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PREFACE

Recently, there has been great interest in the possibility of utilising chaos in secure

communication systems. Several techniques have been proposed to-date. In this

thesis, many of the chaotic generators and chaotic communication systems have been

studied. According to the study we found the following:

L.

The chaotic masking and the chaotic modulation approaches have some
difficulties. The level of the information signal must be lowered to at least 30 dB
below the level of the chaotic signal. Moreover, the frequency range of the
information signal is limited due to the resonance frequencies of the subsystems.
The physically implemented chaotic generators are based on electronic circuits
but there is no method to implement those chaotic generators that are represented
by the state equations rather than a circuit diagram in real time.

Some results on chaotic generators have been reported. However all the
developed systems so far have been at low frequencies. The reason for this is
that no systematic method exists for designing chaotic microwave generators and
predicting their performance.

Most publications to-date, dealing with secure communication using chaos, use
analogue physical electronic circuits and attempt to develop a real time system.
Good synchronisation is very difficult as the element values cannot be controlled
to the required accuracy and are functions of age, temperature and manufacturing
tolerances. Nowadays most communication is through computers and real time
communication systems are mostly digital. E-mail is the most used personal
communication medium, especially for official communication which is the kind
that will mostly need security. None of the previously published chaotic
communication systems use the Internet as the communication media.

Most methods of attack of chaotic communication systems assume that the
information signal is added to the chaotic signal after the chaotic generator. They
try to attack the dynamics of the chaotic generators and then simply subtract the
chaotic signal from the received signal. However this is only a special case of

chaotic communication systems.
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6. Until now, no methods of countering the attack to chaotic communication

systems have been developed.

To eliminate these drawbacks we have developed the following:

@

A new system for the analogue chaotic communication system called the multi-
channel chaotic communication system is developed. Simulation and
experimental results are presented. The implementation of chaotic shift key
(CSK) system using one chaotic generator instead of two chaotic generators or
two nonlinear functions at the transmitter is introduced. Simulation and
experimantal results are given.

A new method for real time implementations of chaotic generators and chaotic
communication systems that are represented by state equations and cannot be
implemented by a physical circuit is developed. Simulation and experimental
results are presented. A new representation of the Chua nonlinear function is
given.

A new J-band microwave chaotic generator is developed. A method for
systematically analysis of microwave generators is presented. Simulation and
experimental results are given. The chaotic radar and the microwave chaotic
communication systems are presented. A new expression for the non-linear
capacitor function is given. The effects of channel delay and channel attenuation
in the chaotic radar and the microwave chaotic communication systems are
presented. Results of research have been presented in European microwave
conference, Munich-Germany, October 1999, International Microwave
Symposium, Boston, Massachusetts, June 2000 and International Microwave
Workshop, France, October 2000.

New algorithms for encrypting and decrypting text and image files based on,
Chua, Rossler and Lorenz, chaotic systems are presented. Signal to chaos ratio
of =240 dB is achieved. Results of research have been published in Electronics
Letters, May 2000 and International Journal of Bifurcation and Chaos,
November 2000.

A new algorithm to attack chaotic communication systems is presented.

New methods of counter measures to the chaotic attacking algorithm are given.

11
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7. Finally, A method for counter counter measures attacking the chaotic
communication systems is presented.

This thesis is divided into eight chapters as follows:

Chapter 1: Chaos is first reviewed and basic features of chaos are introduced. Chaos
in electronic circuits is presented. The differences between chaotic communication
systems and traditional communication systems are discussed. The basic advantages

of using chaotic signals in communication systems are given.

Chapter 2: the basic methods of synchronisation in chaotic communication systems
are discussed. A survey of analogue chaotic communication systems, showing the
advantages and the disadvantages of these systems, is introduced. A new analogue
chaotic communication system called the multi-channel chaotic communication
system is developed. A survey of different methods of chaos shift keying (CSK) is

introduced. The one generator chaos shift keying is presented.

Chapter 3: A new method for real time implementation of chaotic systems is
developed. The description of the method is presented. The real time
implementations of several chaotic generators using the developed method are
presented. The implementation of the multi-channel chaotic communication system

in real time using the developed method is presented.

Chapter 4: A new J-band chaotic generator for radar and microwave communication
systems is presented. Theoretical analysis and pratical design of the chaotic generator
are given. The design of the receiver part of the chaotic radar and microwave
communication systems is presented. The effects of the channel attenuation and
channel delay are given.

Chapter 5: We start with a survey of classical encryption algorithms and a
background of chaotic encryption algorithms. New algorithms for encrypting and
decrypting voice, text and image files using chaotic systems are presented. Several
examples for encrypting text and image files are given. Comparison between new

algorithms and classical encryption algorithms is given.

Chapter 6: We start with a general description of the system security and a
background of attacking methods of chaotic communication systems. New attacking

algorithm to chaotic communication systems is presented. Several results of the

v
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algorithm in attacking continuous and discrete chaotic communication systems are

given.

Chapter 7: New methods for counter measures to the chaotic attacking algorithm are
presented. A method for counter counter measures of the chaotic attacker is

presented.

Chapter 8: The conclusion and the future work are presented.
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Chapter 1

INTRODUCTION

1.1 Introduction

Until only recently, the field of non-linear dynamics has remained within the
confines of academia and has found limited practical application to engineering
problems. However, this situation is changing. The advent of powerful computing
tools make the complex numerical simulation of non-linear phenomena possible. In
this chapter we will provide a top-level introduction and surveys of non-linear
dynamics, especially the phenomena of chaos and we will touch upon the application
of chaos in communication systems. The applications presented here will focus on
the utilisation of chaos for private and secure communications and introduce
techniques that could compete and replace traditional approaches. In particular, such
designs seek to maximise information density, be immune to natural and artificial
interference or ensure that the message sent will be received or understood by only
the authorised listener. The following list enumerates the applications that have been
demonstrated for chaos. Employing the natural pseudo-randomness of chaotic
behaviour from non-linear maps, several chaotic key generators have been
formulated in traditional digital cryptographic and spread spectrum systems [1]. The
chaotic maps have been used as a basis for data and image encryption [2]. The idea
here is that a simple non-linear map can give rise to very complicated behaviour in
only a few iterations. If the process is reversible, then encryption and decryption can
be accomplished. The security of the scheme is embedded in the nature of the map
and its parameters. A whole series of base-band communication links have been
demonstrated based on various forms of chaotic synchronisation and modulation that
have been developed. Chaotic communication systems range from simple additive
masking to indirect parameter modulation that could offer enhanced message privacy

and security.
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1.2 Non-linear dynamics

A dynamical system is said to be linear or non-linear depending on whether the
superposition rule holds. That is, does the sum of responses to individual stimuli
(inputs or initial conditions) equal the single response to the sum of the stimuli?

The field of non-linear dynamics concerns the study of systems whose internal

parameters (called states) obey a set of temporal rules. These states describe the

behaviour of the system completely. The state equations relate the future states to the
past states. The non-linear dynamics are divided into three sub-disciplines,

namely [3]:

1. Applied dynamics, which concerns the modelling process that transforms actual
system observations into an idealised mathematical dynamical system. Usually
sets of difference, ordinary differential or partial differential equations are used to
model the system.

2. Mathematical dynamics, which primarily focuses on the quantitative analysis of
the dynamical system models.

3. Experimental dynamics, which ranges from controlled laboratory experiments to

the numerical simulation of state equations.

The state of temporal behaviour is either viewed as a traditional time series
(i.e. giving system states versus time) or in a phase space perspective where the n
system states are plotted against each other in the n-dimensional space with the time
as implicit parameter. There are several effects of non-linear dynamical systems and
one of the most well known and potentially useful non-linear dynamical effects is

called chaos [4].

1.3 Chaos

Chaos has been found to occur in a great number of dynamical systems and in
frequency ranges from base-band to optical band. The Chaos is the generation of
random, unpredictable, behaviour from a simple but non-linear rule. It is neither
harmonic nor random. The chaos generator is differing from the noise generator in

that the present state of the system depends on the previous state. A chaotic signal

2
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can be identified in different domains such as time and frequency domains, phase

plane and correlation function.

The chaotic system is characterised by the following criteria [5]:

I.

They are deterministic but non-periodic. A deterministic system can be specified
by a set of differential equations (continuous time system) or by a set of
difference equations (discrete time system). The chaotic signal is characterised by
stretching and folding properties [6]. The stretching and folding implies that there
will be some strong non-linearity in the system. If instead of plotting the steady
states of the system against time we plot them against each other, we get the
attractor of the system. The attractor of the chaotic system gives the possible
values of the steady states of the system. Classical attractors are equilibrium
points, periodic and quasi-periodic cycles. The attractor of a chaotic system does
not settle to one of these but explores all of the state space on the attractor for all
time without ever repeating. That is, it does not return to some previously visited
point in state space. The attractor of a chaotic system is called the strange
attractor. In continuous time systems, for these conditions to be true the system
must have a minimum of three independent functions or two independent
functions plus some forcing function. Fig. 1.1 shows the strange attractor of the
Rossler system [7] as an example of continuous time systems. Fig. 1.2 illustrates
the strange attractor of the Henon map [8] as an example of discrete time

systems.
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2. Chaotic systems have a broadband continuous frequency spectrum. The spectrum
resembles random noise (many frequencies are excited). The output from a
chaotic system sounds "noisy" to the ear. Fig. 1.3 shows the frequency spectrum

of the state variable y(n)of the Henon map.

Henon map

y(n)-state variable

0 100
Frequency

Fig. 1.3 Frequency spectrum of the Henon map.

3. Chaotic systems are sensitive to initial conditions. That is, nearby orbits diverge
very rapidly. The third order chaotic system (Lorenz system [9]) is used to
illustrate this property. The y state variable is used for the demonstration. A
slight change in the initial conditions of the y state variable ( y, ) leads quickly to
very different orbital futures. In this case, two different initial conditions are set

for the state variable y (y, =0.0 and 0.01). The initial conditions of the state
variables xand zare fixed (x, =10, z, =30). Fig. 1.4 illustrates that the state

variable y at the two initial conditions starts and stays the same for a short period

and differs as time increases.
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at different initial conditions.

4. Chaotic signals rapidly decorrelate with themselves. The auto-correlation
function of a chaotic signal has a large peak at zero and decays rapidly. Thus,
while chaotic systems share many of the properties of stochastic processes. They
also posses a deterministic structure which makes it possible to generate "noise

like" chaotic signal in a theoretically reproducible manner.

1.3.1 Bifurcation

The word bifurcation means split into two [10]. In fact, the meaning is extended to
split into many parts. In mathematics, bifurcation means splitting in a certain type of
graph. Bifurcation theory is important in science because the splitting in the
bifurcation graph corresponds to a quantitative change in the system being described.
It is used as one of the measures of the chaotic behavior of the system. As an

example, the bifurcation diagram of the logistic map [11] is shown in Fig. 5.1.

6
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The dynamics of the logistic map is described by
X =ax, (I-x,) (L1)

where x,,, is the current state variable, x, is the previous state variable and a is a

constant in the range 2 < a < 4.

0.9
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08+t
Period 1 \
07t \

06

0.5

0.4
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03r Period 4

0.2

T

T

0.1

£
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Fig. 1.5 Bifurcation diagram of the logistic map.

1.3.2 Lyapunov exponents

The Lyapunov exponent [12]-[14] is a measure of the rate at which nearby
trajectories in the phase-space diverges. Chaotic orbits have at least one positive
Lyapunov exponent. For periodic orbits, one of the Lyapunov exponents is zero and

the other are negative. It is given in a unit of bits per data sample.
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1.3.3 Chaos in electronic circuits

The electronic circuits that include non-linear elements are prone to have chaotic
behaviour according to Poincaré.Bendixson theorem [15]. This theorem roughly says
that, the solution of a system of two autonomous differential equations of first order
converge either to a point or to a closed curve.

Kennedy [16] stated that in order to exhibit chaos an autonomous circuit consisting
of resistors, capacitors and inductors must contain:

e At least one non-linear element.

e At least one locally active resistor.

e At least three energy-storage elements.

Chua’s circuit [17] is the simplest electronic circuit that satisfies these criteria. The

forced Van Der Pol oscillator [18] is an example of the non-autonomous circuits.

1.4 Chaotic communication systems

Chaotic communication methods will be considered into two classes. Those that
possess self-synchronisation and those that do not. Self-synchronisation means using
the driving signal, we can reproduce copies of the transmitter state variables at the
receiver using a synchronisation scheme. latter class includes communication
methods, which use chaotic signals as spreading sequences such as in the spread
spectrum communication systems [19]. Communication systems using self-
synchronisation are novel and potentially hold a great deal of promise [20]. The goal
being a low complexity system with inherent synchronisation, modulation and
security as fundamental properties of the information transmission process. A chaotic
system with self-synchronisation property uses the signal's generating dynamics for
synchronisation and discrimination between users.

The main differences between the conventional communication systems and the
chaotic communication systems are:

1. The requirement of a broadband spreading signal independent from the

information is met.

2. A secure communication may be available due to the randomness of chaos.
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In conventional DS/CDMA (direct sequence code division multiple access)
[21]-[22], accurate acquisitions and tracking depends on the signal’s
auto-correlation function and discrimination between users depends on the
cross-correlation function.

A chaotic system with the self-synchronisation property uses the signal’s
generating dynamics for synchronisation and discrimination between users. Since
the synchronisation is inherent in the chaotic system’s dynamics.

The transmission bandwidth of the chaotic signal can be significantly wider than
the information signal but a fundamental difference between the chaotic and
conventional communication systems is how the extra bandwidth is used. The
conventional system spreads the information over the transmission bandwidth
and compresses the signal in the receiver to recover the information.

In a chaotic system, the information is nonlinearly mixed with the chaotic
signals. The receiver synchronises to the received signal allowing the information
to be recovered. This mixing gives the system its inherent security. The greater
complexity of the mixing process, such as an increase in the dimensionality of
the chaotic signal, means the greater security of the system.

Although the chaotic signal may be used to mask the message by direct
superposition of the two signals, there are doubts over its security and its
robustness against noise.

The chaotic communication system has enhanced security properties, since any
mismatch in the system parameters will degrade, if not totally corrupt, the system

performance.

Further potential advantages of chaotic communication system are as follows:

1

The non-linear system has a greater efficiency than the linear system from the
point of view of the power consumption. Since linear systems use large control
signals to determine the system output whereas non-linear devices, as a
consequence of their greater sensitivity to small perturbations, can control the

output signal behaviour with much smaller amounts of energy.




hapter 1
Chapter Introduction

2. Conventional technology requires amplifications and mixing stages to prepare the
signal for transmission, non-linear systems can generate the required carrier
signal directly. Therefore the weight and volume are reduced.
3. There is a wide range of behaviour for chaotic signals and signals are not limited
to the standard spectrum of sinusoidal frequency bands of conventional devices.
The limiting factor will be the receiver’s ability to distinguish between the
different behaviours under operating conditions.
4. Conventional devices are limited by the power for which stable linear operation
takes place. Research shows that non-linear devices could operate at much higher
power levels [23]. |
5. The greater simplicity of chaotic communication systems using fewer |
components and simpler circuits would reduce manufacturing costs. This
advantage is achieved when the systems are reliable for practical communication
systems.
6. The probability of detection refers to the probability that a receiver will be able to
detect the information bearing portion of the signal and further separate it from
the chaotic signal in which it is embedded. Since non-linear devices have a rich
and complex behaviour, the signal may not be decipherable without knowledge

of the system and its parameters.

In this work, we deal in the applications of chaos in communication systems and how
to use the chaotic signals to achieve a high degree of security. In chapter 2 a review
for chaotic communication systems will be introduced and a new system developed

in this work will be explained.

10
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Chapter 2

CHAOTIC COMMUNICATION SYSTEMS

2.1 Introduction

Chaotic systems provide a versatile technique for the generation of a very wide range
of signals that can be used in the context of communication and signal processing
[1]. Chaotic signals are naturally broadband and are difficult to predict. This makes
them useful for use as masking and modulating waveforms in spread spectrum
applications [2]. Several studies have considered the synthesis of chaotic sequences
and their use in the field of communication [3]-[4]. There are two basic chaotic
systems, namely, analogue chaotic communication systems and digital chaotic
communication systems. In addition to these approaches based on continuous time
systems, several approaches for communication with chaos in discrete time systems
have been proposed [5]-[6].

The basic methods of synchronisation in chaotic communication systems are
summarised in section 2.2. Section 2.3 gives a brief discussion about the basic
known analogue chaotic communication methodologies. In section 2.4, a new system
of analogue communication system called the multi-channel chaotic communication
system is developed. Section 2.5 introduces an overview of the digital chaotic
communication system. In section 2.6, a modified method of chaotic digital
communication systems is presented. Section 2.7 is the conclusion of the chapter and

section 2.8 is the references of the chapter.

2.2 Chaotic synchronisation

It has been reported in many studies [7]-[12] that it is possible to design synchronising

systems driven by chaotic signals. Two dynamical systems are referred to as being
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synchronised if the trajectories of one system converge to the same values as the other
and they remain in step with each other. This is true in the case of identical
synchronisation but for impulsive synchronisation is not correct [13]. Although the
concepts of chaotic systems seem to defy synchronisation, since two identical chaotic
systems started at nearly the same initial conditions have trajectories, which quickly
become uncorrelated. Pecora and Carroll [14] have theoretically and experimentally
shown that it is possible to create a chaotic system in such away that:

e A chaotic system, called the driving system, transmits one of its state variables,
called the driving signal, to a second system to synchronise with the
corresponding state variable.

e A necessary and sufficient condition for the synchronisation given by Pecora and
Carroll is that the conditional Lyapunov exponents associated with the state

equations of the response system be negative.

2.2.1 Drive-response synchronisation

In the drive-response synchronisation scheme proposed by Pecora and Carroll [7],
the dynamical system (Eq. 2.1) shown in Fig. 2.1 with a scalar output g(z) = h(x) is
decomposed into two subsystems with states x,and x, (Eqs. 2.2 and 2.3) as

illustrated in Fig. 2.2.

x= f(x) 2.1)
X = fi(%:%,) (2.2)
x, = f5(x,,8(1)) (2.3)

where x = (x;,x,) and g(t) = h(x,(¢),x,(1)).

x | | 8@

Fig. 2.1 Block diagram of the drive system.
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g(1)

Y

<‘W e

Fig. 2.2 Pecora-Carroll decomposition into two subsystems.

The system is partitioned in such a way that the conditional Lyapunov exponents of
the second subsystem are negative. The conditional Lyapunov exponents characterise
the stability of the second subsystem (Eq.2.3) when driven by g(z). If all the
conditional Lyapunov exponents are negative, the trajectory x,(¢) is asymptotically

stable. This means that the states of two or more copies of the second subsystem will

synchronise identically when driven by the input g(z).

In particular, we consider subsystem 2 shown in Fig. 2.3.

r(t)
e

/> " J. i >

Fig. 2.3 The response system is a copy of the second subsystem in
the drive system.

The system is described by
%, = fr(&, (). (2.4)
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If the conditional Lyapunov exponents of the response system are all

negative, X,(0) is sufficiently close to x,(0) and r(r)=g(z), then the state x, of the

response system converges asymptotically to x,, i.e.

lim[%® - x| =0

—o0
In terms of communication systems, the drive system (Eq. 2.1) produces a chaotic

signal g(7), which we assume is transmitted directly through the channel and
received noisy and distorted as r(z). Recall that the objective of synchronisation in a
coherent receiver is to estimate g(t) given r(t) # g(¢). It is not sufficient to recover
X,(t) but we need to recover both x,(f) and x,(¢). This can be accomplished using

cascaded drive-response synchronisation. The second subsystem is added which is

driven by the first, as shown in Fig. 2.4.

Here,
%, = £,(&,,r(®)) (2.5)
%= fi(2,%,). (2.6)

" ()
_>___¥
r(r) <
— —— R
f2 > J‘ ] fl J‘ .

Fig. 2.4 Recovery of g(z)in a Pecora-Carroll cascaded
drive-response configuration.
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Kolumban et al [15] explain this method using Chua’s circuit [16] as an example.
They illustrate Pecora-Carroll cascade drive response synchronisation using Chua’s

circuit.

I

Fig. 2.5 Chua’s circuit diagram.

The dynamical behaviour of the circuit is described by the three ordinary differential

equations,

. G 1

Vcl E(VC2 VC, ) _ag(vcl)

; G 1.

Ve, :C—z(vcl —VC1)+C_21L (2.7)
1

I, = _Z G,

The circuit values and the description of the non-linear function are illustrated in

[14]. The circuit shown in Fig. 2.6 produces a chaotic signal g(¢).

g()

|
-

Fig. 2.6 Drive system using Chua’s circuit to produce chaotic
signal g(z).
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r(t)
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The response system contains a cascade drive-response configuration. The first

section is denoted subsystem 2 and is described by

A

VC: =

1

(r(r)—ﬁcz>+c—zl

Ve,

(2.8)

The second section is subsystem 1, which follows subsystem 2 and is described by

VC, =
1

A " I .
_(ch _vC, ) ——g(vq )

Cl

o

(2.9)

Subsystem 2

||}———

Subsystem 1

Fig. 2.7 Recovery of g(t)from r(z)using Chua’s circuit in a
Pecora-Carroll cascaded drive-response configuration.

If r(t) = g(¢),then V. (t) approaches Ve, (1) asymptotically. If Gcz (t) = v, () and in

addition, Qc, (0)is sufficiently close to Ve, (0O)and the conditional Lyapunov

exponents of subsystem 1 are negative, then V., (1) approachesv,. (t) asymptotically

and g(t) = g(1).
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2.2.2 General synchronisation method

Kocarev and Parlitz [17] and Rullkov er al [18] introduce a more general
synchronisation method for chaotic communication systems. The method is based on
the fact that it is possible to consider more general decompositions of a given
dynamical system,

z2=F(z) (2.10)
than the decomposition into subsystems proposed by Pecora and Carroll [18].

Starting from a chaotic autonomous system (Eq. 2.10), we can formally rewrite it in

different ways as non-autonomous system as

x = F(x. s(t)) (2.11)

where s(¢) is the driving signal.
Let,

y = f(y,s()) (2.12)

be a copy of a non-autonomous system that is driven by the same signal s(z). If the

differential equation for the difference e = x -y,

é = f(%:8)— f(¥.8) = 5,5~ f(x—e,x5), (2.13)

possess a stable fixed point at e = 0, then there exists for systems (2.11) and (2.12) a
synchronised state x =y that is stable. This can be proved using the Lyapunov
functions. In general the stability has to be checked numerically using the fact that
synchronisation occurs if all conditional Lyapunov exponents [7] of the

non-autonomous system (2.12) are negative

2.2.3 Error-feedback synchronisation

In every practical implementation of a telecommunications system, the transmitter
and receiver circuits operate under different conditions such as the mismatch
between the parameters of the transmitter and the receiver. The effect of parameter

mismatch and the effect of the channel on the recovery of g(z) have been widely

studied [13] and [20]. Pecora and Carroll show that the performance of the receiver
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in the drive-response system may be significantly improved by adding feedback in
the state estimator. In the error-feedback synchronisation, the instantaneous
difference between the estimate ¢(z) and the received signal r(z) produces a scalar
error signal e(z), which modifies the states of the receiver so as to minimise the
error. Assuming that the chaotic signal g(¢) has been generated by the system shown

in Fig. 2.1, then the corresponding error feedback synchronisable system has the

structure given in Fig. 2.8.

r(1)
e(t)

3 J‘ 3 10,
f h >

Fig. 2.8 Error-feedback synchronisation.

Here,
2= f(R)+ele(t)) (2.14)
where e(t) = r(t)— g(t) and g(¢) = h(x). With appropriate choices for 4(.) and e(.),

ﬁmeC(l) —x(1)| tends to zero.

I—oo

If X converges to x then g(r) converges to g(z). Fig. 2.9 shows an example for this

method when it is applied to Chua’s circuit.
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RE
L e
R
+ +
iR
+ + +
r(t) ¢, = Ve, Vi Cl ™~ Ve g(t)
L
- - N =
i .

®

' il

Fig. 2.9 Error-feedback synchronisation in Chua’s circuit

For a sufficiently small value of coupling resistor R, V. synchronises with Ve, and
g~ g).

2.3 Analogue chaotic communication system

During the last few years, there has been considerable interest in the possibility of
exploiting chaos in wideband communication systems. Many different modulation
techniques have been proposed to-date. They can be divided into two basic
categories. In the first category, like the conventional coherent demodulation
technique, the chaotic signal has to be recovered from the received noisy signal by
chaotic synchronisation. In the second category, the demodulation is carried out
without synchronisation.

