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Abstract

Face recognition has been deployed in a wide range of important applications 

including surveillance and forensic identification. However, it still seems to be a 

challenging problem as its performance severely degrades under illumination, pose 

and expression variations, as well as with occlusions, and aging. In this thesis, we 

have investigated the use of local facial skin data as a source of biometric information 

to improve human recognition.

Skin texture features have been exploited in three major tasks, which include 

(i) improving the performance of conventional face recognition systems, (ii) building 

an adaptive skin-based face recognition system, and (iii) dealing with circumstances 

when a full view of the face may not be available. Additionally, a fully automated 

scheme is presented for localizing eyes and mouth and segmenting four facial regions: 

forehead, right cheek, left cheek and chin. These four regions are divided into non­

overlapping patches with equal size. A novel skin/non-skin classifier is proposed for 

detecting patches containing only skin texture and therefore detecting the pure-skin 

regions. Experiments using the XM2VTS database indicate that the forehead region 

has the most significant biometric information. The use of forehead texture features 

improves the rank-1 identification of Eigenfaces system from 77.63% to 84.07%. The 

rank-1 identification is equal 93.56% when this region is fused with Kernel Direct 

Discriminant Analysis algorithm.

The second proposed algorithm presents an adaptive strategy for combining dis­

tance scores between images with different numbers of usable skin patches. The 

results are compared with the results of other methods. It is evident that the choice 

of the distance metric is important as it affects the classification performance. For

n



instance, the mean of rank-1 identification rates of the proposed method is equal to 

87.12% using linorm  distance and 80.25% using Z2norm distance.

Finally, a scheme is suggested for face recognition in scenarios where only a partial 

image of the face is available for classification. A novel segmentation algorithm is 

presented for extracting the forehead region without the use of eye locations. This 

system is tested on FRGC data and presents promising recognition results for a very 

challenging problem.
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Chapter 1

Introduction

With the advent of e-commerce, smart cards and electronic banking and increased 

concerns regarding security and privacy of information stored in various databases, 

automatic personal authentication has become a desirable capability. Secure access 

to computer networks, buildings, laptops, automatic teller machines, and the use of 

machine readable identity document such as passports and driver licenses are some 

examples where establishing a persons identity is important.

Nowadays, the access to restricted systems has mostly been managed by token- 

based security (ID cards) or by knowledge-based security (passwords). However, such 

security measures can easily fail to verify the validity of the user when a password 

is forgotten or a card is lost. The emergence of biometrics technology has addressed 

such weakness in the traditional verification methods. Biometrics refers to “Biomet­

rics refers to automated methods of recognizing a person based on physiological or 

behavioral characteristics'’ [121].

Various biometric modalities have been successfully used in recognition systems, 

such as, face, fingerprint, voice, iris, hand geometry and signature. Despite the fact

1
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that other methods of recognition (such as fingerprint, or iris scans) can be more accu­

rate, face recognition has always remained a major focus of research and application 

because it is non-intrusive, natural and easy to use. Table 1.1 lists some applications 

of facial recognitions systems.

Areas Specific Application

Civil applications and 
law enforcement

• National ID cards, passport, drivers license, 
border control

• Surveillance of public places (airports, metro 
stations, etc)

• Forensic applications

Security applications 
for electronic transac­
tions and access con­
trol

• Physical access
• Secure access to networks and infrastruc­

tures
• e-health, e-commerce, e-banking (and now 

mobile)

Ambient Intelligence • Smart homes
• Natural human-machine interaction

Wearable systems • Memory aids and context-aware systems

Entertainment • Interactive movies, computer games

Search • Applications for finding and managing pho­
tos

Table 1.1: Various applications of facial recognition systems [210]

Human identification using fingerprint or palmprint is a widely used technology. 

This technology is based on the skin appearance which represents the outer tissue 

of the human body. Other applications of skin appearance in human identification 

include recent technologies that recognize the pattern of blood vessels in the palm and
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the finger. Figure 1.1 shows that the morphology of fine wrinkles tends to vary be­

tween body regions [78]. Thus, skin appearance has been a subject of great attention 

in various fields of technology and science.

Figure 1.1: Fine wrinkles on (A) cheek and (B) forearm of the same person [78]

Figure 1.2 lists samples of skin appearance applications in four different research 

fields. There have been a considerable number of research studies utilizing human skin 

texture for topical drug efficacy testing for the pharmaceutical industry, automatic 

diagnosis for dermatology, facial animation, facial image synthesis and fingerprint 

identification. However, there have been only a few studies reported in the literature 

on investigating skin texture for face recognition, which is the topic of this study.

Section 1.1 and Section 1.2 will discuss the research motivations and aims respec­

tively. The organization of the thesis will be presented in Section 1.3. Finally, Section

1.4 and Section 1.5 respectively will present the major contributions of the present 

research and the publications that have resulted from thesis so far.

1.1 Research Motivations

The motivations of this research can be summarized in the following points:
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Figure 1.2: Examples of skin appearance applications in four research fields [78]

1. The face images in the conventional face recognition algorithms are scaled to 

30-60 pixels between the centers of eyes [121], Therefore, important information 

embedded in the micro-structures of skin texture may be lost because only a 

global appearance of the faces can be seen, while subtle details are lost.

2. The face images used for skin texture methods should be high-resolution images. 

According to Stan and Jain [121] the inter-eye distance should be at least 90 

pixels to obtain reasonable performance. However, recent advancement of high 

quality digital cameras and web cams makes high-resolution face analysis pos­

sible and consequently it has catalyzed the advance of skin texture technology 

[ 121],

3. According to Tan and Triggs [204], since the problem of face recognition is a 

complex task, it is often that no single class of features is rich enough to capture 

all of the available facial information. Thus, skin details information could be
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used to improve the performance of face recognition systems.

4. Sometimes only partial images are available for identification as in forensic or 

surveillance scenario so skin information may be particularly important in theses 

circumstances.

1.2 Research Objectives

The objective of this work is to investigate the ability of extracting useful biometric 

information from facial skin texture features and then to explore different approaches 

to advance and improve the study of face biometrics using these features. Thus the 

aims can be formulated in finding answers to the following questions:

1. How can one segment the facial skin areas?

2. Do we need to detect any landmarks in the face in order to fix the positions of 

skin areas?

3. How can we ideally extract the texture features from these areas?

4. Do skin areas contain useful biometric information?

5. If yes, is it long term or short term biometric trait?

6. Are there any parameters which could be tuned to optimize the recognition 

accuracy?

