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Abstract 

How does the brain sustain consciousness? In this thesis, and in the work 

leading up to it, we provide new computational evidence for the importance of 

the posterior hot zone on one hand, and for long-distance frontoparietal 

connectivity on the other, in explaining the contrast between loss of 

consciousness and in maintaining conscious responsiveness.   

We adopt a factorial approach in our study, crossing two altered states of 

consciousness with two analytical methods for measuring changes in brain 

associated with these altered states. Specifically, we study healthy controls under 

propofol-anaesthesia and patients suffering from disorders of consciousness 

(DoC), employing functional and effective electroencephalographic 

(EEG) connectivity, thereby forming a 2-by-2 study design. 

We first demonstrate the power of functional EEG connectivity for predicting 

anaesthetic states in the healthy brain, by building a single multivariate 

regression model combining phase-lag brain connectivity and behaviour- and 

power-based dependent measures. We show that baseline alpha- and beta-

connectivity, as measured prior to an anaesthetic induction, can predict both 

behaviour- and power-based measures during the induction and 

peak unresponsiveness, specifically as measured from the posterior 

electrodes. Next, we study patients suffering from DoC and show that the alpha-

band functional connectivity over the left hemisphere, and graph-theoretic 

network centrality on the right, significantly predict the patient’s clinical 
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diagnosis. Our findings suggest a dissociation between mean spectral 

connectivity and network properties.  

Building on these findings, we then turn to dynamic causal modelling (DCM) 

to estimate modulations in effective brain connectivity due to anaesthesia, in and 

between the default mode network (DMN), the salience network (SAL), and the 

central executive network (CEN). Advancing current understanding of 

anaesthetic-induced LOC, we show evidence for a selective breakdown in the 

posterior hot zone and in medial feedforward frontoparietal connectivity within 

the DMN, and of parietal inter-network connectivity linking DMN and CEN. In a 

novel DCM-based out-of-sample cross-validation, we establish the predictive 

validity of our models, specifically highlighting frontoparietal connectivity as a 

generalisable predictor of states of consciousness. Importantly, we demonstrate a 

generalisation of this predictive power in an unseen dataset from the post-

anaesthetic recovery state. 

Finally, we again use DCM to investigate changes in the effective 

connectivity between DoC patients and healthy controls within the DMN. 

Specifically, we show that the key difference between healthy controls 

or conscious patients and completely unresponsive patients is a reduction in left-

hemispheric backward frontoparietal connectivity. Finally, with out-of-

sample cross-validation, we show that left-hemispheric frontoparietal 

connectivity can not only distinguish patient groups from each other, it can 

also generalise to an unseen data subset collected from seemingly unresponsive 

patients who show evidence of consciousness when assessed with functional 
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neuroimaging. This suggests that effective EEG connectivity can be used to 

identify covertly aware patients who seem behaviourally unresponsive.  

Overall, this thesis provides novel insights into the brain dynamics underlying 

transitions between altered states of consciousness and highlights the value of 

tracking these dynamics in a clinical context. DCM, though computationally 

more expensive, can accurately predict states of consciousness and provide 

causal explanations of the brain dynamics that cannot be inferred from functional 

connectivity alone. Functional connectivity, though correlational, is still an 

accurate predictive tool of altered states of consciousness. With clinically 

challenging, ambiguous cases like potentially covertly aware patients, we 

propose that the causal explanations and accurate predictions of DCM modelling 

could outweigh the computational complexity.   
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1. Introduction 

 

This chapter provides the general background into the overarching theme in 

this thesis, namely the study of consciousness. We introduce what we mean by 

consciousness and highlight the theoretical and practical reasons for studying it. 

We end the chapter by outlining the specific approach chosen in this research, 

and by providing the general organisation of this thesis into parts and chapters. 

  

1.1  What is consciousness and why study it? 

Consciousness poses arguably one of the most baffling problems in human 

knowledge; understanding it has been proclaimed as one of the major unsolved 

problems in biology and the ultimate intellectual challenge (Chalmers, 1995; 

Dehaene & Changeux, 2004; Koch, 2004). We are not aware of the 

electrochemical signalling occurring in billions of synapses at any given time in 

our life. Rather, there is a subjective element associated with such brain 

activation that we are – or can be – aware of; a phenomenal property of ‘what it 

is like’, for example, to see something or to hear something, or to be something 

(Nagel, 1974). That is, a system or a process can be argued to be conscious if 

there is something that it is like to be that system or process.  

In this thesis consciousness is therefore generally defined as (having) a 

qualitative subjective experience (of any kind). This refers to the so-called 

‘qualia’, for example, to the experience of colours (e.g. the ‘redness’ of the 
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colour red. See qualia, e.g. Damasio, 1999; Koch, 2019; Ramachandran & 

Hirstein, 1997, but also Dennett, 1988, 2014). In the literature, the subjective 

experience and the corresponding physical process of ‘feeling/experiencing’ is 

typically segregated. A common example to illustrate this segregation describes a 

neuroscientist living in a fully black-and-white environment, who works towards 

understanding the perception of colour. As the years pass, she learns to know the 

complete physical truth about colour perception – the physics, chemistry, 

neuroscience etc. – but lacks the perceptual experience of colour. Eventually, she 

leaves the room and experiences colour for the first time; the central question of 

the thought-experiment is whether any new knowledge was gained by the 

subjective experience (Jackson, 1982).  

This distinction between the physical correlates of experience and the 

phenomenal experience itself – and further, why should there be an experience at 

all – relate to a problem Chalmers famously termed as ‘the hard problem of 

consciousness’ (in contrast to ‘the easy problems’, e.g. explaining how the brain 

integrates information, categorises and discriminates stimuli, or focuses attention; 

Chalmers, 1995, 1996). That is, how does experience arise out of presumably 

non-sentient matter? Whether this gap can be fulfilled is a debate not settled. For 

example, Chalmers argues that the gap cannot be fulfilled, and thus, rejects the 

idea of physicalism of consciousness (ibid.). Other philosophers have argued that 

explaining consciousness in neurobiological terms is not only attainable 

(Churchland, 2005), but that once we fully understand how consciousness 

emerges, then we understand why consciousness is produced and there will be 

nothing else to explain (Dennett, 2005). 
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A number of neuroscientists have taken a more pragmatic approach to the 

hard problem and towards the problem of consciousness overall. For example, 

‘the real problem of consciousness’ asks how to account for the properties and 

phenomenology of consciousness in terms of biological mechanism. That is, how 

can we distinguish different aspects of consciousness and map their first-person 

subjective descriptions (i.e. phenomenological properties) onto underlying 

biophysical mechanisms (Seth, 2016). Another view considers consciousness as a 

highly limited mental workspace enabling complex processing, comparisons, and 

combinations of otherwise disparate forms of information (Bor, 2012; Bor & 

Seth, 2012). In providing such novelty into problem solving, more advanced 

strategies to reach biological goals, that may otherwise be challenging or even 

impossible to reach, can be formed. Hence, under this view, consciousness may 

serve an evolutionary role by providing innovative solutions to complex 

problems.  

Regardless of how interesting the philosophical endeavours trying to explain 

why consciousness exists in the universe at all are (i.e. the hard problem), it is by 

no means clear that we can make any significant headway in explaining 

consciousness by trying to answers such problems directly. Moreover, it is not 

obvious that by just simply thinking about it, one can make significant progress 

in explaining consciousness, although this of course can guide our thinking, 

models and theories. Rather, studying and explaining the properties of 

consciousness, and their respective neuronal basis, via empirical research and 

experimentation, might get you somewhere. Hence, in this thesis, we leave the 

philosophical side to actual philosophers and align more with ‘the real problem’, 
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focusing on what can we tell about how consciousness is correlated with the 

processes in the brain – especially changes in functional and effective/directed 

connectivity at the network level.  

To this end, several cortical and cortico-subcortical network-level 

mechanisms have been proposed to explain human consciousness and its loss. 

For example, networks involving subcortical structures such as the thalamus (e.g. 

Fridman, Beattie, Broft, Laureys, & Schif, 2014; Schiff, 2010) and/or the upper 

parts of the brainstem (Parvizi & Damasio, 2003; Solms, 2019; Solms & Friston, 

2018) have been suggested to play a pivotal role in consciousness. Of the cortical 

mechanisms, two in particular have received an increasing amount of interest and 

supporting evidence. On the one hand, empirical studies have suggested an 

association between loss of consciousness and disruptions of within- and 

between-network connectivity in large-scale frontoparietal networks (Bor & Seth, 

2012; Laureys & Schiff, 2012). On the other, temporo-parieto-occipital areas – 

colloquially named as ‘the posterior hot zone’ – have been suggested to mediate 

changes in consciousness during sleep (Siclari et al., 2017; Lee et al., 2019), and 

in patients with brain damage (Vanhaudenhuyse et al., 2010; Wu et al., 2015). 

However, whether the neural correlates of consciousness (NCC) have an anterior 

contribution (Bor & Seth, 2012; Chennu et al., 2014; Chennu, O’Connor, Adapa, 

Menon, & Bekinschtein, 2016; Del Cul et al., 2009; Laureys & Schiff, 2012) or 

are predominantly posterior (Koch, Massimini, Boly, & Tononi, 2016; Koch et 

al., 2016b; Siclari et al., 2017), is still debated.  
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In addition to increasing our understanding of the biological and physical 

origins of consciousness by exploring the NCC (Koch et al., 2016a; Rees, 

Kreiman, & Koch, 2002), applying rigorous scientific methods to study 

consciousness is important also for more practical reasons. For example, in recent 

years, a number of neuroimaging technologies have been proposed to aid in 

assessment of consciousness after brain injury, and consequently, to help 

addressing the diagnostic and prognostic challenges in such patients. These 

include positron emission topography (PET; Stender et al., 2014; Thibaut et al., 

2012), magnetic resonance imaging (MRI; Demertzi et al., 2015), and 

electroencephalogram (EEG; Chennu et al., 2014, 2017; King et al., 2013; 

Lehembre et al., 2012; Sitt et al., 2014). Similarly, the evidence base for the use 

of neurotechnology in guiding assessments of the depth of general anaesthesia 

has been increasingly built in recent years (Chennu, O’Connor, Adapa, Menon, & 

Bekinschtein, 2016; Cimenser et al., 2011; Mhuircheartaigh, Warnaby, Rogers, 

Jbabdi, & Tracey, 2013; Purdon et al., 2013; Warnaby, Sleigh, Hight, Jbabdi, & 

Tracey, 2017).  

The hope is that such research may lead both to better theoretical 

understanding of the physiological basis of consciousness, and to new and 

improved ways to assess individual states of consciousness, and to reach 

diagnosis and prognosis of such states. Such research may have far-reaching 

consequences; for example, patients in what earlier was called a ‘vegetative state’ 

(nowadays termed unresponsive wakefulness syndrome, UWS, Laureys et al., 

2010) by definition lack of the subjective experience of pain (Jennett & Plum, 

1972). This has led to situations where, depending on the national policies, small 
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surgeries may be performed without anaesthesia and physicians may be allowed 

to withhold or withdraw life-sustaining treatment like artificial respiration, 

resuscitation and artificial nutrition and hydration (Buckley et al., 2004; Demertzi 

et al., 2013; Kuehlmeyer et al., 2014). Notwithstanding these possibly critical 

consequences, the issue of subjective pain experience in UWS patients has not 

been settled. Not only have studies indicated that the rate of misdiagnosis of 

UWS borders 40% (van Erp et al., 2015; Schnakers et al., 2009), brain imaging 

studies have concurrently suggested residual pain-related activity indicating that 

many of these patients may possess components of awareness (e.g. Boly et al., 

2008; Chatelle et al., 2014; Kassubek et al., 2003; Laureys et al., 2002). 

Hence, we do not only focus on illuminating the changes in the underlying 

brain dynamics due to transitions in the state of consciousness at the group level, 

but also on whether the information about connectivity can be used in the clinical 

context to, for example, predict individual states of consciousness. To this end, 

we estimate both functional connectivity (dwPLI; Vinck, Oostenveld, Van 

Wingerden, Battaglia, & Pennartz, 2011) and effective connectivity (dynamic 

causal modeling for cross-spectral densities, DCM CSD; Friston et al., 2012; 

Moran et al., 2009) in transitions in consciousness due to propofol-anaesthesia 

and disorders of consciousness (DoC). By adopting this 2-by-2 study design 

(figure 1.1), we are able to gain novel insights into network-level differences and 

more accurate methods for predicting individual states of consciousness at both, 

the level of electrodes and neural sources. 
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Figure 1.1. Illustration of the 2-by-2 design used in this thesis. We estimate both 

functional (FC) and effective connectivity (EC) in altered states of consciousness 

induced by propofol-anaesthesia (loss of consciousness, LOC) and disorders of 

consciousness. 

 

1.2 Organisation of the thesis, aims, research questions, and hypotheses 

This thesis starts from the general background and introduction in this 

chapter. Chapter 2 provides a review of the methods and techniques used in this 

thesis, and continues with an overview of the relevant theories and prior research 

on the topic of consciousness.  

The next four chapters form the main body of this thesis and consists of four 

research chapters exploring the brain dynamics in altered states of consciousness 

due to general anaesthesia and DoC. It begins in Chapter 3, by exploring a 

previously proposed EEG marker for anaesthetic-induced loss of consciousness 

(LOC), namely the slow-wave activity saturation (SWAS), and its possible 

correlation with pre-anaesthesia resting brain connectivity (top-left cell in figure 

1). In particular, we combine resting state EEG recorded from healthy volunteers 



19 

 

under propofol-induced sedation with individual measurements of propofol-

concentrations in blood plasma, alongside behavioural measures of 

responsiveness. We assess the participants’ spectral power and functional 

connectivity during a pre-anaesthetic baseline period and correlate them with 

individual variation in propofol-concentrations, time needed to reach SWAS, 

level of SWA-power, and time of loss of behavioural responsiveness (LOBR). In 

doing so, we hypothesise and provide evidence for SWAS as a distinct and 

individualised index for propofol-induced loss of consciousness, that is linked 

with pre-anaesthesia baseline brain connectivity. This research was conducted in 

collaboration with Katie Warnaby (FMRIB Centre, University of Oxford) and 

Jostein Holmgren (Anaesthesia Neuroimaging Group, University of Oxford). 

In chapter 4, we explore the level of granularity with which functional 

connectivity can distinguish and predict DoC states (cell 2 in figure 1). In 

particular, we are interested in the possible hemispheric differences in EEG brain 

connectivity and hypothesise a specific role for left-hemisphere in distinguishing 

the DoC states, especially UWS from minimally conscious states (MCS- and 

MCS+. See section 2.6.3 for details). Linking bedside EEG data with behaviour-

based diagnostic labels, we provide evidence for left-hemisphere-specific 

differences in connectivity and in doing so lay the groundwork for further 

investigation of brain connectivity in DoC at the level of neural sources (chapter 

6). For this work, we collaborated with the Coma Science Group in University-

Hospital of Liège with Jitka Annen, Aurore Thibaut, Camille Chatelle, Helena 

Cassol, Geraldine Martens, Caroline Schnakers (University of California), Olivia 

Gosseries, and Steven Laureys.  
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In chapter 5, we explore the changes in effective connectivity following 

propofol-induced LOC (cell 3 in figure 1). In particular, we assess the differences 

in intra- and inter-network effective connectivity in three key resting state 

networks using dynamic causal modelling (DCM) to explain cross-spectral 

densities from EEG data. In doing so we contribute to the frontal vs. posterior 

debate of neural correlates of consciousness by providing novel computational 

evidence supporting a selective breakdown of posterior parietal and medial 

feedforward frontoparietal connectivity within the default mode network (DMN) 

and of parietal inter-network connectivity linking the DMN and the central 

executive network. Going further, we establish the generalised predictive validity 

of our models using a novel DCM-based cross-validation, by predicting unseen 

data from the post-anaesthetic recovery state. This research was a collaboration 

with Frederik Van De Steen and Daniele Marinazzo (Ghent University) and with 

the Coma Science Group and GIGA consciousness in University-Hospital of 

Liège with Olivia Gosseries, Federico Raimondo, Rajanikant Panda, Vincent 

Bonhomme, and Steven Laureys.  

Chapter 6 continues our work exploring the brain connectivity in DoC. We 

assess differences in effective connectivity between cortico-cortical regions of 

the DMN between DoC patients (UWS and MCS+) and healthy controls using 

DCM for EEG (cell 4 in figure 1). Following the methodology defined in chapter 

5, we first provide evidence for reduction in left frontoparietal connectivity and 

test the prospective performance of DCM-connectivity within DMN in 

classifying states of consciousness in DoC based on two connectivity subsets: 

frontoparietal and posterior connections. We follow this by adopting a data-
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driven approach to the classification problem by investigating the predictive 

performance of single connections, and provide evidence for a key difference in 

left top-down frontoparietal connectivity in distinguishing the UWS patients from 

MCS+ and healthy controls. Finally, we demonstrate that our DCM models 

generalise to a more difficult classification problem: in a leave-one-state-out 

cross-validation paradigm, we train the models on UWS patients with a 

confirmed PET negative diagnosis on the one hand, and either healthy controls 

or MCS+ patients on the other. The models are then tested on datasets from 

‘covertly aware’ UWS patients with a PET positive diagnosis. With this 

generalisation, we provide evidence for the hypothesis that if our modelled 

effects are valid, and if the sustained PET metabolism reflects covert 

consciousness in the UWS PET+ patients, our model should classify these 

patients as healthy controls/MCS+ rather than UWS PET-. In this research, we 

collaborated with the Coma Science Group in the University-Hospital of Liège. 

Chapter 7 concludes this thesis. We first provide an overview of the main 

findings of the research chapters. We then combine the main conclusions, 

evaluate the robustness of the results, and reflect the contribution of this thesis to 

the current research. Last, we provide potential follow-up directions to advance 

the examination of the neural dynamics of the altered consciousness explored in 

this thesis. 

In the next chapter, we introduce the relevant methods, alongside with the 

relevant prior research and theories of consciousness. 

 



22 

 

2. Literature review 

 

In this chapter, we will provide an overview on the specific methods used in 

this thesis to examine the difference in network-level neural dynamics in 

anaesthesia and disorders of consciousness. First, we will provide an overview of 

human electrophysiology and the concept of resting state brain connectivity. We 

will then cover the necessary steps for electroencephalography (EEG) analysis 

used in this thesis. In particular, we introduce the preprocessing pipeline (Chennu 

et al., 2017; Chennu 2018), spectral frequency analysis, functional connectivity, 

and network measures based on graph/information theory. We will then provide a 

brief outline of the theoretical basis of dynamic causal modelling and parametric 

empirical Bayes, which we used to evaluate effective connectivity in our models. 

We will then turn back to study of consciousness, providing an overview of the 

leading theories of consciousness relevant to this thesis, namely the Global 

(Neuronal) Workspace Theory (GNWT; Baars, 1997; Dehaene & Changeux, 

2011; Dehaene, Changeux, & Naccache, 2011) and Integrated Information 

Theory (IIT; Oizumi, Albantakis, & Tononi, 2014; Tononi, 2004, 2012; Tononi, 

Boly, Massimini, & Koch, 2016). Last, we will provide an overview of the 

previous research on anaesthetic- and brain damage-induced altered states of 

consciousness, focusing particularly on common EEG markers, and on functional 

and effective connectivity. 



23 

 

2.1 Human electrophysiology and resting state brain connectivity 

In recent decades, neuroimaging has consolidated its place as the 

predominant technique in behavioural and cognitive neuroscience. These 

techniques include, for example, functional magnetic resonance imaging (fMRI), 

EEG, magnetoencephalography (MEG), and positron emission topography 

(PET). Each of the modalities have been used in the context of studying 

consciousness, and each of them have their particular set of strengths and 

weaknesses. For example, fMRI has a very high spatial resolution (typically 

around 3-4 mm voxel size, although much smaller voxel sizes can be achieved 

with higher field magnets), whereas its temporal resolution is restricted by the 

hemodynamic response time (commonly around 3 seconds, with a peak occurring 

5-6 seconds after stimulus; Glover, 2011).  

In contrast, EEG is commonly attributed with excellent temporal resolution 

(<100ms) but with poorer spatial resolution (reasonably accurate at the 

centimetre scale; Burle et al., 2015; Cohen, 2017). Furthermore, due to a number 

of complicating factors – for example spatial blurring and signal mixing due to 

different volume conduction in the tissues of the head – determining exactly 

which neural events caused the observed signal is not possible without imposing 

a priori constraints on the models (Grech et al., 2008; Michel et al., 2004). It is 

also generally believed that activity of deep brain structures is not registered in 

scalp activity (hence, the focus on cortical mechanisms in this thesis; However, 

see for example Krishnaswamy et al., 2017; Seeber et al., 2019 for scalp 

recordings of deeper brain structures). Nevertheless, due to its portability, cost 

effectiveness, and accessibility, EEG is a particularly attractive solution for 
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studying brain function in transitions of consciousness, for example with patients 

suffering from brain damage. We go through some of the key literature providing 

evidence for the usefulness of EEG in the context consciousness studies later in 

this chapter. 

The EEG signal is thought to arise from post-synaptic potentials from the 

deep layers of pyramidal cells (Cohen, 2017) and neuronal oscillations cover a 

broad frequency spectrum. In the literature, the canonical bands are commonly 

defined as 0.5-4 Hz (delta), 4-8 (theta), 8-13 (alpha), and >13 Hz (beta; Teplan, 

2002). There is a long history relating EEG oscillations and cognitive functions 

together (Karakaş, 2020; Klimesch, 1999; Nyhus & Curran, 2010; Harmony, 

2013) and in laboratory settings, ongoing EEG signals have been time-locked to 

the occurrence of task-related stimuli (the event-related potential, ERP; (Luck & 

Kappenman, 2011; Luck, 2014). Commonly, ERPs are contrasted with ‘baseline’ 

signals recorded at rest (i.e. when no stimulus is presented). This resting state 

activation corresponds with specific brain networks whose activity is suspended 

during goal-directed behaviours, and as such, it has been argued to provide a 

reliable baseline measure against which task-elicited activation can be compared 

(Gusnard and Raichle 2001; Raichle et al. 2001, but see also Klein, 2014).  

The identification of such resting state networks (RSN) has led to an 

explosion of interest in studying the underlying brain dynamics without the 

presence of any particular stimulus (van Diessen et al., 2015). The underlying 

idea behind these networks is that cortical areas are to some extent specialised for 

some aspects of sensory, motor, and cognitive processing and that this 
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specialisation is anatomically segregated within the cortex. This is in contrast to 

functional localisation which implies that function can be localised to a specific 

cortical area. Nonetheless, the cortical infrastructure supporting cognitive 

functions may involve many of these specialised areas unified and mediated by 

functional integration. This integration manifests in neural oscillations which 

reflect the communication between the different cortical areas. This integration 

can in turn be characterised in terms of connectivity (Razi & Friston, 2016). 

There are three commonly studied types of brain connectivity: structural, 

functional, and effective connectivity. Structural connectivity refers to the 

anatomical connections in the brain – to the white matter – that has been  referred 

to as the connectome (Sporns, Tononi, & Kötter, 2005). We define functional 

connectivity in this thesis following Friston (2011) and Razi & Friston (2016) as 

statistical dependencies between distinct neurophysiological events. These 

dependencies can be undirected (as in correlation or coherence) or directed (as in 

Granger causality (GC) and transfer entropy; Granger, 1969; Schreiber, 2000). In 

contrast, causal/effective connectivity is seen as causal influence (in a control 

theory sense) of one neural population over another (Stephan et al., 2010). DCM 

can also be characterised as a framework that enables estimation and testing of 

specific models (and/or hypotheses) from a relatively large model-space directly. 

This feature is even further strengthened in a relatively recent extension to the 

DCM procedure – namely parametric empirical Bayes (PEB; Friston et al., 2016) 

– as Bayesian model reduction (BMR) as part of PEB enables the estimation of 

significantly larger model spaces efficiently (see section 2.5.2 for further details 

about PEB and BMR). 
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In this thesis, we are especially interested in estimating the causal 

connectivity – and to test its potential predictive power – in three well-known 

resting state networks (RSN; default mode, salience, and central executive 

networks) in addition to a large model comprising of the three RSNs with 

additionally hypothesised inter-RSN connections. Hence, to estimate effective 

connectivity in these models, DCM is used in chapters 5 and 6. The estimated 

DCM models are in addition used to predict states of anaesthesia and disorders of 

consciousness (DoC).  

However, DCM is a more complex and computationally expensive method 

requiring more time and effort to master in comparison to, for example, 

estimations of undirected functional connectivity. If accurate prediction 

preformance can be obtained with undirected functional connectivity, performing 

computationally expensive analyses for classifications would be resources 

wasted. Thus, in chapters 3 and 4 we use functional connectivity estimates 

alongside linear regression to predict states of anaesthesia and DoC, respectively. 

Next, we provide an overview of the analytical steps involved in transforming 

raw human EEG signals recorded from the scalp into the functional and effective 

connectivity measures used in this thesis.  

 

2.2 Electroencephalography – preprocessing  

In this thesis, we used EEG to capture the cortical dynamics to assess and 

predict altered states of consciousness. The raw EEG signal is known to contain 

inherent artefacts (e.g. noise artefacts, eye blinks, movement artefacts). Hence, a 
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data preprocessing pipeline is typically applied to remove these confounds. While 

there is no universally accepted standard for the preprocessing pipeline, the steps 

therein typically include downsampling, filtering, epoching, noise line and 

artefact removal, and re-referencing (Kim, 2018). Below, we present a short 

description of the data analysis pipeline used in this thesis. All chapter-specific 

details are further described in the corresponding chapters. 

We obtained raw EEG data as captured with 256-channel high-density EEG 

(EGI; chapters 4, 5, and 6) with Net Amps amplifier and both raw and 

preprocessed EEG datasets as captured with a 32-channel EEG cap (BrainCap 

MR, Easycap GmbH; chapter 3) with an MR-compatible amplifier system 

(BrainAmp MRplus, Brain Products GmbH). The preprocessing steps for the raw 

EEG signals in chapters 4, 5, and 6 followed the data analysis pipeline provided 

in Chennu et al. (2017) and Chennu (2018; MOHAWK v.1.2. Available from: 

https://github.com/srivaschennu/MOHAWK). In chapter 3, we preprocessed a 

32-channel EEG dataset acquired during anaesthesia using the same pipeline as 

above. This dataset was recorded after participants reached the peak dose of 

propofol (fully anaesthetised for 10 minutes, peak-unresponsiveness). In addition, 

in chapter 3, we analysed a preprocessed dataset collected during the propofol 

induction period. 

In brief, the pipeline utilises functionality provided by EEGLAB (Delorme & 

Makeig, 2004), FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011), and the 

Brain Connectivity Toolbox (Rubinov & Sporns, 2010), implemented in 

MATLAB2017a (The Mathworks Inc., 2017). From the high-density recordings, 

https://github.com/srivaschennu/MOHAWK
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we first removed the EEG channels on the face, neck, and near the eyes to 

minimise the influence of muscular and ocular artefacts, consequently retaining 

173 channels for further processing (32 channels in chapter 3). The data were 

then downsampled to 250 Hz. As most electromyographic noise was observed in 

high frequencies, the data were bandpass-filtered within a range of 0.5 – 45 Hz, 

encompassing the canonical delta (0 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 13 Hz), 

beta (13 – 30 Hz), and gamma (30 – 45 Hz) bands (except in chapter 3, where the 

induction dataset was already bandpass-filtered between 0.5 – 30 Hz). The 

recordings were then epoched into 10-second long segments – an epoch length 

previously applied and seen fit in the context of altered states of consciousness 

due to propofol-anaesthesia (Chennu et al., 2016) and disorders of consciousness 

(Chennu et al., 2014; 2017). The time points within each epoch were baseline-

corrected relative to the mean voltage over the entire epoch. Artefacts were 

rejected using a quasi-automated procedure that flags abnormally noisy channels 

and epochs by calculating their variance, which then are confirmed by visual 

inspection. Next, the infomax independent component analysis algorithm (Bell & 

Sejnowski, 1995) was used to identify and remove components of activity from 

potentially non-neural origins, followed by interpolation of the removed (noisy) 

channels using a spherical spline interpolation. Lastly, the data were re-

referenced to the common average and the first 60 epochs (first 10 minutes) were 

retained for further analysis. 

   



29 

 

2.3 Frequency analysis 

EEG data allows a spectral decomposition of the signal into different 

frequencies quantifying the amount of oscillatory activity at each frequency. At 

each point in time, the signal’s amplitude (square root of power) and its phase 

can describe the oscillations at a particular frequency (figure 2.1). 

 

Figure 2.1. Illustration of amplitude and phase for two sine waves (2 Hz) 

with 90° difference in phase. Essentially, phase of a function quantifies the 

fraction of the cycle covered up to t (here, time), whereas amplitude quantifies 

the amount of a specific frequency included in the signal. 

 

In signal analysis, the Fourier transform is a common method for calculating 

the power and phase spectra: with a continuous signal x(t) the continuous Fourier 

transform (CFT) into different frequencies f is defined as 

𝑋(𝜔) =  ∑ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

, 
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where 𝑒−𝑗𝜔𝑡 are the complex exponentials, and 𝜔 is the angular frequency 

corresponding to the linear frequency f (𝜔 = 2𝜋𝑓). The square magnitude of 

𝑋(𝜔) (|𝑋(𝜔)|2) is the power spectrum. 

With EEG, however, the data are recorded only for a limited time interval, 

whereas in above, it is assumed that the signal is continuous in time and infinite 

in length. Consequently, the discrete Fourier transform (DFT) is used instead. 

DFT is defined as 

𝑋[𝑘] =  ∑ 𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛 𝑁⁄

𝑁−1

𝑛=0

, 

where k = 0, …, N - 1.  

The traditional Fourier analysis has a number of shortcomings with regard to 

analysing EEG signals: the time-frequency resolution is relatively poor, they 

cannot differentiate oscillations from artefacts, and are generally designed for 

stationary and regular signals (Bruns, 2004; van Vugt, Sederberg, & Kahana, 

2007). To overcome these limitations, it has been shown that by obtaining and 

averaging multiple independent frequency decompositions from the same sample 

by segmenting the signal, the estimation bias of oscillation detection can be 

reduced (i.e. ‘tapering’ of the data; ibid.). These methods use a certain number K 

different orthogonal windows (taper functions) that – when averaged – reduce the 

variance in the estimate by providing an independent estimate of the signal. This 

multitaper method has been shown to provide more reliable power estimations 

for noisy data. 
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Accordingly, in chapters 3 and 4, this multitaper method – with 5 Slepian 

tapers – was used to estimate the spectral power in the canonical frequency bands 

0.5-4 Hz (delta), 4-8 (theta), 8-13 (alpha), and >13 Hz (beta). The continuous 

resting data were segmented into 10-second long windows – an epoch length 

previously applied and seen fit in the context of altered states of consciousness 

due to propofol-anaesthesia (Chennu et al., 2016) and disorders of consciousness 

(Chennu et al., 2014; 2017). In chapter 3, multitaper frequency transformation 

was implemented. Spectral power values between 0.5 and 30 Hz were calculated 

within bins of 0.1 Hz, alongside with cross-spectrum between the time-frequency 

decompositions at frequency bins of 0.06 Hz (with spectral smoothing of 0.3). 

For the cross-spectrum, we used zero-padding to increase the frequency 

resolution (length determined by rounding up the maximum trial length up to the 

next power of 2. See FieldTrip, cfg.pad; Oostenveld et al., 2011). In chapter 4, 

spectral and cross-spectral estimates were calculated at bins of 0.1 Hz between 

0.5 and 45 Hz. In addition, in chapter 3, we estimated and predicted various 

measures based on slow-wave activity saturation (SWAS; 0.5 – 1.5 Hz). SWAS 

is a characteristic waveform seen in both anaesthesia and sleep (Murphy et al., 

2011) and has been suggested as an important manifestation of perception loss 

indicating individual’s depth of anaesthesia (Mhuircheartaigh et al., 2013; 

Warnaby et al., 2017).  
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2.4 Functional connectivity 

Connectivity can be used to characterise the non-trivial, mathematical 

relationship between two signals, for example, between EEG signals from two 

electrodes. Quantifying systematic phase-coupling, i.e. systematic differences in 

phase (lags and leads), is an example of this, which has been hypothesised to 

reflect a flexible communication structure between brain regions (Engel, Fries, & 

Singer, 2001; Fries, 2005). One traditional example of measuring this phase-

synchronisation is spectral coherence, which indicates linear correlations between 

two signals (Adey, Walter, & Hendrix, 1961; Sakkalis, 2011). However, it 

intermingles phase and amplitude correlations, and hence, increases with 

amplitude covariance, leaving the relative importance of phase covariance 

unclear (Lachaux et al., 1999). This has led to development of phase-

synchronisation methods that use only the relative phase between signals, such as 

the phase-locking value (PLV; ibid).  

PLV produces a value between 0 and 1 indicating the amount of 

synchronisation between the phases of the signals. However, it is well known that 

indexing phase-synchronisation can be complicated by the presence of a common 

reference, the presence of noise sources, sample-size bias, and by volume-

conduction of source activity. In the case of EEG, volume conduction of source 

activity and the use of a common reference can spuriously inflate phase-

synchronisation indices (Vinck et al., 2011). To overcome these problems, the 

use of the imaginary part of the coherence (ImC; Nolte et al., 2004) and ImC’s 

improved version, the phase-lag index (PLI; Stam, Nolte, & Daffertshofer, 2007), 

have been suggested. PLI estimates the extent to which phase leads or lags are 
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non-equiprobable (irrespective of the magnitudes of the phase angle differences). 

By averaging the activity detected at 0° or 180° phase differences between the 

signals, PLI effectively removes the largest contributions of volume-conducted 

activity (assuming that volume conduction results in either identical (0°) or 

opposite (180°) phases; Stam et al., 2007). 

Finally, Vinck et al. (2011) suggested weighting of the signs of the observed 

contributions of phase angle differences (leads and lags) by the magnitude of the 

imaginary part of the cross-spectrum (the absolute magnitude). By weighting the 

PLI in this way (wPLI), they demonstrated reduced sensitivity to noise and 

increased sensitivity to detect changes in the phase-synchronisation. Vinck et al. 

(2011) further introduced a debiased estimator of the wPLI (dwPLI) to correct for 

sample-size bias present in both, PLI and ImC.  

It is worth noting though, that down-weighting identical and opposite phases 

may not only improve the robustness to noise and sample-size bias, but lead to 

underestimation of true connectivity patterns at small time lags (Cohen, 2015). 

Nevertheless, dwPLI has previously been utilised and tested specifically in the 

context of anaesthetic-driven unconsciousness (e.g. Chennu et al., 2016; Kim et 

al., 2016), as well as in the context of disorders of consciousness (Chennu et al., 

2014; 2017). Hence, taking into consideration the advantages of dwPLI over the 

other phase-synchronisation measures, we use dwPLI as the measure of 

functional connectivity in chapters 3 and 4. 

Therefore, the cross-spectrum between every pair of electrodes was used to 

calculate the dwPLI values. Within each frequency band, dwPLI values at the 
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peak frequency of the oscillatory signals in the average spectrum across channels 

was used to represent the connectivity between the channel pairs. For all subjects, 

these dwPLI values across all channel pairs were used to construct symmetric 32 

x 32 (chapter 3) and 173 x 173 (chapter 4) connectivity matrices for the canonical 

frequency bands.  

