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Abstract
We consider the scaling similarity solutions of two integrable cubically non-
linear partial differential equations (PDEs) that admit peaked soliton (peakon)
solutions, namely the modified Camassa–Holm (mCH) equation and Novikov’s
equation. By making use of suitable reciprocal transformations, which map the
mCH equation and Novikov’s equation to a negative mKdV flow and a negative
Sawada–Kotera flow, respectively, we show that each of these scaling similarity
reductions is related via a hodograph transformation to an equation of Painlevé
type: for the mCH equation, its reduction is of second order and second degree,
while for Novikov’s equation the reduction is a particular case of Painlevé V.
Furthermore, we show that each of these two different Painlevé-type equations
is related to the particular cases of Painlevé III that arise from analogous simi-
larity reductions of the Camassa–Holm and the Degasperis–Procesi equation,
respectively. For each of the cubically nonlinear PDEs considered, we also give
explicit parametric forms of their periodic travelling wave solutions in terms
of elliptic functions. We present some parametric plots of the latter, and, by
using explicit algebraic solutions of Painlevé III, we do the same for some of
the simplest examples of scaling similarity solutions, together with descriptions
of their leading order asymptotic behaviour.
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(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Background and motivation

Painlevé transcendents can naturally be regarded as nonlinear analogues of the classical special
functions. Classical special functions, such as Legendre polynomials, Hermite polynomials,
or Bessel functions, which satisfy linear ordinary differential equations (ODEs), arise in the
solution of linear partial differential equations (PDEs) by the method of separation of variables.
In a similar way, Painlevé transcendents, which satisfy nonlinear ODEs, provide similarity
solutions of soliton-bearing PDEs that are solvable by the inverse scattering transform [1, 16],
and are now known to describe universal features of critical behaviour in such nonlinear PDEs
(see e.g. [13]), as well as appearing in the treatment of scaling phenomena and other aspects of
random matrices, statistical mechanics and quantum field theories (see [26] and chapter 32 in
[36] for references to these and various other applications). The aim of this paper is to explain
how, in a somewhat indirect way, Painlevé equations appear in the analysis of scaling similarity
reductions of certain integrable nonlinear PDEs that admit peaked soliton solutions (peakons).

The cubically nonlinear PDE given by

ut − uxxt + 3u2ux + 2uxu2
xx + u2

xuxxx = u3
x + 4uuxuxx + u2uxxx (1.1)

is commonly known as the modified Camassa–Holm (mCH) equation (see e.g. [23], or
[7, 41]), because it is related via a reciprocal transformation to a negative flow in the modified
KdV hierarchy, while the Camassa–Holm equation [5], that is

ut − uxxt + 3uux = 2uxuxx + uuxxx , (1.2)

has an analogous relationship with a corresponding negative flow in the KdV hierarchy. These
and similar equations arise as truncations of asymptotic series approximations in shallow water
theory [6, 9, 14, 15, 29], as bi-Hamiltonian equations admitting infinitely many commuting
symmetries generated by a recursion operator [17, 32, 35], and as compatibility conditions
coming from a Lax pair [18, 38]. In these various contexts, the equation (1.2) can appear
with additional linear dispersion (ux and uxxx) terms, while (1.1) can have suitable linear and
quadratic nonlinear terms included, but such terms can always be removed by a combination of
a Galilean transformation and a shift u → u+ const., which changes the boundary conditions.
However, such transformations are irrelevant from the point of view of integrability, which is
determined by the underlying algebraic structure of the equations and their symmetries, so here
we will always work with the pure dispersionless versions of these equations.

Aside from their connections with shallow water models and bi-Hamiltonian theory, perhaps
the most remarkable feature of the dispersionless forms of these equations, as discovered in
[5] for (1.2), is the fact that they admit weak solutions in the form of peaked solitons with
discontinuous derivatives at the peaks, given by

u(x, t) =
N∑

j=1

pj(t) exp
(
−|x − q j(t)|

)
, (1.3)

where q j(t) are the positions of the peaks and pj(t) are the amplitudes, which satisfy a finite-
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dimensional Hamiltonian system of ODEs. Due to this feature, we refer to these PDEs as
peakon equations. The characteristic shape of the peakons can be understood by introducing
the momentum density m, given by the 1D Helmholtz operator acting on the velocity field u,
that is

m = (1 − D2
x)u. (1.4)

The introduction of m allows the dispersionless versions of the PDEs to be rewritten in a very
compact form: the Camassa–Holm equation (1.2) is equivalent to

mt + umx + 2uxm = 0, (1.5)

while the modified equation (1.1) is rewritten in the simple form

mt +
(
m(u2 − u2

x)
)

x
= 0. (1.6)

Then since 1
2 e−|x| is the Green’s function for the Helmholtz operator, the momentum den-

sity (1.4) for the peakon solutions (1.3) is a sum of Dirac delta functions with support at
the peak positions q j(t), j = 1, . . . , N. For more details of peakons and their connections with
approximation theory, see the recent review [31] and references therein.

The other cubically nonlinear PDE we will be concerned with here is the equation

ut − uxxt + 4u2ux = u2uxxx + 3uuxuxx , (1.7)

which was found by Novikov in a classification of quadratic/cubic peakon-type equations
admitting infinitely many symmetries [33]. Novikov’s equation can be written more concisely
as

mt + u2mx + 3uuxm = 0, (1.8)

with the same momentum variable as in (1.4). As shown in [28], it is related by a reciprocal
transformation to a negative flow in the Sawada–Kotera hierarchy; so its relationship with the
Degasperis–Procesi equation [12]

mt + umx + 3uxm = 0, (1.9)

which has a reciprocal transformation to a negative Kaup–Kupershmidt flow [11], is some-
what similar to the relationship between (1.1) and (1.2), because the Sawada–Kotera and
Kaup–Kupershmidt hierarchies are related to the same modified hierarchy (see [19, 21] and
references).

In this paper we are concerned with scaling similarity solutions of the cubic peakon
equations (1.1) and (1.7). It is a surprising feature of all the peakon equations described so
far that, despite being fundamentally nonlinear, they admit separable solutions of the form

u(x, t) = Y(t)U(x),

which are typically only a feature of linear PDEs. It turns out that (up to the trivial freedom
to shift t by a constant, which henceforth we will ignore) the function Y is just a power of t,
corresponding to a simple symmetry of each of these equations under scaling u and t. For the
cubic peakon equations being considered here, the separable solutions take the form
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u(x, t) = t−1/2U(x), (1.10)

while for the quadratically nonlinear equations (1.2) and (1.9) these solutions have the form

u(x, t) = t−1U(x) (1.11)

instead.
Solutions of the form (1.11) for the Camassa–Holm equation (1.2) were discussed in [20],

where it was shown that the ODE satisfied by U(x) fails the Painlevé test. From this point of
view, it would appear that such solutions are a counterexample to an assertion of Ablowitz et al
[1], which says that all ODEs obtained from similarity reductions of PDEs that are integrable
(in the sense of admitting a Lax pair, so that they can be solved by the inverse scattering method)
should be free of movable critical points. However, it has long been known that this assertion
cannot be true in its most naive form, and the Camassa–Holm equation is a case in point: the
expansion of the solutions of the PDE (1.2) itself in the neighbourhood of a movable singularity
manifold displays algebraic branching [26], and this movable branching is inherited by the
ODEs obtained from it via a similarity reduction, such as the equation for U(x). Nevertheless,
the solutions (1.11) belong to a one-parameter family of similarity reductions, found in [25],
which can be solved in terms of certain Painlevé III transcendents, meaning that the assertion
of [1] can be salvaged in this case. Although this would appear to contradict the result of [20],
there is in fact no contradiction: the Painlevé property, and more specifically the third Painlevé
equation

d2w

dζ2
=

1
w

(
dw
dζ

)2

− 1
ζ

(
dw
dζ

)
+

1
ζ

(
α̃w2 + β̃

)
+ γ̃w3 +

δ̃

w
(1.12)

(for some particular values of the parameters α̃, β̃, γ̃, δ̃), only appears after making certain
precise changes of the dependent and independent variables, including a hodograph-type trans-
formation, which completely changes the singularity structure. Thus movable poles of w in the
complex ζ plane arise from movable algebraic branch points in terms of the original variables,
i.e. U and x in (1.11).

In recent work [3], two of us studied similarity reductions of the so-called b-family of
equations, given by

mt + umx + buxm = 0, m = u − uxx , (1.13)

with a constant coefficient b. It is known that the cases b = 2, 3, namely (1.2) and (1.9), are the
only members of this family that are integrable in the sense of admitting infinitely many com-
muting local symmetries [32], and the only cases for which the prolongation algebra method
provides a Lax pair of zero curvature type [27]. For any b, the equation (1.13) admits a one-
parameter family of scaling similarity reductions which includes the separable solutions (1.11),
and in particular the ramp profile

u(x, t) =
x

(b + 1)t
(1.14)

for b �= −1. Beginning with [24], Holm and Staley did extensive studies on numerical solutions
of (1.13), and revealed bifurcation phenomena controlled by the parameter b. Their results
included numerically stable ‘ramp-cliff’ solutions for−1 < b < 1, looking like the ramp (1.14)
in a compact region, joined to a rapidly decaying cliff. The results in [3] show that the scaling
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similarity reductions of (1.13) are related via a transformation of hodograph type to a non-
autonomous ODE of second order; but this ODE only has the Painlevé property in the integrable
cases b = 2, 3, when it is equivalent to two different versions of the Painlevé III equation (1.12):
the reduction already found for the Camassa–Holm equation in [25], and another set of values
of α̃, β̃, γ̃, δ̃ for the reduction of the Degasperis–Procesi equation.

1.2. Outline of the paper

An outline of the rest of the paper is as follows.
The next section is devoted to similarity reductions of the mCH equation (1.1). We begin

by briefly reviewing the link between the Camassa–Holm equation and the first negative KdV
flow via a reciprocal transformation, as well as the reciprocal transformation between (1.1)
and the first negative mKdV flow, before presenting a precise formulation of the Miura map
between these two negative flows (proposition 2.1). Our main goal is then to describe the scal-
ing similarity solutions of (1.1), but to pave the way towards this it is helpful to consider the
travelling wave solutions beforehand. The latter are related to corresponding travelling waves
of the first negative mKdV flow via a transformation of hodograph type, which is obtained
by applying the travelling wave reduction to the reciprocal transformation. By reduction of
the associated Miura map, these solutions are then connected to explicit elliptic function for-
mulae for the travelling waves of the negative KdV equation, as found in [25]. This leads to
an exact parametric solution for the smooth travelling waves of (1.1), in terms of Weierstrass
functions, given in theorem 2.2 below, and illustrated with plots of a particular solution (see
example 2.3). The same template is followed for the scaling similarity solutions of (1.1): the
similarity reduction of the reciprocal transformation provides a hodograph-type link between
these solutions and a Painlevé-type ODE of second order and second degree for correspond-
ing solutions of the first negative mKdV equation; and the reduction of the Miura map gives
a one-to-one correspondence between the second degree equation and the particular case of
Painlevé III that is associated with the scaling similarity solutions of the negative KdV flow
(lemma 2.4). The main result of the section is the parametric form of the scaling similarity
solutions of (1.1), given in terms of a solution of the second degree equation and a pair of tau
functions for Painlevé III (theorem 2.6). An explicit illustration of this result, together with the
leading order asymptotics of two real branches in a particular similarity solution, is provided
in example 2.7, which is based on a simple algebraic solution of Painlevé III.