7. How can we automatically handle the noise in skin areas such as hair covering 

forehead region, facial skin covering chin region or sometimes dark sun glass 

covering parts of cheeks?
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8. Is there a significant difference between the amount of biometric information in 

the different regions of the face?

9. If the answer of question Q8 is yes, what is the region which has the most 

significant biometric information?

10. How can we integrate this biometric trait with the conventional face recognition 

system?

11. How can one build a face recognition system that depends only on skin data? 

How can this system cope with the noise in skin areas? Is it possible to adap­

tively treats with the noise? What is the accuracy of this system?

12. Can we exploit this biometric trait in scenarios where only a partial image of 

the face is available for classification.

13. Can we compare the performance of the developed systems with the published 

works on same databases and using the same protocols?

1.3 Organization of the Thesis

Figure 1.3 illustrates the outline of the thesis. It presents the title of every chapter 

in the thesis and the corresponding objectives that the chapter addresses. More de­

tails are below. Chapter 1 (Introduction): This chapter introduces the thesis by 

presenting the research motivations, its aims, the outline of the thesis, the research 

contributions and the publications related to this research.

Chapter 2 (Texture Analysis: Literature Review): This chapter discusses the 

canonical problems that are related to texture analysis. It also provides an overview of
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the most recent approaches that are used to capture the characteristics of a particular 

texture (the Gabor filter approaches and local binary pattern), the most important 

and recent classification techniques are reviewed and finally the different information 

fusion schemes are presented.

Chapter 3 (Face Recognition: State of the art): This chapter discusses the 

current challenges of face recognition systems, it also describes the structure of a 

generic face recognition systems. The face detection techniques and some of the basic 

pre-processing stages are presented. The existing holistic and analytic face recogni­

tion approaches are reviewed. Finally, frequently used databases of face images and 

performance evaluation methods are presented.

Chapter 4 (Automatic Extraction of Facial Skin Regions): This chapter 

presents two automatic methods for localizing eyes and mouth centers. These two 

landmarks are used to segment four facial skin regions. The proposed algorithms are 

evaluated using the XM2VTS database.

Chapter 5 (Facial Skin Texture as a Source of Biometrics Information):

This chapter investigates to know the best way for extracting features from the facial 

skin areas so it starts with the segmentation of usable forehead regions from facial 

images and their initial pre-processing to provide useful identity information. The 

method uses a manual annotation scheme to detect the forehead regions which do 

not contain noise and it investigates the effects of changing the parameters of the 

Gabor filter-bank and LBP approaches for face feature extraction. It also provides 

the results of the proposed method for the task of biometric person identification and 

verification.

Chapter 6 (Explicit Integration of Identity Information from Skin Regions
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to Improve Face Recognition): The main objective of this chapter is to combine 

the conventional face recognition systems with skin texture features from forehead 

region. This chapter also reports on the development of a novel Skin/Non-Skin clas­

sifier based on Support Vector Machines (SVM), in order to automatically exclude 

non-skin areas in facial images.

Chapter 7 (An Adaptive Scheme for Skin-Based Face Recognition): This 

chapter presents a fully automated and novel adaptive method for face recognition 

based on twenty extracted skin patches. The global distance between the probe and 

gallery image is a weighted sum of the local patch distances adapted in such a way 

to include the contribution of each usable skin patch.

Chapter 8 (Partial Face Recognition using the Forehead Region Alone):

This chapter presents a scheme for face recognition in application scenarios where 

only a partial image of the forehead region is available for classification.

Chapter 9 (Conclusion and Future work): The chapter provides conclusions 

and suggestions for future work.

1.4 Contributions

We have developed methods to exploit facial skin texture for human recognition in 

three ways: (i) The use of facial skin texture as an additional biometric information 

source to improving the conventional face recognition systems, (ii) An adaptive al­

gorithm to study the information available from all facial regions and cope with the 

regions that may have partial or complete hair coverage, (iii) A partial face recog­

nition algorithm. The major contributions of this dissertation are summarized as

follows:
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1. An automated and novel method for eye detection is presented and compared 

with other published results.

2. A fully automated and accurate segmentation of four facial skin regions in the 

facial images namely Forehead, Right cheek, Left cheek and Chin using eye and 

lip centers as landmarks.

3. A novel patch-based technique for first exploring the skin texture information 

of pure-skin forehead and then utilizing it for biometric verification and identi­

fication.

4. A new Skin/Non-Skin classifier to automatically eliminate areas that may be 

obscured by hair, facial hair or spectacles.

5. A novel combination algorithm that fuses the holistic face recognition approach, 

and the forehead skin texture matching algorithm has been proposed and im­

plemented. The resulting integrated face matching algorithm delivers better 

performance than either of these two matching algorithms alone.

6. To verify the feasibility of using facial skin texture alone to perform face recog­

nition, a novel scheme that completely depends on the skin information is 

proposed and implemented. It uses an adaptive strategy for combining pair­

wise patch distances between individuals with different numbers of usable skin 

patches. Experiments using the XM2VTS database show that the proposed 

method achieves comparable performance to the best of the published results.

7. A new partial face recognition scheme is presented in scenarios where only 

a partial image of the forehead is available for classification. A scheme for
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segmenting the head region in such images is presented. The forehead region is 

then extracted without the use of facial landmarks such as eye locations. The 

system is tested on FRGC data and presents promising recognition results for 

a very challenging problem.

1.5 Publication Arising from the Thesis

This research has resulted in the publications listed below 

• List of Journal publication

1. G.F.Al-Qarni and F.Deravi, “Facial Skin Texture as a Source of Biometric In­

formation” , International Journal of Signal Processing, Image Processing and 

Pattern Recognition (IJSIP), Vol.5, No.4, 2012.

• List of Conference publication

2. G.F.Al-Qarni and F.Deravi, “Explicit Integration of Identity Information from 

Skin Regions to Improve Face Recognition” , In: A. Campilho and M. Kamel 

(Eds.), 9th International Conference on Image Analysis and Recognition (ICIAR), 

Part II, LNCS, vol. 7325, pp. 30-37, Springer, Heidelberg, June, 2012.

3. G.F.Al-Qarni and F.Deravi, “Partial Face Recognition using the Forehead Re­

gion Alone” , 5th International Workshop on Computational Forensics (IW C F’12), 

In Conjunction with the International Conference on Pattern Recognition, ICPR, 

Tsukuba, Japan, 811 November, 2012.
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4. G.F.Al-Qarni and F.Deravi, “An Adaptive Scheme for Skin-based Face Recog­

nition” , IEEE International Conference on Image Processing, ICIP’13, Mel­

bourne, Australia.

