrix element is to be non zero,

In summary, group representations are important
when dealing with problems in valence theory and molecular
dynamics, the description of the symmetry of crystals, and is
of fundamental importance in quantum physics where it reveals
the essential features which are independent of any special
form of the dynamical laws and of any special assumptions
concerning the forces involved. Among these numerous uses of
representations are the labelling and degeneracy of elec-
tronic energy bonds, the description of one or many electron
Awave functions, calculation of crystal field splitting,
magnetic ordering in crystals where the operation of time-
inversion is considered, labelling and dégeneracy of dis-
persion curves for phonons, magnons and other quasi—partiéle
states in a crystal, structure determination and application
to phase transitions., A comprehensive study of recent
developments in the use of group theory in solid state

physics has been given in a review by Cracknell (26).




e VB -

CHAPTER 2

THEORY AND APPLICATION OF ATOM AND BOND REPRESENTATIONS

g | INTRODUCTION

The understanding of molecular structure has always
been one of the basic problems of chemistry; we need to
know how atoms in a molecule are related to each other in
space and how these individual molecules are related to one
another in a crystal i.e. the symmetry properties of the
molecule or crystal. One of the uses of symmefry conside-
rations is the recognition of equivalent atoms in a molecule
which will, for example,'show that there is only one possible
monsubstituted ethane but two possible monsubstituted pro-
panes. Symmetry considerations alone can give a complete
and rigorous answer to the question "what is possible and
what is completely impossible". For example from symmetry
considerations, the number of vibrational modes, their acti-
vity in the infra-red and ﬁaman can be dedﬁced.

These fundamental ideas lead to the theory of atom
and bond representations. The atom or bond representation
of a molecule is that reducible representation of the mole-
cular point group sbanned by the set of atoms, or bonds in
the molecule. The topological structure of a molecule is
defined by its atom and bond representations, and since they
are group representations, they permit a fuller description
of a molecule than is possible with graph theory. It will
be seen that these atom and bond representations are parti-
cularly amenable to computer storage of this data which

describes the molecule's symmetry. Methods will be intro-
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duced which enable the resolution of these atom and bond
representations into irreducible representations corres-
ponding to equivalent sets of atoms or bonds; the bond
representations being deducible from the atom representations,
They have an application to additivity properties of molecules
and also in the prediction of bending, stretching and redun=

dant vibrational modes.

2.2 THEORY OF ATOM REPRESENTATIONS

In the same way that the set of atoms in a molecule
can be resolved into subsets of equivalent atoms, the atom
representation of a moleéule can be regarded as built up fronm
the étom representations of the subsets of equivalent atoms,
The atom representation of a subset of m equivalent atoms
occupying sites of symmetry group H (order h) in a molecule
of symmetry group G (order g) is that n (=g/h) - dimensional
reducible representation of G obtained by ascent in symmetry
(Boyle, 27) from the totally symmetric representation of H,
Thus for the hydrogen atoms in methane, G = Td’ H = C3v and
hence from Table 5 of Boyle the H4—atom representation is
A1+T2. ~ This is four-dimensional since there are four
(= 24/6) atoms and éontains the totally symmetric, A,
representation of G once since the four atoms belong to a
single subset of equivalent atoms. The atom representation
of the carbon atom in methane is Al since H=G. The atom
representation of methane is therefore 2A1+T2. The utility
of storing this information as 2A1+T2 rather than (Al)c +

(Al+ is only assured if atom representations can be

To)u
resolved uniquely into the atom representations of the sub-




sets of equivalent atoms. It will be shown that this can
always be done, although it involves the rather novel step
for representation theory of resolving a reducible repre-
sentation into ? reducible representations. Such resolutions
will not only be required to regenerate the input information

but also to resolve the problem of identifying the different

subsets of equivalent atoms obtained from certain distortions
of a molecule, Thus if the methane molecule is distorted

~

along a three-fold axis so that G/ = C then the H-atom

3v
representation is obtained by descent in symmetry from G to

¢’ as 24

l+E. This is in fact the sum of Al and A1+E, i.e.

atom representations of different subsets of equivalent atoms

in the distorted molecule.

There are only five different kinds of site symmetry
Ain tetrahedral molecules and hence all atom representations
can be built up from just five reducible representations
corresponding to the different types of site symmetry.

These are enumerated in table 1

Site Atom Number of Number of Symmetry
Symmetry Representation Equivalent Equivalent of Point
Atoms Sets of Complex
Atoms
Td Al  § m, Kh
C3v A +T, 4 m3 T3
Coy A +E+T, 6 m, Oh
Clh A1+E+Tl+2T2 12 n4 'l‘d
Cl A1+A2+2E+3T1+3T2 24 m Td

Table 1. The atom representations of sets of equivalent

atoms in tetrahedral molecules.
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In the fourth column of Table 1, the number of sets
of atoms of a given site symmetry is denoted by the traditional
notation used in connection with Brester's tables for analy-
sing molecular vibrations. This enables the total number of

atoms, N, of the molecule to be expressed as

N = m, + 4m3 + 6m2 + 12md + 24m

If the constituent atom representations are denoted as D(mo),
D(m3) etc, the total atom representation DA, may be written

P = mOD(mo)+m3D(m3)+m2D(m2)+md D(md)+mD(m)

and also

D = £(A))A{+E(4y) A +E(B)E+E(T) )T +£(T,)T,

where the f's are frequency factors specifying the occurrence
-of the irreducible representations of Td in the atom repre-
sentation DA. These frequency factors are entirely determined

by the number of site symmetries as

f(Al) My + Mg + My + Mg + MW

f(A2) m

£(E) = m, + my + 2m

f(Tl) my + 3m

I

f(T2) ms + W, + 2my + 3m

However, each of the five m's cannot be negative and hence
five inequalities exist which govern the relative magnitude
of the frequency factors., These can be illustrated in the
following diagram in which each tie-line represents an in-
equality in the sense that the function above must be greater

than of egqual to the function below. Further each function

is a non-negative integer.



s
£ (4p)
£(A3) £(1,)-%(E) £(E)-£(A,) £(1,)£(1;)

f(Tl)—2f(A2)

There is another inequality which is entirely physical in
origin. The occupation number, m, of the central site can

never be greater than one and hence
1 > f(Al) - f(A2) + f(Tl) - f(Tz) 2z 0

The restrictions on the frequency factors imply that not all

possible reducible representations can be atom representations

and the diagrams provide a simple method (which is very

appropriate for transcription into a computer programme) for

determining the acceptability of a reducible representation for

the analysis which is to follow.
An illustration of this is in consideration of the

molecule (CH

3L1)4 shown below
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The structure of (CHBLi)4 is that suggested by Weiss and
Lucker (28). Diagram (a) shows the tetrahedral Li4 unit
with the CH3 groups located symmetrically above each face of
the tetrahedron. Diagram (b) shows how the structure can
also be regarded as derived from a cube.

The reducible representation 3A1 + E + Tl + 4T2 relevant
to (CHBLi)4 is now examined. Inserting the frequency factors

into the diagram yields

3
i
0 3 L 3
1
which is acceptable. Further, the physical criterion

1200 is also satisfied.

Pinally a criterion is needed to decide whether the
molecule is actually tetrahedral, or whether it actually
belongs to a higher symmetry group and is just being des-
cribed by tetrahedral symmetry. The atom representation

ot = 2a

1 +E+ T, = D(mo) 3 D(mg) meets the preceding criteria
but in fact describes an octahedral molecule of ML6 type.

The solution of this problem is to examine the symmetry

of the “point complexes" as defined by_Niggli (29). These
are the symmetries of the equivalent sets taken in isolation
and have been included in Table 1. Thus in the ML6 complex,
the isolated M atom has spherical (Kh) symmetry while the

six L atoms form a point complex of octahedral (Oh) symmetry.
The symmetry of the molecule is the intersection (due regard

being paid to orientation, where relevant) of the symmetries

of constituent point complexes. For a molecule to be tetra-
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hedral at least one of the point complexes of site symmetry
CBv’ Clh’ or Cl must be occupied,

1e€s Mz + Mg + M p !

This could also be written as f(Tz) - f(E)» 1 and hence also
as an additional tie-line in the diagram.

The resolution of atom representations into the
reducible representations of Table 1 is effected by expressing
the number of site symmetries in terms of the frequency

factors. Then

ph = [£(a)-£(4,) + £(2)-£(1,)] D(m,) + [2£(A,)-£(E)-
f(Tl)+f(T2)] D(m3)

+ [£(a,)-£(B)-£(11)] D(my) + [£(17)-3(A,)] D(my) +
f(4,)D(m) |

and hence for (CH3L1)4, My = 2, mgy =1, my =my, =m = 0.

)
Since D(m3) is four-dimensional and D(md) is twelve-dimensional,
both carbon and lithium atoms form tetrahedra of four atoms
while the hydrogen atoms lie in the reflection planes. The
relative orientation of the tetrahedra and the bonding remains
to be determined by the bond representations.

The example of tetrahedral molecules so far considered
has been fortuitous in that the number of possible_site
symmetries equalled the number of irreducible representations
and also the frequency factors were mutually independent.

This has made the analysis of the atom representations rairly
straightforward. However, this is not genérally the case
since there are the two further possibilities to consider,
where in the first case the number of irreducible represen-

tations of the molecular point group exceeds the number of

site symmetries and secondly where the number of irreducitle
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representations is less than the number of site symmetries.
The first case to be considered is the case for octa-
hedral molecules, Oh’ where the number of trequency factors
exceeds the number of site symmetries on which they depend
i.e. Oh has ten irreducible representations and only seven
atomic site symmetries. This leads to some equalities that
must be satisfied by the frequency factors. As for the
tetrahedron the total number of atoms, N, of the molecule may

be expressed as

N=m + 6m4 + 8m3 + 12 m,

5 + 24mh + 24md + 48m

v
Hence for a reducible representation to be an atom repre-
sentation of Oh the following three equalities and seven

inequalities on the frequency factors must be satvisfied
£(7y,) = £Ay,) + f(Eg)

1%y, )

g f(Agg) + f(Eu)

f(T2g) = f(A2u) - f(AZg) + f(TZu)

£(4,)
f(AQWZu) f(T2u>-2f(A2g)
£(E,) £(E,)-1(A,)

There remains two inequalities to be satisfied, one which
is the condition that there is only one or no atom at the
centre of the octahedra and secondly the condition on the
site symmetries for the molecule to have octahedral symmetry.

These are
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1>/f(Alg) - £(E,) -T(A )+ £(Ay,) + £(E) > 0

my + Mg + Moo + Oy + My + > 1

The opposite case to that of the octahedral example
is for those cases where the number of irreducible repre-
sentations is less than the number of site symmetries as is
the case for those molecules with purely rotational symmetry
of types Dn’ Ty O and I. The number of site symmetries
exceed the number of fregquency factors and hence the correct
number of linearly-independent inequalities is composed of
inequalities between the frequency factors and also restric-
tions on their absolute values. In such cases it is
usually sufficient to include the condition m 2' 1 which
guarantees their symmetry (Jahn and Teller, 30) in the cons-
truction of the inequality diagram.

Considering molecules possessing D3 symmetry the
éimultaneoﬁs equations expressing the dependence of fhe
frequency factors on the site symmetries are only solvable
if the physical condition Oélmosll is also included. The
analysis proceeds as follows. There are four different

sets of site symmetry in D3 molecules shown in the following

table
Site Atom Number of Number of Symmetry
Symmetry Representation Equivalent Equivalent of Point
Atoms Sets of Complex
Atoms
D3 Al i 4 RS m, <1 Kh
03 A1+A2 2 0< m Do
C, A +E 3 0< m, Dap
<
Cl A1+A2+2E 6 1<m D3
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The total number of atoms, N, of the molecule is

N = m, + 2m3 + 3m2A+ 6m

The frequency factors can be expressed

f(Al)
f(Az)
f{E) = m, + 2m

m_ + +
0 3+Il'12 m

1]

m, + m
3

Since the number of site symmetries is greater than the

number of frequency factors this has to be resolved on a

parity argument. From the above table it is seen that
£(A1) - £(A,)
£(E) - 2£(4,)

m
mo T 2

m2 - 2m3

Consideration of the parity of these equations gives the

following
m, m, f(Al)—f(Az) f(E) - 2f(A2)
odd 0 odd : odd
even O even even
odd 1 even . odd
even ; 3 odd even

Hence m_ may be determined by |f(Al) + £(A,) - f(E)| mod 2,

and now DA may be uniquely resclved as
p* = [I£(a))+£(A,)-£(E) | moa 2] D(my)+ % [£(A))+£(A,)-£(E)
- |£(a)+£(4,)-2(B) | mod 2] D(my)
+ [£(a))-2(ay)= £(A))+2(A,)-2(E) | mod 2] D(my) + & [ £(4,)
~£(A)+E(E)+ |£(4)+£(4,)-F(E) | mod 2] D(m)

The atom representations must obey the equality
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f(Al)

3£ (E) £(4,)

The normal process of descent in symmetry can be app-
lied to atom representations and by examining the accept-
ability of atom representations derived in this way one can
decide which symmetries are obtainable by distortion. Thus
descent in symmetry from the atom representation 2Al + E_+

g g

T of Oh to D3 yields the acceptable atom representation

lu
2Al + A2 + 2E and hence ML6 molecules can be distorted to a
D3 structure. However, béron trifluoride, BF3, which has
the atom representation 2A1 + B/ of D3h cannot be distorted
?o D3 symmetry since 2Al + E is not an acceptable atom rep-
resentation of D3' Descent in symmetry between atom rep-
resentations can also be used to determine whether any sets
of equivalent atoms have split into two or more such sets

on distortion. The number of equivalent sets (or point
complexes) occupied is the number of totally symmetric
representations contained in the atom representation. Thus
distortion of ML6 from Oh to D3 symmetry does not cause any
splitting of sets of equivalent atoms since the atom repre-

sentation contains the same number of totally symmetric

representations in both symmetries.

2.3 THEORY OF BOND REPRESENTATIONS

For some purposes, the atom representation of a

molecule will be a sufficient means of classifyingjts




structure. However, in general it is helpful to be able

to specify which pair of atoms are connected by bonds.

The site symmetry of a bond may be defined as those elements
of the molecular point group which leave the bond in situ:

in the case of homopolar bonds (i.e. those between equivalent
atoms) those symmetry operations which interchange the ends
of the bond are also included. In all cases the pond site
symmetry is the symmetry of the mid-point of the bond, though
it is only in the case of homopolar bonds that this is a
special point. Bond representations can thus be generated
by ascent in symmetry from the totally symmetric represen-
tation of the symmetry group of the mid-point. The bond
representation of a molecule can be defined as the sum of the
bond representations corresponding to the equivalent sets of
bonds within the molecule. Thus the octahedral ML6 molecule
would have different bond‘representations according to whether
the M-L bonding was supplemented by L-L bonding or not.

Atom and bond representations can be related group
theoretically by the following argument. An atomic property,
P>A, of a molecule can be written as a sum of one-atom
functions, f,

180" & PR Tl A

all atoms
i

whereas a bond property,EDB, is a sum of two-atom functions,

PP- T g

i23]
In the case of bonds between aifferent equivalent sets of

atoms, the atoms can be numbered so that i > j where 1 runs
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over one set and J the other. By writing

813 = I3 1y
Then P B = Y. g4 =Z f'Zf =(PA)'(PA)”
173 i J

Now the symmetry of the atom representations of the two sets
is not necessarily the same and hence the symmetry of the
bond representation, DB is
B-oh' (oY

i.e. the direct product of the atom representations of the
two sets of atoms involved.

ln the case of bonds within a single equivalent set
of atoms, the dummy induces i1 and j run over the same range

and the bond function g4 must be of the type

ij

] 1t ] 1

Then

P5 .

|
1
09

|

™
—
-y
"y
+
H
-
-

i
™
g
A
1
H
H

(PP " - B

Now the symmetry of (IDA)' and (P#)'' must be identical

! e
and the symmetry of (E’A) (P'A) must be symmetric to
interchange of primes and nence is the symmetry of the
symmetric square, [(DA)2] of the atom representation, o™,

Hence
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A\2
p? = [(@*2] -
for bonds between equivalent atoms.
The bond representations generated by these formulae

for DB

will certainly include all possible chemical bonds
between the atoms considered. Chemically, however, bonds

are not recognized if they would have to intersect other bonds
e.g. trans - (L,L) bonds in ML6 complexes are disallowed,
quite independently of recognizing M-L bonding instead.