There are several techniques used for transmitting analogue signals using chaotic
synchronisation. Chi-Chung Chen and Kung Yao [21] summarised some of

up-to-date well known analogue chaotic communication techniques.
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2.3.1 Chaotic masking system

The chaotic masking system is based on masking the information signal by a
noise-like chaotic signal at the transmitter and the information signal is recovered at
the receiver by a simple subtraction method [22] as shown in Fig. 2.10. The received
signal is used to regenerate the masking signal at the receiver. The regeneration of

masking signal is done by the synchronisation of the receiver and the transmitter.

+
x(1) ’
X Xy
m(t) n(r)
y : — g .
Message Noise m(t)
4 —> %

Fig. 2.10 Chaotic masking system.

Cuomo and Oppenheim [23] have built a Lorenz system and have demonstrated the
performance of the chaotic masking system with a segment of speech signal. The
communication system performance truly relies on the synchronisation ability of the
chaotic system. The masking properties of this scheme works only when the
amplitude of the information signals are much smaller than the masking signal. To
verify the results of the chaotic masking system, we simulate the system and the
results are shown in Fig. 2.11. The results show that, the system succeeds in
recovering the speech signal. The signal to noise ratio of the recovered signal is

244 dB. The signal to noise ratio is calculated by:
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Theinput signal power

Signal tonoise ratio[dB] = 10log
Theerror signal power

DD1 1 T T T 1
0
—_001 1 1 1 1 1
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& 5
[43]
=
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~0.02"°
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=
k=2
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LE_S 1L 1 L L 1
0 o) 10 15 20 25 30
Time

Fig. 2.11 Simulation results of the Lorenz masking system.

2.3.2 Chaotic modulation system

Itoh et al [24]-[25] introduced a communication system based on chaotic
modulations. The main idea of this system is to use the chaotic modulation to
transmit the information signals e(r). The chaotic synchronisation mechanism
introduced by Pecora and Carroll [7] is used to recover the information signals.

Itoh et al examined the above idea using Chua’s circuit [26].
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The transmitter state equations are given by

dv V. —V e(t)—v
C G - G G _ v 4 (9]
Y dr R 2, ) R,
dvy Vo =g
C L= L+ (2.15)
P odr R t
di,
—==—y. —7i
dt E

where g(v. ) is a piece-wise linear function and it is defined by

g(v,) = =Gyve, +0.5(G, =G, )(vg, +B,|~|ve, = B,)) (2.16)
and e(t) is the information signal.

Fig. 2.12 shows the circuit diagram of the chaotic modulation system. The term ri,

is added to the ideal Chua equations in order to take into account the small inductor

resistance in the physical circuit. Fig. 2.13 shows the circuit diagram of the chaotic

modulation system. The receiver state equations are given by

dv, V. — V. v,
C Cl = Cz (,1 _ (V, _i
' R Vel TR
dv.  v. —v.
C, dcz R B 4 (2.17)
t
d', ’d ’
L ﬁ = v}, —ri]

where Ve, () = V,c, (t) because of the voltage buffer.

The information signal can be recovered by

. V. —B Ve
H=R|C i L+ +—| (2.18
e( ) xl: 1 d[ R g(vC,) RS )
Similarly, the current j(z)is given by
dve, v, Vg VG
=gl " . 2.19
/ ' dt R “7 R (2.19)
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1>
o

%
=
0

Sl

=
—\V\VV—

\\}7

Fig. 2.12 Communication modulation system using Chua’s circuit.

Itoh et al built the chaotic modulation communication system and the system was

tested by various kinds of signals (voice, music...etc).

They showed that:

e The communication system is easily built with a small outlay.

e The waveforms of the transmitted chaotic signal can mask the information signal
if the amplitude of the information signal is small enough.

e The transmitted signals have broad spectra and can mask the input signals.

To verify the results of the chaotic modulation system, we simulate the system and

the results indicate that the information signals are recovered with sufficient quality

as shown in Fig.2.13. The signal to noise ratio in this case is 11.92 dB.

05 T

Input signal
o |

Transmitted signal
e

Recovered signal
o

Error signal
o

0 10 20 30 40 50 60 70 80 90 100
Time

Fig. 2.13 Simulation results of the chaotic modulation system.
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2.3.3 chaotic communication system based on general synchronisation approach

Kocarev and Parlitz [16] illustrated the general synchronisation approach using the
well-known Lorenz model. The state equations of the transmitter are given by

x, =—10x, + s(¢)

Xy = 28K — X — X% (2.20)

X, = xx, —2.666x,
where s(¢) = 10x, +ix, and i1is the information signal.

The receiver state equations are given by
y =10y, + ()
Y, =28y =y, = ny; (2.21)
V3 = MY, —2.666y;.

The recovered signal i,is given by

i =(s—10y,)/y;. (2.22)

To estimate the temporal evaluation of the error e = x—y of the states of the
systems Eq. 2.20 and Eq. 2.21, we note first that the difference e, = x, —y, of the
first components converges to zero because ¢, = —10¢,. Therefore, the remaining
two-dimensional system describing the evaluation of the differences e, = x, — y, and
e, = x; — y, can be written for the limit # — o as

€y = —8y — Xyly (223)
e, = x,e, —2.666¢;. '

Using the Lyapunov function L=e;+e; one can show that
L= —2(€3 +2.666e7) < 0. This means that the synchronisation is globally stable and
occurs for all types of driving signals s(¢). The conditional Lyapunov exponents of
this decomposition is given by A =-1.805, 4, =-1.861 and A, =-10. To verify

the results of the general synchronisation system, we simulate the system and the

results of simulation are shown in Fig. 2.14. The results show that, the information
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signal is masked by the chaotic signal and that the receiver succeeds in recovering

the information signal with signal to noise ratio equal 218.9 dB.

Input signal
o

Transmitted signal
()
g D

(8]
o
<

Recovered signal
nNoo
Z
1

Error signal
=T N

'
[N}

Time

Fig. 2.14 Simulation results of the chaotic communication system
based on the general approach of synchronisation.

We conclude that the systems introduced in sections 2.3.1, 2.3.2 and 2.3.3 have the

following drawbacks:

1.

The chaotic masking and the chaotic modulation approaches have some
difficulties which are the level of the information signal must be lowered to at
least 30 dB below the level of the chaotic signal [27]. Moreover, the frequency
range of the information signal is limited due to the resonance frequencies of the
subsystems [28].

In the general synchronisation system approach, the information signal is

recovered by dividing by the state variable y; (Eq. 2.22). If y, tends to zero, the

system will be unstable. This method is suitable for some chaotic generator such

as Lorenz and Rossler chaotic generators where the state variable y,does not

tend to zero.
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We will next introduce a new system for analogue chaotic communication system

called the multi-channel chaotic communication system (MCCS).

2.4 Multi-channel chaotic communication system (MCCS)

In the multi-channel chaotic communication system, one channel is used for
synchronisation between the transmitter and the receiver and the other channels are
used for masking the information signals as shown in Fig. 2.15. The MCCS system is
based on Chua’s circuit [29]. The system is simulated and also physically
implemented. In comparison with one-channel masking systems (OCMS)
[22]-[23], the magnitude and the frequency range of the informational signal are not
limited. However our system requires two channels to send one information signal,

The voltage v, (1) is used as a synchronisation signal between the transmitter and
the receiver while the voltage v, (¢) is used as a masking signal for the information

signals. Let s() be the information-bearing signal and the transmitted signal

r(t) =s(t)+ ve, (1), where the power level of s(z) is significantly lower than that of
Ve, (#) in order to hide the signal effectively. The state equations of the transmitter

are given by

) G 1
Ve :—(Vc2 _vcl)_—g(vc,)

I C'l Cl
. G 1.
Ve, =C_2(VC‘ —vC2)+C—21L (2.24)
, 1
lL = _ZVCE.

The state equations of the receiver are given by

r

Ve 1 ) .
2 d :E(Vcl(l)_vcz([))"'l[
d (2.25)
di’
L—t=—y_ (¢
dt e ®)
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where véz () and i/ (¢) is the voltage across the capacitor C, and the current through

the inductor L of the receiver system. The information signals can be recovered by
5(@)=r@)—ve, (1) =s5(@). (2.26)

o Synchronisation channel
v
CI

Transmitter

(Chua’s Receiver
circuit)

Information channels

ve, () Véz (t)

Fig. 2.15 Block diagram of multi-channel chaotic communication system.
MATLAB [30] and the circuit simulator TINA [31] are used to simulate the

developed system. Fig. 2.16 represents the signal flow in the simulation using

MATLAB. For simplicity, only three channels are shown.
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Fig. 2.16 Signal flow representation of multi-channel chaotic
communication system.

The circuit component values for the transmitter and the receiver are as follows:

R=1.5 KQ, C, =10 nF, C, =100 nF and L =18.5 mH with series resistance
r =20 Q. The normalised parameters in the simulation are R=1.5, C, =10, C, =1,

L =1/5.6 andr = 0.02. The initial conditions for the integrators are set to 0.1 and the

Chua non-linear function is given by
1
80:¢) =Gy, + (G, - G,)(ve, + B,|~|ve, = B,

where G,, G, and B, are equal to -0.409, -0.758 and 1.8 respectively. The channels

are assumed to be ideal which means that the effect of noise, interference and delay
are not taken into account. The channels are simulated by unity gain buffer
amplifiers. The system is tested by masking different information signals at the
transmitter and recovering them at the receiver. Four information channels are tested.
Fig 2.17a shows the results of masking of a sinusoidal signal of amplitude 0.1 mV
with a signal to chaos ratio (SCR) of —74.7 dB and a frequency of 1.0 kHz. The
signal to chaos ratio is calculated using the following formula:

Power of theinput signal

Signalto chaos ratio|dB] = - :
Power of thetransmitted signal
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Fig. 2.17b shows masking and recovering of a square wave signal with a frequency
of 2.0 kHz and a SCR of -11.87 dB. Fig. 2.17c shows masking and recovering of
amplitude modulated signal at SCR of —43.96 dB. Fig. 2.17d shows masking and
recovering of a frequency-modulated signal at SCR of —-34.84 dB. The results
indicate that our system is capable of masking different information signals and
recovering them even at SCR of =74 dB and that capability is available at different
frequencies and amplitudes. In comparison with the OCMS system [32], the MCCS
system is working without restrictions on the frequency range and the amplitude of

the input signal. The only restriction for the amplitude is that the information signal

is small enough to be hidden (SNR=-10 dB).
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Fig. 2.17 MATLAB results of the MCCS system.

Fig. 2.18 shows the circuit diagram representing the MCCS system simulated by the

TINA circuit simulator. For simplicity only two channels are simulated. Table 2.1

gives the component list of the multi-channel chaotic communication system.
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Fig. 2.18 Schematic diagram of the multi-channel chaotic communication

system.
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Component Value
R1=R2=R19=R20 220 Q
R3=R21 2.2kQ
R4=R5=R22=R23 22 kQ
R6=R24 3.3kQ
R7=R17=R18 (variable resistors) 4.7 kQ
R12 1 kQ
R8=R9=R10=R11=R13=R14=R15=R16 2kQ
L1=12 18 mH, r=20 Q
C1=C6 10 nF
C2=C3 100 nF
C3=C4 1 uF, 25V
IC1=1C2=IC3=IC4=IC5=IC6=IC7=IC8=IC9 TLO71C

Table 2.1 Components list of the multi-channel chaotic
communication system.
The developed system is examined by masking different information signals with
different amplitudes and frequencies. Fig. 2.19 shows the results of masking a square
wave of amplitude 10 mV and a frequency of 1 kHz. Fig. 2.20 shows the results of
masking of a saw-tooth signal with amplitude 50 mV and a frequency of 2.5 kHz.
Fig. 2.21 shows the results of masking a sine-wave signal with amplitude 100 mV
and a frequency of 3 kHz. The above results indicate that we can mask and recover
the information signal at SCR of —32 dB. In the OCMS system [33], the information
signal cannot be completely recovered even at a SCR of —12 dB with restrictions on

the frequencies and the amplitudes of the information signals.
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Fig. 2.19 The results of multi-channel chaotic communication
system in the case of a square-wave with amplitude 10 mV and
a frequency of 1 kHz.
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Fig. 2.20 The results of multi-channel chaotic communication
system in the case of a saw-tooth signal with amplitude 50 mV and
a frequency of 2.5 kHz.
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Fig. 2.21 The results of the multi-channel chaotic communication
system in the case of a sine wave with amplitude 100 mV and
a frequency of 3 kHz.
The multi-channel chaotic communication system shown in Fig. 2.18 was physically

implemented and tested using various kinds of information signals. Fig. 2.22 presents

the x-y plot of v, (¢)of the transmitter and the receiver and it shows that the

transmitter and the receiver are synchronised. Fig. 2.23 shows the receiver output
signal and the transmitter output signal for a saw-tooth input signal with a frequency
of 500 Hz and a peak to peak amplitude of 200 mV. In this case, the amplitude of the

chaotic carrier signal v, (7)is equal to 3.5 V and the SCR is —24 dB. The results

indicate that the information signal is completely masked and is recovered correctly.
The system is tested by other kind of information signals such as square and
sinusoidal signals with frequencies of 1.0 kHz and 2.5 kHz and amplitudes of 500
mV and 1.0 V respectively and the results are shown in Fig. 2.24 and Fig. 2.25.
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Fig. 2.22 X-Y plot of Ve, (z) of the transmitter and the receiver
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Fig. 2.23 Experimental results in the case of saw-tooth signal with
amplitude 200 mV and frequency of 512 Hz. The upper trace is the
recovered signal and the lower trace is the transmitted signal.
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Fig. 2.24 Experimental results in the case of square wave signal
with amplitude 500 mV and frequency of 1.0 kHz. Upper trace is
recovered signal and lower trace is transmitted signal.
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Fig. 2.25 Experimental results in the case of sinusoidal signal with
amplitude 1.0 V and frequency of 2.5 kHz. Upper trace is
recovered signal and lower trace is transmitted signal.
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By comparing the OCMS [32] and the MCCS systems, we conclude the following:

The simulation results using MATLAB and SIMULINK show that the MCCS
system (SCR= -74 dB) are better than the OCMS system (-32 dB).

The simulation results using the circuit simulator (TINA) show that, the system
succeeds in recovering the information signal at SCR=-32 dB and at different
frequencies and amplitudes of the input signal. In the OCMS system, the same
results cannot be achieved even at SCR=-12 dB.

Physical implementation of the MCCS system shows that we can easily build the
MCCM system and achieve the same results of the TINA simulator at
SCR =-24 dB. The OCMS system is easily built but we cannot get the same
results of the MCCM even at SCR=-12 dB.

The main disadvantage of the MCCS is the use of an extra channel for
synchronisation between the transmitter and the receiver but this disadvantage
can be reduced if the system is used in the transmission of more than one
information signal. As an example, in some military applications, it is required to
transmit several information signals from one place to another place and all of
these information signals have a high degree of security. In this case, we can
mask all of these information signals and transmit them to the receiver part of the
system. In the MCCS system one extra synchronisation channel is used to
transmit these information signals instead of using several systems of OCMS to

transmit the same number of information signals.

2.5 Digital chaotic communication systems

In chaos based communication systems the information signal to be transmitted is

mapped to a certain property of the chaotic signals. That property can be for example

the energy of the chaotic signal or the correlation between the different parts of the

transmitted signal. Demodulation can be performed without synchronisation because

it is enough to estimate the parameter carrying the transmitted information from the

noisy received signal. Kennedy and Dedieu [34] and Kolumban er al [35] have

shown that, the transmitted symbols can be recognized using either coherent or non-
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coherent demodulation techniques. In contrast to conventional communication
systems where periodic signals are used, the parameter required for the decision can
be precisely estimated in the noise-free case. The variance of the estimation is
influenced by both the channel noise and the chaotic signal. For a given noise level,
the variance of the estimation can be reduced by increasing the estimation time (the
bit duration). The bit duration is bounded by the bit error rate (BER) which has to be

achieved at a given signal to noise ratio (SNR).

2.5.1 Chaos Shift Keying (CSK)
Hasler [36] summarised the CSK or the chaos switching introduced by Parlitz et al
[37] as follows. The information signal s(z) is supposed to be binary data. It controls

a switch whose action changes the parameter values of the chaotic system. According

to the value of s(f) at any given instant ¢, the chaotic system has either the parameter
vector p or the parameter vector p’. The transmitted output y(z) of the chaotic
system is one of two copies of the chaotic system, one with parameter vector p and
the other with p“as shown in Fig. 2.26. If the momentary position of the switch in
the transmitter is on position p then the system with parameter vector p in the
receiver will synchronise whereas the system with parameter vector p’will
desynchronise. Thus the error signal e(¢) will converge to zero whereas ¢’(z) will

have an irregular waveform with a distinctly nonzero amplitude. If the switch in the

transmitter is on position p” then we have the opposite situation. In this case, ¢'(r)

will converge to zero and e(#) will be have a nonzero amplitude.
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Fig. 2.26 Transmission using chaotic switching.

Consequently, the signal s(¢)can be retrieved from the error signals e(z) and €'(¢).

Clearly, one has to leave the switch in the transmitter a certain time in the same
position in order to be able to observe the convergence of the corresponding error
signal to zero. In some realisations only one chaotic system is used on the receiver
side. In order to distinguish the transmitted bit value, one has to decide between
synchronisation and desynchronisation on the basis of a single error signal. In this
case, the information rate for the chaotic switch is low. Because the binary signal has
a lower information content per unit time than an analogue signal and for each bit
that is transmitted, one has to wait until synchronisation and desynchronisation are

achieved in the receiver.

2.5.2 Chaotic on-off keying (COOK)

Kis et al [38] give a brief description of the COOK scheme. In the COOK scheme,
the chaotic signal is switched off and on according to symbols 0 and 1 respectively as
shown in Fig. 2.27. Kolumban et al [39] show that the COOK scheme has better

noise performance than the CSK. This is the result of the fact that, the difference in
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energy per bit between the elements of the signal is increased compared to the CSK
method. The demodulator recovers the information signal by correlating the received

signal with a copy of itself. The decision is made by a level comparator.

Correlator
Chaos / T / Decision
generator ‘ | Ehanns >@_> .[ & bt "{1—'» Decoder
T
T Recovered
Digital information to be Threshold oy

transmitted

Fig. 2.27 Block diagram of the non-coherent COOK modulation
scheme.

2.5.3 Differential chaos shift keying modulation (DCSK)

In the DCSK [40]-[41], every bit to be transmitted is represented by two chaotic
sample functions. The first one serves as a reference while the second carries the
information. The block diagram of the DCSK is shown in Fig. 2.28. Bit 1 is sent by
transmitting a reference signal provided by a chaos generator twice in succession
while for bit O the reference chaotic signal is transmitted followed by an inverted
copy of the same signal. This means that the binary information is mapped to the
correlation measured between the two parts of the transmitted signal. The
demodulator recovered the information signal by correlating the received signal and
the delayed copy of itself. The decision circuit is made by a level comparator. For
sufficient large delay 7, noise performance of DCSK is comparable to that of a

conventional sinusoid-based modulation scheme. In particular, E, /N, =13.5 dB is

required for BER=10". Where Ej is the energy per bit and N, is the energy of the

noise.
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Fig. 2.28 The block diagram of DCSK.

For the systems introduced in 2.5.1, 2.5.2 and 2.5.3, we conclude that:

1. The major disadvantage of the CSK system is that the threshold value of the
decision circuit depends on the noise level.

2. The same problem appears in the COOK system, however the COOK system can
maximise the energy per bit between the elements of the signal set.

3. In the DCSK, the threshold can be kept constant and does not depend on the
noise level but the problem is that every information bit is transmitted by two

sample functions so the bit rate will be halved.

2.6 One generator CSK

The CSK is introduced in section 2.5.1. In this system, the driving system uses one
non-linear function with two different parameters and in the responding system, there
are two subsystems, one synchronised with the first Chua non-linear function and the
other synchronised with the second non-linear function. In this work, we develop a
modified CSK system using one non-linear function in the transmitter and the

receiver synchronises or desynchronises with the transmitter system according to the
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transmitted binary information signal. The system is based on Chua’s circuit [26] as
the chaotic generator. The voltage across the capacitor C, is used to transmit the
binary information bit 1 and the current through the inductor L, after scaling by a
certain factor, is used to transmit the binary information 0. The current i, is scaled by
a constant factor equal to 1.1 to have the same amplitude as Ve, (1) . We know that,
the receiver system is synchronised with the transmitter system when it is driven by
the voltage v, (7) [33]. We also know that the current through the inductor L cannot
be used as a driving signal because the transmitter and the receiver systems will not
synchronise [42]. In the receiver, the difference between the transmitter output and
the receiver output signals (r() — v, (¢)) is calculated. If the absolute value of the
difference is minimum then the two systems are synchronised and bit 1 is received. If
the absolute value of the difference is maximum then the two systems are

desynchronised and bit O is received. The block diagram of the system is shown

in Fig. 2.29.

LHGInE Response
System. v, (®) system

N\ o) (r®)—v;, (1)
CAtE: Scaling | Channel || ChuES | 0Ny | Decision | | pooie

circuit

circuit circuit
fatctor
L :
i, (1)
Digital information Thre-shold Recovered
to be information
transmitted
Transmitter part Receiver part

Fig. 2.29 Block diagram of the CSK using one chaos generator.

The system is simulated using SIMULUNK and the signal flow diagram of the
system is shown in Fig. 2.30. Fig. 2.31 illustrates the simulation results of the
system. The result show that the difference between the transmitter output and the
receiver output signals in the case of synchronisation is small compared to the case

when the two systems are desynchronised. The absolute value of the difference
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r(t)—vg1 (t) 1s applied to a LPF and the decision circuit determines which bit is

received. The threshold of the decision circuit is determined experimentally.
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Fig. 2.30 Signal flow of one channel CSK.
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Fig. 2.31 Simulation results of the one generator CSK.

The one generator CSK is physically implemented and the simplified circuit diagram

of the system is shown in Fig. 2.32.
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In the circuit diagram shown in Fig. 2.32, we have the following:

L

o W b

The clock signal is equal to 200 Hz and the clock generator is implemented by
using the integrated circuit NE555 [43].

The integrated circuit MAX314CPE is used to implement the electronic switch.
The chaotic generator is implemented using Chua’s circuit [26].

The circuit diagram of the subtractor is shown in Fig 2.33.

The absolute value of the signal is calculated using the circuit shown in
Fig. 34 [44].

The low pass filter is an active filter [45] with a cut off frequency of 4 kHz as
shown in Fig. 2.35.The decision circuit and the decoder are implemented using

the comparator circuit [46] shown in Fig. 2. 36.

1k
1k
Input 1
- Subtractor
output
1k
Input 2 15

1k 1k 1k 1k
Input —AAA NMN—— WY
15 -15
V 1N4448
w w Absolute
> C>
value

+15 \V 1N4448 +15
= 1k
M\

Fig. 2.34 Circuit diagram of the absolute value calculation.
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Fig. 2.35 Low-pass filter circuit diagram.
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Fig. 2. 36 Comparator circuit diagram.

Fig. 2.37 shows the voltage across the capacitor C, and the current through the
inductor L and Fig. 2.38 shows the transmitted signal and the input signal. In this
case, the frequency of the input signal is 200 Hz. The receiver output signal is shown
in Fig. 2.39. The upper part of Fig. 2.40 shows the absolute value of the received
signal after low pass filtering and the lower part shows the recovered signal after the

comparator circuit.
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Fig. 2.37 The voltage across the capacitor C, and the current
through the inductor L.
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Fig. 2.38 Transmitted and input signals
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From the above results we can make the following comments:

I

The results show that it is possible to design a chaotic shift key using one chaotic
generator with fixed parameters in the Chua nonlinear function at the transmitter
and one receiver system.

The decoder output is the same as the input signal but there is a small delay of
about 0.25 ms and the signal period is 5 ms. This delay is due to the time taken in
the receiver for synchronisation after desynchronisation.

The recovered signal shown in Fig. 2.40 is just an inversion of the input signal

and using an inverter unity gain amplifier we can get the original signal.

2.7 Conclusion

/8

In this chapter, we developed a new analogue chaotic communication system
(MCCS) and a modified chaos shift key system.

MATLAB and SIMULINK simulation results of the MCCS system show that, a
SCR of —74 dB is achieved which is better than the results of OCMS system [33].
In the simulation results using the circuit simulator TINA, we succeeded in
recovering the information signal at SCR=-32 dB. The simulation results of the
OCMS show that, we cannot get the same results even at SCR=-12 dB. The
physical implementation of the MCCS system shows that the system is easily
built and the information is recovered at SCR =-24 dB. The main disadvantage of
multi-channel chaotic communication system is the use of extra channel for
synchronisation between the transmitter and the receiver. This disadvantage is
reduced if the system is used in the transmission of more than one information
signal to the same place.

In chaotic digital communication systems, we developed a modified chaotic shift
key system using one chaotic generator and one receiver system to transmit the
binary information signal. The system is simpler than systems using two chaos
generators or two nonlinear Chua functions at the transmitter and two subsystems

at the receiver. For the same data transmission rate we achieve similar results.
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4. The information transmission rate of the one generator chaos shift key system is
rather low because for each transmitted bit, we have to wait until synchronisation

and desynchronisation are achieved.