 

2.4.1 Brain-network analysis 

Brain connectivity estimated as above can be used to construct a map of 

connections that can be modelled as a graph. This allows us to apply well-

established methods from network science to characterise the properties of these 

EEG-derived brain networks, and measure how alterations in consciousness 

modulates network properties. A prominent example of a well-studied network 

property is its small-worldness (Watts & Strogatz, 1998). A related example, 

network centrality, which we use in chapter 4, indexes the presence of inter-

modular connectivity hubs. This measure, as captured by the participation 

coefficient (Guimera & Amaral, 2005), has been previously shown to correlate 

with the level of awareness and PET metabolism in DoC patients (Chennu et al., 

2014; Chennu et al., 2017). Essentially, participation coefficient captures the 

distribution of a node’s edges among the communities of a graph. A node with its 

edges entirely restricted to its community has a participation coefficient of zero, 

while a node with its edges evenly distributed among all communities has a 

maximal participation coefficient approaching to one (“connector hubs”).  
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To quantify participation coefficients, each dwPLI connectivity matrix 

constructed as described earlier was proportionally thresholded, retaining 

between 90% - 10% of the largest dwPLI values. After applying the thresholds, 

the matrices were binarised by setting the non-zero values to one. This procedure 

was repeated at each value within the threshold (in steps of 2.5%) and these 

binarised matrices were modelled as a network with channels as nodes and the 

zero-values as edges. Finally, using the Brain Connectivity Toolbox (Rubinov & 

Sporns, 2010), we calculated the participation coefficients for all frequency 

bands, using the global average over the thresholded range of connection 

densities. Following the analysis pipeline (Chennu et al., 2017; Chennu, 2018) – 

we calculated the standard deviation of participation coefficients across network 

nodes. Larger standard deviations would indicate a diversity of participation 

coefficients, with some nodes – with high participation coefficients – serving as 

hubs, and other nodes – with low participation coefficients – in the periphery of 

the network. To relate these network properties to behavioural and clinical 

measures, we subjected these standard deviations to multiple linear regression 

analyses. 
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2.5 Effective Connectivity – Dynamic causal modeling: General case 

During the past decade, dynamic causal modeling (DCM) has become one of 

the most predominant ways to characterise causal1 – or effective – connectivity 

within distributed neuronal networks; it is a generic approach to infer hidden 

(unobserved) neuronal states from measured brain activity (Daunizeau, David, & 

Stephan, 2011; Razi & Friston, 2016). Originally introduced for fMRI data 

(Friston, Harrison, & Penny, 2003), DCM has since been extended for event-

related electromagnetic responses (David et al., 2006), and induced/steady-state 

(cross-spectral) responses (Friston et al., 2012; Moran et al., 2009). In general, 

DCMs link the specific features of the measured data to the modelled neuronal 

dynamics using a generative model; they combine a hemodynamic (fMRI) or an 

electromagnetic forward model (M/EEG) with differential equations describing 

the (hidden) neuronal dynamics (neural state equations). The posterior densities 

for the model parameters (probabilities describing the uncertainty about a 

parameter θ after observing data) in addition to an approximation of the log 

model evidence can then be obtained using Bayesian inversion. In doing so, 

DCMs enable us to draw inferences on the model parameters, such as the 

                                                 
1 

It is important to note what is meant by ‘causality’ here; DCMs are causal in a control-

theory sense (Friston, 2009). In DCMs, causal interactions among hidden state variables (i.e. 

time-varying properties of neural populations that cannot be observed directly) are expressed in 

terms of differential equations. These equations describe how the present state of one neuronal 

population causes change (i.e. dynamics) in another, and importantly, how these interactions are 

modulated by external manipulations or endogenous brain activity (Stephan et al., 2010). 
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synaptic time constants, conduction delays – and importantly – connection 

strengths, in addition to the most likely model (figure 2.2). 

We next turn to the specific case used in this thesis (DCM for cross-spectral 

densities, (Friston et al., 2012; Moran et al., 2009) and provide an overview of 

parametric empirical Bayes – a relatively recent enhancement of DCM that can 

be used to infer the commonalities and differences across subjects (Friston et al., 

2016). Henceforth, we restrict our elaboration to DCM for EEG. 

 

 

Figure 2.2. General framework for dynamic causal modeling. The modelled 

neuronal dynamics are linked with specific features of the measured data using a 

generative model. With Bayesian inversion, the posterior densities for each 
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parameter, in addition to an approximation of the log model evidence, are 

obtained. This enables inference on, for example, connection strengths and the 

most likely model structure given the observed data. 

 

2.5.1 DCM for cross-spectral densities (CSD) 

In DCM for CSD, the observed cross-spectral densities in the EEG data are 

explained by a generative model that combines a biologically plausible neural 

mass model with an electrophysiological forward model mapping the underlying 

neural states to the observed data. Each node in the proposed DCM models – that 

is, each electromagnetic source – consists of three neural subpopulations, each 

loosely associated with a specific cortical layer; pyramidal cells, inhibitory 

interneurons and spiny stellate cells (ERP model; Moran, Pinotsis & Friston, 

2013). DCM does not simply estimate the activity at a particular source at a 

particular point in time – instead, the idea is to model the source activity over 

time, in terms of interacting inhibitory and excitatory populations of neurons. 

The subpopulations within each node are connected to each other via intrinsic 

connections, while nodes are connected to each other via extrinsic connections. 

Three types of extrinsic connections are defined, each differing in terms of their 

origin and target layers/subpopulation: forward connections targeting spiny 

stellate cells in the granular layer, backward connections targeting pyramidal 

cells and inhibitory interneurons in both supra- and infragranular layers, and 

lateral connections targeting all subpopulations. This laminar specificity in the 

extrinsic cortical connections partly reflects the hierarchical organisation in the 
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brain. Generally speaking, the backward connections are thought to have more 

inhibitory and largely modulatory effect in the nodes they target (top-down 

connections), while forward connections are viewed as having a strong driving 

effect (bottom-up; Salin & Bullier, 1995; Sherman & Guillery, 1998). 

The dynamics of hidden states in each node are described by second-order 

differential equations (state equations), which depend on both, the parametrised 

intrinsic and extrinsic connection strengths. This enables the computation of the 

linear mapping from the endogenous neuronal fluctuations to the EEG sensor 

spectral densities. In turn, this enables us to model differences in the spectra as a 

result of changes in the underlying neurophysiological parameters describing the 

intrinsic and extrinsic connectivity of coupled neuronal populations. 

 

2.5.2 Parametric empirical Bayes 

 In DCM, a variational Bayesian scheme called Variational Laplace is used to 

approximate the conditional or posterior density over the parameters given by the 

model inversion process, by maximizing a lower bound (the negative free 

energy) on the log-evidence (Friston et al., 2007). The parametric empirical 

Bayes (PEB) framework is a relatively recent extension to the DCM procedure 

used, for example, to infer the commonalities and differences across subjects 

(Friston et al., 2016). Briefly, the subject-specific parameters of interest (here, 

effective connectivity between nodes in a DCM model) are taken to the group-

level and modelled using a General Linear Model (GLM), partitioning the 

between-subject variability into designed effects and unexplained random effects 
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captured by the covariance component. The focus is on using Bayesian model 

reduction (BMR) – a particularly efficient form of Bayesian model selection 

(BMS) – to enable inversion of multiple models of a single dataset and a single 

hierarchical Bayesian model of multiple datasets that conveys both the estimated 

connection strengths and their uncertainty (posterior covariance). As such, it is 

argued that hypotheses about commonalities and differences across subjects can 

be tested with more precise parameter estimates than with traditional frequentist 

comparisons (Friston et al., 2016). 

A particular advantage of PEB is that as part of the BMR process – when no 

strong a priori hypotheses about the model structure exist, as in the present study 

– a greedy search can be used to compare the negative free energies for the 

reduced models, iteratively discarding parameters that do not contribute to the 

free energy (originally ‘post-hoc DCM analysis’, Friston & Penny, 2011; Rosa, 

Friston & Penny, 2012). The procedure stops when discarding any parameters 

starts to decrease the negative free energy, returning the model that most 

effectively trades-off goodness of fit and model complexity in explaining the 

data. Last, a Bayesian Model Average (BMA) is calculated over the best 256 

models weighted by their model evidence (from the final iteration of the greedy 

search). For each connection, a posterior probability for the connection being 

present vs. absent is calculated by comparing evidence from all the models in 

which the parameter is switched on versus all the models in which it is switched 

off. 
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2.5.3 DCM-based leave-one-out cross-validation  

By iteratively fitting a multivariate linear model to provide the posterior 

predictive density over the connectivity changes (as described in detail in Friston 

et al., 2016), the posterior belief of an explanatory variable can be evaluated for a 

left-out participant (leave-one-subject-out cross-validation, LOSOCV). In other 

words, the covariates for the left-out participant (test data) can be predicted based 

on a PEB model fitted to all but one subject (training data). 

To apply this approach, a group-level PEB model is first fitted to the training 

data to model the parameters (in this example, the connection strength with two 

regressors – the group mean and difference, e.g. [
1 1
1 −1

]). To predict the value 

of a particular regressor for the left-out third participant, given their estimated 

connection strength, a separate PEB model is then fitted to the test data. Here, the 

prior expectation for the value to be predicted is set to zero and the prior variance 

(uncertainty) is set to a multiple of the regressor’s variance in the training data 

(for a formal definition of PEB modelling, see Zeidman et al., 2019).  

A GLM can then be constructed for the left-out participant 

𝜃𝑖
(1)

=  [𝜃(2)]𝑇[𝑋𝑖]
𝑇 +  𝜀(2) 

where 𝜃𝑖
(1)

 is the estimated connection strength for the left-out participant, i, 

𝜃(2) are the group-level PEB parameters estimated from the training data, and 𝑋 

the design matrix with the two regressors. 

Given that we know both 𝜃𝑖
(1)

 and 𝜃(2), and the first element in the left-out 

participants’ design matrix 𝑋𝑖 (modelled with 1 for the group mean), we can then 
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infer for the missing element of the design matrix 𝑋𝑖 (see Friston et al., 2016 and 

Zeidman et al., 2019 for details). This procedure, repeated for each participant, 

generates probabilities of state affiliation, which can then be used to calculate the 

Receiver Operating Characteristic (ROC) curves and Area Under the Curve 

(AUC) values, illustrating the diagnostic ability of the covariates. 

 

In chapters 5 and 6, DCM-based LOSOCV is used as a validation of our 

modelling framework; we investigate which sets of connections are predictive of 

the state of consciousness (chapter 5) and of the DoC group (chapter 6) in unseen 

data. 

 

2.6 The scientific study of consciousness 

The recent application of methods such as neuroimaging in studying 

consciousness have led to theories of consciousness that generally aim to offer 

more detailed accounts of its nature and features, than the more long-lived 

metaphysical theories, which aim to locate consciousness in the general 

ontological scheme of the universe. Physicalist theories that equate neural events 

with phenomenology (i.e. identity theories) provide a useful framework, for 

example, in the clinical context, where assessing states of consciousness in DoC 

patients or in patients under anaesthesia is pivotal. In recent decades, most 

modern physicalist theories have developed over and beyond of merely claiming 

that particular brain areas might give rise to conscious experience. Rather, they 
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focus on global patterns of underlying neuronal processing that drives 

consciousness forward. 

Here, we provide an overview on two such theories that are relevant to the 

research in this thesis, namely Global (Neuronal) Workspace Theory (GNWT; 

Baars, 1988, 1997; Dehaene, Kerszberg, & Changeux, 1998; Dehaene & 

Changeux, 2011; Dehaene et al., 2011) and Integrated Information Theory (IIT; 

Oizumi, Albantakis, & Tononi, 2014; Tononi, 2004, 2012; Tononi, Boly, 

Massimini, & Koch, 2016). We will then introduce disorders of consciousness 

and anaesthesia as altered states of consciousness and provide a general overview 

on the neuroimaging results aiming to distinguish these states from normal 

wakefulness. 

 

2.6.1 Current leading theories – Global Neuronal Workspace Theory 

The original thesis of the Global Workspace Theory (GWT) was proposed by 

Baars (1988); it is a psychological construct suggesting that perceptual content 

(and information more generally) is processed by intrinsically unconscious, 

specialised, and localised modules and only becomes conscious when widely 

broadcasted to other processors across the brain (forming the global workspace). 

Here, broadcasting implies that the information is widely available to many local 

modules, which is hypothesised to constitute conscious experience. These local 

modules involve processors related to the past (memory), present (sensory input, 

attention), and future (values systems, motor plans, verbal report; (Mashour, 

Roelfsema, Changeux, & Dehaene, 2020). 
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GNWT (Dehaene et al., 1998; Dehaene & Changeux, 2011; Dehaene et al., 

2011) is a further extension of the original cognitive thesis and suggests a defined 

brain network as the neural instantiation of the GWT. It suggests a second, 

reciprocally connected computational space consisting of widely distributed 

excitatory neurons with long-range axons, acting upon the relevant neuronal 

processor modules. This distributed network is suggested to receive bottom-up 

information from and transmit top-down information to any of the various 

processor modules, thereby selecting and broadcasting information. GNWT is not 

a localizationist approach to consciousness; rather the neuronal workspace is 

posited to act as a “router” associated with millions of neurons widely distributed 

across many brain regions (Mashour et al., 2020). The prefrontal cortex has been 

posited to play a key role in the global workspace because of the density of the 

neurons therein thought to be critical to the broadcasting process. Other areas 

crucial to the GNWT include the anterior temporal cortex, inferior parietal 

cortex, anterior and posterior cingulate cortex and precuneus. 

 

2.6.2 Integrated Information Theory and the posterior hot zone 

Unlike theories that start from neural events and try to describe their effects 

on conscious experience, IIT (Oizumi et al., 2014; Tononi, 2004, 2012; Tononi et 

al., 2016) attempts to provide a framework capable of explaining why some 

systems are conscious, why they feel the particular way they do, and what would 

it take for other systems to become conscious. Rather than starting from physical 

principles and arriving at consciousness, IIT aims to build an explanatory bridge 
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between the brain activity and subjective experience starting from the 

phenomenology itself (i.e. from consciousness), and by reasoning a set of 

essential properties (axioms) that a physical substrate would have to have in 

order to account for conscious experiences (postulates). The latest version of IIT 

proposes five axioms, suggesting that any conscious experience: 

- exists to itself (each experience is intrinsically actual and real)  

- is structured composition of multiple elements that are experienced at the 

same time (e.g. colour, shape, identity of the object)  

- is specific (in a sense of being composed of specific phenomenal 

distinctions, thereby differentiating itself from other conscious 

experiences) 

- is irreducible to the sum of each experience’s components (integrated) 

- is definite and hence, exclusive of other simultaneous conscious 

experiences. 

Based on these five axioms, the properties of the physical substrate that are 

required to account for these regularities in conscious experience are proposed: 

- to account for the intrinsic existence, a system must have cause-effect 

power upon itself 

- the system must be structured as a composition of various subsets of 

elements constituting the system itself, that also have cause-effect power 

within the system 
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- the cause-effect structure of the system must be integrated and not 

reducible to the effects of its independent components. Moreover, this 

intrinsic irreducibility can be measured as integrated information (Φ), 

quantifying to what extent the cause-effect structure changes if the system 

is partitioned into components 

- the system must specify a particular cause-effect structure differing from 

other possible ones which is specified over a single set of components 

(definite): the set over which it is maximally irreducible (Φmax) 

Hence, IIT suggests that consciousness is a function of system’s capacity for 

information integration; altered states such as DoC or anaesthesia are 

characterised by relatively lower information integration and differentiation. 

Although Φmax is not computable for the human brain, several proxy measures 

inspired by the IIT have been developed (see for example Seth, Dienes, 

Cleeremans, Overgaard, & Pessoa, 2008). Experimental evidence supporting 

IIT’s characterisation of altered states of consciousness (i.e. a decrease in 

integration and an increase in modularity) has been observed in brain activity 

during sleep (Massimini et al., 2005; Tagliazucchi et al., 2013), anaesthesia 

(Casali et al., 2013; Kim et al., 2018; Monti et al., 2013), and in DoC (Achard et 

al., 2012; Bodart et al., 2017, 2018; Lutkenhoff, Johnson, Casarotto, Massimini, 

& Monti, 2020).  

An obvious current question is how GNWT and IIT relate to each other. IIT 

itself is not tied down to any particular brain regions – rather than providing the 

neural correlates, it offers an explanation of the underlying physical mechanism 
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from which conscious experiences are argued to arise. Hence, IIT and GNWT are 

not mutually exclusive; in fact, both theories propose similarly, although not 

identically, that broad simultaneous activation of cortical areas is essential for 

conscious experiences (Frigato, 2021). Nonetheless, a good deal of converging 

evidence have suggested a key role for areas in the posterior cortex in sleep (Lee 

et al., 2019; Siclari et al., 2017), general anaesthesia (Alkire, Hudetz, & Tononi, 

2008; Gaskell et al., 2017), and in DoC patients (Vanhaudenhuyse et al., 2010; 

Wu et al., 2015). Such evidence have led Tononi and collaborators to consider 

the posterior hot zone (temporo-parieto-occipital areas, figure 2.3) to be essential 

for consciousness (Koch et al., 2016a; Boly et al., 2017). Rather than essential for 

consciousness, activity in frontal areas are viewed to be involved with activities 

subsequent to conscious experience (such as selective attention, working 

memory, task reporting, and task monitoring). 
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Figure 2.3. Posterior areas (highlighted) that constitute the hot zone for 

consciousness. Image reproduced from Koch (2018). 

 

This hot zone hypothesis of phenomenal consciousness is an important focus 

of scientific investigation in this thesis. Specifically, the research in chapter 5, 

and to a lesser degree in chapter 6, investigates changes in effective connectivity 

and the power of the posterior hot zone and long-range frontoparietal connections 

in predicting changes in states of consciousness induced by anaesthesia and brain 

injury. 
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2.6.3 Altered states of consciousness: Disorders of consciousness 

How would one go about studying the underlying neural processes that are 

necessary for consciousness? A reasonable starting point is to investigate the 

brain dynamics in transitions of consciousness: how specific properties change 

between different states of consciousness. A common approach is to compare 

normal wakefulness with states of apparent unconsciousness, such as sleep 

(Massimini et al., 2005; Siclari et al., 2017; Tagliazucchi & van Someren, 2017) 

and anaesthesia (Boveroux et al., 2010; Monti et al., 2013; see Bonhomme et al., 

2019 for a review), or to contrast different states of disorders of consciousness 

(Gosseries et al., 2011; Laureys et al., 1999; Vanhaudenhuyse et al., 2010; see 

Gosseries, Di, Laureys, & Boly, 2014 for a review). Observations from sleep, 

DoC patients, and anaesthesia have pushed the study of consciousness beyond 

the study of conscious wakefulness suggesting an increasingly complex spectrum 

of consciousness. For example, the level-based framework for conceptualising 

states of consciousness was derived from the clinical literature on DoC and 

further developed into a two-dimensional representation with awareness of 

environment and of self (i.e. content of consciousness) and arousal/wakefulness 

(one’s vigilance) as two distinct components of conscious state (figure 2.4; 

Laureys, 2005). More recent suggestions have called the concept of level of 

consciousness into question and introduced increasingly complex, 

multidimensional representations of the different states of consciousness (Bayne, 

Hohwy, & Owen, 2016). 
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Figure 2.4. Simplified illustration of the two major components of 

consciousness: the level of awareness (i.e. content of consciousness) and the level 

of arousal/wakefulness. Reproduced from Laureys (2005). 

  

Nevertheless, DoC – including states such as coma, unresponsive 

wakefulness syndrome (UWS), minimally conscious state (MCS), and locked-in 

syndrome (LIS) induced by either non-traumatic causes (e.g. haemorrhage, 

ischaemia, illness) or by traumatic brain injury (Edlow, Claassen, Schiff, & 

Greer, 2021) – can be characterised by alterations in arousal and/or awareness. 

Coma is defined as the complete absence of arousal and awareness (Teasdale & 

Jennett, 1974), while the UWS is characterised by preserved arousal in the 

absence of behavioural signs of awareness (Laureys et al., 2010). In contrast, in 

MCS, patients show fluctuating and incomplete awareness with preserved arousal 

(Giacino et al., 2002). MCS state has been further divided into MCS- and MCS+, 
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with the latter condition characterised by command following, intelligible 

verbalisation or gestural (or verbal yes/no responses) to spoken or written 

questions (Bruno, Vanhaudenhuyse, Thibaut, Moonen, & Laureys, 2011). LIS 

patients on the other hand, are characterised by undisturbed cognitive functions 

with total immobility except for vertical eye movements and blinking (Bauer, 

Gerstenbrand, & Rumpl, 1979). Recently, the concept of cognitive motor 

dissociation (CMD) – also known as ‘covert consciousness’ – has been added to 

the diagnostic scheme of patients with DoC (Schiff, 2015). This state is 

characterised by volitional brain activity typically detected by task-based 

functional MRI or EEG in patients in coma, UWS, or MCS.  

In the absence of robust neurophysiologic markers, DoC are assessed with 

standardised behavioural assessments in clinical examination (Giacino et al., 

2009). Currently the most sensitive behavioural scale to disentangle the DoC 

groups from each other is the behaviour-based Coma Recovery Scale-Revised 

(Giacino, Kalmar, & Whyte, 2004; Seel et al., 2010). Previous research has 

suggested, however, that the brain states in DoC can also be distinguished with 

neuroimaging, including PET (Aubinet et al., 2020; Laureys et al., 1999; Stender 

et al., 2014, 2016), fMRI (Crone et al., 2014; Vanhaudenhuyse et al., 2010), and 

EEG (Chennu et al., 2017; King et al., 2013; Sitt et al., 2014).  

Early PET-imaging studies showed significant alterations in DoC patients, 

especially in the prefrontal, premotor, and parietotemporal association areas, in 

the precuneus, and in the thalamus (Laureys et al., 1999; Laureys, Faymonville, 

& Lamy, 2000; Laureys, Owen, & Schiff, 2004). More recent structural and 
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functional neuroimaging studies have consistently highlighted the role of 

forebrain mesocircuit (Fridman et al., 2014; Schiff, 2010) and the frontoparietal 

network (Vanhaudenhuyse et al., 2010; Wu et al., 2015), specifically the DMN 

(Annen et al., 2018; Boly et al., 2009; Fernández-Espejo et al., 2012; 

Guldenmund et al., 2016; Soddu et al., 2012), in the restoration of cerebral 

activity during recovery from DoC. Network properties have also shown to be 

altered in several regions associated generally with consciousness; the degree of 

highly connected regions (‘rich-club’ of hubs) is decreased in DoC patients 

(particularly, in medial parietal and frontal regions, and in the thalamus; Crone et 

al., 2014). In addition to the differences in “overt” consciousness observed in 

patients with differing levels of DoC, a number of studies have reported “covert” 

voluntary brain activity in some seemingly unconscious patients (Bodart et al., 

2017; Claassen et al., 2019; Chennu et al., 2017; Cruse et al., 2011; Lechinger et 

al., 2013; Monti et al., 2010; Owen et al., 2006; Owen & Coleman, 2008; 

Schnakers et al., 2015). Such voluntary brain activity may indicate residual 

covert consciousness in some patients, which may evade even expert bedside 

behavioural examination (Edlow, 2018). 

Importantly, differences in brain PET metabolism between the two 

hemispheres have been indicated for MCS- and MCS+ patients (Bruno et al. 

2012) and recently for potentially ”covertly aware” UWS patients (Thibaut et al., 

2021). In addition, hemispheric differences in EEG brain connectivity have been 

reported between UWS and MCS patients (Lehembre et al. 2012). However, the 

level with which other DoC states may or may not be distinguished from 

hemispheric-specific EEG connectivity is unknown, especially with “covertly 
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aware” patients. Furthermore, whether effective connectivity modulations can 

identify such covert awareness in patients has not been studied to date. In 

chapters 4 and 6, we work towards addressing these gaps using both functional 

and effective connectivity; we investigate the differences between DoC patients 

and the extent to which they may or may not be predictive of the individual DoC 

states. 

 

2.6.4 General anaesthesia 

General anaesthesia – as defined by controlled and reversible induction of 

loss of consciousness, analgesia, and muscle relaxation – can induce altered 

states of consciousness (Mashour, 2004). As opposed to the previously proposed 

notions that general anaesthesia simply shuts the brain off, it is now clear that 

several brain functions may be retained by patients until very high concentrations 

of anaesthetic agents (Sleigh, Warnaby, & Tracey, 2018). At a small dose, 

anaesthetics suppress thinking, focused attention, and working memory. With 

increasing dosage, they cause voluntary responsiveness and consciousness to 

fade, ultimately producing a fully unconscious state. From a research perspective, 

anaesthetic agents thus provide a powerful tool to study consciousness. The 

ability to induce reversible alterations in the state of consciousness has led to 

evidence of several anaesthetic-induced changes in brain connectivity, network 

topology, and spatio-temporal dynamics. In turn, this knowledge has contributed 

towards understanding the underlying mechanisms of consciousness itself 
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(Bonhomme et al., 2019; Brown, Lydic, & Schiff, 2010; Guldenmund et al., 

2016).  

How exactly general anaesthesia abolishes consciousness is still not 

comprehensively explained, and different anaesthetic agents are known to have 

different effects on brain function. One of the most widely studied and used 

anaesthetic agents is the γ-amino-butyric acid (GABA) neurotransmission 

promoting agent propofol (Bonhomme et al., 2019; Jevtovic-Todorovic, 2016). 

Propofol has been demonstrated, for example, to have region-specific and dose-

dependent effects on brain activity with reductions in the thalamus, the cuneus 

and precuneus, the posterior cingulate cortex, and the angular gyri (Alkire et al., 

1995; Fiset et al., 1999). More recent studies have suggested an increase of slow-

wave activity (Murphy et al., 2011), interference with activity in frontoparietal 

associative (Mhuircheartaigh et al., 2010) and higher-order networks such as the 

DMN (Stamatakis, Adapa, Absalom, & Menon, 2010), the salience network 

(Guldenmund et al., 2013), and the central executive network (Boveroux et al., 

2010). In contrast, primary sensory networks such as the visual and auditory 

networks seem to stay relatively intact from the effects of anaesthetics 

(MacDonald, Naci, MacDonald, & Owen, 2015). 

The increased slow-wave activity (SWA) under anaesthesia has been 

suggested as an important manifestation of perception loss, and as such, 

suggested as a possibly proxy for anaesthetic-induced unconsciousness 

(Mhuircheartaigh, Warnaby, Rogers, Jbabdi, & Tracey, 2013; Warnaby, Sleigh, 

Hight, Jbabdi, & Tracey, 2017). Interestingly, previous research has also 
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suggested a link between the level of the pre-anaesthesia brain connectivity and 

individual responses to propofol. Specifically, network properties at alpha-band 

(Chennu, O’Connor, Adapa, Menon, & Bekinschtein, 2016), inter-frontoparietal 

network connectivity (Deng, Cusack, & Naci, 2019), and dynamic frontoparietal 

alpha-connectivity (Zhang et al., 2020) have all been associated with 

susceptibility to propofol.  

In chapter 3, we explore this research question further, and provide novel 

evidence for SWA – particularly for the saturation of the SWA activity 

(Mhuircheartaigh et al., 2013) – as a proxy for unconsciousness by investigating 

the link between pre-anaesthesia brain connectivity and the saturation stage. We 

explore the possible link between baseline connectivity and behavioural measures 

of unconsciousness. In chapter 5, we further investigate the changes in effective 

connectivity following propofol-induced LOC. In doing so we contribute to the 

debate around frontal vs. posterior loci of NCC by providing novel computational 

evidence of intra- and inter-resting state network (RSN) changes in key three key 

RSNs; the default mode network, the salience network (SAL), and the central 

executive network (CEN). We use a novel methodological combination of DCM 

for resting EEG cross-spectral densities (Friston et al., 2012; Moran et al., 2009) 

and parametric empirical Bayes (Friston et al., 2016; see further details in section 

2.5). This allows us to better estimate the model parameters, and consequently, 

evaluate the role of different subgroups of specific intra- and inter-RSN 

connections in propofol-induced loss of consciousness. 
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2.6.5 Unresponsiveness and loss of consciousness 

It should be noted that with comparisons of, for example, anaesthetic-induced 

LOC or DoC states, we rely only on subjective reports of the patients or 

behavioural measures to establish presence or absence of conscious processing. 

In other words, as we cannot directly measure their level of consciousness, the 

subjective reporting and/or behavioural responsiveness (or lack thereof) is used 

as a proxy for their phenomenological experience of consciousness. This proxy, 

however, has its problems; the presence of responsiveness does not necessarily 

imply consciousness (or at least not awareness). For example, patients suffering 

from blindsight are reported to respond to stimuli despite denying any awareness 

of it (Cowey, 2010; Sahraie, Hibbard, Trevethan, Ritchie, & Weiskrantz, 2010; 

Sanders, Warrington, Marshall, & Wieskrantz, 1974, but see also Phillips, 2021). 

Similarly, split-brain patients reportedly respond to stimuli presented in their 

right visual field verbally and correctly with their right hand. Conversely, when a 

stimulus is presented in the left visual field, and thus, processed by the right 

hemisphere, the patients verbally state that they saw nothing while still 

identifying the object correctly with their left hand only (Gazzaniga, Bogen, & 

Sperry, 1962; Sperry, 1984; Wolman, 2012, but see also Pinto et al., 2017). 

The case for behavioural unresponsiveness not necessarily implying 

unconsciousness is even stronger (Sanders, Tononi, Laureys, & Sleigh, 2012). 

For example, every night in sleep we experience dreams with varying content 

while we are – to an extent – unresponsive to, and disconnected from, the 

external world (Nir & Tononi, 2010). More crucially to this thesis, although 

apparently unconscious due to general anaesthesia, dreams or dream-like 
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experiences are often reported by the patients (Leslie, 2017; Leslie et al., 2009; 

Noreika et al., 2011; Radek et al., 2018) and patients may report waking up 

during the surgery unbeknownst to the clinical staff (Goddard & Smith, 2013). 

Moreover, using the isolated forearm technique, a significant portion of patients 

have been demonstrated to be able to communicate during general anaesthesia 

(Sanders et al., 2012). 

With DoC patients, a number of studies have reported “covert” voluntary 

brain activity in some seemingly unconscious patients (Bodart et al., 2017; 

Claassen et al., 2019; Chennu et al., 2017; Cruse et al., 2011; Lechinger et al., 

2013; Monti et al., 2010; Owen et al., 2006; Owen & Coleman, 2008; Schnakers 

et al., 2015; Vanhaudenhuyse et al., 2018). Hence, it seems it may be possible for 

consciousness to occur in these clinical settings without any overt responsiveness 

detectable by bedside behavioural evaluation (Edlow, 2018). 

Nevertheless, responsiveness and lack thereof undeniably provides a useful 

window into at least a part of the dimension extending from wakeful 

consciousness to unconsciousness. Indeed, as we are only privy to our own 

subjective experience of consciousness, outside the context of philosophical 

thought experiments, assessments of conscious experiences are commonly 

inferred from behavioural activity and responsiveness. This is especially true in 

the clinical setting, where behavioural responsiveness is the first and most 

common assay of consciousness. 

Moreover, responsiveness objectively measures a neural system’s ability to 

fully engage in the process of coordinating and producing the necessary 
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behaviours; at some level between unresponsiveness and the induction of flat 

EEG (indicative of cessation of brain activity, i.e. brain death; Wijdicks, 2001), 

consciousness vanishes. Subjectively, LOC does not seem to be a binary event, 

but rather a gradual process with intermediary stages including, for example, 

narrowed attention, decrease of memory, impaired cognition, and lower self-

estimated level of consciousness (Esaki & Mashour, 2009; Vaitl et al., 2005). 

Assessments of behavioural responsiveness approximate these intermediary 

stages by probing the particular stage where responsiveness is lost. Finally, 

behavioural markers of consciousness in general have been shown to be useful in 

practice; for example, the Coma Recovery Scale has been shown to correlate with 

the prognosis of DoC patients (Bruno et al., 2012; Giacino, Fins, Laureys, & 

Schiff, 2014). Therefore, responsiveness provides a valuable marker for 

estimations of consciousness. 

In this thesis, loss of behavioural responsiveness (LOBR) is used as a general 

marker for unconsciousness. In an attempt to control the dissociation between 

LOBR and LOC, in case of anaesthesia, the participants were asked if they 

recalled any dreams or other experiences, which none of them did. With the DoC 

patients, we distinguished potentially covertly aware patients based on their PET-

metabolism, and separated them from unresponsive patients during model 

training phase. We then introduced them as an unseen dataset of (possibly) 

conscious patients in the test phase. We therefore follow the typical convention in 

the literature and refer to the behaviourally unresponsive state during anaesthesia 

as LOC, while using the behaviour-based diagnostic labels for the corresponding 

DoC groups. 
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2.7 Conclusions 

In this chapter, we provided an overview on the methods used in this thesis, 

starting with EEG analysis and ending with functional and effective connectivity. 

We then introduced two relevant theories of consciousness before focusing on the 

altered states of consciousness analysed in this thesis – anaesthetic-induced 

sedation and disorders of consciousness. This chapter hence provides the 

conceptual framework for the research presented in this thesis.  
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3. Functional connectivity in propofol-

anaesthesia 

 

This chapter explores the correlation between pre-anaesthesia resting brain 

connectivity and individual measurements of propofol-concentrations in blood 

plasma. We employ behavioural measures of responsiveness and a previously 

proposed electroencephalography (EEG) marker for anaesthetic-induced loss of 

consciousness (LOC), namely the slow-wave activity saturation (SWAS). 

Specifically, we combine resting state EEG recorded from healthy volunteers 

under propofol-induced sedation with individual measurements of propofol-

concentrations in blood plasma, alongside behavioural measures of 

responsiveness. We assess the participants’ spectral power and functional 

connectivity during a pre-anaesthetic baseline period and correlate those with 

individual variation in propofol-concentrations, time needed to reach SWAS, 

level of SWA-power, and time needed to reach loss of behavioural 

responsiveness (LOBR). In doing so, we hypothesise and provide evidence for 

SWAS as a distinct and individualised index for propofol-induced loss of 

consciousness, that is linked with pre-anaesthesia baseline brain connectivity. 

 

3.1 Introduction 

Understanding the complex interactions of neuronal activity necessary to 

explain consciousness and its loss is a grand challenge for modern neuroscience. 
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In recent years, theoretical advances have proposed a pivotal role for the balance 

between integrated and differentiated neuronal activity in alterations of the 

conscious state (Oizumi, Albantakis, & Tononi, 2014; Tononi, 2004, 2012; 

Tononi, Boly, Massimini, & Koch, 2016). Nevertheless, accurately tracking the 

underlying changes in brain dynamics have remained a key research challenge.  

General anaesthetics are powerful and commonly used tools in this context; 

the ability to induce reversible states of unconsciousness with anaesthetic agents 

has led to evidence of several changes in functional and effective brain 

connectivity, network topology, and spatio-temporal dynamics contributing 

towards understanding the underlying mechanisms of consciousness (Bonhomme 

et al., 2019; Brown, Lydic, & Schiff, 2010). However, despite the wide use and a 

set of effects common to many anaesthetic agents, a comprehensive picture of the 

key factors and changes influencing the brain during general anaesthesia is not 

yet known. Moreover, tracking brain activity to accurately assess the depth of 

anaesthesia in an individual has not yet been fully achieved; for example, surface 

EEG, a relatively easy and inexpensive method long known to index changes 

induced by anaesthetic agents in the brain dynamics (Gibbs, Gibbs, & Lennox, 

1937), is still not universally used in clinical practice. 

The lack of robust EEG markers capable of accurately tracking the loss and 

recover of consciousness is partly due to individual variability in susceptibility to 

anaesthetic agents and dosage (Palanca, Mashour, & Avidan, 2009). Indeed, 

many factors have been shown to have an effect on the patient’s response to 

anaesthesia: for example, with propofol, demographic characteristics such as 
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weight, age, and sex have been associated with differences in the response to the 

drug (Gambús & Trocõniz, 2015; Schnider et al., 1999). 