The midpoint of every chemical bond is a possible atomic

site hence the bond representation of a set of equivalent
bonds is always isomorphic with an atom representation. The
bond representations for the tetrahedral F)4 molecule is iso-
morphic with the atom representation Al +-B + T2 and is not
restricted by the fact that this representation would not be
acceptable as an atom representation. Although DB is subject
#o different acceptability criteria, the analysis of an

B can be performed with the same formulae as

acceptable D
for an atom representation; This is because the chemically-
allowed bond representations of equivalent sets of ponds are
isomorphic to those atom representations which correspond to
atomic site symmetries which are also subgroups of Dooh’ the
symmetry of an isolated bond. The chemically forpidden bond
representations are those for which ithe apparent site symmetry
(i.e. that of the midpoint) is a subgroup of the molecular
point group which, due regard being paid to.the orientation

of symmetry elements, is either not allowed as an atomic

site symmetry and/or the point of intersection of the bonds
corresponds to a point which actually has a higher symmetry

than that of the midpoint of the bonds.
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Resolution processes are needed for bond represen-
tations which have teen obtained from atom representations
by the processes described above and also for bond represen-
tations which are constructed from a known molecular struc-
ture for storage in a computer. The latter problem presents
no additional difficulties as all chemical bond represen-
tations will be isomorphic with atom representations for
which a resolution process has been devised in the preceding
section. The former problem, however, requires the recog-
nition and elimination of those chemically forbidden bond
representations which are not isomorphic with atom represen-—
tations. Such difficulties only arise when dealing with
the bonds within a single equivalent set of atoms as all non-
chemical bonds between inequivalent sets, even those of the
same symmetry, have apparent site symmetries which are
possible atomic site symmetries. To illustrate the problem,
the sets of all possible bonds within given equivalent sets

of atoms of a tetrzhedral molecule can be resclved as follows:

Avparent Site Symmetries

Chemical Non-chemical

B UDAOZJ — Bonds Bonds
D(mB) A +E+T, Cov s

D(mz) 2A; +2E+T{+2T, Ciy Dsg

D(m,)  5A;+2A,+TE+6T;+9T, Coy22Ciy CryCy
D(m)  164;+10A,+26E+30T,+36T,  5C1,,2C] - 3C5,Cqy,5C;

Table 2. Resolution of the sets of bonds within given

equivalent sets of atoms in tetrahedral molecules.

It can be seen from Table 2 that the only apparent site
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symmetries not occurring as atomic site symmetries are

D and 02 and the table indicates when they need to be

2d

eliminated from the expression [(DA)Z] - DA before this
can be resolved into sets of equivalent bonds using the
formula for atom representations. Similar analysis can be
presented for all other point symmetries. In the case of

the (CH3L1)4 molecule, the C-Li bonds must be contained in

the representation

(oY) x ()4

D(m3) X D(m3) = (A1+T2)(A1+T2) = 24 +E+T,+3T,

D(mB) + D(md)

Now if both carbon and lithium tetrahedra are positive, the

D(m3) set is chemical and the D(md) non-chemical, while if

one tetrahedron is positivé and the other negative, the reverse
is true. In fact the C-Li bond representation is D(md) and
hence this specifies the relative orientation of the carbon

and lithium tetrahedra in this molecule - a fact which could |
not have been deduced from the atom representation alone.

A full set of tables are included at the end of the
chapter of the atom and bond representations for the mole-
cular point groups. These have been generalized into group
families wherever appropriate. To simplify the cqmpilation
of these tables the summations over the dummy index, r, have

r=n
been abbreviated so that 211 becomes Z:n etc. The tables
r=

include all possible sets of eguivalent atomic site symmetries
given in a molecular structure, their atom representations,
the number of equivalent sets of atoms of a given site
symmetry denoted in the traditional way used in connection
with Brester's tables for analysing molecular vibrations.

The symmetry of the point complex is also given together with
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the physical condition that there is only one or zero atoms
at the centre of a molecule, and the symmetry condition

that certain atomic sites must be occupied to conserve the
symmetry of the molecule. The bond representations between
atoms of equivalent sets have been split into the chemically
allowed bonds and the non-chemical bonds i.e. the crossing
bonds that will be predicted by use of the bond represen-

tation formula given previously.

2.4 APPLICATION OF ATOM AND BOND REPRESENTATIONS

The first application is the storage of structural
and topological information about molecules in the computer.

Examples of how this might be achieved are given in Table 3.

Molecule Atom Representations Bond Representations

P4 A 4T, = D(mB)p A +E+T, = D(mz)p_p
CH4 S 24,41, = D(mg) D(mg)y A+T, = D(mz),_y
Ni(CO),  3A;+2T,= D(mg)y;+D(ms), 2n 421, = D(mﬁ)Ni-c
+D(m3)0 +D(m3)c_o
(CH3Li)4 3A1+E+T +4T, = D(m3)0+D(m3)Li 2A;+2E+2T1+4T, = D(myg)y_g
+ D(mg)y +D(my)o_g

Table 3. The atom and bond representations of some tetra-

hedral molecules

The resolution of the atom and bond representations indicated
above provides a means of constructing additivity schemes

for those physical properties which can be adeguately treated
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by such an empirical approach. A ailamagnetic molecule
possesses no resultant magnetic moment and the magnetic
susceptibility,7ﬁ , has a negative value. Henrichsen (31),
when studying the magnetic susceptibilities of organic
compounds, observed that it was possible to assign definite
susceptibility values to individual atoms which allowed a
very rough estimate of susceptibilities, in accordance with
the principle of additivity. He expressed the suscepti-
bility of a diamagnetic organic compound by the additive

formula

X -3 X,

wherej& A are the susceptibilities of the individual atoms

comprising the molecule, This can be re-expressed in terms

of atom representations by associating a partial molar susce- .

ptibility with each part of the atom representation corres-
ponding to a different equivalent set of atoms. Pascal (32)
refined Henrichsen's scheme by introducing correction factors
due to the structural characteristics i.e. the bonds of the
given molecule and therefore obtained much more accurate
values for susceptibilities. This ser#es as a practical
method for analysing the structure of molecules, since every
atom can be assigned a unique value for:K'A while the stru-
ctural corrections i.e. double or triple bond, aromatic or
aliphatic ring etc., were experimentally determined.. The

" correction factors can again be re-expressed in terms of the
bond representations. The use of atom and bond represen-
tations is particularly useful when dealing with the aniso-

tropic components of physical property tensors. Since each

equivalent set of atoms can be regarded as a "point complex"
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of symmetry greater than or equal to that of the molecule,
we shall not be concerned with any components of the indi-
vidual atoms which are averaged out in the whole molecule.
Further, if the anisotropic component under investigation
is averaged out in the symmetry of a "point complex", then
the contribution of that part of the atom representation is
necessarily zero; Thus in the study of tris-bidentate octa-
hedral complexes of D3 symmetry the contributions to the
optical activity in an additivity scheme should only come
from atoms in general (Cl) positions since only their point
complex symmetry is that of a point group admitiing optical
activity. The same can be said of the bond contributions.
Atom and bond representations'are also useful for
visualizing the normal modes of vibration. Every molecule,
at all temperatures is continualiy executing vibrational
motions i.e. motions in which its distances and internal
angles change periodically without producing any net trans-
lation of the centre of mass of the molecule or importingh
any net angular momentum to the molecule. These internal
vibrations are the result of the superposition of a number
of motions known as the normal modes of vibration. Since
an atom has three degrees of motional freedom i.e. displace-
ment in the x,y or z direction without necessary displacement
in all three, a molecule consisting of n atoms will therefore
have 3n degrees of freedom. However, of these three degrees
of freedom three are translations and three correspond to
molecular rotations hence the number of vibratory motions
in a molecule is 3n - 6. Except in the case of a linear
molecule where there are 3n - 5 vibrationalAmodes since

rotation of nuclei about the molecular axis cannot occur
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since all nuclei lie on the axis. WWhen considering the
appropriate class of molecules the number of in-plane modes
is 2n - 3 and the number of out-of-plane modes n - 3.

In non-cyclic molecules the symmetry of the stretching
modes is the bond representation, since the stretching of a
bond is a scaler, or symmetry-preserving motion. The bending
modes can be derived from atom representations. A bending
mode preserves the symmetry of all points on the bisector of
the angle between the bonds involved and is therefore to be
associated with the representation which atoms placed on these
bisectors would have. Such an atom representation is easily
derived from the calculation of the midpoint symmetry described
in the previous section. However, such calculations need to
be modifiedto take account of redundancies amongst the symmetry
co-ordinates. If S non-coplanar bonds meet at an atom there
will be 4 S(S-1) bond angles. However, these bond angles
are not all independent of each other since if there are n
atoms in the molecule, there will be S+1 non-coplanar bonds
meeting at an aton. The number of stretches is equal to
the number of bonds, S, hence the total number of bonds will
be 3n - 6 - S and the total number of independent angles
3(S+l) = 6 - S = 25 - 3, The symmetry of these redundant
modes has therefore to be subtracted from the atom represe-

ntation corresponding to the midpoints before this can be

used to specify the bending modes. When there is only one
redundant mode, this will be totally symmetric. When there

are more than one redundant modes, their symmetry corresponds
in general to a sum of chemical and non-chemical bond repre-
sentations.

In the case of'SF6, the redundant mcdes are cf symmetry
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Aig + Eg in Oh’ i.e. the non-chemical bond representation

corresponding to an apparent site symmetry D4h’ This occurs
because the redundant co-ordinates correspond to the sum of
the angles in each of the three planes of four fluorine atoms
(each of which is separately of symmetry D4h) being 360
degrees. In ethane, 02H4, the redundant co-ordinates are
each totally symmetric in sz, the site symmetry of the carbon

atoms and the redundant modes are hence of symmetry A _+ Blu

g
(choosing the C=C axis to be the z axis) of Doy, »

To illustrate the technique the normal modes of SF6
are enumerated, which willlalso serve as a model for any
ML6-type octahedral complex. There will be 15 normal modes
of which the six stretching modes are isomorphic with the bond

representation, viz Aig + Eg + Tlu of Oh' The midpoint of

two cis-fluorine atoms is of 02v symmetry and the corres-

ponding atom representation is Al + Eg + Tlu + ng + T2u'

g

casting out the Al + Eg redundant modes leaves Tlu + ng +

g

g - as the nine bending modes. The sum of the stretching

2u
and bending modes is Alg + Eg + 2Tlu + ng + T2u in agreement -
with the symmetries derived by the method of ascent in symmetry
(Boyle, 27) or other methods. The following table gives a
selection of molecules belonging to various molecular point

group symmetries illustrating the above description.




MOLECULE SYMMETRY BOND REPRESENTATION
= STRETCH
ST, oy, Ay g +E+1  =D(my)g _p
C2H4 D2h Ag+Blu+B2u+B3u=D(m}1’iy)C-H
+ Ag % D(mo)c_C
EUEiy Dan Ay g8y g+ E =Dy ) py g1
NH3 C3v AJ+E = D(mh)C3 _cl
v
CH, Ta ATy = Dlmsy)o
BF, B, A +E = D(my g _p
HgFo Con AgtBy = D(my)y_p
+ Ag = D(m2h)N N
CHC1, Csy A4E = D(mp)o_oy
Ay = Dimgy)o gy

+A

ANGLE REPRESENTATION

= BEND

Ay gtBgtT ot T +T 5, =Dy ) 7%

= (XY

Ag+Blu+B2u+BBu“D(mh )ﬁEb
_ Z

+ Ag+Byy = Dlmyo) oy

Ay o *+Boo+E =D(my4) ¢Tpt01

A{+E = D(mh)ﬁﬁﬁ

A +E+T, = D(mzv)ﬁgﬁ

A +E' = D(my,) f3p

Ag+Bu = D(mh)ﬁﬁﬁ

Ay +E = D(my )60
1+ B = Dlmylyee

REDUNDANT

ANGLE REPRESENTATION

A + B

lg g

Alg + B1u

I
- )¢ -
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In conclusion it may be noted that this work arose from an
attempt to derive new chemically-useful information from
graph theory. It appeared in the course of that study
that apart from the applications reviewed by Rouvray (33),
the technique was far too limited in power to generate any-
thing more than a re-formulation of a structure and some
interesting empirical formulae. Storage of bonding infor-
mation in an adjacency matrix is far less efficient than in
atom and bond representations for molecules with about four
or more atoms. Further the power of representation theory
allows derivation of midpoint symmetries and also to specify
vibrational symmetries: graph theory is peculiarly insen-
sitive to the symmetry of a structure. Thus the graph-
theoretical description of PF5 i? independent of whether it
7is a trigonal bipyramid, right pyramid or a square base or

some other structure with the same topology.
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Atom Site Atom Representations Number of Equivalent  Symmetry of Bond Site Symmetry

Symme try Sets of Atoms Point Complex Chemical Bonds Non-Chemical Bonds
C(4n-2)h g | =, B
C(lm—2) Ag+Au Myn-2 I%‘>h C(Lm--2)h
CIh Ag+BﬁﬁltE2rg+E(2r—I)u my th(n=I) C2h(n=1) (2n-3)CIh_
D(un-2)n(P¥L)  Cp, (n¥D) C,p (1)
{
Sy Ag+Au+Bg+ButaqErg+Eru n , D(Mn-?)h Cm CysSys
CI(n#I) (un-S)CI(n#I)
Atom Representations
I
N=mo+2mun_2f(4n—2)mh+(8n—u)m &
Chemical Condition - Symmetry Condition :
I%f(A )—f(Au)+f(B )—f(Bu))O Combinations of any two(w.r.t.orientation)
& & must appear
Equality Inequalities
f(Bg)=f(EIg)=f(E2ﬁ)"""=f(E(2n-2)u) f(A )
£(B )=f(E_ )=f(E, )......=f(E )
u Iu 2g (2n-2)g £ f(Au)
£f(B )
g

ATOM AND BOND REPRESENTATIONS FOR MOLECULES

C(Lm—2)h



Atom Site Atom Representation Number of Equivalent Symmetry of Bond Site Symmetry

Symmetry Sets of Atoms Point Complex Chemical Bonds Non-Chemical Bonds
; ;

C(2n+I)h A| n mo : ) ' Kh

Con+I A th Mon+I Doy €(2n+I)h

Cin A+RE, ™ Dont1)h Cmn ~ o

e, A +A +ZE +E m D(on+I)h €y oMCy nCy

Atom Representations

N=mo+2m2n+I+pn+jmhﬂyn+2)m

Chemical Condition Symmetry Condition
1 n \J n
I¥E(A )-f(A )-f(E )+£f(E )70 Combinations of any two(w.r.t.orientation)
must appear
Equality Inequalities
1 1 1
f(E )=f(E )uoocoooooo=f(E ) '
" i £(A)
f(EI)"f(E2)o-ooa-t.u."f(En) » '
£(A;) f(E )
"
f(E )

ATOM AND BOND REPRESENTATIONS FOR C MOLECULES

(2n+I)h

- Zﬁ_




Atom Site
Symme try

C'-mh

Cun

~

“1h
By

Atom Representations

A m
g o
Ag+Au mLm
Ag+Bg+c§. E2rg+; E(2r—I)u M
A +A +B +B +XZ E_ +E m
g uU g Uua- g Tru

Number of Equivalent
Sets of Atoms

Atom Representations

N=mo+2m4n+(un)mh+(8n)m

Chemical Condition

sz(Ag)—f(Au)-f(Bg)+f(Bu))O

Equality

f(Bg)=f(BIu)=f(E2g) ....... =f(E(2n—I)u)

f(Bu)zf(EIg)=f(E2u) ....... =f(E(2n—I)g
ATOM AND BOND REPRESENTATIOS FOR C MOLECULES

4nh

f(Au)

Symmetry of
Point Complex

Bond Site Symmetry
Chemical Bonds Non-Chemical Bonds

Doy Cunh
Bk Con Cops(2n-2)Cpy
Dunh o Cps5,,(4n-3)Cy

Symmetry Condition )
Combinations of any two(w.r.t.orientation)
must appear

Inequalities
(A )

f(Bg)

f(Bu)

- gh_




Atom Site
Symme try

C(Lm-2)v

CIv

Id

ATOM AND BOND REPRESENTATIONS FOR C

Atom Representation

AI
AI+BI+AZA-1E1*

AI+B2t£zEr

AI+A2+BI+B2+%£gEr

Equality

f(BI)+f(32)=f(EI)=f(E2)

Chemicai Condition

Number of Equivalent
Sets of Atoms

m
(o]

m
v

Atom Representations

N=m°+(4n—2)mv+(un-2)md+(8n—u)m

D £(A)+£(A,)-£(B)-£(B,)%0

{iln -9 MOLECULES

Symmetry of
Point Complex
D, n=1) C,,(n=I)
D(un_z)én#I)CId(n#I)
th(n=I) CQv(n=I)
D(un-2)éntI)CIv(n*I)
Psn-2)h  C1a°Crv
Inequalities
£(AL)
£(B,)
£(A,)

Symmetry Condition

Bond Site Symmetry
Chemical Bonds

Non-Chemical Bonds

(n-I)CIV,(n-Q)CId
C2v(ntI)

(n-I)CId,(n'-Q)CIv
C, (n#l)
(2n-2)CIv,(2n—2)C
(2n-2)CI,C2

Id

Combinations of any two(w.r.t.orientation)

must appear

-hf-l-




Atom Site Atom Representation Number of Equivalent Symmetry of Bond Site Symmetry

Symmetry Sets of Atoms Point Complex Chemical Bonds Non-Chemical Bonds
C(2n+I)v AI "o - Kh
In Ap+LE, ™ Di2n+m)h  Cin e
CI AI+A2+2§ EP m D(2n+I)h 2CIh (2n-1 )CI’CIh

Atom Representations

N=mo+2n+Imh+un+2W

Chemical Condition . Symmetry Condition .
sz(AI)+f(A2)—f(E);O ‘ Combinations of any two(w.r.t.orientation) ;
must appear o
1
Equality : Inequalities
f(LI)=f(E2)=.........f(En) ‘f(AI)
f(A2) f(E)-f(Az)
ATOM AND BOND REPRESENTATIONS FOR C(2n+I)vMOLECULES




Atom Site
Symmetry
Cunv

CIv

C1a

B

ATOM AND BOND REPRESENTATIONS FOR CUnv

Atom Representations

A

I
A+ I+EE
AI 2+EE
AI 2+B +B +23€E

Chemical Condition

Number of Equivalent
Sets of Atoms

m
o

m

m
d

m

Atom Representations

N=m +4nm_ +4nm . +8nm
o v d

IZf(AI)-f(BI)-f(B2)+f(A2)2O

Equality

f(BI)+f(B2)=f(EI)=f(E2)=......f(B

2n-I)

f(BI)

MOLECULES

Symmetry of
Point Complex

“,

Unh
4nh
4nh

o o o

Bond Site Symmetry
Chemical Bonds Non-Chemical Bonds

Crd Coyr (n=1)Cy s (n-I)Cp
Cre Cogr(n=1)Cy s (n-I)Cpy
cId’CIv C2,nCIv,nCId,‘(3n—I)CI

Symmetry Condition

Combinations of any two(w.r.t.orietation)

must appear

Inequality

f(A.)