51



Chapter 2 Chaotic communication systems

2.8 References

[1]J. M. H. Elmirghani and R. A. Cryan, “Communication using chaotic masking,”
IEE Colloquium on Exploiting Chaos in Signal Processing, pp. 12-16,1994.

[2]K. S. Halle, C. W. Wu, M. Itoh and L. O. Chua, “Spread spectrum
communication through modulation of chaos,” Int. J. Bifurcation and Chaos, vol.
3, No. 2, pp. 469-477, 1993.

[3]K. M. Cuomo and A. V. Oppenhiem, “Chaotic signals and systems for
communication,” Proc. IEEE ICASSP’93, vol 111, pp. 137-140, 1993.

[4]L. M. Pecora, “Overview of chaos and communications research,” Proc. SPIE in
Chaos in Communications, vol 2038, pp. 2-25, July 1993.

[SJH. D. I. Abarbanel and P. S. Linsay, “Secure communications and unstable
periodic orbits of strange attractors,” IEEE Trans. Circuits Syst. II, vol. CAS-40,
pp. 643-645, Oct. 1993.

[6]D. R. Frey," Chaotic digital encoding an approach to secure communication,”
IEEE Trans. Circuits Syst. 11, vol. CAS-40, pp. 660-666, Oct. 1993.

[7]L. M. Pecora and T. L. Carroll, “Synchronisation in chaotic systems,” Phys. Rev.
Lett., vol. 64, No. 8, pp. 821-824, Feb. 1990.

[8]L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signal,” Phys. Rev.
A, vol. 44, No. 4, pp. 821-824, Aug. 1991.

[9]T. L. Carroll and L. M. Pecora, “Synchronisating chaotic circuits,” IEEE Trans.
Circuits Syst., vol. CAS-38, No. 4, pp. 453-456, Apr. 1991.

[10] T. L. Carroll and G. A. Johnson, “Synchronising broadband chaotic systems
to narrow-band signals,” Phys. Rev. E, Feb. 1998.

[I1] N. F. N. Rulkov and L. S. Tsimring, “Synchronisation methods for
communication with chaos over band-limited channels,” Int. J. Circuit Theory
Appl., vol. 27, pp. 555-567, 1999.

[12] G. Kolumban, M. P. Kenndy and L. O. Chua, “The role of synchronisation in
digital communications using chaos-part II: Chaotic modulation and
synchronisation,” IEEE Trans. Circuits Syst. I, vol. 45, No. 11, pp. 1129-1140,
Nov. 1998.

52




Chapter 2 Chaotic communication systems

[13] J. A. K. Suykens, T. Yang and L. O. Chua, “Impulsive synchronisation of
chaotic Lur’s systems by measurements feedback,” Int. J. Bifurcation and Chaos,
vol. 8, No. 6, 1998.

[14] L. M. Pecora and T. L. Carroll, “Synchronised chaotic signals and systems,”
Proc. IEEE ICAASSP, 1992.

[15] G. Kolumban, M. P. Kenndy and L. O. Chua, “The role of synchronisation in
digital communications using chaos-part II: Chaotic modulation and
synchronisation,” IEEE Trans. Circuits Syst. I, vol. 45, No. 11, pp. 1129-1140,
Nov. 1998.

[16] R. N. Madan, Chua’s circuit: A Paradigm for Chaos. Singapore: World
Scientific, 1993.

[17] L. Kocarev and U. Parlitz, “General approach for chaotic synchronisation
with applications to communication,” Phys. Rev. Lett., vol. 74, pp. 5028-5031,
June 1995.

[18] N. F. Rullkov, M. M. Sushchik, L. S. Tsimring and H. D. Abarbanel,
“ Generalised synchronisation of chaos in directional coupled chaotic systems,”
Phys. Rev. E, vol. 51, pp. 980-994, Feb. 1995.

[19] L. M. Pecora, T. L. Carroll, G. A. Johnson and D. J. Mar, “Fundamentals of
synchronisation in chaotic systems, concepts and applications,” Chaos, vol. 7,
No. 4, pp. 520-542, 1997.

[20] A. L. Panas, “Synchronisation of drive-response systems on condition of a
large mismatch of parameters,” IEEE Int. Symposium. on Circuit and System
(ISCAS 98), 1998.

[21] Chi-Chung Chen and Kung Tao, “Basic issues in chaotic communication
systems,” Proc. 7th Int. Conf. on Advances in Communications and Control
(COMCO N’99), June 1999.

[22] K. M. Cumomo, A. V. Oppenheim and S. H. Strogatz, “Synchronisation of
Lorenz-based chaotic circuits with applications to communications,” IEEE
Trans. Circuits Syst. 11, vol. CAS-40, pp. 626-633, 1993.

[23] K. M. Cumomo and A. V. Oppenheim, “Circuit implementation of
synchronised chaos with applications to communications,” Phys. Rev. Lett., vol.

71, July 1993.

53



Chapter 2 Chaotic communication systems

[24] M. Itoh, H. Murakami and L. O. Chua, “Communication systems via
modulations,” IEICE Trans. Fundamentals, vol. E77-A, No. 6, June 1994.

[25] M. Itoh and H. Murakami, “New communication system via chaotic
synchronisations and modulations,” IEICE Trans. Fundamentals, vol. E78-A,
No. 3, Mar. 1995.

[26] M. Itoh and L. O. Chua, “Experimental study of forced Chua’s oscillator,”
ECCTD’95 European Conference on Circuit Theory & Design, 1995.

[27] H. Dedieu, M. P. Kennedy and M. Hasler, “Chaos shift keying modulation
and demodulation of a chaotic carrier using self-synchronising Chua’s circuits,”
IEEE Trans. Circuits Syst. 11, vol. CAS-40, No. 10, Oct. 1993.

[28] A. Sato and T. Endo, “Experiments of secure communications via chaotic
synchronisation of phase-locked loops,” [EICE Trans. Fundamentals,
vol. E78-A, No. 10, Mar. 1995.

[29] M. P. Kennedy, “Experimental chaos via Chua’s circuit,” Proc. Ist
Experimental Chaos Conference, pp. 340-351,World scientific, 1992.

[30] Eva Pért-Enander and Anders Sjoberg, The MATLAB 5 handbook: Addison
Wesley Longman Limited, 1999.

[31] Tina pro 5.5, Copyright © by Design Soft, 1997.

[32] L. Kocarev, K. S. Halle, K. Eckert and L. O. Chua, “Experimental
demonstration of secure communications via chaotic synchronisation, Chua’s
circuit: A Paradigm for Chaos,” pp. 371-378, Singapore: World Scientific, 1993.

[33] A. Sato and T. Endo, “Experiments of secure communications via chaotic
synchronisation of phase-locked loops,” [EICE Trans. Fundamentals,
vol. E78-A, No. 10, pp. 1286-1290, Oct. 1995.

[34] M. P. Kenndy and H. Dedieu, “Experimental demonstration of binary chaos
shift keying using self-synchronising Chua’s circuits,” Proc. 1 st Int. Specialist
Workshop on Nonlinear Dynamics of Electronic Systems NDES93,
pp- 67-72, 1993.

[35] G. Kolmban, B. Vizvari, W. Schwarz and A. Abel, “ Differential chaos shift
keying A robust coding for chaotic communication,” Proc. 1 st Int. Specialist
Workshop on Nonlinear Dynamics of Electronic Systems NDES93,
pp. 87-92, 1993.

54




Chapter 2 Chaotic communication systems

[36] M. Hasler, “Synchronisation of chaotic systems and transmission of
information,” Int. J. Bifurcation and Chaos, vol. 8, No. 4, pp-647-659, 1998.

[37] U. Parlitz, L. O. Chua, Lj. Kocarev and K.S Shang, “Transmission of digital
signals by chaotic synchronisation,” Int. J. Bifurcation and Chaos, vol. 2,
pp- 973-977, 1993.

[38] G. Kis, Z. Jako, M. P. Kennedy and G. Kolmban, “Chaotic communications
without synchronisation,” 6 th. IEE Conference on Telecommunications,
pp- 49-53, 1998.

[39] G. Kolumban, H. Dedieu, J. Schweizer, J. Ennitis and B. Vizvari,
“Performance evaluation and comparison of chaos communication systems,”
Proc. 4 th Int. Specialist Workshop on Nonlinear Dynamics of Electronic
Systems NDES 96, pp. 105-110, 1996.

[40] G. Kolumban, JB. Vizvari, W. Schwarz and A. Abel,” Differential chaos shift
keying A robust coding for chaotic communication,” Proc. 4 th Int. Specialist
Workshop on Nonlinear Dynamics of Electronic Systems NDES96, pp. 87-92,
1996.

[41] Z.Jako, G. Kis, G. Kolumban and M. P. Kennedy, “Design of large signal set
for DCSK modulations,” 6 th. IEE Conference on Telecommunications,
pp. 44-48, 1998.

[42] M. Ogorzalek, "Taming chaos-I: Synchronisation," IEEE Trans. Circuits
Syst. I,, vol. CAS-40, No. 10, Oct. 1993.

[43] C. J. Savant, M. S. Rodengordon and L. Carpenter, Electronic Design,
circuits and system: Benjamin/Cummings Publishing Company, Inc., 1991.

[44] J. Batten and L. George, Design and application of linear computational
circuit: Tab books Inc., 1987.

[45] C. Wai-Kai, The circuits and filters handbook: CRC Press, 1995.

[46] 1. D. Lenk, Handbook of practical electronic circuits: Prentice-Hall, 1982.

55




Chapter 3

DIRECT REPRESENTAION OF THE CHAOTIC STATE
EQUATIONS WITH REALTIME IMPLEMENTATION

3.1 Introduction

In this chapter, we develop a new method to implement chaotic generators

(continuous or discrete) and chaotic communication systems given by the state

equations or a circuit in real time. The method is developed to overcome the

following problems:

e Not all chaotic systems are represented by a physical circuit. The developed
method is used to implement chaotic systems that are defined by state equations
when it needs a complicated circuit to implement it.

e The method solves the problem of component mismatch between the transmitter
and the receiver in analogue chaotic communication systems implemented by
physical circuits. A software model of the chaotic system integrated with a data
acquisition card replaces the physical circuit.

Many methods that use analogue circuits have been proposed in the field of chaotic

communication systems [1]-[11]. One deficiency of these systems is that we must

build both the transmitter and the receiver with very high component accuracy to
ensure correct information recovery, since the recovery characteristics are very
sensitive to parameter mismatch between the transmitter and the receiver. However,
in practical situations, it is difficult to build both the transmitter and the receiver
with very high component accuracy since the component values are function of
aging, temperature...etc. Therefore the analogue implementation seems very
difficult though it is not impossible to overcome these difficulties to some extent.

There are several techniques to implement chaotic generators in digital form.
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Namely, using switched capacitor techniques [12], VLSI [13]-[18], analogue CMOS
technology [19] and DSP processors [20]-[21].

The developed method is a combination between the hardware (National instruments
data acquisition card Lab-PC-1200) and the software (SIMULINK, Real Time
Workshop and Real Time Target Window) as shown in Fig. 3.1. All the above

mentioned software programs are toolboxes within MATLAB.

~ Softwares
1. MATALB core
2. SIMULINK toolbox

3. Real Time Workshop
4. Real Time target
window

Chaotic output

signals =S

1 Data
Aquisition ) Elf
card

IBM Compatible /

Mouse

Fig. 3.1 Block diagram of the real time system.

In section 3.2, a brief description of the developed real time system is introduced
showing the function of each part of the system. The real time implementation of
continuous and discrete chaos generators, using the developed method, is presented
in section 3.3. Section 3.4 demonstrates an example of how to implement the chaotic
communication systems in real time using the developed method. Section 3.5 is the

conclusion of the chapter and section 3.6 is the chapter references.

3.2 Real time system description

3.2 .1 Software description

3.2.1.1 MATLAB

MATLAB is a high-performance language for technical computing [22]. It integrates
computation, visualization and programming in an easy-to-use environment where

the problems and the solutions are expressed in familiar mathematical notation. The
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basic data element of MATLAB is an array that does not require dimensioning. This
allows solving of many technical-computing problems, especially those with matrix
and vector formulations, in a fraction of the time it would take to write a program in
other language such as C or Fortran. MATLAB features a family of application-
specific solutions called toolboxes. Areas in which toolboxes are available include
signal processing, control systems, neural networks, fuzzy logic, wavelets, real time
workshop, real time target and many others. Typical usage include:

e Mathematical computations.

e Algorithm development.

e Modelling, simulation and prototyping.

e Data analysis, exploration and visualisation.

e Scientific and engineering graphics.

e Application development including of building graphical user interfaces.

3.2.1.2 SIMULINK

SIMULINK is a software package for modelling, simulating and analysing
dynamical systems. It supports linear and nonlinear systems, modelled in continuous
time, discrete time or a hybrid of the two. For modelling, SIMULINK provides a
graphical user interface (GUI) for building models as block diagrams using click-
and-drag mouse operations. With this interface, we can draw the models just as we
would with pencil and paper. This is different from previous simulation packages
that require the formulation of differential equations and difference equations in a
language or program. After we define a model, we can simulate it using a choice of
integration methods either from the SIMULINK menus or by entering commands in

the MATLAB command window.

3.2.1.3 Real Time Workshop (RTW)

The real time workshop complements SIMULINK by providing automatic C code
generation directly from SIMULINK models. We can design the system using
MATLAB and SIMULINK and generate a code from the block diagram model. We
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can then compile and download the code directly to the target hardware. The RTW
supports the WATCOM C++ version 11 and Visual C++ version 6. The RTW
supports the execution of dynamical system models on a wide range of computer
platforms, including real time hardware, to allow real time simulation and rapid
prototyping. With the RTW, we can quickly generate C code for discrete time and
hybrid systems. With the RTW, we can run the SIMULINK model in real time on a
remote processor. We can run accelerated, stand-alone simulations on the host
machine or on an external computer. The RTW provides a real time development

environment that features:

e A rapid and direct path from system design to hardware implementation.
e Seamless integration with MATLAB and SIMULINK.
e A simple and easy-to-use interface.

e An open and extensible architecture.

The RTW supports a variety of real time applications such control systems,

measurement systems and signal processing systems.

3.2.1.4 Real time windows target

The real time windows target is a turnkey, single PC windows target for C code
generated by real time workshop. It used to connect the real time model with the data
acquisition card. It is ideal for real time control, real time signal processing, rapid

prototyping and other applications.

3.2.2 Hardware

The real time window target supports several hardware products of many companies
(National instruments, Analogue devices, Keithley...etc). The hardware is the data
acquisition card. In our system we use National instruments (Lab-PC-1200) data

acquisition card. The sampling rate is up to 100 ksamples/s, 12-bit performance on 8
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single-ended analogue inputs. The 1200 family boards feature two 12-bit analogue

outputs and 24 digital I/0O lines.

3.2.3 Real time model generation

The steps of the real time model is summarised as follows:

1.

Determine the state equations of the chaotic system if it is represented by an

electronic circuit.
Convert the state equations to a SIMULINK model.

Run the SIMULINK model in the internal mode (not real time) and verify that it

is working properly.

Add the real time input ports (RT in), output ports (RT out) and the adapter
blocks to the SIMULINK model. The function of each block is as follows:

e RT in is the real time input that connects the model to one of the analogue

input channels of the data acquisition card (Lap-PC 1200).

e RT out is the real time output that connects the model to one of the analogue
output channels of the data acquisition card (Lap-PC 1200).

e Adapter is used to define the data acquisition card to the model.

Define the sampling rate of the real time input and output ports. The sampling

rate should be the same as the time step used in the model parameter menu.

Convert the model to the external mode and built the real time model using the

real time workshop and the visual C++ compiler or WATCOM C++ compiler.

Connect the model to the target (data acquisition card) from the SIMULINK

model parameter menu.

Now the model is ready to run by clicking start from the parameter menu.

60




Chapter 3  Direct representation of the chaotic state equations with real time implementation

3.3 Real time chaotic generators

3.3.1 Continuous time chaotic generators

3.3.1.1 Real time Chua chaotic generator

Chua’s circuit is one of the simplest autonomous circuits that can exhibit bifurcation
and chaos [23]. The circuit diagram is shown in chapter 2 (Fig. 2.5). It has been
studied extensively and the formal proof of the existence of chaos has been

accomplished [24]. The state equations of Chua’s circuit are given by

G 1
= —(ch ”Vcl)__g(vcl)

v

“q C

. G 1.

Ve, :C—z(vcl _VCz)+alL (3.1)
1

by = —zvcz

where g(v. ) is the characteristic of the nonlinear resistor and it is given by

g(vC‘):movcl +05(m , +m ) ‘vcl +B, —\vcl —BP‘), (3.2)

The component values of the Chua chaos generator are given in table 3.1.

Component Value Component Value
o 10 nF L 18 mH
G 0.63 mS m, -0.309 mS
C, 100 nF m, -0.758 mS
B, 1.0V

Table 3.1 Component list of piecewise linear Chua chaotic
generator.
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One advantage of our method of implementation is that we can introduce any
mathematical expression for the Chua nonlinear function even if it cannot be
implemented using a physical circuit. We introduce a new nonlinear function of the

Chua nonlinear resistor, which is given by

g(v¢, ) = —atanh (b"c,) (3.3)

where a and b are constants and a=2 and b=0.38. The characteristic of this nonlinear

function is shown in Fig. 3.2.

G : : : ! !
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N b WIS SRR MERSI SRS Sh——— N
ol 1| NP S S N SE—— R S—— .
E E E !
| — .. S SV S i
2 ‘ ' ‘ ‘
L ' 1 ' 1
=l ' ‘ : '
e oo Fooeeeens oo NG St SEREEEEI -
e s ot o emeen e Tt —— -
A5 frneneeee e e s e T
5 i H H I H
-3 -2 -1 0 1 2 3
vel [volts)

Fig. 3.2 Nonlinear characteristic of Chua diode.

The real time model of the Chua chaotic generator is shown in Fig. 3.3. The scaling

factors §,, S, and S,are used to control the frequency band of the output signals.

The scaling factors are chosen to be 1000 to have chaotic signals in the frequency

band from O to10 kHz.
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— Nonlinear function of Chua's diode

itz

15
g

RT Out

IL

1/C2
+

1

s

A 4

RT Out

Yei1

G

:: I:+
1
s

Iada=d=

RT Out

V¢2

Fig. 3.3 Real time Chua chaotic generator.

Fig. 3.4 shows the results of the simulation of Chua’s circuit. Figs. 3.5, 3.6 and 3.7

are the measured outputs of the real time Chua chaotic generator using a Tektronix

TDS 360 oscilloscope. The results show that the simulation and the measurement

give similar outputs. The results are also the same as the results of the Chua

implemented using a physical circuit [23] but with the flexibility of changing the

system parameters and controlling the frequency band of the chaotic output. The

results prove that the developed method can be used to implement a chaotic system

that is defined by the state equations or a circuit such as a Chua chaotic generator.
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Fig. 3.4 Simulation results of the Chua chaotic generator.

63




Chapter 3  Direct representation of the chaotic state equations with real time implementation
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Fig. 3.5 Measured capacitor voltage v, .
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Fig. 3.6 Measured capacitor voltage v, .
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Fig. 3.7 Measured current through the inductor L.
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3.3.1.2 Real time R éssler chaotic generator

The state equations of the Rdssler chaotic generator are given by [25]

X=-y-z
y=x+Ay (3.3)
z=B+z2(x-C)

where A, B and C are constants and A =0.398, B=2and C =4. The real time

Rossler model is shown in Fig. 3.8. The scaling factors of the real time model are
equal 1000 to have chaotic signals in the frequency range from O tol0 kHz. The
simulation results are shown in Fig. 3.9. The real time measured results using the
developed method are shown in Figs. 3.10, 3.11 and 3.12. The results illustrate that
using the developed real time method, the simulation results and the measured results
are same. The results prove that the developed method can be used to implement the

chaotic systems that are defined by state equations such as Rdssler chaotic generator.

X
X J RT Out
i 4
Y - RT Out
[=1n
10s
Adapter
Z
1
- A I RT Out

Fig. 3.8 Real time Rossler chaotic generator.
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Fig. 3.9 Simulation results of Rossler chaos generator
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Fig. 3.10 Measured x state variable of real time Rossler generator.
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Fig. 3.11 Measured y state variable of real time Rdssler chaotic
generator
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Fig. 3.12 Measured z state variable of real time Rdssler chaotic
generator.

3.3.1.3 Real time Lorenz chaotic generator

The state equations of the Lorenz chaotic generator are given by [26]

u=A(v—-—u)
v=Bu-v-20uw (3.5)

w=5uv-Cw

where A, B and C are constants and A =10, B =28 and C = 2.6667 . The real time
model of the Lorenz chaotic generator is shown in Fig. 3.13. The scaling factors
S,, S, and S, are chosen to be 1000 to have chaotic signals in the frequency range
from O to 10 kHz. The simulation results of Lorenz chaotic generator are shown in
Fig. 3.14. The measured output signals are illustrated in Figs. 3.15, 3.16 and 3.17.
The results indicate that using the developed real time method the simulation and the

measurement results are the same.
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Fig. 3.14 Simulation results of the Lorenz chaotic generator.
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Fig. 3.15 Measured u state variable of the real time Lorenz chaos

generator.
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Fig. 3.17 Measured w state variable of the real time Lorenz chaotic
generator.
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3.3.2 Discrete time chaos generator
3.3.2.1 Henon map chaotic generator

The state equations of the generator are given by [27]

X, =l+y —ax’
n+l yn n (36)
yn+1 = bxn

where a and b are constants and a=1.4 and 5=0.3. The real time model of the Henon
map chaotic generator is shown in Fig. 3.18. The simulation results are shown in
Fig. 3.19. The measured results are illustrated in Figs. 3.20 and 3.21. The results

show that the simulation and the measured results are same.
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Fig. 3.18 Real time Henon map chaotic generator.
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Fig. 3.19 Simulation results of the Henon map.
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Fig. 3.21 Measured y(n) state variable.
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3.4 Real time chaotic communications system

In this section, we introduce an example of how to implement a real time chaotic
communications system. The general block diagram of the system is shown in

Fig. 3.22.

Software programs
1-MATLAB
2-SIMULINK

Software programs
1-MATLAB
2-SIMULINK

3-Real-time workshop
4-Real-time target
5-WATCOM C++

3-Real-time workshop
4-Real-time target
5-WATCOM C++

- =
_— I — = |Channel | ________ - —
- e DAQ i
o —
— Nl PG |
| P 1200 |
! 1200 | __eve !
| S ——
IBM Compatible 1 v IBM Compatible
Information Recovered
signal signal
Mouse Transmitter Receiver Mouse

Fig. 3.22 Block diagram of real time chaotic communications
system.

The system works as follows:

1. The transmitter.
e The transmitter is built as a real time model as in the previous examples.
e The transmitter is connected to the data acquisition card from the transmitter
control menu.
e The information source is connected to one of the input ports of the data
acquisition card at the transmitter.
e The transmitter model is compiled using WATCOM C++ to generate the C

code and the executable program.
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e The transmitter is now ready to run and transmit the chaotic transmitted

signal to the receiver.

2. The channel
e A physical channel is achieved between the transmitter and the receiver by
connecting the real time output port (transmitted chaotic signal) of the
transmitter to the real time input port (received chaotic signal) of the receiver.
3. The receiver
e The receiver model is built in real time using the developed method.
e In the receiver model, we must use the same time step, solver and parameter
values as in the transmitter.
e An oscilloscope is connected to one of the output ports of the data
acquisition card to monitor the recovered signal.
e The receiver model is compiled using WATCOM C++ to generate the C
code and the executable program.
e The receiver model is connected to the data acquisition card from the
receiver model menu.

e The receiver is ready to run and recovered the information signal.

The system is tested using the multi-channel chaotic communication system (MCCS)
introduced in Chapter 2 (section 2.4). The real time system model is shown in
Fig. 3.23. The measurement results are shown in Figs. 3.24, 3.25 and 3.26. The upper
part of Fig. 3.24 is the synchronisation signal while the lower part is the chaotic
transmitted signal with a signal to chaos ratio of —14 dB. Fig. 3.25 shows the input
signal and the recovered signal is shown in Fig. 3.26. The figure shows that the real
time receiver system succeeds in recovering the information signal from the chaotic

transmitted signal.
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Fig. 3.23 Block diagram of the multi-channel chaotic
communication system using the developed method.
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Fig. 3.26 Measured recovered signal.
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By comparing the MCCS implemented using the developed real time method with
the MCCS implemented by a physical circuit (chapter 2 (section 2.4)), we conclude

the following:

1. The results of the circuit implementation of the MCCS (SCR=-24 dB) are better
than the results of the real time system (SCR=-14 dB). The reasons of that are:

e The real time system is tested on a computer with AMD233 processor. The
clock of the processor is 233 MHz so the minimum step size that can be used
is 0.0005 seconds and this imposes a limitation on the accuracy of the
numerical integration solver.

e The data acquisition card has no reconstructing circuitry (LPF) at its outputs
that can be used to decrease the spikes in the recovered signal.