5. G.F.Al-Qarni and F.Deravi, “Forehead Skin Texture as a Source of Biometric 

Information” , 4th Saudi International Conference (SIC), University of Manch­

ester, UK, 3031 July, 2010.

6. G.F.Al-Qarni and F.Deravi, “Exploitation of Pure Skin Regions for Face Recog­

nition” , School Research Conference 2012, School of Engineering and Digital 

Arts, University of Kent, Canterbury, UK, 13 January, 2012.



Chapter 2

Texture Analysis and Classification

2.1 Introduction

“In biological vision, texture is an important cue allowing humans to discriminate 

objects. This is because the brain is able to decipher variations in data at scales 

smaller than those of the viewed objects.” [ 161]

There is no precise definition of the texture, however, it could be defined as the 

repetition of a pattern or patterns over a region in an image[ 157]. There are two 

categories of texture image, stationary and non-stationary. A stationary texture 

image is an image which contains a single type of texture, i.e. the whole image is 

filled up by the same texture so its local statistical properties are the same everywhere 

in it [161]. A non-stationary texture image is a texture image which contains more 

than one type of texture in it [161]. Texture also may be perceived as being regular or 

irregular, smooth or rough, coarse or fine, directional or non-directional, etc. Figure

2.1 shows examples of these categories.

Texture analysis is essential in several problems in image processing and machine

13
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vision. It is a well-developed technology and has been used for the analysis of different 

kinds of images. These range from microscopic images in the biomedical research area 

to satellite images of the earth’s surface.

This chapter discusses the canonical problems that are related to texture analysis. 

It also provides an overview of the most recent approaches that are used to capture the 

characteristics of a particular texture, the so called texture features. We also highlight 

the most important and recent classification techniques and the last subsection will 

be devoted for the different information fusion schemes.

(b) Smooth vs. rough(a) Directional vs. non-directional

(c) Coarse vs. fine

Figure 2.1: Perception of textures

2.2 Texture Analysis-related Problems

Texture analysis is an active research area in the field of image processing and ma­

chine vision. The various texture analysis techniques for extracting texture features 

can be applied in five broad categories of problems: texture segmentation, texture
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classification, texture synthesis, shape from texture, and surface defect detection.

• Texture segmentation Texture segmentation is the process of separating an 

image into regions that have homogeneous properties with respect to texture. 

It has many applications in medical imaging such as diagnosis, locating tumors 

and other pathologies, studying of anatomical structure, and measuring tissue 

volumes. Other important applications include locating objects in satellite or 

aerial imagery (forests, roads, etc.), traffic control systems, and segmentation 

of textured regions in document analysis.

The texture segmentation approaches can typically be divided into two cate­

gories, region-based and edge-based techniques [212]. In the Edge-based ap­

proach, boundaries of adjacent regions are detected where there are differences 

in their texture so this technique does not need to know the number of textured 

areas in an entire image, whereas texture similarities between adjacent regions 

are used as the basis for region-based texture segmentation. There are some 

reported research works which take advantage of the complementary nature of 

both these approaches [159].

• Texture classification: The goal of texture classification is to assign an un­

known sample image to one of c known texture classes. It can be implemented 

in a large variety of real world applications that allow the target subjects to be 

viewed as a specific type of texture. These applications include wood species 

recognition [208], rock classification [119], fabric classification [13] and etc.

This process involves two phases: a training or learning phase and a testing or 

recognition phase. In the learning phase, a set of grey level images are taken



Chapter 2. Texture Analysis and Classification 16

from each texture class. Then, the textural properties of the training images are 

captured with the chosen texture analysis method, which yields a set of textural 

features for each image. Finally a model of each texture class (or signature) is 

built. In the recognition phase, any input test image is first described with the 

same texture analysis method. This feature vector is compared with all of the 

prototype vectors obtained in the learning stage via a classification algorithm, 

and the sample is assigned to the class with the best match.

• Texture defect detection: The goal of texture defect detection is to decide 

whether a surface texture is as it is expected to be or contains faults (texture 

abnormalities). This problem has got applications on a variety of surfaces, e.g. 

wood, steel, ceramics, etc. Therefore it is highly demanded by industry in order 

to replace the subjective and repetitive process of manual inspection [7].

• Shape from Texture: There exist many properties in images that allow to 

determine the shape of an object in 3D scene, for example variations in intensity 

on the surface of objects, the relative positions and orientations of edges and 

corners, and shadowing effects. Texture is another feature which can be used 

to estimate the relative orientation of a surface [32].

• Texture synthesis: The objective of the texture synthesis is to generate de­

scriptions to build a model of image texture, which can then be used for pro­

ducing the texture [79]. It has more applications in computer graphics.
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2.3 Texture Analysis

Texture analysis has been traditionally performed by extracting descriptors from grey­

scale texture images, and therefore, colour information is often ignored in this analysis

[161]. Numerous approaches have been proposed for texture description. According 

to Haralick [64], such approaches can be categorized into two main groups: Statistical 

and Structural methods. Tuceryan and Jain [212] have divided texture description 

methods into four main classes: geometrical, model-based, statistical and signal pro­

cessing methods. Figure 2.2 illustrates the categorization of texture description meth­

ods according to [212], The first two categories are briefly reviewed in this section, 

though the central focus is on the latter two approaches because they are of interest 

in this thesis.

Figure 2.2: Main categories of texture descriptors according to [212]

Nowadays there is a more recent family of texture descriptors, that is called “SIFT 

(Scale-Invariant Feature Transform)-related” descriptors. We can find, among the
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methods belonging to this group, SIFT [132], GLOH (Gradient Location and Ori­

entation Histogram) [143] and SURF (Speeded Up Robust Features) [11]. These are 

based on detecting the key points in the image and then describing the local image 

region around each key point.

2.3.1 Geometrical methods

Geometrical methods consider texture as being composed of “texture elements” or 

primitives so they try to describe these primitives and the rules governing their spatial 

arrangement. In this technique, texture primitives are first extracted from the image 

using techniques such as mathematical morphological tools ([189], [30]) or using edge 

detection algorithms such as a Laplacian-of-Gaussian or difference-of-Gaussian filter. 

For the analysis of the texture, two major approaches can be used [212]. In the first 

approach, statistical properties of the primitives are computed and used as texture 

features. In the second approach, the placement rule that describes the texture 

elements are extracted and used as features [53].