Section 3 is concerned with similarity reductions of Novikov’s equation (1.7). Initially,
we review the two different Miura maps that relate the Kaup–Kupershmidt hierarchy and the
Sawada–Kotera hierarchy to the same modified hierarchy, as well as the negative flows in each
of these hierarchies which are linked via a reciprocal transformation to the Degasperis–Procesi
equation (1.9), and to Novikov’s equation, respectively. Once again, to lay the groundwork for
the subsequent results on scaling similarity solutions, it is helpful to first make a detailed anal-
ysis of the travelling waves for (1.7). By reduction of the reciprocal transformation connecting
it to the negative Sawada–Kotera equation, these are related to the travelling wave solutions
of the latter, which are given explicitly in terms of elliptic functions; hence the exact paramet-
ric form of the smooth travelling waves in Novikov’s equation is derived (theorem 3.2), and
a particular numerical example is plotted (example 3.3). The analysis of the scaling similar-
ity solutions follows a similar pattern: in this case, the reciprocal transformation reduces to a
hodograph link with the solutions of a non-autonomous ODE of second order, which describes
the corresponding scaling similarity reduction of the negative Sawada–Kotera flow. After a

5



J. Phys. A: Math. Theor. 55 (2022) 424002 L E Barnes et al

simple change of variables, this ODE is shown to be equivalent to a case of the fifth Painlevé
equation, that is

d2w

dζ2
=

(
1

2w
+

1
w − 1

)(
dw
dζ

)2

− 1
ζ

(
dw
dζ

)

+
(w − 1)2

ζ2

(
α̃w +

β̃

w

)
+

γ̃w

ζ
+

δ̃w(w + 1)
w − 1

, (1.15)

with a particular restriction on the parameters, including the requirement that δ̃ = 0. By a
result due to Gromak [22], when this requirement holds, the Painlevé V equation (1.15) is
solved with Painlevé III transcendents, and we use this to give a one-to-one correspondence
between the ODEs for the scaling similarity solutions of the negative Sawada–Kotera and
Kaup–Kupershmidt flows (proposition 3.6). These ODEs have Bäcklund transformations,
which can be deduced from the action of certain discrete symmetries that are inherited from
the Miura maps for the two PDE hierarchies (see corollary 3.7). The general scaling similar-
ity solution of Novikov’s equation is then given parametrically in terms of a solution of the
aforementioned ODE that is equivalent to a case of Painlevé V, together with two different tau
functions related by a Bäcklund transformation (theorem 3.8). As in the case of the reductions
of the mCH equation, an illustration of the latter result is provided by starting from an ele-
mentary algebraic solution of Painlevé III (example 3.9), for which we plot the corresponding
scaling similarity solution of (1.7), and determine its leading order asymptotics for large posi-
tive/negative real values of the independent variable. To conclude the section, we consider the
special case of the separable solutions of the form (1.10) in Novikov’s equation, which turn
out to be given parametrically in terms of two different quadratures involving Bessel functions
of order zero (theorem 3.10).

The fourth section of the paper contains our conclusions, while the fifth section is an
appendix, which relates the travelling waves of Novikov’s equation described in section 2 to
the travelling waves of the Degasperis–Procesi equation, as derived in [3].

Preliminary versions of some of these results on scaling similarity reductions of cubic
peakon equations were presented in the thesis [2].

Note to reader. Throughout the paper, the letters z and Z are used to denote independent
variables in similarity reductions, but have different meanings depending on the context. So in
subsections 2.2 and 3.2, z and Z both denote travelling wave variables; while in subsections 2.3
and 3.3, the same letters z and Z are used to denote the independent variables in scaling similar-
ity solutions. We have duplicated the notation in sections 2 and 3 to highlight the close analogy
between travelling wave reductions, given by autonomous ODEs, and scaling similarity solu-
tions, which give rise to non-autonomous variants of these ODEs. Hopefully this will not cause
any confusion for the reader.

2. Reductions of the mCH equation

In this section, we consider reductions of the mCH equation (1.1). To begin with, we
explain why the latter nomenclature is appropriate, by describing the relationship with the
Camassa–Holm equation (1.2), which becomes apparent when suitable reciprocal transfor-
mations are applied to these two equations. In order to clearly distinguish between the two
equations, we start from the Camassa–Holm equation in the form (1.5), and write the asso-
ciated conservation law for the field p =

√
m, while at the same time replacing the other
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dependent/independent variables u, x, t by ū, x̄, t̄, so that it becomes the system

∂p
∂ t̄

+
∂

∂ x̄
(ūp) = 0, p2 = (1 − D2

x̄)ū. (2.1)

Henceforth in this section we reserve m, u, x, t for the corresponding dependent/independent
variables in the modified equation (1.6).

2.1. Miura map between negative flows

The first equation in (2.1) is a conservation law for the Camassa–Holm equation, which leads
to the introduction of new independent variables X, T via the reciprocal transformation

dX = pdx̄ − ūp d̄t, dT = d̄t. (2.2)

By applying a reciprocal transformation to a PDE system, any conservation law in the original
independent variables is transformed to another conservation law in terms of the new variables.
For the Camassa–Holm equation, the result of applying the reciprocal transformation (2.2) is
a PDE of third order for p = p(X, T ), which can be written in conservation form as

∂

∂T
(p−1) +

∂

∂X

(
p(log p)XT − p2

)
= 0. (2.3)

(Here and throughout the rest of the paper, we abuse notation by using the same letter to denote
a field variable as a function of both old and new independent variables, so p(x, t) → p(X, T).)
An alternative way to express the equation (2.3) in conservation form, which makes the con-
nection with the KdV hierarchy apparent, is

∂V
∂T

+
∂p
∂X

= 0, (2.4)

where the quantity V is defined in terms of p by

ppXX − 1
2

p2
X + 2V p2 +

1
2
= 0. (2.5)

The quantity V is the usual KdV field variable, which (up to scale) appears in the Lax pair
as the potential in a Schrödinger operator, and it follows from (2.4) and (2.5) that RVT = 0,
where R = D2

X + 4V + 2VXD−1
X is the recursion operator for the KdV hierarchy. Hence the

PDE (2.3) obtained by applying the above reciprocal transformation to the Camassa–Holm
equation corresponds to the first negative KdV flow (see [27] and references therein for further
discussion).

An analogous reciprocal transformation for the modified equation (1.6) is defined by

dX =
1
2

m dx − 1
2

f m dt, dT = 4 dt, (2.6)

with

f = u2 − u2
x. (2.7)

The latter transformation (with T rescaled) was presented in [28], where the connection with the
modified KdV (mKdV) hierarchy was obtained by deriving the standard Miura map formula
from the reciprocal transformation applied to the mCH Lax pair in the form given by Qiao [38].
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Here we make this connection more explicit, and we shall see that the choice of scale factor 4
in the definition of T is important in what follows.

Direct application of the transformation (2.6) to the mCH equation (1.6) results in the
conservation law

vT =
1
8

fX, (2.8)

where it is convenient to introduce the field

v = m−1. (2.9)

In order to obtain a single PDE for v = v(X, T), it is necessary to make use of the definitions
(2.7) and (1.4). These yield

f x = 2uxm =⇒ v fX = 2uX (2.10)

and

m = u − uxx =⇒ v−1 = u − 1
4

(
v−1DX

)2
u

= u − 1
8
v−1DX( fX) = u − v−1vXT ,

where (2.8) was used to obtain the last equality, which rearranges to produce

u = v−1(vXT + 1). (2.11)

Then from (2.10) and (2.8) we have another conservation law, that is

∂

∂T
(v2) =

1
2

uX, (2.12)

and by substituting for u from (2.11) in the right-hand side above, this gives a PDE of third
order for v, namely

∂

∂X

(
v−1(vXT + 1)

)
= 4vvT . (2.13)

The equation (2.13) was not explicitly given in [28], where the result of the reciprocal trans-
formation applied to (1.6) was instead written as a system, while the interpretation of this as a
negative mKdV flow was inferred from the transformation of the Lax pair, revealing that the
KdV field V in (2.4) is given in terms of v by the standard Miura relation

V = vX − v2. (2.14)

We now describe the relation between (2.3) and (2.13) more precisely.

8
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Proposition 2.1. The first negative mKdV flow, given by (2.13), is mapped to the first
negative KdV flow (2.3) by the Miura transformation

p =
1
2
v−1(vXT + 1) − vT , (2.15)

which has the Miura map (2.14) for the KdV field V as a consequence. Conversely, if
p = p(X, T) is a solution of the PDE (2.3), then v = v(X, T) defined by

v = −1
2

p−1(pX − 1), (2.16)

satisfies the PDE (2.13).

Proof. Using (2.11), the formula (2.15) can be rewritten as

p =
1
2

u − vT ,

so if v = v(X, T) is a solution of the equation (2.13) then

pX =
1
2

uX − vXT = 2vvT − vXT , (2.17)

by (2.12). Then upon rearranging (2.15), we find

2vp− 1 = vXT − 2vvT , (2.18)

which means that applying the identity (2.17) yields

2vp− 1 = −pX,

and hence v can be written in terms of p, in the form (2.16). This expression for v then gives

vX − v2 =
∂

∂X

(
−1

2
p−1(pX − 1)

)
− 1

4
p−2(pX − 1)2

= −1
2

p−1 pXX +
1
4

p−2(p2
X − 1), (2.19)

where the expression on the last line is the definition of the KdV field V in terms of p, according
to (2.5); thus V is given in terms of v by the standard Miura formula (2.14). Differentiating the
latter formula with respect to T produces

VT = vXT − 2vvT , (2.20)

which implies VT = −pX, by using (2.17) once more. Thus p = p(X, T) defined by (2.15) sat-
isfies (2.4), which is equivalent to the PDE (2.3). For the converse, if v is given in terms of
a solution of (2.3) by (2.16), then the calculation (2.19) giving the Miura formula for V in
terms of v holds, and its T derivative yields the equality (2.20). Hence, by applying (2.3),
vXT − 2vvT = −pX, or equivalently

pX + vXT = 2vvT , (2.21)

and then from (2.16) this implies that (2.18) holds, which in turn means that p can be written
in terms of v according to (2.15). Finally, differentiating both sides of (2.15) with respect to X
and using this to substitute for pX in (2.21), the PDE (2.13) for v follows. �
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The preceding result shows exactly why ‘mCH equation’ is a suitable name for (1.6), since
under a reciprocal transformation it is connected to (1.5) by a Miura map.

2.2. Travelling waves

Before treating the scaling similarity solutions, we first consider travelling waves of the mCH
equation (1.6), setting

u(x, t) = U(z), m(x, t) = M(z), z = x − ct, (2.22)

where c is the wave velocity, and we will also write F(z) for the quantity U2 − U2
z obtained

from (2.7). As it is already in the form of a conservation law, (1.6) becomes a total z derivative,
so integrating this we obtain

(F − c)M + k = 0, (2.23)

where k is an integration constant. Henceforth we will assume that k �= 0, since if we are con-
sidering smooth solutions, then the case k = 0 implies that either F = c, or M = 0, both of
which lead to unbounded solutions given in terms of exponential/hyperbolic functions; but the
one-peakon solution with M being given by a delta function can be viewed as a weak limit of
strong (analytic) solutions with k = 0 [30]. In terms of z derivatives, the first equality in (2.10)
implies M = 1

2 Fz/Uz, which means that (2.23) integrates to yield

1
4

(F − c)2 + kU = �,

for another integration constant �, which corresponds to an ODE of first order for U(z), namely

U2
z − U2 ± 2

√
�− kU + c = 0. (2.24)

The latter equation is easily reduced to a quadrature, but a more useful approach is to employ
the reciprocal transformation (2.6), which leads to an explicit parametric form for the general
solution.

If we take the reciprocally transformed equation (2.8), written in the form

(m−1)T =
1
8

fX,

then reducing to travelling waves with velocity c̃ we have dependent variables U(Z), M(Z),
F(Z), considered as functions of

Z = X − c̃T, (2.25)

and the conservation law (2.8) reduces to a total Z derivative, which integrates to give

−c̃M−1 =
1
8

F + const..

The above equation is equivalent to (2.23) if we identify the integration constant with − 1
8 c,

and k = 8c̃ �= 0, so that

M(F − c) + 8c̃ = 0. (2.26)

Thus we see that the travelling wave reduction of the mCH equation (1.6) corresponds to the
travelling wave reduction of the PDE (i.e., the first negative mKdV flow) that is obtained from

10
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it via the reciprocal transformation (2.6), provided that the parameters c, c̃ are appropriately
identified as velocities/integration constants, with their roles interchanged in passing between
the two equations. Furthermore, it turns out that (2.6) reduces to a hodograph transformation
between the ODEs obtained from these reductions, since

dZ = dX − c̃ dT

=
1
2

m dx − 1
2

f m dt − 4c̃ dt

=
1
2

M dx − 1
2

MF dt +
1
2

M(F − c)dt

=
1
2

M(dx − c dt)

=
1
2

M dz. (2.27)

There are two ways to make use of the equation (2.26), viewed as the travelling wave reduc-
tion of the reciprocally transformed conservation law (2.8). First of all, the reductions of (2.10)
and (1.4), transformed into expressions involving Z derivatives, give

FZ = 2MUZ , (2.28)

and

M = U − 1
4

M
d

dZ
(MUZ),

while (2.7) becomes

F = U2 − 1
4

(MUZ)2.