‘-~_\§-~”’,,f”’ 2

f(A2)

RN




Atom Site
Symmetry

Atom Representations

A

A+BI

A+B2

A+B3

A+B_+B, B,

Chemical Condition

Number of Equivalent

Sets of Atoms

Atom Representations

N=m +2m_+2m_ +2m +4m
o z X y

1»2If(A)-f(BI)-f(Bz)-f(B3)|mod2>o

f(BI)

ATOM AND BOND REPRESENTATIONS FOR D, MOLECULES

Symmetry of
Point Complex

Bond Site Symmetry
Chemical Bonds Non-Chemical Bonds

Don D,
Deoh D2
Dooh . .D2
D k.Y c?

2 2°72 2

_Lh_

Symmetry Condition
myL

‘ f(A)-f(BI)-f(Bz)—f(B3)+2lf(A)-f(BI)-f(Bz)-f(Bs)lmon)I

Inequalities
£(AL)
£(B,) £(B,)

i



Atom Site
Symmetry
2n+lI
2n+l
2
I

I [ =

ATOM AND BOND REPRESENTATIONS FOR D

Atom Representation

A

A +A2

AI”; Er
AI+A2+2§EP

-

Chemical Condition

Number of Equivalent
Sets of Atoms
m
o
Mon+I
My

m

Atom Representations

Bond Site Symmetry
Chemical Bonds Non-Chemical Bonds

Symmetry of
Point Complex

5

Q”h D2n+I

Dion+t)h &2 (n-1)C,
Byt 2c, (2n-1)C,C,,

N=mo+2m2n+I+(2n+;)m2+(un+2)m

1zlf(AI)+f(A2)-f(E)|modzzo

Equality

f(EI)=f(E2)=.............f(En)

MOLECULES

2n+I

Symmetry Condition
myl
F(£(E)-£(AL)+E(A) )+ | £(AL)+E(A))-£(E)| mod2) Y1

Inequalities

f(AI)

1(£(E)). £(A,)

_8h_




Atom Site
Symmetry

22n
2n

Atom Representation

A
1
AI+A2

AptBrtLE

AI+B2+,§. Er

AI+A2+BI+B2+2,§,EP

. Chemical Condition

Number of Equivalent
Sets of Atoms

Atom Representations

Symmetry of
Point Complex
D""h D2n
"
D2nh C2
]
D2nh C2
1
Pon €24C9

' 1"
N=mo+2m2n+(2n )m2+( 2n )m2+( 4n)m

Ty|£(A;)-£(A))-£(E) [mod2y0

Equality

£(B;)+£(B,)=f(E;)=£(E))....nn =f(E__

ATOM AND BOND REPRESENTATIONS FOR

D

2n

%(f(A2)+f(BI))

MOLECULES (n¥I)

Symmetry Condition

m»L

Bond Site Symmetry
Chemical Bonds

Non-Chemical Bonds

1 "
D,(C,),2(n-2)C,,
1 N 1
3(n I)C2

" 1 1
D2(C2),§(n—2)c2,
1 I C"

2(n‘ ) 2

C2,(n-I)Cz,(n-I)C2,
(n—I)CI

3(£(E)-fA;)-£A,)+| £(AL)-£(A,)-£(E)| mod231

Inequalities

f(AD)

(£(E)-£(A,))

f(BI)

-Gh_




Atom Site
Symme try

2nd

ATOM AND BOND REPRESENTATIONS FOR D

Atom Representation

“

AI+B2

AI+BI+:.:):\:-|E

ArtBot (B,

AI+A2+BI+B2+2§V E

Number of Equivalent
Sets of Atoms

Atom Representations

N=mo+2m +(un)m2+(4n)mv+(8n)m

2nv
Chemical Condition

I}f(AI)+f(A2)-f(BI)-f(B2)}0

Equality

f(EI)=f(E2)........=f(E )

2n-1

ond MOLECULES

f(B2)

Symmetry of Bond Site Symmetry
Point Complex Chemical Bonds Non-Chemical Bonds
Py Pond '
Pynh nCry L
1 -
D2nd nC2 C2v’(n I)CIv
1 1
D, 4 nC,,nC, C2,nCIV,nC2,(2n-I)CI
Symmetry Condition
mv+sz
f(E)-f(BI))O
Inequalities
f(A.)
f(E)-f(Az)
f(BI)
f(A2)

- 09_



Atom Site Atom Representations Number of Equivalént Symmetry of
Symmetry Sets of Atoms Point Complex Chemical Bonds
D(on+1)d Arg m Ky
C(2n+I)v AIg+A2u m(2n+I)v D""h D(2n+I)d
C2 AIg+A2u+§ (Erg+Eru) T D(l+1'1+2)h C2’CIh
Cih ArgtAr tl (B tE ) W, Dion+1)d CooCryy
Cy Aptho thy +hy t m DepnsT)d 20,520
2L(E_+E_ ) '
n rg ru
Atom Representations
N=m°+2m(2n+I)v+(un+2)m2+(4n+2)mh+(8n+4)m
Chemical Condition Symmetry Condition
I>/(AIg)-rf(AQg)—f(AIU)-f(Azu)»o m, +m)I
f(AIu))I
Equality Inequalities
f(EIu)=f(EIg)........=f(Eng)=f(Enu) f(AI )
£(A; ) f(EIu)-f(AQg)
f(AQg)

ATOM AND BOND REPRESENTATIONS FOR D
(2n+1)d

MOLECULES

Bond Site Symmetry
Non-Chemical Bonds

Cone
Cons
SQ,QnCI,(2an)C2,
(2n-I)CIh

(n-1)C,, (n-1)Cp,
(n"'I )C2 ’ (n-I)CIh

-.IS..



Atom Site
Symmetry
Pon
Z

C2v

Yy
C2v
X
2v

Xy
CIh

XZ

CIh

yz.
U

-

C

ATOM AND BOND REPRESENTATIONS FOR D2

Number of Equivalent
Sets of Atoms

A ‘ m

Atom Representations

g o
Ag+BIu My
Ag+B2u m2y
Ag+B3u : Moy
Xy
Ag+BIg+B2u+B3u m
XZ
Ag+BIu+B2g+B3u ‘ mh
yz
Ag+BIu+B2u+B3g m
Ag+Au+BIu+BIg+B2u+B2g+ m
B3u +B3g
Atom Representations
N=m +2m,_+2m, +2m_+U4m
o " 2z 2y Tx

Chemical Condition

I)f(Ag)-f(Au)+f(BIg)+f(B2g)+f(B3g)-

f(BIu)-f(BQU)-f(B3u))O

% MOLECULES

Symmetry of Bond Site Symmetry
Point Complex Chemical Bonds Non-Chemical Bonds

%

Bon Poh

Bon - Do

Ron Doh

Duh Cghcgv Cgv

Duh cgh’cgv C;v

Duh C;h’cgv C;v

Don s CrChh $25C52C5C3

xy+4miz+4m§z+8m

Symmetry Condition
m)I
f(Au))I
Inequality
£f(A )

i
2(f(BIu)+f(B2u)+f(B3u)—f(Au))

e

£(B) £(B,) £(B, )

%——-——”3’3

f(Au)

-zg—




Atom Site
Symme try

D(2n+I)h

C(2n+I)v

C2v

CIv

CIh

‘1

ATOM AND BOND KEPRESENTATIONS FOR D, ..y,

Atom Representation

1
AI
1 "
AI+AI
]
1
AI+%Er
1
)
AI 2+ (E +E )
1 1
AL+ 2+2£ E
1 1 " Z: 2
AI 2+AI+A +2 B +2 E

Chemical Condition

N=m +2m
o

Number of Equivalent
Sets of Atoms
m
o

Mon+I)v

m

Atom Representations

(2n+I)v

1 1 n ”" 1" L}
sz(AI)+f(A2)-f(AI)—f(A2)+f(B )-£(E )0

Equality

1 1 1
f(EI)=f(E2) ..... ..=f(En)

£(E;)=£(E,).

f(E )-f(AQ)

MOLECULES

f(A2)

Symmetry of
Point Complex

Ky

Q”h

D(2n+I)h
D(2n+I)h
Dion+In

D(2n+I)h

m, fmot +m)I
v h

2v

f(E )- f(A I

Inequalltles
£(A.)
"
£(A,)
) "
£(AD)

Bond Site Symmetry
Chemical Bonds Non-Chemical Bonds

D(2n+I)h

C2v (n_I)C2v

CovrC1y nCy, (n-I)Cp,

2€, nCpy»(20-1)C,

Qo 5285, (2n+I)C,,(2n-1)C; ,

+(2n+I)m2V+(un+2)mh+(un+2)mv+(8n+u)m

Symmetry Condition

f(E )-f(AI)

2nC

I

—eg_



Atom Site
Symmetry

Dunh

CUnv

’
c2v(02)

L4
CQd(C2)

CIh

Iv

Id

ATOM AND BOND REPRESENTATTONS FOR D

Number of Equivalent
Sets of Atoms

Atom Representations

AIg mo
AIg+A2u Munv
AIg+BIg+.§.E2rg+%‘E(2r—I)u m,
+
AIg B2g+,§,E2rg+§ E(2r-I)u Mod
AIg+A2g+BIg+B2g+ m
2.\2.:. EQr*g-'~2 §: E( 2r-I)u
Alg+A2u+BIg+B2u+ mv
SE_+E
244 T TU
AIg+A2u+BIu+B2g+ my
EE_+E
20-'rg T ru
Apgthogthy *hy B +B, + m
BIu+B2u+2£LBrg+Eru

Atom Representations

N=m0+2muv+(4n)m2v+(un)m2d+(8n)mh+(8n)mv+(8n)md+(16n)m

Chemical Condition 4

sz(AIg)+f(A2g)—f(AIu)-f(A2u)+f(BIu)+
f(BQu)-f(BIg)-f(Bzg)bO

Equality

f(BIg)+f(BQg)=f(EIu)=f(E2g)'""'=f(E(2n-I)g

f(BIu)+f(B2u)=f(EIg)=f(E2u)"""=f(E(2n-I)u

)
)

wan MOLECULES

Symmetry of

Point Complex Chemical Bonds

Q"h Dunh
"
Dynh Cpa(Cy)
/
Dunh C2v(c2)
/
Dunh : CQV(C2)’
14
c2d(c2)
/
Dynh Cpy(C3)s
Crd
‘ v
Dyoh Crg(C2)s
CIv
Dynh Cretrgs
Loy

Symmetry Condition
m2v+m2d+mh+mv+md+m)1
f(BIg)+f(B2g)-f(A2g))I
Inequalities

f(AIg)

:
z(f(AQu)+f(BI

g

Don

Bond Site Symmetry

Non-Chemical Bonds

'
D2h(c5),(n-1)c2v(cz),

(n-I)CQd(CQ)
(C2),(H-I)C2v(c2),

”
(n-1)C, ,(C;)
(e

C,p(C)),(2n-1)C, (C,),
(2n-I)C, (C7),(2n-I)Cpp
c2h(c§),(2n-1)02v(05),
(2n-2)C2V(C£),(n-I)CId,ncg
czh(cg),(zn-l)czd(CQ),
(2n-2)c2d(cg),(n-I)cIv,nc;
32,c2,2nc;,2nc;,(2n-1)clv,
(2n-I)cId,(un-2)cI

g)+f(B2 )-f(AIu))

'7"”E?A2’§““E

f(BQu)

—hg—




Atom Site Atom Representations Number of Equivalent  Symmetry of Bond Site Symmetry

Symmetry Sets of Atoms Point Complex Chemical Bonds Non-Chemical Bonds
D(Hn+2)h AIg Mo Kh
C(un+2)v AIg+A2u M(un+2)v ‘ Rop D(un+2)n
’ v ’ _ ”
Cv(C2) ArgtBrut % Farg'B(2r-T)u Moy | Diynt2)h  C2a(%2) Dyp #mCay (€305 (n=13C54(C3)
0 = 4 (4 - ’
Cp4(C2) ArgtBout % Eapg™E(2p-1)u Mod D(4n+2)h Coy(C3) DopanCyq(C2) s (n=10C, (C)
o A +A +B +B, + “ ’
Ih 22}3 Iu 2u mh | D(Nn+2)h 2V(C2) c (C2) Cgh(c ) 2nC (C2),
N v
n 2rg (2r Du » 2nC2d(C2) 2nCIh
/
1y ArgthoyBrytBogt my D(4n+2)n Cay(€3)2Cr4 Con(€3)1Cpy(Cy)anCrys
| §EPg+Eru (n-I)C;,4,nC,,nC,
174 4
C1d Arg Ty tBrytEy g : D(4n+2)n C24(C2)Cry Con(C3)1Cyy(Cy)anCry
5‘ Er*g+Eru (n-I)CIv,nC2,n02
CI AI +A2 +A +A2 +BIg+B2g+ m D(un+2)h CIh’CIv’CId 82,02,(6n-4)CIV,
BI +B2u+2£‘n‘Er‘g+EPu (én- H)CId,(Sn-I)CI
Atom Representations
N=mo+2m(un+2)v+(4n+2)m2v+(un+2)m2d+(8n+u)mh+(8n+4)mv+(8n+4)md+(16n+8)m
Chemical Condition Symmetry Condition
I?f(AIg)+f(A2g)+f(BIg)+f(B2g)-f(AIu)—f(A2d)- m, M, gty +matm tmy I
f(BIu)-f(B2u)zO f(BIu)+f(B2u) f(A2g)ZI
Equality . Inequalities
f(EIu.)=f(E2g) ceevee '=f(E2nu) f(AIgl
f(E )=f(E )".0...=f(E )
A_E£E£§2————51§2g) f(AQg)
ATOM AND BOND REPRESENTATIONS FOR D MOLECULES £(Ar,)

(4n+2)h




Atom Site Atom Representations Number of Equivaient Symmetry of \ Bond Site Symmetry

Symme try Sets of Atoms Point Complex Chemical Bonds Non-Chemical Bonds
SLm-2 Ag Mo A Kh
C2n-I Ag+Au Ton-1 D'wh SL&n—2
CI Ag+Au+£i(Erg+Eru) m D(2n—I)d 82(n=I) 82(n#I)
' 2CI(n#I) (2n-4)Ci

Atom Representations

N=mo+2m2n_I+(un-2)m—

Chemical Condition Symmetry Condition
IY¥f(A )—f(Au)bO Combinations of any two (w.r.t.orientation)
& : must appear
Equality
Inequalities
f(E. )=f(E wo 60 00 w=ELE =
1g) " (Fag) Fa-De £(A )
= = g
£(EL D=E(Ey )evnnnn. .-f(E(n_I)u
f(Au)
f(E )
g

ATOM AND BOND REPRESENTATIONS FOR Sun-2 MOLECULES

—gg_




Atom Site
Symmetry
Sun

C2n

.