Furthermore, the large inter-individual differences in susceptibility to 

propofol remain even when such demographic factors are taking into 

consideration (Kaskinoro et al., 2011). For example, patients with higher 

preoperative anxiety scores require higher doses of propofol to reach the same 

level of sedation as patients with lower preoperative anxiety (Hong, Jee, & 

Luthardt, 2005; Kil et al., 2012). Likewise, the required dose to maintain sedation 

decreases with a decline of preoperative cognitive state in elderly patients 

(Laalou et al., 2010). These results suggest that the functional state of the brain 

may be pivotal factor in individual propofol susceptibility. 

Indeed, a growing body of evidence suggest suppression of functional brain 

connectivity as a common mechanism for various anaesthetic agents in inducing 

unconsciousness (Lee et al., 2015; Schröter et al., 2012; Warnaby et al., 2016). 

Specifically, break-down of thalamo-cortical connections and disrupted 

frontoparietal networks (Boveroux et al., 2010; Malekmohammadi, Price, 

Hudson, DiCesare, & Pouratian, 2019; Schrouff et al., 2011), disruptions in 

frontal areas (Guldenmund et al., 2016), and diminished top-down frontoparietal 

connectivity (Dehaene & Changeux, 2011; Changeux, 2012; Lee et al., 2009, 

2015) have been suggested as candidate mechanisms for explaining LOBR in 

anaesthetic state. Importantly, previous studies have reported an association 

between pre-anaesthesia functional connectivity and individual differences in 

responses to propofol. Specifically, research has indicated a link between 
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network properties at alpha-band and susceptibility to propofol (Chennu, 

O’Connor, Adapa, Menon, & Bekinschtein, 2016), with pre-anaesthesia inter-

frontoparietal network connectivity and reaction time under sedation (Deng et al., 

2019), and more recently, between dynamic frontoparietal alpha-connectivity and 

time until loss of consciousness (as measured with bispectral index, BIS; Zhang 

et al., 2020).  

In addition to BIS, slow-wave activity (SWA; 0.5 – 1.5 Hz) – a characteristic 

waveform seen in both anaesthesia and sleep (Murphy et al., 2011) – has been 

suggested as an important manifestation of perception loss indicating individual’s 

depth of anaesthesia (Mhuircheartaigh, Warnaby, Rogers, Jbabdi, & Tracey, 

2013; Warnaby, Sleigh, Hight, Jbabdi, & Tracey, 2017). In their pivotal study, 

Mhuircheartaigh et al. (2013) found, that after perception loss, each individual’s 

slow-wave activity reached a saturation point, after which it remained constant 

despite increasing anaesthetic concentrations. Their simultaneous functional 

magnetic resonance imaging indicated that typical thalamo-cortical responses to 

nociceptive and auditory inputs were abolished, leading them to hypothesise 

SWA saturation (SWAS) as a potential individualised indicator for depth of 

anaesthesia, and thus, an index for anaesthetic-induced LOBR.  

Ergo, an association has been suggested between baseline-functional 

connectivity and the state of consciousness on the one hand, and between 

consciousness and SWA-power – specifically the SWAS – on the other (Chennu 

et al., 2016; Deng et al., 2019; Mhuircheartaigh et al., 2013; Warnaby et al., 

2017; Zhang et al., 2020). However, to what extent baseline connectivity is 
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predictive of SWAS, if any, remains an open question. To address this gap in 

knowledge, we investigated the potential association between EEG power and 

functional connectivity at pre-anaesthesia baseline and SWAS. Specifically, we 

combined the measurement of resting state EEG from healthy volunteers sedated 

with propofol with measurements of propofol concentrations and behavioural 

measures (e.g. LOBR). Employing functional EEG tools, we assessed the 

participants’ spectral power and functional connectivity at the level of electrodes 

during a pre-anaesthetic baseline period and linked them with individual 

variation in propofol concentrations, time needed to reach the saturation, level of 

SWA-power, and time of LOBR. Based on previous research (Chennu et al., 

2016; Deng et al., 2019; Zhang et al., 2020), we hypothesised, that if indeed 

SWAS is a reliable index for LOC, baseline power and connectivity should 

predict the SWA-power at saturation and time and the amount of propofol needed 

for reaching saturation point. 

 

3.2 Methods 

3.2.1 Data acquisition and experimental design 

The data used in the present work were acquired from a previous propofol-

anaesthesia study (Mhuircheartaigh et al., 2013). This study involved two 

separate EEG acquisitions. Both were approved by the Local Research Ethics 

Committee and written consent was obtained from all volunteers. The first 

acquisition recorded EEG data (in a laboratory setting) from 16 healthy 

volunteers (8 males, 8 females with American Society of Anesthesiologists 
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(ASA) physical status grade I or II; age 28.6 ± 7.0 (SD) years; range 19 to 43 

years), while the second session acquired simultaneous fMRI-EEG data from a 

subset of 12 of the 16 volunteers. In the following work, only the EEG data from 

the first acquisition (N = 16) was used. 

During the study, participants experienced a 10-minute resting period with 

eyes closed (prior to drug administration), followed by an ultraslow induction of 

propofol to loss of consciousness. A target-controlled intravenous propofol 

infusion was used with step increases of 0.2 μg/ml to achieve a maximum effect 

site concentration (ESC) of 4 μg/ml over 48 minutes. During this induction 

period, a paradigm of nociceptive laser stimuli, 1 kHz tones, and auditory word 

discrimination tasks were presented. The word tasks contained a list of 200 

single-syllable words which were derived from MRC Psycholinguistics Database 

(Machine Usable Dictionary v2.0) with a familiarity of 488 ± 99 (SD) and 

concreteness of 438 ±120 (SD). To determine the loss and recovery of 

behavioural responsiveness used here (LOBR and ROBR, respectively), motor 

responses (button presses) to the auditory word discrimination task were used. 

The details of the stimulation paradigm are not described here as those data were 

not analysed in the present study, but further information can be found from 

Mhuircheartaigh et al. (2013). After reaching the peak-dose, stimulation was 

turned off and participants remained fully anesthetised for 10 minutes (peak-

unresponsiveness; P-UNR). This was followed by the final phase, during which 

the propofol infusion was turned off, and subjects were allowed to emerge from 

unconsciousness naturally. Alongside, the same sensory stimulation and 

behavioural response paradigm was resumed.  
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3.2.2 EEG data collection and preprocessing 

The EEG data were recorded using a 32-channel EEG cap (BrainCap MR, 

Easycap GmbH, Gilching, Germany) with an MR-compatible amplifier system 

(BrainAmp MRplus, Brain Products GmbH, Gilching, Germany) using FCz as a 

reference electrode. EEG was measured in microvolts (μV), sampled at 5 kHz, 

and all electrode impedances were kept below 5 kΩ throughout the experiments. 

The re-referencing to common average, downsampling to 1 kHz, and 

identification of eye-blink artefacts was carried out by the authors of the original 

experiments with an automated algorithm with BrainVision Analyzer version 2.0 

(Brain Products GmbH) that parsed the VEOG channel and with custom written 

MATLAB code (The Mathworks Inc.). Artefacts caused by eye blinks were 

confirmed by both visual inspection and using an independent component 

analysis (ICA), and removed from the EEG channels. Lastly, the artefact-free 

data were confirmed by a visual inspection. In the present study, for 

preprocessing of the baseline- and P-UNR and for data analysis, a custom 

pipeline was implemented using MATLAB scripts (v.2017a) that utilised the 

MOHAWK-pipeline (Chennu, 2018. MOHAWK v.1.2. Available from: 

https://github.com/srivaschennu/MOHAWK). The pipeline uses functions from 

both EEGLAB (Delorme & Makeig, 2004) and FieldTrip (Oostenveld et al., 

2011) to preprocess the data, and to calculate, analyse, and visualise EEG-power 

and scalp-level brain connectivity. Specifically, the connectivity between EEG 

channels was indexed by the debiased weighted phase lag index (dwPLI; (Vinck 

https://github.com/srivaschennu/MOHAWK
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et al., 2011). For detailed description of the pipeline, see Chennu et al. (2016) and 

Chennu et al. (2017).  

Data were first imported to MATLAB, downsampled to 250 Hz, and filtered 

between 0.5 – 30 Hz. The raw recording lengths for the baseline condition varied 

slightly (mean = 9.29 min., SD = 0.52), while less for the P-UNR condition 

(mean = 9.48 min., SD = 0.36). Next, both conditions, baseline and P-UNR, were 

segmented into 10-second epochs, and baseline-corrected relative to the mean 

voltage over the entire epoch. The epochs were checked for excessively noisy 

electrodes and segments by calculating their normalised variance (with thresholds 

of 500μV and 250μV for channels and segments, respectively), and then 

manually rejected or retained based on visual inspection. In the baseline 

condition, a mean of 1 epoch was identified as noisy (from 6 out of 16 

participants) and removed. The mean number of retained epochs was 56 (range 

49-63). In the P-UNR condition, a mean of 3 epochs were identified as noisy 

(from 7 out of 16 participants) and removed. The mean number of retained 

epochs was 57 (range 52-60). Visual inspection of the data during the 

unresponsiveness condition revealed that 4 participants demonstrated brief 

periods of minor burst suppression. As these periods were short and did not meet 

the clinical criteria for burst suppression, these segments were retained for 

subsequent data analysis (Fisch & Spehlmann, 1991). 

Three noisy EEG channels from one participant and 1 channel from another 

participant were identified as noisy in the baseline condition. In the P-UNR 

condition, a mean of 3 channels (from 7 out of 16 participants) were identified as 
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noisy. These channels were interpolated from neighbouring channels using 

spherical spline interpolation, and each channel was then re-referenced to the 

average of all channels. 

   

3.2.3 Spectral power and connectivity analysis 

Spectral power values between 0.5-30 Hz and a resolution of 0.1 Hz were 

estimated from the cleaned EEG-datasets, using a multitaper method with five 

Slepian tapers. At each channel, the absolute power magnitude within the 

canonical frequency bands – delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), 

and beta (15-30 Hz) – were calculated for each participant. Further, in the P-UNR 

condition the slow-wave activity power (SWA; 0.5-1.5 Hz) was calculated. For 

all bands, the absolute power values were also converted to relative power 

contributions to the total power within the 0.5-30 Hz range.  

Cross-spectral densities between every pair of channels (at frequency bins of 

0.06 Hz) were used to calculate the debiased weighted phase lag index (dwPLI); 

a measure of functional connectivity that has been shown to be robust against 

volume conduction, uncorrelated noise and inter-subject variations in sample size 

(Vinck et al., 2011). The underlying idea is – as is the case with PLI (Stam et al., 

2007) – to consider only the phase angle distributions predominantly on either 

the positive or negative side of the imaginary axis of the complex plane. Hence, 

dwPLI disregards the activity detected at 0° or 180° phase differences between 

the electrode pairs (i.e. signals), therefore effectively removing the largest 

contributions of volume-conducted activity (ibid.; Vinck et al., 2011). With PLI, 
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the extent to which phase leads or lags are non-equiprobable is measured 

(irrespective of the magnitudes of the phase angle differences). With wPLI, 

estimation error due to noise is further alleviated by weighting the observed 

contributions of phase angle differences (leads and lags) by the magnitude of the 

imaginary component of the cross-spectrum. The phase leads and lags close to 0° 

or 180° are considered to contribute more heavily to noise, rather than to true 

interaction between brain sources (see section 2.4 for more detailed description).  

dwPLI has previously been utilised and tested specifically in the context of 

anaesthetic-driven unconsciousness (e.g. Chennu et al., 2016; Kim et al., 2016), 

as well as in the context of disorders of consciousness (Chennu et al., 2014; 

2017). Here, following established methodology, dwPLI values across all 

channels within each band were used to represent the connectivity between 

channel pairs. Consequently, for each subject and for each frequency band, we 

obtained symmetric 32x32 dwPLI connectivity matrices. For further statistical 

analyses, we analysed connectivity values thus estimated across all channel pairs, 

and between specific, hypothesis-driven subsets of electrodes in frontal, 

posterior, and frontoposterior regions (see figure 3.1). 
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Figure 3.1. The electrode layout for all electrodes and for frontal and 

posterior subsets. The frontoposterior subset was formed accounting for the 

connectivity between frontal and posterior subsets. 

   

3.2.4 Covariates and statistical analysis 

In addition to the EEG datasets, we obtained a MATLAB dataset from the 

authors of the original study (Mhuircheartaigh et al., 2013), containing the 

covariates shown in table 3.1. Furthermore, we obtained the ages of the 

participants, and the State-Trait Anxiety Inventory scores (STAI) for each 

participant prior to the experiment were provided. 

   

Table 3.1. Covariates for the induction and peak-unresponsiveness condition (P-

UNR). The data for the induction condition were obtained from the original authors, 

while the covariates for the P-UNR condition were calculated during the present 
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work. The multivariate regression model with the P-UNR condition covariates were 

calculated to check the results obtained were in the same direction as with the 

induction condition. SWA – slow-wave activity, TSWAS – onset of slow-wave 

activity saturation, LOBR – loss of behavioural responsiveness. 

 

Covariates Induction-condition P-UNR 

SWA (power; dB) Yes Yes 

Max. SWA Yes Yes 

Min. SWA No Yes 

Mean SWA-power Yes Yes 

SWA at TSWAS Yes No 

SWA at LOBR Yes No 

Effect-site conc. at 

TSWAS 

 

Yes 

 

No 

Effect-site conc. at 

LOBR 

 

Yes 

 

No 

  

We used the SWA-power measures, and the LOBR and TSWAS time-points 

with the ESC at those two time-points as our dependent measures in a common 

multivariate linear regression model, with dwPLI measures calculated from the 

baseline as our independent variables (Matlab; mvregress-function). The 

multivariate regression model expresses a d-dimensional continuous response 

vector as a linear combination of predictor terms plus a vector of error terms with 

a multivariate normal distribution. Our response vector for the dependent 

variables contained eight terms: 
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- Maximum SWA-power 

- SWA-power at TSWAS 

- Mean SWA-power 

- SWA-power at LOBR time-point 

- LOBR time-point (s.) 

- TSWAS time-point (s.) 

- ESC at TSWAS time-point 

- ESC at LOBR time-point 

 

That is, with n = 16 participants, the dimension of the response matrix Yi = 

(yi1, yi2, …, yid) denote the response vector for observation i = 1, 2, …, 16. The 

second dimension of the response matrix, d = 8, corresponded to the 8 dependent 

variables listed above. 

The independent variables in the multivariate regression model, i.e., 

predictors, were the following: 

- Average baseline dwPLI (all channels; delta-, theta-, alpha-, and beta-

band) 

- Avg. baseline dwPLI (frontal channels; delta-, theta-, alpha-, and beta-

band) 
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- Avg. baseline dwPLI (posterior channels; delta-, theta-, alpha-, and 

beta-band) 

- Avg. baseline dwPLI (frontoposterior channels; delta-, theta-, alpha-, 

and beta-band) 

  

As we allowed different slopes and intercepts for the terms, each predictor 

(X1, …, X4) was an n-element cell array of d-by-K design matrices. With each 

model, there were K = 40 regression coefficients to estimate: eight intercept 

terms and 8 x 4 slope terms. Thus, we fitted the multivariate regression model 

𝑦𝑖𝑗 =  𝛼𝑗 +  𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖𝑗 , 

 where i = 1, …, n and j = 1, …, d, with between-response concurrent 

correlation 

𝐶𝑂𝑉(𝜖𝑖𝑗, 𝜖𝑖𝑗) =  𝜎𝑗𝑗 , 

and where the d-dimensional error term follows a multivariate normal 

distribution,  

𝜀𝑖𝑗  ~ MVN𝑗(0, Σ). 

 

The function fits multivariate regression model with a diagonal error 

variance-covariance matrix using a normal maximum likelihood function (‘mvn’ 

as a default for non-missing responses). With the subsets, we only changed the 
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electrode subset from which the baseline dwPLI values were averaged (frontal, 

posterior, frontoposterior). 

For estimating the statistical significance of the fitted model parameters, a 

non-parametric randomisation approach was implemented. Specifically, after 

estimating the regression coefficients, we randomised the dependent variables 

(Yi) by shuffling the rows (corresponding to participant dimension) 100,000 times 

and fitting the model again after each such shuffle. The regression coefficients 

obtained after each shuffle iteration formed the null hypothesis distribution. From 

this, non-parametric p-values were calculated as a proportion of coefficients after 

shuffling that were more extreme (more positive or negative than the original 

coefficients, if the original model regression coefficients were positive or 

negative, respectively) than the original coefficients. 

  

3.3 Results 

3.3.1 Confirmatory hypotheses 

First, we formulated a number of confirmatory hypotheses based on 

commonly found effects of propofol-anaesthesia: 

- we expected an increase in the slow-wave delta-power when 

comparing baseline and P-UNR conditions 

- we expected a shift from posterior alpha-power towards anterior 

electrodes when comparing baseline and P-UNR conditions 
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The results from the confirmatory hypotheses are shown in figures 3.2A and 

3.2B, respectively. Further, we compared the smoothed mean SWA-measures 

calculated for the P-UNR condition to the original figure (Mhuircheartaigh et al., 

2013; figure 3) to confirm there were no major differences. The average SWA-

power percentage (SD) normalised to each individual’s maximum of 0.5 – 30 Hz 

was 75.3% (6%). 

Similarly, we formulated two confirmatory hypotheses based on the dwPLI-

measures. We expected: 

- an increase in (peak) alpha-connectivity when comparing baseline and 

P-UNR conditions 

- a shift of posterior alpha-connectivity towards anterior electrodes 

when comparing baseline and P-UNR conditions 

These visualisations are shown in figures 3.3A and 3.3B, respectively. The 

functional connectivity topoplots for delta-, theta-, and beta-band are shown in 

figure 3.4A, 3.4B, and 3.4C.  
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Figure 3.2A. Spectral power for the baseline and peak-unresponsiveness periods 

averaged over time and over participants. The separate lines reflect the electrodes. 

An increase in delta-power under anaesthesia was confirmed. B. Power topoplot for 

alpha-band (dB) indicating a shift from posterior electrodes towards anterior 

electrodes.  
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Figure 3.3A. Functional connectivity spectra for baseline and peak-unresponsiveness 

conditions in the alpha-band. Different lines represent different electrodes averaged 

over the participants. An increase in maximum alpha-connectivity (with increased 

across the electrodes) is clearly visible. B. Simple connectivity topoplots for alpha-

connectivity. Each circle represents an electrode with the colour representing the 

average connectivity between all electrode pairs. The dwPLI varies between 0 and 

0.522 (maximum range 0 – 1). The connectivity in the posterior electrodes 

diminishes clearly. 
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Figure 3.4. Functional connectivity topoplots for delta- (A), theta- (B), and beta-

connectivity (C). Each circle represents an electrode with the colour representing the 

average connectivity between all electrode pairs. The connectivity varied between 

0.07 – 0.25 (maximum range 0 – 1).  

  

3.3.2 Multivariate regression 

Next, we moved to multivariate regression models of the response variables 

obtained from the induction condition calculating first predictions based on 
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absolute- and relative power. None of the predictors reached statistical 

significance with regards to relative power. With absolute power, there were two 

exceptions; absolute beta-power predicted both the LOBR time-point and the 

ESC at the LOBR time-point (β1 = 33131.2, p = 0.029; β2 = 52.7, p = 0.028, 

respectively).  

Next, predictions for induction period based on functional connectivity 

(dwPLI) calculated from the baseline were generated for all electrodes, for frontal 

electrodes (Fp1, Fp2, F3, F4, F7, F8, and Fz), for posterior electrodes (P3, P4, 

P7, P8, O1, O2, Pz, Oz, and POz), and for connectivity between the 

frontoposterior electrodes. Table 3.2 shows the slope terms (β’s) with their 

respective significance levels for all predictors that were found to be statistically 

significant. The best predictors were based on baseline connectivity averaged 

from the posterior electrodes: delta-, alpha-, and beta-connectivity predicted the 

SWA-measures, while posterior theta-connectivity predicted the behavioural 

measures (time) and the ESC at LOBR and TSWAS reliably. Frontal and 

frontoposterior connectivity produced less consistent predictions to the same 

direction. Further, frontoparietal theta-connectivity predicted the SWA-based 

measures. Predictions based on baseline connectivity averaged from all 

electrodes predicted only the maximum SWA-power at the beta-band.   

  

Table 3.2. Statistically significant slope terms for baseline functional connectivity 

(dwPLI) based on all electrodes, frontal electrodes, posterior electrodes, and 
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frontoposterior electrodes for the induction condition. Here, * indicates statistical 

significance at the alpha-level of < 0.05, ** at < 0.01, and *** at < 0.001.  

 

All electrodes 

   

Outcome Delta Theta Alpha Beta 

Max SWA - - - -40.9* 

SWA at 

TSWAS 

 

- 

 

- 

 

- 

 

- 

Mean SWA - - - - 

SWA at 

LOBR 

 

- 

 

- 

 

- 

 

- 

LOBR 

(time) 

 

- 

 

- 

 

- 

 

- 

TSWAS 

(time) 

 

- 

 

- 

 

- 

 

- 

ESC at 

TSWAS 

 

- 

 

- 

 

- 

 

- 

ESC at 

LOBR 

 

- 

 

- 

 

- 

 

- 

 

 

Frontal electrodes    

Outcome Delta Theta Alpha Beta 

Max SWA - - - - 

SWA at 

TSWAS 

 

- 

 

-31.9* 

 

- 

 

- 

Mean SWA 26.3* - - - 

SWA at 

LOBR 

 

- 

 

-33.9* 

 

- 

 

- 

LOBR 

(time) 

 

- 

 

- 

 

- 

 

- 

TSWAS 

(time) 

 

- 

 

3987.5* 

 

- 

 

- 

ESC at 

TSWAS 

 

- 

 

5.2* 

 

- 

 

- 

ESC at 

LOBR 

 

- 

 

- 

 

- 

 

- 
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Posterior electrodes    

Outcome Delta Theta Alpha Beta 

Max SWA 55.0* - 14.89* -52.8*** 

SWA at 

TSWAS 

 

45.7* 

 

- 

 

19.1*** 

 

-34.6** 

Mean SWA 48.5* - 16.7** -36.1** 

SWA at 

LOBR 

 

50.2* 

 

- 

 

15.6** 

 

-33.3* 

LOBR 

(time) 

 

-4272.4* 

 

3094.9* 

 

- 

 

- 

TSWAS 

(time) 

 

- 

 

3765.6* 

 

- 

 

- 

ESC at 

TSWAS 

 

- 

 

5.4* 

 

- 

 

- 

ESC at 

LOBR 

 

-6.8* 

 

5.0* 

 

- 

 

- 

 

 

Frontoposterior electrodes   

Outcome Delta Theta Alpha Beta 

Max SWA 41.0 * - - -36.2** 

SWA at 

TSWAS 

 

- 

 

-37.6* 

 

12.5* 

 

- 

Mean SWA - -30.9*  

 

9.9* - 

SWA at 

LOBR 

 

- 

 

-39.0* 

 

- 

 

- 

LOBR 

(time) 

 

- 

 

- 

 

- 

 

- 

TSWAS 

(time) 

 

- 

 

- 

 

- 

 

- 

ESC at 

TSWAS 

 

- 

 

- 

 

- 

 

- 

ESC at 

LOBR 

 

- 

 

- 

 

- 

 

- 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Lastly, based on the results from the regression models with the induction 

condition, we hypothesised that multivariate regression models with baseline 

connectivity in the canonical EEG bands should produce predictions to the same 

direction as with the induction period when predicting SWA in the P-UNR 

condition. These results are shown in table 3.3. As with the induction condition, 

the posterior baseline connectivity produced the most consistent results with the 

SWA-measures. Note, that in P-UNR condition, we only tested SWA-based 

measures. 

  

Table 3.3. Statistically significant slope terms for baseline functional connectivity 

(dwPLI) based on all electrodes, frontal electrodes, posterior electrodes, and 

frontoposterior electrodes for the peak-unresponsiveness condition. The normalised 

SWA-power refers to subject-wise normalisation to the maximum of the broadband 

(0.5 – 30 Hz). Here, * indicates statistical significance at the alpha-level of < 0.05, ** 

at < 0.01, and *** at < 0.001.  

 

All electrodes 

   

Outcome Delta Theta Alpha Beta 

Max. SWA 

abs. 

- -25.7* - - 

Min. SWA 

abs. 

 

- 

 

- 

 

- 

 

- 

Max. SWA 

norm. 

 

- 

 

- 

 

- 

 

- 

Min. SWA 

norm. 

 

- 

 

- 

 

1.2* 

 

- 

Mean SWA 

norm. 

 

- 

 

- 

 

1.6* 

 

- 
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Frontal electrodes 

   

Outcome Delta Theta Alpha Beta 

Max. SWA 

abs. 

- -20.1*  - - 

Min. SWA 

abs. 

 

- 

 

-38.6* 

 

- 

 

- 

Max. SWA 

norm. 

 

- 

 

- 

 

- 

 

-6.5* 

Min. SWA 

norm. 

 

- 

 

- 

 

1.1* 

 

- 

Mean SWA 

norm. 

 

- 

 

- 

 

- 

 

- 

 

 

Posterior electrodes 

   

Outcome Delta Theta Alpha Beta 

Max. SWA 

abs. 

27.7* -23.8** - -22.8** 

Min. SWA 

abs. 

 

- 

 

-33.5* 

 

- 

 

-32.2*  

Max. SWA 

norm. 

 

15.2* 

 

- 

 

6.1** 

 

-8.6* 

Min. SWA 

norm. 

 

4.9* 

 

- 

 

2.1** 

 

-3.0** 

Mean SWA 

norm. 

 

7.9* 

 

- 

 

3.2*** 

 

-4.6** 

 

 

Frontoposterior electrodes 

  

Outcome Delta Theta Alpha Beta 

Max. SWA 

abs. 

- -23.0* - - 

Min. SWA 

abs. 

 

- 

 

- 

 

- 

 

- 

Max. SWA 

norm. 

 

- 

 

- 

 

4.9** 

 

-5.8* 

Min. SWA 

norm. 

 

- 

 

- 

 

1.6** 

 

- 
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Mean SWA 

norm. 

 

- 

 

- 

 

2.5*** 

 

- 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 

3.4 Discussion 

Previous studies have suggested an association between baseline-functional 

connectivity and the state of consciousness on the one hand (Chennu et al., 2016; 

Deng et al., 2019; Zhang et al., 2020), and between consciousness and slow-wave 

activity power (SWA) – specifically the SWA saturation period (SWAS) during 

the peak-unresponsiveness period (P-UNR) – on the other (Mhuircheartaigh et 

al., 2013; Warnaby et al., 2017). Here, we aimed to connect these two aspects of 

the research literature. We investigated to what extent baseline EEG power and 

functional connectivity (FC) is predictive of SWAS in anaesthetic-induced loss 

of consciousness (LOC). We first measured EEG power and FC (dwPLI; Vinck 

et al., 2011) within the canonical frequency bands – delta (0.5-4 Hz), theta (4-8 

Hz), alpha (8-13 Hz), and beta (15-30 Hz) – from all electrodes, frontal and 

posterior electrode subsets, and between frontal and posterior subsets during pre-

anaesthetic baseline and the P-UNR periods. Next, we tested four confirmatory 

hypotheses based on power and connectivity to check that we observe commonly 

found effects of propofol-anaesthesia on EEG power and connectivity. As 

expected, we observed an increase in slow-wave delta-power, a shift of posterior 

alpha-power towards anterior electrodes, an increase in the peak alpha-

connectivity, and a shift of alpha-connectivity towards anterior electrodes in the 

anaesthetised conditions when compared to baseline. The rationale was to 

confirm that there were no substantial differences in the results due to the 
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methods used for the data-analysis before continuing with the multivariate 

regression. 

Next, using a linear multivariate regression, we tested whether the maximum 

SWA-power, mean SWA-power, SWA-power at the beginning of the saturation 

period (TSWAS), SWA-power at the time of loss of responsiveness (LOBR), the 

time needed to reach TSWAS and LOBR, and the propofol concentration levels 

(effect site concentration: ESC) both at LOBR and TSWAS could be predicted 

based on baseline relative or absolute power. Here, the dependent measures were 

measured from the induction period. With relative power, none of the predictions 

reached statistical significance. With absolute beta-power, the LOBR time-point 

and the propofol concentration at LOBR reached statistical significance only 

when measured from all electrodes.  

We then generated predictions for the induction period based on FC (dwPLI) 

using the same dependent variables and the electrode subsets. The best predictors 

were based on the posterior electrode subset: delta-, alpha-, and beta-connectivity 

at baseline predicted the SWA-measures at LOBR. Posterior theta-connectivity 

predicted the behavioural measures (time) and the ESC at LOBR and TSWAS. 

Both delta- and alpha-connectivity were positively correlated with all SWA-

measures, while beta-connectivity had a negative correlation with the SWA-

power. In other words, the lower delta- and alpha-connectivity at baseline, the 

lower the SWA-power, while the opposite was true for beta-connectivity. The set 

of results with alpha-connectivity complement the results of Chennu et al. (2016) 
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and Zhang et al. (2020) in suggesting that the alpha-band may play an important 

role in the observed individual differences in susceptibility to propofol.  

Theta-connectivity was positively associated with the two time-points and 

with the propofol concentrations measures. The frontal- and the frontoposterior 

subsets produced predictions to the same direction as the posterior subset, but 

fewer statistically significant predictions and smaller β-values associated with 

them. The only notable exception was frontal- and frontoposterior theta-

connectivity significantly predicting mean SWA-power and SWA-power at the 

two time-points (LOBR and TSWAS). Connectivity calculated from all 

electrodes did not produce any other significant predictions except maximum 

SWA-power at the beta-band. 

Lastly, we calculated the SWA-power in the P-UNR condition to build a new 

multivariate regression model based on baseline connectivity. The rationale was 

to confirm the direction of the observed associations in the induction period – as 

calculated from the SWA data produced by the original research group – with the 

measures from the saturation period. Here, as the saturation had already been 

reached, we predicted also the minimum SWA-power in addition to the 

maximum and the mean with both, absolute SWA and SWA normalised to each 

individual’s maximum of the broadband power. The best predictions were again 

based on posterior electrodes, with delta- and alpha- positively associated and 

beta-connectivity negatively associated with the normalised SWA-power. 

Furthermore, theta-connectivity was negatively linked with maximum or 

minimum absolute SWA-power, or both, in all tested electrode subsets. 
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Increasing SWA-power has been previously linked with prefrontal cortical 

grey matter and proposed to reflect an increasing number of cortical neurons 

oscillating synchronously with deepening sedation (Mhuircheartaigh et al., 2013; 

Warnaby et al., 2017). Moreover, previous studies have found a negative 

correlation between slow-wave activity and age (Purdon et al., 2015; Ringli & 

Huber, 2011), the latter of which is known to negatively correlate with grey 

matter volume (Liu et al., 2003). Accordingly, SWAS has been suggested to have 

a sound neurobiological basis and to potentially represent a phenotype of an 

underlying trait (Warnaby et al., 2017). Following this line of thought, one may 

speculate that the observed positive association between baseline alpha-

connectivity and SWA-power at SWAS reflects lower level of required neuronal 

synchrony oscillating at slow frequencies necessary for reaching the saturation 

state. In other words, the observed SWA-power levels in participants with less 

robust baseline alpha-connectivity, i.e. in participants requiring less propofol to 

reach fully unresponsive states, may reflect an increased sensitivity to reach the 

saturation state in terms of neuronal synchronisation.  

On the other hand, in a previous study by Chennu et al. (2016), the observed 

differences in the baseline alpha-network robustness were abolished at recovery, 

suggesting that the differences were depending on the latent alpha-state rather 

than any individual trait. However, our results support the notion that SWAS, as 

an index of unconsciousness, is distinct from direct propofol concentration levels, 

and therefore may indeed reflect a phenotype of a trait. To further investigate 

whether the SWAS power and its connection with baseline connectivity is state- 

or trait-based, future studies could analyse the potential link between connectivity 
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and measures obtained during recovery. For example, does the baseline alpha-

connectivity also predict SWA-power at the end of the saturation period, at 

recovery of behavioural responsiveness (ROBR), or the concentration of propofol 

and time needed to reach ROBR? 

It is worth noting that concerning alpha-connectivity, our results also differ 

from those of Zhang et al. (2020) who observed the strongest correlation between 

individual susceptibility to propofol and baseline alpha-connectivity from 

frontoparietal electrodes; our results support better predictive power for 

connectivity between the set of posterior electrodes only. However, we did also 

observe significant predictions based on frontoposterior alpha-connectivity, albeit 

with smaller slope terms and with fewer significant associations. It is also worth 

mentioning that Zhang et al. (2020) investigated connectivity between the 

electrodes in frontal and other cortical areas, and not – for example – between 

parietal electrodes only. Therefore, the specific contribution of the parietal 

electrode subset in the results of Zhang et al. (2020) remains unknown.       

Interestingly, posterior baseline beta-connectivity was found to be a more 

robust measure than alpha-connectivity in predicting SWA-power; all of our 

SWA-measures were negatively associated with the baseline beta-connectivity 

with larger absolute slope terms than was observed with alpha-connectivity. 

Previous studies have reported propofol-induced changes in PLI-based graph 

measures in the delta, theta, alpha, and beta bands (Lee, Mashour, Noh, Kim, & 

Lee, 2013), functional disconnections in sensorimotor cortices specifically at the 

beta-band (Malekmohammadi et al., 2018), and reported significant increases in 
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bidirectional Granger causality strength mainly in the beta and gamma bands 

(Barrett et al., 2012). However, to the best of our knowledge, the present study is 

the first one to draw a connection between pre-anaesthesia beta-connectivity and 

anaesthesia-induced loss of consciousness. Moreover, the fact that previous 

studies have observed predictive power based only on baseline connectivity in 

the alpha-band further highlights the differentiation between SWAS on the one 

hand, and propofol concentration or bispectral index on the other, as 

individualised indices of the depth of anaesthesia. 

Our results also suggested that posterior baseline theta- and delta-

connectivity, and to a lesser degree frontal theta, can predict behavioural 

measures associated with anaesthetic-induced LOC. Baseline theta-connectivity 

significantly predicted LOBR and TSWAS (in seconds), whereas delta-

connectivity predicted only LOBR. Furthermore, theta-connectivity predicted 

propofol concentration level at TSWAS and both bands at LOBR. Specifically, 

the higher the baseline delta-connectivity the participants had, the earlier LOBR 

occurred with lower propofol concentration level. In contrast, higher theta-

connectivity at pre-anaesthesia baseline indicated later LOBR and TSWAS, with 

higher concentrations at both time-points.  

The fact that higher baseline delta was associated with both, earlier LOBR 

and higher SWA-power, is perhaps not surprising given that LOBR has been 

associated with increases in slow-wave oscillations in anaesthesia and in NREM-

sleep (Murphy et al., 2011) and with an increase in parietal and frontoparietal 

delta-connectivity (Lee et al., 2017). Given a higher baseline level, reaching 
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states characterised by increased slow-wave activity and connectivity more easily 

makes intuitive sense. Theta-waves, on the other hand, have been primarily 

associated with memory consolidation in REM-sleep (Adamantidis, Gutierrez 

Herrera, & Gent, 2019; Karakaş, 2020). Interestingly, theta-waves observed 

during REM-sleep have been located to originate from hippocampus, whereas 

cortical theta-waves have been primarily observed to occur during transitions 

from sleep to wake and in quiet wakefulness (Cantero et al., 2003). Hence, under 

the assumption that the observed baseline theta-connectivity at pre-anaesthesia 

resting state was generated by underlying cortical theta oscillations, it may be 

that behavioural measures of recovery of consciousness could be reliably 

predicted based on connectivity in the theta-band. Future studies should indeed 

consider measures from the recovery state and their potential association with 

baseline connectivity more rigorously. 