Using (2.28) to eliminate UZ from the latter two equations, we find that

U = M

(
1
8

FZZ + 1

)
= − 8c̃

F − c

(
1
8

FZZ + 1

)
, (2.29)

where (2.26) was used to obtain the last equality, by substituting for M, and also

U2 =
1

16
F2

Z + F. (2.30)

Upon comparing the two expressions (2.29) and (2.30) for U, an ODE of second order and
second degree for F = F(Z) results, namely

64c̃2

(F − c)2

(
1
8

FZZ + 1

)2

=
1

16
F2

Z + F. (2.31)

However, a second way to view this reduction is to consider the quantity ṽ(Z) obtained by
reducing v(X, T) to a travelling wave, so that

ṽ(Z) =
1

M(Z)
=

c − F(Z)
8c̃

. (2.32)

11
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Applying the travelling wave reduction directly to the PDE (2.13), it is clear that each side is
a total Z derivative, so upon integrating and rearranging, an ODE of second order for ṽ arises,
that is

c̃
d2ṽ

dZ2
− 2c̃ṽ3 + k̃ṽ − 1 = 0, (2.33)

where k̃ is an integration constant.
The equation (2.33) is solved in terms of elliptic functions. A shortcut to deriving the explicit

form of these solutions is provided by proposition 2.1: there is a Miura map between the solu-
tions of (2.33) and the travelling wave solutions of (2.3), as presented in [3] (see also [25]).
Identifying c̃ with the wave velocity d in [3], the travelling waves of (2.3) correspond to a KdV
field V(Z) = −2℘(Z) − ℘(W) (up to the freedom to replace Z → Z+ const.), where W is an
arbitrary constant, so that the Miura formula (2.14) requires that

dṽ
dZ

− ṽ2 = −2℘(Z) − ℘(W). (2.34)

This implies that ṽ = − d
dZ log ψ, where ψ satisfies the Schrödinger equation

d2ψ

dZ2
− 2℘(Z)ψ = ℘(W)ψ, (2.35)

equivalent to the simplest case of Lamé’s equation. A direct calculation then shows that taking

ψ(Z) =
σ(Z + W)

σ(Z)
exp(−ζ(W)Z), (2.36)

with σ and ζ denoting the Weierstrass sigma and zeta functions, respectively, gives the general
solution of (2.33) in the form

ṽ(Z) = −1
2

(
℘′(Z) − ℘′(W)
℘(Z) − ℘(W)

)
, (2.37)

up to the freedom to shift Z → Z − Z0, for an arbitrary constant Z0 (since the ODE for ṽ is
autonomous), provided that the parameters are given by

c̃ = − 1
2℘′(W)

, k̃ = 6c̃℘(W). (2.38)

The solution (2.37) can also be obtained more directly from the travelling wave reduction
of (2.3), which is given by p(X, T) = P(Z) with

P(Z) =
℘(Z) − ℘(W)

℘′(W)

(cf equation (2.14) in [3]), by applying this reduction to the formula (2.16). This gives

ṽ = −
(

dP
dZ − 1

)
2P

,

and then substituting the explicit form of P as above yields the required expression for ṽ.
Observe that the resulting solution (2.37) depends on three parameters, namely W and the
invariants g2, g3 of the Weierstrass ℘ function, so together with the arbitrary shift Z0 this makes

12
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a total of four free parameters, corresponding to the two coefficients c̃, k̃ plus two initial data
required to specify the initial value problem for (2.33).

The relation (2.32) shows that the solution of the second degree equation (2.31) for F should
be given by

F(Z) = c − 8c̃ṽ(Z), (2.39)

with ṽ specified according to (2.37), and a direct calculation shows that indeed this is the case,
provided that the parameter c is taken as

c =
2℘′′(W)
℘′(W)2

. (2.40)

Finally, comparing (2.29) with (2.39) and (2.33), we find that the quantity U can be expressed
in terms of ṽ as

U(Z) = −2c̃ṽ(Z)2 + k̃. (2.41)

This allows the travelling wave solutions of the mCH equation to be expressed in parametric
form.

Theorem 2.2. The smooth travelling wave solutions (2.22) of the mCH equation (1.1) are
given parametrically by U = U(Z), z = z(Z), where U(Z) is defined by (2.41) with ṽ(Z) as in
(2.37) (up to the freedom to shift Z → Z+ const.), and

z(Z) = 2 log σ(Z) − 2 log σ(Z + W) + 2ζ(W)Z + const., (2.42)

with the parameters being specified by (2.38) and (2.40).

Proof. The formula for U(Z) has already been derived above, so it remains to calculate z(Z).
From (2.27) it follows that dz = 2M(Z)−1dZ = 2ṽ(Z)dZ, and using ṽ = − d

dZ log ψ with ψ as
in (3.81), the formula (2.42) follows. �

Example 2.3. To illustrate the preceding theorem, we use it to plot a particular travelling
wave solution of (1.1) which is bounded and real for x, t ∈ R. We choose a Weierstrass cubic
defined by fixing the values of the invariants, and also make a choice of the parameter W, taking

g2 = 4, g3 = −1, W = 1.

From (2.40) and (2.38) this gives the value of the velocity of the travelling wave and the other
constants appearing in the solution as

c ≈ 4.494 929 942, c̃ ≈ 0.298 653 316, k̃ ≈ 2.107 492 133.

In this case, the Weierstrass ℘ function has real/imaginary half-periods given by

ω1 ≈ 1.496 729 323, ω2 ≈ 1.225 694 691i,

respectively, so taking the third half-period ω3 = ω1 + ω2, the function ℘(Z + ω3) is real-
valued, bounded and periodic with real period 2ω1 for Z ∈ R. Thus, to avoid poles for real
values of Z, we can exploit the freedom to shift Z and z in theorem 2.2, replacing Z → Z + ω3 in
(2.37) and (2.42), and choosing the arbitrary constant in the latter so that z is real for all Z ∈ R.
This guarantees that U given by (2.41) is a bounded periodic function for real argument Z, and
the corresponding function U(z) defined parametrically by z(Z) is a bounded periodic solution

13
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Figure 1. Parametric form of mCH travelling waves for real Z.

of (2.24). Indeed, from the quasiperiodicity of the Weierstrass sigma function, which in par-
ticular means that σ(Z + 2ω1) = −e2(Z+ω1)ζ(ω1)σ(Z), it follows from (2.42) that the period of
U(z) is given by

z(Z + 2ω1) − z(Z) = 4(ω1ζ(W) − Wζ(ω1)) ≈ 3.734 925 095

in this particular numerical example. Moreover, in this case we find that ṽ(Z) is positive for all
real Z, so dz

dZ = 2ṽ > 0 and z(Z) is a monotone increasing function of its argument, as is visible
from the right-hand panel of figure 1. We have also plotted U against Z in the left-hand panel of
the latter figure, where both plots are for −5ω1 � Z � 5ω1, while in figure 2 we have plotted
U against z, in the range −3ω1 � Z � 4ω1, corresponding to the travelling wave profile for the
mCH equation. Although the periodic peaks in this figure appear somewhat sharp, a closer look
reveals that the solution is smooth for all real z. However, by suitably adapting the technique
used in [30], it should be possible to obtain a single (weak) peakon solution from this family
of periodic solutions, by taking a double scaling limit where the real period 2ω1 →∞ and the
background (minimum) value of U tends to zero. The limit is quite subtle because the field m
becomes a delta function, and the reciprocal transformation (2.6) breaks down.

2.3. Scaling similarity solutions

The mCH equation (1.1) has a one-parameter family of similarity solutions given by taking

u(x, t) = t−
1
2 U(z), m(x, t) = t−

1
2 M(z), z = x + α log t. (2.43)

These solutions generalize the separable solutions (1.10), which arise when the parameter
α = 0. Upon substituting the expressions (2.43) into the mCH equation (1.1), or equivalently
into (1.6), we find

(α+ U2 − U2
z )Mz +

(
2UzM − 1

2

)
M = 0, M = U − Uzz, (2.44)

14
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Figure 2. Periodic travelling wave solution of the mCH equation.

where the latter is a compact way of writing the corresponding autonomous ODE of third order
for U(z), that is

(U2
z − U2 − α)(Uzzz − Uz) + 2Uz(Uzz − U)2 +

1
2

(Uzz − U) = 0. (2.45)

In order to obtain parametric formulae for the solutions of (2.45), we proceed to apply the
reciprocal transformation (2.6) to the similarity solutions (2.43). Without loss of generality we
can fix

T = 4t =⇒ d log T = d log t, (2.46)

and then we find that, under the reciprocal transformation, the reductions (2.43) correspond to
scaling similarity reductions of the first negative mKdV flow, obtained by taking

u = 2T− 1
2 U(Z), m = 2T− 1

2 M(Z), f = 4T−1F(Z), Z = XT
1
2 . (2.47)

Indeed, applying the reduction (2.47) directly to the conservation law (2.8) with v = m−1

produces

d
dZ

(
1
2

ZM−1

)
=

dF
dZ

=⇒ 1
2

ZM−1 − F = const.,

and if we identify the integration constant above with the parameter α then this yields the
relation

M(F + α) =
1
2

Z. (2.48)
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To see that this is consistent with applying the reciprocal transformation (2.6) to the solutions
(2.43), note that from (2.48) and the relation (2.46) between t and T we have

dZ = T
1
2 dX +

1
2

T− 1
2 X dT

= T
1
2 dX +

1
2

Z d log T

= T
1
2

(
1
2

m dx − 1
2

m f dt

)
+ M(F + α)d log t

= T
1
2 (T− 1

2 M dx − 4T− 3
2 MF dt) + M(F + α)d log t

= M(dx + α d log t)

= M dz. (2.49)

As shown previously, the reduction (2.43) produces the ODE (2.44) with independent variable
z, which can be rewritten in terms of M and F = U2 − U2

z in the form

d
dz

(M(F + α)) =
1
2

M.

Then using the result of (2.49) to transform the derivatives according to d
dz = M d

dZ , the latter
ODE becomes

d
dZ

(M(F + α)) =
1
2

,

that is precisely the outcome of differentiating each side of (2.48) with respect to Z.
Now from the definitions (2.7) and (1.4), we can write down corresponding relations for the

similarity solutions (2.47), involving Z derivatives, namely

F = U2 −
(

M
dU
dZ

)2

, M = U −
(

M
d

dZ

)2

U,

and then from (2.10) we obtain

dF
dZ

= 2M
dU
dZ

, (2.50)

so we can eliminate derivatives of U from the previous identities, to find

U2 =
1
4

F2
Z + F, U = M

(
1
2

FZZ + 1

)
. (2.51)

Upon comparing the two equations for U above, and using (2.48) to write M in terms of F, we
obtain a single ODE of second order and second degree satisfied by F, that is(

1
2

d2F
dZ2

+ 1

)2

=
(F + α)2

Z2

((
dF
dZ

)2

+ 4F

)
, (2.52)

which is a non-autonomous analogue of (2.31).
If we introduce ṽ = ṽ(Z) according to

ṽ = M−1 = 2Z−1(F + α), (2.53)

16



J. Phys. A: Math. Theor. 55 (2022) 424002 L E Barnes et al

so that

v(X, T) =
1
2

T
1
2 ṽ(Z), (2.54)

then the direct similarity reduction of (2.13) is an ODE of third order for ṽ, given by

d
dZ

(
ṽ−1

(
d2

dZ2
(Zṽ) + 4

))
= ṽ

d
dZ

(Zṽ). (2.55)

However, unlike the case of travelling waves, the above equation cannot be integrated to yield
an analogue of (2.33) that is first degree in ṽZZ; instead, ṽ satisfies a non-autonomous equation
of second order and second degree, obtained from (2.52) by replacing F and its derivatives,
using

F =
1
2

Zṽ − α, (2.56)

which follows from (2.53).
We now proceed to show how F(Z) satisfying (2.52), or equivalently ṽ(Z), is given in terms

of a solution of a particular case of Painlevé III, that is

d2P
dZ2

=
1
P

(
dP
dZ

)2

− 1
Z

(
dP
dZ

)
+

1
Z

(
2P2 + a

)
− 1

P
, (2.57)

for a suitable choice of the parameter a. If we identify P → w and Z → ζ, then this is
equation (1.12) with parameters

α̃ = 2, β̃ = a, γ̃ = 0, δ̃ = −1.