2. The implementation of the MCCS system using the developed real time method
is very easy. In this method, we just draw the block diagram of the system using
the state equations and define the data acquisition card in the block diagram. The
modification of the system is easy since it requires changing the block diagram of
the system or changing the parameter values.

3. The problem of component accuracy, which appears in the circuit
implementation, is absent here because in the developed real time method we
have parameter values not physical component values.

4. The cost of the developed real time system is higher than the circuit
implementation of the system. But the cost is decreased when we transmit more
than one information signal to the same place using the facilities of the data
acquisition cards. Every data acquisition card has several input channels (either 8,
16 or 64) and these channels can be used to transmit several informational signals
without any additional hardware. A small modification in the block diagram is

required (software).
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3.5 Conclusion

A new method to implement chaotic generators and chaotic communication systems
in real time is developed. The developed method is capable of implementing the
chaotic systems that are given by state equations in real time. This method is
established to solve the synchronisation problem present in the chaotic systems
implemented by analogue circuits. The method is implemented by MATLAB,
SIMULINK, real time workshop, real time target window and the data acquisition
card Lab-PC-1200. The method is useful for the implementation of chaotic
generators at low frequencies (in the order of a few kHz). The method is used to
implement continuous (Chua, Rossler and Lorenz) and discrete (Henon map) chaotic
generators. A new nonlinear expression for the Chua nonlinear function is
introduced. The developed method is utilised to achieve communication between two
computers using the multi-channel chaotic communication system. The advantages

and the disadvantages of this method can be summarised as follows:

1. Advantages
e It can be used to implement chaotic generators that are described by state
equations and cannot be implemented by a physical circuit.
e It is easy to use and the modification of any system is a simple change in the
block diagram or the parameter values within the block.
e It solves the problem of component accuracy that is present in all analogue
chaotic communication systems.
2. Disadvantages:
e It can be used to implement only low frequency chaotic generators
(in order of a few of kHz) since the maximum sampling rate that can be used
in the model is 20 kHz.
e The cost of the developed real time system is higher than the circuit

implementation of the system.
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Chapter 4

MICROWAVE CHAOTIC SYSTEMS

4.1 Introduction

Some results on chaotic communication systems have been reported [1]-[10].
However,0000 all the developed systems so far have been at low frequencies. The
reason for this is that no systematic method exists for designing chaotic microwave
generators and predicting their performance. In this chapter we offer an analysis
procedure that accurately predicts the performance of microwave chaotic generators
based on a frequency multiplier chain [11]-[12]. The choice of this type of chaotic
generator is based on the following arguments.

e Multiplier chains use highly non-linear devices such as varactor diodes, step
recovery diodes or FETs [13].

e The circuits for multiplier chains are also of high order due to the presence of a
large number of energy storing elements for the matching networks and the
idlers. These two facts make the multiplier chains liable to become chaotic. Only
one of the stages in the multiplier chain can be made chaotic and the rest of the
chain is used to multiply the chaotic signal to the desired frequency. This makes
the design of the generator easy and the results predictable.

The next question we have to answer is why should we build a chaotic microwave

communication system? There are two main advantages in building such systems:

1. The chaotic microwave carrier has a wide spectrum [14]. This gives these
systems similar advantages to spread-spectrum communication systems using
pseudo random generators [15]. The main advantage is higher narrow band
jamming signals. This is particularly important in radar and communication
systems.

2. Chaotic signals are deterministic, unlike random signals [16]. This offers the

possibility of synchronising the transmitter and the receiver. Synchronisation in
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turn offers the possibility of burying the information in the chaotic signal which

results in vastly improved system security [17].

In this chapter we will introduce a new chaotic generator in J-band and then we will

introduce its applications in radar and in communication systems.

4.2 Chaotic J-band for radar and microwave communication systems

4.2.1 Theoretical analysis of chaotic multipliers

It is important to develop a theoretical method for predicting the performance of the
chaotic generator. The method we have used is based on state-space analysis and the
solution of the state equations in the time domain. We shall give here an example
based on a frequency tripler, which is used later to design the microwave chaotic
generator. We shall then compare the theoretical and practical results. The tripler
uses a step recovery diode, it has input and output matching sections and an idler at
the output to short-circuit the second harmonic signal. The circuit for the tripler is

shown in Fig. 4.1.
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Fig. 4.1 (a) Tripler circuit diagram.
(b) Tripler with varactor equivalent circuit.

The model used for the diode is a parallel combination of a non-linear capacitor C,

and a non-linear resistor R,.

equation

I, =1 (exp(v/v,)—1) @.1)

The non-linear resistor is represented by diode

where the saturation current 1_is taken as 10> A and v, as 25 mV. The non-linear

capacitor C, is a function of the instantaneous charge g and the resulting

instantaneous diode voltage v, is given by [18]

v, =dalq|+bg+E, (4.2)
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where

a= Cb_Ca
2C.C,

b= L +LC, ’
2L Gy

For the chosen diode, C,= 2.8571nF, C, = 5.0 pF and E,= 0.1 V. The relation

between the capacitor voltage and the capacitor charge is shown in Fig. 4.2a. The

nonlinear resistor characteristic is shown in Fig. 4.2b.
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=] ‘ ‘ i i
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© : i ; ‘
j=2] ' ' ' '
_.CE i ' ' i
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= ' 1 : :
‘é h ‘ ' '
e R SECEEEEI CEEEREEL R R bomenes -
QL i '
1] '
O :
4 -3 -2 -1 0 1 2 3 4 5
Capacitor charge [Coulomb] w10°

Fig. 4.2 Non-linear capacitor characteristic.

Next we derive the state equations for the circuit shown in Fig. 4.1. One advantage of
the state-space representations is that a signal flow diagram can be directly derived
and solved in the time domain. There are ten energy-storing elements, however since
there is a cut-set consisting entirely of inductors (L,, L3 and L) the true order is only

nine. The state equations are derived in the normal form x = Ax+ Bu.
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After eliminating the dependent state variable i, the state equations are given by

[y 1 1 r 1]
al |- 0 0 0 0 0 — 0 0 E
RC, & &
1
Ve 0 0 0 0 0 0 = 0 0 ||ve| |
Ves 0 0 0 0 0 0 0 0 CL ve | |9
3
1 1 .
Vey 0 0 0 0 0 0 0 C_4 -C_4 Ve,
d 1 1 1
—_— s - - S -—— 0
dt Ves 0 ¢ b g . RLC5 0 Cs CS Ves i s
R +R 1 1
) 0 0 0 0 Lo -— 0 0
. Rl Rd Czl Cd Cd Ved
1 1 1
- = 0 0 — 0
Ly L L L & E : Iy .
0 -a, -ay a, 1 0
Lo . . 0 g g i 0
a, a a a L2
0 b b, by by 0 0 0 |l 0
i L+L, L+L L+L L+L ] I
where,
L,L, L L
al llz o . 2= ) 3= )
L+ L, L+ L L+ L,
2 a; ) 1
b=1*L,— , by=1+L,— ; b=1-L,— , =L, —
1 1 a, a,

Next a signal flow diagram representing the state equations directly is developed and

simulated in the time domain using SIMULINK. The signal flow chart is shown in

Fig. 4.3. One major advantage of this representation is that the circuit elements are

identifiable in the diagram and the effect of changing them can be easily studied.

This is essential in studying the chaotic conditions and the behavior of the system en

route to chaos. The input signal of the tripler is a sine wave with amplitude 35 volts

and frequency 92.534720 MHz. For simulation the frequency of input signal is

normalised to be 0.09253720 and the circuit components are normalised as given in

table 4.1. The initial values of the circuit elements for the circuit to operate as a

tripler are given in table 4.1.
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Fig. 4.3 Signal-flow representation of the state equation.
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Component Ml Normalised
values
“ 35 pF 0.035
G 820 pF 0.820
© 9 pF 0.009
& =Pl 0.005
= L5 pk 0.015
. 90 nH %
L 20 nH 20
L, 80 nH g5
L, 70 nH 20
R, 50 Q 50
R 10 kQ 10000
R, 60 Q 60

Table 4.1 Tripler circuit elements values.

The simulation results of the tripler input signal in time and frequency domains are
shown in Fig. 4.4. The results of tripler output signal in time and frequency domains

are illustrated in Fig. 4.5.
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Fig. 4.4 Simulation results of the input signal in time and
frequency domains.
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Fig. 4.5 Simulation results of the tripler output in time and frequency
domains.

The tripler circuit is in fact a near chaotic circuit operating in period three. To bring
the circuit to full chaos the values of the circuit elements were changed as given in

table 4.2.
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Component Value Normalised
values
¢ 150 pF 0.15
< 85 pF 0.085
. U gk 0.05
C 5 pF 0.005
s 80 pE 0.08
L 50 nH 9
L, 15 nH 15
L, 90 nH 90
L, 65 nH 65
R, 50 Q 50
i 100 kQ 100000
R, 60 Q 60

Table 4.2 Chaotic circuit element values.

The result of the chaotic behaviour in the time domain and the spectrum is shown in

Fig. 4.6.
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Fig. 4.6 Chaotic behaviour in time and frequency domains.

To obtain the attractor of the signal, a delay T was introduced and the phase plane

was plotted of the output vy (#) versus the delayed output v,(# —T7). The time delay

T in this case is 0.3 ns. The resulting attractor is shown in Fig. 4.7. The reason for
plotting the attarctor in this way rather than use two different state variables is that
we wish to compare this result with those obtained from the measurements. In

measurements we will only have the final output of the generator.

Delayed chaos output signal [volts]

8 1 L 1 L n
-8 6 -4 -2 0 2 4 6
Chaos output signal [volts]

Fig. 4.7 Attractor of the chaos signal.
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4.2.2 Practical design

A multiplier chain was build consisting of a crystal controlled oscillator at

92.534720 MHz followed by an amplifier. A multiplier chain multiplies the

frequency to 13.32 GHz. The first multiplier is a tripler and this is the stage that was

designed to have chaotic behaviour as obtained from the simulation. The block

diagram of the generator is shown in Fig. 4.8. The physical circuit of the chaotic

generator is shown in Fig. 4.9.

Chaotic
tripler

Crystal 92.5 MHz 92.5 MHz
: Kmplifief
oscillator 100 mW
3.3313 GHz 1.6656 GHz
Quadrupler <«——— Doubler *———
1W 2W

9 W |0.2776 GHz

Sextupler

100 mW [13.32 GHZ

Fig. 4.8 Block diagram of chaotic generator.

Quadrupler

Doubler

Sextupler

Tripler

Amplifier

Amplifier

Crystal
oscillator

Fig. 4.9 Physical circuit of the J-band chaotic generator.
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Measurements were made on the designed generator using a Hewlett-Packard

microwave transition analyzer (HP70820A). The output of 13.32 GHz was sampled

at 0.5 ns intervals. The block diagram of the test bench of the microwave chaotic

generator is shown in Fig. 4.10.

Microwave transition analyser

HP 70820A

RF input

=—

IBM Compatible |

Microwave
chaotic
generator

Power

supply
12V

Fig. 4.10 Block diagram of the testing bench of the J-band chaotic

generator

The measured output in the time and frequency domains is shown in Fig. 4.11. The

attractor for a time delay of 1.5 ns is shown in Fig. 4.12. The results are remarkably

similar to those obtained from the simulation, which indicated the validity of the

model used and of the simulation process.
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Fig. 4.11 Measured chaotic signal in time and frequency
domains.
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Fig. 4.12 Attractor of the measured chaotic signal
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This is the first time that the results of a J-band microwave chaotic generator have
been reported. The importance of the presented work is that an analysis procedure
has been developed to predict accurately the chaotic behaviour of the generator. This
offers the possibility of designing chaotic radar and microwave chaotic
communication systems with greater security and narrow band jamming immunity
than conventional systems. The developed topology is based of frequency multiplier

chains. By adding further multiplier stages higher frequency outputs can be achieved.

4.3 Chaotic radar and microwave chaotic communication systems

In this section, we present the application of the microwave chaotic generator in
chaotic radar and microwave chaotic communication systems [19]-[20]. When we
transmit a pulsed RF signal, we refer to the system as chaotic radar system and when
we transmit a modulated AM signal, we refer to the system as chaotic
communication. These systems are based on the chaotic microwave generator
introduced in section 4.2. The generator is used as the transmitter and the inverse of
this system is used as a receiver. The function of the inverse system is to reconstruct

the radar pulse signal or the information signal that is the input to the transmitter.

4.3.1 Receiver design

The most important part of the receiver is the signal processing circuitry that will
retrieve the information signal from the chaotic signal. The approach adopted here is
based on deriving an inverse system of the original chaotic multiplier and
downloading the algorithm on a signal-processing chip. The signal processing does
not have to be carried out at microwave frequencies as shown in Fig. 4.13. In this
system the information, radar pulses or AM signal, is applied as an input to the tripler
chaotic generator. The output of the tripler is a group of multiplier stages and
amplifiers so the transmitted signal is a microwave chaotic signal. In the receiver, the
frequency of the received signal is down-converted and amplified to the frequency of

the tripler chaotic generator. The down-converted signal is applied to the inverse
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system which is a signal processing chip has an inverse function of the tripler chaotic

generator so the information signal can be recovered.

Input — Transmitted
signal Frequency | Mul;;[zlhers | signal
tripler siplifies

Channel
Recovered
signal | Inverse Dividers
tripler and amplifiers
Received
signal

Fig. 4.13 Simplified block diagram of the microwave chaotic
communication system.

In the inverse system, we will assign new notations for the currents and voltages as

shown in Fig. 4.14.

R, V, c, L, V. L, v, Ly Cy Vs
Wy L
i, +] 14 I 4 lg + g
1 i2 + L3 I7
Vs (f) (1 R1§ Ralel C4 's == keg § R,
~ ) TCS
+- ¢

Fig. 4.14 Circuit diagram of the tripler chaotic generator.
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The equations of the inverse system are given by

g ==L
L
dv
i =C,—¢ (4.3)
7 5 dl
g =1, t1i
dip, 1 ¢
=Lt c [isdr +v, (4.4)
L =L+
i = ijvldz L [[isar (4.5)
L LC,
di
LR A 7: t (4.6)
1 di
v.=—|idt+L—+v, 4.7
i C2 J. 3 l’l dt cd ( )
_ dv,
L, = Cl—;j—t— (48)
I, =i, +1,

The recovered signal v, is given by

v, =R +v,.

In this case, the number of state equations is still nine as in the transmitter but we
have combined some of the state equations in one equation. For example, Eq. 4.4 is
of second order. The signal flow diagram of the inverse algorithm is shown in

Fig. 4.15.
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Fig. 4.15 Signal flow diagram of the inverse system.
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In the inverse system, a non-linear inverse function has to be developed. The inverse

of the non-linear function of Eq. 4.2 is given by

VC(I_E()
v, 20.1
y y=d4 atd « , 4.9
90Vea) v, —E, v, <0.1 (49)
b-a

0.025 1 T : T x |
R e
0 R s o e
S T

] ST S fomennns .

Capacitor charge [Coulomb]

-0.005 : = *
0.2 -0.15 0.1 -0.05 0 0.05 0.1 0.15
Capacitor voltage [Volts]

Fig. 4.16 Characteristic of the inverse non-linear capacitor.

The main disadvantage of the above non-linear capacitor function is that there is a
discontinuity at the point of transition from the negative charge to the positive
charge. In the inverse system, there are differentiators and differentiators will
produce large spikes and high error at the discontinuities of the non-linear capacitor
function. As a result the recovered signal will be distorted. Fig. 4.17 illustrates the
results of the microwave chaotic radar system. Fig. 4.18 shows the results of the AM

microwave chaotic communication system in this case. The results show that the
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inverse system does not recover the information signals in both cases due to the

discontinuity in the non-linear capacitor function.
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Fig. 4.17 Input radar pulses, transmitted chaotic signal and the
recovered radar pulses in time and frequency domains.

4]
20 10
= =
'oE'v’Zo & )
£ 52
E w
20 Z0
0 5 10 15 20 262 = 0 1 2
Time [nsec] 2 Frequency [GHz]
= 0.1 S (.04
c E
o) o
= T2
Ezo §2
& 2 2
= =
2 01 £ 0
0 5 10 15 20 252 o O 1 2
Time [nsec] g 3 Frequency [GHz]
s 50 T 210
g s
T 0
B30 55
22 =
2 @
ox -50 £ 0
0 5 0 15 20 25 2 0 | 2
Time [nsec] & Frequency [GHz]

Fig. 4.18 Input AM signal, transmitted chaotic signal and the
recovered AM signal in time and frequency domains.
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To overcome the above problems, we introduce a new expression for the g-v
characteristic of the capacitor non-linear capacitor instead of the expression given by
Eq. 4.2. This expression improves the performance of the inverse system.

The non-linear capacitor function is written as

1/C, = b, +0.5a, tanh(—cq) . (4.10)

The g-v characteristic of the non-linear capacitor function is given by

Va(q) =bg - 0.5%2 log(cosh(—cq)) +0.1 4.11)
c
where
a, L a,=—andb, = 4“1
C, " 2

and c is a constant that determines the slope of the tanh function and is set equal to
200. According to Eq. 4.11, the non-linear capacitor of the transmitter is shown in

Fig. 4.19.
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Fig. 4.19 Non-linear capacitor characteristic.
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In the receiver, we get the inverse of the capacitor non-linear function (Eq. 4.11) by

two methods:

Method 1.

. : L dv
Calculate the current i, using the voltage v, from the relation i, =c, dCd . The
t

same values given in table 4.1 are used in the simulation and C,= 2.8571 nF and

C, = 5.0 pF. The results in this case are shown in Figs. 4.20 and 4.21.
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Fig. 4.20 Input radar pulses, transmitted chaotic signal and the
recovered radar pulses in time and frequency domains.
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Fig. 4.21 Input AM signal, transmitted chaotic signal and the
recovered AM signal in time and frequency domains

The results show that with the new non-linear capacitor function, the performance of

the inverse system is improved and the information signals are recovered with good

accuracy and the distortion in the recovered signal is reduced especially in the

microwave chaotic communication system (SNR=27.89 dB AM signal).

Method 2.

We use a lookup table as a source of data for the transmitter and the receiver non-

linear functions. We put the relation between the charge g (input) and the voltage v_,

(output) in the transmitter lookup table. The data can be taken from experimental or

from simulation results. In the receiver, the same data of the transmitter non-linear

function is used but we use the capacitor voltage v, as input and the charge g as
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output of the receiver lookup table. The inverse of the non-linear capacitor function

is shown in Fig. 4.22.
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Fig. 4.22 Inverse system non-linear function characteristic.

The system is tested by radar pulses and AM signal and the results are shown in
Figs. 4.23 and 4.24. The results show that the performance of the system using the
lookup table is better than the system using method 1 in both the cases of radar
pulses and AM signal. In this case, the SNR= 27.86 dB while in the first method the
SNR=-0.4 dB.
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Fig. 4.23 Input radar pulses, transmitted chaotic signal and the recovered
radar pulses in time and frequency domains.

103



Chapter 4

Microwave chaotic systems

The effect of the channel attenuation and the channel delay are tested in the chaotic
radar and microwave chaotic communication systems. Fig. 4.25 shows the effect of
the channel attenuation and channel delay in the chaotic radar system. Different
attenuation values are chosen (25%, 50% and 75%) and different delay values 5 ns

and 10 ns are tested and the system succeeds in recovering the radar pulses under
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Fig. 4.24 Input AM signal, transmitted chaotic signal and the

recovered AM signal in time and frequency domains.
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Fig. 4.25 Effect of channel attenuation and delay in the radar

system.
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Fig. 4.26 shows the effect of the channel attenuation and channel delay in the
microwave chaotic communication system. The results show that the system

succeeds in recovering the information signal under these conditions.
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Fig. 4.26 Effect of channel delay and attenuation in the microwave
chaotic communication system.

Finally, we suppose that part of the receiver input signal is lost and we would like to
check if the system is capable of recovering the radar pulses or not. The results show

that, the system succeeds in recovering the radar pluses as shown in Fig. 4.27.
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4.4 Conclusion

The importance of the present work is that an analysis procedure has been developed
to predict accurately the chaotic behaviour of the microwave chaotic generators.
The developed topology is based on the frequency multiplier chains. By adding
further multiplier stages higher frequency outputs can be achieved. This offers the
possibility of designing chaotic radar and microwave chaotic communication systems
with greater security and noise immunity than conventional systems. The transmitter
is based on frequency multiplier chains and the signal is recovered using an inverse

system of the transmitter. A new expression of the g —v characteristic of the varactor

non-linear capacitor is presented. Different methods to get the inverse of the
non-linear capacitor function are presented. The results in each method are presented
and the systems succeed to recover the information signals. The effects of the
channel delay and channel attenuation are examined. The results show that the input
signals are recovered with good quality and the systems have immunity against these
effects. The effect of loss part of the received signal is tested and the system is able

to recover the information signal under this condition.
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Chapter 5

SECURE COMPUTER COMMUNICATION USING
CHAOTIC ALGORITHMS

5.1 Introduction

Cryptography is simply defined as the process of combining some input data
called the plaintext with a user-specified password to generate an encrypted
output called ciphertext in such a way that, given the ciphertext no one can
recover the original plaintext without the encryption password in a reasonable
amount of time [1]. The algorithms that combine the keys and plaintext are
called ciphers. The process of encoding the data with a particular cipher is
known as encryption. The reverse process, extracting the original information
from the encrypted data, is known as decryption. Many ciphers accept a fixed
length password (also called a key). The key space is the total number of
possible keys and the key lengths are the numbers of digits or bits used as a key.
This number increases as the computing power grows. So what makes one cipher
better than another? What makes a cipher secure? Although these questions are
the essence of cryptography their answers are relatively simple. If there is no
other way to break the algorithm (recover the plaintext or key given some
ciphertext) other than searching through every possible keys, then the algorithm
is secure. This is where a large key length comes in. The larger key length means
that there are more possible keys to search through and therefore the algorithm is
more secure. Practically, there are several methods to break the cipher system
without searching for all the keys [2]. Recently, there has been much interest in
utilising chaotic signals in cryptography [3]-[4]. Habutsu et al [5] proposed a

secret key cryptosystem using a chaotic map. This system is based on the
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characteristics of chaos that small variations of the parameters make the results
of recursive calculations on the chaotic map quite different. Matthews [6] shows
that, under certain conditions, even simple non-linear functions are capable of
generating chaotic sequences of random numbers. Carroll et al [7] utilise the
Lorenz chaotic generator as a generator of pseudo-random sequences for

cryptographic applications.

In section 5.2, a brief description of the classical cipher systems is introduced. A
survey of some chaotic encryption algorithm is presented in section 5.3. A new
method for encrypting voice, text and image files using chaotic signals is
presented in section 5.4. Section 5.5 is the conclusion and section 5.6 is the

chapter references.

5.2 Background of the classical cipher algorithms

There are several algorithms used in cryptographic systems. Some cryptographic
methods rely on the secrecy of the algorithm, such algorithms are only of
historical or academic interest and are not adequate for real-world needs. All
modern algorithms use a key to control the encryption and the decryption. A
message can be decrypted only if the key matches the encryption key. The key
used for decryption can be different from the encryption key but for most
algorithms they are the same. There are two classes of key-based algorithms
symmetric (or secret-key) and asymmetric (or public-key) algorithms [8]. In
symmetric algorithms, the encryption and the decryption keys are the same.
Symmetric key algorithms require that the sender and the receiver agree on a key
before they can communicate securely. The security of the symmetric key system
rests in the key itself. Revealing the key means that anyone could encrypt and
decrypt the messages. Symmetric algorithms are divided into two categories
stream cipher and block cipher. The stream cipher operates on the plaintext as a

single bit (or sometimes byte) at a time. The block cipher operates on a group of
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bits. For modern computer algorithms a typical block size is 64 bits. Asymmetric
key or public-key algorithms are designed so that the key used for encryption is
different from the key used for decryption. Furthermore, the decryption key
cannot be calculated from the encryption key, at least for any reasonable amount
of time. These algorithms are called public-key because the encryption key is
made public. A complete stranger can use the encryption key to encrypt a
message but only a specific person with the corresponding decryption key can
decrypt the message. In these systems, the encryption key is often called the
public key and the decryption key is often called the private key. Strong
cryptographic algorithms are designed for execution by computers or specialised
hardware devices. Generally, symmetric algorithms are much faster to execute
on a computer than asymmetric ones. In practice the two systems are often used
together so that a public-key algorithm is used to encrypt a randomly generated
encryption key and the random key is used to encrypt the actual message using a

symmetric algorithm.