2.3.2 Model-based methods

Model-based texture methods model the mathematical process that generated the 

texture. The model parameters are estimated and then used as features. Such mod­

els can be used for feature synthesis. There are currently three main model-based 

methods, Markov Random Fields [48], fractals ([160]), and the autoregressive models 

presented by Mao and Jain [139]. The image models are detailed by Chellappa and 

Jain in [27].
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2.3.3 Statistical methods

Statistical methods analyze the spatial distribution of gray values, by measuring the 

local features at each pixel in the image, and deriving a set of statistics from the 

distributions of these features. Based on the number of pixels defining the local 

feature, these methods can be classified into first-order (one pixel), second-order (two 

pixels) and higher-order (three or more pixels) statistics. In contrast to the first-order 

statistics, second- and higher-order statistics do not ignore the spatial interaction 

between image pixels. Instead, they estimate properties of two or more pixel values 

occurring at specific locations relative to each other.

The most widely used and popular statistical methods are co-occurrence features 

[65], autocorrelation function [95], and gray level differences [223]. Inspired by Gray 

level differences method, a variety of modifications has been proposed by Ojala et al. 

for example signed differences [153] and the LBP (Local Binary Pattern) operator 

[151], which combine structural and statistical approaches to texture analysis.

Auto Correlation

The autocorrelation function [95] can be used to analyze the regularity and estimation 

of the fineness/coarseness of the texture. It measures the linear spatial relationship 

of the structural elements (primitives). Formally, the autocorrelation function of an 

image I ( x , y ) is given by Equation 2.1:

p(x,y) E
N
u= 0 E f =0 I(u,v)I (u +  x ,y  +  y)

E Î U  EiLo i 2(u,v)
(2 .1)

Where x, y are the positional differences in the u, v directions. For a coarse texture 

(with large primitives), the function value will decrease slowly with increasing distance
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whereas it will decay rapidly if texture is fine. For those textures with a very repetitive 

nature, the autocorrelation function will become semi-periodic with clear peaks and 

valleys.

Co-Occurrence features

In 1963 Julesz [94] showed the importance of using second order statistics for texture 

discrimination experiments. Different tools have been developed to exploit this tech­

nique. The original investigation into the grey-level co-occurrence (GLC) features 

was pioneered by (Haralick,1979) [64]. Typically, these features are extracted in two 

stages.

First, a set of gray-level co-occurrence matrices (GLCM) is derived. A GLC matrix 

represents the joint probability occurrence of pairs of grey levels of pixels separated 

by a certain distance d and lying in a certain direction 6 in the image. Formally, 

given the image f ( x , y ) with a set of G discrete intensity levels, the matrix Pd,e(.i,j) 

is defined such that its (i, j)th  entry is equal to the number of times that:

f { x i ,y i )  =  i and f { x 2,y2) =  j, 

where (æ2, 2/2) =  (au,2/i) +  (d cos9,d sinO)
(2 .2)

This yields, for each distance d and orientation 6, a square matrix of dimension 

equal to the number of intensity levels in the image. Thus, the size of the matrix is 

independent of the size of the image, but depends on the number of grey levels in the 

image. For instance, a GLCM for a dynamic range of 8 bits has 256 x 256 entries.

Regarding the distance, often only the distances d =  1 and 2 pixels are considered



due to the intensive nature of computations involved. There are two forms of co­

occurrence matrix exist, one symmetric where pairs separated by (d) for a given 

direction 9 are counted, and in the non symmetric only pairs separated by distance 

d are counted. The later case allows us to infer four matrices for a given distance d 

with angles 9 =  0°, 45°, 90° and 135° as suggested in [64],

Example of building cooccurrence matrix is illustrated in Figure 2.3, for d =  1.
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Figure 2.3: Example of Symmetric GLCM for d and different 9

Several texture descriptors are usually derived from the co-occurrence matrix al­

though the direct use of co-occurrence matrix has also been proposed in [146]. The 

early paper by Haralik suggested fourteen such descriptors which can be categorized 

into four groups [58]:

• visual textural characteristics: angular second moment, contrast

• statistical measures: sum average, variance, difference variance

• features that are based on information theory: entropy

• Correlation-based measures
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2.3.4 Signal-processing methods

Most Signal processing-based techniques try to extract texture features by submit­

ting the image to a linear transform, filter, or filter bank, followed by some energy 

measurement [173]. They can be divided into spatial domain, frequency domain, and 

joint spatial/spatial-frequency domain methods [144],

Spatial Domain Filters

A texture can be considered as a mixture of patterns, therefore the early attempts 

to discriminate different textures concentrated on measuring edge strength and edge 

frequency. In order to detect edges, lines, dots, etc, in the spatial domain, the image 

is usually filtered by a gradient filter such as the Robert or Laplacian operators [57].

Moreover, Laws [116] proposed a novel approach to calculate texture energy mea­

sures from a greyscale image. The measures are derived from three simple vectors 

of length 3, which represent the one-dimensional operations of center-weighted lo­

cal averaging L3=[ 1 2 1 ], edge detection E3=[ —1 0 1 ], and spot detection 

S3=[ —1 2 - 1 ].

With the convolution pairs of these three vectors with each other and themselves, 

we obtained the following 1x5 masks, the initial letters are as before with the addition 

of Ripple detection R5 and Wave detection W5:

L5 =  L3 * L3 =>- L5 =  [ 1 4 6 4 1 ] (2.3)

E5 =  L3* E3 => E5 =  [ - 1  -  2 0 2 1] (2.4)

S5 =  -L3 * E3 => S5 =  ( - 1 0 2 0 -  1 ] (2.5)
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R5 =  -E3 * S3 => R5 =  [ 1 -  4 6 -  4 1 ] (2.6)

W5 =  S3 * S3 => W5 =  [ —1 2 0 - 2  1 ] (2.7)

From these five ID operators, a total of 25 2D operators can be generated by 

matrix multiplication of these vectors, considering the first term as a column vector 

and the second term as row vector, results in 5 x 5 matrix known as Laws Masks. 

A feature vector that can be used for texture description is derived by applying a 

convolving the texture image with 5 x 5  masks and calculating energy statistics such 

as mean, absolute mean and standard deviation.

It is also possible to implement small size spatial domain filters, known as Lo­

cal Linear Transform (LLT), such as discrete cosine (DCT), discrete sine (DST), or 

discrete Hadamard (DHT) filters instead of Laws filters for texture analysis and clas­

sification [214]. Ade [2] suggested Eigenfilt.ers in the spatial domain, a set of masks 

obtained from the Karhunen-Loeve transform (KLT) [92] of local image patches, for 

texture representation. These local linear transforms i.e. KLT, DST, DCT, and DHT 

are compared for texture classification and found KLT to be the optimum LLT [215].