The main point is that, as described in [3] (and originally derived in [25]), the ODE (2.57)
arises as the equation for scaling similarity reductions of the negative KdV flow (2.3), so by
applying the result of proposition 2.1 to these reductions, a link with (2.52) follows. Under the
reduction (2.43) applied to (2.15) with v(X, T) = 1

2 T
1
2 M−1 = 1

2 T
1
2 ṽ, we find

p(X, T) = T− 1
2 P(Z), (2.58)

where P = P(Z) is given in terms of ṽ by

P =
1
ṽ

(
1
4

d2

dZ2
(Zṽ) + 1

)
− 1

4
d

dZ
(Zṽ), (2.59)

or equivalently, using (2.53), it can be rewritten in terms of F as

P =
Z

2(F + α)

(
1
2

d2F
dZ2

+ 1

)
− 1

2
dF
dZ

. (2.60)

Since we know from [3] that if p(X, T) satisfying (2.3) has the form (2.58) then P(Z) is a solution
of (2.57) for some a, the question is how to determine this parameter. It is convenient to note
that (2.59) or (2.60) can be expressed in the form

P = U − 1
2

FZ, (2.61)
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and also observe that (2.50) is equivalent to the formula

UZ =
1
2
ṽFZ .

Then applying d
dZ to (2.61) together with the second equation in (2.51) implies that

PZ = UZ − 1
2

FZZ =
1
2
ṽFZ + 1 − ṽU =⇒ PZ − 1 = ṽ

(
1
2

FZ − U

)
= −ṽP.

Hence we obtain the following expression for ṽ in terms of P:

ṽ = − (PZ − 1)
P

. (2.62)

This also follows directly by applying the similarity reduction to the formula (2.16), taking
the scaling (2.54) into account, and it leads to the relation between the solutions of (2.52) and
(2.57).

Lemma 2.4. There is a one-to-one correspondence between solutions of (2.52) and (2.57),
with the parameters related by

a = 2α+ 1, (2.63)

where P is given in terms of F by (2.60), and F is given in terms of P by

F = − Z
2P

(
dP
dZ

− 1

)
− α. (2.64)

Proof. The relation (2.64) for F is an immediate consequence of (2.62) and (2.56), and can
be rewritten as

F = −1
2

ZLZ +
Z
2

P−1 − α, with LZ =
d

dZ
log P,

where the latter notation allows the Painlevé III equation (2.57) to be expressed as

d
dZ

(ZLZ) = 2P + aP−1 − ZP−2.

Using this form of the ODE for P to eliminate terms in LZZ = d2

dZ2 log P, the derivatives of F
can be written as

FZ = −Z
2

P−1LZ − P +
1
2

(1 − a)P−1 +
Z
2

P−2,

FZZ =
Z
2

P−1L2
Z −

(
P +

1
2

(1 − a)P−1 + ZP−2

)
LZ − 1

+
1
2

(1 − a)P−2 +
Z
2

P−3.

Upon substituting these expressions for F and its derivatives into (2.52), almost all the terms
cancel, and all that remains is
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1
2

(
LZ − P−1

)2
(2α+ 1 − a) = 0,

from which (3.49) follows. �

In the description of the solutions of (2.45) in parametric form, it is convenient to make use
of solutions of the ODE (2.57) connected via a Bäcklund transformation. For this case of the
Painlevé III equation, given a solution P = P(Z) with parameter value a, the quantities

P± =
Z(±PZ + 1)

2P2
+

(∓1 − a)
2P

(2.65)

are solutions of the same equation but with the parameter replaced by a ± 2, respectively. It is
also helpful to consider the form of the corresponding KdV field V under the scaling similarity
reduction (2.58), which takes the form

V(X, T) = TV̄(Z), V̄ = − 1
4P2

((
dP
dZ

)2

− 1

)
+

1
2ZP

(
dP
dZ

− 2P2 − a

)
, (2.66)

where the above expression for V̄ in terms of P is found by applying the similarity reduction
to the formula (2.5), and then using (2.57) to eliminate the PZZ term. Then we introduce a tau
function σa(Z), in terms of which the scaled KdV field V̄ is given by the standard KdV tau
function relation

V̄(Z) = 2
d2

dZ2
log σa(Z) (2.67)

(invariant under gauge transformations of the form σa(Z) → exp(AZ + B)σa(Z)). The index a
denotes the parameter value in the equation (2.57), so if we replace P → P± and a → a ± 2
in the formula (2.66) for V̄ then we obtain corresponding (scaled) KdV fields V̄± and their
associated tau functions, related by

V̄±(Z) = 2
d2

dZ2
log σa±2(Z).

Remark 2.5. In addition to a fixed singularity at Z = 0, where solutions can have branching
(see example 2.7 below), there are two kinds of movable singularities that occur in (2.57) at
points Z0 ∈ C with Z0 �= 0: movable zeros, where P has a local expansion

P(Z) = ±(Z − Z0) +
±1 − a

2Z0
(Z − Z0)2 + c3(Z − Z0)3

+ O
(
(Z − Z0)4

)
, c3 arbitrary,

and movable poles, in the neighbourhood of which P has the Laurent series

P(Z) = Z0(Z − Z0)−2 + c0 −
c0

Z0
(Z − Z0) + O

(
(Z − Z0)2

)
, c0 arbitrary.

The reduced KdV field V̄ , given in terms of P by (2.66), is regular at points where P has
movable zeros, since V̄(Z) = ∓ 3

2 c3 + O((Z − Z0)) in the neighbourhood of such points; but at
points where P has double poles, V̄ does also, having the local expansion
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V̄(Z) = −2(Z − Z0)−2 +
c0

Z0
+ O

(
(Z − Z0)2

)
,

so from (2.67) the tau function vanishes at these points, being given by

σa(Z) = C(Z − Z0)(1 + O((Z − Z0))), C �= 0,

where the constant C depends on the choice of gauge.

Using loop group methods, Schiff constructed a Bäcklund transformation for the PDE (2.3)
[39], and in [25] it was remarked that this arises naturally from the standard Darboux transfor-
mation for the Schrödinger operator. Furthermore, in the case of the scaling similarity solutions
of (2.3) it corresponds to a Darboux transformation with zero eigenvalue, which is associated
with the operator refactorization

D2
X + V = (DX − v)(DX + v) → D2

X + V∗ = (DX + v)(DX − v),

and this reduces to the Bäcklund transformation (2.65) for the Painlevé III equation (2.57). In
terms of the standard Miura formula (2.14), the latter transformation is achieved by replacing
v →−v; but more precisely, at the level of the scaling similarity reduction, taking into account
the factors of 2 that appear in (2.47), a direct calculation shows that this transformation gives

V̄ =
1
2
ṽZ − 1

4
ṽ2 → V̄− = −1

2
ṽZ − 1

4
ṽ2, a → a − 2. (2.68)

Subtracting the expressions for V̄ and V̄− produces

ṽZ = V̄ − V̄−,

which leads to the usual expression for an mKdV field as the logarithmic derivative of a ratio
of two tau functions: the scaled field ṽ is given by

ṽ(Z) = 2
d

dZ
log

(
σa(Z)
σa−2(Z)

)
(2.69)

(with an appropriate choice of gauge). This allows us to state the main result of this section.

Theorem 2.6. The solutions of the ODE (2.45) for the similarity reduction (2.43) of the
mCH equation (1.1) are given parametrically by U = U(Z), z = z(Z), where U is defined by

U =
Z

2(F + α)

(
1
2

d2F
dZ2

+ 1

)
, (2.70)

with F(Z) being a solution of the ODE (2.52), related to a solution of the Painlevé III
equation (2.57) with parameter a = 2α+ 1 by (2.64), and

z(Z) = 2 log σa(Z) − 2 log σa−2(Z) + const., (2.71)

in terms of two Painlevé III tau functions σa, σa−2 connected via a Bäcklund transformation.
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Proof. The formula (2.70) follows from the second relation in (2.51) together with (2.53),
while (2.71) comes from rearranging (2.49) as dz = M−1 dZ = ṽ dZ and using (2.69) to inte-
grate this. �

Example 2.7. It is instructive to consider an explicit example of the parametrization in
theorem 2.6. The equation (2.57) has a family of algebraic solutions for even integer values of
the parameter a (see [8] and references). The simplest such solution is given by

P = (Z/2)
1
3 , a = 0. (2.72)

It is convenient to write all formulae in terms of ζ = (Z/2)
1
3 , so that from (2.66) we have

P = ζ ⇒ V̄ =
5

144
ζ−6 − 1

4
ζ−2. (2.73)

The tau functions for some of these algebraic solutions are listed in table 1 of [3], the relevant
ones here being

σ0 = ζ−
5

24 exp

(
−9

8
ζ4

)
, σ−2 = ζ

7
24 exp

(
−9

8
ζ4 − 3

2
ζ2

)
. (2.74)

These generate the reduced mKdV field according to

ṽ =
d

dZ
log

(
σ0

σ−2

)
=

1
6
ζ−2 d

dζ
log

(
σ0

σ−2

)
= −1

6
ζ−3 + ζ−1,

so that the reduced KdV field as in (2.73) is given by

V̄ =
1
2
ṽZ − 1

4
ṽ2 =

1
12

ζ−2ṽζ −
1
4
ṽ2,

and from (2.56) the corresponding solution of (2.52) is found to be

F = ζ2 +
1
3

, α = −1
2
. (2.75)

Then from (2.70) and (2.71), using the form of F in (2.75) above and the specific tau functions
(2.74), the parametric form of the associated solution U = U(z) of the ODE (2.45) withα = − 1

2
is

U = ζ +
1
6
ζ−1, z = 3ζ2 − log ζ, (2.76)

where here the solution is parametrized by ζ instead of Z, and a choice of arbitrary constant
in z has been set to zero. If we consider this solution for real ζ > 0, then it is clear that this
similarity reduction of the mCH equation (1.1) has (at least) two real branches: in the limit of
small positive ζ, we have

ζ → 0+ =⇒ z →∞, U →∞,

with asymptotics

U ∼ 1
6
ζ−1, z ∼ − log ζ ⇒ U ∼ 1

6
ez, (2.77)
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Figure 3. Plot of U against z for the parametric solution (2.76) with 0.02 � ζ � 4.

while for large ζ, we find

ζ →∞ ⇒ z →∞, U →∞,

but the asymptotic behaviour is completely different, namely

U ∼ ζ, z ∼ 3ζ2 ⇒ U ∼
√

z
3
.

From the tangent vector

⎛⎜⎝
dz
dζ
dU
dζ

⎞⎟⎠ =

⎛⎝6ζ − ζ−1

1 − 1
6
ζ−2

⎞⎠

we see that dz
dζ = 0 = dU

dζ when ζ = 1/
√

6, corresponding to (z, U) =
(

1
2 (1 + log 6), 2/

√
6
)
,

where the two branches of the solution separate at a cusp, clearly visible in figure 3. Note
that the exponential asymptotics in (2.77) can be regarded as the leading term in an expan-
sion U ∼ 1

6 ez +
∑

n�0 cn e−nz as z →∞, which is the sort of exponential series considered for
Camassa–Holm type equations in [37].
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3. Reductions of Novikov’s equation

This section is devoted to similarity reductions of Novikov’s equation (1.7), or equivalently
(1.8). In due course we will need to compare its scaling similarity reductions to analogous
reductions of the Degasperis–Procesi equation, so it will be convenient to rewrite (1.9) in the
form of an associated conservation law for the field p = m1/3, given by the system

∂p
∂ t̄

+
∂

∂ x̄
(ūp) = 0, p3 = (1 − D2

x̄)ū, (3.1)

where the other dependent/independentvariables u, x, t have been replaced by ū, x̄, t̄. In the rest
of this section we reserve m, u, x, t for the corresponding dependent/independent variables in
Novikov’s equation (1.8).