Atom Representations

A
A+B
A+B+ % Er

2n-4

Chemical Condition
IY£(A)-£(B)%0

Number of Equivalent
Sets of Atoms

m
(0]

m2n

m

Atom Repreéentations
N=m +2m, +(4n)m
o 2n ,

Equality
£(B)=£(E,)=f(Ey)+v.v.e.. . =E(E, )
F(EL)=£(Eg)vnnnnnn =8(E, 1)

ATOM AND BOND REPRESENTATIONS FOR

S

m

N MOLECULES

Symmetry of Bond Site Symmetry

Point Complex Chemical Bonds Non-Chemical Bonds
“h
D'=f>h Sun
D2nd nCI | C2,(n-I)Cr

Symmetry Condition
Combinations of any two(w.r.t.orientation)
must appear:

Inequalities
f(A)

£(B)

f(E)

—LS_




Atom Site
Symmetry

Atom Representations

A
A+T
A+E+T

A+E+3T

Chemical Condition

Number of Equivalent
Sets of Atoms

Atom Representations

N=mo+4m3+6m2+12m

I2|E(A)+2£(E)-£(T)| mod220

f(E)

ATOM AND BOND REPRESENTATIONS FOR TETRAHEDRAL,T,MOLECULES

Symmetry of Bond Site Symmetry
Point Complex Chemical Bonds Non-Chemical Bonds
Ta €
(0]
h CI D2
T 20,50 €530,
Symmetry Condition o
m>I 1

3 £(T)-£(A)+ |£(A)+2£(E)-£(T) | mod2>1

Inequalities
f(A)

§(£(T)-£(E))




Atom Site
Symmetry

Ta

C3v

C2v

e

‘1

Atom Representation

AI+E+T2

AI+E+TI+2T2

AI+A2+2E+3TI+3T2

Chemical Condition

Number of Equivalent
Sets of Atoms

m
o]

m3v

m2v

|

m

Atom Representations

I»f(AI)—f(A2)+f(TI)-f(T2))O

f(A2)

N=mo+um3v+6m2v+12md+2um
Inequalities
f(AI)
,f(T2)-f(E)

£(T )-2£(A,)

Symmetry of
Point Complex Chemical Bonds
Kh
Td C2v
%h “mn
Ta €2v22%mn
Td 5C1, »2C;

Symmetry Condition
m3V+md+m2I

f(T2)—f(E))I

N T

.f(E)-f(§2)

f(T2)—f(TI)

ATOM AND BOND REPRESENTATIONS FOR TETRAHEDRAL;Td,MOLECULES

2d

2°°1
3C,sC

Bond Site Symmetry
Non-Chemical

th*°C1

Bonds

_69_



Atom Site
Symmetry
Th
C2v

“y

Cth

£y

ATOM AND BOND REPRESENTATIONS FOR TETRAHEDRAL,T

Atom Representation

Number of Equivalent
Sets of Atoms

Ag my
A +E +T m
g g u 2v
A +A +T +T m
g u g u 3
A +E +2T +T m
g g u'g h
A +tA +E +E +3T +3T m
g u g u ‘g u
Atom Representations
N=mo+6m2v+8m3+l2mh+2um

Symmetry of
Point Complex

- O O R
=2 = S - B - 2

Bond Site Symmetry

Chemical Bonds

Ch

C1h

%€
B 590,

Non-Chemical Bonds

2h
6°C2

2h2C2sC
5,60

D
S
¢ I

3C,,6C

Ih? I

Chemical Condition

IZf(Ag)—f(Au)+f(Eu)-f(Eg)>0

Symmetry Condition

mh21
f(Tg)—f(Au)-Qf(EuDI

Equality Inequalities
f(Eu)+f(Tu)=f(Eg)+f(Tg) f(Ag)
f(Eg) f(Tg)—2f(Eu)
f(Aﬁ)
£(E)

\ sMOLECULES

_09_




Atom Site
Symmetry

Atom Representation

Ar

AI+E+TI

AI+A2+TI+T2

AI+E+TI+2T2

A_+A +2E+3TI+3T

I°2 2

Chemical Condition

Number of Equivalent
Sets of Atoms

Atom Representations

1
N=m +6m, +8m_.+I2m,+24m
o 4 3

2

I zlf(AI)-f(AQ)—f(E)|modzzo

Equality
f(A2)+f(E)=f(TI)

ATOM AND BOND RERESENTATIDNS FOR OCTAHEDRAL;O,MOLECULES

Symmetry of
Point Complex
“h
!
%n !
'
% !
1
% Co>
'
0 5C.52C

Symmetry Condition
m2I

Bond Site Symmetry
Chemical Bonds

Non-Chemical Bonds

32

C,,C

2272272

|
3C,5Cyps5C;

%(E(AI)—f(AQ)Lf(E)Imod2-f(AI)+f(A2)+f(E)))I

Inequalities
©F(A,)

¥ (£(A,)+£(E))

fCTQ)—f(E)

£(A,)-£(E)

_Ig_



Atom Site
Symmetry

%

Cuv

C3v

X2
CQV(GE_QU )

Ih

Id

Atom Representations

Ay
ApgtEtTr,

Apgthy FT1 *Tog

A_ +E +T_ +T, +T
u 2g

Ig g I 2u

A_ +A. +2E +T
Ig 2g " g

2TIu+2T

Ig+r2g+
2u

Apthy v

2TIu+2T2g

g+Eu+TIg+T2u+

AL +A, +A_ +A_, +2E +2E +
Ig u 2u g u

2g 1

3TIg+3T2g+3TIu+3T2u

Chemical Condition

Number of Equivalent
Sets of Atoms

Symmetry of
Point Complex

My Y

muv Oh

m3v Oh

m2v Oh

mh Oh

md Oh

m Oh
Atom Representations
N=mo+6muv+8m3v+12m2v+24mh+2Hmd+48m

Ibf(AIg)+f(A2g)—f(AIu)-f(Eg)+f(Eu))O

Equality
f(A2u)+f(Eg)=f(TIu)
f(A2g)+f(Eu)=f(TIg)

£(Ay J+E(T, )=E(h, IFE(T, )

ATOM AND BOND REPRESENTATIONS FOR OCTAHEDRAL,O],MOLECULES

f(Eg)fffAQg) £(A

Bond
Chemical Bonds

XZ
CQV(O' —0c )

Xz
2¢, (op—=0 )s

14 s
C2V(°-h——)o ),

C1n22C14

SCId,CIh,HCI

Symmetry Condition

muv+m3v+m2v
Inequalities
f(AIg)
2g) f(A2u) f(T2u)-2f(A
£(A; ) £(E ) -£(Ap

Site Symmetry
Non-Chemical Bonds

Dun

D3qsCoy(204220,)
zZ

D, (CC2),C,,

C,, (26,25, )

Czh(cz)’202v(°k‘?cxz)’
2C2v(?05—920§),C2,3CI
Czh(cg)’c2v(2°6"92°v)’
C,52C,,2C, P
85930,C;1452C 560,
I10C,

+mh+md+m)I;f(AIu)+f(A2u)—f(A2g)+f(Eg)-f(Eu)bI

2g)

)

_Zg_




Atom Site
Symme try

Atom Representation

A

A+TI+T2+H

A+TI+T2+QG+H

A+TI+T2+2G+3H

A+3TI+3T2+4G+5H

Chemical Condition

I [E(A)-£(T}) |mod230

Equality
f(TI)=f(T2)

Number of Equivalent Symmetry of

Sets of Atoms

Bond Site Symmetry

Atom Representations

N=m +I2m_+20m
o 5

3

Point Complex Chemical Bonds Non-Chemical Bonds
I, G, " Deally
L C, 40y B B0 50
I 3C2,1+CI I2C2,18CI
+3Om2+60m '
Symmetry Condition
m2I
%(If(A)-f(TI)|mod2-f(A)+f(TI))ZI
Inequalities
£(A)
5(£(T)+£(H)-£(G)) 2(£(T)+£(G)-£(H))

5(2£(T;)-£(6))

\

I

ATOM AND BOND REPRESENTATIONS FOR ICOSAHEDRAL,I,MOLECULES

_gg..



Atom Site
Symmetry

5

Sv
3v
2v
Ih

0O 0,0 6

ATOM AND BOND REPRESENTATIONS FOR ICOSAHEDRAL,I

Atom Representations

A m

g o
Ag+TIu+T2u+Hg mg
A +T_ +T, +G +G +H m

g Iu 2u g u g 3v
A +T_ +T, +G +G +2H +H m

g Iu 2u g u g u 2v
Ag+TIg+T2g+2TIu+2T2u+ m
2G +2G +3H +2H

g u g u
Ag+Au+3TIg+3TIu+3T2g+3T2u
+4G _+4G_+5H +5H m

g u g u

Number of Equivalent
Sets of Atoms

Symmetry of
Point Complex Chemical Bonds
Ih C2v
Ih C2V’CIh
o Cov22Cry
Ih C2v’2CIh’
xCI
I ¥CoysZCrp,
KC

Atom Representations

N=m +I2m
o 5
Chemical Condition

Ibf(Ag)-f(TIu)-f(Au)+f(TIg)WO

Equality
f(TIu)=f(T2u);f(TIg)=f(T2g);
f(Gg)=f(Gu);f(TIu)+f(Hu)=f(TIg)+f(H )

f(Hu)-f(T

h’

+20m
v

g -
f(Gg) f(TIg)

v+30m2v+60mh+I20m

Symmetry Condition,

3

m5v+m3v+m2v+mh+mWI
f(Au)+f(TIu)—f(TIg)»I
Inequalities

f(A)

f(TIu)—f(TIg)

Ig)-f(Au) f(TIu)-f(Gg)+f(Au)

\//

f(Au)

MOLECULES

Bond Site Symmetry

Non-Chemical Bonds

He 42504
D34:CovC)

+2C...C

D51, #C0492C54Cy

2D2h,3C2v,u

(IO-x)CI

€2Cmn’

uD2h,902,(6—y)c2v,
(6-z)CIh,(50-x)CI

—ﬁg—
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CHAPTER 3

THE REPRESENTATION GROUPS OF THE POINT GROUPS

INTRODUCTION

3.1 The purpose of this chapter is to investigate different alternative
representation groups for the point groups, which lead to different
equivalent sets of projective representations. The possibility of
choosing a physically relevant set from these is discussed in the next

two chapters.

Recently [Doring ( 33 ); Rudra ( 34 ); Hurley ( 35 ); Bradley
and Cracknell ( 36 ); Janssen ( 37 ); Mozrzymas ( 38 ) ], interest has"
been shown in the projective representations of the point groups because
of their value in facilitating the determination of the representations of

the non-symmorphic space groups.

There are various methods for determining these projective
representations; and yet for those methods where tables have actually been
published, the various results obtained were incompatible. In all of the
above mentioned papers, the approach adopted has been to choose suitable
factor systems rather than to calculate the representation group. It will
be shown that it is both a finite and tractable problem to determine all
the alternative representation groups for each point group, using an
approach based on Schur's original prescription laid down in two papers in
1904 (16 ), and 1907 ( I7 ). This leads to different equivalent sets of

projective representations for each point group.

All the alternative equivalent sets of projective representations can
now be obtained, and it is seen that all the character systems of
projective representations that have been previously published are either
incomplete or erroneovs or both. These sets of projective representations
only differ in various phase factors for individual characters. However,

these phase factors cannot be permuted between different sets, as appears
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to be the case in previous papers which led to erroneous results.

3.2 THEORY OF MULTIPLICATORS AND REPRESENTATION GROUPS

Schur ( I7 ) defined a representation group, R, of a finite group, G,
as an abstract group possessing an invariant subgroup, M, called the
multiplicator of G, which is contained in both the centre, Z, and the
commutator subgroup, K, of R such that the factor group R/M is isomorphic
to G. The order of M is as small as possible without being trivial, unless
no non-trivial possibilities exist. The order of R is the product of the \
orders of G and M. The mapping of R onto R/M is a cannonical epimorphism
with Kernel M and image R/M, since it maps the elements of R onto the coset
elements R/M. Since R/M is isomorphic to G, there is an epimorphism T from

R onto G.

A representation group is therefore a central extension of G by M.
In general R is not unique although M is unique for a given G. Although
the elements of G can be identified with the coset representatives R/M, the
construction of R is such that the multiplication rule in R for elements
identified with elements of G is not the same as for those elements in the
group G. G is therefore not a subgroup of R and hence R cannot have a

direct or semi-direct product structure involving G and M.

One can extend the concept of a representation of a group G of
elements V{gi3 to allow a multiplication law for the representative
matrices, § , of the form

§(g;) &(gj) = w(g;, gj) a"(gi,gj)
where the factor systems Axgi, gj) are complex numbers of unit modules.
Not every function w can occur as a factor system because of the

associative law of matrix multiplication viz:

[4(8,)6(8,) 156, = ¢ (8,) [(5,)6(g,)]

w(gi,gj)&(gi,gj)a(gk) = 6(gi)w(gj,gk)é‘(gj,gk)
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Therefore the condition on w for all 8> gj, 8y € G is:

These factor systems form a multiplicative Abelian group. A particular

case is given by all u:(gi,gj) = 1 when normal point group algebra is

obtained.

It can be shown by the following argument that
representations or R correspond to either vector or
projective or ray or multiplier) representations of
matrix A(ri) of R is also a representative matrix
the epimorphism T maps the element r.of R onto the

i

Since A is a true representation of R,

a(xy) alxy) = Atz ry)

but Alry) 8(xy) = d(mr,) & (Tz,)
= JCﬂri rj)
hence d'(lTri rj) =4(x; rj)

and therefore A is also a representation of G.

Now let rk be that element of R such that'TTrk =

T(ry t,) =Tr Ty = g 8y = 8ep =TTy
- -1 =15 .
[]] (rkl rk rt ) = E

the identity of G. This is satisfied if

T T " Mg Tre

the true (or vector)
generalised (or

G. A representation
d‘Grri) of G since

element1Tri of G.

8y Because

where m e is an element of M which lies in the commutator subgroup K of

G and which commutes with all elements of R.

Schur's femma (16 ), states that if A and B are two irreducible sets

of matrices, of dimensions n and m respectively and

S an mxn matrix such

that SA = BS, then either S = 0 or S is non-singular and A and B are

equivalent. A consequence of this is if an nxn matrix commutes with all
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the elements of an irreducible set of matrices then S is a multiple of

the unit matrix I. Hence S =wI and is only valid for complex matrices.

Applying Schur's lemma to the previous calculations
=A a —3 A =
A(ri)A(rj) (ri rj) (mij rij) c»(ri,rj)A(rij)
and since
NERRERICH
J(gi)f(gj) =<o(gi,gj)5(gi.gj)
i.e. & is a projective representation of G.

Since J(gi gj) and J(gi)f(gj) only differ by a factor they determine
the same transformation of projective space. This transformiation will be
unchanged if J(gi) is replaced by u(gi)J(gi) where u (gi).¢ 0 and is a
complex function of the group.' Two such projective representations d and
&’ are said to be associated if Jl(gi) = u(gi)J(gi). 1f & and § are
associated the corresponding factor systems are then related by

o' (8585 = u(g)u@) (g8,
u(g; gj)
which is the condition for them to be associated.

If the §'s are n x n matrices, u(gi) may equal any nth root of

det &(gi) for ai1.gi € G, hence

7 ’ ’ 4
det [§ (gi)8 (gj)] det [w (gi,gj)5 (gi gj)]

n ' s pEgl ’ n n /
u(gy) [det & (g;)]ulgy) [detf(gj)] w (gi’gj) ulgy gj) ldet & " (gy 8j)]
/
=9 (gi’gj)n
Therefore every factor system belonging to an nth-degree projective
representation is associated to one in which all factors are the nth
roots of unity.

ua(gi,gj) and:u’(gi,gj), together with all other factor systems

associated to them, form a multiplicative Abelian group,Bz(G) of associated
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factor systems. This is an invariant subgroup of the group of all factor
systems ZZ(G). The factor group ZZ(G)/BZ(G) is isomorphic to HZ(G), the
group of all classes of associated factor systems which is, in this

context, the multiplicator M of G.

To compare this with cohomology theory, it can be seen that the
factor systems are those two-dimensional co-chains which are two-
dimensional co-cycles. The sets of associated factor systems are those
two-dimensional co-chains which are also co-boundaries of some one-
dimensional co-chains. HZ(G) is the second cohomology group of extensions

of G by M.

3.3 DETERMINATION OF THE MULTIPLICATORS OF THE POINT GROUPS

In order to find the number of representation groups for the point
groups G, the multiplicator of G, which is unique, must be determined.
The most efficient method is using an aufbau process, starting with the
cyclic groups Cn’ SZn’ C(Zn—l)h' The following isomorphisms exist between

these groups:

~

Con ® Son3. Cp-2 ® S40-2 ® C(20-1)n

so that it is only necessary to consider the family of groups C,- These
are single-generator groups and hence Abelian. Their representation groups
must therefore also be single generator Abelian groups and hence have a

commutator subgroup K = C Since the multiplicator must be contained in

1
the commutator subgroups of the representation groups, the multiplicators of

the cyclic groups must all be C1 and therefore the representation group

coincides with the original group and there are no projective representations.

The next family of groups to consider are the dihedral groups

D2n+1 = C(2n+1)v of order 4n + 2. Their multiplicators may be found using

the following theorem V of Schur ( 17 ).
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"If pa is the highest power of the prime number p, which divides the
order g of the group G, and if the subgroups of G of order pa are cyclic

groups, the order of the multiplicator of G is not divisible by p."

Therefore the order of the groups D is 21 x (2n + 1)1. Hence

2n+1
the order of their multiplicator is divisible by no prime number greater
than 1. Their multiplicator is hence Cl'

For the groups of the family Dyn =C =

v D2nd’ non—-trivial

multiplicators can be found and it will be sufficient to show that one
representation group of twice their order exists to prove that the
multiplicators are all CZ' The double groups DA: are known to have the
property D&;/C{ = D4n since they are central extensions of C{ by D4n and
since their commutator is C:, C:(g C2) is a possible multiplicator. Since
this group is of the minimal non-trivial order, the multiplicator must be

isomorphic to the abstract group C2 for all possible representation groups.

The Vierergruppe, D, = sz = C2h is the first example of a direct

product group as it can be factorised

D2 = C2 x'C2

Before we can apply Schur's theorems we have to show that if K is the
commutator subgroup of a finite group G, then the factor group G/K is

always Abelian.