In summary, we found pre-anaesthetic baseline alpha- and beta-connectivity 

to reliably predict slow-wave activity power during propofol induction and in 

slow-wave saturation period: the lower the baseline-alpha, the lower the observed 

SWA-power and the opposite for connectivity in the beta-band – the higher the 

baseline-beta, the lower the observed SWA-power. Furthermore, we negatively 

associated baseline delta-connectivity with the time needed to reach and the 

corresponding propofol level at LOBR. This was in contrast with positive 

association between baseline theta-connectivity and the time needed to reach and 

their corresponding concentration levels at LOBR and at the start of the 

saturation period. These results, if replicated and verified, support the notion that 

slow-wave activity saturation is a distinct and individualised index for loss of 
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consciousness that can be potentially used in tracking and assessing the depth of 

anaesthetic-induced unconsciousness.  
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4. Functional connectivity in disorders of 

consciousness: Hemispheric 

connectivity is correlated with 

behaviour and brain metabolism 

 

This chapter explores the level of granularity with which functional 

connectivity can potentially distinguish and predict states of disorders of 

consciousness (DoC). In particular, we are interested in the possible hemispheric 

differences in EEG brain connectivity. We hypothesise a specific role for left-

hemisphere in distinguishing the DoC states, especially unresponsive 

wakefulness syndrome from minimally conscious states. Linking bedside EEG 

data with behaviour-based diagnostic labels, we provide evidence for left-

hemisphere-specific differences in connectivity. In doing so, we lay the 

groundwork for further investigation of brain connectivity in DoC at the level of 

neural sources (chapter 6). 

 

4.1 Introduction 

Recent years have seen a rapid increase in consciousness research aiming to 

quantify the modulations in brain-activity – and connectivity – in altered states of 

consciousness, including sleep, anaesthetic-induced sedation, and prolonged 

DoC (for reviews see e.g. Bonhomme et al., 2019; Sanz, Thibaut, Edlow, 
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Laureys, & Gosseries, 2021; Tagliazucchi & van Someren, 2017). This latter case 

includes disorders such as the unresponsive wakefulness syndrome (UWS; 

Laureys et al., 2010), minimally conscious state (MCS; Giacino et al., 2002), and 

locked-in syndrome (LIS; Bauer, Gerstenbrand, & Rumpl, 1979). UWS is 

defined by preserved arousal in the absence of behavioural signs of awareness. 

This is in contrast to MCS, in which patients show fluctuating and incomplete 

awareness with preserved arousal. The MCS state has been further divided into 

MCS- and MCS+, with the latter condition characterised by command following, 

intelligible verbalisation or gestural (or verbal yes/no responses) to spoken or 

written questions (Bruno et al., 2011). LIS patients on the other hand, are 

characterised by undisturbed cognitive functions with total immobility except for 

vertical eye movements and blinking.   

Currently the most sensitive behavioural scale to disentangle the DoC groups 

from each other – especially the MCS from UWS – is the behaviour-based Coma 

Recovery Scale-Revised (Giacino, Kalmar, & Whyte, 2004; Seel et al., 2010). 

Previous studies have suggested that the brain states in DoC can also be 

distinguished with neuroimaging, such as fMRI (Crone et al., 2014; 

Guldenmund, Vanhaudenhuyse, Boly, Laureys, & Soddu, 2012; 

Vanhaudenhuyse et al., 2010; 2011) and EEG (Cruse et al., 2011; King et al., 

2013; Schnakers et al., 2008). In the case of EEG, the results from studies 

tracking DoC states have suggested a pivotal role for alpha- and theta-band 

activity and connectivity, with especially the latter showing promise in 

prognostic power and in automatic classification of the states (Chennu et al., 

2014, 2017; Engemann et al., 2018; Sitt et al., 2014). 
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Currently the most sensitive neuroimaging method to detect residual 

consciousness related brain activity is arguably positron emission topography 

(Laureys, Owen, & Schiff, 2004; Stender et al., 2014; 2015). Bruno et al. (2012) 

found a key difference distinguishing MCS+ patients from MCS- patients; the 

MCS+ patients showed evidence of a relatively more preserved left-hemispheric 

brain metabolism. More specifically, these differences were observed in the left 

hemisphere “language hotspots”: in Broca’s and Wernicke’s areas. These PET-

results are consistent with the observed behavioural differences between the two 

patient groups; MCS+ patients typically show higher comprehension of speech 

than do MCS- patients, which suggests differences specifically in the 

comprehension-related Wernicke’s area in the posterior superior temporal gyrus. 

Supportive results for a potential hemispheric difference in the underlying 

metabolism in DoC patients were suggested more recently by Thibaut et al. 

(2021). Their results demonstrated a gradual increase in a metabolic index 

measured from the best-preserved hemisphere from UWS to seemingly unaware 

“covertly aware” UWS PET+2 to MCS patients.  

Interestingly, results from a study by Lehembre et al. (2012) suggested also 

possible differences in hemispheric EEG-connectivity; EEG data were collected 

from 10 electrodes and power and connectivity comparisons between UWS and 

                                                 
2 

A number of studies have reported presence of “covert” voluntary brain activity in some seemingly 

unresponsive patients, with active and resting state paradigms (Bodart et al., 2017; Claassen et al., 

2019; Chennu et al., 2017; Cruse et al., 2011; Lechinger et al., 2013; Monti et al., 2010; Owen et al., 

2006; Owen & Coleman, 2008; Schnakers et al., 2015). 



95 

 

MCS patients were performed. Differences were found specifically in the left-

hemisphere alpha- and theta-band connectivity – as measured between three 

electrodes – when comparing UWS to MCS patients.  

Here, we aim to replicate and extend these results by distinguishing DoC 

states with finer granularity – specifically UWS from MCS- from MCS+ 

– using hemispheric EEG-connectivity. Specifically, based on previous literature 

(Bruno et al. 2012; Lehembre et al. 2012; Thibaut et al., 2021), we hypothesise 

that functional connectivity measured from the left-hemisphere electrodes 

distinguishes MCS- and MCS+ patients from UWS. To that end, we first 

calculate the debiased weighted phase-lag index (dwPLI; Vinck et al., 2011) from 

resting state high-density EEG recordings followed by a pre-defined set of 

summary metrics capturing the network properties – microscale clustering 

coefficient, macroscale characteristic path length (Watts & Strogatz, 1998), 

mesoscale modularity (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008), 

participation coefficient (Guimera & Amaral, 2005), and modular span (see 

Chennu et al., 2017 for details). We then subject dwPLI and participation 

coefficient – motivated by previous studies (Chennu et al., 2014, 

2017) – to multiple linear regression to investigate whether the DoC group can be 

predicted from the hemispheric connectivity values. Moreover, we explore the 

potential differences in hemispheric connectivity between MCS- and MCS+ 

patients; we test the hypothesis that left-hemispheric connectivity is significantly 

different between the two MCS patient groups.   
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4.2 Methods 

4.2.1 Participants and dataset 

The original dataset was obtained from collaborators at the University 

Hospital of Liege, Belgium and consisted of high-density EEG recordings from 

104 patients diagnosed as either UWS, MCS-, MCS+, emerging from MCS 

(eMCS), or LIS, alongside with 26 healthy controls. Patients with locked-in 

syndrome were included as a clinically relevant group for comparison. During 

the analyses we obtained and preprocessed additional data from 50 more patients 

using the same brain connectivity analysis pipeline as in the original dataset 

(Chennu, 2018. MOHAWK v.1.2.  from: 

https://github.com/srivaschennu/MOHAWK). After preprocessing, data from 

nine participants (out of the 50) had to be rejected due to excessive noise (e.g. 

muscle spasm) or due to failed recordings. Thus, the final dataset consisting of 

145 patients and 26 healthy controls was used in a follow-up analysis directly 

testing for hemispheric differences between MCS- and MCS+ patients. 

 The data collection was approved by the Ethics Committee of the University 

Hospital of Liège. Group sizes and mean ages are reported in table 4.1. The EEG 

recordings were collected during a resting state with a 256-channel high-density 

EEG cap and Net Amps amplifier. The original length of the recordings varied, 

however only the first 10 minutes of the recordings from each of the patients 

were used in the pipeline; this aims to maximise the viability of the pipeline for 

clinical application as an easy-to-use bedside assessment tool. 
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Table 4.1. Sample sizes, mean ages in years and number of females for the DoC 

groups. The values for the replenished dataset are shown in parentheses. UWS – 

unresponsive wakefulness syndrome, MCS- – minimally conscious negative, 

MCS+ – minimally conscious positive, eMCS – emerging from minimally 

conscious, LIS – locked-in syndrome. 

Group N Mean age 

(years) 

Females 

UWS 23 (35) 40 (39) 12 (19) 

MCS- 17 (22) 36 (-) 9 (12) 

MCS+ 49 (63) 38 (-) 30 (38) 

eMCS 11 (18) 40 (-) 8 (10) 

LIS 4 (7) 44 (-) 2 (4) 

Control 26 (-) 44 (-) 13 (-) 

 

 

4.2.2  Analysis 

We present a brief description of the data analysis pipeline, please see 

Chennu et al. (2017) and Chennu (2018; MOHAWK v.1.2. Available from: 

https://github.com/srivaschennu/MOHAWK) for further details. The pipeline 

uses the functionality provided on EEGLAB (Delorme & Makeig, 2004), 

FieldTrip (Oostenveld et al., 2011), and the Brain Connectivity Toolbox 

(Rubinov & Sporns, 2010), and was here implemented in MATLAB2017a (The 

Mathworks Inc., 2017).  

 First, the data were imported and EEG-channels on the face, neck and near 

the eyes were removed to minimise the influence of muscular and ocular 

artefacts. We retained 173 channels out of 256 for further processing. The data 

were then downsampled to 250 Hz and filtered within a range of 0.5 – 45 Hz, 
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encompassing the canonical delta (0 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 13 Hz), 

beta (13 – 30 Hz), and gamma (30 – 45 Hz) bands. The recordings were then 

epoched into 10-second long segments and the time points within each epoch 

were baseline-corrected relative to the mean voltage over the entire epoch. Next, 

the artefacts were rejected using a quasi-automated procedure that flags 

abnormally noisy channels and epochs by calculating their variance, which then 

are subjected for user’s visual inspection; on average, approximately 11% of 

channels (mean = 20, S.D. = 17) were rejected. Next, the infomax independent 

component analysis algorithm (Bell & Sejnowski, 1995) was used to identify and 

remove components of activity from potentially non-neural origins, followed by 

interpolation of the removed (noisy) channels using a spherical spline 

interpolation. The data were then re-referenced to the common average and the 

first 60 epochs (first 10 minutes) were retained for further analysis. 

 Next, spectral and cross-spectral estimates at bins of 0.1 Hz between 0.5 and 

45 Hz were calculated using the FieldTrip toolbox (Oostenveld et al., 2011). 

Power was estimated using a multitaper method with 5 Slepian tapers. At each 

channel, the power in each band was transformed to normalised percentage 

contribution by first dividing the sum of the magnitude of power with the total 

power over all bands, and then multiplying this ratio by 100. Alongside, the 

cross-spectrum between every pair of electrodes was used to calculate the dwPLI 

values, which were transformed into symmetric connectivity matrices. The 

connectivity matrices were then proportionally thresholded, retaining between 

90% - 10% of the largest dwPLI values. After applying the thresholds, the 

matrices were binarised by setting the non-zero values to 1. Due to considerable 
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electromyographic artefacts observed in high frequencies, we 

restricted the analysis to the delta-, theta-, and alpha-bands. 

 Finally, these binarised matrices were modelled as a network with channels 

as nodes and the zero-values as edges. Using the Brain Connectivity Toolbox 

(Rubinov & Sporns, 2010), we calculated a pre-defined set of summary metrics 

capturing the network properties, i.e. microscale clustering coefficient, 

macroscale characteristic path length, mesoscale modularity, participation 

coefficient, and modular span. 

 

4.2.3 Hemispheric hdEEG analysis 

Using the above pipeline, data from 104 participants alongside with 26 

controls were analysed to calculate connectivity values at the level of electrodes 

for each hemisphere separately. That is, the electrodes were mapped into a 2D 

model of the head and all the electrodes on the right and left hemispheres were 

grouped into hemispheric subsets, disregarding the electrodes on the midline 

(figure 4.1A). The dwPLI connectivity values were then calculated within (and 

between) these areas. Furthermore, for visualisation purposes, a number of 

smaller subsets were defined by including electrodes only on the frontal, central, 

temporal, parietal, and occipital areas, and the mean dwPLI between the subsets 

was calculated. These electrode subsets are shown in figure 4.1B.  

The main research question was to compare the predictive power of 

connectivity within the two hemispheres, as measured by dwPLI. Moreover, 

based on previous research (Chennu et al., 2014), we investigated the predictive 
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power of participation coefficient – a network metrics measuring the distribution 

of a node’s edges among the communities of a graph. A node with its edges 

entirely restricted to its community has a participation coefficient of zero, while a 

node with its edges evenly distributed among all communities has a maximal 

participation coefficient approaching to one (“connector hubs”). To this end, the 

mean values of these metrics in each hemisphere were calculated and subjected 

to multiple linear regression. Hence, our independent variables were the average 

hemispheric connectivity values followed by the network metrics in each of the 

canonical delta-, theta-, and alpha-bands. The dependent variable was the DoC 

diagnosis as per the CRS-R. 

 

 

Figure 4.1A. Electrodes on each hemisphere were grouped into subsets, 

disregarding electrodes on the midline. B. For connectivity visualisations, the 
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electrodes on each hemisphere were divided into 5 smaller subsets, disregarding 

electrodes on the midline (grey area).  

 

4.3 Results 

Our goal was to investigate the differences in hemispheric functional 

connectivity and its predictive power on DoC states. We divided the electrodes 

into left and right hemisphere subsets based on the physical locations of the 

electrodes and calculated the dwPLI connectivity between each of the electrodes 

within each hemisphere. Furthermore, for visualising the trend in connectivity 

strength from UWS to MCS- to MCS+ to eMCS to LIS to healthy controls, each 

hemisphere was further divided into five subsets of electrodes, and mean 

connectivity between the subsets was calculated. The between-subset 

connectivity in the canonical delta-, theta-, and alpha-bands in each hemisphere 

for each DoC states is shown in figure 4.2. The mean connectivity values varied 

between 0.078 – 0.370 and 0.074 – 0.369 for left and right hemispheres, except 

for right occipital to posterior alpha-connectivity (0.546). 

Visually, UWS and MCS patients show increased connectivity in the delta-

band (figure 4.2A) in both hemispheres in comparison to healthy controls. In the 

theta-band, UWS patients and healthy controls show similar levels of 

connectivity (figure 4.2B). MCS patients, on the other hand, differ from UWS 

and healthy controls showing higher level of connectivity in the theta-band. No 

visually apparent interactions between the hemispheric connectivity and DoC 

state are visible in the theta-band for the UWS and MCS patients. In alpha- 



102 

 

(figure 4.2C) and delta-connectivity (figure 4.2A), there is a larger difference in 

the left hemisphere between MCS- and MCS+ in comparison to the difference in 

the right hemisphere. Moreover, when comparing UWS to MCS-, a larger 

difference is observed in the right hemisphere alpha-connectivity in comparison 

to the left. In addition, there is a larger difference in the left than right delta- and 

alpha-connectivity between LIS and healthy controls. 
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Figure 4.2. Progression of the change in mean connectivity in the delta- (A), 

theta- (B), and alpha-bands (C) from unresponsive wakefulness syndrome (UWS) 

to minimally conscious negative (MSC-) to minimally conscious positive 

(MSC+) to emergence from MCS (eMCS) to fully conscious locked-in syndrome 

(LIS) and healthy controls (CTRL) for each hemisphere. Connectivity is 

calculated for five subsets in each hemisphere and means between the subsets are 

visualised. The UWS and MSC patients show increased connectivity in the delta-

band in comparison to fully conscious healthy controls (A). In contrast, MCS 

patients show increased levels of theta-connectivity in comparison to UWS and 

healthy controls (B). In alpha- (2C) and delta-connectivity (2A), there is a larger 

difference in the left hemisphere between MCS- and MCS+ in comparison to the 

difference in the right hemisphere. Similarly, between LIS and healthy controls, 

larger differences are observed in the left hemisphere in comparison to right in 

the delta- and alpha-band (A and C, respectively). Moreover, when comparing 

UWS to MCS-, a larger difference is observed in the right hemisphere alpha-

connectivity in comparison to the left.  

 

Next, in an exploratory analysis, we built regression models of functional 

connectivity (dwPLI), one for each of the delta-, theta-, and alpha-bands. In each 

model, left and right hemispheric connectivity were predictors and the DoC state 

was the predicted variable. In the delta- and theta-bands, neither hemispheric 

predictor reached statistical significance (left hemisphere ps = 0.306 (delta) & 
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0.796 (theta), and right hemisphere ps = 0.423 (delta) & 0.993 (theta), 

respectively). In the alpha-band, the results reached statistical significance and 

indicated roughly 15% of the variance explained by the predictors (left vs. right 

hemisphere dwPLI; R2 = 0.146, F(2,127) = 10.87, p = < 0.001). The results 

further indicated that only left hemisphere connectivity significantly predicted 

the DoC group (β = 0.26, p = .027), while right hemisphere connectivity did not 

(β = 0.16, p = 0.171). Figure 4.3 shows mean hemispheric connectivity values in 

the alpha-band for each data point in the patient groups. Note, that the p-values 

reported here are not corrected for the multiple comparisons of the three 

frequency bands. 

We furthermore built a regression model combining all frequency bands to 

assess the ability of four independent variables (three canonical EEG bands and 

hemispheric electrode-subsets) to predict DoC states. The four predictors 

explained approximately 18% of the variance in DoC states (R2 = 0.177, F(4,255) 

= 13.76, p = < 0.001). The effects of two predictors, delta- and alpha-band 

connectivity, were statistically significant: β = -1.90, p = 0.013 (delta) & β = 

4.42, p < 0.001 (alpha). Connectivity in the theta-band and hemisphere did not 

reach statistical significance (ps > 0.110).  
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Figure 4.3. Mean connectivity in alpha-band for left and right hemispheres for 

each DoC state and healthy controls. Hemispheric connectivity significantly 

predicts the patient group; the figure shows a more robust left-hemispheric linear 

relationship between connectivity and behavioural diagnosis. Connectivity in the 

delta- and theta-bands did not reach statistical significance (ps > 0.306). Note that 

the p-values are uncorrected. UWS – unresponsive wakefulness syndrome, MCS- 

– minimally conscious negative, MCS+ – minimally conscious positive, eMCS – 

emerging from MSC, LIS – locked-in syndrome, CTRL – healthy controls. 

 

We next investigated the presence and the predictive power of brain network 

centrality within each hemisphere (as captured by participation coefficient). In a 

regression analysis conducted by band, we tested if the standard deviation 

(SD) of alpha-band participation coefficients across electrodes within each 

hemisphere significantly predicted DoC group. The results indicated that the two 

predictors (left vs. right hemisphere) explained roughly 25% of the variance (R2 = 

0.246, F(2,127) = 20.75, p = < 0.001). Furthermore, we found that right 

hemisphere participation coefficient significantly predicted the DoC group (β = 
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0.40, p < 0.001), whereas left hemisphere participation coefficient did not reach 

statistical significance (β = 0.15, p = 0.122). With the canonical delta- and theta-

band, neither predictor reached statistical significance (left hemisphere ps = 

0.860 (delta) & 0.332 (theta), and right hemisphere ps = 0.352 & 0.054, 

respectively). Figure 4.4 illustrates the alpha-band participation coefficients in 

each hemisphere for each subject group.  

As with connectivity, we also built a regression model to assess the ability of 

four independent variables (three canonical EEG bands and hemispheric 

electrode-subsets) to predict DoC states. The overall model was non-

significant: R2 = 0.03, F(4,255) = 1.96, p = 0.101. Of the four predictors, only the 

alpha-band participation coefficient significantly predicted the DoC state (β = -

1.18, p = 0.033; all other ps > 0.76). 

 

  

 

Figure 4.4. SD of participation coefficient in the alpha-band of DoC groups for 

both hemispheres. Hemispheric participation coefficients significantly predicted 

the patient group; the figure shows a more robust right-hemisphere linear 
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relationship between SD of participation coefficient and behavioural diagnosis. 

Participation coefficients in delta- and theta-bands did not reach statistical 

significance (ps > 0.054). Note that the p-values are uncorrected. UWS – 

unresponsive wakefulness syndrome, MCS- – minimally conscious negative, 

MCS+ – minimally conscious positive, eMCS – emerging from MSC, LIS – 

locked-in syndrome, CTRL – healthy controls. 

 

One of the aims in the present study was to investigate if the previous 

report of preserved left-hemisphere PET metabolism in MCS+ patients (in 

comparison to MCS- patients) could also be observed in the hdEEG signal. To 

this end, we directly compared the left- and right-hemisphere connectivity in 

delta-, theta-, and alpha-bands in a larger sample of 85 patients (MCS-: N = 22; 

MCS+: N = 63). 

To replicate the PET finding with hdEEG, we tested for an interaction 

between connectivity in each hemisphere and patient group (MCS- vs. MCS+). 

The mean alpha-connectivity values for each of the groups and for both 

hemispheres are depicted in figure 4.5. The results did not reach statistical 

significance (in an ANOVA; with alpha-connectivity p = 0.067; with theta p = 

0.557; with delta p = 0.163). 

Finally, due to previously observed correlation of right hemispheric (alpha-

band) participation coefficients, we tested for an interaction between 

participation coefficients in each hemisphere and patient group. The results did 
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not reach statistical significance (in an ANOVA: with alpha-band participation 

coefficients p = 0.084; with theta p = 0.072; with delta p = 0.819).  

 

 

Figure 4.5. Mean alpha-connectivity for both hemispheres in minimally 

conscious negative (MCS-) and minimally conscious positive (MCS+) patients. 

The error bars represent the standard error of the mean. 

 

4.4 Discussion 

In this study, we investigated the differences in hemispheric functional 

connectivity and its predictive power on states of DoC. We divided the electrodes 

into left and right hemisphere subsets based on the physical locations of the 

electrodes and calculated functional connectivity between each of the electrodes 

within each hemisphere. Based on connectivity visualisations, UWS and MCS 

patients showed increased connectivity in the delta-band in both hemispheres 

when compared to healthy controls. In the theta-band, all MCS sub-groups 

(MCS-, MCS+, and eMCS) differed from healthy controls and UWS patients 
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showing relatively increased theta-connectivity in both hemispheres. No apparent 

interactions between the hemispheric connectivity and DoC state are visible in 

the theta-band for the UWS and MCS patients. In alpha- and delta-connectivity, 

there was visually a larger difference in the left hemisphere between MCS- and 

MCS+ in comparison to the difference in the right hemisphere. Moreover, when 

comparing UWS to MCS-, a larger difference was observed in the right 

hemisphere alpha-connectivity in comparison to the left. Additionally, there was 

also a larger difference in the left than right delta- and alpha-connectivity 

between locked-in syndrome patients and healthy controls. 

The connectivity visualisations were followed by multiple linear regression 

models of the DoC states first based on hemispheric functional connectivity 

(dwPLI) in the three canonical bands (delta, theta, and alpha), followed by 

regression models based on intermodular centrality within the hemispheres (as 

captured by the standard deviation of participation coefficient). In the models 

based on dwPLI, only predictions in alpha-band reached statistical significance. 

Specifically, left-hemispheric alpha-band connectivity predicted the DoC state of 

the patients, while the right-hemispheric connectivity did not. The opposite result 

was observed with the network hubs; right-hemispheric participation coefficient 

in the alpha-band statistically significantly predicted the DoC states, while left-

hemispheric participation coefficient did not. With the canonical delta- and theta-

band, the models did not reach statistical significance. 

Last, we directly compared the hemispheric connectivity in the three bands 

between MCS- and MCS+ patients. Although we observed a trend towards 
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reduced alpha-connectivity in the left hemisphere in MCS- patients when 

compared to MCS+ patients, these results did not reach statistical significance. 

This may have been because of the small and unequal sample size. Future studies 

could try to establish statistical significance in left-hemisphere alpha-connectivity 

between MCS- and MCS+ patients with larger samples. 

The results from the connectivity-based regression model suggest that left 

hemisphere alpha-connectivity, at the level of electrodes, significantly correlates 

with DoC states, unlike connectivity in the right hemisphere. These results are 

consistent with the previous findings linking left hemisphere more strongly with 

behavioural DoC diagnosis (Bruno et al. 2012; Lehembre et al. 2012; see also 

Thibaut et al., 2021). Specifically, the observed key role for left-hemisphere 

alpha-band connectivity in distinguishing the DoC states may reflect the 

previously observed underlying differences in PET-metabolism (Bruno et al. 

2012). These results suggest that hemispheric spectral connectivity provides 

information about brain dynamics that are not captured by simpler estimations of 

spectral power. It is also worth noting that the two sub-categories of MCS (MCS- 

and MCS+), are distinguished behaviourally based on the absence or presence, 

respectively, of evidence of residual language functions (Bruno et al., 2011), 

typically considered to be predominantly located in the left hemisphere. It is 

possible that the observed larger differences in the left than right hemisphere 

alpha-connectivity between the DoC states, particularly between MCS- and 

MCS+, reflect more preserved language functions.  
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In contrast to the results of the present study, Lehembre et al. (2012) observed 

not only hemispheric differences in left and right hemisphere delta- and alpha-

power spectra, but their results also suggested that specifically left hemisphere 

alpha-band connectivity distinguished UWS from MCS patients. Here, based on 

the connectivity visualisations (figure 4.2), a larger difference in alpha-

connectivity is observed on the right hemisphere, than left, between UWS and 

MCS- patients. However, when comparing UWS to MCS+ patients, this 

difference seems to disappear; this discrepancy in the results between this study 

and those of Lehembre et al. (2012) may thus reflect the further distinction of 

MCS patients into MCS- and MCS+ sub-groups. It should be also noted that 

here, we used high-density EEG recordings, whereas the connectivity in 

Lehembre et al. (2012) was calculated based on recordings from 10 electrodes 

(only three in each hemisphere). Such differences in the methodologies between 

the two studies might partly explain the differences in the results. 

Observing a difference in left hemisphere connectivity between UWS and 

MCS+, in addition to the trend toward larger left hemisphere difference between 

MCS- and MCS+, is further consistent with the possibility of residual language 

functions driving the difference in functional connectivity. However, based on 

this study alone, this remains a speculative hypothesis at best. Future studies 

should further investigate the possible affiliation between more preserved left-

hemispheric PET metabolism, residual language functions, and hemispheric 

functional connectivity.  
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Moreover, we observed significant prediction based on right-hemispheric, but 

not left, participation coefficient in the alpha-band. This observed dissociation 

between predictions based on functional connectivity on the one hand, and on 

connectivity network on the other, highlights not only that the network properties 

of nodes can vary independently of the average connectivity of that node 

(Chennu et al., 2014; 2017), but that hemispheric differences may provide 

complementary estimates of underlying properties of the brain’s dynamical 

networks. Such information, if verified and replicated, could potentially be used 

to aid and guide diagnosis of DoC patients. 

It should be noted, that in regression models encompassing all three 

frequency bands alongside with hemispheric electrode subsets, only the 

frequency bands significantly predicted the DoC states. Indeed, the reported p-

values for regression models based on single frequency bands are not corrected 

for multiple corrections. Although previous studies (e.g. Chennu et al., 2017; 

Lehembre et al., 2012) provide a justification for hypothesising the predictive 

power for alpha-band connectivity specifically, the fact that the hemispheric 

effect in the alpha-band disappears when correcting for the three comparisons 

(frequency bands) alongside with failure to detect any difference when 

comparing MSC- and MCS+ patients directly, speak to a lower power in our 

study. Future studies should try to establish statistical significance with larger 

sample sizes. 

In summary, we investigated the hemispheric differences in connectivity and 

network properties between DoC states at the level of electrodes. We observed 
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that left-hemispheric alpha-connectivity on the one hand, and right-hemispheric 

participation coefficient (centrality or “hubness”) on the other, significantly 

predicts the DoC state. These results – in combination with previous findings 

from PET-imaging (Bruno et al. 2012; Thibaut et al., 2021) and functional EEG 

connectivity (Lehembre et al. 2012) – suggest that hemispheric connectivity may 

provide information over and beyond an analysis of global connectivity. 

However, the present analysis was performed at the level of electrodes, and 

consequently, we cannot directly infer the underlying brain dynamics at the 

source level. To address this gap, we will investigate the potential connectivity 

differences between the hemispheres in DoC patients at the level of neuronal 

sources using effective connectivity methods (chapter 6).  
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5. Modelling the effects of propofol-

anaesthesia on the effective connectivity 

 

This chapter explores the changes in effective connectivity following 

propofol-induced loss of consciousness (LOC). In particular, we assess the 

differences in intra- and inter-network effective connectivity in three key resting 

state networks using dynamic causal modelling to explain cross-spectral densities 

from EEG data. In doing so we contribute to the frontal vs. posterior debate of 

neural correlates of consciousness by providing novel computational evidence 

supporting a selective breakdown of posterior parietal and medial feedforward 

frontoparietal connectivity within the default mode network (DMN) and of 

parietal inter-network connectivity linking the DMN and the central executive 

network. Going further, we establish the generalised predictive validity of our 

models using a novel DCM-based cross-validation, by predicting unseen data 

from the post-anaesthetic recovery state  

 

5.1 Introduction 

Several cortical network-level mechanisms have been proposed to explain 

human consciousness and its loss, of which two, in particular, have received an 

increasing amount of interest and evidence. On the one hand, empirical studies 
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have suggested that the loss of consciousness (LOC)3 is associated with 

disruptions of within- and between-network connectivity in cortical areas 

associated with large-scale frontoparietal networks (Bor & Seth, 2012; Laureys & 

Schiff, 2012). On the other, temporo-parieto-occipital areas – colloquially named 

as ‘the posterior hot zone’ – has been shown to be important in mediating 

changes in consciousness during sleep (Siclari et al., 2017; Lee et al., 2019), and 

in patients with brain damage (Vanhaudenhuyse et al., 2010; Wu et al., 2015).  

In this context, general anaesthetics are a powerful tool to investigate 

alterations in brain connectivity during changes in the state of consciousness (see 

Bonhomme et al., 2019 for a recent review). Indeed, several previous studies 

have utilised anaesthetic drugs in investigating brain dynamics in both functional 

and effective/directed connectivity studies and suggested multiple explanatory 

mechanisms of the LOC. Note that here, effective connectivity is defined 

following Friston (2011) and Razi & Friston (2016) as a causal influence (in a 

control theory sense) of one neural population over another. In contrast, 

functional connectivity indicates statistical correlation between 

neurophysiological signals. Some of these previous studies have suggested a 

breakdown of thalamo-cortical connections and disrupted frontoparietal networks 

                                                 
3
 We acknowledge that anaesthetic-induced loss of consciousness (LOC) may actually be anaesthetic-

induced loss of behavioural responsiveness (LOBR), as e.g. volitional mental imagery or dreaming 

may take place during the anaesthetic state. The participants were, however, asked afterwards if they 

had any recall of dreams etc., which they did not report. Thus, here, we follow the typical convention 

in anaesthesia-literature and refer to this state as LOC.  
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(Boveroux et al., 2010; Schrouff et al., 2011). Others have found disruptions in 

frontal areas (Guldenmund, et al., 2016), diminished frontoparietal feedback 

connectivity (Ku, Lee, Noh, Jun, & Mashour, 2011; Lee et al., 2009; Lee, Ku et 

al., 2015) , and increased frontoparietal connectivity (Barrett et al., 2012). To 

bring computational evidence to bear upon this discussion, we adopt one of the 

most commonly used methods for understanding effective connectivity, dynamic 

causal modeling (DCM; Friston, Harrison & Penny, 2003), to assess cortical 

network-level mechanisms involved in the LOC, and evaluate the evidence for 

the posterior hot zone. Our analysis of effective connectivity complements 

existing research into functional connectivity during general anaesthesia, 

including that presented in chapter 3. In comparison to functional connectivity, 

effective connectivity allows stronger inferential claims to be made about how 

brain regions influence one another. 

There are relatively few studies assessing resting state effective connectivity 

with DCM during anaesthetic-induced unconsciousness, but a recent fMRI study 

identified impaired subcortico-cortical connectivity between globus pallidus and 

posterior cingulate (PCC) nodes, but no cortico-cortical modulations (Crone, 

Lutkenhoff, Bio, Laureys, & Monti, 2017). Boly et al. (2012) found a decrease in 

feedback connectivity from frontal (dorsal anterior cingulate; dACC) to parietal 

(PCC) nodes. Both of these studies, however, evaluated relatively simple models 

in terms of cortical sources (excluding subcortical nodes), consisting of only two 

such nodes – an anterior and a posterior node. Consequently, they do not allow us 

to compare the role of the posterior hot zone to other potential cortical 

mechanisms underpinning consciousness. 
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Here, we address this gap by modelling changes in key resting state networks 

(RSN) - the default mode network, the salience network (SAL), and the central 

executive network (CEN), due to unconsciousness induced by propofol, a 

common clinical anaesthetic. We employ a novel methodological combination of 

DCM for resting EEG cross-spectral densities (CSD; Friston et al., 2012; Moran 

et al., 2009) and parametric empirical Bayes (PEB; Friston et al., 2016), to better 

estimate model parameters (and their distributions) and prune redundant 

connections. Within this framework, we invert - for the first time - a single large-

scale model of EEG, consisting of 14 RSN nodes, in addition to the individual 

RSNs themselves (figure 1). This allows us to evaluate the role of different 

subgroups of intra- and inter-RSN connections in the modulation of 

consciousness. Further, we apply robust leave-one-subject-out-cross-validation 

(LOSOCV) on DCM model parameters, to evaluate hypotheses about whether 

specific sets of connections within and between frontal and parietal nodes are not 

only able to explain changes between states of consciousness, but also to predict 

the state of consciousness from unseen EEG data. Using this combination of 

computational modelling, cross-validation and hypothesis testing, we indicate the 

importance of the posterior hot zone in explaining the loss of consciousness, 

while also highlighting the distinct role of frontoparietal connectivity in 

underpinning conscious responsiveness. Consequently, we demonstrate a 

dissociation between the mechanisms most prominently associated with 

explaining the contrast between conscious awareness and unconsciousness, and 

those maintaining consciousness. 
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5.2 Methods 

5.2.1 Data acquisition and preprocessing 

The data used in the present work were acquired from a previous propofol-

anaesthesia study, which describes the experimental design and data collection 

procedure in detail (Murphy et al., 2011). The study was approved by the Ethics 

Committee of the Faculty of Medicine of the University of Liège, and written 

consent was obtained from all the participants. None of the participants suffered 

from mental illness, drug addiction, asthma, motion sickness, nor had a history of 

mental illness or suffered from any previous problems with anaesthesia. The data 

consisted of 15 minutes of spontaneous, eyes-closed high-density EEG 

recordings (256 channels, EGI) from 10 participants (mean age 22 ± 2 years, 4 

males) in four different states of consciousness: behavioural responsiveness, 

sedation (Ramsay scale score 3, slower responses to command), loss of 

consciousness with clinical unconsciousness (Ramsay scale score 5-6, no 

response to command), and recovery of consciousness (Ramsay, Savege, 

Simpson, & Goodwin, 1974). Note that for the recovery state, the data consisted 

of 9 datasets. Participants were considered to be fully awake if the response to 

verbal command (‘squeeze my hand’) was clear and strong (Ramsay 2), and in 

LOC, if there was no response (Ramsay 5-6). The Ramsay scale verbal 

commands were repeated twice at each level of consciousness. Propofol was 

infused through an intravenous catheter placed into a vein of the right hand or 

forearm, and the propofol plasma and effect-site concentrations were estimated 

with 3.87 ± 1.39 mcg/mL average arterial blood concentration of propofol for 

LOC.  Here, we only modelled data from the maximally different anaesthetic 
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states, behavioural responsiveness and LOC, and used recovery as a test of DCM 

model generalisation. These data can be made available after signing a formal 

data-sharing agreement with the University of Liège. 