3.1. Negative Kaup–Kupershmidt and Sawada–Kotera flows

As is well known [19], each of the flows in the Kaup–Kupershmidt hierarchy (with dependent
variable V ) and in the Sawada–Kotera hierarchy (with dependent variable V̂) arises as the
compatibility condition of a linear system, whose X part is given by the eigenvalue problem
for a third order Lax operator, that is

D3
X + 4VDX + 2VX = (DX + v)DX(DX − v) and D3

X + V̂DX = (DX − v)(DX + v)DX,

(3.2)

respectively, where the operator factorizations above produce the Miura maps

V = −1
2
vX − 1

4
v2, V̂ = vX − v2, (3.3)

which relate each of these hierarchies to the same modified hierarchy with dependent
variable v. (The choice of scale for the Kaup–Kupershmidt field V in (3.2) differs by a fac-
tor of 2 from [19], but is taken for consistency with the form of the Lax pair derived in [11],
and the results in [3].)

In terms of the field p, the reciprocal transformation associated with the Degasperis–Procesi
conservation law (3.1) is identical to that for the Camassa–Holm case, that is

dX = pdx̄ − ūp d̄t, dT = d̄t, (3.4)

apart from the fact that p has a different meaning. The result of applying this transformation
(2.2) is a PDE of third order for p = p(X, T) as a function of the new independent variables
X, T, given in conservation form as

∂

∂T
(p−1) +

∂

∂X

(
p(log p)XT − p3

)
= 0. (3.5)

The connection with the Kaup–Kupershmidt hierarchy is made manifest by rewriting (3.5) in
the alternative form

∂V
∂T

+
3
4

∂

∂X

(
p2
)
= 0, (3.6)

where the quantity V is defined in terms of p by the same formula as in (2.5) above, and cor-
responds to the dependent variable appearing in the first of the third order Lax operators in
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(3.2); this is how (3.6) was first derived in [11]. The PDE (3.6) is a flow of weight −1 in the
Kaup–Kupershmidt hierarchy.

As for Novikov’s equation (1.8), if we introduce the dependent variables

q = m2/3, r = um1/3, (3.7)

then it has a conservation law with density m
2
3 , which can be written as

qt + (r2)x = 0, q2 = r − q
1
2
∂2

∂x2

(
q− 1

2 r
)

, (3.8)

with the latter equation being (1.4) expressed in terms of q and r. This conservation law is
discussed in the context of the prolongation structure of the PDE in [40]. In order to relate this
to the Sawada–Kotera hierarchy, it is necessary to introduce the reciprocal transformation

dX = q dx − r2 dt, dT = dt, (3.9)

which produces the transformed system

∂

∂T
(q−1) =

∂

∂X

(
q−1r2

)
, rXX + V̂r + 1 = 0, (3.10)

where

V̂ = −
(√

q
)

XX√
q

− 1
q2

(3.11)

corresponds to the dependent variable for the Sawada–Kotera hierarchy. As shown in [28], the
system (3.10) is a flow of weight −1 in this hierarchy, arising as the compatibility condition
for a Lax pair whose X part is the eigenvalue problem for the second operator in (3.2). For the
discussion that follows, it will sometimes be convenient to refer to a potential Φ associated
with the conservation law in (3.10), so that

q−1 = ΦX, r =

√
ΦT

ΦX
. (3.12)

Remark 3.1. The second Miura formula in (3.3) defines V̂ in terms of v, but the solution of
the inverse problem of finding v given V̂ is not unique, because it involves the solution of a
Riccati equation. However, if V̂ is specified in terms of q by the formula (3.11), then taking

v = −1
2

(log q)X ± 1
q

(3.13)

gives a particular solution for v, valid with either choice of sign above.

3.2. Travelling waves

The travelling wave solutions of the Degasperis–Procesi equation (1.9) were described in
parametric form in [3]. They are given in terms of a parameter Z which corresponds to the
similarity variable for travelling waves of the PDE (3.5) with velocity d, which take the form
p(X, T) = P(Z), where Z = X − dT and (up to the freedom to shift Z → Z+ const.)

24



J. Phys. A: Math. Theor. 55 (2022) 424002 L E Barnes et al

P =
1

α℘′(W1)

(
℘(Z) − ℘(W1)
℘(Z) − ℘(W2)

)
, d = − 16℘′(W2)6

℘′(W1)2℘′′(W2)4
, (3.14)

with constant parameters W1, W2 related via

α = −1
2
℘′′(W2)/℘′(W2)2 = (℘(W1) − ℘(W2))−1. (3.15)

The corresponding velocity for the travelling waves of (1.9) is also given by an expression in
terms of the Weierstrass ℘ function and its derivatives with these constants as arguments; see
[3] for details.

The travelling waves for Novikov’s equation (1.8) were reduced to a quadrature in [28],
given as a sum of two elliptic integrals of the third kind. Here we derive an explicit parametric
form of these travelling wave solutions, which are found by imposing the reduction

u(x, t) = U(z), m(x, t) = M(z), z = x − ct (3.16)

in (1.8), and noting that with

q(x, t) = Q(z), r(x, t) = R(z),

the conservation law in (3.8) integrates to yield

−cQ + R2 = const.

Then, in a similar way to the case of mCH travelling waves treated in the previous section, we
can relate these solutions with corresponding travelling waves of the reciprocally transformed
system (3.10) with velocity c̃, which we can identify (up to a sign) with the integration constant
above, to find

cQ = R2 + c̃, (3.17)

in terms of Z = X − c̃T, with Q = Q(Z) and R = R(Z) related by

RZZ + 1
R

=

(√
Q
)

ZZ√
Q

+
1

Q2
, (3.18)

using the reduction of (3.11) with V̂ → V̂(Z). To see this, note that for the travelling wave
solutions of the negative Sawada–Kotera flow, the first equation in (3.10) becomes

−c̃
d

dZ

(
Q−1

)
=

d
dZ

(
Q−1R2

)
,

which integrates to give (3.17), with c now playing the role of an integration constant. Upon
using (3.17) with the assumption c �= 0 to eliminate Q from (3.18), an ODE of second order
for R(Z) is obtained, that is

c̃

(
RZZ

R2 + c̃
− RR2

Z

(R2 + c̃)2

)
=

c2R
(R2 + c̃)2

− 1,

and this can be integrated to produce the first order equation

c̃

(
dR
dZ

)2

+ 2(R − e)(R2 + c̃) + c2 = 0, (3.19)
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with e being another constant. The travelling wave reduction of (3.10) corresponds to the
potential in (3.12) being of the form Φ(X, T ) = ϕ(Z) + cT.

Up to the freedom to shift Z by an arbitrary amount Z0, so that Z → Z − Z0, the general
solution of (3.19) for c̃ �= 0 is an elliptic function of Z given by

R(Z) = −2c̃(℘(Z) − ℘(W)), (3.20)

where W is a constant such that

c̃ =
1

2℘′′(W)
,

e
c̃
= 6℘(W), (3.21)

and the other constant appearing in the ODE satisfies

c2

4c̃3
= 6℘(W)℘′′(W) − ℘′(W)2. (3.22)

Hence, up to shifting the argument by Z0, the solution R(Z) is completely specified by the value
of the parameter W and the two invariants g2, g3 of the Weierstrass ℘ function.

By applying the reciprocal transformation (3.9) to the travelling waves of (1.8), and using
the relation (3.17), a short calculation analogous to (2.27) shows that these are related to the
travelling wave reduction of (3.10) by the hodograph transformation

dZ = Q dz, (3.23)

where each of the parameters c, c̃ has a complementary role as a wave velocity/integration con-
stant, which switches according to whether the reduction of (1.8) or (3.10) is being considered.
For further analysis of (3.23), we will also need to write the reciprocal of Q in the form

1
Q(Z)

=
1
2

(
℘′(W+)

℘(Z) − ℘(W+)
+

℘′(W−)
℘(Z) − ℘(W−)

)
, (3.24)

where from (3.17) and (3.20) it follows that 1/Q(Z) has simple poles at values of Z congruent
to ±W± modΛ (with Λ denoting the period lattice of the ℘ function), which are determined
from the requirements

℘(W+) + ℘(W−) = 2℘(W), ℘(W+)℘(W−) = ℘(W)2 +
1
4c̃

. (3.25)

These two equations for ℘(W±) together imply that(
℘(W+) − ℘(W−)

)2
= −1

c̃
. (3.26)

Then from evaluating dR
dZ at Z = W± and using (3.19) together with the fact that R2 + c̃ = 0 at

these points, we find that

℘′(W+)2 = ℘′(W−)2 = − c2

4c̃3
;

thus from (3.26) we can fix signs so that

℘′(W+) = −℘′(W−) =
c

2c̃2

(
℘(W+) − ℘(W−)

)−1
, (3.27)
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which ensures that 1/Q(Z) has residue 1/2 at points congruent to W± modΛ, and residue−1/2
at points congruent to −W± modΛ, as in the formula (3.24).

Theorem 3.2. The smooth travelling wave solutions (3.16) of Novikov’s equation (1.7) are
given parametrically by U = U(Z), z = z(Z), where

U(Z) =
±
√

cR(Z)√
R(Z)2 + c̃

(3.28)

with R(Z) defined by (3.20) (up to the freedom to shift Z → Z+ const.), and

z(Z) =
1
2

log

(
σ(Z − W+)σ(Z − W−)
σ(Z + W+)σ(Z + W−)

)
+
(
ζ(W+) + ζ(W−)

)
Z + const.,

(3.29)

with the parameters being specified by (3.21) and (3.22), together with (3.25) and (3.27).

Proof. The definition of q and r in (3.7) implies that u2 = r 2/q, so reducing to the travelling
wave solutions and taking a square root produces

U = ± R√
Q

,

where either choice of sign is valid. (The PDE (1.7) is invariant under u →−u.) Upon using
(3.17) to replace Q in terms of R, the expression (3.28) results. As for the formula (3.29), this
follows from (3.23), using (3.24) and standard identities for Weierstrass functions to perform
the integral z =

∫
Q(Z)−1 dZ+ const.. �

Example 3.3. For illustration of the above theorem, we use it to plot a particular travelling
wave solution of (1.7) which is bounded and real for x, t ∈ R. We choose the same Weierstrass
cubic as in example 2.3 by fixing the values of the invariants as before, but make a different
choice of the parameter W, with an exact value of ℘(W), namely

g2 = 4, g3 = −1, ℘(W) = 1,

which arises from taking W ≈ 1.134 273 216. In this case, ℘′(W) = −1 and ℘′′(W) = 4, so
from (3.21) and (3.22) this gives the value of the velocity of the travelling wave and the other
constants appearing in the solution as

c =

√
23

8
√

2
, c̃ =

1
8

, e =
3
4
.

As before, we take three half-periods for the Weierstrass ℘ function given by

ω1 ≈ 1.496 729 323, ω2 ≈ 1.225 694 691i, ω3 = ω1 + ω2,

and avoid poles for real values of Z, by exploiting the freedom to shift Z and z by constants
in theorem 3.2, replacing Z → Z + ω3 in (3.20) and (3.29), and ensuring that z is real for all
Z ∈ R by an appropriate choice of constant in (3.29). Note that in this case we have

℘(W±) = 1 ±
√

2i,
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Figure 4. Parametric form of travelling waves for Novikov’s equation with real Z.

and we can choose W± to be complex conjugates of one another, so that

W+ = W− ≈ 0.657 586 1671 − 0.364 524 1628i,

and℘′(W+) = −
√

23i in accordance with (3.27). Then U given by (3.28) is a bounded periodic
function for real argument Z, and the corresponding function U(z) defined parametrically by
z(Z) is a bounded periodic travelling wave profile for (1.7). Indeed, using the quasiperiodicity
of the Weierstrass sigma function, the formula (3.29) shows that the period of U(z) is

z(Z + 2ω1) − z(Z) = 2
(
ω1

(
ζ(W+) + ζ(W−)

)
− (W+ + W−)ζ(ω1)

)
≈ 5.708 708 303

in this numerical example. Clearly, in this case we have Q(Z) = c−1
(
R(Z)2 + c̃

)
> 0 for all

real Z, so dz
dZ = 1/Q > 0 and z(Z) is a monotone increasing function of its argument, as is

visible from the right-hand panel of figure 4. The left-hand panel of the latter figure shows U
plotted against Z, where both plots are for −5ω1 � Z � 5ω1, while in figure 5 we have plotted
U against z, in the range −3ω1 � Z � 4ω1, corresponding to the travelling wave profile for
Novikov’s equation.