The commutator of an ordered pair of elements {gi,gj} of a finite

group G is the element gi_l gj—l g;

the subgroup generated by all the commutators of G. Let N be a normal

gj. The commutator subgroup K of G is

subgroup of G, then the factor group G/N is Abelion if and only if N
contains K; since the elements of the cosets G/N are the cosets

gN = Ng Vg €G
G/N is Abelian only if

8; Ngi N = gj Ngi N 'Vgi,gj €G



. b

Hence

-1 -1

Therefore gjgigj—lgi L must be an element of N and hence N must contain all
commutators since 8; and gj are any two elements of G. Thus G/K is always

Abelior, and can be factorised into direct products of cyclic groups.

Theorem VI of Schur now proves that if G1 and G2 are two finite groups

with commutator subgroups K, and K2 respectively, and with quotient groups

1
G1/K1 and GZ/KZ factorised as direct products of cyclic groups of orders
MysMg eeees?y and 31, 32 ..... 31; then the multiplicator of G1 X G2 is
the direct product of the groups Ml’ M2 and the k2 cyclic groups of orders
hef (21, 51)hcf(&2, 31) eee.. hef sz,S Q) where hef (a,b) is the highest

common factor of a and b.

The multiplicator of D2 is then given by

M(Dz) = M(Cz) X M(Cz) X Chcf(2,2)
= C1 X C1 X 02
=C2

The multiplicators of the tetrahedral, octahedral and icosahedral
rotation groups, T, O and I respectively, may now be determined by Theorem V
of Schur ( I7 ). Since apart from cyclic groups of odd order, their Sylow
subgroups are respectively D,, D4, D2. These all have multipliéators
isomorphic to 02 and hence if T, O and I are to have non-trivial
multiplicators, these must all be isomorphic to C2. The multiplicaéor of
the regular tetrahedral group, Td’ must also be isomorphic to C2 since Td

is isomorphic to O.

All other remaining point groups can be regarded as direct product

groups:
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Conh = Con X

Din+2 = Clan+2)v = P(2n+1)d = P(2n+1)h = P2n+1 * G2
R )

Th =T x C,

0, Z0xC,

I =Ix c,

and hence their multiplicators can be determined using Theorem VI of

Schur ( 17).

Finally the spherical rotation group, K, is known to have a double
group, K+, such that K+/CI = K- This obeys the requirements for a
representation group and hence the multiplicator is determined to be
isomorphic to C2. The spherical group relevant to atoms is Kh =K x S2
and' contains reflection planes and the inversion. This has a direct product
group structure and again using Theorem VI of Schur (7 ), its multiplicator

is also isomorphic to C,.

The results may be summarised as follows, where only one member of an
isomorphism class is tabulated as the results for the rest of the class

automatically follow.

Point Group G Sylow Subgroups _lii_
B Byn Byt 2%, (2n+1)}
T D,, Cy 22, 3l
0 By, B 2, 3

I D2,C3,C5 2’3!5'
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Point Group G = G, x G, K, G1/K1 2157 K, GZ/KZ 3,
D, = C, xC, C c, 2, - c c, 2
C2nh = C2n X 02 C1 C2n 2n, - C1 C2 2
Dine2 = Pons1 * €y Cone1 G2 2y ~ . G C, 2
D, b = D, x ¢, Cn Cc, x 02 2y 2 C1 C2 2
T, =T xC, D, Cq 3, - c, c, 2
o, 0xC, it c, 2, - c, c, 2
I =IxC, I c 1, - ¢, C, 2
K, K xC K C, 1, - C C, 2
Multiplicator = 01 :

C.» Cron-1)n’ C2n-1)v* P2n+1’ Son

Multiplicator = Cy

Coav® Conh® P20* Pog® P(2n+yn? To Tt Ko By O T Ty
Multiplicator = C2 X C2 s

oh
Multiplicator = C2 X 02 X 02 $

Donh

It is seen that the multiplicators for the point groups are isomorphic
to C; or products of C2. However, multiplicators of other types can appear
e.g. if p is a prime number, the multiplicator of the direct product groups
Cp % Cp (used in describing molecules exhibiting internal rotation) are
isomorphic to Cp' The simplest example of this occurrence is when
considering the direct product group C3 ® C3 where the multiplicator is

isomorphic to C3.

It should be noted that the above determination of the multiplicator

as a means of finding the second cohomology group is a labour-saving method




- 74 -

for those problems involving the extensions of a group by its multiplicator

and is far simpler than direct application of cohomology theory.

3.4 DETERMINATION OF THE MAXIMUM NUMBER OF REPRESENTATION GROUPS

The determination of the number of representation groups is usefully
preceded by the determination of the maximum possible number of such groups
using Theorems I and II of Schur (17 ). To apply these theorems we need
to know the multiplicators, M, determined in the previous section and the:
commutator subgroups, K, of the point groups G. The quotient groups G/K
which have been shown to be always Abelian are factorised in terms of cyclic
groups Cgl X ng X C53 ««... where the orders €15 €y +ece. are the integers
referred to by Schur as the invariants of the quotient group. The
multiplicator is likewise factorised and its invariants denoted by €15 €y eenn
Schur (Theorem I) then proved that the maximum number of representation
groups, n___, is given by the product of all possible highest common factors
of the type hcf (Ei’ ej). When G is a complete group as for example the
groups Td and O, this maximum number is the actual number of representation
groups. If -the orders’of the factor group G/K and M have no factors in
common thén G has only one representation group (Schur's Theorem II). This
case happens particularly when G = K, as in the case for the point groups I
and K, when there is only one representation group irrespective of the
mulﬁiplicator. The results may be summarised in the following table where
n is the actual number of representation groups determined in the following

section.




L

e X ek M on -
Cosml Yy Y A | . L
Can* 820> Cuh(noda) 4 Con Ly L. 4
Cy c, ¢, xC, G, 4 2
Dyn=17 €(20-1)v Con-1 G2 5 b 2
D. ,C, ,D .. D (nodd) C . C.xC C 4 {2’n=1
2n 2nv’ "nd’> "nh n 2772 2 3, n #1
D, . c czxczxcz .= 0, 512 ﬁ " i
T D, c, & Y |
T, 0 T 8, c, 2 2
T, D, CxC, . .G 2 2
0, T C,xC, - CxC, 16 4
I I c, g, 11
I I 0" &, 2 2
K K g, g DR |
K, K c, ¢, 2 2

3,5 DETERMINATION OF THE EXACT NUMBER OF ALTERNATIVE REPRESENTATION GROUPS

The determination of the actual number, n, of non-isomorphic
representation groups of a given group, G, requires ah examination of the
B possibilities to see if they lead to groups and then what isomorphisms
exist between them. This can be done by examining the generating relations
of a given group i.e. examination of the behaviour of a minimum set of
elements of the group which specify the behaviour of all elements of that
group. The process can be facilitated by considering first the

representation groups, R, of point groups, G, which can be specified by two
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generators and then using these as a basis in a composition series for
considering those groups which must be specified byv three generators.
then stepwise to those groups which are conviently specified by four or
five generators.

Let us consider a group G specified bv two generators A and B such
that A"=B"=E and BA=A%BY .A representation group R for G must be specified
in terms of two generators, P and Q such that PA -Qu =E, and QP = PEQn
The order of G is m since for all point groups in question At =*B&m and
hence the order required for R is 2&m since the multiplicator for all
two-generator point groups is of order 2.Hence,if Pg)'# leu

A=22 yuy=mor = &, u = 2m ,If however,P*A = Q{‘J

, 2im= Ay i.e.
then 2fm =iy i.e.
A=12 yu =2m,[cases such as A = 42 ,u=m are excluded since these would
not correspond to a multiplicator of order 2].Considering now The relation
BA = AxBy,the corresponding relation QP = PEQn in the representation

group can permit different combinations of values of £ and n according to

the values of A and p.The results can be summarized as follows:

Label Generating Multiplicator Commutators of R
Relations in R K(X=I) x—2n-)
i 1 (
2%_.m Xy L n even'P2£=“
p.I p?t=q"=E;Qp=PXqQ {E,P"] E il :(Pl;)'h:E
'3 2
0, 20 qmep;qp=p*ttqY  {E,P%} (p2)*-g p?%=g
P4 p¥=q?"=E; qp=p*Q" {E,Q"} 'E - pheg
2 2 2
L Y. . (U, M g m 2ym_ n even: ( ) %=
p, P'=Q*"=E;qp=P*Q {E,Q"} o®)Mer B v R T2 e
5 P2£=Q2m=E'QP=Pny' . {E P2=Qm}‘ - n even'(PAQ z
5 H ’ n ¢ (P =E
m 218 28,
Pe p2%q?p;qp-p*ttQY  (E,P%=q } (p%)*=E  P“7=E
p7 P22=Q2m=E;QP=Pny+m {E,P2=Qm} (P2)2=E P22=E
21 Zm +2_y+m 'P2£=
0 =g;qp=p*" %" {g,p*=q"} E B evenity  oh

odd :P“" "=E
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0f the eight possibilities it may be noted that Fe =rg and Fe =F3
since for these groups, the invariant element P‘8 = Qm. Among the relevant

point groups, we always have y = 1 and either x = 1 (for the C family)

2nh

or x = 2n-1 (for the D, family). For these two cases, the generating

2n

relations of the commutator subgroups of the representation groups are
listed. Comparison with the elements of the multiplicator shows that for
the C2nh groups,/’2 and Pg are possible representation groups when € is even
which is the case since ¢ = 2n, and/’4 is a representation group when m is
even, which is satisfied since m = 2 for the Cznh point groups. In fact

Py and A, are isomorphic since different choices of generators will lead to

6

the two different formulations of the group. There are thus only two

different representation groups for each group of the C o family.

2
In the case of the D2n groups, comparison of commutator subgroups and

mul tiplicators shows that when n is even,/’l, P and/o6 are possible

2* s

representation groups while when n is odd, A 2 and #, are the possible

2? 6

representation groups. Detailed examination of the structure of these
groups shows that when n is even,/’5 is isomorphic to/’1 and hence there
will be three representation groups, albeit of different types, for each

value of n # 1. Whenn =1,/, = A, and so there are only two non-

4

isomorphic representation groups viz Fb and Pe

2

This approach may be extended to the remaining point groups by
considering the following composition series in which each group is a
normal subgroup of the following group and hence by addition of one generator
and a specification of its multiplicative properties with the other

generators, one can arrive at the next group in the series.

D2-~—9 T — Th

D2—>T ——> 0(% Td) —— 0Oh

D T > 1 > Th

2 >
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Now considering the tetrahedral rotation group, T, this may be
specified by three generators viz

2 .2

D, : A"=B"=E; BA=AB

2

T : A2=BZ=E; BA=AB; C3=E; CA=BC; CB=ABC

Using the fact already established that there are only two possible
representation groups for D,, the behaviour of the corresponding two
generators for the representation group of T are determined. The results

for the number of possibilities for the representation group of T are shown

in the following table.

Generators of R1(D2) Remaining Generators for R(T) Label
g
C’=E; CA=BC; CB=ABC £
a=p%=g _ c3=E; ca=Bc; cB=A3BC ’y
BA=AB c3=E; cA=A%BC; CB=ABC rs
c3=5; ca= a%sc; cB=A>BC ,L
Generators of R2(D2)
3
C3=E; CA=BC; CB=ABC ,s
b 4.
A =B __c3=E; ca=a’Bc; CB=ABC A
2 2
A%=B 3 3
iy C7=E; CA=BC; CB=ABC s
BA=A"B
c3=g; ca=a%sc; ce=A2BC rg

Consideration of the doubling of the order of the three fold element in the

representation group results in isomorphisms to the above table of groups.

On detailed examination of the above results it is found that £1s P
P4 and,ﬂ4 do not constitute a group. The remaining relationships are all

non-isomorphic to each other, resulting in only one possible representation

group for T.
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We can now consider the four-generator group, Th’ which has the

generating relations:

a2=8%=c3-1%-E; BA=AB; CA=BC; CB=ABC

IA=AI; IB=BI; IC=CI
using the generators of R(T) as a basis. The following table shows the
possible relationships that the fourth generator I has with the generators

of R(T).

2 I"=E; IA=AI; IB=BI; IC=CI

y 12=E; TA=AI; IB=BI; IC=CI

£y 12=E; TA=AI; IB=A’BI; IC=CI

N 12=E; IA=A31; IB=A2BI; IC=CI

ps  I'=E; IA=AI; IB=BI; IC=CI

£e 14= 5 IA=A3I; IB=BI; IC=CI

P 14= ;s IA=AT; IB=A2BI; IC=CI.

g I4=E; IA=A3I; IB=A2BI; IC=CI

It is then found that P1s Pos P3 and £, are all isomorphic and fs, Pes P7
and Fg are all isomorphic resulting in only two possibilities for the
representation groups of Th.

The next four generator group to be considered is the octahedral
rotation group O specified by:

2—B2 C3—D2—E BA=AB; CA=BC; CB=ABC;

DA=BD; DB=AD; DC=C>D

using R(T) as a basis. The following results are obtained:
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Vs D2=E; DA=BD; DB=AD; DC=CZD

) D®=E; DA=a’BD; DB=aD; DC=C’D

P3 D2=E; DA=A2BD; DB=A3D; DC=C2D

4 D2=E; DA=BD; DB=A-D; DC=CD

Ps D4= s DA=BD; DB=AD; DC=CZD

re p%=E; DA=A’BD; DB=AD; DC=CZD

29 D4=E; DA=BD; DB=A3D; DC=CZD

Py D*=E; DA=A’BD; DB=AD; DC=C2D

If it is found that Fz, s 7 and;ﬂ8 do not form a group,f1 is

isomorphic to F3 and FS is isomorphic to #¢+ Therefore there are only two

possibilities for the representation group of the octahedral group O.

The final four-generator point group is the icosahedral rotation
group I, specified by:

A2=B2=C3=FS=E; BA=AB; CA=BC; CB=ABC; FA=AF4; FB=BC2F2; FC=C2F4

and again R(T) can be used as a basis for finding the representation groups
of the icosahedron. The following table shows the possibilities for the

behaviour of the fourth generator in R(I).

2y FO=E; FA=AF"'; FB=BC’F’; FC=C2F"

2
F,  FO=E; FA=A~ 4;-FB=BC“F2; re=c2r%

s FO=E; FA=AF"; FB=A’BC2F%; Fc=c2F%

5 3.4, 222 4

)
£,  FO=E; FA=AF'; FB=A"BCF"; FC=C'F

Fs F5=E; FA=AF4; FB=BC2F2; FC=A2C2F4

s FO=E; FA=ASF®; FB=BC’F2; re=a2c2F®

, FO=E; FA=AF"; FB=BC’F%; rc=aZc’F®

,
rg FP=E; FA=ATFY; FB=BC2F'; Fe=a2c2F4
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As with the representation group for T, doubling the order of the
five-fold generator results only in isomorphisms to the above groups. It
is found that the only generating relations in the previous table that
constitute a group is given by PS. Hence, there is only one representation

group for the icosahedral group I.

The determination of the representation groups for the five generatof
groups, the icosahedron, I,, and the octahedron, 0;,» proceeds in exactly
the same way as for the four-generator groups. This is relatively
straightforward, even for the case of Oh where the multiplicator is of
increased order. Therefore it does not appear to be necessary to tabulate

the detailed calculations for these cases.

The groups of the family DZnh’ however, where the multiplicator is
of order eight, requires an approach similar to that for two generators.

The D, family is specified by the generating relationships:

2%P-p2-c2-g, Ba=A2""1p; ca=Ac; cB=BC

Since this group is being extended by a group of order eight it would be
very tedious to have to enumerate all the possible generating relationships
for the representation groups, R. However, the commutator subgroup, K, of
R must contain the multiplicator of G. Then by investigation of the
commutator elements for each generating relationship, the allowable
commutator subgroups containing M, will be the sum and the products of

each set of commutator elements. It was found that of the 512 possibilities
found by Schur, only 64 need be considered because of the symmetrical
nature of the extension i.e. the extension is by the group T szCZXC2 not
C8 hence it follows that each generator may be doubled in order. Other
possibilities of non-symmetrical change to the group structure may be
ignored. Of these 64 possibilities only 14 have allowable commutator

subgroups that contain the multiplicator, and only two are non-isomorphic

for any particular value of nj except when n=1 when there is only one
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non-isomorphic representation group.

Finally the spherical rotation groups K and Kh need to be considered.
It has already been mentioned that the double group K" is a possible
representation group and it is the only representation group in accordance
with Theorem II of Schur ( 17 ). Similarly the group K, has a direct
product group structure and it has been shown that the maximum number of
representation groups is two. The double group K;'is one representation
group of K, , the second being one in which a non-invariant four-fold

element and its inverse map onto the inversion in Kh'

The simplest group whose multiplicator is not isomorphic to C, or
products of C2 is the direct product group C3xC3 with multiplicator = C3.
On application of Theorem I of Schur ( I7 ) it is found that the maximum
number of representation groups is three. 1In fact of these only two are
non-isomorphic, having the following generating relations:

3_3 . ..
C4xCy ¢ A"=B =E; BA=AB

9.3 .. A4
Rl(C3xC3) : A"=B"=E; BA=A'B

9 9 . 3.3, L, .4
RZ(C3xC3) : A’=B"=E; A"=B”; BA=A'B

3.6 THE CHARACTER TABLES FOR ALL REPRESENTATION GROUPS OF THE POINT GROUPS

The following character tables of the representation groups are listed
here for the first time.  These supersede all previous compilations of
projective representations, either because they 50 not list more than one
possible set of projective representations (Doring 1959; Hurley 1965) or
additionally they contain demonstrable errors (e.g. the D2h tables of
Janssen (1973) and Mozyrzymas (1975), usually in an incorrect choice of
phase of the characters. The advantage of using the full representation
group rather than a set of characters of the projective representations of

the point group is that R is a genuine group and hence operations involving




= 0

the projective representations, such as the symmetrization of powers, can
be performed without need for any additional algebraic formulations. The
tables are also useful as they contain all central extensions of G by M
and hence may assist in physical problems where group extensions are
needed, as well as enlarging the categories of abstract groups for which

character tables are available.