Another class of spatial filters are Moments [117], the (p +  q)th moments over an 

image region R are computed as follows:

These moments are computed around each pixel in the image which is equivalent to 

filtering the image by a combination of spatial masks. The resulting filtered images are 

then used as texture features. Tuceryan [211] used p +  q <  2 moment-based features 

for texture segmentation. The invariance property of moments to scale, translation

mpq =  xPyg f ( x ’ V)
( x,y)£R

( 2.8)
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and rotation is discussed in [57].

Frequency domain analysis

The Fourier transform F(u, v) of an image f (x ,  y ) reveals its frequency and orientation 

distribution. It can be formed as [57]:

/ oo r o c

/ f (x ,  y ) exp (—j2n(ux  +  vy) ) dxdy (2.9)
-oo J —OO

The images are practically in digital form so discrete Fourier transform is utilized:

M —l N - l

F{U' v ) = M N ^ ^  / (X ’ V) 6XP ^  )
x=0 y — 0

ux vy N 
— h —  
M  N-

(2. 10)

where M  is the image width and N  is its height. The Fourier power spectrum is given 

by: |F|2 =  FF, where F  denotes complex conjugate of F. In texture analysis, the 

power spectrum can be used for extracting features in several methods such as Ring, 

Wedge or their combined filters as shown in Figure 2.4.

Figure 2.4: An example of (a) a ring (b) a wedge (c) a combined ring-wedge filter
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The features based on Ring and Wedge filters are respectively of the forms [223]:

f r  l , r 2 =  \F (U i V )\2 (2 - 1 1 )
r  j  ^  <  (u 2 _j_ v 2 ) <  2

0 <u < M - 1, 0 <v <AT-1

f 81,92 =  I ^ M I 2 (2.12)
S12<tan-l(ÿ)<«22

0< U < M -1, 0 <U <Af—1

It is noted that the radial distribution of the spectrum values is sensitive to tex­

ture coarseness in /  and the angular distribution of the spectrum is sensitive to the

directionality of texture in / .  Thus, Coggins and Jain [33] employed seven dyadically

spaced ring filters and four wedge-shaped orientation filters, as shown in Figure 2.5,

for evaluating the coarseness and the directionality of the texture image.

Figure 2.5: Amplitude responses of the ring and wedge filters [33]
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Spatial/ Spatial-frequency methods

Psychophysiological findings indicated that the human (and other mammals) visual

system analyzes the textured images by decomposing the image into various spatial 

scales and orientations [212], Motivated by this biological theory, multiresolution 

analysis, called multi-scale/multi-directional (MSMD) methods were developed and 

applied for different texture problems such as texture segmentation, classification and 

synthesis applications [175], [195].

In the MSMD methods, texture description, is done by first filtering the image 

with a bank of filters, each filter having a specific scale and orientation and texture 

features are then extracted. Most of these methods are based on either analysis, or 

Gabor filters.

Wavelets perform a decomposition of a signal as a sum of local bases with finite 

support and localized at different scales. They are defined in reference to a “mother 

function” ip(t) of some real variable t. The mother function is characterized for being 

a bounded function with zero average:

This function can be dilated with a scale parameter s and translated by u in order 

to generate a whole family of wavelets:

Wavelet

(2.13)

(2.14)



Chapter 2. Texture Analysis and Classification 27

The wavelet transform of /  at scale s and position u is computed by:

/ OO m
•OO

)dt (2.15)

There are several ways to implement a multiscale wavelet technique. However, the 

formal and unified approach which was introduced by Mallat [136] is a well established 

and popular platform. Mallat suggested to use the Dyadic Wavelet Transform. Other 

popular wavelet transform techniques, that have been applied to texture analysis,

2.4 Gabor wavelet-based features for texture anal­

ysis

Gabor filtering has been successfully used for feature extraction in many image pro­

cessing and machine vision applications. In this section, the Gabor filter responses 

are analyzed in one- and two- dimensional spaces. First, the formulation of the Ga­

bor elementary functions (GEF) is covered in the one-dimensional case. Then, the 

formulation is extended for two-dimensional images with the focus on filter normaliza­

tion, the advantages of Gabor filtering, filter parameters selection, and the different 

ways for extracting texture features are discussed. Finally, a literature review of the 

Gabor-based algorithms and the most important applications are presented.

include the contourlet transform [120], steerable pyramidal transform [98] and curvelet 

transform [188].
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2.4.1 One-dimensional Gabor filter

For the past few decades, there have been two alternative ways to represent one­

dimensional signals. The first one describes signals as a function of frequency and 

the second as a function of time. The description form can be converted from one 

to another using the Fourier or inverse Fourier transforms, i.e they carry the same 

information but in different visualization.

It is, however, hard to simultaneously characterize the two basic properties of such 

signals: what kind of events a signal contains? and when exactly do they occur? The 

only well known is uncertainty principle which says: the product of the frequency 

bandwidth multiplied with the time duration of a signal cannot be less than a certain 

minimum value. Formally this is expressed as:

where At is the duration of the signal that is considered and A /  is its bandwidth 

in the frequency domain. There are several other forms of the Fourier transform, 

and thus, the uncertainty value is sometimes replaced by l/4ir but having the same 

interpretation [96].

Gabor (1946) [54] derived the function that minimizes this uncertainty, i.e., turns 

the inequality into an equality. He demonstrated that the function is a complex 

sinusoidal wave modulated by a Gaussian probability function:

At A f  >  1/2 (2.16)

•0(f) = e“ "2 e 3 2-rrfot+<t> (2.17)

where a is the sharpness (time duration/bandwidth) of the Gaussian, to denotes its
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centroid in time domain, /0 is the frequency of the harmonic oscillation, and 0 denotes 

its phase shift. The 1-D Fourier transform of the Gabor elementary function is given 

by Equation 2.18:

T(-u) ( f ) 2( / - / o )2 e - j  2 ttîo( / - / o ) + 0 (2.18)

Since an origin-centered filter is preferred for convolution, the time and phase shift 

can be removed (to =  0, <fi =  0), so the Gabor elementary functions in Equation (2.18) 

can be defined in more compact form:

ÿ(t)  =  e~a2 i2 e? 2nfot. (2.19)

To make the time duration of function if>(t) dependent on the central frequency / 0, 

an approach from multiresolution analysis [60] is employed to guarantee that the 

functions on different frequencies behave as scaled version of each other. This can be 

accomplished by defining a constant ratio:

7
(2 .20)

From the Fourier transformed Gabor function in 2.18, we can see that the maximum 

response (■y/'n/a2) occurs at u =  / q. Thus, its inverse can be used as a normalization 

factor. Consequently, the normalized 1-D Gabor filter function is defined as:

V>(t) =  M  e_(^ )2 *2 ej 2nfot
7i/7T

(2.21)



Chapter 2. Texture Analysis and Classification 30

The 1-D Gabor filter function has a Fourier transform

T(u) =  e“ ( * )2 {u~fo)2 (2.22)

Figure 2.6 shows the Gabor filter plots in time and frequency domains for different 

values of /0 and 7 . The parameter 7 can be used to adjust the effective width of the 

Gabor filter, by increasing 7 the filter spreads in the time domain and shrinks in the 

frequency domain and vice versa (Figure 2.6 (a) and (c)) The center frequency /o can 

also change the width of the filter when 7  is fixed (Figure 2.6 (a) and (b)).