The derivation of theorem 3.2 has not required the use of the connection with the travelling
waves of the Degasperis–Procesi equation (1.9). Section 5 below is an appendix which explains
this connection, described in theorem 5.1.

3.3. Scaling similarity solutions

Novikov’s equation (1.7) has a one-parameter family of similarity solutions, for which both u
and the momentum density m in (1.8) scale the same way, given by the same form of reduction
as in the case of the mCH equation (1.1), that is
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Figure 5. Periodic travelling wave solution of Novikov’s equation.

u(x, t) = t−
1
2 U(z), m(x, t) = t−

1
2 M(z), z = x + α log t. (3.30)

This reduction results in an autonomous ODE of third order for U(z), namely

(U2 + α)(Uzzz − Uz) + (3UUz −
1
2

)(Uzz − U) = 0. (3.31)

To obtain solutions of the latter ODE in parametric form, we will consider corresponding
similarity solutions of the negative Sawada–Kotera flow (3.10), related via the reciprocal trans-
formation (3.9). Under the reduction (3.30), the quantities q, r given by (3.7), that appear in
the associated conservation law (3.8), take the form

q(x, t) = t−
1
3 Q(z), r(x, t) = t−

2
3 R(z). (3.32)

The system (3.10) has scaling similarity solutions given by taking

q(X, T) = T− 1
3 Q(Z), r(X, T) = T− 2

3 R(Z), Z = XT
1
3 . (3.33)

Applying this similarity reduction means that the first equation in the system produces

1
3

d
dZ

(
ZQ−1

)
=

d
dZ

(
R2Q−1

)
, (3.34)

while, using the definition of V̂ in (3.11), the second equation becomes

(Q1/2)ZZ

Q1/2
+

1
Q2

=
RZZ + 1

R
. (3.35)
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The equation (3.34) integrates to give

Q−1

(
1
3

Z − R2

)
= const.

If we let α denote the integration constant above, then this gives

αQ =
Z
3
− R2, (3.36)

and we find that this corresponds precisely to the image under the reciprocal transformation
(3.9) of the similarity solutions (3.30) of Novikov’s equation (1.8), where (without loss of
generality) we can set t = T and perform a calculation analogous to (2.49) to find the hodograph
transformation

dZ = Q dz, (3.37)

so that the system consisting of (3.36) and (3.35) is a consequence of replacing the z derivatives
in (3.31) with d

dz = Q d
dZ and rewriting suitable combinations of U and its derivatives in terms

of the quantities Q and R.

Remark 3.4. The form of the scaling similarity reduction (3.33) and the equation (3.36)
arise from (3.12) by choosing a potential of the form

Φ(X, T) = ϕ(Z) − α log T, Z = XT
1
3 ,

with 1/Q(Z) = d
dZϕ(Z), so that integrating (3.37) gives z = ϕ(Z), but in due course we will

obtain a slightly more explicit formula for the potential ϕ in terms of tau functions.

Guided by the results on travelling waves in the preceding subsection, we next use (3.36)
withα �= 0 to substitute for Q and QZ = α−1( 1

3 − 2RRZ), QZZ = −2α−1(RRZZ + R2
Z) in (3.35),

to find a single ODE of second order for R(Z), that is

d2R
dZ2

=
1

R2 − 1
3 Z

(
R

(
dR
dZ

)2

− R2

Z

(
dR
dZ

)
+

3
Z

R4 − 2R2 +
( 1

12 − 3α2)
Z

R +
1
3

Z

)
. (3.38)

The above equation is very similar in form to the Painlevé V equation (1.15), and indeed it is
related to it by a simple change of dependent and independent variables.

Lemma 3.5. The solutions R = R(Z) of the ODE (3.38) are given by

R =

√
Z
3

(
1 + w

1 − w

)
, (3.39)

where w = w(ζ) is a solution of the Painlevé V equation (1.15) with parameters

α̃ =
1
2
α2, β̃ = −1

2
α2, γ̃ = 1, δ̃ = 0, (3.40)

and

ζ = (4Z/3)
3
2 . (3.41)
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Proof. To see this, note that the coefficient of
(

dR
dZ

)2
in (3.38) is a rational function of R of

degree 2, with poles at R = ±
√

Z
3 , so the ODE has fixed singularities at these points and at

R = ∞, while the coefficient of
(

dw
dζ

)2
in (1.15) is

1
2w

+
1

w − 1
=

3w − 1
2w(w − 1)

, (3.42)

which suggests transforming the dependent variable with the Möbius transformation (3.39). In
order to move the fixed singularities to w = 0, 1,∞. This transformation indeed produces the
correct coefficient (3.42), transforming (3.38) to an equation with leading terms

d2w

dZ2
=

(
1

2w
+

1
w − 1

)(
dw
dZ

)2

+ · · · ,

and then to obtain the precise form of Painlevé V further requires a change of independent
variables, namely the replacement

Z =
3
4
ζ

2
3 ,

with inverse (3.41), which produces the equation (1.15) with the particular choice of coeffi-
cients (3.40). �

It is a result due to Gromak that Painlevé V with δ̃ = 0 can be solved in terms of Painlevé
III transcendents [22] (see also section 32.7(vi) in [36]). If we replace the set of parame-
ters in (1.12) with (α̂, β̂, γ̂, δ̂), and denote the dependent and independent variables by ŵ, η,
respectively, then a more exact statement is that, if ŵ = ŵ(η) is a solution of Painlevé III with
parameters (α̂, β̂, 1,−1), then w = w(ζ) with

w = F
(
ŵ,

dŵ
dη

, η,α

)
, η =

√
2ζ, (3.43)

satisfies Painlevé V with parameters given by

(α̃, β̃, γ̃, δ̃) =

(
1

32
(β̂ − εα̂+ 2)2,− 1

32
(β̂ + εα̂− 2)2,−ε, 0

)
, (3.44)

where ε = ±1 and F is a certain rational function of its arguments (see section 32.7(vi) in [36]
for full details). We now wish to use Gromak’s result in order to show that the solutions of the
ODE (3.38) are related to the scaling similarity solutions of the negative Kaup–Kupershmidt
flow (3.6), which in turn correspond to solutions of the Degasperis–Procesi equation (1.9) via
the reciprocal transformation (3.4). In [3] it was explained how the scaling similarity reduction
of (3.6), or rather (3.5), results in an ODE which is equivalent to Painlevé III with parameter
values

(α̂, β̂, γ̂, δ̂) = (0,
4
3

a, 1,−1), (3.45)

where a is arbitrary. However, applying the transformation (3.43) directly to the latter solutions
with α̂ = 0 does not lead to solutions of Painlevé V with α̃ = −β̃, which is what we require
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from (3.40). Thus, in order to obtain the required connection, we can apply one of the Bäcklund
transformations for Painlevé III (see e.g. [4]), which sends

(α̂, β̂, 1,−1) −→ (α̂− 2, β̂ + 2, 1,−1). (3.46)

Then starting from the parameter values (3.45) and applying (3.46) followed by the transfor-
mation (3.43) in the case ε = −1, a solution of Painlevé V with the appropriate parameters
arises.

For the similarity reductions of Novikov’s equation, it is more convenient to describe these
connections directly in terms of the solutions of the ODE

d2P
dZ2

=
1
P

(
dP
dZ

)2

− 1
Z

(
dP
dZ

)
+

1
Z

(
3P3 + a

)
− 1

P
, (3.47)

which was derived in [3] by taking scaling similarity solutions of (3.5), of the form

p(X, T) = T−1/3P(Z), Z = XT1/3. (3.48)

Proposition 3.6. Each solution P = P(Z) of the ODE (3.47) with parameter

a = −3
2
± 3α (3.49)

provides a solution R = R(Z) of (3.38) with parameter α, via the formula

R =
Z(PZ + 1)

3P2
− (a + 1)

3P
, (3.50)

and conversely, each solution of (3.38) provides a solution of (3.47) with parameter a given
by (3.49), according to the formula

P = −ZRZ + (±3α− 1
2 )R

3R2 − Z
. (3.51)

Proof. The ODE (3.47) corresponds to Painlevé III with parameter values (3.45), via the
transformation

ŵ(η) = (Z/3)−
1
4 P(Z), η = 4(Z/3)

3
4 , (3.52)

as given (with slightly different notation) in equation (3.21) in [3]. Starting from a solution ŵ of
Painlevé III with these values of parameters, the shift (3.46) is achieved by the transformation

w∗ = − 1
ŵ

+
β̂ + 2

η(ŵη − ŵ2 + 1) + ŵ
(3.53)

(cf [4] and equation (3.23) in [3]), producing a new solution w∗(η) for parameter values
(−2, β̂ + 2, 1,−1). Then the corresponding solution of Painlevé V is obtained by applying
the transformation (3.43) to w∗, which gives

w = F
(
w∗,

dw∗

dη
, η,−2

)
=

v∗ − 1
v∗ + 1

, (3.54)

where (from section 32.7(vi) in [36])

v∗ = w∗
η + (w∗)2 − η−1w∗, (3.55)
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so that w = w(ζ) satisfies (1.15) with parameters

(α̃, β̃, γ̃, δ̃) =

(
1

32
(β + 2)2,− 1

32
(β + 2)2, 1, 0

)
, (3.56)

as found by replacing α̂→−2, β̂ → ˆβ + 2 and ε→−1 in (3.44). The transformation rule
η =

√
2ζ for the independent variables is consistent with the expressions for ζ , η in terms of

Z, as presented in (3.41) and (3.52), respectively. Thus we can rewrite the expression on the
far right-hand side of (3.54) in terms of ŵ and its first derivative ŵη , by using the Bäcklund
transformation (3.53) together with the ODE (1.12) for ŵ, to eliminate the second deriva-
tive, and then use the formulae (3.39) and (3.52) to write the left- and right-hand sides in
terms of Z and R, P respectively. An immediate simplification can be made by noting that the
Möbius transformation of w in (3.39) is just the inverse of the Möbius transformation of v∗ in
(3.54), which implies that R =

√
Z/3v∗, so it is only necessary to rewrite v∗ given by (3.55)

as a rational function of ŵ and ŵη , before applying (3.52) to obtain (3.50). The relationship
between the parameters in (3.47) and (3.38) arises by comparing (3.56) with (3.40), which
gives (β̂ + 2)2 = 16α2; then setting β̂ = 4

3 a from (3.45) and taking a square root, (3.49) fol-
lows. For the converse, one can differentiate both sides (3.50) with respect to Z and use (3.47)
to eliminate the PZZ term, which produces a pair of equations for R and RZ as rational func-
tions of P and PZ. After eliminating PZ from these two equations, the expression (3.51) for P
in terms of R and RZ results by replacing a from (3.49), with either choice of sign. �

In addition to the shift (3.46), Painlevé III with γ̂ = −δ̂ = 1 admits another elementary
Bäcklund transformation which sends α̂→ α̂+ 2, β̂ → β̂ + 2 [4]. We remarked in [3] that
it is necessary to take the composition of these two transformations, sending β̂ → β̂ + 4 and
leaving α̂ fixed, in order to preserve the condition α̂ = 0 required for the parameter values
(3.45) associated with (3.47). Furthermore, in [3] (see table 2 therein) we also applied this
composition of two Painlevé III Bäcklund transformations, which has the effect of sending
a → a + 3, to generate the first few members of a sequence of algebraic solutions of (3.47)
for parameter values a = 3n, n ∈ Z. Here we now show how proposition 3.6 leads to a direct
derivation of the corresponding Bäcklund transformation for (3.47). To present these results,
it will be convenient to denote a solution of (3.47) with parameter value a by Pa = Pa(Z).