Data from channels from the neck, cheeks, and forehead were discarded as 

they contributed most of the movement-related noise, leaving 173 channels on 

the scalp for the analysis. These 173 electrodes were co-registered to a template 

MRI mesh in MNI coordinates, and the volume conduction model of the head 

was based on the Boundary Element Method (BEM). The raw EEG signals were 

filtered from 0.5 – 45 Hz with additional line noise removal at 50 Hz using a 

notch filter. The recordings were then downsampled to 250 Hz, and abnormally 

noisy channels and epochs were identified by calculating their normalised 

variance, and then manually rejected or retained by visual inspection. Last, the 

data were then re-referenced using the average reference.  

 

5.2.2 Dynamic causal modeling 

For the DCM modelling of the high-density EEG data, the first 60 artefact-

free 10-second epochs in wakeful behavioural responsiveness and LOC were 

combined into one dataset with two anaesthetic states making up a total of 120 

epochs per participant. The preprocessed data was imported in to SPM12 

(Wellcome Trust Centre for Human Neuroimaging; 

www.fil.ion.ucl.ac.uk/spm/software/spm12).  

To analyse effective connectivity within the brain’s resting state networks, 

DCM for EEG cross-spectral densities (CSD) was applied (Friston et al., 2012; 
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Moran et al., 2009). Briefly, with this method, the observed cross-spectral 

densities in the EEG data are explained by a generative model that combines a 

biologically plausible neural mass model with an electrophysiological forward 

model mapping the underlying neural states to the observed data. Each node in 

the proposed DCM models – that is, each electromagnetic source – consists of 

three neural subpopulations, each loosely associated with a specific cortical layer; 

pyramidal cells, inhibitory interneurons and spiny stellate cells (ERP model; 

Moran, Pinotsis & Friston, 2013). DCM does not simply estimate the activity at a 

particular source at a particular point in time – instead, the idea is to model the 

source activity over time, in terms of interacting inhibitory and excitatory 

populations of neurons. 

The subpopulations within each node are connected to each other via intrinsic 

connections, while nodes are connected to each other via extrinsic connections. 

Three types of extrinsic connections are defined, each differing in terms of their 

origin and target layers/subpopulation: forward connections targeting spiny 

stellate cells in the granular layer, backward connections targeting pyramidal 

cells and inhibitory interneurons in both supra- and infragranular layers, and 

lateral connections targeting all subpopulations. This laminar specificity in the 

extrinsic cortical connections partly defines the hierarchical organisation in the 

brain. Generally speaking, the backward connections are thought to have more 

inhibitory and largely modulatory effect in the nodes they target (top-down 

connections), while forward connections are viewed as having a strong driving 

effect (bottom-up; Salin & Bullier, 1995; Sherman & Guillery, 1998). 
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The dynamics of hidden states in each node are described by second-order 

differential equations, which depend on both, the parametrised intrinsic and 

extrinsic connection strengths. This enables the computation of the linear 

mapping from the endogenous neuronal fluctuations to the EEG sensor spectral 

densities, and consequently, enables the modelling of differences in the spectra 

due to changes in the underlying neurophysiologically meaningful parameters 

describing, for example, the intrinsic and extrinsic connectivity of coupled 

neuronal populations (i.e. sources) and their physiology. Here, for 

straightforward interpretability, we have focused on the changes in extrinsic 

connections as a result of changes in the state of consciousness. It should be 

noted that we did not fix any of the other parameters typically estimated by DCM 

using the ERP-model, rather, we estimated all our models using the default DCM 

setting (for further information about EEG DCM, see for example Friston et al., 

2012; Kiebel, Garrido, Moran, & Friston, 2008; Moran, Kiebel et al., 2007; 

Moran et al., 2009). Nevertheless, from here on, we focus on the extrinsic 

connectivity parameters and their modulations referring to them as ‘parameters’.  

 

5.2.3 Model specification 

Fitting a DCM model requires the specification of the anatomical locations of 

the nodes/sources a priori. Here, we modelled three canonical RSNs associated 

with consciousness (see for example Boly et al., 2008; Heine et al., 2012), 

namely the Default Mode Network (DMN), the Salience Network (SAL), and the 

Central Executive Network (CEN). In addition, we modelled a fourth large-scale 
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network (LAR) combining all the nodes and connections in the three RSNs 

above, with additional inter-RSN connections motivated by structural 

connectivity (details below). The node locations of the three RSNs modelled here 

were taken from Razi et al. (2017) and are shown in figures 5.1A, 5.1B, 5.1C, 

and 5.1D with their respective schematic representations. The node locations in 

figure 5.1 and the effective connectivity modulations in figures 5.4A, 5.5A, 5.6A, 

and 5.7A were visualized with the BrainNet Viewer (Xia, Wang, & He, 2013, 

http://www.nitrc.org/projects/bnv/). The MNI coordinates are listed in table 5.1. 

Coincidentally, these same data have been previously source localised to the 

same locations as some of the key nodes in the RSNs modelled here (Murphy et 

al., 2011). We treated each node as a patch on the cortical surface for 

constructing the forward model (‘IMG’ option in SPM12; Daunizeau, Kiebel, & 

Friston, 2009). 

Nodes in the three RSNs were connected via forward, backward, and lateral 

connections as described in David et al. (2006, 2005). Thus, each node (in each 

RSN-model) were modelled as a point source with the neuronal activity being 

controlled by operations following the Jansen-Rit model (Jansen & Rit, 1995). 

Note that all our models were fully connected. In addition to preserving the 

connections within the nodes of the original three RSNs, in the LAR, we 

additionally hypothesised potential connections between the RSNs. Previous 

structural connectivity studies have identified a highly interconnected network of 

RSN hubs that seem to play a crucial role in integrating information in the brain, 

often termed the ‘rich-club’ (van den Heuvel & Sporns, 2011). Specifically, van 

den Heuvel and colleagues localised a number of these key-hubs to regions 

http://www.nitrc.org/projects/bnv/
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comprising of the precuneus, superior lateral parietal cortices, and superior 

frontal cortex, thus, to some extent overlapping with some of the key-nodes in 

our RSN models. Therefore, as a structurally-informed way to investigate the 

potential anaesthesia-induced modulations of effective connectivity between the 

three RSNs, we specified – in addition to the already-specified connections in our 

RSNs – bi-directional connections between PCC/precuneus and left/right 

superior parietal nodes (connecting DMN and CEN), and between 

PCC/precuneus and anterior cingulate cortex (connecting DMN and SAL). 

These three different types of connections in each model were specified in 

what is referred in the DCM literature as the ‘A-matrix’. In addition, to explicitly 

parameterise the effect of the session – i.e. the effect of the anaesthetic – on the 

connections, we allowed every connection to change (specified in the ‘B-

matrix’). 

 

Table 5.1. All the nodes and their corresponding MNI coordinates for the three 

resting state networks (adapted from Razi et al., 2017). The large model 

incorporated all these nodes as a single model.  

Network Coordinates (in mm) 

 

Default Mode Network 

x y z 

Left lateral parietal -46 -66 30 

Right lateral parietal 49 -63 33 

Posterior cingulate/precuneus 0 -52 7 

Medial prefrontal 

 

-1 54 27 

Salience Network    

Left lateral parietal -62 -45 30 

Right lateral parietal 62 -45 30 
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Dorsal anterior cingulate 0 21 36 

Left anterior PFC -35 45 30 

Right anterior PFC 

 

32 45 30 

Central Executive Network    

Left superior parietal -50 -51 45 

Right superior parietal 50 -51 45 

Dorsal medial PFC 0 24 46 

Left anterior PFC -44 45 0 

Right anterior PFC 44 45 0 
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Figure 5.1. Full model schematics and node locations. mPFC – medial prefrontal 

cortex, Prec – posterior cingulate cortex/precuneus, lLP – left lateral parietal 

cortex, rLP – right lateral parietal cortex, laPFC – left anterior prefrontal cortex, 
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raPFC – right anterior prefrontal cortex, dACC – dorsal anterior cingulate cortex, 

dmPFC – dorsomedial prefrontal cortex, lSP – left superior parietal cortex, and 

rSP – right superior parietal cortex. A.  Schematic view of the large DCM model 

consisting of the 14 nodes and connections combining three RSNs. Inter-RSN 

connections were specified between PCC/precuneus and bi-lateral superior 

parietal nodes, and between PCC/precuneus and anterior cingulate cortex. B-D. 

Location of the nodes and the schematic representation of the full model for 

DMN, SAL, and CEN, respectively. 

 

5.2.4 Model inversion 

In DCM, model inversion refers to fitting the models to best explain the 

empirical data of each participant’s dataset, and thereby inferring a full 

probability density over the possible values of model parameters (with the 

expected values and covariance). Here, we first modelled the effects of propofol 

in terms of changes in connectivity that explained the differences in the empirical 

data observed in LOC as compared to behavioural responsiveness baseline 

(figure 5.3A). The EEG data used contained considerable peaks at the alpha 

range (8-12 Hz), and the default parameter settings in DCM for CSD failed to 

produce satisfactory fits to these peaks when inspected visually (see van Wijk et 

al., 2018, p. 824). To address this issue, we doubled the number of maximum 

iterations to 256 and estimated the models with two adjustments to the 

hyperparameters: first, we set the shape of the neural innovations (i.e. the 

baseline neuronal activity) to flat (-32) instead of the default mixture of white and 
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pink (1/f) components (Moran et al., 2009). Second, we increased the noise 

precision value from 8 to 12 to bias the inversion process towards accuracy over 

complexity (see Friston et al., 2012 and Moran et al., 2009 for a detailed 

description of DCM for cross-spectral densities). In addition, for LAR the 

number of spatial modes was increased to 14 instead of the default of 8. The 

modes here refer to a reduction of the dimensionality of the data (done for 

computational efficiency) by projecting the data onto the principal components of 

the prior covariance, such that a maximum amount of information is retained 

(David et al., 2006; Fastenrath, Friston, & Kiebel, 2009; Kiebel, Garrido, Moran, 

& Friston, 2008). 

These adjustments led to our full models (i.e. DMN, SAL, CEN, and LAR) 

converging with satisfactory fits (inspected visually) to the spectrum for 30/40 

subject model instances (similar fits to what can be seen as the end result in 

figure 5.2). We then applied Bayesian Parameter Averaging (BPA) for each of 

the full models separately, averaging over the posteriors from the subject model 

instances that did converge and setting these averaged posteriors as new priors 

for the respective non-converged subject model instances. Estimating these 

subject model instances again with these BPA-derived priors produced 

satisfactory fits for all 10 remaining instances. Finally, we estimated all the full 

models again for all the participants with setting the posteriors from the earlier 

subject model estimations as updated priors, but this time with the neural 

innovations and noise precision set back to default settings. In doing so, all the 

models produced satisfactory fits with the default parameter settings for all of the 

participants (see figure 5.2).  
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To validate that the priors we used in the final inversion were suitable, we 

compared the group-level model evidence obtained with and without the adjusted 

noise levels. With all full models, the default hyperparameter settings with the 

updated priors generated better model evidence (difference in free energies for 

LAR, DMN, SAL, and CEN were +47260, +9440, +15700, and +660, 

respectively). To qualitatively assess the model fits, the observed and model-

predicted cross-spectra were visually compared in each participant and judged 

sufficiently similar. To be sure about our conclusions, we also performed the 

PEB modelling (see below) leaving out the fitted subject model instances that 

produced the worst fits (1-2 per model); this had no notable influence on the 

interpretation of the results. The same approach was followed when inverting the 

full models separately for individual states of consciousness (figure 5.3B); in 

addition to the full models, here the BPA was also restricted to the same state of 

consciousness. The model-predicted and original spectral densities averaged over 

participants are shown in figure 5.2A, 5.2B, 5.2C, and 5.2D for LAR, DMN, 

SAL, and CEN, respectively. 
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Figure 5.2. Average model fits. A-D. Subject-averaged power spectra of the 

observed EEG channel-space data, juxtaposed with that predicted by the fitted 

DCM models of each RSN, in normal behavioural responsiveness and loss of 

consciousness (LOC). Individual lines reflect the first eight spatial modes. LAR – 

large model, DMN – default mode network, SAL – salience network, and CEN – 

central executive network. 

 

5.3 Parametric Empirical Bayes 

In DCM, a variational Bayesian scheme called Variational Laplace is used to 

approximate the conditional or posterior density over the parameters given by the 

model inversion process, by maximizing a lower bound (the negative free 

energy) on the log-evidence (Friston et al., 2007). The Parametric Empirical 

Bayes (PEB) framework is a relatively recent supplement to the DCM procedure 
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used, for example, to infer the commonalities and differences across subjects 

(Friston et al., 2016). Briefly, the subject-specific parameters of interest (here, 

effective connectivity between nodes in a DCM model) are taken to the group-

level and modelled using a General Linear Model (GLM), partitioning the 

between-subject variability into designed effects and unexplained random effects 

captured by the covariance component. The focus is on using Bayesian model 

reduction (BMR) – a particularly efficient form of Bayesian model selection 

(BMS) – to enable inversion of multiple models of a single dataset and a single 

hierarchical Bayesian model of multiple datasets that conveys both the estimated 

connection strengths and their uncertainty (posterior covariance). As such, it is 

argued that hypotheses about commonalities and differences across subjects can 

be tested with more precise parameter estimates than with traditional frequentist 

comparisons (Friston et al., 2016). 

A particular advantage of PEB is that as part of the BMR process – when no 

strong a priori hypotheses about the model structure exist, as in the present study 

– a greedy search can be used to compare the negative free energies for the 

reduced models, iteratively discarding parameters that do not contribute to the 

free energy (originally ‘post-hoc DCM analysis’, Friston & Penny, 2011; Rosa, 

Friston & Penny, 2012). The procedure stops when discarding any parameters 

starts to decrease the negative free energy, returning the model that most 

effectively trades-off goodness of fit and model complexity in explaining the 

data. Last, a Bayesian Model Average (BMA) is calculated over the best 256 

models weighted by their model evidence (from the final iteration of the greedy 

search). For each connection, a posterior probability for the connection being 
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present vs. absent is calculated by comparing evidence from all the models in 

which the parameter is switched on versus all the models in which it is switched 

off. Here, we applied a threshold of >.99 posterior probability, in other words, 

connections with over .99 posterior probability were retained.  

For the DCMs that were fitted to the contrast between two states of 

consciousness using the procedure described in the previous section, we used 

PEB for second-level comparisons and Bayesian model reduction to find the 

most parsimonious model that explained the contrast by pruning away redundant 

connections. The focus was explicitly on the group-level comparison of the 

connectivity modulations (B-matrix). The whole sequence of steps is summarized 

in figure 5.3A. 

 

 

Figure 5.3. Modelling pipelines. A. The pipeline for inverting the DCM models 

in terms of changes in connectivity that explain the differences in the empirical 
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data observed in LOC as compared to wakeful consciousness baseline. The DCM 

model inversion was followed by PEB modelling with BMR to find the most 

parsimonious model and the modulatory effects on the group-level effective 

connectivity. B. The pipeline for inverting the DCM models separately for 

individual states of consciousness. This was done as a prerequisite for the 

LOSOCV classification with PEB modelling. 

 

5.3.1 Leave-one-out cross-validation paradigm 

As a crucial form of validation of our modelling framework, we investigated 

which network connections are predictive of the state of consciousness in unseen 

data. We adapted a standard approach in computational statistics, leave-one-

subject-out cross-validation (LOSOCV; spm_dcm_loo.m). Here, we iteratively 

fitted a multivariate linear model (as described in detail in Friston et al., 2016) to 

provide the posterior predictive density over connectivity changes, which was 

then used to evaluate the posterior belief of the explanatory variable for the left-

out participant: in the present case, the probability of the consciousness state-

class membership.  

To conduct LOSOCV analysis, the DCM models were now fitted to each 

state of consciousness separately, as shown in the procedure visualised in figure 

5.3B. To cross-validate a fitted DCM model, both datasets from one participant 

were left-out each time before conducting PEB for the training dataset, and the 

optimised empirical priors were then used to predict the state of consciousness 

(behavioural responsiveness/LOC) to which the datasets from the left-out 
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participant belonged (see Friston et al., 2016 and Zeidman et al., 2019 for 

details). This procedure, repeated for each participant, generated probabilities of 

state affiliation, which were used to calculate the Receiver Operating 

Characteristic (ROC) curves and Area Under the Curve (AUC) values with 95% 

point-wise confidence bounds across the cross-validation runs (see MATLAB 

perfcurve). In addition, the corresponding binary classification accuracy was 

calculated as the sum of true positives and true negatives divided by the sum of 

all assigned categories, i.e. (TP+TN) / (TP+TN+FP+FN), where TP = true 

positive, TN = true negative, FP = false positive, and FN = false negative. 

It is worthwhile to note, that – excluding the specific alterations reported in 

section 5.2.4 – we have estimated the DCM models using the default parameter 

settings recommended in the literature (Ashburner et al., 2017; Friston et al., 

2003; Friston et al., 2012; Kiebel, Garrido, Moran, Chen, & Friston, 2009). This 

is also true for the LOSOCV procedure; no tweaking or adjusting of the hyper 

parameters within the model was performed. Here, we trained the model with the 

data from all but the left-out participant (training set), and predicted the state 

based on the data from the left-out participant (test set) and repeated this 

procedure by leaving out a different participant each time. 

We first estimated LOSOCV metrics for all connections in all models. Next, 

LOSOCV metrics of subsets of hypothesis-driven connections were tested; the 

connections were divided into frontal, parietal, frontoparietal, and between-RSN 

subsets, based on the anatomical location of the connected nodes. The rationale 

was to investigate where in the brain the most consistent inter-subject-level 
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effects were located, in addition to the largest effect sizes identified by the PEB 

analysis. 

Finally, we extended our validation of the DCM models by introducing a 

more difficult classification problem: we used the DCM parameters from 

responsiveness and LOC for training, and then tested them on unseen data 

collected during the post-drug recovery state of each subject (recovery state 

prediction). Again, during training, both datasets (behavioural 

responsiveness/LOC) from one participant were left out each time before 

conducting PEB, and the optimised empirical priors were then used to predict the 

state of consciousness to which the recovery-dataset from the left-out participant 

belonged. We hypothesised that if our modelled effects are valid, it should 

classify the recovery state as behavioural responsiveness rather than LOC - even 

though recovery is not identical to normal wakeful responsiveness, it is clearly 

closer to normal responsiveness than LOC. Here, we used recall - as calculated 

by (true positive) / (true positive + false positive) - and mean posterior 

probability for responsiveness to quantify classification performance. The 95% 

CIs were calculated over the posterior probabilities using a simple approximation 

for the unbiased sample standard deviation (Gurland & Tripathi, 1971). 

 

5.4 Results 

5.4.1 Dynamic causal modeling and parametric empirical Bayes 

Our goal was to investigate the effective connectivity modulations caused by 

anaesthesia-induced loss of consciousness on three resting state networks 
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together and separately. We modelled time-series recorded from two states of 

consciousness – wakeful behavioural responsiveness and loss of consciousness 

(LOC) – with DCM for CSD at a single-subject level, followed by PEB at the 

group-level. In doing so, we estimated the change in effective connectivity with 

RSNs during LOC, relative to behavioural responsiveness before anaesthesia. For 

the DMN, we estimated 12 inter-node connections, and for both SAL and CEN 

16 connections. With LAR, in addition to including all the connections in each 

RSN, additional connections were specified to model the modulatory effects of 

anaesthesia on between-RSN connections, increasing the estimated inter-node 

connections to fifty.  

Following the inversion of the second-level PEB model, a greedy search was 

implemented to prune away connections that did not contribute significantly to 

the free energy using BMR. This procedure was performed for LAR and for all 

the three resting state networks separately. The most parsimonious model (A) and 

estimated log scaling parameters (B) for LAR, DMN, SAL, and CEN are shown 

in figures 5.4-5.7, respectively. Here, we applied a threshold of >.99 for the 

posterior probability; in other words, connections that were pruned by BMR and 

connections with lower than .99 posterior probability with their respective log 

scaling parameter are faded out (figures 5.4B-5.7B). 

Of the fifty connections in the large model (figure 5.4), five were pruned 

away by BMR. The results indicate that typically effective connectivity 

decreased going from behavioural responsiveness to LOC between nodes in the 

DMN, with parietal connections showing consistent and large decreases. 
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Similarly, between-RSN parietal connections linking DMN and CEN also 

decreased. Backward connections between the dACC and PCC/precuneus, 

linking the DMN and SAL, increased slightly. A clear majority of connections 

forming the SAL and CEN networks increased. 

On inverting the DMN separately (figure 5.5), we found that no connections 

were pruned away by BMR. In other words, all of the effective connectivity in 

the DMN was modulated by the loss of consciousness. In particular, forward 

connectivity to and from PCC/precuneus largely decreased, whereas direct 

parietofrontal forward connectivity from lateral parietal cortices to the medial 

prefrontal cortex was increased. Backward connectivity between all the sources 

was increased. 

In contrast, seven connections out of 16 were pruned away from the full SAL 

model when it was inverted separately (figure 5.6). These consisted of all but one 

lateral connections between both, the lateral prefrontal nodes and lateral parietal 

nodes, and all but one backward connection originating from the dACC. The 

strength of change in connectivity within the SAL was lower than in DMN, and 

all but one of the retained connections showed an increase in strength when 

losing consciousness. 

When inverting the CEN separately, two connections were pruned away 

(figure 5.7). Most of the retained connections showed a small increase in 

strength, with the largest effects in frontoparietal connections from the dmPFC to 

the left superior parietal cortex. Further, right hemisphere frontoparietal 

connections showed more modulatory changes than left hemisphere connections. 
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Figure 5.5. Estimated model parameters for DMN. A. Effective connectivity 

modulations on the most parsimonious DMN model. Colour of connections show 

strength and direction of modulation. None of the connections were pruned away, 

and only one connection had lower than .99 posterior probability. B. The log 

scaling parameters for the connections in DMN after BMR and BMA. The 

below-threshold posterior probability connection with its corresponding log 

scaling parameter is faded out. mPFC – medial prefrontal cortex, Prec – posterior 

cingulate cortex/precuneus, lLP – left lateral parietal cortex, rLP – right lateral 

parietal cortex.  
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Figure 5.6. Estimated model parameters for SAL. A. Effective connectivity 

modulations on the most parsimonious model for SAL. 7 connections were 

pruned by BMR. B. The log scaling parameters for the connections in SAL. 

Several connections were pruned away (faded out). The retained connections 

were almost all positive modulations, but smaller in strength than in the DMN. 

laPFC – left anterior prefrontal cortex, raPFC – right anterior prefrontal cortex, 

dACC – dorsal anterior cingulate cortex, lLP – left lateral parietal cortex, rLP – 

right lateral parietal cortex. 
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Figure 5.7. Estimated model parameters for CEN. A. Effective connectivity 

modulations on the most parsimonious model for CEN. 2 connections were 

redundant in addition to 2 connections having lower than .99 posterior 

probability for being switched on. B. The log scaling parameters for the 

connections in CEN. Pruned connections and low posterior probability 

connections with the corresponding log scaling parameters are faded out. Effects 

on the remaining connections were almost all positive modulations, with 

strengths in-between those observed in the SAL and DMN. laPFC – left anterior 

prefrontal cortex, raPFC – right anterior prefrontal cortex, dmPFC – dorsomedial 

prefrontal cortex, lSP – left superior parietal cortex, and rSP – right superior 

parietal cortex. 
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5.4.2 Leave-one-subject-out cross-validation 

To conduct LOSOCV, the DCM models were inverted again, this time for 

each state of consciousness in each subject separately. With the states modelled 

separately, PEB was conducted repeatedly (on the training set in each cross-

validation run) alongside LOSOCV analysis to generate AUC values (see 

Methods). The AUC/ROC values for all full models are shown in figure 5.8A, 

and table 5.2 shows all tested AUC values with accuracy for all tested sets of 

connections. The results indicate that leave-one-subject-out cross-validated 

predictions based on the LAR and SAL models had accuracy significantly 

different from chance, i.e. with the lower bound of the 95% CI of the AUC above 

chance. However, for predictions based on the DMN and CEN, the lower bound 

of the 95% CI of the predictions did not exceed chance. 

To understand whether specific connections within cortical brain networks 

were driving changes in consciousness, we evaluated the predictive power of four 

different hypothesis-driven subsets of connections – frontal, parietal, 

frontoparietal, or between-RSN – to predict the two states of consciousness in 

left-out subjects. As shown in figure 5.8B, frontoparietal connectivity in LAR, 

DMN, and SAL produced the best predictions of the state of consciousness with 

LOSOCV. Further, the posterior subset in the SAL performed statistically better 

than chance. None of the subsets in the CEN reached statistical significance. 

Finally, the predictive power of these RSN connectivity subsets were tested in 

a more difficult classification problem: each model subset was trained on 

behavioural responsiveness and LOC, and then tested on the previously unseen 
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‘recovery’ state, the data that was collected after the participant regained 

consciousness. In figures 5.9A and 5.9B each data point represents one 

participant. Figure 5.9A shows the mean posterior probabilities of the recovery 

state being correctly classified as behavioural responsiveness when using all 

connections in a model as predictors. Figure 5.9B shows the same results for the 

frontal, parietal, frontoparietal, and between-RSN connections as predictors. 

When predicting with all connections, only classifications based on all 

connections in LAR performed significantly better than chance. With the 

hypothesis-driven subsets of connections, frontoparietal connectivity within the 

DMN generalised best to the recovery state. Only one other subset – parietal 

connections in SAL – performed significantly better than chance, and almost as 

well as frontoparietal DMN connectivity (.82 vs. .79 posterior probability). All 

subsets with LAR performed statistically better than chance, however, with poor 

mean posterior probability values in comparison to DMN frontoparietal and SAL 

parietal connections. Table 5.2 shows the mean posterior probabilities and the 

corresponding recall values for all the tested connection sets and for all models. 

We verified that the predictive accuracy (of the unseen recovery state) was not 

driven by subject effects or bias, as evident in the individual posterior 

probabilities plotted in figures 5.9C and 5.9D. 
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Figure 5.8. The AUC values for classifying the state of consciousness in 

LOSOCV paradigm. A. For the full models, only predictions based on LAR and 

SAL performed statistically better than chance (red dashed line), with 

classifications based on the connections in SAL reaching the overall best 

prediction. The error bars represent the 95% point-wise CI calculated using 

leave-one-out cross-validation for both A and B (MATLAB perfcurve). B. AUC 

values for hypothesis-driven connections for all models in LOSOCV paradigm. 

The DMN is missing frontal connections as it had only one anterior node. Best 

prediction performance was obtained with frontoparietal connections in LAR, 

DMN, and SAL. Further, predictions based on posterior SAL connections 

reached statistical significance. 
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Figure 5.9. Mean posterior probabilities for prediction of recovery data. On 

panels A and B the individual data points represent individual participants. A. 

Predictions based on all connections in LAR performed better than chance (red 

dashed line). Data points representing participants are laid over a 1.96 SEM (95% 

confidence interval over posterior probabilities) in red with the black lines 

marking the mean. B. Mean posterior probabilities for hypothesis-driven 

connection subsets of all models in the recovery state: top labels refer to frontal 

(Fr), frontoparietal (Frp), parietal (P), and between-RSN (bRSN) connections. 

DMN frontoparietal connectivity had the best performance across all sets and all 

models. Parietal connections in SAL performed statistically better than chance 

but with lower posterior probability value in comparison to DMN frontoparitetal 

connections. All subsets with LAR performed statistically better than chance, 
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however, with poor posterior probability values in comparison to DMN 

frontoparietal and SAL parietal connections. C-D. Posterior probabilities 

predicted for individual datasets, based on all connections (C) and on hypothesis-

driven subsets (D). In Panel D, the individual bars depict different connection 

subsets: frontal, frontoparietal, parietal, and between-RSN in LAR, frontoparietal 

and parietal in DMN, and frontal, frontoparietal, and parietal in SAL and CEN. 

 

Table 5.2.  AUC (accuracy) values calculated with LOSOCV, and mean 

posterior probabilities (recall) in the recovery state, for all connections, all 

hypothesis-driven connection subsets (frontal, parietal, frontoparietal, and 

between-RSN connections), and for the large model (LAR), default mode 

network (DMN), salience network (SAL), and central executive network (CEN). 

No values are given if no such connection-subsets exist for the model. 

Accuracy/recall values were not calculated for connection subsets with 

performance close to chance (between 0.4 - 0.6). * indicates significance 

estimated at 95% confidence intervals in both AUC and posterior probability.  

 

Model Responsiveness/LOC 

AUC (Accuracy) 

Recovery 

Mean PP. (Recall) 

   

 All connections All connections 

LAR 0.78 (0.80)* 0.67 (0.78)* 

DMN 0.71 (0.70) 0.59 (--) 

SAL 0.82 (0.80)* 0.61 (0.78) 

CEN 0.68 (0.70) 0.61 (0.89 

 

  

Frontal 

 

Parietal 

 

Frontal 

 

Parietal 

LAR 0.42 (--) 0.70 (0.65) 0.62 (0.89)* 0.57 (--)* 
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DMN -- 0.61 (0.65) -- 0.59 (--) 

SAL 0.72 (0.65) 0.76 (0.65)* 0.61 (0.89) 0.79 (0.89)* 

CEN 0.56 (--) 0.46 (--) 0.47 (--) 0.60 (--) 

 

  

Frontoparietal 

 

BRSN 

 

Frontoparietal 

 

BRSN 

LAR 0.79 (0.80)* 0.38 (0.55) 0.61 (1.00)* 0.55 (--)* 

DMN 0.84 (0.85)* -- 0.82 (0.89)* -- 

SAL 0.81 (0.75)* -- 0.60 (--) -- 

CEN 0.75 (0.70) -- 0.49 (--) -- 

 

 

 

5.5 Discussion 

We computationally evaluated the evidence for the posterior hot zone theory 

of consciousness by modelling the relative contributions of three resting state 

networks (DMN, SAL, and CEN) for propofol-induced LOC. Using the recently 

introduced PEB framework, we characterised modulations in effective 

connectivity accompanying the loss of consciousness within and between these 

key RSNs. We found a selective breakdown of posterior parietal and medial 

feedforward frontoparietal connectivity within the DMN, and of parietal inter-

network connectivity linking DMN and CEN. These results contribute to the 

current understanding of anaesthetic-induced LOC, and more generally to the 

discussion of whether the neural correlates of consciousness are predominantly 

anterior (Del Cul et al., 2009), frontoparietal (Bor & Seth, 2012; Chennu et al., 

2014; Chennu, O’Connor, Adapa, Menon, & Bekinschtein, 2016; Laureys & 

Schiff, 2012), or posterior (Koch et al., 2016; Koch et al., 2016b; Siclari et al., 

2017). 
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We used a novel DCM-based cross-validation to establish the predictive 

validity of our models, addressing an issue commonly present in DCM studies, 

including previous consciousness-related DCM studies - that the best model 

identified by BMS is only the best model among the models tested. Significant 

generalisation performance with cross-validation increases the level of 

confidence we can ascribe to our results. This analysis highlighted that 

frontoparietal effective connectivity consistently generated accurate predictions 

of individual states of consciousness. Furthermore, we demonstrated 

generalisation of this predictive power by showing that effective frontoparietal 

connectivity within the DMN and parietal connectivity within the SAL predicted 

the state of consciousness in unseen data from the post-anaesthetic recovery state.  

With the large model combining all three RSNs, we observed consistent and 

widespread decreases in connectivity between posterior DMN nodes and between 

parietal connections linking DMN and CEN (figure 5.4). With the individual 

RSNs, we observed a selective breakdown of the DMN, specifically, decreases in 

feedforward connectivity to and from PCC/precuneus (figure 5.5). It is worth 

highlighting that most decreases in effective connectivity - both when the RSNs 

were modelled individually and as one large network - were between nodes 

located within the posterior hot zone, and related specifically to PCC/precuneus – 

a key structure in the hot zone (Koch et al., 2016; Siclari et al., 2017). In other 

words, the network-level breakdown characterising the difference between 

behavioural responsiveness and LOC was mostly located within the parietal hot 

zone.  
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In the SAL and CEN networks, when fitted on their own, several connections 

were pruned away by BMR, with small increases in the majority of preserved 

connections; ¼ of the connections in CEN and almost half of the connections in 

SAL (7 out of 16) were pruned, in contrast to the DMN in which no connections 

were pruned (figures 5.6 and 5.7). The same pattern was present, although to a 

smaller degree, when the three RSNs were estimated together (LAR): fewest of 

the connections pruned were in the DMN, when compared with the SAL and 

CEN networks. This highlights the relative importance of the DMN over the SAL 

and CEN in explaining differences between states of consciousness and is 

consistent with the previous evidence from disorders of consciousness (Crone et 

al., 2011; Fernández-Espejo et al., 2012; Laureys, 2005; Laureys et al., 1999), 

anaesthesia (Boveroux et al., 2010), and sleep (Horovitz et al., 2009). 

It is important to note, however, that there are multiple possible approaches to 

parameter estimation in DCM, both at the individual and at the group-level. The 

joint estimation method we chose utilises BMR and PEB. An alternative would 

be a step-by-step approach, which uses individually estimated RSN posteriors as 

fixed priors when fitting the LAR, thereby reducing the number of free 

parameters. The joint estimation method hence enables us to fit comparatively 

larger models, but potentially with a risk of a more complex free energy 

landscape (Litvak et al., 2019). Due to these modelling choices, we have limited 

our granularity of our inference to models and cortical regions within them, 

instead of interpreting the posterior densities of all possible fitted model 

parameters. The fact that we were able to demonstrate out-of-sample 
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generalisation using our fitted models gave us confidence that the methodology 

was valid. 

Keeping the above in mind, we did find that PCC/precuneus-related 

feedforward connectivity in the DMN is impaired during LOC. This is in contrast 

to two previous DCM studies of propofol-anaesthesia, which have suggested 

either selective impairments in frontoparietal feedback connectivity from dACC 

to PCC (Boly et al., 2012), or subcortico-cortical modulations from globus 

pallidus to PCC (Crone et al., 2017). However, there are major methodological 

differences between the present study and the previous two that could explain 

these different results. Firstly, the examined model space was different. 

Secondly, both previous studies used models with only two cortical nodes 

summarising activity of frontal and parietal regions. They did not implement a 

wide search over a large model space using BMR and instead focused on 

evaluating a small number of hypothesis-specific models. We adopted a broader 

approach to model formulation and evaluation. In doing so, we expand upon 

these previous results by suggesting a selective breakdown of PCC/precuneus-

related forward connectivity within the DMN. Our results differed from Boly et 

al. (2012) even when the direct connections between dACC and PCC/precuneus 

were modelled (in LAR) – we found an increase in feedback connectivity from 

dACC to PCC/precuneus and a small, low probability decrease in feed-forward 

connectivity. Our results are, however, in line with previous studies showing 

increased frontoparietal connectivity with partial directed coherence (Maksimow 

et al., 2014) and with Granger Causality (Barrett et al., 2012; Nicolaou, Hourris, 

Alexandrou, & Georgiou, 2012) during anaesthesia. 
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It is noteworthy that impaired feedforward connectivity has been suggested to 

be the main modulation caused by propofol-anaesthesia in a recent DCM study 

with TMS-evoked potentials by Sanders et al. (2018). Their models consisted of 

6 cortical sources (bilateral inferior occipital gyrus (IOG), bilateral dorsolateral 

PFC, and bilateral superior parietal lobule (SPL). They found predominantly 

impaired feedforward connectivity from right IOG to right SPL (specifically with 

theta/alpha-gamma coupling). Although they suggested that resting state activity 

was driven by feedback connectivity, while induced responses were driven by 

feedforward connectivity, it may be that restricting modulations to just two free 

parameters (connections) in the cortex simplifies the effects of propofol-induced 

LOC to the degree that they differ from estimations of more complex models. 