2.4.2 Two-dimensional Gabor filter

The development and use of 2-D Gabor filters began from Granlund (1978), when 

he proposed the form of a general picture processing operator and addressed some 

fundamental properties, such as the octave spacing of the frequencies [59]. Daugman 

[42], [41] later showed a surprising equivalence between a structure based on the 2- 

D Gabor functions and the organization and the characteristics of the mammalian 

visual system. He also defined similar uncertainty measures as in Equation (2.16) for 

the 2-D case.

The 1-D Gabor filter in Equation (2.19) can be generalized to two dimensions by 

replacing time variable t with spatial coordinates (x , y ) in the spatial domain and 

the frequency variable /  is replaced by the frequency variables («, v ) in the frequency
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t u

(a) f 0 = 0.5, y= 1

(b) fo  = 1.0, /= 1

Figure 2.6: Gabor filter functions in time and frequency domains for different values 
of parameters fo and 7 [97]
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domain as follows:

ip{x,y) =  e - {aH2 +/3V) ej27r/oi

x =  x cosO +  y su\6 (2.23)

y =  —x sin 9 +  y cos 9

As in the 1-D case, to guarantee that filters in different frequencies are scaled versions 

of each other, a =  |/0| /y  and ¡3 =  |/0| /r? are substituted and the corresponding 2-D 

Gabor filter can be defined as Equation (2.24)

1>{x,y) =  e~ 4 i2+^ 2) ej2wfo*
7T7P

x — x  cos 6 -\- y sin 9 (2.24)

y = —x  sin 9 +  y cos 9

where /o is the central frequency of the filter, 9 is the rotation angle of the Gaussian 

major axis and plane wave (sinusoidal), 7 is the sharpness along the major axis, and 

y is the sharpness along the minor axis. The normalized 2-D Gabor filter function in 

the frequency domain is given by Equation (2.25)

T(ti, v)
- t ! ( 7 2G - 7 o)2 +t?2i52) =  e ro

u =  u cos 9 +  v sin 6 

v =  —u sin 9 +  v cos 9

(2.25)

The effects of the parameters, that are demonstrated in Figure 2.7 and Figure 2.8 

can be summarized as follows:

1. Change the width of the filter by varying the center frequency /o (Figure 2.7).
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2. Rotate filter by angle 6 around origin of coordinates (Figure 2.8).

3. Compress (Stretch) filter in x direction by parameter 7  (Figure 2.7(b) and Figure 

2.8(a)).

4. Compress (Stretch) filter in y direction by parameter r/ (Figure 2.7(b) and Figure 

2.8(a)).

A filter response for an image function I (x ,y )  can be calculated at any location 

(x,y)  with the convolution as shown in Equation (2.26)

2.4.3 Filter bank and parameters selection

In practice, applications utilizing only a single filter are unusual [209] and it is neces­

sary to apply several Gabor filters to an image. This is done by forming a so called 

“filter bank” . A filter bank needs to be used because relationships between responses 

provide the basis for distinguishing objects in the classification stage.

The selection of filter bank parameters i.e. orientations and frequencies in Equa­

tion (2.26) is very important. It has been demonstrated in [111] that the orientations 

must be spaced uniformly as:

ri(x, y, / ,  6) =  if>(x, y, f , 9) * I(x, y ) (2.26)

6,
k2n

, for k =  { 0, . . . ,  n — 1} (2.27)
n

where 6k is the /cth orientation and n is the total number of orientations to be used.
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(a) ./¿ = 0.5, 0 = 0°, y= 1.0, r) -  1.0

Figure 2.7: 2D Gabor filter functions with different values of the parameters f 0, 9, 7 
and r/ in the space and spatial-frequency domains [97]
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(b) f0= 1.0, <9=45°, 7=2.0, /7=0.5

Figure 2.8: 2D Gabor filter functions with different values of the parameters / 0, 6, 7 
and 77 in the space and spatial-frequency domains [97]
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However, the computations can be reduced to half because the responses at [7r, 2x ) 

for real signals are complex conjugates of responses on [0,7r]:

/r7r
ek =  — , for k =  { 0, . . . ,  n -  1} (2.28)

n

In order to maintain homogeneous spacing between the scales, a logarithmic rela­

tion between the frequencies /  is typically established ([111]):

fk =  c~kfmax, for k =  { 0 , . . . ,  m -  1} (2.29)

where fk is the kth frequency, f max is the maximum frequency, and c is the frequency 

scaling factor. Useful values for c include c =  2 for octave spacing and c =  y/2 for 

half-octave spacing, the later value is chosen in this research. A filter bank in Figure

2.9 is reconstructed using filter responses from 12 orientations and four frequencies.

2.4.4 Gabor-based features extraction

The bank of Gabor filters can be used to analyze the texture image because they 

have tunable orientation, tunable radial frequency bandwidths, and tunable center 

frequencies [240].

Texture analysis using Gabor-based methods is done by filtering the image with 

a bank of filters, each filter having a specific frequency (and orientation), and then 

extracting texture features from the filtered images. Due to the large feature size 

resulted from using many scales and orientations, different techniques have been de­

veloped to prevent the curse of dimensionality.

For instance, the dimensionality can be reduced by using only the real component
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(b)

Figure 2.9: 2D Gabor filterbank of 4 scales and 12 orientations in frequency domain
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[83]. Alternatively, it can be reduced by using the magnitude response [17]. Manju- 

nath and Ma [137] suggested a simple texture features for images retrieval. In that 

method, mean and standard deviation of the transform coefficient at each scale and 

orientation were used as texture feature. This technique will be used in this thesis as 

described in Section 5.2.4.