Next a brief description of some examples of the classical encryption algorithms

are introduced.

5.2.1 The data encryption standard (DES)

DES is a symmetric algorithm developed in the 1970s [9]. It was made a
standard by the US government and has also been adopted by several other
governments worldwide. It is widely used, especially in the financial industry.
The DES assumes the data are available in binary form. It is designed for
enciphering and deciphering blocks of data of 64 bits. The key is also 64 bits
long of which 56 bits are used for encryption and the remaining 8 bits are used
for parity checks. The total number of keys is thus 2°°=7.2x10'®. The DES
algorithm consists essentially of a series of permutations and substitutions. A
block, which is to be enciphered, is first subjected to an initial permutation, IP,

then to a complex series of key-dependent operations and finally to a
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permutation IP~'which is the inverse of the initial permutation. Since the DES
uses 56-bit keys, it is fairly easy to break with modern computers or special-
purpose hardware. DES is getting too weak and should not be used in new
designs. A variant of DES is the Triple-DES or 3DES, which is based on using
DES three times.

5.2.2 International Data Encryption Algorithm (IDEA)

The IDEA is an algorithm developed at ETH Zurich in Switzerland [9]. It works
with blocks of 64 bits just as DES does. Each block is divided internally into 4
blocks of 16-bits each. The number of rounds is 8 and the size of the key is 128
bits. The round is a group of XOR, multiplications and additions. The input of
the IDEA algorithm consists of 4 blocks of 16-bits each d enoted by
X1, X2, X3and X4. In every round i, 6 subkeys are used each 16 bits long and

they are denoted by K, ,...,K, ;. Since there are 8 rounds 48 subkeys are used

plus 4 extra keys, which are used after the last round to transform the output. The

4 output blocks are denoted by Y1,Y2,Y3 and Y4. In each round, the 16-bit

blocks are XOR-ed and multiplied as indicated in Fig. 5.1. There are three
algebraic groups whose operations are being mixed and they are easily

implemented in both hardware and software:

e XOR @
e Addition modulo 2'°

e Multiplication modulo 2R X @
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Fig. 5.1 Block diagram of the IDEA algorithm.

5.2.3 Rivest-Shamir-Adleman (RSA) algorithm

RSA is the most commonly used public key algorithm [9]. It is generally
considered to be secure when sufficiently long keys are used. The security of
RSA relies on the difficulty of factoring large integers. Dramatic advances in
factoring large integers would make RSA vulnerable. At present 512 bit keys are
considered weak, 1024 bit keys are probably secure enough for most purposes
and 2048 bit keys are likely to remain secure for decades. The RSA works as

follows:
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1. Key generation

e Select two large prime numbers p and g, each about 100 decimal digit

long.

e Let n=pq and ¢(n) =(p-1(g-D.

e Select a random integer e between 3 and @(n) which has no common
factor with ¢@(n).

e Compute d which is the inverse of ¢ modulo ¢(n) [8]
d = e mod(¢(n)) (5.1)
e  The public information consists of the pair of integers (e, n).

2. Encryption

For a plaintext M which is an integer between 0 and (n —1), the ciphertext is

computed by:

C =M mod (n) (5.2)
3. Decryption

The message M is recovered by computing

M = C“ mod (n) (5.3)

5.2.4 El-Gamal cipher algorithm

El-Gamal cipher is also a public key cipher based on the discrete log problem
[9]. If Alice wants to send a binary n-tuple message M to Bob over an insecure

channel the processes involved are given blow:

1. Key generation:
e Bob selects a random number b as his private key.
e Bob computes Z” as his public key.

Where Z is an integer number less than the prime number.
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2. Encryption
e Alice selects a random integer K and computes Z* .
e Alice looks up Bob’s public key Z* and computes MZ*".
e Alice transmit the pairs Z* and MZ*" to Bob.
3. Decryption
e Bob recovers the original message by computing.

MZKb

5.3 Chaos encryption algorithms background

The problem of finding secure communication methods, which transmit
confidential information secretively, has a practical interest in several areas
including the protection of communication channels, databases and software.
Several techniques have been developed in this area. Yang et al proposed a
chaos-based secure communication system [10] to overcome the methods of
attack proposed recently [11]-[13]. In this method instead of encoding the
message signal using a chaotic signal directly, two chaotic signals are used. One
signal is used for the synchronisation between the chaotic encrypter and the
chaotic decrypter and the other signal is used to encrypt the plain signal using the

multi-shift cipher [9] scheme as shown in Fig. 5.2.
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Fig. 5.2 Block diagram of the chaotic cryptosystem.

The system is explained as follows, the chaotic cryptosystem consists of the
encrypter and the decrypter. The encrypter consists of a chaotic system and an
encryption function e(k) (n-shift cipher [9]). The key signal k(¢) is one of the
state variables of the chaotic system and another state variable s(¢) is the
transmitted signal. The encrypted signal y(z) is fedback into the chaotic system.
The state variable s(¢) is transmitted through a public channel to the decrypter
and is used to synchronise the encrypter and decrypter. The decrypter consists of
a chaotic system and a decryption function d (¢). The decrypter can find the key
signal when the decrypter and the encrypter are synchronised. The encrypted
signal is also recovered via synchronisation, then d(z) is used to decrypt the
encrypted signal. This system differs from the traditional discrete cryptosystem
where both the key and the encrypted signal should be transmitted to the
decrypter. Tao Yang et al uses Chua’s circuit [14] to implement this system. The

voltage across the capacitor C, is used as the key generator while the voltage

across the capacitor C,1is used to synchronised the encrypter and the decrypter.
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Grassi and Mascolo [15]-[16] used the same technique introduced by Yang et al
to encrypt the plaintext but they used a hyperchaos generator [17] as the chaotic

system.

Next, a new method for encrypting voice, text and image files using chaotic

encryption algorithms is introduced.

5.4 New chaotic algorithms for secure computer communication

Most publication to-date dealing with secure communication using chaos use

analogue physical electronic circuits and attempt to develop a real time system

[18]-[22]. In our view this approach has little chance of developing a practical

system for the following reasons:

e Good synchronisation is very difficult as the element values cannot be
controlled to the required accuracy and are functions of age, temperature,
manufacturing tolerances ...etc.

e The channel characteristics cannot be predicted or taken into account. This
leads most publications in this field to consider only ideal channels. In
practice such systems have little value.

e The systems and the non-linearities used are only those that can be
implemented using electronic circuitry, which makes an unnecessary
restriction.

e The time constants of the system cannot be easily adjusted to ensure that the
information signal and the chaotic signal fall within the same frequency
band.

Nowadays most communication is through computers and even real-time

communication systems are mostly digital not analogue. A computer-based

algorithm has the following advantages.

e The communication channel has no effect on the transmitted signal apart

from the communication delay.
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e Text, images and recorded voice can be transmitted.

e Email is the most used personal communication medium, especially for
official communication which is the kind that will mostly need security.

e Any chaotic algorithm can be used without the restriction that it can be
implemented using an analogue circuit. The choice is based entirely on
reliability and security.

e Non-linearities are described by any mathematical equation and hence any
non-linearity can be used.

e There is a freedom in the choice of the transmitted signal.

e The algorithm is easily transportable and can be incorporated in the
email communicator.

We shall describe an example of such a system that achieves degrees of

synchronisation, security and reliability that cannot be achieved otherwise.

5.4.1 Chaotic encryption algorithms

The algorithm developed is based on the Chua circuit, the Rossler system or the
Lorenz system [23]-[24]. Combinations of these systems are also possible. The
starting point is to develop computer models for the transmitter and the receiver.
One main reason that previous results have a high limit on the signal to chaos
ratios is that the receivers use differentiators to retrieve the signal. Differentiators
will always produces large spikes and high error if the signal contains
discontinuities which is always the case for images and text signals. We next
describe transmitter-receiver systems that overcome the above problems. We
shall use the Chua circuit to start with and then give the equivalent Rossler and

Lorenz systems.
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5. 4. 1.1 The Chua encryption algorithm

First we write the equations for the Chua transmitter and since they are treated as
a purely mathematical algorithm and we no longer have capacitors and inductors.

We shall use the usual symbols for the state variables.

The transmitter state equations are given by

% = A [ Ay, = x) = f(x)dt
X, = AJ A, (x = x,) = x, + Av, dt (5.5)
X, = A4J.x2 — Agx, dit.
In Eq. (5.5) the input plaintext v, is added to the second equation. This results

in the plaintext not being a simple addition to the transmitted signal. The
plaintext is also multiplied by a constant A to reduce its value with respect to the
chaotic signal. We shall present results later where A = 10° which results in a
signal to chaos ratios of about -240 dB. A can take any value rather than 10"
but less than A = 10" | the numerical solver of the algorithm needs less step size
to solve the algorithm as a result the algorithm becomes slow and greater than
this number means the signal to chaos ratio at the input of the system is increased
and the system becomes less secure. The transmitted signal is dx,/dt instead of
any of the state variables and this has the crucial advantage that differentiation is

avoided in the receiver. The derivative dx,/dr is of course readily available in

the transmitter before integrating the second equation.

The receiver equations are given by

'xl, = AlJ.Az(x; _xl’)_f(xl,)dt

vOM!
Al A,
Ty £ A4fx; — Asx; dt

:i[ii‘l—)—c—z——Az(xl'—x;)+x§J (5.6)

where v is the recovered informational signal.

out
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The above arrangement has the following advantages:

1. The plaintext is not simply added to the chaotic signal and thus cannot be

retrieved by subtraction.

2. Differentiation is avoided anywhere in the system and thus eliminating the

spikes that are always generated by the process of differentiation of abruptly

changing signals. This allows very low signal to chaos ratios.

Egs.

(5.5) and (5.6) can be easily represented using SIMULINK. The signal

flow of the encrypter and the decrypter are shown in Figs 5.3 and 5.4. The

explanation of the encryption and the decryption algorithms are discussed below.

1. The encryption algorithm

The plaintext file is read and the total number of characters inside the file
1s calculated.

The encryption keys are chosen by the user and stored into a file.

The total number of the plaintext characters and the encryption keys file
are stored into one file called the keys file.

The keys file is loaded to the algorithm and is applied to the
demultiplexer.

The demultiplexer converts the keys file values from a one-dimensional
array into individual values to be manipulated by the encryption
algorithm. The output of the demultiplexer is fed to the encryption
algorithm.

The encryption algorithm is a direct representation of the Eq. 5.5.

The plaintext is loaded to the algorithm and is encrypted using the
encryption keys.

The clock is an up-counter used to compare its instantaneous value with
the total number of characters. When these are the same and all the

plaintext characters are encrypted, the encryption algorithm is stopped.
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The resultant ciphertext is stored into a file and sent to the decrypter

through the LAN or WLAN.

2. The decryption algorithm

The total number of characters inside the received ciphertext is
calculated.

The decryption keys and the total number of ciphertext characters are
stored in one file called the keys file.

The keys file is applied to the demultiplexer.

The demultiplexer converts the keys file values from a one-dimensional
array into individual values to be manipulated by the encryption
algorithm. The output of the demultiplexer is fed to the encryption
algorithm.

The decryption algorithm is a direct representation of Eq. 5.6.

The received ciphertext is loaded to the algorithm and is decrypted using
the decryption keys.

The clock is an up-counter whose instantaneous value is compared to the
total number of ciphertext characters. When these are the same and all the
ciphertext are decrypted, the decryption algorithm is stopped.

Finally, the recovered plaintext is stored into a file.

The algorithms have also been converted to standalone C++ programs, which are

approximately two orders of magnitude faster than the SIMULINK model.
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Fig. 5.3 The Chua encryption algorithm.
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5.4.1.2 The R dssler encryption algorithm

Similar development is achieved for systems based on the Rossler and the
Lorenz equations.

The equations for the Rossler transmitter are given by

x, =—[x, +x, dt
X, = fx, + A%, + A, dt (5.7)
x,=[A, +x,(x, —A,)dt

The transmitted signal is dx,/dr and the equations for the Rossler receiver are
given by
X e —J.xl' + X, dt

1( dx p P
Vo = Z(d_; = X Alxzj (5.8)

¥, = [ A+ X - &) dr.

The signal flow of the transmitter and the receiver is illustrated in Fig. 5.5 and
Fig. 5.6. The explanation of the encrypter and the decrypter are similar to the

Chua algorithm in the previous system.
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5.4.1.3 The Lorenz encryption algorithm

Similarly the equations for the Lorenz transmitter are given by

X = Alj-x2 - X, dt
X, = J.Ale — X — Xk + Ap, df (5.9)

X, = lexz ~ A% 4.

The transmitted signal is dx,/dt and the equations for the Lorenz receiver are
given by
g = Al'[x; — x| dt

1 d-x # ’ ’ 7
V(mt = X(d_tz - A’Z'xl 3 )C2 i x1x3j (510)

X = J.xl'x;_ — Ax; dt.

The transmitter part of the algorithm is shown in Fig. 5.7 while the receiver part
of the algorithm is shown in Fig. 5.8. The explanation of the encryption and the

decryption algorithms are similar to the Chua algorithm.
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In all cases, differentiation has been avoided which permits a very low signal to
chaos ratios. Also in all cases the information signal is not simply added to the
chaos and this contributes to the security of the system. Alternative systems can

be developed for all the above cases by transmitting the derivative of x; instead
of that of x,.

In all cases, stand alone C++ files have been developed which have the
advantage of considerable savings in computer time, especially when
transmitting an image. Care has to be taken that both transmitter and receiver use
the same ODE solver and the same time step. Otherwise synchronisation will not

be achieved and the signal cannot be recovered.

5.4.2 System security

There are several aspects of security that need to be fully investigated. The
present algorithms are intended to concentrate on the ability to recover text,
image or voice signals accurately. A full investigation on security, methods of
attack and counter measures will be given in chapters 6 and 7. However we shall
discuss here the features of the algorithms that contribute to security.

The most important aspect of security is the identification of the key and the
computational effort required in determining it. If we consider the Chua system,
there are five constants in the equations and three initial conditions in the
integrators. Each of these has to be adjusted to an accuracy of one part in 10" to
achieve synchronisation between transmitter and receiver. One part of 10" is
choosing because 10" multiplies the information signal. Note that, we can
multiply the information signal by other values less than or greater than 10" but
the restriction is in the numerical integrator used to solve the algorithm and the
minimum step size used by the numerical integrator. Less value need minimise
the step size as a result the algorithm becomes very slow. One could jump to the

conclusion that these are the system keys and that 10'**

mathematical steps are
required for brute force cryptanalysis. This however is not true as chaotic

systems can be analysed using more systematic approaches, which drastically
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reduce the computational effort required. @A complete evaluation of the
mathematical efforts required will be made in the next chapter. We wish to
mention here that the constants in the equations can also be non-linear functions
of the state variables of any desired complexity and any number of parameters
provided that they are bounded and do not take the system out of chaos. This
adds considerably to the security of the system.

A very important feature of the systems is the ability to transmit very low signal
to chaos ratios and recover the message fully without loss of information.
Signals to chaos ratios between -200 dB and -244 dB have been achieved. The
exact ratio depends on the complexity of the plaintext and the desired accuracy
of the recovered signal. This low signal to chaos ratio makes it almost impossible
to retrieve the plaintext from signal processing techniques based on Fourier
analysis. Results on the effect of the signal to chaos ratio on the recovery of the
signal are given later in this chapter. Fig. 5.9 shows how a square wave, a saw-
tooth and a voice signal are accurately recovered with a signal to chaos ratio of

approximately -220 dB.

—_
-
i
5
—_

Input signal
o
Input signal
o
Input signal
o

o
e
o
o
=
o
o

10

50 Time Time 50 Time

i 10 0,12 10 0 10
w10 Time 1.1 Tiraa 1 x10_ Time

Transmitted signal
o
Transmitted signal
o
Transmitted signal
(==

Recovered signal
o
Recovered signal
o
Recovered signal
o

-1.1

0 10 o , 10 0 10
Tifie Time Time

Fig. 5.9 Results of the system simulation for a square,
a saw-tooth and a speech signals.
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Another aspect of security is that the sample time of the signal and the algorithm
time constants have to be adjusted such that the spectrum of the signal falls
within the spectral band of the chaos for maximum security. The step size of the
solution affects the signal to chaos ratio that can be used. Reducing the step size
will allow a reduction in the signal to chaos ratio but will increase the processing
time. Fig. 5.10 shows a comparison of the spectrum of the signal (an ASCII input
message, the input message text or image is read as ASCII characters) and the
chaos signal from a Lorenz system. We note that the ASCII signal has a high
DC value as to be expected. The figure indicates that the input message and
chaotic signal have the same frequency band and spectrum of the input message

is hidden in the spectrum of the chaotic signal.
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Fig. 5.10 Comparison in time and frequency domains between
the information and the chaotic signals.
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The third aspect of security is to ensure that simple subtraction of the chaotic
signal from the cipher text cannot reveal the message. This is to guard against
the cryptanalyst getting hold of a chaotic signal that was once transmitted
without a message and then subtracting it from all subsequent transmissions.
Fig. 5.11a shows the result of subtracting the chaos from the transmitted signal
and clearly indicates that the signal is not retrieved. To improve this aspect of
security a random number can be transmitted as the first byte which will alter the
chaotic signal for every transmission. The receiver does not require knowledge
of the random number as this is recovered automatically. Knowledge of the
random number does not help the cryptanalyst in any way to reveal the signal.
Fig. 5.11b shows the improvement in security when a random number is used.

Needless to say that a different number should be used for every transmission.
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Fig. 5.11 Effect of subtracting the chaos from the ciphertext
without and with a random number as the first byte.
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5.4.3 Results

The algorithms have been tested with voice signal, ASCII text and images.
Formatted files such as Word, Word perfect or Framemaker files are treated as
images. Black and white images are two-dimensional arrays and colour images
are three-dimensional arrays. As the algorithm can only handle one-dimensional
arrays, the signal is always put first into a one-dimensional double precision
array before processing. In the case of images, all the information about the
image format is already included in the file and no further effort is necessary for
restoration at the receiver. For each system (Chua, Rossler and Lorenz), we
introduce two methods for the encryption of the plaintext.

e Method 1

In this method, two different time steps are used. One time step is used for
reading (0.1) the plaintext and the second time step (0.01) is used in the
encryption algorithm for encrypting the plaintext. The reason for that is to make
the plaintext and the chaotic signals have the same frequency bands.

e Method 2

The same time steps are used for reading and encrypting the plaintext but new
parameter values are used in each algorithm. With these parameters the plaintext
and the chaotic signal will have the same frequency band.

The transmitted file in these algorithms is floating point data file. As an example,

the transmitted data file when we encrypt the text " This is a test " is:

0 0.10000000000000 0.20000000000000
0.30000000000000 -0.09999999999060 0.04003251496356
0.09743506714715 0.01738905153180 0.40000000000000
0.50000000000000 0.60000000000000 0.70000000000000
-0.02666325656784 0.04904117572583 0.12460327288093
0.09452765724923 0.80000000000000 0.90000000000000
1.00000000000000 1.10000000000000 -0.05130176845176
-0.33069190606817 0.46862536345653 -0.13477048692124
1.20000000000000 1.30000000000000 1.40000000000000
0.49030994451921 0.58889188973474 0.1070940525336
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Table 5.1 gives the parameter values used in each algorithm. Table 5.2 is a
comparison between the key length of each algorithm in both methods.
Table 5.3 is a comparison between the three algorithms in the case of encrypting
text file (A4.txt) which is a complete A4 text page. The table gives the size of the
plaintext file, the size of the ciphertext file, the average time used for encrypting
and decrypting the text file and the signal to chaos ratio (SCR). Table 5.4 gives a

comparison between the three algorithms in the case of encrypting the image

file (Cameraman.tif).

System Parameters Method 1 Method 2
A 10 10
A, 0.635 0.53
As L2 1.5
5 As 5.6 5.6
O As 0.019 0.019
Scaling factors 9 9 9 2 18 1.6
Integrators initial
condlifens 0.1 | 0.1 | 0.1 0.1 0.1 | 0.1
Ay 0.46 0.4
A - 3.255
e As 3 2.85
2 Scaling factors | 9 | 9 | 9 | 35 | 35 | 5
Integrators initial
—— 0.01 | 0.01 | 0.85 | 0.01 | 0.01 | 0.85
A 10 10
A 28 28
§ As 2.667 2.667
= Scaling factors 2 2 2 1.5 | 025 | 1.5
Initial conditions 05 1] 05 | 05 0.1 0.1 0.1

Table 5.1 The algorithms parameter values.
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Method 1 Method 2
System | Key length | Key length | Key length Key length
(Digits) (Bits) (Digits) ( Bits)
Chua 81 270 110 336
Rossler 63 210 110 336
Lorenz 63 210 110 336
Table 5.2 Systems key lengths.
File size Average time
SCR
File (Kbytes) (seconds)
System | Method in
name Plain Cipher
Encrypt | decrypt dB
text text
Method
: 28.4 282 1 2 -214.51
5 | Chua
3 Method
5 28.4 28.4 0.75 1 -210.83
= 2
Q
§ Method
— 28.4 282 1 2 -228
£ g 1
= & | Rossler
3 8 Method
S 28.4 28.4 0.7 1 -222.19
2 2
&
N Method
%l i 28.4 282 0.9 4 -238
=
= | Lorenz
N Method
~ , 28.4 28.4 0.7 1 -244 41

Table 5.3 File size, SCR and average time required for
encrypting and decrypting the text file (A4.txt).
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File size Average time
SCR
File (Mbytes) (seconds)
System | Method in
name Plain | Cipher
Encrypt | Decrypt dB
text text
Method
, 0.99 995 | 29.793 486.52 | -210.48
Chua
Method
5 0.99 0.99 | 24.375 10.595 | -207.50
— @ Method | 0.99 9.95
8 i 46.287 | 419.143 | -224.75
< g, 1
g o | Rossler
5 Q Method
E & 0.99 995 | 23.163 19.718 | -218.86
S Q -
g
Method
{ 0.99 995 | 53476 | 470.406 | -234.62
Lorenz
Method
5 0.99 0.99 15.503 10.075 | -240.94

Table 5.4 File size, SCR and time required for encrypting and
decrypting the image file (Cameraman.tif).

Next a comparison between the first and the second methods is introduced in

Table 5.5.
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Comparison

Method 1

Method 2

Key length

Between 210-270 Bits depending on

the algorithm used

336 Bits

Solver time

steps

Different time steps are used for

reading and encrypting the plaintext

The same time steps are
used for reading and

encrypting the plaintext

Time for
encryption
and

decryption

The time required for encrypting and
decrypting the plaintext is much

higher than the second method

Less time

File size

The file size of the ciphertext is equal

10 times that of the plaintext

The ciphertext and the
plaintext have the same

file sizes.

Security

The security of the algorithms is in
the fact that each character of the
plaintext is encrypted into 10
characters of the ciphertext. So
redundancy characters are added to

the ciphertext

The security of this
method is in the fact that
with any error of the key
values of order 10! of
its original value, the
plaintext  cannot  be
recovered. In the first
method the error is of

order 107,

Usage

It is difficult to use this method for
encrypting the image files. This is
due to the limitation of the file size
transmitting through the e-mail
channel since the transmitted file size

very large. It is suitable for text files.

Suitable for encrypting

text and image files.

Table 5.5 Comparison between the first and second methods of
the developed encryption algorithms.
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Next, we will introduce the results of encrypting and decrypting text and image
files using the different systems. The results of the Chua encryption algorithm as
an example for encrypting a text file using the two previously mentioned
methods are presented. Fig. 5.12 shows the results of encrypting a text file using
the first method. It is clear that the transmitted ciphertext has more characters
than the plaintext. The file size of the plaintext is 105 bytes while the transmitted
ciphertext file is 1.02 Kbytes. The time for the encryption is 0.598 seconds, the
time taken for the decryption is 0.9893 seconds and the SCR is —214 dB.

Plaintext
Recently, Pecora and Caroll demonstrated the possibility of synchronizing of the chaotic
systems [1].

Ciphertext
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27>7@7>=:83# #B8L mx €|sfUA $&*1=KZgrz|zshYG3 $&'+2=JWbkpgni]L:(
#(*)(*.5=EKPSRNH>3% )15763.(! " %.6<@BA=7/%
VF7:>77><:863/(___'<Oaoy~ zpbQ=( 1$&*2=KZgqwzwpdUC/ %’ (*0:EQ[d
ijgavIi9’  §*,,)’7’(+048;<;93% &.49=7@?=94+ )>Qbpy~~xn
‘N:% "%’ +2>KYfpvxumbSA !&’ (*/7ALVAceb\SF7’  $+.., (%#"#
%Bl)ER)IH
&+0367651,$ <ISZ*_ [TJ=. (.10)s
#*/2431,& $+16:=7?7><93*%
_%8JZfossoeXH6" %(((*.62HQW[\YSI=/ _ &.231’!
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*5>EJLJF?6+ #,37::850+%
1¥29>@@>92)  %.49=?2?>=;962+!  #8Lmx €|sfUA,
_ $&*1<JYgry|zsh¥YG3  $&'+2<HU inpmeZL;) _
#)*)(),18?FKMNKE=2&  '/589851,%
(/47874/( '.49=?@A@>;6.%  "6I[isy{wnbQ>*
"% (-5@LXbjnmi‘TE4!