Finally, the observed increase in effective connectivity between specific 

nodes (especially front-to-back) has been suggested previously to be due to the 

drug-specific effects of propofol rather than changes in states of consciousness 

(Maksimow et al., 2014). Hence, it may be that the relatively uniform increases 

in connectivity in the SAL and CEN, and the increased feedback connectivity in 

the DMN, were specific to propofol. 

While the results of the LOSOCV cross-validation should be interpreted with 

caution given the limited number of participants in our study, the results 

indicated that, when using all connections, the above-chance prediction 

performance of conscious state was only obtained with LAR and SAL, with the 

latter performing the best (figure 5.8A). With smaller, hypothesis-driven subsets, 

we found that the frontoparietal connections provided consistently the most 
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accurate predictions in all models except the CEN (figure 5.8B). When predicting 

the unseen state of recovery (figure 5.9B), frontoparietal DMN connections 

performed the best, followed by parietal connections in SAL. It is worth 

highlighting that the frontoparietal DMN and parietal SAL connections predict 

the state correctly, even when the state actually differs from the true training 

state; recovery differs from normal wakeful responsiveness not only 

behaviourally, but also in terms of the residual propofol in the blood. However, 

the participants are conscious and responsive, and thus, recovery is considered as 

a state clearly closer to normal wakeful responsiveness than LOC. 

Taken together, our prediction results highlighted an important role for 

frontoparietal connections. This is perhaps not surprising, as wakeful awareness 

is known to recruit the DMN (Raichle & Snyder, 2007);  maintaining a state of 

conscious responsiveness requires an interaction between the posterior hot zone 

(the role of which is highlighted when modelling the change between states) and 

frontal areas, mediated by the frontoparietal connections. Previous literature has 

suggested dynamic changes in connectivity between brain networks during 

cognitive control (Cocchi, Zalesky, Fornito, & Mattingley, 2013; Leech, Braga, 

& Sharp, 2012) and anaesthetic-induced loss of consciousness (Luppi et al. 

2019). The importance of frontoparietal connections in the present study when 

predicting states of behavioural responsiveness  – a state of higher integration 

than LOC – is consistent with the notion that conscious, behavioural 

responsiveness requires a brain-wide “global workspace” supported by the 

frontoparietal network (Baars, 1997; Dehaene & Changeux, 2011; Dehaene et al., 

2011; Mashour, Roelfsema, Changeux, & Dehaene, 2020). Hence, it is perhaps 
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no surprise that the role of frontoparietal connections became prominent when we 

predicted individual states of consciousness rather than the contrast between 

them. 

A number of previous studies have suggested a pivotal role of subcortical 

structures in transitions to unconsciousness (e.g. Baker et al., 2014; Liu et al., 

2013; White & Alkire, 2003). Crone et al. (2017) reported a breakdown of 

connectivity between the globus pallidus and posterior cingulate cortex 

connectivity during LOC, followed by a reversal at recovery. It remains a 

possibility that the effective connectivity modulations found in the present study 

– especially in relation to the PCC/precuneus - are driven by subcortical 

structures that we did not model here, given the limitations of scalp EEG signals 

(Goldenholz et al., 2009). It might be worthwhile to further investigate the effects 

of LOC with fMRI DCMs, including large-scale models combining cortical and 

subcortical nodes with PEB with BMR to conduct a wider exploration of the 

model space.  

In addition to the modelling being limited only to cortico-cortical 

connections, some of our results are arguably propofol-specific; for example, 

very different alterations have been observed between propofol and ketamine 

(Driesen et al., 2013; Sarasso et al., 2015). Hence, it may be that modelling the 

cortical effects of other anaesthetic agents would lead to very different sets of 

results. Further, we have modelled the effects using DCM and the standard ERP 

neuronal model, rather than modelling frameworks designed to capture more 

fine-grained properties of the EEG spectrum during anaesthesia (see for example 
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Bojak & Liley, 2005; Hutt & Longtin, 2010). DCM and the ERP neuronal model 

were chosen primarily in order to produce results that could be compared with 

the prior DCM work on modelling consciousness. Furthermore, we aimed to 

model consciousness at the network level, rather than at the level of the known 

molecular effects of propofol, e.g., prolongation of inhibitory post-synaptic 

potential time constants, that are known to take place within individual cortical 

and sub-cortical sources. A valuable future direction would be to investigate the 

predictive power of such effects and the extent to which they may drive the 

modulations in extrinsic connectivity. This could be done, for example, by using 

the LFP model or the Canonical Microcircuits model which are better suited for 

estimating the intrinsic connectivity and the molecular effects within the sources 

(Bastos et al., 2012; Moran et al., 2007). Lastly, as we tested only a pre-specified 

model space, the limitations imposed by this scope might have missed important 

mechanisms of conscious awareness not modelled here.  

Notwithstanding these points, our results highlight a selective breakdown of 

inter- and intra-RSN effective connectivity in the parietal cortex, reinforcing the 

role of the posterior hot zone for human consciousness. However, modulations of 

frontoparietal connections were consistent enough to predict states in unseen 

data, demonstrating their causal role in maintaining behavioural responsiveness. 
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6. Effective connectivity in traumatic 

disorders of consciousness 

 

This chapter continues our work exploring the brain connectivity in disorders 

of consciousness (DoC). We assess differences in effective connectivity between 

cortico-cortical regions of the default mode network (DMN) between DoC 

patients and healthy controls using dynamic causal modeling (DCM) for EEG. 

Following the methodology set in chapter 5, we first test the prospective 

performance of the DCM-connectivity within DMN in classifying states of 

consciousness in DoC based on two connectivity subsets: frontoparietal and 

posterior connections. We follow this by adopting a data-driven approach to the 

classification problem by investigating the predictive performance of single 

connections, and provide evidence for a key difference in left top-down 

frontoparietal connectivity in distinguishing unresponsive wakefulness syndrome 

(UWS) patients from minimally conscious patients (MCS+) and healthy controls. 

Further, we demonstrate that our DCM models generalise to a more difficult 

classification problem: in a leave-one-state-out cross-validation paradigm, we 

train the models on UWS patients with a confirmed PET negative diagnosis on 

the one hand, and either healthy controls or MCS+ patients on the other. The 

models are then tested on datasets from ‘covertly aware’ UWS patients with a 

PET positive diagnosis. With this generalisation, we provide evidence for the 

hypothesis that if our modelled effects are valid, and if the sustained 

PET metabolism reflects covert consciousness in the UWS PET+ 
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patients, our model should classify these patients as healthy 

controls/MCS+ rather than UWS PET-. 

 

6.1 Introduction 

The unresponsive wakefulness syndrome is defined by preserved arousal in 

the absence of behavioural signs of awareness (periodic sustained eye opening 

with unpurposeful movements; Laureys et al., 2010). In contrast, patients in the 

minimally conscious state show fluctuating and incomplete awareness with 

preserved arousal. The MCS state has been further divided into MCS- and 

MCS+, with the latter condition characterised by command following, intelligible 

verbalisation or gestural (or verbal yes/no responses) to spoken or written 

questions (Bruno et al., 2011). These states are collectively known as disorders of 

consciousness (with other states, such as coma and locked-in-syndrome).  

The exclusive use of clinical consensus for diagnosing these disorders of 

consciousness based on observed behaviours has been shown to result in high 

rates of misdiagnosis of the true level of consciousness of the DoC patients, 

especially in the case of UWS (van Erp et al., 2015; Schnakers et al., 2009). 

Consequently, with the advent of modern neuroimaging techniques, there has 

been increasing interest in characterising the underlying neuronal basis for the 

presence or lack of awareness in DoC using structural and functional MRI 

(Demertzi et al., 2015; Di Perri et al., 2016), PET (Laureys et al., 1999; Stender 

et al., 2014), and EEG (Chennu et al., 2014;  King et al., 2013; Sitt et al., 2014).  
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Structural and functional neuroimaging studies have suggested an important 

role of the DMN in DoC – an intrinsic brain network encompassing the posterior 

cingulate cortex/precuneus, bilateral parietal cortices, and the medial prefrontal 

cortex (Annen et al., 2018; Boly et al., 2009; Fernández-Espejo et al., 2012; 

Guldenmund et al., 2016; Soddu et al., 2012; Vanhaudenhuyse et al., 2010). 

Cerebral metabolism – as measured by PET – has been shown to differentiate 

UWS from MCS (Stender et al., 2014, 2016), with regional differences often in 

areas associated with DMN (Stender et al., 2015; Thibaut et al., 2012). This 

extends to minimally conscious patients; MCS+ can be differentiated from MCS- 

with the former group showing higher cerebral metabolism especially in left-

sided cortical areas, including Broca’s and Wernicke’s areas, premotor, 

presupplementary motor, and sensorimotor cortices (Aubinet et al., 2020; Bruno 

et al., 2012).  

Similarly, effective connectivity studies (as measured with DCM for fMRI) 

have suggested disruptions within the DMN specifically related to posterior 

cingulate cortex (PCC; Crone et al., 2015) and in subcortical networks potentially 

driving the disruptions in the DMN (Chen et al., 2018; Coulborn, Taylor, Naci, 

Owen, & Fernández-Espejo, 2021). As far as we are aware, just one study has 

used DCM with EEG for measuring and diagnosing cognitive functioning in DoC 

population. Using a mismatch negativity paradigm, Boly et al. (2011) showed 

that the difference between UWS and healthy controls was due to an impairment 

of backward connectivity from frontal to temporal cortices, emphasising the 

importance of top-down processing for conscious perception.  
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Importantly, a number of studies have reported “covert” voluntary brain 

activity in some seemingly unresponsive patients, with active and resting state 

paradigms (Bodart et al., 2017; Claassen et al., 2019; Chennu et al., 2017; Cruse 

et al., 2011; Lechinger et al., 2013; Monti et al., 2010; Owen et al., 2006; Owen 

& Coleman, 2008; Schnakers et al., 2015). However, it is unknown whether 

effective resting state connectivity between key nodes within the DMN, as 

measured with EEG, could be used to identify such covertly aware patients. 

Here, as a preliminary investigation, we address this gap by using spectral 

DCM for EEG with parametric empirical Bayes (PEB). We investigate the 

difference in causal interactions between cortico-cortical regions of the DMN, 

between DoC patients (UWS and MCS+) and healthy controls. We then 

demonstrate the prospective performance of the connectivity within DMN in 

classifying states of consciousness in DoC. Based on previous studies (Boly et 

al., 2011), we hypothesise that there will be top-down/backward connectivity 

differences in UWS vs. healthy controls and in UWS vs. MCS+ comparisons. 

Next, in a leave-one-subject-out cross-validation, we test the classification 

performance of models based on the full DMN network and on two connectivity 

subsets: the posterior connections and the frontoparietal connections. Following 

this, we adopt a data-driven approach to the classification problem by 

investigating the predictive performance of single connections. The aim here is to 

identify the direction and location of the largest, most consistent modulations 

between the subjects. 
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Finally, we demonstrate that our DCM models generalise to a more difficult 

classification problem: in a leave-one-state-out cross-validation paradigm, we 

train the models on UWS patients with a confirmed PET negative diagnosis (a 

complete bilateral hypometabolism of the associative frontoparietal cortex; see 

Methods) on the one hand and either healthy controls or MCS+ patients on the 

other. We then test the models on datasets from “covertly aware” UWS patients 

with a PET positive diagnosis (partially preserved metabolism and activity within 

these areas). We hypothesise that if our modelled effects are valid, and if the 

sustained PET metabolism reflects covert consciousness in the UWS PET+ 

patients, our model should classify these patients as healthy controls/MCS+ 

rather than UWS PET-. 

 

6.2 Methods 

6.2.1 Data acquisition 

We assessed effective connectivity within the default mode network and 

whether modulation of this connectivity predicted states of consciousness in 

patients with Disorders of Consciousness (DoC). The patients included were 

referred to the University Hospital of Liège from clinical centres across Europe 

since 2008. The data collection was approved by the Ethics Committee of the 

University Hospital of Liège and the patients’ legal guardians gave written 

informed consent. Data were also collected from healthy controls as a reference 

group, all of whom gave informed written consent before participation.  
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The dataset consisted of the patient data with 26 healthy controls (N = 188). 

From the dataset, we identified patients admitted due to traumatic brain injury 

(TBI; N = 76), and those diagnosed with unresponsive wakefulness syndrome 

(UWS; Laureys et al., 2010) or minimally conscious state plus (MCS+; Giacino 

et al., 2002; Bruno, Vanhaudenhuyse, Thibaut, Moonen, & Laureys, 2011). 

Patients admitted due to any other aetiology, e.g. anoxia or haemorrhage, and 

patients diagnosed with any other condition than UWS or MCS, were excluded 

from the further analyses. The patient groups were further divided based on their 

respective PET-scans – either into a PET-positive (PET+) or a PET-negative 

(PET-) sub-group (table 6.1). Amongst the healthy controls, we pseudo-randomly 

drew a cohort of 11 control subjects to adjust for the group-size discrepancies. 

There were no meaningful differences in the mean ages between the groups (in a 

Bayesian ANOVA the probability for the model including the main effect of age: 

p(M|data) = 0.247, Bayes factor = 0.328). 

 

6.2.2 Behavioural and Positron Emission Tomography assessments 

Patients were behaviourally assessed on the day of the PET and EEG imaging 

using the Coma Recovery Scale – Revised (CRS-R; Kalmar & Giacino, 2005) 

five to seven times a day, and the diagnosis was based on the highest score 

obtained. 

Positron Emission Tomography Data Collection and Analysis 

Flurodesoxyglucose-PET (FDG-PET) scans were acquired from all the included 

patients using the methodology as described in Stender et al. (2014). The scans 
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were acquired on a Philips Gemini TF PET-CT scanner (Philips Medical 

Systems) approximately 30 minutes after an intravenous injection of 150 or 300 

MBq of the radioactive tracer, fluor-18 fluordeoxyglucose (FDG). The brain 

imaging was obtained during an awake-period and while eyes open in a silent and 

dark room (ensured by an examiner present by administering tactile or auditory 

stimuli when the patients were closing their eyes). The data analysis identified 

relatively preserved and decreased metabolism in patients in comparison to 

controls and was conducted using Statistical Parametric Mapping (SPM8). 

The analysis results were visually inspected by a trained neurologist to reach 

a PET+- or PET- -diagnosis following previous findings. A PET--diagnosis was 

produced by a complete bilateral hypometabolism of the associative 

frontoparietal cortex with no voxels with preserved metabolism, whereas PET+-

diagnosis was produced by an incomplete hypometabolism and partial 

preservation of activity within these areas (Laureys, Owen, & Schiff, 2004; 

Nakayama, Okumura, Shinoda, Nakashima, & Iwama, 2006; Thibaut et al., 

2012). 

 

Table 6.1. The mean age in years (SD), the total number of patients, and the number 

of PET+ and PET- of patients in each of the different DoC-groups. UWS – 

unresponsive wakefulness syndrome, MCS+ – minimally conscious positive. 

Patient 

group 

Mean age (SD) 

in years 

NTOTAL PET+ PET- Aetiology 

 

UWS 

 

30.7 (8.5) 

 

11 

 

5 

 

6 

 

TBI 

MCS+ 38.3 (10.3) 12 11 1 TBI 
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Controls 30.9 (6.7) 11 - - - 

 

 

6.2.3 EEG data acquisition and preprocessing 

The EEG data collection is described in more detail in chapter 4. In short, the 

data consisted of high-density EEG recordings of 20-30 minutes (256-channels, 

EGI), acquired during the FDG uptake, just prior to the start of the PET-imaging. 

The patients were ensured to stay awake during the data collection. 

The data were recorded at a sampling rate of either 250 Hz or 500 Hz 

(downsampled to 250 Hz). Data from the channels from the neck, cheeks, and 

forehead were discarded due to contributing most of the movement-related noise. 

As in chapter 4, we were left with the data from 173 channels on the scalp for 

further analysis. The raw signals were filtered from 0.5 – 45 Hz, with additional 

line noise removal at 50 Hz (notch-filter). We further restricted the DCM analysis 

to 1 – 30 Hz due to excessive high-frequency noise components. Via calculating 

the normalised variance, the excessively noisy channels and epochs were 

identified and either manually rejected or retained by visual inspection. Lastly, 

the data were re-referenced to a common average. 

 

6.2.4 Dynamic causal modeling 

A more detailed description of the dynamic causal modeling can be found in 

chapter 5. In short, we first imported the first 60 artefact-free 10-second epochs, 

in to SPM12 (Wellcome Trust Centre for Human Neuroimaging; 

www.fil.ion.ucl.ac.uk/spm/software/spm12). To analyse the resting effective 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12


163 

 

connectivity within the default mode network (DMN), DCM for EEG cross-

spectral densities (CSD) was applied (Friston et al., 2012; Moran et al., 2009). 

Here, the observed cross-spectral densities in the resting-EEG are explained by a 

generative model that combines a biologically plausible neural mass model with 

an electrophysiological forward model that maps the underlying neural states to 

the observed data (ERP-model; Moran et al., 2013). The idea is to model the 

source activity over time in terms of causal relationships between interacting 

inhibitory and excitatory populations of neurons (see section 2.5.1 for detailed 

description). 

Each source – or node – is connected to each other via extrinsic connections, 

while each subpopulation within each source is connected to each other via 

intrinsic connections. Here, however, we only estimated extrinsic connectvity 

between the nodes within the DMN to ensure identical methods and 

comparability of the results between chapters 5 and 6. Among the extrinsic 

connectivity, the top-down – or backward – connections are thought to have 

inhibitory and modulatory effects on the nodes they target, while forward 

connections are viewed as having a strong excitatory driving effect (bottom-up; 

Salin & Bullier, 1995; Sherman & Guillery, 1998).  

Second-order differential equations describe the hidden state of neural 

activity within each node depending on both, the parametrised intrinsic and 

extrinsic connection strengths. This enables the computation of the linear 

mapping from the endogenous neuronal fluctuations to the EEG sensor spectral 

densities, and consequently, permits the modelling of differences in the spectra 
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due to changes in the underlying neurophysiologically meaningful parameters. 

These parameters are describing, for example, the intrinsic and extrinsic 

connectivity of coupled neuronal populations (i.e. sources) and their physiology. 

For further information about EEG DCM, see for example Friston et al. (2012), 

Kiebel et al., (2008) & Moran et al. (2009).  

 

6.2.5 Model specification 

Fitting a DCM model requires the specification of the anatomical locations of 

the nodes/sources a priori. DoC patients typically have widespread structural 

brain damage often accompanied by distributed white matter anomalies (Annen 

et al., 2018; Fernández-Espejo et al., 2012; Tshibanda et al., 2009). Hence, 

the feasibility and validity of applying DCM to damaged brains can be 

questioned, especially with patients with anoxic brain damage (King, 

Bekinschtein, & Dahaene, 2011). Here, we mitigated these concerns with the 

following methods: firstly, we select only patients suffering from traumatic brain 

injury. Traumatic aetiology has been associated with more focal injury centred 

often on areas susceptible to rotational forces, acceleration and deceleration such 

as the brainstem, midbrain, thalamus, hypothalamus, cerebellum, and posterior 

corpus callosum (Guldenmund et al., 2016; Newcombe et al., 2010). 

Second, we will use a special case of Bayesian model selection (BMS), 

Bayesian model reduction (BMR) to invert multiple nested models from a single, 

fully connected DMN (see Methods). A particular advantage here is that BMR 

can be applied using an explanatory approach, in which no strong a priori 
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hypotheses about the model parameters are needed (Friston & Penny, 2011; Rosa 

et al., 2012; Zeidman et al., 2019). This enables more flexibility in the estimated 

model space. Third, the focus here is not so much to model the underlying 

connections within the DMN, as it is on comparing the predictive performance 

of effective connectivity represented by a set of DCM models.  

Finally, to reduce the risk of spurious findings, we only modelled the DMN, 

which have been previously associated with DoC (see for example Boly et al., 

2008; Crone et al., 2011; Crone et al., 2015; Heine et al., 2012; Lin et al., 2017). 

The node locations were the same as in chapter 5; the schematic representation 

and the node locations (from Razi et al., 2017) are shown in figures 6.1A and 

6.1B, respectively (node locations visualized with the BrainNet Viewer (Xia, 

Wang, & He, 2013, http://www.nitrc.org/projects/bnv/). The MNI coordinates 

are listed in table 6.2.  

 

 

Figure 6.1A. The fully connected, schematic representation of the default mode 

network. B. The node locations for the DMN. mPFC – medial prefrontal cortex, Prec 

http://www.nitrc.org/projects/bnv/


166 

 

– posterior cingulate cortex/precuneus, lLP – left lateral parietal cortex, rLP – right 

lateral parietal cortex. 

 

As shown in figure 6.1A, the nodes in the DMN were connected via forward, 

backward, and lateral connections as described in David et al. (2006, 2005). 

Thus, each node was modelled as a point source with the neuronal activity being 

controlled by operations following the Jansen-Rit model (Jansen & Rit, 1995). 

These three different types of connections in each model were specified in what 

is referred in the DCM literature as the ‘A-matrix’.  

 

Table 6.2. The default mode network nodes and their corresponding MNI 

coordinates (adapted from Razi et al., 2017).  

Network Coordinates (in mm) 

 x y z 

Default Mode Network    

Left lateral parietal -46 -66 30 

Right lateral parietal 49 -63 33 

Posterior cingulate/precuneus 0 -52 7 

Medial prefrontal -1 54 27 

 

 

6.2.6 Model Inversion 

In DCM, model inversion refers to the process of fitting a model to explain 

the empirical data of each participant’s dataset, and thereby inferring a full 

probability density over the possible values of model parameters (with the 
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expected values and covariance). The default parameter settings in DCM for 

CSD led to inaccurate fits of the model when inspected visually (see van Wijk et 

al., 2018, p. 824). To address this, similar to chapter 5, we doubled the number of 

maximum iterations to 256 and estimated the models with two adjustments to the 

hyperparameters: first, the shape of the neural innovations (i.e. baseline neural 

activity) were set to flat (-32) instead of the default white and pink (1/f) noise-

component mixture (Moran et al., 2009). Second, we increased the noise 

precision value from 8 to 12 to bias the inversion process towards accuracy over 

complexity (see Friston et al., 2012 and Moran et al., 2009 for a detailed 

description of DCM for cross-spectral densities). With these adjustments, we 

estimated the full DMNs again, and applied the Bayesian Parameter Averaging 

(BPA) for each of the subject-groups separately, averaging over the posterior fits 

from the subjects for whom the model did converge satisfactory and setting these 

averaged posteriors as new priors for the respective non-converged subjects. 

Finally, we estimated all the full models again for all the subjects with setting the 

posteriors from the earlier subject model estimations as updated priors, but this 

time with the neural innovations and noise precision set back to default settings. 

To validate that the priors we used in the final inversion were suitable, we 

compared the group-level model evidence obtained from the BMA with and 

without the adjusted noise levels. With all comparisons, the default 

hyperparameter settings with the updated priors generated better model 

evidence (difference in free energies for control vs. UWS PET-, control vs. 

MCS+, and MCS+ vs. UWS PET- were +29364, +3096, and +39726, 

respectively. To qualitatively assess the model fits, the observed and model-
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predicted cross-spectra were visually compared in each participant and judged 

sufficiently similar. This process led to satisfactory fits for the subjects (table 

6.3). The average fits over subjects for each group are shown in figure 6.2. 

 

Table 6.3. The number of satisfactory fits with the default hyperparameters and after 

adjusting the neural innovations and the noise precision for the different subject 

groups.  

Patient group N Satisfactory fits After BPA Final 

UWS 11 5 11 11 

MCS+ 12 9 12 12 

Controls 11 9 11 11 

 

 

 

Figure 6.2. The average model fits across the participants in all subject-groups. A-

C. Subject-averaged power spectra of the observed EEG channel-space data, 

juxtaposed with that predicted by the fitted DCM models of each subject group. 

Individual lines reflect spatial modes. 
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6.2.7 Parametric empirical Bayes 

In DCM, the posterior density over the parameters given by the model 

inversion process is approximated via a variational Bayesian scheme by 

maximizing a lower bound (the negative free energy) on the log-evidence 

(Variational Laplace; Friston et al., 2007). A more recent addition, the Parametric 

Empirical Bayes (PEB) framework, can be utilised to infer, for example, the 

group-level commonalities and differences (Friston et al., 2016). 

In PEB, the subject-specific parameters – here, the effective connectivity 

modulations between nodes in DMN – are taken to the group-level and modelled 

using a General Linear Model (GLM). In doing so, PEB partitions the between-

subject variability into designed effects and unexplained random effects 

(captured by the covariance component). As a special case of Bayesian model 

selection (BMS), Bayesian model reduction (BMR) enables the inversion of 

multiple nested models from a single, fully connected (‘full’) model in a 

hierarchical manner. In doing so it enables a greedy search to compare the 

negative free energies for the nested models (reduced models), iteratively 

discarding the parameters that do not contribute to the free energy (originally 

‘post-hoc DCM analysis’; Friston & Penny, 2011; Rosa, Friston & Penny, 2012). 

Consequently, PEB conveys both the estimated group-level connection strengths 

and their respective uncertainty (posterior covariance component). As such, it is 

argued that hypotheses about commonalities and differences across subjects can 

be tested with more precise parameter estimates than with traditional frequentist 

comparisons (Friston et al., 2016).  
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A Bayesian Model Average (BMA) is calculated over the best 256 models 

weighted by their model evidence; for every connection, a posterior probability 

for the connection being present vs. absent is calculated by comparing evidence 

from all the models in which the parameter is switched on versus all the models 

in which it is switched off. Here, we applied a threshold of >.99 posterior 

probability, in other words, connections with over .99 posterior probability were 

retained. The overall process is shown in figure 6.3. 

 

  

Figure 6.3. The pipeline for inverting the DCM model for different subject-

groups. This was done to find the best models for each patient group, to estimate the 

effective connectivity modulations between the patient groups, and as a prerequisite 

for the LOSOCV classification with PEB modelling.  
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6.2.8 Leave-one-out cross-validation 

Following the pipeline used in chapter 5, to validate our modelling 

framework, we investigated which DMN connections are predictive of the 

subject group by adapting a standard approach in computational statistics, leave-

one-subject-out cross-validation (LOSOCV; spm_dcm_loo.m). Here, we 

iteratively fitted a multivariate linear model (as described in detail in Friston et 

al., 2016) to provide the posterior predictive density over connectivity changes, 

which was then used to evaluate the posterior belief of the explanatory variable 

for the left-out participant: in the present case, the probability of the 

subject group membership.   

To cross-validate a fitted DCM model, one participant was left out each 

time before conducting PEB analysis on the training dataset, and the optimised 

empirical priors were then used to predict the subject-group to which the dataset 

from the left-out participant belonged (see Friston et al., 2016 for details). We 

repeated this procedure for each participant, and in doing so generated 

probabilities of state affiliation (here, posterior probabilities for subject group-

membership). 

It is worthwhile to note, that – excluding the specific alterations reported in 

section 6.2.6 – we have estimated the DCM models using the default parameter 

settings recommended in the literature (Ashburner et al., 2017; Friston et al., 

2003; Friston et al., 2012; Kiebel, Garrido, Moran, Chen, & Friston, 2009). This 

is also true for the LOSOCV procedure, just as in chapter 5, no hyper parameter 

optimisation was done. Here, we trained the model with the data from all but the 

left-out participant (training set), and predicted the state based on the data from 
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the left-out participant (test set) and repeated this procedure leaving out a 

different participant each time. 

  

6.2.9 Leave-one-subject-out cross-validation 

We first estimated predictive performance in a leave-one-subject-out cross-

validation paradigm in which LOSOCV metrics for all connections in the 

DMN and for a hypothesis-driven subsets were estimated (frontoparietal and 

parietal subsets; figure 6.4). Next, a data-driven approach was used in which we 

started the estimation from the connection associated with the largest 

connectivity reduction between the subject-groups and repeated the procedure for 

all connections. Here, we utilised a forward stepwise regression in which we 

started the estimation from the connections with the largest changes and 

continued through the parameters based on their respective modulation effect 

sizes. Lastly, we combined connections into data-driven subsets, starting from the 

connections with the best classification performance, until the classification 

accuracy stopped improving. The rationale was to investigate the location and 

direction of the most consistent inter-subject-level effects, in addition to the 

largest effect sizes identified by the PEB analysis.  

  

6.2.10  Leave-one-state-out cross-validation 

Finally, the validation process was generalised by introducing two more 

difficult classification problems: first, we trained the model on the DCM 

parameters from the control and the UWS PET- groups, and then tested it on 



173 

 

unseen data collected from the UWS PET+ patient-group. Second, we trained the 

model on the data from the MCS+ and the UWS PET- groups, and again tested 

on the UWS PET+ datasets. Here, the model was trained on all training 

datasets. As above, the model used the optimised empirical priors to predict the 

more likely patient-group the test dataset (UWS PET+) belonged. We 

hypothesised that if our modelled effects are valid, and if the sustained PET-

metabolism reflects higher level of consciousness present in the 

UWS PET+ patients in comparison to UWS PET- patients, in the former case the 

model should classify the test datasets as controls rather than UWS PET-

. Similarly, in the latter case, given that the MCS+ patients are conscious, the test 

data should be classified as MCS+ rather than UWS PET-. Here, we used 

posterior probability for subject group-membership to quantify classification 

performance.  

 

 

Figure 6.4. The hypothesis-driven subsets for the LOSOCV-paradigm. The red 

arrows indicate the connections included in each subset. First, predictions based on 

all connections were estimated (A). Next, predictions based on two connection 

subsets – frontoparietal (B) and parietal subsets (C) – were estimated. Lastly, we 
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estimated predictions based on single connections in a data-driven approach. mPFC – 

medial prefrontal cortex, Prec – posterior cingulate cortex/precuneus, lLP – left 

lateral parietal cortex, rLP – right lateral parietal cortex. 

   

6.3 Results 

6.3.1 Dynamic causal modeling and parametric empirical Bayes 

Our first goal was to investigate the effective connectivity modulations best 

explaining the difference between healthy controls, UWS PET-, and 

MCS+ patients. We modelled time-series recorded from the three groups with 

DCM for CSD at a single-subject level, followed by PEB at the group-level. In 

doing so, we estimated the change in effective connectivity in 12 inter-node 

connections in the DMN, contrasting 11 healthy controls both with 6 

UWS PET- patients and with 12 MCS+ patients, and the MCS+ patients with 

UWS PET- patients.  

Following the inversion of the between-groups PEB model, a greedy search 

was implemented to prune away connections not contributing significantly to the 

free energy using BMR. Figure 6.5 shows the most parsimonious models and 

figure 6.6 shows the estimated log scaling parameters contrasting healthy 

controls with UWS PET- (A), MCS+ with UWS PET- (B), and finally, healthy 

controls with MCS+ (C). Here, we applied a threshold of >.99 for the posterior 

probability; in other words, connections that were pruned by BMR and 

connections with lower than .99 posterior probability with their respective log 

scaling parameter are faded out (figures 6.6A, 6.6B, 6.6C).  
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On inverting the DMN for the control and UWS PET- groups, 3 connections 

were pruned away by BMR with additional 4 connections having lower than 

.99 posterior probability (figures 6.5A and 6.6A). All but one of the pruned 

connections were located within the posterior cortices between lateral parietal 

cortices and PCC/precuneus (with the exception of the right backward 

frontoparietal connection). The largest reduction in effective connectivity was 

located on left frontoparietal connection; the backward connection 

between mPFC and left lateral parietal node was largely diminished for the UWS 

PET- group in comparison to healthy controls. 

On inverting the DMN contrasting MCS+ and UWS PET-, only three 

connections survived the BMR process with at least .99 posterior probability 

(with additional three connections surviving pruning with lower than .99 

posterior probability; figures 6.5B and 6.6B). As with the control vs. UWS 

PET- contrast, the largest reduction was on the left backward 

connectivity from mPFC to lLP, with left lLP-mPFC forward connectivity 

increasing.  

On inverting the DMN for the contrast between healthy controls and MSC+, 

two connections were pruned by the BMR with additional 4 connections having 

lower than .99 posterior probability for being present (figures 6.5C and 

6.6C). The largest reductions were between the posterior nodes, to and 

from the lateral parietal cortices and PCC/precuneus. In addition, the left 

frontoparietal backward connectivity was reduced, although with smaller than .99 

posterior probability and with clearly smaller effect size than with UWS PET-
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. Other non-pruned connections were associated with small to medium 

increases.   
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Figure 6.5. The most parsimonious DMN models after BMA and BMR for the 

difference between the healthy controls and the UWS PET-, MCS+ patients and 

UWS PET-, and healthy controls and MCS+. Colour shows modulation strength and 

direction. A. The most parsimonious model best explaining the difference 

between healthy controls and UWS PET- patients. Three connections were pruned 

with additional four having lower than .99 posterior probability of being present. All 

but one pruned connection was located between lateral parietal and 

PCC/precuneus nodes. The largest reduction in effective connectivity was in the 

backward connection from the medial prefrontal cortex to left lateral parietal 

cortex.  B. The most parsimonious model best explaining the difference between the 

MCS+ and UWS PET- patients. Six connections were pruned by the BMR with 

additional three connections having lower than .99 posterior probability of being 

present. The largest reduction was on the backward connection from the medial 

prefrontal cortex to left lateral parietal cortex, similar to the reduction between 

healthy controls and UWS PET- patients. C. The most parsimonious model 

explaining the difference between healthy controls and MCS+ patients. Two 

connections were pruned with additional four connections having lower than .99 

posterior probability of being present. The largest reductions on effective 

connectivity were on posterior connections between the lateral parietal cortices and 

PCC/precuneus.  
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Figure 6.6. The log scaling parameters for the connections in the DMN after BMR 

and BMA. Positive values represent an increase and negative values a decrease in 

effective connectivity for the three group comparisons. Connections that were pruned 

by BMR and connections with lower than .99 posterior probability with their 

respective log scaling parameter are faded out. A. The modulatory effects best 

explaining the difference between healthy controls and UWS PET- patients. 

Connectivity between lateral parietal and PCC/precuneus nodes were either pruned 

away by BMR or had lower than .99 posterior probability with low modulatory 

effects. The largest reduction was found on backward lateral frontoparietal 

connection from medial prefrontal cortex to left lateral parietal cortex. B. The 

modulatory effects best explaining the difference between MCS+ and UWS PET-
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. The modulatory effects on left bidirectional frontoparietal connections were both in 

the same direction as when comparing healthy controls to UWS PET-, with the 

largest reduction on left backward frontoparietal connection. In addition, right 

backward frontoparietal connectivity and posterior forward connectivity between 

lateral parietal nodes and PCC/precuneus reduced (smaller effect sizes), albeit with 

lower than .99 posterior probability of being present. C. The modulatory effects best 

explaining the difference between healthy controls and MCS+. The largest reductions 

were between the posterior nodes, between the lateral parietal nodes and 

PCC/precuneus. Bidirectional medial frontoparietal connectivity was increased in 

MCS+ in comparison to healthy controls. mPFC – medial prefrontal cortex, Prec – 

posterior cingulate cortex/precuneus, lLP – left lateral parietal cortex, rLP – right 

lateral parietal cortex. 

  

6.3.2 Leave-one-subject-out cross-validation 

To conduct LOSOCV, the DCM model was inverted again, this time 

separately for each patient group. Following the inversion process, PEB was 

conducted repeatedly on the training set in each cross-validation run alongside 

LOSOCV analysis to generate the posterior probabilities for group-

membership (see Methods).   