The tables are presented in the format customary to molecular physics
in which {1,2,3,4,5,6,8,12} -dimensional representations are denoted by
the letters {A,E,T,G,H,I,K,0} of the Mulliken-Placzek system irrespective
of whether the degeneracy is separable (Frobenius, 32 ) or not. The
complex conjugate components of separably-degenerate represeﬁtations have
been denoted by the superscriﬁts + and -. The elements of the multiplicator,
M, have been placed at the beginning and, since they coincide with the
centre of the repres?ntation group, their characters are ¥ those for the
identity element. The vector representations have positive characters for
all elements of the multiplicator, while the projective representations
have half of these characters positive and half negative. The different
classes of representations have been called w-representations by Bradiey
and Backhouse ( 40 ) and are denoted by subscripts a, B, aB, etc. (except
for thosebgroups with multiplicator where the well-known double group is a
representation group): 1in such cases the double-valued representations
denoted by half—integral‘subscript§ are the projective or a-representations.
The elements of the representation group have béen described in terms of
generators P,Q,R .... and the elements of the point group (described in
terms of generators A,B,C ....) to which these correspond are indicated in
the relevant columns below the characters. The composition of a class has
been denoted by a symbol of type sz which means that it contains X elements
of order x. Inverse pairs of elements have been collected on the same

horizontal line and the relationship between the generators for both R and

G have been collected on the right-hand side.
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The abstract generators of the point groups may be identified by

means of
G

C2nh

2nv

D2n

Dnd

Dot L)

A

B
h

Ty

the following table.

c

D F I
\
|
Sy
ZzX
'3
d
/ ZX
€y
/! ZX
C,
i 60é°1) s,
5
c (#0F™) S
5 2

It may be mentioned that not only do these tables contain the first

correct characters for the projective representations of D2h but also they

consider the icosahedral groups for the first time.
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1<p<n-1
n+l<p<2n-1

1 1 2 2 2 2 4n A 8n elements
€1 *®2 “®4n/hcf(n,2p-1) ““2n/hcf(2n,p) €4 elcm(hcf(an,p) )
Pan=Q4=E
P2n+2p_1 Pan P2n+pQ P2n=Q2
7n 2p_1 zp P = 2n+1
\%pz(cznh) E P P P Q PYQ QP=P Q
A
Ay 1 1 1 1 1 1
By 11 1 1 D" -»™P
A 1 1 1 1 -1 .
u
_ _.\n+l _qyn*ptl .
B, 1 1 1 1 (-1) (-1) L a=+1
E; ¥ 1 elg(zp—l)n/n eZlan/n (_1)2 ellpn/n
1<2<n-1;E % _g -i2(2p-1)n/ -2is%pm/ 2 -ifpm/
Elg 1 1 e 1\CP n e SLiPU/M (-1) - PR
E; I elg(zp_l)ﬂ/n 2itpm/n (_1)2+1 Jitp/n
159,5n-1;E2 _u -i%(2p-1)n/ -2i%pn/ 2+1 -igpm/n
slgg | 1o S@eDwa o 2, e P )
n odd; E 2 =2 0 2(-1)P 0 0
c; 2 =2 0 20iP(2¢-V)x/n 0 0 a=-1
1<2<in;G g _ - -
Yol 2 -2 0 2¢ iP(2i-Ljz/n . 0
2p-1 2p P 2n_.2_
CZnh E A A B A*B A B =E

BA=AB
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1<p<2n-1

le 152 ZEAn/hcf(An,p) 2nea 2ne4 8n elements
0<q<2n-1 0<q<2n-1
4n-p
P pin_ghop, p2ig?
‘52?1(D2n) g P2n pP quQ P2q+1Q QP=P4n—1Q
)
A 1 1 1 1 1
1
A2 1 1 1 -1 -1
By 11 -1)P 1 -1 L =+l
B, 1 1 (-1)P -1 1
1<2<n-1; El 2 2 2cosipm/n 0 0 J
lst<n; B, 2 -2 2cos(22-1)pn/2n 0 0 } a==1
Dy E AP A%9p a2atly K2R,
0<qsn-1 0sqsn-1 Rl L

—Le_
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le 152 Zelm/hcf (4n’,p) 2ne2 2ns:2 8n elements
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le-p P4n=Q2=E
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A 1 1 ! 1 1 )
A2 1 1 1 =1 -1
B, 1 1 -1P 1 -1 L a=+1
B, 1 1 (-1)P -1 1
1525n-1;E£ 2 2 2cosipm/n 0 0 )
1<f<n ;Eﬂ,a 2 -2 2cos(22-1)pn/2n 0 0] } a=-1
D, E AP na?lp a2ty | a%np%
0sqsn-1  0sqsn-1 BA=A2""1p
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CHAPTER 4

ASCENT AND DESCENT IN SYMMETRY AND SYMMETRIZED POWERS
FOR PROJECTIVE REPRESENTATIONS

4.1 ASCENT AND DESCENT IN SYMMETRY

The process of ascent and descent in symmetry (also known as induction
and subduction) relates the vector representations of the point group, G,
to those of ‘a subgroup of G, due to the following reciprocity theorem of

Frobenius ( 4:2),

. S . D
Let D be a representation of a finite group G with character X (g).
Let H be a subgroup of G. Then the number of times that D will appear in
the ascent of DJ to G into irreducible representations of G, is equal to

the number of times the representation D’ appears in the descent of D to H.
G can be factorized into left cosets with respect to H:
¢c=2,H
a '«
where f; are any left coset representatives. The number of times, n, that

D appears in the ascent of DI to G is equal to the intertwining number

n= 1 SXg) xP™h
gy B

Then the elements of G may be expressed in the following way

n= 1 33 XD(pah—l/aa-l)

e K4

1

But h_l and Pah—lf;_ are in the same conjugacy class of G and so have the

same character XD(h—l) for all values of a from 1 to IGI/IH]|.

Therefore

£x3 (n)xP (11
h

=]
]

VH)

with the condition that D is irreducible in G and DJ is irreducible in H.

This is a well-known process for relating representations of a super-

group to a subgroup. Relations between the projective representations of
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G and H are in general, however, severely restricted, not only by
differences in the multiplicators but also by the choice of representation
group. Indeed for specific physical problems it may be advantageous to
choose a particular representation group and hence a particular set of

projective representations, to facilitate the process of descent in
symmetry.

To quote specific examples, the representation groups of 0h and D4h
are respectively of orders 192 and 128 and hence the projective

representations of O, cannot be subduced onto those of D4h even though

h

D4h is a maximal subgroup of Oh' This is clearly because the multiplicator

of D4h is of greater order than that of Oh.
Further, of the two representation groups of DZ’ only Rl(DZ) is a

subgroup of R(T) and hence there is clearly some advantage to be gained

in dealing with the projective representations of D2 derived from Rl(DZ)

rather than those derived from R2(D2) when descent for the tetrahedral group

is of interest.

Descents in symmetry are sometimes possible when the order of the
multiplicator decreases from Gl to G2. For example, the multiplicator of

T, and D is of order two.

0, is of order four while that of O, Td’ h 34

h
However, only from Rl(Oh) and RZ(Oh) is a descent possible to a

representation group of each of these four groups.

The only descents to maximal subgroups preéented are those to maximal
subgroups which are themselves representation groups of a point group.
This includes cases where the multiplicator is necessarily trivial so that
formally the point group is its own representation group. The correlations
obey all of Frobenius's rules, therefore only descents to maximal subgroups
have been presented in the following tables. The complete set of descents
in symmetry from a supergroup to all possible subgroups are presented, where

the dotted lines in the diagrams indicate that the descent in symmetry
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continues in the above way until the trivial group C1 is obtained.

The consideration of different representation groups for a group G
leads to more complete and detailed results than those obtainable by

Harter ( 43 ).

4.1,1 Correlation Tables




Correlation Tables
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«.Table T . Correlation of the irreducible representations of the C2nh groups with those of
their maximal subgroups.
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Table 2. Correlation of the irreducible representations of the representation

groups of the dihedral groups D, with those of their maximal subgroups.
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Table 3. Correlation of the irreducible representations
of the representation groups of the D?nh groups with
those of their maximal subgroups. The D groups have

4nh
no representation groups as maximal subgroups.
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Table 4 . Correlation of the irreducible representations of
the representation groups of the tetrahedral groups with
their maximal subgroups. The two representation groups of
the regular tetrahedral group (Td) are isomorphic with
those of the octahedral rotation group (0), q.v. The
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4eTed Subgroups of the Representation Groups
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4.2 THE SYMMETRIZED POWERS OF PROJECTIVE REPRESENTATIONS

The concept of symmetrized and antisymmetrized powers of group
representations is based on the fact that the wave function of a set of
identical particles mﬁst be either symmetric or antisymmetric with respect
to the interchange of any pair of these identical particles. The total
wave function being symmeﬁric for bosons and antisymmetric for fermionms.

The cases of particular physical interest are those of the symmetrized
squares and cubes. vThe symmetric square is used in the determination of

the second excited state of a degenerate vibratioﬁal mode, the antisymmetric
square in determining expectation values for an imaginary operator. The
symmetrized cubes are needed in the Landau-Lifshitz ( 44 ) theory of second-

order phase transitions.

The direct product of projective representations has been considered
by Rudra ( 34 ). and corrected by Harter ( 43 ). However, the resulting
formulae are unwieldy because by not involving the actual representation
groups they require the knowledge of the large numbers 9f factor systems
of the projective representations_and the formation of lengthy products of

these.

The use of the standard formulae for vector representations in‘the
representation group, however, enables the calculation to be performed for
projective representations without reference to factor systems. Further,
there are no complications or need for special theories in the'calculation
of the symmetrized powers of projective representations. Hence the following
standard formulae have been used, where X (g) is the character of the
representation under the element g. The notation of fisZa ( 45 ) has been

used where A symmetric square, A" antisymmetric square, A, symmetric cube,

1

A, determinantally-antisymmetric cube and € the permutationally-degenerate

part of the cube.
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The results are summarized in the following tables. The symmetrized
powers of the vector representations of the representation groups are the
same as those for the corresponding point groups and may be found in the

papers of Jahn and Teller ( 94 ) and Boyle ( 46 ).

The fact that the powers of any representation of a group must be
symmetrizable provides convincing proof of errors in the underived t;bles
of projective representations published by Janssen (37 ). By deducing the
representation group from the projective representations published one can
by comparison wiﬁh our tables deduce the characters for those elements of
the representation group which do not map onto G and hence perform a rigorous
symmetrization - usually the symmetrization of the square is sufficient to
reveal discrepancy; In Ehis way the characters of magnitude 2i in thé

projective representations I and I 1 of D,. were found to be actually

13 2
15 should be 2i. Doring's (33 ) and Hurley's (35 )

2h
2 while the 2 in

projective representations for D2h were similarly wrong since their projective

representations only contain real characters.

It will be noticed from the tables that the symmetrized powers of
projective representations differ considerably according to the repfesentation
group chosen. However, in physical problems such as those to be diécussed
in the next chapter, there will always be one choice for which the set of
projective characters is physically relevant without modification. Hence
by identifying this choice the following tables can be used to solve any

given physical problem requiring symmetrized squares or cubes.
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Table 4.2.2 The symmetrized cubes of those representations of the representation groups

which yield the projective representations of the point groups.
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CHAPTER 5

APPLICATION OF THE THEORY OF PROJECTIVE REPRESENTATIONS
IN THE DERIVATION OF THE DOUBLE-VALUED REPRESENTATIONS
OF THE POINT GROUPS AND ALL THE REPRESENTATIONS OF THE
SPACE GROUPS

DOUBLE-VALUED REPRESENTATIONS

Sl

5.I1.I INTRODUCTION

The concept of a double group was introduced by Bethe (I4 ) for
consideration of the effects of electron spin. Since if the total anguler
momentum J has half integral values (i.e. ions with an odd number of electrons)
the representations of the rotation group are double-valued. The quantum
number j forms a basis for the character of the representation under a given
symmetry operation. If J is an integer, the character of the rotation through

an angle a is given by

X(a) = sin (j + }) «

sin (Ja)
Hence X(a) = X(a + 27) and 2T is the identity operation; However, if J has
half-integral values
X(a + 2T) = - X(a)
hence 4T is now the identity operation. These classes of groups are called

the double groups. The definition of a double group given by

Opechowski (IS ) is as follows

The double group G+, of a group G of order g, which is a subgroup of
K = 0(3), the three-dimensional rotation group, is the abstract gro;p of
order 2g having the same multiplication table as the 2g matrices of Kt = SU(2)
which correspond to the elements of the group G. The group kt = SU(2)

contains all the unitary unimodular matrices in two dimensions.
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+
The representations of G are therefore of two types
1. The single-valued representaions where

X(g,) = X(Rg,) g, € G

R rotation through 2 T

2. The double-valued representations where

X(g;) =-X(Rg,)

5.1.2 THE DERIVATION OF THE DOUBLE-VALUED REPRESENTATIONS FROM THE
PROJECTIVE REPRESENTATIONS OF THE POINT GROUPS

Projective representations may be used to find the double-valued
representations of a group, irrespective of whether the multiplicator is
of order two. It should be emphasized that whereas the representati&n graup
is the extension of G by M, the double groué, G+, is the extension of CI by
G where CI is the group consisting of the identity and the element, R, which
reverses the sign of the spin functions for systems with an odd number of
electrons. Any isomorphism of R(G) and G+ is therefore accidental rather
than inherent. However, it can be shown that a certain class of
representations of R(G),xwhich cor{espond to a class of projective .
representations of G, can always be modified so that they provide the double-
valued representations of G and further that these unique double-valued
representations can be obtained from any of the different sets of projective

representétions corresponding to representation groups. This problem was

first discussed by Weyl ( 20 y and subsequently developed by Hurley ( 35 ).

The double-valued representations of a group G+ are defined such that

d = -
(Rg;) d (g)
where R commutes with all elements g, of G+. This law is also obeyed for

the class a of representations of R(G) for which the representative matrices,

a (mari) = -A(ri)




=I5k =

where m is an element of the multiplicator, since by projection onto
G,
T(mr) =g and T(r;) = g; and A(ry) = ¢4 (g;)s

where ¢ is a phase factor to be determined.

The double-valued representations are thus identified by the class a
of represenﬁations of R(G) and their character systems can be determined
once the phase factor (known as a gauge transformation in this context)
has been found by comparing the relationships between the generating
matrices{? , 6, A, B} of the group R(G) with those which hold for the
double-valued representations of the group G+. This will now be illustrated

in the case of the dihedral group G = D

4.

>~ R, (D,) R,(D,) R,(D,)

4 174 274 3Y4
A4 =;E F4 = aE P4 = aF 54 = oF
B2 - & ¥ = oF P = P =
M o=A% @ - 80 F = oB ® =774
Required gauge [P A P> A P> t 1A
transformation Q- B A-» tip Q» t iB
Required class of a = -1 a = -1 a=-1
representations

The character systems are now derived by effecting the gauge
transformations on the elements of a representation group and then
dividing the relevant projective charaéters through by any resulting phase
factors to obtain the characters of the double-valued representations of D4+.

As an example we choose R3(D4). The required projective characters are

those of the separably degenerate Gla representation.
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R, (D,) AN A 5 2 B 35 SR | 5 A O3 SR )

& 2 -2 142 -i/2 0 0 0
Ia
e
Ia _
6, |2 -2 -iV2 12 0 0 0
h + 4 : 4,5 2 :
e XD, | E A 15a) 1§’} -1a%} ifB} —{AB}
Ey 2 -2 JZ -/2 0 0 0
E, 2 -2 -/2 /2 0 0 0
2

Hence this process has resolved the complex conjugate pair of
: + -7 "
representatlons‘{cla, Gla} into the real double-valued representations

. +
{E%, Eg} of D, .

The same representations are obtained as a set if
combinations of ¥ signs in the phase factors are used. Further, the same

representations are similarly obtained from Rl(D4) and RZ(D4)°

The case of the regular octahedron double group, Oh+ = G, is interesting
since it provides the simplest example among the point groups where the
double-valued representations are derived from only one class of projective
representations. The generating relatiohships for the matrices corresponding
to the elements of the different representation groups are simplified by
writing them in terms of matrices of these elements which can be mapped onto

+
matrices of the elements of 0h .