Recovered Text

Recently, Pecora and Caroll demonstrated the possibility of synchronizing of the

chaotic systems [1].

Fig. 5.12 Example of encrypting and decrypting of a text file
using method 1.
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Fig. 5.13 shows results of encrypting a text file using the second method. In this
case, the plaintext and the ciphertext files have the same number of characters
and the same size (395 bytes). The time taken to encrypt the plaintext is 0.5828
seconds, the time taken to decrypt the cipher text is 0.9745 seconds and the SCR
is equal to —210 dB. It is clear that the second method is faster than the first

method and the size of ciphertext file is less than that of the first method.

Plaintext
Recently, Pecora and Caroll demonstrated the possibility of synchronizing the chaotic systems
[1]. Itho et al [2] introduces a new communication system as a possible application of chaotic
synchronization. The main idea of this system is to use the chaotic modulation to transmit the
information signals and the chaotic synchronization mechanism to recover the information

signals.

Ciphertext

o 2G JY ; ><_*;+% %1 5F  Z,3r O -
& (S07q O / '# PG w*L
8 /! &V72v Q%% )0 _ CW iR<H 2% A; 7[ Z‘,L #

1* RK
Z+M: < 0O$ CB cB25"1 =[ a“*3K 9% L<

. Irs0  (_,L:?d b 3

-].DuQ ,6 @ E& Z,# * 8( YH €_P4_W2L7QU7=7/*w@W
dweI ! ! s

! _7187|_Q°

4@ OM , * %0200

K3& 1 #J! RA t,J6 "

4 +\1?w Q '6_9 |

Recovered text
Recently, Pecora and Caroll demonstrated the possibility of synchronizing the chaotic systems
[1]. Itho et al [2] introduces a new communication system as a possible application of chaotic
synchronization. The main idea of this system is to use the chaotic modulation to transmit the
information signals and the chaotic synchronization mechanism to recover the information

signals.

Fig. 5.13 Example of encrypting and decrypting a text file
using method?2.
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Next, the results of sending an image via email using the Chua algorithm are
given. Fig. 5.14 shows the original image, the transmitted image and the
recovered image. The figure shows that the input image is completely hidden and
recovered at a SCR of -210 dB. The encryption time is 547.888 seconds, the
decryption time is 545.154 seconds and the size of the image is 8.29 Mbytes.

flowers. tif

chuatx2

chuanc.tif

Fig. 5.14 Encryption and decryption of the image file
(flowers.tif) using Chua encryption algorithm.
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Input signal

Recovered signal

Fig. 5.15 shows the input image signal (flowers.tif) and the Chua transmitted
chaotic signal in the time and frequency domains. The figure indicates that the
image signal is completely hidden in the transmitted chaotic signal
(SCR=-210 dB) and completely recovered. The figure also indicates that the
input image signal and the transmitted chaotic signal occupy the same frequency

bands.
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Fig. 5.15 Input, transmitted and recovered signals in the time
and the frequency domains.

Fig. 5.16 shows the results of encrypting the image file (saturn.tif) using the
Rossler encryption algorithm. The figure illustrates input image, transmitted

image, and the recovered image at SCR of -223 dB. The encryption time is
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15.413 seconds, the decryption time is 15.412 seconds and the size of the image

is 2.19 Mbytes.
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rosstx2 tif

WA .L {' N
7 .,.u/%.,wv ANAAIAN.
S B s e o
r,(\.rs\:«/ W )\4 e »\w oV o.;
A NN ,w
\x —s AR ""é/":j(g""‘/‘
d h

i f* f;:“ o

s fw o A

A "'?4"-'\*» AT

e "" ?S‘f..:’é'} .<;f§;v~\3‘4b“&»“£;;.'

"‘\/ '\\ b v§\~ Wl A
“7.' AL

v \
:)n PN A

/ ;,;,;,{
N
¥

N
r.-s- "
I

-,, o .;:‘,‘.
AN

rossmx2.tif

Fig. 5.16 Encryption and decryption of the image file
(saturn.tif) using Rdssler encryption algorithm.
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Figure 5.17 shows the spectrum of the input image (saturn.tif), the transmitted
chaotic signal and the recovered signal when it is encrypted using the Rossler
encryption algorithm. The figure shows that the image signal is completely
hidden in the transmitted signal, in the time and the frequency domains, and

completely recovered.
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Fig. 5.17 Input, transmitted and recovered signals in the time
and the frequency domains.

Fig. 5.18 shows the using of Lorenz encryption algorithm to encrypt the image

file (cameraman.tif). It illustrates input image, transmitted image and the
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recovered image at SCR=-240 dB. The encryption time is 15.503 seconds, the
decryption time is 10.412 seconds and the size of the image is 0.99 Mbytes.

cameraman.tif

lorztx2. tif

n/‘v.
\'*'yt"y“"«'a."}
A

lorzrx2.tif

Fig. 5.18 Encryption and decryption of the image file
(cameraman.tif) using Lorenz encryption algorithm.
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Fig. 5.19 shows the spectrum of the input image, the transmitted Lorenz chaotic
signal and the recovered signal in the time and the frequency domains. The
figure verifies that the input image and the transmitted chaotic signal occupy the
same frequency band and the input image is completely recovered using the

decrypter algorithm.
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Fig. 5.19 Input, transmitted and recovered signals in the time
and the frequency domains.
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We next study the effect of reducing the signal to chaos ratio. Fig. 5.20 shows
recovered images with various signals to chaos ratio. A good image is still

recoverable at -240 dB.

Input image Transmitted image Recovered at SCR=-180dB

Recowered at -300dB

l‘r% 1“.‘[

Fig. 5.20 Effect of changing the signal to chaos ratio.
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Finally, we introduce a comparison between our chaotic algorithms, classical
encryption algorithms and chaotic communication systems. We know that one of
the measures of the security of the encryption algorithms is the key length. As
the key length increases the security of the system is increased. Table 5.6 shows
a comparison between the developed algorithms, which are symmetric
algorithms and the classical symmetric encryption algorithms such as the DES

and the IDEA.

Algorithm Key length
64 Bit (56 Bits as a key and 8 Bits as a parity
DES
checker)
IDEA 128 Bits

) Between 210-270 Bits depending of the
Chaotic | Method 1

. encryption algorithm used
encryption

algorithms | \ethod 2 336 Bits

Table 5.6 Comparison between the developed chaotic
encryption algorithms and the classical encryption algorithms

Next a comparison between the developed chaotic encryption algorithms and the
chaotic communication systems is introduced.

e This is the first time that the results of using the chaotic encryption

algorithms for encrypting image (B/W and colors image files) are introduced.

e Our developed algorithms achieve a signal to chaos ratio of between -200
and —-240 dB, while the minimum signal to chaos ratio in the other chaotic

communication systems to-date is around —42 dB [25].
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e Our algorithms are tested by sending text and image files through a practical
channel (LAN or WLAN) and the information signals are transmitted and

recovered without any errors.

5.5 Conclusion

The application of chaotic algorithms to secure communication are most suitable
for computer communications where the channel does not affect the
synchronisation between the transmitter and the receiver.

The algorithms can be used for text messages, images or recorded voice signals
with extremely high security. Signal-to-chaos ratios of 10" or -240 dB have
been achieved. A full analysis of the security aspect and the computational effort
required will be given in chapter 6. The developed algorithms run either as
SIMULINK files or as stand alone C++ files. The C++ versions are about two
orders of magnitude faster than that of the SIMULINK models. We have
presented practical results to support our claims. A comparison between the
developed chaotic encryption algorithms and the classical symmetric encryption
algorithms are presented. The key length of the chaotic algorithms is greater than
the key length of the classical symmetric encryption algorithms (DES and IDEA)
which means more security. The algorithms are at present used for potential
secure computer communication and databases and we expect that they can also

be developed to work in real time digital communication systems.
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of outputs 4 in test mode. This type needs one test session to test the whole circuit. This

is the selected way in this thesis.

Primary inputs Primary inputs

Mux Mux
P1 Mux P2 Pl Mux P2
Mux Mux Mux
Primary outputs Primary outputs
(a) (b)

Fig. 3.3 Hardware partitioning (a) General hardware partitioning scheme using multi-
plexer (b) Configuration to test partition P1.
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Chapter 6

ATTACKING CHAOTIC ENCRYPTION SYSTEMS

6.1 Introduction

The whole point of cryptography is to keep the plaintext (or the key or both) secret

from eavesdroppers. Eavesdroppers are assumed to have complete access to the

communications between the sender and the receiver. Cryptanalysis is the science
of recovering the plaintext of a message without access to the key. Successful

cryptanalysis may recover the plaintext or the key. It may also find weaknesses in a

cryptosystem that eventually lead to recover the plaintext or the key. An attempted

crytanalysis is called an attack. There are four general types of attacks. Of course,
each of them assumes that the cryptanalyst has complete knowledge of the

encryption algorithm used [1]:

1. Ciphertext-only attack. The cryptanalyst has the ciphertext of several messages,
all of which have been encrypted using the same encryption algorithm. The
cryptanalyst’s job is to recover the plaintext of as many messages as possible or
deduce the key (or keys) used to encrypt the messages in order to decrypt other
messages encrypted with the same keys.

2. Known-plaintext attack. The cryptanalyst has access not only to the ciphertext
of several messages but also to the plaintext of those messages. The job of the
cryptanalyst is to deduce the key (or keys) used to encrypt the messages or an
algorithm to decrypt any new messages encrypted with the same key (or keys).

3. Chosen-plaintext attack. The cryptanalyst has access not only to the ciphertext
and associated plaintext for several messages but has also chosen the plaintext
that gets encrypted. This is more powerful than the known-plaintext attack
because the cryptanalyst can choose specific plaintext blocks to encrypt what

might yield more information about the key. His job is to deduce the key (or
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keys) used to encrypt the messages or an algorithm to decrypt any new messages
encrypted with the same key (or keys).

4. Adaptive-chosen-plaintext attack. This is a special case of a chosen plaintext
attack. Not only can the cryptanalyst choose the plaintext that is encrypted but he
can also modify his choice based on the results of previous encryption. In a
chosen-plaintext attack a cryptanalyst might just be able to choose one large
block of plaintext to be encrypted. In an adaptive chosen-plaintext attack, he can
choose a smaller block of plaintext and then choose another based on the results

of the first and so forth.

Different algorithms offer different degrees of security depending on how hard they
are to break. If the cost required to break an algorithm is greater than the value of the
encrypted data then the algorithm is probably safe. If the time required to break the
algorithm is longer than the time that the encrypted data must remain secret then the
algorithm is probably safe. If the amount of the data encrypted by a single key is less
than the amount of data necessary to break the algorithm then the algorithm is
probably safe. We say probably because there is always a chance of new
breakthroughs in cryptanalysis. On the other hand, the value of most data decreases
over time. It is important that the value of the data always remains less than the cost
of breaking the security protecting it. An algorithm is said to be unconditionally
secure if no matter how much ciphertext is available, the cryptanalyst has not
enough information to recover the plaintext. An algorithm is said to be
computationally secure if it cannot be broken with available resources either current
or future resources. The complexity of an attack can be measured in different ways:

1. Data complexity is the amount of data needed as input to the attack.

2. Processing complexity is the amount of processing needed to perform the attack.

This is often called the work factor.

3. Storage requirements are the amount of memory needed to perform the attack.

As a rule, the complexity of an attack is taken to be the minimum of these three

factors.
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Lars Knudsen [2] classified the categories of breaking an algorithm as follows:

e Total break
The cryptanalyst finds the key.

¢ Global deduction
The cryptanalyst finds an alternate algorithm equivalent to the decryption
algorithm without knowing the key

e Local deduction
A cryptanalyst finds the plaintext of an intercepted ciphertext.

e Information deduction
A cryptanalyst gains some information about the key or plaintext. This
information could be a few bits of the key or some information about the form of

the plaintext.

Section 6.2 gives some methods of attack of the chaotic communication system. A
new algorithm for attacking the chaotic communication systems is introduced in
section 6.3. Section 6.4 demonstrates the methods of counter attack of the chaotic
communication system. The conclusion and the references of the chapter are in

sections 6.5 and 6.6 respectively.

6.2 Chaos attacking background

Many algorithms have been developed to attack the chaotic communication systems
[3]-[9]. Short [10] tests the level of security in secure communication systems based
on nonlinear dynamics (NLD) or chaos. In these systems, a chaotic carrier is used in
a type of spread-spectrum signal with the information signal buried at —30 dB with
respect to the chaotic carrier. The analysis process was to use the NLD forecasting to
predict the carrier dynamics and then subtract the predicted values to reveal the
hidden information signal or at least increase its signal to noise ratio with respect to
the carrier. In each case, it was a simple task to determine the power spectrum of the
hidden signal once the prediction of the carrier was made. The forecasting approach
was extended to allow estimation of the dynamics of the signal using threshold

detection so that whenever a signal was detected, multiple predictions of the carrier
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behaviour were made. This method was tested on a square wave embedded at —42 dB
in a Lorenz carrier. The method was able to reveal the square wave with almost
perfect precision except in a few regions where it temporarily lost synchronisation
with the carrier.

Stark et al [11] consider the problem of extracting a small signal embedded in a
stronger background. The desired signal is assumed to be a relatively slowly varying
signal. Jaroslav et al are able to devise an algorithm, which in simple tests, can
recover the signal to a reasonable accuracy when the ratio of amplitudes of signal to
chaos background is as low as 10, The algorithm essentially takes a time series

{u,}, which is the sum of a deterministic component {x,} and some other
signal {S,} and attempts to separate the two parts. The signal {x, } is usually treated as
the desired signal and {S,}as the unwanted noise. Separation is then equivalent to
removing the noise component {S, }.

Yang et al [12] introduce a method for breaking the chaotic switching where the
binary message signal is scrambled by two chaotic attractors. In this method the
breaking of the chaotic switching is presented using the concept of generalised
synchronisation [13]-[14]. They assume that they have no precise knowledge about
the chaotic transmitter. They also assume that the receiver system will never
synchronise to the unknown chaotic transmitter because there are some significant
differences both in structure and in parameters between the chaotic transmitter and
the receiver. Yang et al get a decoding result as good as that provided by the receiver
with the same parameters as those of the transmitter.

As a conclusion, all the above methods, except the breaking of the chaotic switching,
assume that the information signal is added to the chaotic signal and they try to
separate the information signal from the chaotic signal. This is a special case of the
chaotic communication system. The secure communication systems based on hiding
the information on chaotic carriers may be useful to increase privacy but are not yet
capable of providing a high level of security.

In this chapter, we introduce a new algorithm for attacking the chaotic
communication system (continuous or discrete). This algorithm is suitable either

when the information signal is added to the chaotic carrier or it is used to modulate
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one of the state variables of the chaotic system at signal to chaos ratios of the order

of =240 dB.

6.3 New algorithm for attacking the chaotic communication systems

6.3.1 Introduction

A new algorithm for attacking the chaotic communication systems is introduced. It is
based on two of the MATLAB optimisation programs [15]. The optimisation finds
the optimal solution of a certain problem by finding the maximum or the minimum
of a function in an interval, with or without constraints.

Suppose that we want to find a minimum x,_, ~of the function fin an interval.

n
fxp) = mrm fGx). (6.1)

An iterative method needs an initial guess x,. From this valuex,, we find a new

value x;which, it is hoped, is closer to x,, . How the better approximation x; is

found, depends on the numerical method used. These iterations continue until an

is smaller than

- X

min i

approximation x, with enough accuracy is found such that ‘x

the required error. If there are several local minima, the optimiser will find one of
them. In this work, two optimisation programs are used namely EO04JAF and
fminsearch. The EO4JAF is a simple bounded optimisation program and is used to
find the minimum of a function of several variables.
The instruction for this program is

[x, f(x)] = EO4JAF(x,, X,, X,) (6.2)
where x, is a vector of the unknown values and is the initial guess, x, is a vector of

the lower limits of the unknown variables and x, is the upper limit. The user must

supply a subroutine (target function) funct! to calculate the value of f (x) for any

given value of x.
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The fminsearch program is used to find the minimum of a scalar function of several
variables starting with an initial estimate. It is generally referred to as unconstrained

nonlinear optimisation. It uses the simplex search method [16] and it has the form

[x] = fminsearch (fun, X, options). (6.3)

It returns a vector x that is a local minimiser of the function fun. The vector x,

contains the initial guesses for the optimiser. The options, for this function, include
the maximum number of iterations, allowed termination tolerance of the function
value and termination tolerance for x.
In this method of attack, we assume that the dynamics of the system are known but
we have no information about the transmitter parameters (encrypter keys) used to
encrypt the information. We assume that the receiver output signal (wanted signal) is
an error signal of the optimisation algorithm and the algorithm is used to minimise
that error. If the error is minimum, then the information signal is recovered. The
steps of attacking the chaotic communication systems are summarised as follows:

1. We determine the type of the chaotic communication system under attack from
the received ciphertext signal by plotting the attractor of the received data signal.
Usually the attractor is a phase-plane of two state variables. However, in this case
we have for the transmitted ciphertext only one state variable. To obtain an
attractor, we plot the received data samples against the received delayed data
samples. For example, if we have 1000 data samples, we plot the data samples
from (1:990) against the data samples from (11:1000). These attractors are used
as signatures for the chaotic systems. From these signatures, we can determine

the type of the system under attack as shown in Figs. 6.1, 6.2 and 6.3.
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Fig. 6.3 Examples of discrete time chaotic systems attractors.

2. We apply the optimisation program (E04JAF) to the system under attack. For
this program we assign initial values for the keys, the upper limits and the lower
limits of the keys and the number of samples required for attacking the system.
The EO4JAF is used first to ensure that the chaotic system will be in the chaotic
band because it is a bounded optimiser. The upper and lower boundaries are
chosen such that the system remains chaotic, as we will discuss in section 6.3.2.

3. The resultant keys of the EO4JAF are applied as initial guesses for the second
program (fminsreach). This is used after the EO4JAF program to minimise the
error in the resultant keys of the EO4JAF. Since in some cases, as will see later,
we require keys with accuracy up to 16,

4. The resultant output keys of the fminsreach program are the required keys.
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The flow chart shown in Fig. 6.4 demonstrates the above steps.

Read the received
ciphertext

| Determine the type of the chaotic communication system
|

v

Determine the number of keys

v

Assign initial keys for the first algorithm with an upper and a
lower bound for each key
v
Run the EO4JAF optimizer

v
The resultant output keys of the first algorithm are used as an

initial keys for the second algorithm
v

Run the fminsearch optimizer

'

Run the decrypter model and use the reasultant keys of the
second algorithm. Check that the information signal is
recovered correctly

Display the recovered
signal

Fig. 6.4 The flow chart of the attacking algorithm.

6.3.2 Obtaining the upper and lower boundaries of the optimisation program

The upper and lower bounds of the chaotic system are chosen such that the system
remains chaotic. These bounds are obtained by plotting the bifurcation diagram of
the system under attack. We will give an example of the bifurcation diagram of the
Lorenz system [17]. In this system we have three state variables and three

parameters (a, b and c¢). We plot the bifurcation diagram of the state variable y as a
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function of these three parameters. The bifurcation diagrams of the Lorenz system

are shown in Figs 6.5, 6.6 and 6.7.

y-state variable
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Fig. 6.5 Bifurcation diagram of the Lorenz system
(a parameter and y state variable).
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Fig. 6.6 Bifurcation diagram of the Lorenz system
(b parameter and y state variable).
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Fig. 6.7 Bifurcation diagram of the Lorenz system
(c parameter and y state variable).

We find that the system has chaotic behaviour if a lies in the range from 6 to 12.
We choose the boundaries of a from 8 to 12. For the parameter b the system has
chaos output if it lies in the range from 17 to 35. The boundaries of b are chosen
from 25 to 35. For the parameter ¢ the system has chaotic response if it lies in the
range from 1.2 to 4. The boundaries of ¢ are selected to be in the range from 2 to 4.
To determine the ranges of the parameters accurately, the three parameters should

be tested simultaneously. For the other system, the same procedures are used.

6.3.3 Attacking the Henon map

Stark et al. [11] have presented a method for extracting slowly varying signals from
the Henon chaotic map. They succeeded in recovering the information signal with
reasonable accuracy when the ratio of amplitudes of the chaotic signal to the
information signal is as low as 10"°. Using our algorithm, we succeed in the
recovering the information signal when the ratio of amplitudes of the chaotic signal
to the information signal is as low as 10" with an accuracy of 107,

The state equations of the transmitter are given by

163



Chapter 6 Attacking chaotic encryption systems

_ 2
Xl _1+yn_a‘xn

(6.4)
yr1+l = bxn + S(t)
S(t)...1s the information signal.
The state equations of the receiver are
X =1+y —ax?
n+l yn n (65)

74

§@)=y,,-bx.

n

The block diagram of the system is shown in Fig. 6.8.

x(n+1) 1 + X'(n+1)

h 4

Unittime
delay ‘;

Recovered
signal

Transmitted Channel
signal

Scaling
factor

Information

Fig. 6.8 Block diagram of the Henon chaotic communication
system.

The attacker algorithm is used to find the exact values for a and b starting from
initial values. The signal to chaos ratio, in this example, is —240 dB. The attacker
initial key values, the range for each key, the number of points required for the
attacker, the time of attack, the number of iterations taken in the attack and the
resultant attacker keys are given in table 6.1. The attacker input and output signals
are shown in Fig. 6.8. The figure indicates that with the attacker resultant values, the
receiver succeeds to recover the information signal. The error between the normal
output and the attacker output is around 10", we give some explanations about the
graphs.

e Attacker input is the input signal to the attacker (received signal).

e Attacker initial output is the attacker output at the initial guesses of the keys.

e Normal output is the decrypter output when we know the encrypter exact keys.
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e Attacker output is the decrypter output using the attacker resultant keys.
e Error signal is the difference between the normal output and the attacker output.
e Attacker key error is a graph used to indicate the sensitivity of the system to the

error in the attacker resultant keys.

E Encrypter keys Attacker resultant keys
a|1]./399876[54311521./3/99/8 7|6/ 543/ 11|5/1
b|O0|.[20909876 7905 6 430.[299|87|6/790]56|45
Attacker initial values Optimiser 1 Optimiser 2
. P 2 |5 | 2 |
1 o1 |=| & |S|%E S| 5| € |¢E
Bl 2 | S28 5% & |28
Range » ) n )
g N 8 — 0 0.01 .05 6 0 | 0.01 0.03 4
()
Total time 24.636 Total number of 298
of attack seconds iterations

Table 6.1 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.9 Attacker results of the Henon map.
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6.3.4 Attacking the Yamakawa chaotic communication system

Itoh et al. [18]-[19] have presented a chaotic communication system based
Yamakawa’s chaos chip. The chaos chip contains three basic units for constructing
chaotic systems. Those are a nonlinear delay unit, a linear delay unit and a summing

unit. The transmitter state equations are given by

xn+] = f(xn) <t €Sn

yn+l = g(yn)_mn +5xn (66)
Zn+1 = yn - ﬂzn
where,
k(x— E)+ EE; i< E,
f(x) = {k,x, E <x<E, (6.7)
kx—E,)+k,E,; g2 B,

k,, k,, k,, E,and E,are constants.

¥,, 18 the transmitted signal.

s, is the information signal.

The function g(x) has the same form of f(x)but with another constants
Koy Ky ks, Eqanid B,

The receiver state equations are given by

Zr/l+1 =yn _ﬂzl/l
/
- +o
xr/l:ynﬂ g(gn) v (68)
/o /
r,”=xn+l f(xn)
&

where r, is the recovered signal.

The initial key values for the attacker, the range of each key, the number of data
samples needed for the attacking, the time of attack, the number of iteration taken by
the attacker and the attacker resultant keys are given in table 6.2. The attacker input
and output signals are shown in Fig. 6.10. The figure shows that the attacker
succeeds in attacking the system and recovering the information signal. The

difference between the normal output and the attacker output is around 0.05.
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Encrypter keys Attacker resultant keys
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Table 6.2 Encrypter keys, attacker initial values and attacker
resultant keys
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Fig. 6.10 Attacker results of Yamakawa’s chaotic communication
system.
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6.3.5 Attacking the Van Der Pol-Duffing chaotic communication system

Kocarev and Lakshmanan [20] have proposed a chaotic communication system
based on Van Der Pol-Duffing chaotic generator. The system uses a chaotic signal to
mask the information signal and a synchronous chaotic system in the receiver to
identify the chaotic part of the signal, which is subtracted to reveal the information
signal. The state equations of the transmitter are

x=-v[x’—ax-y]

y=x—y—2 (6.9)

z=Py.
The transmitted signal r(7)is equal to

r(t) = x(¢) + s(t) (6.10)
where s(#) is the information signal.