First, the UWS PET- patients were classified alongside the controls based on 

the full DMN model, and two hypothesis-driven connection subsets 

(frontoparietal- and parietal connections; figure 6.7). Similar approach was 

applied classifying MCS+ patients alongside UWS PET- patients, and finally, 

healthy controls alongside MCS+ patients. Figures 6.7 and 6.8 show violin plots 
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representing the individual posterior probabilities for the hypothesis-driven 

classifications and data-driven approach, for all three contrasts, respectively (A: 

control vs. UWS PET-, B: MCS+ vs. UWS PET-, C: control vs. MCS+). As 

seen in figure 6.7, frontoparietal connections classified correctly most of the 

controls and MCS+, and around half of the UWS patients in the controls vs. 

UWS PET- and MCS+ vs. UWS PET- contrasts. Both, full DMN and parietal 

subsets clustered most of the subjects around the chance level of 0.5. 

We then moved to a data-driven approach in which we first predicted the 

patient group membership based on the connections with the largest reductions in 

PEB, one at a time, working through all connections. Lastly, we checked 

combinations based on the connections’ respective classification accuracies (see 

Methods). The bi-directional left frontoparietal connectivity produced the best 

predictions, especially when classifying the UWS PET- from both, 

healthy controls and the MCS+ patients (figures 6.8A and 6.8B), with the best 

predictions based on the backward mPFC-lLP connectivity. Forward lLP-

mPFC connectivity produced the best predictions for controls vs. MCS+ contrast, 

especially for the healthy controls (6.8C). None of the tested combinations 

improved classification performance.  
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Figure 6.7. Violin plot representing diversity in posterior probabilities for control 

group membership (A and C) and for MCS+ group membership (B) for the 

hypothesis-driven subsets for all three group contrasts. Each coloured point specifies 

a subject. In a perfect model in panels A and B, the UWS PET- patients (N = 6), and 

in panel C, the MCS+ patients (N = 12) should approach to a posterior probability of 

zero. Overall, the results show a trend for frontoparietal connections producing the 

best predictions. A. When classifying UWS PET- patients alongside healthy controls, 

the frontoparietal subset produced the best results. The individual data points reveal 

more consistent classifications of healthy controls. On all three panels, full DMN 

model and parietal subset produced classifications with most posterior 

probabilities bordering the 0.5 chance level. B. As in panel A, the best predictions 
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when classifying UWS PET- patients alongside MCS+ were based on frontoparietal 

connections, specifically with MCS+ patients. C. Classification of MCS+ alongside 

healthy controls. Frontoparietal subset produced the best predictions, however with 

large variability on the performance across the subjects.    

  

  

Figure 6.8. Violin plot representing diversity in posterior probabilities for control 

group membership (A and C) and for MCS+ group membership (B) for the data-

driven connections for all three contrasts. Each coloured point specifies a subject. In 

a perfect model in panels A and B, the UWS PET- patients, and in panel C, the 

MCS+ patients should approach to a posterior probability of zero. Overall, the best 

predictive performance was based on the left bi-directional frontoparietal 
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connections when classifying UWS PET- alongside controls (A) and MCS+ (B). 

Largest inconsistencies and variability were on classifications of MCS+ alongside 

healthy controls. A. Left frontoparietal connectivity from mPFC to lLP produced the 

best predictions (mean posterior probabilities) of the group-membership when 

classifying UWS PET- alongside healthy controls. As with the hypothesis-driven 

subsets, the classifications were more accurate with healthy controls than with 

patients. B. As in panel A with healthy controls and UWS PET- patients, the 

classification performances based on mPFC-lLP and lLP-mPFC produced the most 

consistent results when contrasting UWS PET- patients alongside MCS+. C. Mean 

posterior probabilities for classification of MCS+ alongside healthy controls. The 

performance of the models based on the single connections did not produce 

consistently accurate classifications. mPFC – medial prefrontal cortex, Prec – 

posterior cingulate cortex/precuneus, lLP – left lateral parietal cortex, rLP – right 

lateral parietal cortex. 

 

Figures 6.9 and 6.10 show confusion matrices of prediction accuracy 

calculated by labelling posterior probabilities greater than 0.5 as a positive 

classification, for the hypothesis-driven subsets and the data-driven approach, 

respectively. In figure 6.9, the frontoparietal subset performed most consistently 

in terms of both, classification accuracy and mean posterior probability, 

especially with healthy controls. 

In figure 6.10 with the data-driven approach, the frontoparietal backward 

connection from mPFC to lLP performed best in terms of both, classification 

accuracy and mean posterior probability for healthy control vs. UWS PET- and 
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MCS+ vs. UWS PET- contrasts. Forward frontoparietal connectivity from lLP 

to mPFC classified healthy controls and MCS+ patients from UWS PET- with 

high accuracy but bordered the chance level with UWS PET-. Overall, the bi-

directional left frontoparietal connections provided the best classification 

performances amongst all connections and combinations tested. 
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Figure 6.9. Classification accuracy percentage (mean posterior probability for 

correct classification) in the leave-one-subject-out cross-validation paradigm for the 

hypothesis-driven subsets. The number of subjects in each group is shown in 

parenthesis under the true group labels. The frontoparietal subset performed the best 

in terms of both classification accuracy and mean posterior probability, especially 

with healthy controls for healthy control vs. UWS PET- and MCS+ vs. UWS PET- 

contrasts (panels A2 and B2, respectively). Classification based on full DMN had 

high accuracy for healthy controls; however, the mean posterior probabilities 

bordered the chance level.  
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Figure 6.10. Classification accuracy percentage (mean posterior probability for 

correct classification) in the leave-one-subject-out cross-validation paradigm for the 

data-driven approach. The number of subjects in each group is shown in parenthesis 

under the true group labels. For the healthy controls vs. UWS PET- and MCS+ vs. 

UWS PET- contrasts, the frontoparietal backward connection from mPFC to lLP 

performed best in terms of both, classification accuracy and mean posterior 

probability. Forward frontoparietal connectivity from lLP to mPFC classified healthy 

controls and MCS+ patients from UWS PET- with high accuracy but bordered the 
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chance level with UWS PET-. Similarly, lLP to mPFC connectivity performed the 

best with the healthy controls vs. MCS+ contrast.  

  

6.3.3  Leave-one-state-out cross-validation 

Finally, the predictive power of DCM modelling was generalised in two more 

difficult classification problems; each model was trained first on healthy controls 

and UWS PET- and then tested on the previously unseen UWS PET + group. A 

similar approach was used with a training set consisting of MCS+ and UWS 

PET- patients. The individual posterior probabilities for the five UWS PET + 

patients represented in a violin plot for both, the hypothesis subsets (panels A and 

B; controls vs. UWS PET- and controls vs. MCS+, respectively) and for data-

driven connections (panels C and D) are shown in figure 6.11. The hypothesis-

driven subsets did not classify the UWS PET+ as controls or MCS+. Instead, 

when trained on datasets from healthy controls and UWS PET-, the frontoparietal 

subset classified four out of five UWS PET+ patients as UWS PET-.  

With the data-driven approach, the left backward frontoparietal connectivity 

from mPFC to lLP produced nearly perfect predictions classifying the UWS 

PET+ datasets as controls (6.11C) and MCS+ (6.11D) rather than as UWS PET- 

group. Similar as with frontoparietal subset (6.11A), the left forward connectivity 

from lLP to mPFC classified four of five patients as UWS PET- patients rather 

than healthy controls – three of them with a high posterior probability. This 

dissociation was not as prominent when training the model with MCS+ and UWS 

PET- patients; the backward connectivity produced nearly perfect classifications 
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(of UWS PET+ as MSC+) while the predictions based on the forward 

connectivity showed larger variability. 

  

 

Figure 6.11. Violin plot representing diversity in posterior probabilities for control 

group membership (A and C) and for MCS+ group membership (B and D) for both, 

the hypothesis- and data-driven predictions. Here, the models were trained on 

datasets from controls and UWS PET- (A & C) or from MCS+ and UWS PET- (B 

and D) and tested on unseen data from UWS PET+ patients (N = 5). Each coloured 

point specifies a subject. Overall, the left backward frontoparietal connectivity 

produced the best group membership predictions. A and B. Mean posterior 

probabilities for classification of UWS PET+ patients alongside healthy controls (A) 

and MCS+ patients (B). Neither of the hypothesis-driven subsets, nor the full DMN, 

clearly classified the unseen UWS PET+ patients as members of either train-group. C 
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and D. Left frontoparietal connectivity from mPFC to lLP produced almost perfect 

predictions for the UWS PET+, classifying all five patients as either controls or 

MCS+ rather than UWS PET- patients. Unlike the backward connectivity, 

predictions based on the left forward connectivity from lLP to mPFC, the model 

classified four of five UWS PET+ patients as UWS PET- rather than as controls (C). 

Similarly, when trained on MCS+ and UWS PET-, the model classified three of five 

patients as UWS PET- rather than MCS+. mPFC – medial prefrontal cortex, Prec – 

posterior cingulate cortex/precuneus, lLP – left lateral parietal cortex, rLP – right 

lateral parietal cortex. 

 

6.4 Discussion 

In this cross-sectional, retrospective analysis, we applied spectral DCM to 

high-density EEG data with parametric empirical Bayes to investigate the 

difference in effective connectivity dynamics between cortico-cortical regions of 

the default mode network in DoC patients (UWS and MCS+) and healthy 

controls. Overall, the modelling results indicate a key difference between healthy 

controls or conscious patients and completely unresponsive patients in left-

hemispheric backward frontoparietal connectivity. Furthermore, with out-of-

sample cross-validation, we demonstrated that this association is robust enough 

to not only distinguish patient groups from each other, but also generalises to an 

unseen data subset, collected from seemingly unresponsive patients showing 

evidence of hidden consciousness which became apparent when assessed with 

functional neuroimaging (UWS PET+). These results identify specific alterations 
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in the DMN after severe injury and highlight the clinical utility of EEG-based 

measurement of effective connectivity for identifying covert consciousness. 

 

6.4.1 Dynamic causal modelling 

The most parsimonious model explaining the difference between healthy 

controls and completely unresponsive patients (UWS PET-) indicated a large 

relative reduction in left-hemisphere backward frontoparietal connectivity in 

UWS PET- patients. Additionally, a small, lower-probability reduction from right 

lateral parietal cortex to precuneus was found. Interestingly, excluding the right 

parietal connection, the estimated connectivity in the posterior nodes – within the 

‘posterior hot zone of conscious contents’ (Koch et al., 2016a; Siclari et al., 

2017) – was either pruned away from the model best explaining the difference or 

returned only small, low-probability increases suggesting lower relative 

importance for the posterior hot zone in explaining the difference between 

healthy controls and UWS PET- patients.4 In contrast, in a previous fMRI DCM 

study with DoC patients precuneus/PCC-related connectivity reduction was the 

key difference; specifically, the recurrent connectivity (down-regulation of the 

PCC itself) was found to be diminished on UWS patients in comparison to both, 

MCS patients and healthy controls (Crone et al., 2015).  

                                                 
4
 Connections pruned by BMR are considered not to contribute towards the model evidence. See 

Zeidman et al. (2019). 
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However, not only are the data between Crone et al. (2015) and the present 

study from different modalities, and thus, direct comparisons of the results 

unsound, the underlying neurobiologically motivated models used by DCM are 

different for hemodynamic versus electrophysiological data leading to a different 

interpretation of the modulatory effects.5 Here, we modelled the data with the 

default ERP neuronal model (David et al., 2005) primarily in order to produce 

comparable results with prior DCM for EEG work modelling consciousness 

(Boly et al., 2011, 2012; Ihalainen et al., 2021). Further, as in our previous work 

with propofol-anaesthesia, we aimed to model disrupted consciousness at the 

level of active networks rather than focusing on e.g. synaptic hypotheses or 

recurrent self-connections (intrinsic connectivity), which could be better captured 

with other neuronal models such as the LFP model (Moran et al., 2007) or the 

Canonical Microcircuits model (Bastos et al., 2012; see also Moran et al., 2013 

for a review of neuronal population models). Hence, we only estimated extrinsic 

connectivity – i.e. connectivity between cortical areas. It is possible that the 

observed differences in the network dynamics are driven by modulations in self-

                                                 
5
 The interpretation of the modulatory effects in DCM for fMRI versus EEG differ in that positive and 

negative values indicate excitatory and inhibitory effects in fMRI data (except for recurrent 

connections, for which the connection strength is always negative and modulations reflect increases or 

decreases in comparison to the prior). In DCM for EEG, positive modulations indicate an increase and 

negative a decrease in connectivity relative to the prior. Generally speaking, the backward connections 

are thought to have more inhibitory and largely modulatory effect in the nodes they target (top-down 

connections), while forward connections are viewed as having a strong driving effect (bottom-up; 

Salin & Bullier, 1995; Sherman & Guillery, 1998).  
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inhibiting, recurrent connectivity within the cortical sources or within and 

between subcortical networks driving the disruptions in the DMN (Chen et al., 

2018; Coulborn, Taylor, Naci, Owen, & Fernández-Espejo, 2021). A worthwhile 

endeavour for future DCM for EEG studies would be to model the extent to 

which recurrent, within-source cortical connectivity may or may not drive the 

modulations in extrinsic connectivity. 

As far as we are aware, just one study has used DCM for EEG in DoC 

populations. Boly et al. (2011) showed that in an auditory mismatch negativity 

paradigm, the difference between UWS, MCS, and healthy controls was an 

impairment of backward connectivity from frontal to temporal cortices in the 

UWS patients, emphasising the importance of top-down processing for conscious 

perception. Similarly, in the present resting-paradigm, the key difference 

distinguishing UWS PET- from both, MCS+ and healthy controls was decreased 

left-lateralised backward frontoparietal connectivity in UWS PET- patients, 

although from medial prefrontal cortex to lateral parietal cortex and not to 

superior parietal cortex. It is important to note, however, that the differences in 

the paradigm, methodology and in the models estimated render rigorous, direct 

comparisons of the results between Boly et al. (2011) and the present study 

infeasible. Despite the methodological differences, the results of both studies 

suggest a crucial role for lateral backward connectivity originating from the 

frontal cortex. Future studies should investigate this further by modelling the 

connectivity related to temporal areas, and the backward frontoposterior 

connectivity in other resting networks (see below) in DoC patients. 
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Like with healthy controls vs. UWS PET- comparison, the largest difference 

between MCS+ and UWS PET- patients was left frontoparietal backward 

connectivity, with UWS patients again showing reduced connectivity. 

Furthermore, the left forward parietofrontal connectivity and backward 

connectivity from precuneus to lLP both increased, reproducing the modulations 

between healthy controls and UWS PET-. These changes were accompanied by 

smaller, low-probability reductions in forward connectivity within the posterior 

hot zone and in right backward frontoparietal connectivity. These modelling 

results highlight the left frontoparietal backward connectivity as the key 

distinguishing difference when comparing healthy controls or conscious patients 

with completely unconscious patients and complement those of previous studies 

discriminating DoC patients from scalp-level EEG connectivity; especially 

frontal and parietal functional connectivity has been shown to consistently 

discriminate DoC patients (Chennu et al., 2014; 2017). As the direction and the 

spatial location of the changes in connectivity were similar with the comparisons 

involving UWS PET- patients, and distinguishable from those when comparing 

healthy controls vs. MCS+, we were motivated to further test the predictive 

power of the modulatory effects (see below). 

In contrast, the largest connectivity reductions between healthy controls and 

MCS+, although relatively smaller than in previous contrasts, were associated 

with the precuneus node in the posterior hot zone. The left backward 

frontoparietal connectivity was again reduced, but by a smaller effect and with 

lower than .99 probability of being present in the most parsimonious model. The 

activity changes in the posterior hot zone of conscious content have been 



194 

 

associated with changes in consciousness not only during sleep (Lee et al., 2019; 

Siclari et al., 2017) and general anaesthesia (Alkire, Hudetz, & Tononi, 2008; 

Ihalainen et al., 2021), but also in DoC patients (Vanhaudenhuyse et al., 2010; 

Wu et al., 2015). Moreover, previous studies have suggested a subdivision of the 

frontoparietal network into two anticorrelated subnetworks; an “intrinsic” 

network encompassing precuneus/PCC, anterior cingulate/mesofrontal cortices, 

and parahippocampal areas associated with internal awareness, and into an 

“extrinsic” central executive network (CEN) encompassing dorsolateral 

prefrontal and posterior parietal areas linked with the intensity of external 

awareness (Boveroux et al., 2010; Vanhaudenhuyse et al., 2010). The observed 

decrease in the left lateral frontoparietal connectivity in the present study 

between UWS PET- patients and healthy controls or MCS+ patients may reflect 

such diminished internal awareness in the UWS PET- patients. To that end, 

future endeavours should investigate the modulatory effects and the possible 

predictive power of such modulations in other resting state networks, such as the 

CEN.  

However, changes in the physiological state of the frontoparietal network 

alter not only consciousness but also several other brain functions such as 

vigilance and attention (Hohwy, 2009; Koch et al., 2016a). Moreover, the 

specific areas of the DMN have been associated with specific cognitive 

functions; for example, the frontal areas seem to be important for self-reference, 

whereas the precuneus/PCC in autobiographical memory (Whitfield-Gabrieli et 

al., 2011). It remains a possibility that the found modulations in the DMN reflect 

changes also in other cognitive functions, rather than in consciousness alone.  
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It is important to bear in mind that DoC patients typically suffer 

from widespread structural brain damage often accompanied by distributed white 

matter anomalies (Annen et al., 2018; Fernández-Espejo et al., 2012; Tshibanda 

et al., 2009). Hence, it is important to consider the feasibility and validity of 

applying DCM to DoC patients; this is particularly true for DCM for EEG which 

requires the specification of the anatomical locations of the nodes/sources a 

priori, and with patients with non-traumatic aetiology, e.g. patients with anoxic 

brain damage (see King et al., 2011 and Boly et al., 2011). Here, we mitigated 

these concerns first by limiting our modelling to DMN, a resting state network 

previously associated with disorders of consciousness in patients (Boly et al., 

2008, 2009; Crone et al., 2011, 2015; Fernández-Espejo et al., 2012; Heine et al., 

2012; Laureys et al., 1999; Laureys, 2005; Vanhaudenhuyse et al., 2010) and 

with changes in the conscious state e.g. due to anaesthesia (Boveroux et al., 2010; 

Greicius et al., 2008; Stamatakis, Adapa, Absalom, & Menon, 2010) and sleep 

(Horovitz et al., 2009). 

Second, we selected only patients with traumatic brain injury; traumatic 

aetiology, as compared to non-traumatic aetiology, has been associated with 

more focal injury centred often on areas susceptible to rotational forces, such as 

the brainstem, midbrain, thalamus, hypothalamus, cerebellum, and posterior 

corpus callosum (Guldenmund, Soddu, et al., 2016; Newcombe et al., 2010). 

Third, we applied a special case of Bayesian model selection (BMS), Bayesian 

model reduction (BMR) to invert multiple nested models from a single, fully 

connected DMN (see Methods). A particular advantage here is that BMR can be 

applied using an explanatory approach, in which no strong a priori hypotheses 
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about the model parameters are needed. This enables a greedy search to compare 

the negative free energies of the reduced (nested) models by iteratively 

discarding parameters that do not contribute to the free energy. The procedure 

stops when discarding any parameters starts to decrease the negative free energy, 

returning the model that most effectively trades-off goodness of fit and model 

complexity in explaining the data. BMR applied in this way allows one to 

estimate a large model space from a single, specified full model in a relatively 

short period of time (Friston & Penny, 2011; Rosa et al., 2012; Zeidman et al., 

2019).  

Nevertheless, it is possible that not all true influences on the specific regions 

are captured by the specified full model. Moreover, the explanatory approach to 

BMR is conducted under the assumption that all reduced models are equally 

probable a priori, and thus, the full model should only contain parameters that are 

biologically plausible. Here, we cannot exclude physical damage to cortical areas 

and pathways crucial to the functioning of the DMN.  

That said, our aim was not to make any strong claims about the “true” model; 

to draw stronger conclusions about the “true” underlying neuronal basis using 

DCM for EEG, structural MRI imaging assessing the extent of the damage in 

specific patients, possibly in adjunct with source localisation of the EEG signals, 

should be applied. Here, the aim was to demonstrate and to compare the 

predictive performance of effective connectivity in the clinical context. 

Additionally, demonstrating predictive value with significant generalisation 
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performance with cross-validation, the level of confidence we can ascribe to our 

modelling results increases.  

 

6.4.2 Leave-one-subject/state-out cross-validation (LOSOCV) 

To test whether the effective connectivity modulations were consistent 

enough across the patient groups and healthy controls to reliably distinguish the 

groups from each other, we first conducted a leave-one-subject-out cross-

validation based on hypothesis- (full DMN, frontoparietal, and parietal subsets; 

figure 6.7) and data-driven subsets of connections (figure 6.8). Amongst the 

connection subsets, the frontoparietal connections performed the best, classifying 

a majority of controls and MCS+, and around half of the UWS patients correctly 

in the healthy controls vs. UWS PET- and in MCS+ vs. UWS PET- contrasts. 

The full DMN and parietal subsets clustered most of the subjects around the 

chance level in all three contrasts. 

We then moved to a data-driven approach in which we first predicted the 

patient group membership based on the connection with the largest reduction in 

PEB, one at a time, working through all connections. It is important to note 

that searching for the best connection in this way increases the risk of overfitting 

the model by potentially extracting some of the residual variation – noise – as if 

representing the underlying model structure. However, the congruence between 

the present results and those discussed in chapters 4 and 5, and the fact that the 

best model generalised to an unseen dataset suggest that the results may reflect a 

genuine effect (see below). 
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With the data-driven approach, the bi-directional left frontoparietal 

connectivity produced the best predictions, especially when classifying the UWS 

PET- from both, healthy controls and the MCS+ patients. The single best 

performing connection was the backward frontoparietal connectivity (figure 6.8). 

Not surprisingly, the classifications were more accurate and consistent with 

healthy controls than with patients; classifications of patients suffering from 

brain damage, and thus, from disrupted brain functioning, were expected to vary 

more than those of healthy controls. Next, we combined the single connections 

into data-driven subsets based on the classification performance: none of the 

combinations improved the performance of the single connections. Last, the 

predictive power of DCM modelling was generalised in two more difficult 

classification problems; following the hypothesis- and data-driven approaches 

above, we trained each model on healthy controls or MCS+ on the one hand, and 

UWS PET- patients on the other, and then tested the models on the previously 

unseen, “covertly aware” UWS PET+ patients. The hypothesis-driven subsets did 

not classify the UWS PET+ patients as controls or MCS+. Crucially, with the 

data-driven approach, the left backward frontoparietal connection produced 

nearly perfect predictions classifying all five patients as either controls or MCS+ 

rather than UWS PET- patients. 

While the results of the cross-validation should be interpreted with caution 

due to the relatively low number of subjects in our study, the results highlight the 

importance of the frontoparietal connectivity – particularly the left-lateralised 

backward connectivity – when predicting individual states of consciousness. 

Although direct comparison between the present results and the predictions made 
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in chapter 4 with DoC patients is difficult due to the methodological differences 

(e.g. EEG signal at the level of electrodes in chp. 4 vs. source level signal, 

functional vs. effective connectivity, UWS PET+ not distinguished from UWS 

PET- in chp. 4), we highlight that the present results align with and expand those 

presented in the previous chapter. Specifically, in chapter 4 we established 

predictive value of the left-hemisphere functional connectivity in DoC patients; 

the left-lateralised alpha-band connectivity – but not the right – significantly 

distinguished not only the UWS patients from MCS patients and healthy controls, 

but also implied a distinction between MCS- and MCS+ patients (as calculated 

with debiased weighted phase-lag index; see chapter 4). Here, using effective 

connectivity, we showed complementary predictions distinguishing DoC groups 

from controls and from each other at the level of the brain sources in the left 

hemisphere. 

Similarly, the cross-validation results in chapter 5 highlighted the importance 

of frontoparietal connections in distinguishing loss of consciousness due to 

propofol-anaesthesia from behavioural responsiveness. As in the present chapter, 

the best prediction performance in anaesthetised participants was associated with 

frontoparietal connectivity within the DMN. The modelling results from PEB, 

however, indicated higher relative importance for the posterior hot zone in 

anaesthetised participants in comparison to the PEB results in the present chapter.  

The importance of frontoparietal connections within the DMN for 

dissociating states of consciousness in DoC patients is perhaps not surprising 

given the previously established association between conscious awareness and 
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the DMN (e.g. Boly et al., 2008, 2009; Boveroux et al., 2010; Vanhaudenhuyse 

et al., 2010). More specifically, consciousness is thought to require brain-wide 

broadcasting of information by a “global workspace” associated with brain areas 

within the frontoparietal network (Baars, 1988; 1997; Dehaene et al., 2011). It is 

important to note, however, that the global neuronal workspace theory (GNW) is 

not a localisationist approach but rather posits a distributed “router” for conscious 

access (ibid.). The extensive and rapid bidirectional connectivity between the 

hubs of the GNW is thought to trigger the sudden collective and coordinated 

activity mediating global broadcasting (Mashour et al., 2020). Aptly, these hubs 

initially included the prefrontal cortex and parietal cortex (in combination with a 

set of specialized and modular perceptual, motor, memory, evaluative, and 

attentional processors) although it has later been complemented with other, 

potentially equally important hubs (such as the anterior and posterior cingulate 

and the precuneus). The observation that the changes in the long-range 

frontoparietal connectivity best predicts the state of consciousness is in 

accordance with the suggested importance of the connectivity between the hubs 

in the GNW. This is in contrast with the more restricted, content-specific neural 

correlates of consciousness often associated with the posterior hot zone (Koch et 

al., 2016a). 

However, it is important to keep in mind that presumably, when the patient 

becomes “more” conscious, different content becomes more globally available 

for conscious processing throughout the brain, affecting and employing different 

cognitive systems (Hohwy, 2009). In other words, any major changes in the 

physiological state alter not only consciousness but other cognitive systems as 
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well, many of which depend on levels of arousal-promoting neuromodulators 

(ibid.). Therefore, it remains possible that the predictive performance of the 

frontoparietal effective connectivity is related not only to the state of 

consciousness, but also to other arousal-related cognitive processes.  

In summary, our results indicate a key difference between healthy controls or 

conscious patients and completely unresponsive patients in left-lateralised 

backward frontoparietal connectivity. With out-of-sample cross-validation, we 

demonstrated that this association is robust enough to not only distinguish patient 

groups from each other, but also generalises to an unseen data subset, collected 

from seemingly unresponsive patients. These results contribute towards 

identifying specific alterations in network interaction after severe brain injury, 

and importantly, suggest clinical utility of EEG-based effective connectivity in 

identifying covertly aware patients who seem behaviourally unresponsive. 
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7. General discussion 

 

Over the previous chapters, we have described research exploring a key 

challenge in neuroscience: how does the brain sustain and lose consciousness, 

and further, how are the brain networks affected during unconsciousness? In 

recent years, it has been assumed that prefrontal cortex is essential for conscious 

experience, either alone (Del Cul et al., 2009) or in conjunction with parietal 

areas (Bor & Seth, 2012; Laureys & Schiff, 2012). More recently, this 

assumption has been called into question, and temporo-parieto-occipital areas – 

colloquially named as the posterior hot zone – have been suggested to primarily 

mediate conscious experience. Under this view, frontal activation is associated 

primarily with cognitive processes subsequent to conscious experience, such as 

attention and working memory (Boly et al., 2017; Koch et al., 2016a). Here, in 

chapters 3 and 5, we provided novel evidence supporting the importance of the 

posterior areas; we contrasted unconsciousness due to propofol anaesthesia with 

normal wakefulness and characterised the differences with functional and 

effective connectivity. We found the posterior electrodes (at the scalp level) to 

best predict various indirect measures of consciousness. In the dynamic causal 

models (DCM) best explaining the difference between normal wakefulness and 

unconsciousness, most reductions were observed within the posterior hot zone, 

between posterior neuronal sources. This was true particularly for the default 

mode network, and for the large model combining three key resting state 

networks. 
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In parallel to theoretical considerations of how consciousness is sustained or 

lost and what are the full neural correlates of consciousness (NCC), an equally 

important approach concerns the practicality of the current proxies for 

consciousness – this is particularly important in the clinical context. Assessing 

the depth of anaesthesia or consciousness in brain-damaged patients robustly is 

critical as this may have far-reaching consequences in each individual case, for 

example, when making decisions regarding life-sustaining treatment (Buckley et 

al., 2004; Demertzi et al., 2013; Kuehlmeyer et al., 2014) and in diagnostic 

precision (Peterson, Cruse, Naci, Weijer, & Owen, 2015). Previous research has 

suggested that states such as disorders of consciousness (DoC) and anaesthetic-

induced loss of consciousness (LOC) can be distinguished with neuroimaging 

(e.g. Bonhomme et al., 2019; Crone et al., 2014; Guldenmund et al., 2016; 

Laureys et al., 1999). Moreover, these states can be distinguished and predicted 

from EEG (Chennu et al., 2016; Deng et al., 2019; Engemann et al., 2018; Sitt et 

al., 2014; Zhang et al., 2020).  

Hence, in chapter 5, we adapted a standard approach in computational 

statistics, leave-one-subject-out cross-validation (LOSOCV), to first, validate our 

effective connectivity modelling work, and second, to produce novel effective 

connectivity-based predictions of propofol-induced LOC. We observed that the 

frontoparietal effective connectivity best predicted the state of consciousness for 

the left-out participants. We further generalised this finding to unseen datasets 

consisting of recordings captured during the recovery phase. The fact that we 

observed the most consistent modulations with large enough effect sizes to 
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predict the state of consciousness in frontoparietal effective connectivity supports 

a role for frontal areas in maintaining wakeful conscious processing. 

Further evidence supporting a crucial role for long-range frontoparietal 

connections in alterations of consciousness were provided in chapters 4 and 6. 

Here, we estimated functional and effective connectivity and their respective 

predictive power in patients suffering from disorders of consciousness. In chapter 

4, we provided evidence for hemisphere-specific predictive power of functional 

connectivity; particularly left-hemisphere connectivity, but not right, predicted 

the DoC states. Going further, by contrasting patients assumed to be fully 

unaware with clinical states characterised by gradually progressing behavioural 

signs of consciousness, we provided evidence for a selective difference in 

frontoparietal connections, particularly in the left-hemisphere backward effective 

connectivity. Using the LOSOCV paradigm, we – for the first time – showed that 

not only did the left frontoparietal connectivity best explain the difference 

between the DoC patients, but also that the difference was large and consistent 

enough to distinguish the patient groups from each other. Crucially, we 

generalised this finding to an unseen group of potentially “covertly aware” 

patients distinguished by their underlying PET metabolism. 

In what follows, we will examine the robustness of these results, reflect on 

them in light of previous related findings and theories, and speculate about the 

theoretical and practical implications. Further, we discuss the limitations of this 

research and how this work may inform the current state of consciousness 

research and suggest some potential directions for moving forward. Overall, by 
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modelling and contrasting data from two altered states of consciousness, we have 

provided novel insights into the brain dynamics underlying transitions between 

altered states of consciousness and highlighted the value of tracking these 

dynamics in a clinical context. DCM, though computationally more 

expensive, can accurately predict states of consciousness and provide causal 

explanations of the brain dynamics that cannot be inferred from functional 

connectivity alone. Functional connectivity, though correlational, is still an 

accurate predictive tool of altered states of consciousness. With clinically 

challenging, ambiguous cases like potentially covertly aware patients, we 

propose that the causal explanations and accurate predictions of DCM modelling 

could outweigh the computational complexity. 

7.1 Robustness of the results – a 2-by-2 approach 

Before considering our results in the wider context of the field, it is worth 

spending some time considering the robustness of our results. When studying 

complex cognitive processing, it is crucial to take into account not only research 

reflecting different perspectives, but also studies conducted with different 

methods. Critically, a null finding obtained with a particular method at a 

particular time – an absence of evidence for an effect – does not necessarily 

imply there is evidence for an absence of the effect, and thus, needs to be treated 

with caution. This is, of course, also true in science more generally.  

Relevant to our results, the ongoing debates of the role of attention (Cohen, 

Cavanagh, Chun, & Nakayama, 2012; Koch & Tsuchiya, 2007; Pitts, 

Lutsyshyna, & Hillyard, 2018) and the frontal cortex in consciousness (Koch et 
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al., 2016a; Odegaard, Knight, & Lau, 2017) pinpoint a multitude of examples 

highlighting the importance of using multi-scale and multi-modal approaches to 

produce more integrated accounts of the underlying neural mechanisms. For 

example, “classic” frontal lesion case studies (e.g. Brickner, 1952; Fulton, 1949; 

Hebb & Penfield, 1940) are often (indirectly) cited as evidence when arguing 

against the role of prefrontal cortex (PFC) in consciousness (as, for example, in 

Koch et al., 2016a). However, as discussed in Odegaard et al. (2017), not only 

are important details about the extent of lesions often overlooked, more recent 

investigations of prefrontal lesions (Del Cul et al., 2009; Fleming, Ryu, Golfinos, 

& Blackmon, 2014) and short-term prefrontal impairments induced with 

transcranial magnetic stimulation (Rounis, Maniscalco, Rothwell, Passingham, & 

Lau, 2010) have suggested that even incomplete PFC lesions can impact 

subjective perceptual experiences. Hence, the argument goes, making strong 

claims about consciousness based on individual case studies can be problematic. 

Therefore, integrating information from multi-scale and multi-modal approaches 

should be the aim, for example, when investigating the neural mechanisms in 

DoC (Luppi et al., 2021). 

We fully agree with these views and in our attempt to include heterogeneity 

in this research, we adopted a 2-by-2 approach, estimating both functional (FC) 

and effective connectivity (EC) in altered states of consciousness induced by 

propofol-anaesthesia and DoC. Here, FC is defined as undirected statistical 

dependence among distant neurophysiological events (Razi & Friston, 2016). 

Although correlational, FC can track how information and functional properties 

are shared between distant brain regions, and hence, it can be used as a biomarker 
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based on which the group from which a particular subject was sampled can be 

predicted or classified (as indeed we have done in chapters 3 and 4). The 

resulting classification, however, does not test any hypothesis about differences 

in the underlying brain coupling, as such classification problems establish a 

mapping from physiological consequences to a categorical cause (i.e. to a 

diagnostic class). This is in contrast to generative models, such as DCM, 

mapping from causes to consequences through hidden neurophysiological states 

(Friston, 2011). By comparing models of coupling among hidden brain states, 

generative models of effective connectivity can provide causal explanations of 

the brain dynamics, such that cannot be inferred from functional connectivity 

alone. 

By focusing on the possible overlaps and dissociations in the results between 

the two measures of connectivity on the one hand, and between the two altered 

states of consciousness on the other, the level of confidence we can ascribe to our 

results increases. To this end, in chapter 3, we found baseline FC especially in the 

posterior electrodes best predicted propofol-induced loss of consciousness as 

measured with slow-wave activation saturation and loss of behavioural 

responsiveness. Correspondingly, at the level of neuronal sources in chapter 5, 

we found largest reductions in effective connectivity between normal 

wakefulness and LOC between sources in the posterior areas. It should be noted, 

though, that the measured scalp-level signal in posterior electrodes does not 

necessarily reflect underlying activity in posterior cortical areas, as the accuracy 

of the source localisation is affected by a number of factors (such as head-

modelling errors, source-modelling errors, and EEG noise; Grech et al., 2008). 
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Nonetheless, anaesthetic-induced LOC was associated especially with 

connectivity changes in the posterior electrodes and sources. Taken together, 

these results support the suggested pivotal role for the posterior hot-zone of 

consciousness, previously observed in sleep (Siclari et al., 2017; Lee et al., 2019) 

and in patients with brain damage (Vanhaudenhuyse et al., 2010; Wu et al., 

2015).  