2.5 Local Binary Pattern for Texture Classifica­

tion: A  Survey

The gray-level difference (GLD) methods closely resemble the co-occurrence approach 

[223]. The difference is that instead of the absolute gray levels of the pair of pixels, 

their difference is utilized. As features, Weszka et al. [223] (1976) proposed the 

use of the mean difference, the entropy of differences, a contrast measure, and an 

angular second moment. This method have inspired a variety of modifications by 

other including signed differences [153] and the LBP (Local Binary Pattern) operator

[151]-

Due to its flexibility the LBP method can be easily modified to make it suitable 

for the needs of different types of problems. The success of LBP methods in various 

computer vision problems and applications has inspired much new research on differ­

ent variants [169]. Therefore, several extensions and modifications of LBP have been 

proposed with an aim to increase its robustness and discriminative power. In this 

section different variants are divided into such categories that describe their roles in 

feature extraction.
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2.5.1 Basic LBP

The basic Local Binary Pattern (LBP) operator was originally applied for texture de­

scription [151]. It labels the pixels of an image by thresholding the 3 x 3-neighbourhood 

of each pixel with the centre pixel value and concatenating all these binary values 

in a clockwise direction starting with the one of its top-left neighbor. The decimal 

value, in Figure 2.10, is obtained by summing the thresholded differences weighted 

by powers of two. Finally, central pixel value is replaced with corresponding decimal 

value, and the 3 x 3  window slides to the next pixel.

Binary: 11001011 
Decimal: 203

Figure 2.10: The basic LBP operator [4]

2.5.2 Dealing with textures at different scales

One limitation of the basic LBP operator was that its small 3 x 3  neighbourhood 

could not extract dominant features of large-scale texture primitives. The operator 

was later extended to use neighbourhoods of different sizes in order to be able to deal 

with textures at different scales [152],

A local neighbourhood is defined as a set of sampling points evenly spaced on a 

circle, which is centered at the pixel to be labeled, thus allowing for any radius and 

any number of sampling points in the neighbourhood. Bilinear interpolation is used 

when the sampling point does not fall within the centre of pixel.
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Figure 2.11 shows some examples of circular neighbourhoods, (8, 1),(16, 2) and 

(8, 2), where the notation (P, R) is used for pixel neighbourhoods which means P  

sampling points on a circle of radius of R. Formally, the resulting LBP can be 

expressed in decimal form as follows:

p—i
LBPpr  (xc, yc) =  ^ 2  s (dP ~ 9c) 2P (2.30)

p = 0

where gc, gp are, respectively, the gray value of the central pixel c(xc, yc) and P  

surrounding pixels in the circle neighbourhood with a radius R, and function s(x) is 

defined as:

f l if x >  0
(2.31)

0 if x > 0

Figure 2.11: The circular (8, 1),(16, 2) and(8, 2) neighbourhoods [4]

2.5.3 Considering Uniform patterns

An LBPpp is called uniform LBPpp, if it contains at most two bitwise transitions 

from 0 to 1 or vice versa when the bit pattern is considered circular. For example, 

the patterns 00000000 (0 transitions) and 01110000 (2 transitions) are both uniform, 

whereas 11001001 (4 transitions) and 01010011 (6 transitions) are not. The uniform
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mapping produces an LBP operator with less than 2P labels. For instance, it yields 

only 59 labels with the neighbourhood of 8 pixels but the number of resulted labels 

with the same neighbourhood with the standard LBP will be 256.

There are two reasons for considering only uniform patterns and omitting others. 

Firstly, these patterns will be more robust and therefore they practically produced 

better recognition performance in many applications. Secondly, there are indications 

that most of the local binary patterns in natural images are uniform [152].

2.5.4 Preprocessing

In some applications, a preprocessing stage such as edge detection has been used prior 

to LBP feature extraction for enhancing the gradient information. Yao and Chen 

[235] proposed a combination of colour and local edge patterns (LEP) histograms for 

colour texture analysis. The Sobel edge detection is first applied and then LBP-based 

features are extracted, resulting in two types of LEP histograms: one is LEPSEG for 

image segmentation, and the other is LEPINV for image retrieval.

2.5.5 Topology of the neighbourhood

The LBP features, in the original LBP, are computed from a circle neighbourhood. 

The neighbourhood is designed in such an isotropic manner to obtain rotation in­

variance for texture description. Liao and Chung [126] claimed that the anisotropic 

information, in some applications, could also be an important feature. As a result, 

they used an elliptical neighbourhood definition, calling their LBP variant the elon­

gated LBP (ELBP).
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Figure 2.12 shows two examples of this operator, where A and B denote, respec­

tively, the long axis and short axis of the neighbourhood, and m is the number of 

sampling points. Like the original LBP, the bilinear interpolation technique is adopted 

for sampling points that do not fall exactly at the pixels.

Nanni et al. [148] studied the effects of using different neighbourhood topolo­

gies (circle, ellipse, parabola, hyperbola and Archimedean spiral) for medical image 

analysis.

A  =  2, B = l ,  m  =  8

Figure 2.12: Two examples of the elongated LBP operator [126]

2.5.6 Encoding

In binary coding, the differences between the center pixel and its neighbours are 

encoded by two values (0 and 1). A drawback of the LBP method, is its sensitiv­

ity to random and quantization noise in uniform regions. This is due to the exact 

thresholding at the value of the central pixel [205].

Tan and Triggs [205] proposed a three-level operator called local ternary patterns 

(LTP) to improve resistance to noise in uniform and near-uniform image regions. In 

LTP, the difference between a neighbouring pixel and the center pixel is encoded by 

three values (1, 0 or -1) according to a user-specified threshold t. Formally, function
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s(x) in (2.18) is replaced by:

1 if x >  t

s (x ) — 0 if |x| < t (2.32)

— 1 if x <  t

The ternary pattern is divided into two parts: the positive one and the negative 

one, as illustrated in Figure 2.13. The histograms from these components computed 

over a region are then concatenated.

The difference between a neighboring pixel and the center pixel, in quinary coding, 

is encoded by five values (-2,-1, 0, 1, 2) according to two thresholds (T1 and T2) [148]. 

Nanni et al. [148] investigated the use of different encodings of the local grayscale 

differences (binary, ternary, and a quinary) and different neighbourhood topologies 

with three different types of medical images. It was found that the operator that uses 

quinary encoding in an elliptic neighbourhood provided the best performance.