The state equations of the receiver are

Response 1
./ = r(t) - ’ Z,
Yooy (6.11)
§=pBy
Response 2
K= -[(X") —a(x") - ¥] (6.12)

The information signal is recovered by
St =r@t)-x"(1). (6.13)

The initial key values for the attacker, the range of each key, the number of data
samples needed for the attacking, the time of attack, the total number of iterations
taken by the attacker and the attacker resultant keys are given in table 6.3. The
attacker input and output signals are shown in Fig. 6.11. The figure shows that the
attacker algorithm succeeds in attacking the Van Der Pol-Duffing chaotic
communication system and the error between the normal output and the attacker

output is 107,
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E Encrypter keys Attacker resultant keys
a|0]./349988 7605 4320.[3 50007 3 350470
B |29 919 8 8 8 76 50 23299 91 7/6/5/9/1/2/0]7|2
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a b C
032 | 200 | 85 | @ o | E |9 0 £
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Z Z
SNMEAFIEIRSES
oSlo | N | —
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Total time of | 292.16 Total number of
. ) 1583
attack second 1terations

Table 6.3 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.11 Attacker results of the Van Der Pol-Duffing chaotic
communication system.
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6.3.6 Attacking the system based on the general approach for chaotic

synchronisation

Kocarev and Parlitz presented a secure communication system based on the general
synchronisation approach [[21]. The system uses the well-known Lorenz model. The

state equations of the transmitter are given by

X, =—ax, +s(t)

Xy = bk, — Xy — X%, (6.14)

Xy = XX, — CX,
where a, b and c are constants and s(¢) is the transmitted signal and it is given by
s5(t) =10x, + ix, (6.15)

and i is the information signal.

The state equations of the receiver are

y, =—ay, +s()
Vo, =by, =y, = »¥; (6.16)
Y3 = Y1 Y2 —CYs.

The information signal is recovered by

ip =(s(t)—10y,)/ y;. (6.17)

The initial key values for the attacker, the range of each key, the number of data
samples needed for the attacking, the time of attack, the total number of iterations
taken by the attacker and the attacker resultant keys are given in table 6.4. The
attacker input and output signals are shown in Fig. 6.12. The figure illustrates that the
information signal is recovered with an error 10 compared to the normal output
signal. As described in section 6.3.3, the normal output is the output of the decrypter

when we know the encrypter keys exactly.

170




Chapter 6 Attacking chaotic encryption systems
E Encrypter keys Attacker resultant keys
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Table 6.4 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.12 Attacker results of the general approach for chaotic
synchronisation.
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6.3.7 Attacking the Chua masking chaotic communication system

Kocarev et al. [22] have experimentally demonstrated a secure communication
system using Chua’s circuit. In this method, the information is added at the output of
the Chua generator at the transmitter and recovered at the receiver by subtracting the

chaotic signal. The state equations of the transmitter are given by

dv
G dtC] =G (v, —ve,)—8(v,)

dv, )
C,—2=G(v, =V, )+ (6.18)
d[ 1 2
L
dt :
The transmitted signal r(¢)is given by
r(t) =ve +s() (6.19)

where () is the information signal.

The receiver is composed of two subsystems, the state equations of the first

subsystem are given by

1
V()

C,—2=G(r(t)-v) +i"
;"_’( ) (6.20)
l
L=t =P 4 #?
s Vet
The second subsystem is given by
dv(cz) 1
e E(V& —v) - g(ve) (6.21)
The recovered information signal s(z) is given by
s@) =r(®)-ve. (6.22)

The initial key values for the attacker, the range of each key, the number of data
samples required for the attacking, the time of attack, the total number of iterations
taken by the attacker and the attacker resultant keys are given in table 6.5. The
attacker input and output signals are shown in Fig. 6.13. The figure indicates that the
input signal is recovered and the difference between the attacker output and the

normal output of the system is around 0.1.
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E Encrypter keys Attacker resultant keys
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Table 6.5 Encrypter keys, attacker initial values and attacker
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Fig. 6.13 Attacker results of the Chua masking chaotic
communication system.
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6.3.8 Attacking the Rdssler encryption algorithm

The attacker algorithm attacks our developed Rdssler encryption algorithm [23]. The
details of the algorithm were presented in chapter 5 (section 5.4.1.2). The state

equations of the transmitter are given by

X=-y—2
y=x+ay+s() (6.23)
z=b+z(x—-0)

where a, b and ¢ are constants and s(¢) is the information signal.

The state equations of the receiver are
X, =—y-—zg,
Z, =b+z.(x,—c) (6.24)
S@)=y—x, —ay

where S (¢) is the recovered information signal.

In this case, the signal to chaos ratio is equal to —246 dB. The initial values for the
attacker, the range of each key, the number of data samples needed for the attacking,
the time of attack, the total number of iterations taken by the attacker and the attacker
resultant keys are given in table 7.6. The attacker input and output signals are
illustrated in Fig. 6.14. The figure shows that with resultant attacker values, the
information signal is completely recovered and that the difference between the

normal output of the system and the attacker output is equal to zero.
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E Encrypter keys Attacker resultant keys
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Table 6.6 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.14 Attacker results of the Rdssler encryption system.
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6.3.9 Attacking the Lorenz encryption algorithm

The attacker algorithm also attacks our developed Lorenz encryption algorithm [23].
The details of the algorithm were given in chapter 5 (section5.4.1.3). The state

equations of the transmitter are given by

x=a(y—x)
y=bx—y—-xz+s(t) (6.25)
Z=xy-cz

where a, b and ¢ are constants and s(¢) is the information signal.
The state equations of the receiver are
x =a(y-x,)

2, =X, y—cz, (6.26)
S@)=y-bx+y—xz

where S () 1s the recovered signal.

The signal to chaos ratio is equal to —257 dB. The initial key values of the attacker,
the range of each key, the number of data samples needed for the attacking, the time
of attack, the total number of iterations taken by the attacker and the attacker
resultant keys are given in table 6.7. The attacker output signals are illustrated in
Fig. 6.15. The figure illustrates that the attacker recovered the information signal and
that the difference between the normal output and the attacker output is equal

to 1075,
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E Encrypter keys Attacker resultant keys
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Table 6.7 Encrypter keys, attacker initial values and attacker
resultant keys.
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The above results show that the new attacker algorithm breaks the chaotic
communication systems under attack and the information signal is recovered. As a
result, the above systems are not secure and we should improve their security. In
chapter 7, we will give some methods to counter that attacker and improve the

security of the chaotic communication systems and counter the attack algorithm.

6.4 Conclusion

A new algorithm for attacking the chaotic communication system is introduced. The
algorithm is based on two optimisation programs of the MATLAB. The algorithm is
tested on different chaotic communication systems (continuous and discrete time
systems). It is tested on systems based on chaos masking or chaos modulating. The
algorithm also attacks the new encryption algorithms introduced in chapter 5. The
algorithm succeeds in attacking all the chaotic systems under test and finds their
keys. The information signal is recovered even at signal to chaos ratios in the order

of —240 dB.
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Chapter 6

ATTACKING CHAOTIC ENCRYPTION SYSTEMS

6.1 Introduction

The whole point of cryptography is to keep the plaintext (or the key or both) secret

from eavesdroppers. Eavesdroppers are assumed to have complete access to the

communications between the sender and the receiver. Cryptanalysis is the science
of recovering the plaintext of a message without access to the key. Successful

cryptanalysis may recover the plaintext or the key. It may also find weaknesses in a

cryptosystem that eventually lead to recover the plaintext or the key. An attempted

crytanalysis is called an attack. There are four general types of attacks. Of course,
each of them assumes that the cryptanalyst has complete knowledge of the

encryption algorithm used [1]:

1. Ciphertext-only attack. The cryptanalyst has the ciphertext of several messages,
all of which have been encrypted using the same encryption algorithm. The
cryptanalyst’s job is to recover the plaintext of as many messages as possible or
deduce the key (or keys) used to encrypt the messages in order to decrypt other
messages encrypted with the same keys.

2. Known-plaintext attack. The cryptanalyst has access not only to the ciphertext
of several messages but also to the plaintext of those messages. The job of the
cryptanalyst is to deduce the key (or keys) used to encrypt the messages or an
algorithm to decrypt any new messages encrypted with the same key (or keys).

3. Chosen-plaintext attack. The cryptanalyst has access not only to the ciphertext
and associated plaintext for several messages but has also chosen the plaintext
that gets encrypted. This is more powerful than the known-plaintext attack
because the cryptanalyst can choose specific plaintext blocks to encrypt what

might yield more information about the key. His job is to deduce the key (or
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keys) used to encrypt the messages or an algorithm to decrypt any new messages
encrypted with the same key (or keys).

4. Adaptive-chosen-plaintext attack. This is a special case of a chosen plaintext
attack. Not only can the cryptanalyst choose the plaintext that is encrypted but he
can also modify his choice based on the results of previous encryption. In a
chosen-plaintext attack a cryptanalyst might just be able to choose one large
block of plaintext to be encrypted. In an adaptive chosen-plaintext attack, he can
choose a smaller block of plaintext and then choose another based on the results

of the first and so forth.

Different algorithms offer different degrees of security depending on how hard they
are to break. If the cost required to break an algorithm is greater than the value of the
encrypted data then the algorithm is probably safe. If the time required to break the
algorithm is longer than the time that the encrypted data must remain secret then the
algorithm is probably safe. If the amount of the data encrypted by a single key is less
than the amount of data necessary to break the algorithm then the algorithm is
probably safe. We say probably because there is always a chance of new
breakthroughs in cryptanalysis. On the other hand, the value of most data decreases
over time. It is important that the value of the data always remains less than the cost
of breaking the security protecting it. An algorithm is said to be unconditionally
secure if no matter how much ciphertext is available, the cryptanalyst has not
enough information to recover the plaintext. An algorithm is said to be
computationally secure if it cannot be broken with available resources either current
or future resources. The complexity of an attack can be measured in different ways:

1. Data complexity is the amount of data needed as input to the attack.

2. Processing complexity is the amount of processing needed to perform the attack.

This is often called the work factor.

3. Storage requirements are the amount of memory needed to perform the attack.

As a rule, the complexity of an attack is taken to be the minimum of these three

factors.
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Lars Knudsen [2] classified the categories of breaking an algorithm as follows:

e Total break
The cryptanalyst finds the key.

¢ Global deduction
The cryptanalyst finds an alternate algorithm equivalent to the decryption
algorithm without knowing the key

e Local deduction
A cryptanalyst finds the plaintext of an intercepted ciphertext.

e Information deduction
A cryptanalyst gains some information about the key or plaintext. This
information could be a few bits of the key or some information about the form of

the plaintext.

Section 6.2 gives some methods of attack of the chaotic communication system. A
new algorithm for attacking the chaotic communication systems is introduced in
section 6.3. Section 6.4 demonstrates the methods of counter attack of the chaotic
communication system. The conclusion and the references of the chapter are in

sections 6.5 and 6.6 respectively.

6.2 Chaos attacking background

Many algorithms have been developed to attack the chaotic communication systems
[3]-[9]. Short [10] tests the level of security in secure communication systems based
on nonlinear dynamics (NLD) or chaos. In these systems, a chaotic carrier is used in
a type of spread-spectrum signal with the information signal buried at —-30 dB with
respect to the chaotic carrier. The analysis process was to use the NLD forecasting to
predict the carrier dynamics and then subtract the predicted values to reveal the
hidden information signal or at least increase its signal to noise ratio with respect to
the carrier. In each case, it was a simple task to determine the power spectrum of the
hidden signal once the prediction of the carrier was made. The forecasting approach
was extended to allow estimation of the dynamics of the signal using threshold

detection so that whenever a signal was detected, multiple predictions of the carrier
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behaviour were made. This method was tested on a square wave embedded at —42 dB
in a Lorenz carrier. The method was able to reveal the square wave with almost
perfect precision except in a few regions where it temporarily lost synchronisation
with the carrier.

Stark et al [11] consider the problem of extracting a small signal embedded in a
stronger background. The desired signal is assumed to be a relatively slowly varying
signal. Jaroslav et al are able to devise an algorithm, which in simple tests, can
recover the signal to a reasonable accuracy when the ratio of amplitudes of signal to
chaos background is as low as 10™'°. The algorithm essentially takes a time series

{u,}, which is the sum of a deterministic component {x,} and some other
signal{S,} and attempts to separate the two parts. The signal {x, } is usually treated as
the desired signal and {S,}as the unwanted noise. Separation is then equivalent to
removing the noise component {S,}.

Yang et al [12] introduce a method for breaking the chaotic switching where the
binary message signal is scrambled by two chaotic attractors. In this method the
breaking of the chaotic switching is presented using the concept of generalised
synchronisation [13]-[14]. They assume that they have no precise knowledge about
the chaotic transmitter. They also assume that the receiver system will never
synchronise to the unknown chaotic transmitter because there are some significant
differences both in structure and in parameters between the chaotic transmitter and
the receiver. Yang et al get a decoding result as good as that provided by the receiver
with the same parameters as those of the transmitter.

As a conclusion, all the above methods, except the breaking of the chaotic switching,
assume that the information signal is added to the chaotic signal and they try to
separate the information signal from the chaotic signal. This is a special case of the
chaotic communication system. The secure communication systems based on hiding
the information on chaotic carriers may be useful to increase privacy but are not yet
capable of providing a high level of security.

In this chapter, we introduce a new algorithm for attacking the chaotic
communication system (continuous or discrete). This algorithm is suitable either

when the information signal is added to the chaotic carrier or it is used to modulate
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one of the state variables of the chaotic system at signal to chaos ratios of the order

of —240 dB.
6.3 New algorithm for attacking the chaotic communication systems

6.3.1 Introduction

A new algorithm for attacking the chaotic communication systems is introduced. It is
based on two of the MATLAB optimisation programs [15]. The optimisation finds
the optimal solution of a certain problem by finding the maximum or the minimum
of a function in an interval, with or without constraints.

Suppose that we want to find a minimum x_,, of the function fin an interval.

n

fx)= mxin f(x). (6.1)
An iterative method needs an initial guess x,. From this valuex,, we find a new
value x,which, it is hoped, is closer to x,, . How the better approximation x; is
found, depends on the numerical method used. These iterations continue until an

approximation x; with enough accuracy is found such that ’x —x,.| is smaller than

the required error. If there are several local minima, the optimiser will find one of
them. In this work, two optimisation programs are used namely EO04JAF and
Jminsearch. The EO4JAF is a simple bounded optimisation program and is used to
find the minimum of a function of several variables.
The instruction for this program is

[x, f(x)] = EO4JAF(x,, X,, X,) (6.2)

where x, is a vector of the unknown values and is the initial guess, x, is a vector of

the lower limits of the unknown variables and x, is the upper limit. The user must

supply a subroutine (target function) functl to calculate the value of f (x) for any

given value of x.
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The fminsearch program is used to find the minimum of a scalar function of several
variables starting with an initial estimate. It is generally referred to as unconstrained

nonlinear optimisation. It uses the simplex search method [16] and it has the form

[x] = fminsearch (fun, x,, options). (6.3)

It returns a vector x that is a local minimiser of the function fun. The vector x,

contains the initial guesses for the optimiser. The options, for this function, include
the maximum number of iterations, allowed termination tolerance of the function
value and termination tolerance for x.
In this method of attack, we assume that the dynamics of the system are known but
we have no information about the transmitter parameters (encrypter keys) used to
encrypt the information. We assume that the receiver output signal (wanted signal) is
an error signal of the optimisation algorithm and the algorithm is used to minimise
that error. If the error is minimum, then the information signal is recovered. The
steps of attacking the chaotic communication systems are summarised as follows:

1. We determine the type of the chaotic communication system under attack from
the received ciphertext signal by plotting the attractor of the received data signal.
Usually the attractor is a phase-plane of two state variables. However, in this case
we have for the transmitted ciphertext only one state variable. To obtain an
attractor, we plot the received data samples against the received delayed data
samples. For example, if we have 1000 data samples, we plot the data samples
from (1:990) against the data samples from (11:1000). These attractors are used
as signatures for the chaotic systems. From these signatures, we can determine

the type of the system under attack as shown in Figs. 6.1, 6.2 and 6.3.
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2. We apply the optimisation program (E04JAF) to the system under attack. For
this program we assign initial values for the keys, the upper limits and the lower
limits of the keys and the number of samples required for attacking the system.
The EO4JAF is used first to ensure that the chaotic system will be in the chaotic
band because it is a bounded optimiser. The upper and lower boundaries are
chosen such that the system remains chaotic, as we will discuss in section 6.3.2.

3. The resultant keys of the EO4JAF are applied as initial guesses for the second
program (fminsreach). This is used after the EO4JAF program to minimise the
error in the resultant keys of the EO4JAF. Since in some cases, as will see later,
we require keys with accuracy up to 107",

4. The resultant output keys of the fminsreach program are the required keys.
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The flow chart shown in Fig. 6.4 demonstrates the above steps.

Read the received
ciphertext

1 Determine the type of the chaotic communication system
Determine the number of keys

v

Assign initial keys for the first algorithm with an upper and a
lower bound for each key
v
Run the EO4JAF optimizer

v
The resultant output keys of the first algorithm are used as an

initial keys for the second algorithm
v

Run the fminsearch optimizer

:

Run the decrypter model and use the reasultant keys of the
second algorithm. Check that the information signal is
recovered correctly

Display the recovered
signal

Fig. 6.4 The flow chart of the attacking algorithm.

6.3.2 Obtaining the upper and lower boundaries of the optimisation program

The upper and lower bounds of the chaotic system are chosen such that the system
remains chaotic. These bounds are obtained by plotting the bifurcation diagram of
the system under attack. We will give an example of the bifurcation diagram of the
Lorenz system [17]. In this system we have three state variables and three

parameters (a, b and ¢). We plot the bifurcation diagram of the state variable y as a

161



Chapter 6 Attacking chaotic encryption systems

function of these three parameters. The bifurcation diagrams of the Lorenz system

are shown in Figs 6.5, 6.6 and 6.7.
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Fig. 6.5 Bifurcation diagram of the Lorenz system
(a parameter and y state variable).
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Fig. 6.6 Bifurcation diagram of the Lorenz system
(b parameter and y state variable).
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Fig. 6.7 Bifurcation diagram of the Lorenz system
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We find that the system has chaotic behaviour if a lies in the range from 6 to 12.
We choose the boundaries of a from 8 to 12. For the parameter b the system has
chaos output if it lies in the range from 17 to 35. The boundaries of b are chosen
from 25 to 35. For the parameter ¢ the system has chaotic response if it lies in the
range from 1.2 to 4. The boundaries of ¢ are selected to be in the range from 2 to 4.
To determine the ranges of the parameters accurately, the three parameters should

be tested simultaneously. For the other system, the same procedures are used.

6.3.3 Attacking the Henon map

Stark et al. [11] have presented a method for extracting slowly varying signals from
the Henon chaotic map. They succeeded in recovering the information signal with
reasonable accuracy when the ratio of amplitudes of the chaotic signal to the
information signal is as low as 10"°. Using our algorithm, we succeed in the
recovering the information signal when the ratio of amplitudes of the chaotic signal
to the information signal is as low as 10" with an accuracy of 10",

The state equations of the transmitter are given by

163



Chapter 6 Attacking chaotic encryption systems

_ 2
Xp1 = L+ Yu ax,

(6.4)
You =bx, +5(2).
S(t)...is the information signal.
The state equations of the receiver are
’ - 1+ ’r 7”2
xn+l yn axn (65)

§t)=y,, —bx.

The block diagram of the system is shown in Fig. 6.8.

x(n+1) 1 + x(n+1)
Constant

Unittime
delay \;

Recovered
signal

Transmitted Channel
signal

A 4

Scaling
factor

Information

Fig. 6.8 Block diagram of the Henon chaotic communication
system.

The attacker algorithm is used to find the exact values for a and b starting from
initial values. The signal to chaos ratio, in this example, is —240 dB. The attacker
initial key values, the range for each key, the number of points required for the
attacker, the time of attack, the number of iterations taken in the attack and the
resultant attacker keys are given in table 6.1. The attacker input and output signals
are shown in Fig. 6.8. The figure indicates that with the attacker resultant values, the
receiver succeeds to recover the information signal. The error between the normal
output and the attacker output is around 1012, We give some explanations about the
graphs.

e Attacker input is the input signal to the attacker (received signal).

e Attacker initial output is the attacker output at the initial guesses of the keys.

e Normal output is the decrypter output when we know the encrypter exact keys.
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e Attacker output is the decrypter output using the attacker resultant keys.
e Error signal is the difference between the normal output and the attacker output.
e Attacker key error is a graph used to indicate the sensitivity of the system to the

error in the attacker resultant keys.

E Encrypter keys Attacker resultant keys
al|l]|.[3992876/54311521.[399]8 7|6 543 11|51
b |0|.[2909 8767905 6430].[20998 7|6/ 790]56|45
Attacker initial values Optimiser 1 Optimiser 2
: | g 2 |5 4| 2 |5
1 0.1 5| g |£|%E S| g| = c £
5l |glgg 5|5 & |£%
Range » n ) n
2 Q\ 8 — 0 0.01 .05 6 0 | 0.01 0.03 4
@)
Total time 24.636 Total number of 298
of attack seconds iterations

Table 6.1 Encrypter keys, attacker initial values and attacker
resultant keys.
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N
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o
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Time Time

Fig. 6.9 Attacker results of the Henon map.
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6.3.4 Attacking the Yamakawa chaotic communication system

Itoh et al. [18]-[19] have presented a chaotic communication system based
Yamakawa’s chaos chip. The chaos chip contains three basic units for constructing
chaotic systems. Those are a nonlinear delay unit, a linear delay unit and a summing

unit. The transmitter state equations are given by

xn+l = f(xn) + gsn

Yor1 = 8(3,)— 0z, +8x, (6.6)
Zn+l = yn _ﬁzn
where,
ki(x— E Y+ & By, X< By
f(x) =1k,x, E<xs E (6.7)
k(x—E)+LE,, x2 E,

k,, k,, k,, E and E,are constants.

¥,.1 1 the transmitted signal.

s, 1s the information signal.

The function g(x) has the same form of f(x)but with another constants
k,, k,, ky, E,and E,.

The receiver state equations are given by

Zon =Y, — Bz,
- +az!
x,/, - Yl g(;]n) T (68)
/ /
- xn+1 _f(xn)
" £

where r, is the recovered signal.

The initial key values for the attacker, the range of each key, the number of data
samples needed for the attacking, the time of attack, the number of iteration taken by
the attacker and the attacker resultant keys are given in table 6.2. The attacker input
and output signals are shown in Fig. 6.10. The figure shows that the attacker
succeeds in attacking the system and recovering the information signal. The

difference between the normal output and the attacker output is around 0.05.
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Keys

Encrypter keys Attacker resultant keys

01.1110 99 8 856743210 . 10998 67294 0/4 0

o

b|{O0|.[195909890012300. 19627 2|3|8 6/8 091

C|9.19 876387 54450509 .98 47 0500|291 8|4

Adtacker mifial Optimiser 1 Optimiser 2
values
a b C
" 0 0 £ | o | £
8 S © 8| m £ 2 | E| & | 5 &,
< 5| & = S 5| & = 5
A X o A 7 3
Ranges - 4
l[Q AN | — | N (]
S|<<|° 0001|032 321 |0]001]|15] 1501
lopel i || 555,607 Total number of iterations 1219
of attack | seconds

Table 6.2 Encrypter keys, attacker initial values and attacker
resultant keys
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Fig. 6.10 Attacker results of Yamakawa'’s chaotic communication
system.
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6.3.5 Attacking the Van Der Pol-Duffing chaotic communication system

Kocarev and Lakshmanan [20] have proposed a chaotic communication system
based on Van Der Pol-Duffing chaotic generator. The system uses a chaotic signal to
mask the information signal and a synchronous chaotic system in the receiver to
identify the chaotic part of the signal, which is subtracted to reveal the information
signal. The state equations of the transmitter are

x=-v[x’—ax-y]

y=x—Yy—g (6.9)

z= By
The transmitted signal r(¢)is equal to

r(t) = x(t) + s(t) (6.10)
where s(¢) is the information signal.