R3(Oh) R4(Oh)

$2%-72=af

Required [ P— A P— A P A P A
gauge Q- B Q- B Q- B Q- B
transfor-
' R—=>C R-C R—C R—>C
mations
S =D s> tp sotip s- Fip
LT—)I T- 1 T I T- HiI
Required a=-1 a = -1 a = -1 a=-1
1
class of § = w1 B = +1 B = +1 B = -1
represen-
tations

The calculation of the double-valued representations then proceeds
+
as in the example of D[+ and identical sets of double-valued representations

of Oh+ are obtained from all four representation groups.
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's.2 SPACE GROUP REPRESENTATIONS

5.2.1 INTRODUCTION

Every space group describes a particular crystal structure based on
one of the fourteen Bravais lattices i.e. a three-dimensional array of
mathematical points which satisfy the condition that every one of them is
in an environment exactly similar to that of any other lattice point.
Every space group G contains a set of pure translations'{E/tz which form
an invariant subgroup of G. This is the group of the transitional
symmetry operations of the Bravais lattice where

Rn = nltl + n2t2 + n3t3

n., n,, n, are integers and t t t, the translations of the Bravais
1 ™2 & 1> t20 %3

3

lattice. All pure (or primitive) translations are of the form

fe7t} = {e/Rn}

where the rotationalvparts ai(i =1 .,.... IGl) are the elements of the
corresponding point group G, such that the factor group G/T is isomorphic
to Go' All elements of G may be represented in terms of the minimal non-

primitive translations associated with the rotation a;, corresponding to

glide planes and screw axes.
{ai/t} = {ai/v(ai) + Rn} = { e/Rh} {ai/v(ai)}

The space groups where all v(ai) = 0 are the symmorphic space groups of
which there are seventy-three. These contain the entire point group as a
subgroup. The remaining 157 space groups are called the non-symmorphic
space groups.

The reciprocal lattice is now defined where the Brillouin zone is
the unit cell. It is specified by the set of reciprocal lattice vectors
{815 85> 84} where

giFj = ZFJij(i,j =1,2,3)
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The Brillouin zone can be described by a set of k vectors where the points

Eg of the reciprocal lattice are given by Kq = (qlgl, 95895 q3g3) where

{ql,qz,q3} are integers.

The holosymmetric point group P of a given crystal system is that point
group which contains the largest number of symmetry operations. Given a
point E of the Brillouin zone there exist certain elements of P which will
transform k into itself or some equivalent k vector. These elements form a
subgroup of P called P(k), the symmetry group of the k vectors. For any

k vector, P(k) will be a space group which includes the entire group, T, of

pure translations.

Koster (47 ) reduced the problem of determining space group
representations to that of determining the representations of P(k), by

proving the following theorem:

Any irreducible representation of the space group G includes an
irreducible repreéentation of P(k) in which the pure translations {e/Rn}
afe represented by the diagonal matrices

exp (—iE.Rn) I
where I is the unit matrix. The converse is also true. The problem can
be reduced still further by considering the point group Go(k) containing
the rotational parts of the elements of P(b), such that the reduced set
{GO(E)} contains the elements

{g} = {a/v(@)}
Let D({glt}) be an irreducible representation of P(k). Then for an§ two

elements of {Go(k)}

D(ig;})D({g;}) = D({g;} {g;])
D({ean(i,j)}{ 8i8j3

D(felR (i,3)})D({g;g;3)

exp(-ik.R (i,3))D(fg;e; )
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Hence this set of matrices form a representation of P(k) with factor

system, exp (-iE.Rn(i,j) )

For symmorphic space groups all Rn(i,j) = 0, therefore the vector
representations of GO(E) will give the space group representations of
P(k). Similarly for points on the interior of the Brillouin zone all
elements g, of Go(k) leave k invariant and again the vector representations
of GO(K) lead to the space group representations of P(g). Hurley ( 35 )
noticed the above facts that the vector representations of GO(E) were
sufficient when dealing with points in the interior of the Brillouin zone

for non-symmorphic space groups.

Projective representations are required for points on the surface or

the exterior of the Brillouin zone in non-symmorphic space groups.

5.2 DERIVATION OF SPACE GROUP REPRESENTATIONS

Hurley ( 35 ) showed how the space group representations could be
derived from his tables of projective representations and it will be shown
that the space group representations are uniquely determined, irrespective
of which set of projective representations, and hence which representation
group, is chosen. However, the erroneous tables published which have been
specified in previous chapters, do indeed lead to incorrect space group
representations. It will be shown that double-valued space group
representations are easiiy obtainable from the tables of representation

groups in chapter 3 .

The first example concerns the point R on the surface of the Brillouin
zone of the space group th(EPn3n). For this point, GO(E) is 0h and a

suitable set of generators for this group can be derived from those given

by Bradley and Cracknell (26 ). These are in Seitz notation,

~ ~ ~ + ~
A =1{C,, (000}, B {czy.looo}, C = {031 looo3, D = {c,, looo},

I

{8y 1 4 4 43
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and direct application of Bradley and Cracknell's tables yields the
relationship between these generators of P(k). As in section S-1-2 ,
these are compared with the generating relations of the matrices of the
representation group to determine the relevant class of'projective

representations and also by which phase factors they are to be modified.

B(R) Ry (0p) R,(0,) R(0,) R, (0)
-~ -~ ~ -~ h ~ ~ -12 ~ -~ ~ -~ ol -~ -~ ~
X2-52-F P =Q2=aE P2=Q =oE P2=Q2=aE P2=Q2=T2‘=aE
35 52-p% 13-5%F - %38
-~ o/ ~ ~ ~ ~ ~ ~ ~ ~ - ~ 2 -~
B2=12-F %372 72=pF 52-12=p%, S°=pE
ﬁ§=§§ 6?=a?6 Q§=a§6 6§=a§6 Q§=a§5
CA=BC RP=0R RP=GR RP=QR RP=QR
CB=ABC RO=PQR RG=POR RO=POR RQ=POR
]31&'—"35 §§=QQ§ §§=06§ §~=06§ §f’=a’ g
DB=AD §6=a§§ §6=a§§ §6=a§§ §6=dv§'
bo=t%  SR=R%S SR=R%S 3R=R%S SR=R%3
TA=AT TP=PT TP=PT TP=PT TP=PT
IB=BI TQ=0T TQ=QT TQ=QT Q=0T
IC=CI TR=RT TR=RT TR=RT TR=RT
1b=-Di TS=apST TS=BST TS=pST TS=gST
, FP— AL P—3 A P—A P—A
Required
gauge Q—B Q—B Q—B Q=3B
trapse { R—C R—C R—C R—C
e o < b
Formatdon S—XiD S—D S —ZiD S —.1iD
\ T—o1 T—+i1 T —tr T—t11
Required
class of a = +1 a = +1 a = +1 a = +1
represent-
B = -1 B =-1 B =-1 B =-1

ions
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Inspection of the appropriate élasses of represéntations and division of
the characters by the phase factors resulting from the gauge transformations
confirms that the space group representations are unique.

A further example will usefully consider the point L in OE[EFd3c].

The group(;o(g) is D,, and generating matrices for this are suitably

3d
choosen as
K=fsg |t 28] ana B-fc, | 4 & 3]

The relations between these generators and those of the representation

groups of D3d are compared below:
P{k) R1(Daq) Ry (D3q) Ry(Dsq)
6% $0=aft 0-af PO-E
B2=F Q?=af q°=f 2=k
BA=-A"B QP=aP>9 4p=aB GP=ab>8
Required Gauge { P—tiA Pt iA P—A
Transformations Q>tiB Q—B Q—>%*iB
Required class of A a=-I =-1 a=-I
Representations

In all these cases,and for all choices of ¥ signs in the phase factors
the same space group representations result.
The final example concerns the double-valued representations of the

point R of 02 discussed in the first example.The relations between the

h
generating matrices for P(g) differ from those for the single-valued

2

representations only in the signs of KZ,E ,ﬁK,ﬁR and DB.The appropriate

gauge transformations and choices of representations are therefore :




Q—1By - R==3C; B~<D; T=91;

Q—B, R—C, S—D, T—-I;

Q—3B; - R—)C;  S—32iD; - T—3I

R4(Oh): P—A, Q—B, R—C, S—*iD, T—I; a=-I, B=-I

The double-valued spacé group representations so produced are again uniaue,
irrespective of the choice of representation group.

The projective representations of the space groups,recently
discussed by Backhouse and Bradley (40,4I) could also be straightfordly
degived from the representation group tables in chapter 3.The advantage
of these is that it would allow one to construct the equivalent but ,
different sets of projective reprgsentations and hence give greater

flexibility for ascending and descending in symmetry.



CHAPTER 6

CORFPRFSEXTATIO.S OF MACTTTI" GROUPS

6.1 I"PRODUCTION

The theme of the previous three chapters is now
extended to the representations of the magnetic groups,
called corepresentations. It will be shown that the magnetic
‘croups have both unitary and antiunitary symmetry elements
and that a special algébra is needed when dealing with their
corepresentations.

V'hen considering the projective representations of
the point groups, it was shown that the algebra of the
projective representations could largely be avoided by
identifying them with the ordinary representations of an
abstract group called the revresentation group. In & similar
way the algebra special to corepresentations can be avoided
by recognizing them as ordinary representations of abstract
groups. This can be applied to both single-valued and
double-valued corepresentations.

Symmetry properties may be used to simplify the
eigenvalue problem, since if the FHemiltonian is inveriant
under a group of transformations, the eigenstates may be
essigned to irreducible representations of the group.
lornally the symmetry elements leave the time-averaged
atomic positions and electronic char:se density inveriant.
Eowvever, if the crystel possesses unpaired electrons it is
possible for the ecuilibrium state to have a non-vanishing
time-averagsed magnetic moment density, i.e. the magnetic
moment chianges sign, as with the case of ferromarnetic,

antiferromarnetic and ferrimagnetic crystals. These crystels
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may be described by the black and white (or dichrometic)

marnetic groups where the operation of time inversion, 0,
occurs in half the elements of the group. Paramagnetic and
Diamagnetic crystals have a time averaged magnetic moment
equal to zero and may be described by the grey magnetic groups
where 06 is itself a symmetry element of the group.

Shubni kov, (18) introduced the idea of operations of
anti-symmetry. This operation may be defined by intro-
ducing an extra co-ordinate, s, into the crystal system
which has only two possible values. Hence in addition to
ythe ordinary crystal co-ordinates, there is the additional
co-ordinate which will for example change colour, black'to
white, or direction of the magnetic moment parallel or
entivarallel, or change the spin of a particle from "spin up"
to "spin down". |

Tavgef and Zaitzev (48) first classified the magnetic
point groups and realized their significance in the study of
the macroscopic properties of mégnetic crystals.

62 THE EFFECT OF TEE OPERATION OF TINE REVERSAL

Allowing operations of antisymmetry in a group structure
now leads to a new series of groups:
TYPE I The ordinary point groups of which 32 are crystallo-
graphic.
TYPE II The grey point groups of which 32 are crystallo-
graphic.
TYPE III The black and white or magnetic point groups of

which 58 are crystallographic.
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In type I groups the operation, R, of anti-symmetry is not
present. For the grey vpoint groups the extra co-ordinate,
s, that has been introduced ié allowed to take both of its
two values simultaneously so that any operation of the point
group, G, leaves s unchanged and R times any operation of G
changes both black into white and white into black, again
leaving s unchanged. For the grey point groups the structure
can be written

M = G + RG
and since R2 is the identity and R commutes with all elements,
the grey groups are direct product groups of the form

M = ¢ x $E+ R}

In the black and white groups R is not an operation

in its cwn righﬁ, but multiplies half of the symmetry
onerations of G, and so

M = H + R(G -H)
where H is a halving subgroup of G. It is possible to derive
58 of these crystallographic magnetic groups from the 32
crystallographic point groups, since if G is the full point
group of unitary and antiunitary operators and H is the
invariant subgroup of unitary operators, the 58 magnetic
croups can be found by choosing all possible distinct
combinations of G and H, where G has twice as many elements
as H.

The operation of antisymmet£y, R, can be thought of as

changing the direction of the magnetic moment or reversing
the direction cf an electric current. This ccncept can be

extended to tnat of time inversion. The origin of the




magnetic moment of an atom can be pictured by considering
that the electrons are moving in‘orbits within the atom.
The orbiting electrons are similar to small loops or coils
carrying an eiectric current and therefore produce a magnetic
moment. A reversal of the time co-ordinate t — -t would
cause the electrons to orbit in the opposite sense and there-
fore reverse the direction of the magnetic moment.

Wigner, (L9) showed that this operation of time
inversion, 8, is antiunitary and that

82

92 = -E for an odd number of electrons.

+E for an even number of electrons

The operation of time inversion on a wave function,%j, ;
mey be determined by considering the time-dependent
Schr8dinger equation

HY = ih oY
T

Cn

where H is the Hamiltonian operator.

Teking the complex conjugate of the above expression

HY* = -1 %k oy*
ot

HY* = 1 h oy*
5(-t)

Therefore the sign of t is reversed if Y is changed into its
complex conjugate. Hence the effect of the operation of
time inversion 8 on a wave function Y is to produce Y *.

oY =¥ *
therefore 6 is an antiunitary operator. In ordinary point
groups all operations are unitary and hence all represen-—
tative matrices, A, obey the condition

AR* = 1
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Wigner (50) showed that if u is a unitary operator of
M then it is also linear and if it is an antiunitary operator,
a, of M it is antilinear.

63 CORFPRESENTATIONS OF MAGNETIC GRCUPS

The corepresentation representative matrices of these
non-unitary magnetic groups do not multiply in the same way
as the symmetry operations. The corepresentation matrices,

pl(u) and D'(a) can be defined such that

i
u‘VQ

X
%

i i
RIEROMA ¢

. X
b 8
a\VG = E

i i
n D (a)Bm 3

which leads to the following multiplication rules:

D(ui)D(uj) = b(uiuj)
D(u) D(a) = D(ua)
D(a) D*(u) = D(au)

D(ai)D*(aj) = D(aiaj)

where the asterisk denotes complex conjugation.

Two solutions of the above are eguivalent if they can
be transformed into each other by a unitary matrix, o, such
that

a-1D(u)d

:
ﬁl

~—
|

m-1D(a)@*

4
Y]
~—"
|



The matrix D(u) remains unchanged if a =01 is a multiple of

the unit matrix. D(a), however, is multiplied by w o* =®*2,
The explicit forms for these corepresentation matrices

were obtained by Wigner (50). He found that there were

three distinct types of corepresentations. If u is an

element of the unitary subgroup H and a is one of the anti-

unitary operators in M and A(u) is a representation of H,

the type of corepresentation of M depends on A(u) and Z&(u),

where

A(u) = A*(a;111a°)

where a_ is any antiunitary operator in M. If A(u) and A(u)

are equivalent it is possible to express &(u) in the form

8~ 1a(u)p
where B is a unitary matrix. Two possibilities now arise:
FIRST TYPE  pp* = +A(ad)
| Dw = a(w) ; D(a) = *a(aall)p
SECOND TYPE pg* = -A‘(ag)

| -1
D(u) = (A(u) “ ); D(a) = 0_1 A(aao)B)
o A(u) -5(aaj)p o
If A(u) and A(u) are not equivalent this leads to a third

type of corepresentation:

THIRD TYPE

D(u) = (Mu) - ); D(a) ;( ; A‘“O’)

o &(u). A(va;"a)* o

Wigner also pointed out that it does not matter which of the

antiunitary operators is chosen to be 8.



A1l that remains is to obtain a method to decide which
of the above three cases is applicable for each corepresen-
tation. Dimmock and Vheeler (51) gave a very simple test
using the characters of the representations of the unitary
subgroup.

Since B and Ai(u) are unitary the Ai(u) matrices will

satisfly the normal orthogonality relation

i 3 * _ 8
E A (uK)lm A (uK)pq T 6ij 8
1y

1p 6mq

where 1. is the dimension of Ai(u) and g the order of H.

Then

i, 2 L4
E b7(ag)yq = E b7 (uy ay ug 80)qq

. . o .
i % Al(uK)lmAl(ao)mr'Al(ao1 uK ao)rl

For the first two types of corepresentation this summation

. i i, .2 -1 %
18 % a (uK)rmA (ao)mr Brp ( )pq ql

= & 6lp 6mq a (ao)mr pr Bql

1y
_ i, 2 *
- ]g A (ao)mr B1r er
i
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For the third type this summation is

2
o‘mr

i -1 1=t
8 (uK)lm a7(a 4 (ao UK ao)rl

~ ™M

= iy (e 4700

= "0

Therefore

> Xi(aﬁ) +g for the first type
K

-g for the second type
= 0 for the third type.
The corepresentations of the grey magnetic groups are
fairly straightforward to determine since a, can be chosen

to be 8. Then
Bu) = 8%~ ue) = A¥(u)
Fence the following simplifications of corevresentation

theory are applied only to the black and white magnetic groups.

6.4 IDFNTIFICATION OF CORFPRESENTATIONS AS ORDINARY

REPRESENTATIONS

for the purposes of identifying corepresentationskwith
the ordinary representations of abstract groups, the corep-
resentetions should be dividedbinto those which derive from
real (i.e. 1-dimensional or inseparably-degenerate)
irreducible representations of H and those which derive from
the imaginary, separably-degenerate, irreducible represen-
tations of H. Those deriving from real irreducible represen-
tations of H can be constructed from a set of real represen-
tative matrices for which A4*(u) = A(u) and hence, whichever

of Wigner's types of representations of H is involved, Z(u)
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is also real and the representative maﬁrices of M, D(u) and
D(a) are real. The associative laws for these matrices
therefore reduce to those of ordinary representations of an
abstract group isomorphic to M. A convenient realization of
such an abstract group is G. Hence in this case the
representation of G = M are isomorphic with the corepresen-
tations of M £ G.