Corollary 3.7. The equation (3.47) admits two elementary Bäcklund transformations, given
by

P−a = −Pa (3.57)

and

Pa+3 = −Pa −
(2a + 3)Ra

3R2
a − Z

, (3.58)

where

Ra =
Z
(

dPa
dZ + 1

)
3P2

a
− (a + 1)

3Pa
. (3.59)

Proof. The first transformation (3.57) is an immediate consequence of the invariance of the
ODE under P →−P, a →−a. As for the second one, note that there is an arbitrary choice of
sign in (3.49), because (3.38) depends only on the square of α, and without loss of generality
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we can fix

α =
1
3

a +
1
2

(3.60)

Then from the fact that the symmetry a →−a − 3 sends α→−α, we see that

R−a−3 = Ra, (3.61)

or in other words, there are two solutions of (3.47) that produce the same solution of (3.38),
namely (for the same R) we have Pa given by taking the plus sign in (3.51), and P−a−3 given
by taking the minus sign. If we subtract these two expressions then we obtain

Pa − P−a−3 = − 6αR
3R2 − Z

with R = Ra,

and then applying the transformation (3.57) to the second term on the left-hand side and
substituting for α with (3.60), the result (3.58) follows. �

We now explain how the discrete symmetry (3.61) of the ODE (3.38), given by sending
a →−a − 3, or equivalently α→−α, corresponds to changing the sign of the second term in
(3.13), at the level of the scaling similarity solutions of (3.10). From applying the reduction
(3.33) to the latter system, we can remove a factor of T1/3 to obtain reduced modified variables
v± = v±(Z) that are expressed in terms of Q by the formula

v± = −1
2

(log Q)Z ± Q−1, (3.62)

Then on the one hand, (by an abuse of notation) we can replace the Sawada–Kotera field
V̂(X, T) → T2/3V̂(Z), where the reduced field is given by the Miura formula

V̂(Z) =
dv+
dZ

− v2
+ =

dv−
dZ

− v2
−; (3.63)

while on the other hand, applying the same scaling V(X, T) → T2/3V(Z) to the
Kaup–Kupershmidt field, the other Miura map gives two different reduced fields, namely

V±(Z) = −1
2

dv±
dZ

− 1
4
v2
±. (3.64)

From (3.62), the above formula defines each of V± as a rational function of Q and its derivatives,
which in turn can be written as a rational function of R and its first derivative, by using (3.36)
to substitute Q = ( 1

3 Z − R2)/α, and using (3.38) to eliminate the second derivative of R; the
resulting expression is somewhat unwieldy and is omitted here. (Some of these calculations are
best verified with computer algebra.) However, a further calculation, using (3.50) to replace R
and RZ in terms of P and PZ and α by (3.60), with (3.47) used to replace PZZ terms, produces
the much more compact formula

V+ = − 1
4P2

((
dP
dZ

)2

− 1

)
+

1
2ZP

(
dP
dZ

− 3P3 − a

)
, (3.65)

where P = Pa above.
The right-hand side of the expression (3.65) for the (reduced) Kaup–Kupershmidt field V+

coincides with the case b = 3 of equation (3.12) in [3], where it was derived by applying the
scaling similarity reduction (3.48) to the equation (2.5)—recall that this same relation defines
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V in terms of p in both the negative KdV and Kaup–Kupershmidt flows. Similarly, the same
calculation for V− begins by replacing every occurrence of α by −α, and results in the same
expression as (3.65) but with P → P−a−3, a →−a − 3. Thus we can write

V+ = Va, V− = V−a−3,

where

Va = − 1
4P2

a

((
dPa

dZ

)2

− 1

)
+

1
2ZPa

(
dPa

dZ
− 3P3

a − a

)
. (3.66)

Analogously, for a fixed value of the parameter a we can also express the Sawada–Kotera field
V̂ in terms of P = Pa, and denote the result by V̂a, that is

V̂a = − 1
P2

a

(
dPa

dZ
+ 2

)(
dPa

dZ
+ 1

)
+

1
ZPa

(
−dPa

dZ
+ 3P3

a + a

)
;

but then due to the equality of the two different Miura expressions in (3.63), we have that

V̂a = V̂−a−3, and Va = V−a, (3.67)

where the latter identity follows from the invariance of (3.66) under Pa → P−a = −Pa,
a →−a.

For what follows, we also need to introduce tau functions τa(Z), τ̂ a(Z) associated with the
reduced Kaup–Kupershmidt/Sawada–Kotera fields, respectively, which are defined by

Va(Z) =
3
4

d2

dZ2
log τa(Z), V̂a(Z) = 6

d2

dZ2
log τ̂ a(Z). (3.68)

The above definition implies that τ a(Z) has a movable simple zero at any point
Z = Z0 �= 0 where Va(Z) has a movable double pole (with the local Laurent expansion being
Va(Z) = − 3

4 (Z − Z0)−2 + O(1) there), and an analogous relationship holds between τ̂ a(Z) and
V̂(Z). From the above definition, together with the identity

V± =
1
4

V̂ − 3
4

dv±
dZ

(3.69)

(which we make use of elsewhere, as part of the discussion of travelling waves in appendix A),
for a suitable choice of gauge we can also express the two modified fields v± in terms of these
tau functions as

v+(Z) =
d

dZ
log

(
τ̂ a(Z)2

τa(Z)

)
, v−(Z) =

d
dZ

log

(
τ̂−a−3(Z)2

τ−a−3(Z)

)
, (3.70)

and from (3.67) we can identify

τ̂ a(Z) = τ̂−a−3(Z), τa(Z) = τ−a(Z). (3.71)

All the ingredients required to state the main result on scaling similarity solutions are now in
place.
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Theorem 3.8. The solutions of the ODE (3.31) for the similarity reduction (3.30) of
Novikov’s equation (1.7), with α �= 0, are given parametrically by U = U(Z), z = z(Z), where
U is defined by

U(Z) =
±
√
αR(Z)√

Z
3 − R(Z)2

, (3.72)

with R(Z) being a solution of the ODE (3.38), and

z(Z) =
1
2

log τa+3(Z) − 1
2

log τa(Z) + const., (3.73)

in terms of two reduced Kaup–Kupershmidt tau functions τ a, τ a+3 connected via the Bäcklund
transformation (3.58) for (3.47), and a = 3

(
α− 1

2

)
.

Proof. By (3.7), (3.30) and (3.32), we have U(z) = ±R(z)/
√

Q(z), so to give the solutions in
parametric form we consider z = z(Z) and (by the usual abuse of notation) denote the associated
functions with argument Z by the same letters, so that (3.72) follows directly from (3.36) after
taking a square root. Then from combining (3.62) and (3.70) we find

1
2

(v+ − v−) =
1
Q

=
1
2

d
dZ

(
log

(
τ̂ a(Z)2

τa(Z)

)
− log

(
τ̂−a−3(Z)2

τ−a−3(Z)

))
,

and then using (3.71) together with (3.37) this gives

dz = Q−1 dZ =
1
2

d log

(
τa+3(Z)
τa(Z)

)
,

whence (3.73) follows by integrating, with a fixed in terms of α by (3.60). �

Example 3.9. As already mentioned, the ODE (3.47) has a sequence of particular solutions
that are algebraic in Z, at the parameter values a = 3n with n ∈ Z; the first few are presented
in table 2 of [3]. For illustration of the preceding theorem, we consider the simplest of these,
which is given by P = P0(Z) with

P0 = (Z/3)1/4, a = 0.

Putting this into (3.59) and (3.60) produces a corresponding solution R = R0(Z) of (3.38),
where

R0 =

(
Z
3

)−1/4
((

Z
3

)3/4

− 1
4

)
, α =

1
2

,

which in turn leads to Q = Q0(Z) obtained from (3.36) as

Q0 =

(
Z
3

)−1/2
((

Z
3

)3/4

− 1
8

)
.

Upon applying the formula (3.72), we take the plus sign, so that U = R0/
√

Q0; and, rather
than computing the tau functions in (3.73), we can directly calculate z(Z) as the integral
z =

∫
Q0(Z)−1 dZ+ const. The resulting parametric solution of (3.30) is more conveniently

expressed by replacing Z with the parameter η = 4(Z/3)
3
4 , corresponding to the independent
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variable for Painlevé III, as in (3.52), so that (up to an arbitrary choice of constant in z) it takes
the form

U =
1√
2

(
η − 1√
2η − 1

)
, z = η +

1
2

log(2η − 1). (3.74)

To check that this agrees with the formula for z in the above theorem, we can use the first two
entries in table 2 of [3] (replacing ζ → η therein), to read off the first two algebraic solutions
of (3.47) in terms of η as

P0 = (η/4)1/3, P3 = (η/4)1/3

(
2η − 3
2η − 1

)
.

Then substituting the above into (3.66) for a = 0, 3, and rewriting everything in terms of η
instead of Z, the two reduced Kaup–Kupershmidt fields are found as

V0 = 2
1
3 η−

8
3

(
7

18
− 1

2
η2

)
, V3 = −2

1
3 η−

8
3

(
2η4 + 2η3 + 53

18η
2 + 14

9 η − 7
18

)
(2η − 1)2

,

and then integrating twice with respect to Z and using (3.68), the corresponding tau functions
are also written conveniently in terms of the same independent variable for Painlevé III, up to
a choice of gauge, as

τ0 = η−
7
36 exp

(
−1

4
η2

)
, τ3 = η−

7
36 (2η − 1) exp

(
−1

4
η2 + 2η

)
,

so that calculating 1
2 (log τ3 − log τ0) from (3.73) indeed reproduces the expression for z in

(3.74).
Taking real η > 1

2 ensures that U(z) is real-valued. A plot of this solution appears in figure 6.
The behaviour as η approaches 1

2 from above is

η → 1
2
+ =⇒ z →−∞, U →−∞,

with leading order asymptotics described by

U ∼ − 1

2
√

2

1√
2η − 1

, z ∼ 1
2

log(2η − 1) +
1
2

=⇒ U ∼ − 1

2
√

2
e−

(
z− 1

2

)
. (3.75)

For large η the behaviour is

η →∞ =⇒ z →∞, U →∞,

with leading order asymptotics

U ∼ 1
2
√
η, z ∼ η =⇒ U ∼ 1

2

√
z.

However, the latter does not provide a particularly accurate approximation to the solution.
Much greater accuracy can be achieved by reverting the equation for z in (3.74) as η =
z − 1

2 log(2η − 1), using this to generate an expansion
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Figure 6. Plot of U against z for the parametric solution (3.74) with 0.505 � η � 10.

η = z − 1
2

log z − 1
2

log 2 + o(1)

where the omitted terms above are a double series in powers of log(z) and z−1, and substituting
into the formula for U in terms of η then gives

U ∼ 1
2

√
z

(
1 − 1

4
z−1 log z − 1

4
(3 + log 2)z−1

)
, z →∞, (3.76)

omitting terms inside the big brackets above that are o(z−1). In figure 7 we have overlaid plots
of the asymptotic approximations (3.75) (blue) and (3.76) (red) on top of part of the plot from
figure 6, which show quite good agreement even for relatively modest magnitudes of z when
it is negative/positive, respectively.

In most of our analysis we have made the implicit assumption that α �= 0, which was used
in the derivation of the ODE (3.38) for R. The case α = 0 (separable solutions of Novikov’s
equation) corresponds to integrating (3.34) with the integration constant in (3.36) being zero.
This implies that R2 − Z/3 = 0, which can be regarded as a singular solution of the ODE
with α = 0, because both the denominator and the numerator inside the large brackets on the
right-hand side of (3.38) vanish. Then Q(Z) satisfies the second order ODE

(Q1/2)ZZ

Q1/2
+

1
Q2

= − 1
4Z2

± 1√
Z
3

, (3.77)

obtained from substituting R = ±
√

Z/3 into the right-hand side of (3.35). The above equation
reduces to a Riccati equation for v defined by (3.62), taking v = v+ without loss of generality,
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Figure 7. Plot of U(z) compared with asymptotic formulae for the parametric solution
(3.74).

namely

dv
dZ

− v2 =
1

4Z2
∓ 1√

Z
3

, (3.78)

and given the solution v(Z) of the latter, Q is then found from the solution of the inhomogeneous
linear equation

1
2

dQ
dZ

+ vQ = 1. (3.79)

The other solutions of the ODE with α = 0 are not directly relevant to the scaling similarity
solutions of Novikov’s equation, but they have an indirect relevance via the connection to the
solutions at parameter values α = 3n for non-zero integers n, corresponding to the solutions of
(3.47) for a = 3

(
n + 1

2

)
that are related to one another by the Bäcklund transformation (3.58).3

In order to describe the solutions with α = 0 more explicitly, we set

v = − d
dZ

log ψ,

3 As pointed out in [3], for all such values of a there is a one-parameter family of special solutions, given in terms of
Bessel functions, corresponding to classical solutions of Painlevé III.
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in the Riccati equation (3.78), which transforms it to the Schrödinger equation

d2ψ

dZ2
+

⎛⎝ 1
4Z2

∓ 1√
Z
3

⎞⎠ψ = 0. (3.80)

Then, upon changing variables according to

ψ(Z) = Z
1
2 φ(η), η = 4(Z/3)

3
4 ,

once again using the independent variable η for Painlevé III, the equation (3.80) becomes

η2 d2φ

dη2
+ η

dφ
dη

∓ η2φ = 0,

which is solved in terms of Bessel/modified Bessel functions of order 0, depending on the
sign. In particular, with the plus sign above, which corresponds to the case R = −

√
Z/3, this

implies that the general solution of (3.80) can be written as

ψ(Z) = AZ1/2J0

(
4

(
Z
3

) 3
4
)

+ BZ1/2Y0

(
4(

Z
3

)
3
4

)
, (3.81)

for arbitrary constants A, B. By replacing v in (3.79) in terms of ψ, this reduces to a quadrature
for Q, namely

Q(Z) = 2ψ(Z)2

(∫ Z ds
ψ(s)2

+ C

)
, (3.82)

for another arbitrary constant C. (Observe that the formula (3.82) only depends on the ratio
A/B, so overall this gives two arbitrary constants in the general solution of (3.77), as required.)