The state equations of the receiver are

Response 1

./ = r t _ / _ ’

¥ =y (6.11)

=By
Response 2

= V(") —a(x) - ¥l (6.12)

The information signal is recovered by

5@t =r@t)-x"(@). (6.13)

The initial key values for the attacker, the range of each key, the number of data
samples needed for the attacking, the time of attack, the total number of iterations
taken by the attacker and the attacker resultant keys are given in table 6.3. The
attacker input and output signals are shown in Fig. 6.11. The figure shows that the
attacker algorithm succeeds in attacking the Van Der Pol-Duffing chaotic
communication system and the error between the normal output and the attacker

output is 107,
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E Encrypter keys Attacker resultant keys
a|0].[3490988 76075 4320]./3500[0]733/50[470
B|2|9 919 8 8 8765023299 .[99 7 6591|2072
C|l1{00.[{00 1]2 387 5430100./00[7 78 8 70403
Attacker initial values Optimiser 1 Optimiser 2
a b ¢
032 | 290 | 85 2 o | E |8 9 £
£ e | E 2 El o| E 2,
g ? E s | §| & 3 ks
Ranges 5 | s |3 % 5
Z Z
I E |22 2|8
olo|N|¢”n T
0O | 001 | 3 |301 [0]001] 75 751
Total time of | 292.16 Total number of
. ) 1583
attack second iterations
Table 6.3 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.11 Attacker results of the Van Der Pol-Duffing chaotic
communication system.
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6.3.6 Attacking the system based on the general approach for chaotic

synchronisation

Kocarev and Parlitz presented a secure communication system based on the general
synchronisation approach [[21]. The system uses the well-known Lorenz model. The

state equations of the transmitter are given by

X, =—ax, +s(t)

X = bxy =~ x, = x x5 (6.14)

Xy = XX, —CX,
where a, b and ¢ are constants and s(¢) is the transmitted signal and it is given by
s(t) =10x, + ix, (6.15)

and i is the information signal.

The state equations of the receiver are

y, =-—ay, +s(t)
y'2=by1—y2—y1y3 (6.16)
).’3 = V1Y, —Cy;.

The information signal is recovered by

ip = (s()~10y,)/ y,. 6.17)

The initial key values for the attacker, the range of each key, the number of data
samples needed for the attacking, the time of attack, the total number of iterations
taken by the attacker and the attacker resultant keys are given in table 6.4. The
attacker input and output signals are shown in Fig. 6.12. The figure illustrates that the
information signal is recovered with an error 10” compared to the normal output
signal. As described in section 6.3.3, the normal output is the output of the decrypter

when we know the encrypter keys exactly.
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Encrypter keys Attacker resultant keys

C|2].16606 70023456302 ./66/6 699 83970726
Attacker initial values Optimiser 1 Optimiser 2
a b C =
QE) o g s & E .@ g 'g
8 | 26 21 (2| & | £ | SE|E 2|2 &
g 2| & | Z8|E & |&| °¢°
Ranges z z w = | 7

w| S G|Q] o | <+ |0] 001 3 301 (0] 0.01 | 3 301

Total time 222.617 Total number of
) ) 1720
of attack seconds iterations

Table 6.4 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.12 Attacker results of the general approach for chaotic
synchronisation.
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6.3.7 Attacking the Chua masking chaotic communication system

Kocarev et al. [22] have experimentally demonstrated a secure communication
system using Chua’s circuit. In this method, the information is added at the output of
the Chua generator at the transmitter and recovered at the receiver by subtracting the

chaotic signal. The state equations of the transmitter are given by

dvc,
¢ ar G(ve, =¥, )~ 8vg)
dv, '
Co—= =G e =V ¥, (6.18)
dt 1 2
dh
dt ’
The transmitted signal r(¢)is given by
r(t) =ve +s(t) (6.19)

where s(¢) is the information signal.

The receiver is composed of two subsystems, the state equations of the first

subsystem are given by

0
v
c, d“ =G(r(t)-ve)+il
A h

(6.20)
di; M) 4 )
LF =—(ve, +ri,
The second subsystem is given by
a1
: djl - E(vgz )-8 (6.21)
The recovered information signal s(¢) is given by
s@) =r(®)-ve. (6.22)

The initial key values for the attacker, the range of each key, the number of data
samples required for the attacking, the time of attack, the total number of iterations
taken by the attacker and the attacker resultant keys are given in table 6.5. The
attacker input and output signals are shown in Fig. 6.13. The figure indicates that the
input signal is recovered and the difference between the attacker output and the

normal output of the system is around 0.1.
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E Encrypter keys Attacker resultant keys
al9]).19986 7432192009 .[99 86/6/9 8081|384
b|0|.[6499 786 5432010[.[6/503 10367 2565
c|1].10001 23897654300 .[998786/7470[807
d|5].15909 8769 8765405 .[6/0/523 73100022
Attacker initial values Optimiser 1 Optimiser 2
b 1ol ¢ 1Bl | B |wzl|B L|EB| s
- - ‘ = - b oud . =
05 |07 45 E 2 = s 3 g £ s %é_
Ranges 2 ©n ) %)
ol & q g ﬁf: <o | 0] 001 ]| 3.0 301 {0(0.01] 0.5 51
& S
Total time 332.829 Total number of 1558
of attack seconds iterations
Table 6.5 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.13 Attacker results of the Chua masking chaotic
communication system.
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6.3.8 Attacking the Rdssler encryption algorithm

The attacker algorithm attacks our developed Rossler encryption algorithm [23]. The
details of the algorithm were presented in chapter 5 (section 5.4.1.2). The state

equations of the transmitter are given by

X=—y—%
y=x+ay+s() (6.23)
z2=b+z(x-c¢)

where a, b and c are constants and s(¢) is the information signal.

The state equations of the receiver are
X, =—3y—g,
z,=b+z,(x,-c) (6.24)
St)=y-x, —ay

where § (1) is the recovered information signal.

In this case, the signal to chaos ratio is equal to —246 dB. The initial values for the
attacker, the range of each key, the number of data samples needed for the attacking,
the time of attack, the total number of iterations taken by the attacker and the attacker
resultant keys are given in table 7.6. The attacker input and output signals are
illustrated in Fig. 6.14. The figure shows that with resultant attacker values, the
information signal is completely recovered and that the difference between the

normal output of the system and the attacker output is equal to zero.
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E Encrypter keys Attacker resultant keys
a|0]|.13980 17 84{532130f.[{3/9/8 01|78 453213
b |{1].]99 7 865 3421876 1. 9178/ 6|5/ 314/21|8 7 6
c|4|.10 156 7 4432317624 ./01/56/7 43231762
Attacker initial values Optimiser 1 Optimiser 2
a 5 gl 2leslf |2l
0.1 0.1 S| & | = g.é 3 | 5 |° é
§| 2| &§|28|5 9| &g|28
Ranges 7 7z 7 7
= | 21 2| | 2] » |0|01]|10] 101 |[0]0.1]| 20201
Total time of 166.44 seconds Totgl number of 1424
attack iterations

Table 6.6 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.14 Attacker results of the Rossler encryption system.
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6.3.9 Attacking the Lorenz encryption algorithm

The attacker algorithm also attacks our developed Lorenz encryption algorithm [23].
The details of the algorithm were given in chapter 5 (section5.4.1.3). The state

equations of the transmitter are given by

x=a(y—x)
y=bx—y-xz+s(t) (6.25)
Z=xy—cz

where a, b and ¢ are constants and s(¢) is the information signal.
The state equations of the receiver are

x,=a(y—x,)
2, =X, y—cz, (6.26)
S@)=y-bx+y-xz

where S () 1s the recovered signal.

The signal to chaos ratio is equal to —257 dB. The initial key values of the attacker,
the range of each key, the number of data samples needed for the attacking, the time
of attack, the total number of iterations taken by the attacker and the attacker
resultant keys are given in table 6.7. The attacker output signals are illustrated in
Fig. 6.15. The figure illustrates that the attacker recovered the information signal and
that the difference between the normal output and the attacker output is equal

to 1075,
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Encrypter keys Attacker resultant keys
6/ 7 9 543 . 6|7 312|1
025 478 . 0] 2 8196
66 6/6 9009 1 .16/ 6/ 6|6 1{2]3
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5 &l ° & gl °
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Total time of 123.478 seconds Totgl nurpber of 1574
attack iterations

Table 6.7 Encrypter keys, attacker initial values and attacker
resultant keys.
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Fig. 6.15 Attacker results of the Lorenz encryption system.
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The above results show that the new attacker algorithm breaks the chaotic
communication systems under attack and the information signal is recovered. As a
result, the above systems are not secure and we should improve their security. In
chapter 7, we will give some methods to counter that attacker and improve the

security of the chaotic communication systems and counter the attack algorithm.

6.4 Conclusion

A new algorithm for attacking the chaotic communication system is introduced. The
algorithm is based on two optimisation programs of the MATLAB. The algorithm is
tested on different chaotic communication systems (continuous and discrete time
systems). It is tested on systems based on chaos masking or chaos modulating. The
algorithm also attacks the new encryption algorithms introduced in chapter 5. The
algorithm succeeds in attacking all the chaotic systems under test and finds their
keys. The information signal is recovered even at signal to chaos ratios in the order

of —240 dB.
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Chapter 7

COUNTER MEASURES TO THE CHAOTIC
ATTACKING ALGORITHM

7.1 Introduction

In chapter 6, we introduced a new algorithm for attacking chaotic communication
systems, which succeeds in attacking several chaotic communication systems. The
systems attacked include, masking systems [1]-[2], systems based on the general
synchronisation approach [3] and discrete systems [4]-[5]. Our new developed
chaotic encryption algorithms [6] presented in chapter 5 were also attacked by our
attacker algorithm. In this chapter, four methods of counter measures are presented in
section 7.2. In section 7.3 a method of counter counter measures of the attacker is
presented. The conclusion of the chapter and the chapter references are given in

sections 7.4 and 7.5.

7.2 New methods of counter measures for the chaotic attacker

The security of chaotic communication systems can be improved by using the

following methods.

7.2.1 Method 1

We convert all fixed parameters (keys and the initial conditions) to nonlinear
bounded functions (sine, cosine, tanh...etc). The bounded functions are used to
ensure that the system still has a chaotic behaviour. The state variables are not
multiplied by constant values but by functions of one or several state variables. The

attacker must first finds out what the functions used in the system are and then finds
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the parameter values. As an example, in the Chua masking system we replace the

term CL(VCZ —Vc,) in Eq. 6.18 by

1

1 .
E(VCZ — Ve, )+ asin(a, * (v, —ve, ) — a5 08 (a,(ve, =V, )) + ...
1

In this case, the attacker should find out the functions used and then the values of
a,, a,,a,and a,. The Chua system is tested using the above equation with the
following parameter values; a, =0.08, a, =0.3, a; =0.1 and a, =0.2. The results

illustrate that the chaotic behavior of the Chua system does not change as shown

in Fig. 7.1.
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Fig. 7.1 Output signals and attractors of the Chua chaotic system.
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7.2.2 Method 2

The security of the system can be improved by making the parameters of the system
dependant on two or three state variables instead of one state variable, such that this
change does not affect the chaotic behaviour of the system. For example, in the
Rossler system instead of writing the equation

y=x+ay+s(t).
we can write it as

y=x+(a+ax+a,2)y+s(t).

The attacker should find out the values of a, a, and a, instead of only the value of a.
The Rossler system is tested using the values a =0.398, a, =0.05 and a, =0.075 and

the results illustrate that the chaotic behaviour of the Rdssler system does not change

as shown in Fig. 7.2.
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Fig. 7.2 Rossler chaotic output signals and attractors.
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7.2.3 Method 3

The security of the system can be improved by using a multi-system encryption
algorithm. In this algorithm a combination of Chua, Lorenz and Rossler algorithms
are used to encrypt the information signal. The signal flow diagram of the algorithm

using the SIMULINK is shown in Fig. 7.3.
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encryption
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signal 1 Outt +I>—>|n1 outt ~>I>—Nn Out—>|>—> iy
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!

Decryption
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Fig. 7.3 The multi-system algorithm block diagram
(a) Encryption part.

(b) Decryption part.
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In the transmitter, the information is scaled by (S;=107) and encrypted using the
Chua encryption algorithm [6]. The output of the Chua algorithm is scaled by
(S»=10") and encrypted using the Lorenz encryption algorithm [6]. Finally, the
Lorenz algorithm output is scaled by (S5=10") and encrypted using the Rdossler
encryption algorithm [6]. In the receiver, the received signal is decrypted using the
Rossler decryption algorithm, then the recovered signal is scaled by 10*. The scaled
output of the Rossler decryption algorithm is decrypted using the Lorenz decryption
algorithm and the Lorenz recovered signal is scaled by 10°. The scaled output signal
of the Lorenz decryption algorithm is decrypted using the Chua decryption
algorithm. The information signal is recovered by scaling the Chua recovered signal
by 10°. In this case, the number of keys under attack is increased and the attacker
must either attack these algorithms in steps (algorithm by algorithm) or
simultaneously. The signal outputs of each algorithm are shown in Fig. 7.4. The
figure shows that the information signal is encrypted using different chaotic signals
and different signal to chaos ratios are achieved after each step of the encryption of

the text file (SCR=-10.7 dB (Chua), -93.6 dB (Lorenz) and —57.6 dB (Rdssler)).

200 : : : 5 . : .
E
'-c—-guc_u EE
5 ® 3
= [ng
= 0 : . 5 . i
0 10 20 30 40 0 10 20 30 40
1 : - : 100 : : :
sl 52w
T E DM{“ E%.%UWWW-
2 e g
O B 2
_1 A i i -100 " 2
0 10 20 30 40 0 10 20 30 40
100 : . : 1 : : :
= B
:2 ophtlpehbbylebylpd £ 250
g'a 3%6
— 100 - - 2 4 : .
0 10 20 30 40 0 10 20 30 40
. 5 : : : _ 200 . : :
=l
= 59
o I_-._‘CU
o g v
o E ; ; i «E 0 ; s .
0 10 20 30 40 0 10 20 30 40
Time Time

Fig. 7.4 The output signals of the multi-system algorithm.
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An example of using this method to encrypt a text file is shown Fig. 7.5. The figure

illustrates that the text file is encrypted and recovered without any errors.

Input text
Recently, Pecora and Carroll demonstrated the possibility of synchronizing the
chaotic systems [1]. Itoh et al [2] introduces a new communication system as a
possible application of chaotic synchronization. The main idea of this system is to
use the chaotic modulation to transmit the information signals and the chaotic

synchronization mechanism to recover the information signals.

Transmitted text

~_ 0>GJE8" %IelW& &2<@=3! 7S Y>  $6GRVO@S

*SqvR_+)<5<*  2JWT?" _/DT] [07 _ EmEl1#9DKE="'

_9Wh'>  *6ACB5" ;VcZ:  $6ELMC2 2TkjI  -7B=9(_
'DX\L,  (=LUVM9__ 74up@ 1,@5:$_ !>SZN3_&:KW[TC&

,WvzR_A3R9H! 5UhbA_  )3>@>0_ 9R”W<_ ' :ISWP?# -

VsvO _1+C8A) <S]1S7_ ' :KUXQ@" /XtsK 5,D5=#

(DW\L-_ +<JUVM9_ 7%uo@ 1,@5:# I!<RYN3 ' :KVZTC&

,WvyP ?2P8F! 3Re

bE  %2?DF<) 3Qc‘E_ $3AHKB3 -0fhM  (19=

Recovered text

Recently, Pecora and Caroll demonstrated the possibility of synchronizing the
chaotic systems [1]. Itoh et al [2] introduces a new communication system as a
possible application of chaotic synchronization. The main idea of this system is to use
the chaotic modulation to transmit the information signals and the chaotic

synchronization mechanism to recover the information signals.

Fig. 7.5 Example of encrypting and decrypting a text file using
multi-system algorithm
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7.2.4 Method 4

The security of the multi-system algorithm can be improved by making the keys of
each system depend on the state variables of the other systems. The attacker must
then attack the three systems simultaneously. As an example, we use the state
variables x, of the Chua system, x, of the Lorenz system and x, of the Rdssler system
to control the nonlinear function of Chua system. Normally the Chua nonlinear

function is written as
—2tanh(0.38x,).

We write the Chua nonlinear function as

—2tanh(0.38x, +0.0ly, ~ +0.02x, ).

ossler

Fig. 7.6 shows the signal flow diagram of the encryption algorithm. The diagram is a
direct representation of the state equation of the Chua, Rossler and Lorenz encryption
algorithm but the Chua nonlinear function depends not only on the Chua state

variable x, but also on the Rdssler and Lorenz state variables. The keys of the entire

algorithm are defined by the user and stored into a file. The algorithm loads the keys
file. The demultiplexer is used to convert the keys file into individual values that can
be manipulated by the encryption algorithm. These key values are then fed to the
encryption algorithm. The total number of characters of the plaintext is fed to the
algorithm from the keys file. The signal flow diagram of the decrytion algorithm is
shown in Fig. 7.7. The diagram is a direct representation of the Chua, Rossler and
Lorenz decryption state equations. The keys file, which is the same as the encryption
keys, is loaded by the decryption algorithm and these keys are used to decrypt the

received ciphertext.
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Chua nonlinear function depends on the state
variables of Chua, Lorenz and Rdssler systems.
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Fig. 7.6 Signal flow diagram of the multi-system encryption
algorithm.

188



Chapter 7 Counter measures to the chaotic attacking algorithm

Chua system
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Fig. 7.7 Signal flow diagram of the multi-system decryption
algorithm.
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Fig. 7.8 shows the signals at each part of the encryption and the decryption
algorithms. Different signal to chaos ratios are achieved after each step of the
encryption of the text file (-11.2 dB (Chua), -93.1 dB (Lorenz) and -37.6 dB

(Rossler)). The figure illustrates that the information signal is completely encrypted

through the systems and completely recovered.
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Fig. 7.8 The output signals in each part of the algorithm
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Fig. 7.9 shows an example of encrypting a text file using the multi-system encryption
algorithm. The figure indicates that the input text file is encrypted and is completely

recovered without errors.

Input text

Recently, Pecora and Caroll demonstrated the possibility of synchronizing the
chaotic systems [1]. Makoto et al [2] introduces a new communication system as a
possible application of chaotic synchronization. The main idea of this system is to
use the chaotic modulation to transmit the information signals and the chaotic

synchronization mechanism to recover the information signals.

Transmitted text

~ 0>GJE8" %IelW& &2<@=3! 7T Y> $6GRVO@S *SqgvS ,)<5
<%* 3JWT?" _3EQYYN6 Fl~i"4=FB<( 10b‘F  .@HLE6 (Ke

kTS )3=@>3"__ 5PAZA #5FPUOB)_ &OowX_**<6<, _ 2JXT@$

3GU] [06 FmEi_ >AMB>" _<Yj_8 -7@@;+ $BXAP1  ,=LTUK7
__<cwn:_ /.?7<)___">T[O3___ %:KUYRAS_ -WtwO 9.H6@$_ +H]‘L’

_ =-=IOL@*_ Abrdl ’'59>6,__ <R[Q7_'<NW[TC%_.ZyzM DA4TS8
H_<]lc;__ /7A?;*_ )F[_M+___ 1AMSQE/_Bevf. (/:97)__ ;
OWOo8 _ %:MZ‘

Recovered text

Recently, Pecora and Caroll demonstrated the possibility of synchronizing the
chaotic systems [1]. Makoto et al [2] introduces a new communication system as a
possible application of chaotic synchronization. The main idea of this system is to
use the chaotic modulation to transmit the information signals and the chaotic

synchronization mechanism to recover the information signals.

Fig. 7.9 Example of encrypting a text file using multi-system
encryption algorithm with feedback.
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7.3 Counter counter measures of the chaotic attacker

Since the parameters are now functions of time, the next level of attack is to attack
the algorithms symbol by symbol. We apply this method to attack the Lorenz

encryption algorithm [6]. Normally, we have the term
a(y—x).
We rewrite it as follows
a(y—x)+sin(y—x).

In this case, the attacker must know what is the added function to equation of a or
what is the instantaneous value of the function at each symbol. We will choose the
symbol number 500 of the information signal whose value is —0.001. The
corresponding transmitted value is 0.852. We apply the symbol by symbol attack to
attack this symbol. The results show that the symbol by symbol attack cannot
overcome the counter attack methods of the chaotic communication systems since
the resultant value of the symbol is —36.2 instead of the true value of —0.001. This is
shown in Fig. 7.10. As a result, we find that it is difficult to overcome the counter

attack methods and these methods give more security to the chaotic communication

systems.
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Fig. 7.10 Symbol by symbol attacker results.
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7. 4 Conclusion

New methods of counter measures are given to improve the security of the chaotic

systems. We found that, it is difficult to attack the systems in the following cases:

e When the systems use nonlinear bounded functions instead of constant
parameters.

e The parameters of the systems depend not only on all the state variables of the
system.

e When we use multi-system algorithm. Especially, when the parameters of one
system are controlled by the state variables of the other systems. In this case, the
attacker should attack the whole systems simultaneously.

e Finally we introduce the symbol by symbol attack to overcome the counter
measures. The results show that the symbol by symbol attack cannot overcome
the counter attack methods and this means that the chaotic systems are potentially
secure.

e Obviously, these methods of counter measures cannot be implemented in the
systems based on physical electronic circuits. Since our attack method can break
any chaotic encryption system, we conclude that methods based on electronic

circuits are not secure.
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CONCLUSION AND FUTURE WORK

The basic conclusions from the research presented in this dissertation are

summarised below:

1. A new analogue chaotic communication system called the multi-channels chaotic
communication system is introduced. In the MCCS system, an extra channel is
used for the synchronisation between the transmitter and the receiver and the
other channels are used for the transmission of the information signals. The
simulation results (SCR=-74 dB) and the practical results (SCR=-24 dB) show
that the developed system is better than those systems using one channel for the
synchronisation of the communication system and masking the information
signal (SCR=-12 dB in simulation and practical implementation). The
disadvantage of the MCCS system is the use of an extra channel for
synchronisation between the transmitter and the receiver. This problem is
minimised when the system is used in transmitting different information signals

to the same place.

2. We introduce a modified method to implement CSK using one chaotic generator
at the transmitter to encode the binary information signal and one receiver
system. The same results of the systems used two chaos generators or two

nonlinear functions in encoding the binary information O and 1 are achieved.

3. A new method to implement the chaotic generators and the chaotic
communication systems is developed. A new expression of the Chua nonlinear
function is presented. The developed method is used to achieve communication
between two computers using the multi-channel chaotic communication system

given in chapter 2. The main advantages of the method are:

e It can be used to implement the chaotic systems that cannot be

implemented by a physical circuit and is described by the state equations.
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e Itis easy to use and the modification of any system is just a change in the

block diagram or the parameters within the block.

The disadvantage of this method is that high frequency chaotic generators cannot

be implemented using this method since the maximum sampling rate is 20 kHz.

A new method for designing microwave chaotic generators is introduced. The
importance of this work is that an analysis procedure has been developed to
predict accurately the chaotic behavior of the microwave generator. Simulation
and experimental results are given to support our claim. The microwave chaotic
radar and microwave communication systems are presented. In the microwave
chaotic systems the transmitter is based on frequency multiplier chains and the
signal is recovered using an inverse system of first stage of this multiplier chains.

A new expression for the g — v characteristics of the nonlinear capacitor is given.

We examined the effect of the channel delay and channel attenuation and we
have shown that the system has immunity against these effects. The effect of a
loss of part of the received signal is tested and the system succeeds in recovering
the information signal under these conditions.

A new method for encrypting text and image files using chaotic algorithms is
presented. The algorithms are used for secure computer communication and
secure databases. The importance of this work is that this is the first time that the
results of using chaotic encryption algorithm to encrypt image files are presented.
The method is tested through the e-mail channel and signal to chaos ratios of
order 10 or -240 dB have been achieved and the information are encrypted and
decrypted without errors.

A new algorithm for attacking the chaotic communication systems is presented.
The algorithm is tested on continuous and discrete time systems. The systems are
either based on chaotic masking or chaotic modulation. The algorithm succeeds
in attacking these systems and finding their keys. The information signal is
recovered even at signal to chaos ratios in the order of —240 dB.

New methods of counter measures to the chaotic attacking algorithm are
presented. To test whether we can overcome these counter measures, we present

the symbol by symbol attack and the results show that this attack cannot

196



Chapter 8

Conclusion and future work

For the Future work, we have the following parts need further research.

1.

overcome the counter measures. This means that such chaotic systems cannot be

broken.

'
In microwave chaotic systems, we presented the simulation results for the
receiver system but we did not download the algorithm on a chip. In future work

we will implement the systems using one of the digital implementation

techniques such as field programming gate array (FPGA).

In Chapter 5, the secure computer communication using chaotic algorithms are
developed. We used the e-mail channel as our communication media but the
algorithm is developed to work in real time communication systems as well. In
the future, we will test this algorithm in real time digital communication systems

and the algorithms will be implemented on a single chip using FPGA.

In chapter 7, we have shown that the encryption using nonlinear functions for the
parameters are robust and could not be broken and we will continue to work in

studying the immunity of the systems against any attack.
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