The corepresentations which derive from imaginary,
sevarably-degenerate, representations of H correspond to the
ordinary representations of an abstract group, A, which has
a halving subgroup isomorphic to H. If the representative
matrices of A are é(u'),lé(a')....., a mapping must be found
between the antiunitary elements §{al} of M and the corresponding
elements $a'} of A such that the following egquations may be
satisfied simulfaneously.

D(&)d™(u) = D(au) 5(a')s(u')

1l

6(a'u')

é(ai aé)

D(a;)D*(ay) = D(ajay)  o(aj)o(ay)
In general a set of such matrices D(u), D(a) ...... will not
form a group but a loop unless the set contains the complex
conjurate of every matrix. This is because the associative
law is only estgblished if D*(ui) = D(uj) [uje:H] and
D*(aK = D@j) [ale 8(G-H)]. The condition on the unitary
elements is always satisfied since it implies u. = u;1 and the
inverse of every unitary element is contained in HE. Eowever,
the ccnditions on the antiunitary elements is not necessarily
satisfied and the revoresentative matrices as formulated by

Vigner do not obey this ccndition for all the black and white

magnetic groups. Notwithstanding this, it has been found for
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the point groups that Wigner's matrices can be transformed to
an equivalent set obeying the condition that the complex
conjugate shall lie within the set. A single example of

this concerns the corepresentation generated by the E repre-
sentation of Cu in the magnetic group 08/'Cu. The E represen-
tation of Cu is separably degenerate and genersates two
equivalent real corepre;entations of CB//CM in which the
respective representative matrices for any given element are
complex conjugates. A simple treansformation of either by a
phase factor of modulus unity on the antiunitary elements
yields another equivalent corepresentation which contains the
complex conjugate of every representative matrix. The
corepresentation can then be identified with an ordinary
representation of a group, in fact the E representation of
the dihedrsl group Dh' The actuai matrices are tabulated

below:

Cg/ Cy E ¢, ©C, G g 6CF eC3 ecC] |
Wigner's (1 O0\/i 0(—1 O\i O\(O 4\/0 -1\/0 -i\/O0 1
D(EY) (o 1)(0 —i) 0 -1)(0 i>(1 OXi OY—1 O>(i o)
Wigner's (1 O\Fi O (4 0\/i 0\[0 -i

D(E7) (o 1)(70 i) 0 -1 >(o —i>(1 oj

Transformed/1 O\/i O0y=1 O\-i O0\(0 n"\ o-n\l,«o-n*\/o n
D(E™) (o 1)(0 —i)(0—1)(0 i>(n o)JJm* o/\-n 0/’:@* o)
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Another case when it is convenieﬂt to transform Wigner's
matrices is that when the corepresentation generated is in
fact separsbly-degenerate and yet the representative matrices
are not in appropriate diagonal form. Such separsable
degeneracies are not self-evident from "igner's formulation
and have to be diagncsed by determining the frequency of the
totally symmetric corepresentation in the square of the
irreducible corepresentation being tested. If this is two
rather than one the degeneracy is separable. Another test is
to see if Burnside's theorem: can be applied to the set of
corepresentations by comparing the sums of the sguares of the
degeneracies with the order of the magnetic group. The
simplest example of such an occurrence appears in the magnetic
group Ca/C2 where the corepresentation generated by the B
representation of 02, which is of Wigner's second type, yields
a two-dimensional representation described by the matrices

below (Gard and Backhouse, 52):

G,/ Cy E Cy 6C), 6C,
Wigner's 1 0 (-1 o> 0 1\[0: -1
D(B) (o 1) 0 ~1 (4 o>(1 o)
i Oo\[-i © )
0 -i)( 0 i

These matrices can be diaronalized by a straightforward

Diagonalized (1 O>(—1 O)

D(B) 0 144 @ <4

canonical transformation to exhibit the separebly-degenerate
components with their imaginary characters. Such & diagonal-
ization would have considersbly simplified the laborious
calculation of the symmetrized cube outlined by Gard and

Backhouse (52). The symbol /i wused by Gard and Backhouse
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needs to be used with caution since (V1 )* = V=i = %i /7.
However only the lower, negative, sign leads tc the correct
result (/1 )* = 1//1. |

The structure of the abstract group, A,generated by
the corepresentation matrices doces not appear to be deter-
minable in an entirely general way, but certain structures
éppear when the corepresentations belong to specific types.

When all the corepresentations of M leading to Wigner's
first type, as in the magnetic group Cuv/'cu, Wigner's formula
produces two corepresentations of M for every representation
of H and hence M is a direct product of H with a group of
order two, provided that the matrix B is the unit matrix.
Examples of this kind occur whenever all the antiunitary
elements, 8(G-H), are two-fold. A chosen element a_, of
0(G-H) will then act as a generator of M such that
M=H + aoH. Hence a correspondence a; = ujag exists between
the unitary and antiunitary elements and D(ai) = iA(ui)B by
inserticn in Wigner's formula. Hence when f = 1,
D(ai) = iA(ui) as required for a direct product structure.
It should be noted that since the characters of the corep-
resentations, D, depend on whetherthe + or - sign is chosen,
two group-theoretically inequivalent corenresentations are
generated, not one as asserted in the current literature.
Indeed, the z sign has been omitted in many pepers subseguent
to Wigner's work. Inclusion of both possibilities enables
the corepresentetions to satisfy Burnside's theorem. The
concept of ecuivalence defined by Wigner on page 336 of his
book (50) referred to the fact that wave functions trans-

forming as either corepresentations of the i'pair would have




the same energy and that cne could not decide physically to
which possibility a given wave function should be ascribed.
The corepresentetions of CHQ/’CM can now be described &as
ordinary rejpresentations of a group iscmorphic to the abstract
group C; x C, = C,y- However, since D(4), T\&), D(B), end

T(3) derive from real representaticns of E = C they can

Iy?
also be described as ordinary representations of Cuv as
explained earlier. Thié is possible because they are not
faithful renresentations of M = Cuv/’Cu, a fact which is true
for all one-dimensional representations (except B of C2).

For simplicity, therefore, the corepresentations of CLW/Cu
have been described in terms of just one group iscmorphic to
Cuh‘

Hosever, in the case of the magnetic group, Td/T,
where the corevresentations are also of Wigner's first type,
the matrices B are not all trivial and so only the corep-
resentations D(4), D(4), D(E) and D(E) can be put into
correspondence with the representations of an abstract group
isomorphic with the direct product group, jﬁ. Since the A
and T representations of H = T are real, D(4), D(&), D(T) and
D(T) correspond to representations of Td and hence the
corepresentations of Td/T require two abstract groups for
their description in terms of real representations. This hsas
occurred because D(T) and D(T) are faithful corepresentations
of Td/T'

When the corepresentations of M belcng to either
Wigner's first or third tyves, as in the magnetic grcups
isomorphic to Cnh/Cn (n ) 3), each real representation of H

yields an inseparably-degenerate corepresentation of Ili.
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This is diagnostic of a semi-direct prdduct structure for the
abstract group A. Since the only real representations of
Cnh/Cn are one-dimensional, the corepresentations can be
described in terms of just one abstract group A £ Cnv'
However, in the case of the group Th/'T, D(T) and D(T) are
faithful corevresentations and hence must be described in
terms of a semi-direct product group A = Td.

The corepresentations for the non-crystallographic as
weli as the crystellographic black and white magnetic groups
have been studied, since the non-crystallographic magnetic
groups could be useful due to the existence of quasi-
icosahedral structures in compléx intermetegllic compoundg
where there are magnetic'interactions of non-crystellographic
symmétry within the unit cell. The generalization of the
magnetic groups into group families is fairly straightforward.
the tyvpe of corepresentation can easily be found since the
structure of all the unitary subgroups, H, which are normal
point groups, is wé;l known. All that remains is the
reneralization of the unitéry matrix B. It is found theat in
most cases B is equal to the unit matrix. The following
example is one where B does not egual the unit matrix.

Considering the family of groups Dun//DZn having the

following structurei

Unitary Elements intiunitary Elements
1{pn 1(py¢n
pH=2P ¢ $ a { 2n-1 ptiP g { a { 2n-1

E PP p2dg pP p2a+ig
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a, may be chosen to be the antiunitary element PQ. The

condition on B is

a(w)p = po¥(al'uay)

Hence B must satisfy the following equations

£ (P4P)B

8a*(PQP2PPQ) = pa¥(PHPEP)

2(P23Q)p = pa*(PapPlopq) = pa*(HTET24g)

1l

But the unitary subgroup D2n has all resl matrices.

Therefore A(Pzp)ﬁ = BA(PL‘Ln—Zp)
8(P2%)p = pa(PH22%)

If B is the matrix associated with the element PQ then
substitution in the above equations shows that they are
sagtisfied. Hence B will be the matrix.
cos (w/2n) -sin (=/2n) )

-sin (n/2n) -cos (x/2n)
The results for the black and white magnetic groups may be
summarized in the following table.
Lbstract groun A = G

211 representations of CZnV/Cnv, Dnd/ Covs Dnh/ Cnv’DZn/Dn’

f
Dnd/Dn’ Dnh/ Dps DPopn/ Dpg»
Donp/ Pppe O Pgs 070 I,/ 1,
Kh/ K.
ibstract Group A £ H x 02

All representations of Cnv/ C» Dn/ C.» D ;o

nh nh?

Dnd/ SZn
Lbstract Group A = HA02

A11 representations of C_. /C_, CL;,1 2/ Copqo
14 1S Soug e

(@l m
S S e B
L;n—2/ 2n-1? Y2nh’ 2n’?

(4n-2)h” C(2n-1)n




Cases where two abstract groups are needed
below.

BLACK AND WHITE CORTPRESENTATIONS ABSTRACT
GROUPS M . GRCUP A

C.Lm/ Cop D(A) G

Sun//CZn D(4)
Clmh/ Conn D(Ag), DZAgS
D(Au), D(Au)

Lh/ﬂ? D(A) D(E) HAGC,
D(A) D(T), D(T) HxC,
Ty/ T D(4A) D(E), D(®) ExC,
o/T - D(&) D(T), D(T) HAC,
0,/ Ty D(Ag) D(Eg), r('?g> HxC,
DiAgj D(E,)» D(E,
D(&) D(T.), D(T )
e g’ "E HAC,
D(4& - =T
() D(7,), BT)
6.5. PROPERTIES CF CORZFRESENT.,TICL CHARACTTR TARLES.

It has already been mentioned that Burnside's theoren
can always be applied to corenresentations, provided that the
group-theoretical concept of equivalence for corepresentations
of Wigner's first tyve is used rather than the physical
concept be imposed. Character tables are, however, not
necessarily sguare unless a single abstract group A can_be
defined to describe the corepresentations. The concept of
conjugacy class as presently defined can onl& be described in
terms of the elements, and not the ccrepresentative matrices,
of M and hence unless £ = II the class structure is likely to

be disturbed. The elements of M have to be mapped into the
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classes of A and then each column of the character table will
be different. However, when two abstract groups A are reguired,
the number of classes is greater than that of either abstract
group. The columns are &all orthogonal in the‘normal sense &s
indeed are the rows. The order of each class is & direct
division of the order of M. The character teble is dependent
on the choice of a, but different choices only lead to
permutations of the classes corresponding to a given column.

of characters.

6.6 DESCENT IN SYMMETRY

The supergroup-subgroup relationships between the black
and white groups have been studied by Ascher and Janner (53]
It has now been found, on examination of the relationships
between the corepresentations, that provided that all group-
theoretically inequivalent corepresentations of Wigner's
first type are included, the processes of ascent and descent
in symmetry obey Frobenius's recivrocity theorem and behave
in every way in a similar manner to ordinary representations.
Further evidence for not discarding on physical grounds
half of the corepresentations of Wigner's first type is
provided by the fact that if only the positive sign in the
formula D(a) = iA(aa{j )B is arbitrarily chosen, some descents
become impossible when a corepresentation in the supergroup
correlates with the corepresentation which-would have a. negative
sign in this defining equation in the subgropp. The converse
can also happen. The actual correlation of the corepresen-

tations does depend on the chcice of a, in each group.
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6.7 THE SYLMZTRIZED POVERS OF CORFFRESENTATIONS

Rules for determining the direct products of corepre-
sentations have been studied by Karavsev (54) and Bradley and
Davies (55) and rules for reducing symmetrized powers were
established by Gard and Backhouse (52) who related all
calculations to the unitary subgroup. They were therefore
only able to symmetrize their powers up to unitary equi-
valence and hence could not solve the problem completely.

The approach just described solves this problem completely
for all black and white groups whose corepresentations can be
described in terms of just one sbstract group,A. Knowing the
symmetrization of the powers of the powers of the ordinary
representations of A, the symmetrized powers of the corep-
resentations of il are determined by ccrrespondence.

Ls an example of this method, consider the symmetric

cube of the corepresentation D(T1) of the magnetic group

Oh/’Th. This corresponds to the T1g

e

representation of Oh

and by insvection of Table II of Boyle (27) its symmetrie

" . . - T o .
cube is A2g + 2l1g + l2g hich corresponds to the reducible
corepresentation D(AZ) % 2D(T1) + D(Tz) of Oh/Th in agree-

ment with Cracknell znd Sedaghat (56). The correspondence

thus indicates the possibility of a full character theory,

contrery to the indications of Gard and Backhouse (52).
However, when two abstract groups are needed to describe

the corepresentations, the svmmetrization can only be performed

in the intersection of these, viz. the unitary subgroup. Lo

full character theory can then exist in such cases.




6.8 DESCRIPTION CF TIF CHARACT®R TABLTS OF
DOUBLE-VALUXD COREPRESERTATIONS

It is important to study double-valued corepresentations
as well as single-valued cnes since the wave function of a
particle, which is placed in an environment with the symmetry
of one of the magnetic point groups, must belong to one of
the single valued corepresentations of that group if it has
zero or integer spin and to one of the double-valued corepre-
sentations if it has half odd integer soin.

The double-valued corepresentations of the black and
white double groups were discussed by Dimmock and Vieeler (51)
and Cracknell and Wong (57). Cracknell and Wong specified to
which of Vigner's three types each corepresentation belonged
together with the matrix B. The matrix B was specified
incorrectly in Table 7 of Cracknell and Wong and again in the
notes to Table 7.15 of Bradley and Cracknell (36) for those

cases where it was claimed to egqual the unlikely matrix

X o= F (VB 1)+ i(V31) b

3 4 (V3+1) - 1(V/3-1)

where it should have been £ ¢* = % 1 141 0] > for the
Voo o0 -1

representation E: and 0 -1 ) for the representation G3/2.

2
-i 0

There ere also two errors in the Cayley tavble for O' (Table

6.2(a) of Bradley and Cracknell) where CZaCuy should ecual

- + ) - +
> and CZaCux should egual 032

table 6.1 of Bradley and Cracknell (which specifies the

5; and not as printed. Also in

matrices of SU(2) corresponding to the noint group 0') the




natrix 032 should read 1( 1-1 4 -4 )
2

-1-1i 1+1

Since double-valued Pepreséntations are merely ordinary
representations of an extended group, double valued corep-
resentations are just corepresentations of an extended black
and white group and hence no modification of Wigner's (50)
formulae 1is required to determine them. Wigner had already
noted that 4(82) = -1 for systems with an odd number of
electrons viz. the systems where double-valued representations
are necessary. The results for the character tables of these

double-valued corepresentations show that they can be

conveniently derived from one or two abstract groups, A, as
s ’ ’

summarized in the following table.

Abstract Group A £ G

A1l representations of an//c G

1
2nv’ 2nd/' 2nv?’ nd//DZn’
1 1 1 1
un/Dzn’Oh/O ,Oh/T ,Ih/I ’
Kth/ KI

Lbstract Group A ¥ H x C,

. . . 1 ' ! !
£11 representations of Cnv/’C , C(un-2)v//c(2n—1)v’

1 1
D/ Cls Din/ Chns Dpn/ C

nV’
Z2n+1)d/lcizn+1)v’ Dun+2/,Dén+1’
D22n+1)d/ Donsqs D/ Dpo
nh/,Dnd’ 2nh//D'
Dline2)n” P(2ns1)a’ Pha’ Son

Abstract Group A = H/\02

All representations of C' /'C', CL /'C', S;n_z/’Czq_,

n1
son’ Sone Comn/ Cin
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Cases where two abstract groups are needed are tabulated

below.

Black and White
Groups, M'

Corepresentations

Abstract Group A

w/z D(B, /) » D(T1_/2) G
D(G3/p) HAGC,
‘0! /7! D(B4 /5) » 1TE1_/—2) G
BE A 2 D(G5 /) HxC,
Op/ Ty D(Ey /og) s D.(E1—/‘2g) G
D(E1/2u.)’ 51%:;;;3
D(G3/p)» D(C3/5g) Hx Gy
D(G3/0u)» D(G3/0y)

The character tables for the single-valued and double-

valued corepresentations are given in the next section. The

two sets of tables could not be conveniently coalesced

because the isomorphisms between the black and white groups

are-changed on extending to the double groups and because it

would be necessary to supefimpose the different set of

relationships between the generating matrices.
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