For completeness, the case α = 0 is summarized as follows.

Theorem 3.10. The solutions of the ODE (3.31) with α = 0, which for z = x correspond
to the separable solutions (1.10) of Novikov’s equation (1.7), are given parametrically in the
form U = U(Z), z = z(Z), with

U(Z) = ±
√

Z
3Q(Z)

, z(Z) =
∫ Z ds

Q(s)
+ const, (3.83)

where Q(Z) is a solution of the ODE (3.77), given by the quadrature (3.82) with ψ specified
as in (3.81), or by an analogous formula with modified Bessel functions of order 0.

4. Conclusions

In this paper we have found parametric formulae for the scaling similarity solutions of two
integrable peakon equations with cubic nonlinearity, namely (1.1) and (1.7). In both cases, by
applying the similarity reduction to suitable reciprocal transformations, and using Miura maps
between negative flows of appropriate integrable hierarchies, we have shown that these para-
metric solutions are related to Painlevé III transcendents, for specific values of the parameters
α̃, β̃, γ̃, δ̃ in (1.12). More precisely, the scaling similarity solutions of the mCH equation (1.1)
are related to the same case of Painlevé III that arises from the Camassa–Holm equation (1.2),
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while for Novikov’s equation (1.7) such solutions are related to the case of Painlevé III that is
associated with an analogous reduction of the Degasperis–Procesi equation (1.9).

The scaling similarity solutions of the mCH equation (1.1) have been written parametri-
cally in terms of solutions of the ODE (2.52), which is of second order and second degree. The
systematic study of such equations was initiated in [10], although to the best of our knowl-
edge there is still no complete classification of second order, second degree equations with the
Painlevé property. Certain particular equations of this type, the so-called sigma forms of the
Painlevé equations, which are the equations satisfied by Okamoto’s Hamiltonians [34], play
an important role in both theory and applications. However, the ODE (2.52) is of a different
kind, since the Hamiltonians are quadratic functions of the first derivatives of the solution of
the corresponding Painlevé equation, whereas the transformation (2.64) is linear in dP

dZ , with
P(Z) being a solution of Painlevé III.

For the case of Novikov’s equation (1.7), the scaling similarity solutions are expressed
parametrically in terms of solutions of the ODE (3.38), which is equivalent to the Painlevé
V equation with a particular choice of parameters, and arises via reduction of the negative
Sawada–Kotera flow (3.10). The equation (3.38) has a one-to-one correspondence with the
ODE (3.47) obtained via the scaling similarity reduction for the negative Kaup–Kupershmidt
flow (3.6), which in turn is equivalent to another particular case of Painlevé III. The correspon-
dences and Bäcklund transformations between the solutions of (3.47) and (3.38) have been
constructed using properties of these solutions that are naturally inherited from the two Miura
maps in (3.3), which relate the Kaup–Kupershmidt and Sawada–Kotera PDE hierarchies to
the same underlying modified hierarchy. However, implicit in our construction is the fact that
there is a negative flow in the latter hierarchy, which should be given by a PDE of third order
for the modified field v = v(X, T), while at the level of the scaling similarity reductions there
must be an ODE of second order for the reduced variable v(Z). It has not been necessary to
write them down here, but computer algebra calculations show that these equations are some-
what unwieldy: the modified PDE for v(X, T) is of second degree in the highest derivative that
appears, namely vXXT, while the reduced ODE for v(Z) is of third degree in its second deriva-
tive vZZ, so we have thought it best to leave a more detailed discussion of these matters for
elsewhere.
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Appendix A. Link between travelling waves of the Degasperis–Procesi and
Novikov equations

Here we describe the link between theorem 3.2, which describes the travelling waves
of Novikov’s equation (1.7), and the travelling wave solutions of the Degasperis–Procesi
equation (1.9), as obtained in parametric form in [3]. The connection between them is some-
what indirect, arising from the two reciprocal transformations (3.4) and (3.9), together with
the two Miura maps (3.3), and their reductions to the travelling wave solutions.

Theorem 5.1. The travelling wave solutions of the Degasperis–Procesi equation have an
associated (reduced) Kaup–Kupershmidt field V = V(Z), with Z = X − dT and d as in (3.14).
Up to a suitable shift Z → Z+ const., via a combination of Miura maps each such solution
corresponds to a (reduced) Sawada–Kotera field V̂ = V̂(Z), with Z = X − c̃T and c̃ as in
(3.26), associated with a travelling wave solution (3.16) of Novikov’s equation (1.7). In other
words, the Kaup–Kupershmidt/Sawada–Kotera wave velocities coincide, so d = c̃.

Proof. On the one hand, as shown in [3], there is a reduced Kaup–Kupershmidt field
V(Z) = 3

4 d−1P(Z)2 + const. corresponding to the travelling wave solution (3.14) of (3.5), or
equivalently (3.6). From the formulae (3.15) together with (3.14), it is apparent that V is an
elliptic function of Z with double poles only at points congruent to ±W2, with the leading
order in the Laurent expansion at these points being V(Z) = − 3

4 (Z ∓ W2)−2 + O(1), so fixing
the value at Z = 0 we find that it can be written in the form

V(Z) = −3
4
℘(Z + W2) − 3

4
℘(Z − W2) − 3

2
℘(W2) +

3
4
α2℘′(W2)2 (A.1)

(but see equation (2.21) in [3] for another equivalent expression). On the other hand, from the
formula (3.24) we can use (3.13) to produce a (reduced) modified field variable v = v(Z) given
by

v(Z) =
1
2

d
dZ

log Q(Z)−1 +
1

Q(Z)

= −1
2

(
℘′(Z) − ℘′(W+)
℘(Z) − ℘(W+)

+
℘′(Z) − ℘′(W−)
℘(Z) − ℘(W−)

)
= 2ζ(Z) − ζ(Z + W+) + ζ(W+) − ζ(Z + W−) + ζ(W−). (A.2)

(The latter form of v(Z) arises from choosing the second term in (3.13) with a plus sign, and
applying suitable elliptic function identities; choosing the minus sign instead just replaces
W± →−W± in the above expression.) So to the solution (3.20) of the ODE (3.19) for trav-
elling waves of the system (3.10) there corresponds a reduced Sawada–Kotera field V̂ = V̂(Z)
given by

V̂(Z) =
dv
dZ

− v2 = −6℘(Z) − 6℘(W), (A.3)

where the preceding explicit formula is obtained by considering the leading terms in
the Laurent expansions of v(Z) around its simple poles at points congruent to Z = 0,
−W+,−W− modΛ, where it has residues 2,−1,−1 respectively; then noting that conse-
quently V̂(Z) has only double poles at points congruent to Z = 0, with leading order V̂(Z) ∼
−6Z−2 − 3

(
℘(W+) + ℘(W−)

)
, and using (3.25), the final expression in (A.3) follows. Now by
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reducing the first Miura map in (3.3) to these travelling waves, there should be an associated
Kaup–Kaupershmidt field V(Z), which is found from

V(Z) = −1
2

dv
dZ

− 1
4
v2 =

1
4

V̂(Z) − 3
4

dv
dZ

,

so inserting the expressions (A.2) and (A.3) this yields

V(Z) = −3
4
℘(Z + W+) − 3

4
℘(Z + W−) − 3

2
℘(W). (A.4)

The connection between the Degasperis–Procesi/Novikov travelling wave solutions is now
established by showing that it is consistent to identify the two different formulae (A.1) and
(A.4) for a Kaup–Kupershmidt field V. First of all, the precise form of these travelling waves
is specified up to the freedom to shift the independent variable Z by an arbitrary constant, so if
we replace Z → Z − 1

2 (W+ + W−) in (A.4), then the double poles in the solution are at points
congruent to ± 1

2 (W+ − W−) ∈ C/Λ. Hence, comparing with (A.1), we can identify

W2 =
1
2

(W+ − W−). (A.5)

As a consequence of the duplication formula for the ℘ function, doubling (A.5) gives

℘(W+ − W−) = ℘(2W2) = −2℘(W2) +
1
4

(
℘′′(W2)
℘′(W2)

)2

,

while at the same time, the addition formula for ℘ together with (3.27) implies that

℘(W+ − W−) = −℘(W+) − ℘(W−).

Then by combining the latter two results with (3.25) and the first expression for α in (3.15),
we obtain the equality

℘(W) = ℘(W2) − 1
2
α2℘′(W2)2, (A.6)

which implies that we can identify the constant terms in the two formulae (A.1) and (A.4).
Finally, for these two different expressions for V to be compatible, we require that the indepen-
dent variable Z should be the same in each case: in (A.1) it is given by X − dT, while in (A.4)
it is X − c̃T, so (assuming that X, T are the same in both cases) this means that the two wave
velocities should coincide. Then from (3.21) we may make use of (A.6) to write

c̃−1 = 2℘′′(W) = 12℘(W)2 − g2 = 12

(
℘(W2) − 1

2
α2℘′(W2)2

)2

− g2,

so that

c̃−1 = 2℘′′(W2) − 12α2℘(W2)℘′(W2)2 + 3α4℘′(W2)4, (A.7)

whereas from (3.14) and (3.15) we have

d−1 = −α4℘′(W2)2℘′(W1)2

= −α4℘′(W2)2
(
℘′(W2)2 + 4

(
℘(W1)3 − ℘(W2)3

)
− g2(℘(W1) − ℘(W2))), (A.8)
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using the first order ODE for the ℘ function. Finally, the second expression for α in
(3.15) allows us to substitute ℘(W1) = ℘(W2) + α−1 in (A.8), and then eliminate g2 =
12℘(W2)2 − 2℘′′(W2), followed by replacing ℘′′(W2) = −2α℘′(W2)2 in the resulting formula
for d−1 and doing the same in (A.7), which results in

d−1 = −4α℘′(W2)2 − 12α2℘(W2)℘′(W2)2 + 3α4℘′(W2)4 = c̃−1;

so the wave velocities are the same, as required. �
Remark 5.2. We have already made use of the discrete symmetry associated with the choice
of sign in (3.13), which at the level of the travelling wave reduction of (3.10) produces two
different modified variables v±(Z) defined by the same expression (3.62) as for the scaling
similarity reductions, but with v+ given by (A.2), and v− given by the same formula but
with W+ →−W+, W− →−W− throughout. The Miura map formula dv±

dZ − v2
± gives the same

(reduced) Sawada–Kotera field V̂(Z) for either choice of sign, as can be observed directly
from the elliptic function expression on the far right-hand side of (A.3): this is invariant under
changing the signs of W±. However, applying the other Miura map to v± produces two different
reduced Kaup–Kupershmidt fields, namely

V±(Z) = −1
2

dv±
dZ

− 1
4
v2
± = −3

4
℘(Z ± W+) − 3

4
℘(Z ± W−) − 3

2
℘(W)

(with (A.4) just being the first of these). So this discrete symmetry means that in actual fact
each reduced Sawada–Kotera field corresponds to two Kaup–Kupershmidt fields.
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