Overlapping results were observed also in DoC patients. The results in 

chapter 4 suggested that left-hemisphere alpha-band FC, and not right, predicted 

DoC groups at the level of scalp electrodes. Complementary to this, between 

DoC groups, the largest reduction in EC was observed in the left-hemisphere 

backward connection from medial prefrontal cortex to left parietal cortex. 

Moreover, connectivity from frontal to left parietal cortex was the single best 

predictor for the DoC groups and this result further generalised to an unseen 

dataset of potentially covertly aware unresponsive wakefulness syndrome (UWS) 

patients. Taken together, these results identify specific alterations in brain 

networks after severe injury, and further, highlight the clinical utility of EEG-

based measurement of effective connectivity for identifying covert 

consciousness. 

We also observed disconnects in the results within the methodological 

paradigms. Between the results in chapters 3 and 5, although the propofol-

induced LOC was associated specifically with changes in connectivity in the 

posterior electrodes and sources, the best predictor for the state of consciousness 

at the neuronal source level was not localised between the posterior nodes. 
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Rather, in chapter 5, frontoparietal connectivity was found to be the best 

predictor for the state of consciousness and this result generalised into an unseen 

dataset from a recovery-state. In chapter 3, at the level of electrodes, 

frontoparietal baseline connectivity did significantly predict some of the slow-

wave activity related measures, but to a lesser degree than when predicted from 

posterior electrodes only. 

In chapter 6, we observed the largest reduction in left-hemisphere 

frontoparietal effective connectivity when comparing UWS PET- patients to 

healthy controls or to patients in minimally conscious state (MCS+). However, 

when comparing MCS+ patients to healthy controls, the largest reductions were 

observed in the connectivity between the posterior nodes. This was true also for 

the predictive power: left frontoparietal connectivity best predicted the groups 

when comparing UWS PET- to either healthy controls or MCS+, but did not 

produce accurate predictions for MCS+ vs. healthy controls comparison.  

This is potentially an interesting observation as the posterior hot zone has 

been argued to relate more with phenomenological consciousness – i.e. with the 

subjective content of consciousness (Boly et al., 2017) – rather than with 

cognitive consciousness (access-consciousness; Block, 1995). The neural 

correlates of access-consciousness have been argued to constitute a widespread 

global workspace including frontal, posterior, and temporal cortices (e.g. 

Dehaene & Changeux, 2004; Mashour et al., 2020). On the other hand, the 

posterior hot zone has been argued to consist of the key areas for 

phenomenological consciousness and frontal areas to reflect neural processes 
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subsequent to consciousness, such as selective attention, working memory, and 

task reporting (Boly et al., 2017; Koch et al., 2016a). One might speculate that 

the observed modulations when comparing clearly conscious patients (MCS+) to 

healthy controls does not reflect sufficient difference in access-consciousness to 

reliably distinguish the states based on frontoparietal connectivity. This is in 

contrast to comparisons between presumably fully unconscious patients (UWS 

PET-) and MCS+ or controls, where frontoparietal connections were modulated 

the most and produced the best predictions. We will come back to this point later 

in this chapter and consider these results in conjunction with the observations 

from propofol anaesthesia providing a prime example for the usefulness of 

integrating results from different methodologies and domains. 

 

7.2 Considerations about the chosen methods 

Parallel to such broad considerations of the robustness of the results in 

relation to the chosen methodological approach, there are also a number of more 

limited complications in relation to the used methods. For example, in chapters 3 

and 4, we performed linear multivariate and linear multiple regressions, 

respectively, to predict the state of consciousness. However, it is not obvious that 

such an assumption of linearity is justified; this is probably more true for the 

DoC (chapter 4) than for anaesthetic-induced LOC in that it is far from clear 

what a linear “increase” in consciousness (when moving from coma to UWS to 

MCS to neurotypical wakefulness) is supposed to mean (Bayne et al., 2016). 

Nonetheless, progression in DoC is commonly characterised by alterations in 
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arousal and/or awareness in a quasi-linear fashion (Laureys, 2005). Previous 

studies have suggested that progression in DoC can – from a simple perspective – 

be characterised and classified in a linear fashion from EEG (Chennu et al., 2017; 

Sitt et al., 2014). Similarly, although assuming such linear relationships is a 

limitation here, we were able to predict state of consciousness both in anaesthesia 

and in DoC regardless of the assumption. 

What about our DCM modelling results – can we trust that we have obtained 

the “true” underlying model in our observations? In short, no. To begin with, in 

DCM for EEG, the specification of the anatomical locations of the nodes/sources 

are required a priori. Performing source localisation first and DCM second, 

would increase the likelihood of estimating the connectivity between “true” 

sources of brain activity. Here, optimally, individual MRIs should be used as the 

basis for the head model, and as discussed in detail in chapter 6, this would be 

especially important in the case of patients with damaged brains. That said, we 

chose our methodology in chapters 5 and 6 to best mitigate these issues (for 

detailed description of the mitigating factors, see chapters 5 and 6). For example, 

we modelled only well-known resting state networks previously associated with 

alterations in consciousness, used parametric empirical Bayes with Bayesian 

model reduction (BMR) to avoid making strong, a priori, hypotheses about the 
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changes in the connectivity, and restricted our DoC sample to patients with 

traumatic brain injury.6 

Second, it is important to understand that the best model identified by 

Bayesian model selection (here, BMR) is only the best model among the models 

tested. It may be that sources outside of our model space – and hence, missed in 

our analysis – contributed towards conscious awareness. Moreover, simulation 

studies have shown that Bayesian model selection may favour more complex 

models than the one actually generating the data (Litvak et al., 2019). This latter 

point is a concern especially in chapter 5 with the large model, as the implicit 

bias in DCM is towards non-sparse models (although, a model with small 

modulations of a large number of parameters may also be less complex than a 

model with large modulations of a few parameters. See Litvak et al. (2019) for 

details). 

For these reasons, in conjunction with an appetite to obtain practically useful 

results, we applied a novel DCM-based cross-validation to establish the 

predictive validity of our models. The observed accurate prediction performance 

with cross-validation in both propofol anaesthesia and DoC data increased the 

level of confidence we can ascribe to our modelling results. Furthermore, we 

demonstrated generalisation of this predictive power in unseen data sets from the 

                                                 
6 

Traumatic brain injury (TBI) has been associated with more focal injury centred often in deeper 

brain areas rather than in the cortex (Guldenmund, Soddu, et al., 2016; Newcombe et al., 2010). 
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post-anaesthetic recovery state and potentially covertly aware patients. These 

results indicated that effective EEG connectivity could be used to track 

anaesthetic states and to potentially identify covertly aware patients who seem 

behaviourally unresponsive. Hence, the use of effective connectivity estimation 

in conjunction with cross-validation and behavioural assessments, could 

potentially reduce the diagnostic error with patients and provide more accurate 

estimations of the depth of anaesthesia.  

The benefit of using cross-validation and especially demonstrating 

generalisation to unseen data becomes even more prominent when considering 

our relatively small sample sizes in chapters 5 and 6 (with N = 10 in propofol 

anaesthesia and N = 6, N = 5, and N = 12 in UWS PET-, UWS PET+ and MCS+ 

patients, respectively). The fact that the predictive power generalised to unseen 

data – if not anything else – speaks to the aphorism “all models are wrong but 

some are useful” (Box, 1976) and indicates practical efficacy of our modelling 

work that could potentially be used in the clinical context.  

Nonetheless, to make stronger claims about the underlying brain networks, 

these results should first be reproduced and validated. This is particularly 

important under the current replicability crisis in which the results of many 

pivotal studies where sample sizes typical for e.g. neuroimaging studies, have 

turned out to be underpowered, and therefore difficult or indeed impossible (to 
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date) to reproduce.7 Applying cross-validation with generalisation to unseen data 

can mitigate such concerns of replicability, but does not replace the key part of 

the scientific method that is reproducibility. 

 

7.3 Validity in measuring consciousness 

Another limitation worth mentioning is the problem of coordination (in 

relation to consciousness, see Michel, 2019). That is, whether the measurement 

procedure used actually measures what it is intended to measure. Here, with 

anaesthesia, we used responsiveness – or lack thereof – as a proxy for 

consciousness, although, for example, dreaming and dream-like states in 

anaesthesia indicate that unresponsiveness does not necessarily indicate 

unconsciousness (Leslie, 2017; Leslie et al., 2009; Nir & Tononi, 2010;  Noreika 

et al., 2011; Radek et al., 2018). Similarly, the DoC diagnoses were based on the 

currently most sensitive behavioural scale to disentangle the DoC groups from 

each other (Coma Recovery Scale-Revised; Giacino, Kalmar, & Whyte, 2004; 

Seel et al., 2010). However, the extent to which these behavioural measures 

capture changes in consciousness is unknown – and unknowable until, of course, 

objective and robust measures of consciousness are established against which the 

behavioural outcomes can be reflected. And therein lies the problem; we cannot 

know if we measure what we intent to measure without access to a robust and 

                                                 
7
 This crisis has been most frequently discussed in relation to the fields of psychology and medicine, 

but concerns sciences more generally (Baker, 2016; Pashler & Wagenmakers, 2012). 
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reliable measure. This circularity is an issue in science more generally, and not 

just with the problem of consciousness. Luckily, this problem has been overcome 

in the past (Chang, 2004). One way – and perhaps the only way – to solve the 

issue is to accept that we need to start with some (reasonable) assumptions about 

the validity of the measures. Once more evidence is gathered, the precision of 

these measures can be increased, for example, via forming predictions based on 

the assumed validity, testing the measurement in an experimental setting, and by 

making adjustments to improve the accuracy of the predictions. Here, model 

recovery analyses can make an important contribution by providing a ground-

truth, albeit a “simulated” one (Wilson & Collins, 2019). 

We do acknowledge the problems in assuming ground truths about the state 

of consciousness based on behaviour. However, as discussed in more detail in 

section 2.6.5, assessments of conscious experiences are commonly inferred from 

behavioural activity and responsiveness (as we are only privy to our own 

subjective experience of consciousness). This is especially true in the clinical 

setting, where behavioural responsiveness is the first and most common assay of 

consciousness. Moreover, assessments of behavioural responsiveness 

approximate the intermediary stages by probing the particular stage where 

responsiveness is lost. Finally, behavioural markers of consciousness in general 

have been shown to be useful in practice; for example, the Coma Recovery Scale 

has been shown to correlate with the prognosis of DoC patients (Bruno et al., 

2012; Giacino, Fins, Laureys, & Schiff, 2014). Therefore, our starting point was 

to accept the assumption that behavioural responsiveness approximates conscious 

processing and that it can be used as an objective measure to indicate the 
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presence or lack of consciousness (for more detailed discussion, see section 

2.6.5). 

Overall, both the integration of results crossing two altered states of 

consciousness with two analytical methods for measuring the associated changes 

in the brain, and the utilisation of cross-validation increases the level of 

confidence we can ascribe to our results. Even allowing that our modelling 

results are necessarily wrong (Box, 1976), our results indicate usefulness in 

practical (clinical) context. In the next section, we leave the consideration of the 

robustness of our results aside and instead, discuss our observations in relation to 

prominent theories of consciousness and to previous findings.    

 

7.4 The main findings in relation to Global Neuronal Workspace and 

Integrated Information Theory 

Assuming that our results are true, what new can we say about 

consciousness? With the risk of losing the interest of hard idealists, this work 

does not directly provide any new insights into the mechanisms of 

phenomenological consciousness (i.e. towards solving the hard problem; 

Chalmers, 1995). We do, however, provide novel insights towards the real 

problem of consciousness (Seth, 2016) and contribute to the debate about 

whether the anterior parts of the brain are necessary for conscious experience.  

A straightforward interpretation of our effective connectivity results supports 

the globalist over the localist dogma of consciousness; long-range frontoparietal 

connectivity had the best predictive power of the state in anaesthetic-induced 
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LOC and DoC. Moreover, a key difference was observed between healthy 

controls or conscious patients and completely unresponsive patients in left-

lateralised backward frontoparietal connectivity. In propofol anaesthesia, our 

results highlighted the relative importance of DMN over salience and central 

executive networks: we observed a selective breakdown of the DMN with 

decreases in effective connectivity to and from PCC/precuneus, including the 

medial prefrontal connectivity (although importantly, most of the reductions were 

located between nodes located within the posterior hot zone). These results – 

especially the modelling results with DoC and cross-validation results in both of 

the investigated altered states of consciousness – are consistent with the notion 

that conscious processing requires a brain-wide “global workspace” that 

constitute a widespread network in the frontal, parietal, and temporal cortices 

(Dehaene et al., 1998; Dehaene & Changeux, 2011; Dehaene et al., 2011). 

According to the group of Dehaene and Changeaux, Global Neuronal 

Workspace Theory (GNWT) is limited to neural correlates of access 

consciousness (AC; Dehaene & Changeux, 2004; Mashour et al., 2020) instead 

of the more elusive phenomenological consciousness (PC; Block, 1995). 

Consciousness is postulated to closely relate to mechanisms of attention, working 

memory (Dehaene & Changeux, 2004), and metacognition (Dehaene, Lau, & 

Kouider, 2017). Although, according to a recent review, the involvement of 

consciousness in such mechanisms is considered indirect and the mechanisms 

distinct (Mashour et al., 2020).  
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On the other hand, Tononi’s group is predominantly involved with 

identifying the neural correlates of PC (subjective consciousness); these consist 

of the cortical areas sustaining the neural mechanisms for any particular 

phenomenal contents within consciousness, “such as colors, faces, places, or 

thoughts” (Boly et al., 2017). According to Integrated Information Theory (IIT), 

consciousness requires the potential for widespread interactions between the 

neural correlates of PC, that form an integrated network in the cortex, 

complemented by information and exclusion (Oizumi et al., 2014). In IIT, no 

claims are made about the necessary brain areas for such an integration of 

information. Hence, the reductions we observed in frontoparietal connectivity can 

loosely be interpreted in support of IIT (i.e. reduced integration). Connectivity, 

and especially effective connectivity, can be viewed to reflect how information 

from different specialised systems is integrated in the cortex (Friston, 2011). 

Nonetheless, despite the fact that the integrated network generating the qualia 

of wakeful consciousness at any given time is considered to be dynamic (Oizumi 

et al., 2014), Tononi and collaborators consider the posterior hot zone (temporo-

parieto-occipital areas) as essential for consciousness. Crucially, the frontal areas 

are left outside of the neural correlates of consciousness (Boly et al., 2017; Koch 

et al., 2016a). Our results with functional (chapter 3) and effective (chapter 5) 

connectivity can be interpreted to support the key-role of the posterior hot zone. 

In chapter 3, the posterior electrodes (at the scalp level) best predicted various 

indirect measures of consciousness. Although without source localisation, we 

cannot know where the activity originated from (Michel et al., 2004), the 

posterior connectivity provided more reliable predictions than, for example, 
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connectivity between frontal and parietal electrodes. Moreover, in chapter 5, we 

observed most reductions in effective connectivity between posterior neuronal 

sources in the model best explaining the difference between normal wakefulness 

and unconsciousness. 

Taken together, on the one hand our results support GNWT in that long-range 

frontoparietal connectivity was found to play a pivotal role in explaining and 

predicting the difference between wakeful consciousness and the two altered 

states. On the other, with propofol-anaesthesia and when contrasting conscious 

patients (MCS+) with healthy controls, most reductions in effective connectivity 

were located within the posterior hot zone. In what follows, we speculate how 

these observations might align with GNWT and IIT, and contribute to the debate 

about whether the neural correlates of consciousness have an anterior component 

(Bor & Seth, 2012; Del Cul et al., 2009; Laureys & Schiff, 2012) or are 

predominantly posterior (Boly et al., 2017; Koch et al., 2016a; Koch et al., 

2016b; Siclari et al., 2017). 

 

7.4.1 Access vs. phenomenological consciousness 

For speculation’s sake, let’s assume, as has been argued, that GNWT indeed 

relates to neural correlates of AC (Dehaene & Changeux, 2004; Mashour et al., 

2020) and the posterior hot zone to neural correlates of PC (Boly et al., 2017; 

Koch et al., 2016a). Under these assumptions, it is reasonable to think that 

effective connectivity reflecting AC necessitates involvement of prefrontal 

cortex, while PC would relate more to the connectivity between posterior nodes 
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(for more detailed specification and comparison of the related areas, see Frigato, 

2021). If true, our results suggest that changes in the neural mechanisms that 

relate to access-consciousness are better for predicting the state of consciousness 

in both, DoC and propofol-anaesthesia. In other words, with these data, there 

were consistent group-level changes (with large enough effect sizes) in cognitive 

processes that relate to consciously accessible information, such that the state of 

consciousness in unseen data could be reliably predicted. When comparing 

unconscious DoC patients to healthy controls or to conscious patients, we 

similarly observed the key-difference in AC-related connectivity between the 

frontoparietal nodes, while no reduction between the nodes in the posterior hot 

zone.8 To continue with the speculation, assuming that PC indeed relates to the 

posterior hot zone, these findings are consistent with the notion of possible 

residual phenomenological consciousness in some seemingly unaware patients.  

When comparing conscious patients to healthy controls, we did not observe 

reductions in effective connectivity involving nodes in the prefrontal cortex. In 

other words, we did not observe any connectivity-related markers of diminished 

                                                 
8
 Note that here we applied a relatively strict criterion (>= .99 posterior probability) for the 

connectivity modulations to be included in the most parsimonious model that best explains the data. 

Such a threshold helps focusing on the most probable effects in the model. Removing the threshold 

criterion, one reduction when comparing UWS PET- and controls, and two reductions when 

comparing UWS PET- and MCS+ were observed between the posterior nodes (see figure 6.6). 

However, in addition to the relatively lower probability of the effects being present in the most 

parsimonious model, the corresponding effect sizes were clearly smaller than in the frontoparietal 

reduction. 
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AC between MCS+ patients and healthy controls. This is consistent with the 

diagnostic criteria of MCS+ (e.g. capability for command following, intelligible 

verbalisation or gestures with intentional communication) and with the evidence 

of less functional disability differentiating these patients from UWS and MCS- 

patients (Thibaut, Bodien, Laureys, & Giacino, 2020).  

To finish with the speculation, with propofol anaesthesia, we observed most 

of the reductions within the posterior hot zone, which – following the above 

reasoning – could be interpreted to reflect diminished PC, and hence, possibly 

abolished subjective experience all together. However, we similarly observed 

reductions in posterior hot zone connectivity when comparing conscious patients 

and healthy controls. This observation, coupled with not observing reduced 

frontoparietal connectivity, would be difficult to explain under the assumptions 

of relating AC directly to an involved anterior component and PC to posterior hot 

zone. If we take decreases in posterior effective connectivity to reflect 

diminished PC, we would not expect to see such connectivity reductions in 

conscious patients compared to healthy controls, but not with unconscious 

patients as arguably, conscious patients do have subjective experiences. Hence, it 

may be more useful to withhold from drawing such a confining distinction 

between AC and PC here, and instead follow the suggestion of  Dehaene & 

Naccache (2001) in that “global availability of information (…) is what we 

subjectively experience as a conscious state”. Defining consciousness this way, 

conscious access and phenomenological experience appear together. 
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7.4.2 Is the anterior cortex needed for consciousness? 

The effective connectivity models in chapters 5 and 6 indicated that loss of 

consciousness in anaesthesia and in DoC modulated long-range frontoparietal 

connectivity suggesting a role for an anterior component in the most 

parsimonious model. Regardless of the distinction of consciousness into AC and 

PC, it has been argued that the anterior parts of the brain do not contribute 

towards consciousness per se, but rather, reflect other, subsequent cognitive 

processes such as attention and working memory (Boly et al., 2017; Koch et al., 

2016a). Consequently, one might critically evaluate our interpretations of the 

modelling results and suggest that the involvement of an anterior component 

relates to cognitive processes such as attention, and not directly to consciousness. 

We recognise that this may indeed be the case, as discussed in chapter 5. 

However, it is not clear what consciousness without any such cognitive processes 

might look like. Indeed, subjectively, loss of consciousness does not seem to be a 

binary event, but rather a gradual process with intermediary stages including, for 

example, narrowed attention, decrease of memory, impaired cognition, and lower 
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self-estimated level of consciousness (Esaki & Mashour, 2009; Vaitl et al., 

2005).9 

Evidence suggests that lack of attention can lead to absence of awareness 

(e.g. inattentional blindness; Mack & Rock, 1998; Mack, 2003; change blindness; 

Jensen, Yao, Street, & Simons, 2011; the attentional blink; Dux & Rentḿarois, 

2009; Shapiro, Raymond, & Arnell, 2009). Similarly, evidence obtained with a 

variety of paradigms have indicated that attention can operate or be drawn to 

stimuli without the information ever reaching consciousness (Bola, Paź, 

Doradzińska, & Nowicka, 2021; Bussche, Hughes, Humbeeck, & Reynvoet, 

2010; Finkbeiner & Palermo, 2009; Kentridge, Nijboer, & Heywood, 2008; Koch 

& Tsuchiya, 2007). Going further, numerous authors have claimed a true double 

dissociation between attention and consciousness, suggesting that one may be 

conscious without attention (Block, 2011; Van Boxtel, Tsuchiya, & Koch, 2010; 

Koch, 2004; Koch & Tsuchiya, 2007; Tsuchiya & Koch, 2015). Hypotheses, 

                                                 
9
 Until the beginning of the 21st century, attention and consciousness were commonly viewed as one 

and the same process or at least directly linked with attention providing a gateway to consciousness 

(e.g. Broadbent, 1958; Posner, 1994). In recent decades, attention and its relationship to consciousness 

has provoked more discussion among the cognitive processes argued as subsequent to consciousness. 

Thus, here, we limit our discussion to attention. That is not to say that attention is the only cognitive 

process potentially linked with consciousness. For example, for recent discussions about the 

relationship between consciousness and working memory, see Persuh, Larock, & Berger (2018) and 

Velichkovsky (2017). 
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such as the overflow hypothesis (Block, 2007, 2011), suggest that information 

can “overflow” working memory and attention, and that essentially when 

observing a complex scene, we may be conscious of more than what we can 

think, know, or report about. If we do accept a strong dissociation between 

attention and consciousness, it is indeed possible that the role of frontoparietal 

effective connectivity modulations we observed relates to attention, or some 

other subsequent cognitive processes rather than consciousness. 

It is not clear, however, how conscious processing without the subject having 

any knowledge about that conscious processing differs from truly unconscious 

processing. Certainly, there can be behaviour without any awareness of the 

conscious state. However, if no attention is paid to the state of experience and no 

memory is allocated for this information, the concept of conscious processing 

becomes more obscured. After all, if the subject does not know that they are in a 

conscious state, what then – if anything – does it mean to be conscious? Hence, it 

seems a plausible starting point to assume that for full conscious experience, 

functions such as working memory and attention are needed. To this end, 

increasing amounts of evidence support the view that at least some type of 

attention is required for consciousness (Cohen et al., 2012; Pitts et al., 2018). 

This renders the frontoparietal connections a necessary part of the mechanisms 

required for consciousness (Bor & Seth, 2012; Dehaene & Changeux, 2011; 

Mashour et al., 2020). Therefore, we can conclude that, even if the anterior parts 

of the brain relate to attention, the observed reductions in frontoparietal effective 

connectivity in conjunction with modulations in the posterior hot zone indeed 

seem to have a causal role in explaining the loss of consciousness. 
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7.5 Research findings and clinical utility 

Our results with functional connectivity suggested that baseline alpha- and 

beta-dwPLI, especially when measured from the posterior electrodes, can reliably 

predict loss of consciousness caused by propofol-anaesthesia. Similarly, the 

results hinted predictive power for left hemisphere dwPLI in the alpha-band 

when classifying DoC states. Many factors have been shown to have an effect on 

the patient’s response to anaesthesia: for example, with propofol, demographic 

characteristics such as weight, age, and sex have been associated with differences 

in the response to the drug (Gambús & Trocõniz, 2015; Schnider et al., 1999). 

Indeed, administering the right amount of anaesthetics can be difficult and 

requires continuous attention and care from the clinicians. Hence, a reliable, 

relatively easy to use, cost-effective, and above all, objective, tool that could 

indicate the state of the patient with regards to the amount of anaesthetic drugs 

required before any drugs are administered, would make the clinicians’ task 

easier and could potentially prove to be even lifesaving.  

The results presented in this thesis, in chapter 3 especially, are congruent with 

previous results that have suggested a relationship between baseline functional 

connectivity and individual susceptibility to anaesthesia (Chennu et al., 2016; 

Deng et al., 2019; Zhang et al., 2020). Based on the earlier research findings and 

on the results in this thesis, it is plausible that clinicians could get a real-life 

benefit by profiling the patients based on functional EEG-connectivity prior to 

administering anaesthetics. In order to increase the potential utility, future 
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research should further focus and expand the current knowledge about the 

relationship between baseline connectivity and the depth of anaesthesia and to 

investigate how – if at all – other factors such as anxiety or alertness interact with 

that relationship.  Moreover, validating from where, and at which frequency, the 

susceptibility to anaesthesia can be best predicted would be worthwhile in near 

future.  

It could also prove to be worthwhile to expand this approach beyond mere 

functional connectivity alone. For example, previous research has suggested that 

other phase-synchrony based measures, including multiscale- and phase-lag 

entropy, can not only discriminate DoC states from each other (coma from quasi-

brain-death; Li et al., 2012) but also provide novel insight into the intra-cortical 

information flow within the underlying signal generating system (Ahmed, Li, 

Cao, & Mandic, 2011) and even show promise as an anaesthetic-depth indicator 

similar to what was discussed in chapter 3 (Ki et al., 2019; Shin et al., 2020). 

Moreover, phase-synchrony based measures have been shown to fluctuate in 

people due to, for example, heart failure (Costa, Goldberger, & Peng, 2002), 

Alzheimer’s disease (Hornero, Abásolo, Escudero, & Gómez, 2009), and ageing 

(Takahashi et al., 2009), suggesting that there may be a complexity-loss in 

systems “under stress” (Goldberger et al., 2002).  

As discussed in chapter 3, the patient’s baseline functional state – and by 

extension the patient’s individual susceptibility to anaesthesia – can also vary due 

to similar “stress” (Gambús & Trocõniz, 2015; Hong, Jee, & Luthardt, 2005; Kil 

et al., 2012; Laalou et al., 2010). Hence, it is reasonable to hypothesise a possible 
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correlation between baseline complexity and individual susceptibility to 

anaesthesia, especially as such a relationship between complexity (as measured 

with multi-scale entropy; MSE) and functional connectivity (Pearson correlations 

between spike train time series) exists (Wang et al., 2018). However, as far as we 

can tell, whether anaesthetic depth can be predicted based on baseline MSE is 

still an open question. 

With the DCM models, the observed accurate prediction performance with 

cross-validation in both propofol anaesthesia and DoC data increased the level of 

confidence we could ascribe to our results. The modelling results may potentially 

help researchers to identify the underlying mechanisms causing these states. 

Furthermore, we demonstrated generalisation of the predictive power in unseen 

data sets from the post-anaesthetic recovery state and potentially covertly aware 

patients. These results indicated that effective EEG connectivity could be used to 

track anaesthetic states and to identify potentially covertly aware patients who 

seem behaviourally unresponsive. Hence, the use of effective connectivity 

estimation in conjunction with cross-validation and behavioural assessments, 

could potentially reduce the diagnostic error with patients and provide more 

accurate estimations of the depth of anaesthesia. First, these results should be 

replicated and validated in larger datasets. 

DCM, however, is computationally quite expensive process and furthermore, 

is not straightforward to perform. In other words, carrying out this type of 

analysis with the LOSOCV predictions requires the researcher to invest time and 

effort to master the process and the model fitting process itself can take a lot of 
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time; the procedure may run days or even longer depending on the complexity of 

the specified models. Some of the steps in the process, however, could possibly 

be automated, and it could indeed be a worthwhile project to investigate the 

extent to which such automation is possible, for example, by following the steps 

taken in chapter 5.  

Moreover, with such clinical datasets as used in this thesis, signal noise is a 

common issue (indeed as was the case especially with the DoC data used in 

chapters 4 and 6). This, of course, complicates usage of complex modelling 

procedures, such as DCM, and often careful manual calibration of the process is 

required in order to obtain robustness against noise. Nonetheless, assuming the 

results presented in this thesis are successfully replicated and validated, we do 

think that especially with clinically challenging, ambiguous cases like potentially 

covertly aware patients, producing causal models and performing accurate 

predictions via DCM modelling outweighs the complexity and computational 

cost of the process. 

 

7.6 Future directions 

In what follows, we suggest some future directions that can extend this work 

and the suggestions made in previous chapters. 
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7.6.1 State vs. trait in anaesthetic-induced loss of consciousness  

In chapter 3, we provided evidence for predicting various indirect measures 

of anaesthetic-induced LOC from baseline EEG functional connectivity. We 

discussed how slow-wave activation saturation (SWAS) has been suggested to 

have a sound neurobiological basis, and hence, to potentially represent a 

phenotype of an underlying trait (Warnaby et al., 2017). On the other hand, when 

predicting individual propofol concentration levels, previous studies have shown 

that observed differences in the baseline alpha-network robustness are abolished 

at recovery (Chennu et al., 2016). This suggests that the differences are 

depending on a latent alpha-state, rather than any individual trait.  

Nonetheless, our work in chapter 3 suggests that SWAS, as a proxy for 

unconsciousness, is distinct from direct propofol concentration levels, and hence, 

may indeed reflect a phenotype of a trait. To further investigate whether SWAS 

and its association with baseline alpha-connectivity is state- or trait-based, future 

studies could explore to what extent, if any, the predictive power and the 

individual differences observed are abolished at recovery. For example, does 

baseline alpha also predict the concentration of propofol and time needed to 

reach recovery of behavioural responsiveness, the SWA-power at the end of the 

saturation period, or at recovery of behavioural responsiveness? Such work could 

further illuminate the apparent distinction between SWAS on the one hand, and 

other proxies for unconsciousness, such as the individual propofol concentration 

levels on the other. 
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7.6.2 More advanced DCM modelling in anaesthesia and in disorders of 

consciousness 

In chapter 4, we provided preliminary evidence for a hemispheric difference 

in DoC. Specifically, left-hemispheric alpha-band functional connectivity 

predicted the DoC state of the patients, while the right-hemispheric connectivity 

did not. The opposite result was observed with the network hubs: right-

hemispheric participation coefficient in the alpha-band statistically significantly 

predicted the DoC states, while left-hemispheric participation coefficient did not. 

The left alpha-connectivity furthermore statistically significantly differentiated 

MCS- from MCS+. 

These results were extended in chapter 6, where we showed that specifically 

left frontoparietal effective connectivity was reduced in unconscious patients 

when compared to conscious patients or healthy controls. Moreover, the left 

frontoparietal connectivity predicted DoC groups and generalised to an unseen 

data set of potentially covertly aware patients. Previous studies have indicated 

higher left hemisphere metabolism for MCS+ over MCS- patients, specifically in 

cortical areas associated with language, such as Broca’s and Wernicke’s areas 

(Aubinet et al., 2020; Bruno et al., 2012) and functional connectivity differences 

in the left hemisphere between UWS and MCS patients (with the latter showing 

higher connectivity levels; Lehembre et al., 2012). 

However, at the neuronal level, we only modelled sources within the DMN. 

The hemispheric difference (specifically in relation to language functions) could 

be further investigated by the means of DCM by building additional models with 
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nodes in the temporal, language-related areas. For example, estimating two 

mirroring models for each hemisphere separately would enable one to use the 

estimated free energies to gain evidence for the model better explaining the data 

(Friston et al., 2007).  

Moreover, by choosing a different neuronal model, the focus could be turned 

from network-level between-source effects, to within-source effects and to more 

fine-grained properties within the sources (e.g. synaptic properties). As discussed 

in chapter 5, this could be done, for example, by using the LFP model or the 

Canonical Microcircuits model (Bastos et al., 2012; Moran et al., 2007). 

Furthermore, we did not investigate the predictive power of the right lateralised 

network hubs at the level of neuronal sources. For this, DCM could potentially be 

used. As discussed in detail in chapter 6, with further DCM work, optimally, 

individual MRIs should be used as the basis for the head model. Furthermore, 

instead of assuming the neuronal sources, performing a source localisation first 

would increase the likelihood of modelling the connectivity between “true” 

sources. 

Similar suggestions can be made also in relation to the “frontoposterior” vs. 

“posterior hot zone only” debate. With DCM, extensive models including 

neuronal sources only in anterior or posterior areas could be estimated and 

compared. A cross-validation paradigm could be then used to see which models 

(or combinations of models) produce the best predictions. A useful additional 

step in the paradigm applied in this thesis would be to validate the results of the 

model comparison and the parameter fitting with simulated data. That is, to 
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determine the extent to which data generated from the most parsimonious model 

is the best fit by that model, as opposed to other models and to data generated 

from other models (Wilson & Collins, 2019). 

 

7.6.3 DCM modelling of contents of consciousness 

Lastly, in this thesis we have provided evidence for DCM-based predictions 

of the level or state of consciousness. Similar DCMs with cross-validation could 

potentially be used to investigate the underlying neuronal mechanisms of content 

of consciousness. To elucidate the neural correlates of content of consciousness 

further, one could – in addition to estimating the models – see if DCM-based 

cross-validation can predict changes in the content within the participants. To do 

this, a paradigm including bistable perception (binocular rivalry) could be used to 

manipulate the perception in the participants (for a review, see Sterzer, 

Kleinschmidt, & Rees, 2009). As per the arguments presented in earlier in this 

chapter, it would be beneficial to integrate information from multiple modalities 

to increase the level of confidence attributed to the results. 

It is worth noting that in this thesis, we cut off higher frequencies as most 

electromyographic noise was observed in these high frequencies. This is typically 

caused by involuntary movements and fidgeting characteristic more in DoC than 

under anaesthesia. Further, the DCM analysis was performed for the broadband 

and not for particular canonical frequency bands distinctively. Yet, previous 

research has suggested a relationship between loss of consciousness and gamma-

activity; indeed, in the beginning of the systematic search for the neural 
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correlates of consciousness, synchronisation of neuronal populations via 

rhythmic discharges in the gamma range was proposed as the key mechanism for 

consciousness and as a mechanism for perceptual binding (Gray, König, Engel, 

& Singer, 1989; Crick & Koch, 1990; Varela, Lachaux, Rodriguez, & Martinerie, 

2001). More recent research has suggested a relationship between gamma-band 

activity and loss of consciousness due to anaesthesia (Bola et al., 2018) and DoC 

(Cavinato et al., 2015; Papiernik, Binder, & Gawłowska, 2022). Moreover, an 

association between gamma-band phase synchrony and emergence of coherent 

conscious perception has been shown using binocular rivalry (Varela et al., 

2001). Therefore, it would be interesting to see if the predictive power of the 

DCM models could be increased by limiting the analysis to higher frequency 

bands, instead of analysing the whole broadband. 

 

7.7 In summary 

In this thesis, we have modelled functional and causal (effective) connectivity 

of brain functioning at the network level scales in altered states of consciousness. 

By modelling changes at the level of electrodes and in key resting state networks, 

we have provided novel insights into the structures and functions involved in 

(loss of) consciousness. By accurately predicting states of consciousness based 

on the connectivity models, we provided evidence for clinical relevance and 

practical value of not only the estimated models but the applied methods as well.  

In doing so, we have enhanced the understanding of consciousness as a 

neuroanatomically specific state which maintenance seems to involve long-range 
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frontoparietal communication. Our work on applying more advanced 

computational modelling, especially in conjunction with cross-validation, 

provided insightful, causal explanations of the neuronal mechanisms underlying 

the loss of consciousness, and could help reduce diagnostic error in clinical 

context. 
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