U p p e r  P a t t e r n
B i n a r y  c o d e :  
11000000

B i n a r y  c o d e :  
00001100

Figure 2.13: Example of the LTP operator [205]
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2 . 5 .7  Thresholding

Instead of thresholding the local pixel values against the value of the center pixel 

within the neighbourhood, other techniques have also been considered. Hafiane et 

al. [63] proposed Median Binary Pattern (MBP) operator by thresholding the lo­

cal pixel values, including the center pixel, against the median (MBP) within the 

neighbourhood.

2.5.8 Multiscale analysis

In order to capture not only the micro structures but also the macro structures, a 

multiblock LBP (MB-LBP) was proposed ([241], [127]), which instead of comparing 

pixels, compares the average pixel values within smaller blocks. The block can either 

be a rectangle or a square. Figure 2.14 shows an example of MB-LBP, where each 

block consists of six pixels. This scheme has gained popularity especially in facial 

image analysis. For instance, it is exploited for face detection in [241] and for Face 

recognition in [127].

Average gray-value 
o f  B lo c k : 7

6 1 8 I 8
j 7 - U j - - - H 2 1 -  

1 1
1 h rc sh o ld in g

0 0 1
D e s cr ib in g

-U l-1 -U i-  1 1 - ¡ U p 0 1

- - r & r -
1 1

- -  U i  -
1 t -¡4- 0 1 1

A v e ra g e  M B -L B P : 0 0 1 1 1 1 0 0
g ra y -v a lu e

Figure 2.14: Example of the MB-LBP operator [241]
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2.6 Colour Textures

Most texture analysis techniques have been proposed for grey-scale images, although 

the colour is one of the important characteristics that may be used in image content 

description. All colours can be represented as variable combination of the three 

primary colours, red, green, blue.

The RGB colour space is an additive model in which red, green, and blue lights 

are added together in various ways to reproduce the whole range of other colours 

[187]. There are various colour spaces that have been developed for the sensing, 

representation, and display of images in different electronic applications such as YIQ, 

HSV, LAB, etc. These models are extensively discussed in [57] and experimentally 

compared in [187].

A colour texture can be regarded as a pattern expressed by the relationship be­

tween its chromatic and structural distribution [46]. Basically, there could be two 

different cases of colour textures, two images consisting of the same colour but differ­

ent texture patterns or the same texture pattern but different colours.

Since colour information is a vector quantity (In contrast to intensity which is 

scalar value) traditional methods of gray texture could not be extended in a straight­

forward to the colour domain. It is also still unclear how best to combine these 

two properties into a composite model. Palm [155], has categorized the methods 

combining color and texture into three groups: parallel, sequential and integrative 

approaches as illustrated in Figure 2.15.

In parallel methods, colour and texture are considered as separate phenomena. 

Texture is extracted by the relationship of the intensities of neighbouring pixels ig­

noring their colour. Colour is evaluated globally according to the histogram ignoring
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local neighbouring pixels. The results of both analyses are fused subsequently to a 

feature vector. These algorithms are most commonly used for image retrieval [141] 

and segmentation [158], [49] applications.

Sequential methods contain of two steps: a partitioning of the original colour 

image is first obtained by applying a colour indexing method. Subsequently, texture 

features are extracted from the indexed image because it can be processed as a gray­

scale texture. The sequential methods have been used in applications that related 

to the structural texture model such as defect detection in granite images [200], 

and inspection of ceramic tiles [108]. For the sequential approach, the co-occurrence 

matrices are adapted in [99] and LBP and Gabor-based features are used in [15].

Integrative methods attempt to process colour and texture jointly so the infor­

mation dependency between both cues are taken into account. The methods are 

divided into single- and multi-channel strategies. Single-channel methods perform 

the classical gray-scale texture analysis on each color channel separately. For in­

stance, cooccurrence matrices [207] are adapted for integrative single-channel color 

texture analysis. [46]. Integrative multi-channel techniques handle simultaneously 

two (or more) channels. These approaches have already been proposed for different 

texture analysis methods like Gabor filters [84], wavelet [225], Markov random fields 

[202], autocorrelation features [68], and the cooccurrence matrices [155].

In [135], the authors discuss pros and cons of using texture and colour descriptor 

separately or jointly. It was concluded that using colour version of texture descriptors 

should only be used in controlled environments. Otherwise, extracting feature vectors 

separately (e.g. texture histograms and colour histograms) and concatenating them 

offers better performance.



Chapter 2. Texture Analysis and Classification 47

c o lo r  im a g e

g r a y s c a le  im a g e

r £ = n 7

7
c o lo r  im a g e  c o lo r  h is t o g r a m

s e g m e n ­
t a t io n

la b e l  im a g e

fe a t u r e
a n a ly s i s

Figure 2.15: Main categories of the the approaches combining color and texture [155]
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2.7 Feature Selection

The term feature selection is taken to refer to algorithms that select a subset of size 

m, from an input set of d features, which lead to the smallest classification error. 

This process has obvious economical benefits in terms of computational requirements 

and data storage. In addition, it often provides better model understanding and even 

better classification accuracy [81]. Therefore, it has many applications in engineering 

(robotics), Internet applications(text categorization), medical applications (diagno­

sis, prognosis), and in pattern recognition (speech, handwriting, face recognition). 

Basically, there are four basic steps in a typical feature selection method [113]:

1. Starting point to determine, in the space, the direction of search.

2. The organization of the search.

3. Evaluation procedure to evaluate the subset under examination.

4. Stopping criterion to decide when to stop.

In the literature, there are different taxonomies of feature selection methods based 

on the listed above. For instance, Doack [44] identified three classes depending on 

search organization: exponential, sequential and randomized. Based on the feature 

evaluation scheme, Siedlecki and Sklandsky [194] classified feature selection meth­

ods into past, present, and future categories while Langley [113] grouped them into 

wrapper and filter.

Jain et al. [82] presented a taxonomy of feature selection algorithms, dividing 

them into statistical pattern recognition (SPR) techniques and artificial neural net­

works (ANN). In a more recent survey, Kudo et.[107] compared (large-scale) feature
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selection algorithms. Their performance were measured their using a leave-one-out 

correct-classification rate of a nearest neighbour classifier. Generally, feature selection 

procedure can be performed by three search strategy groups [40]. These are complete, 

heuristic and stochastic search strategy.

• Complete search is the way to find an optimal feature subset. The first 

method which can be used to carry out this search is the exhaustive search. It 

examines all possible feature subsets (feature combinations) and selects the best 

one among the competing 2n possible subsets for a given n dimensional feature 

space. Different heuristic methods, which introduce backtracking in the search, 

can be used to reduce the search without jeopardizing the chances of finding the 

optimal subset. (For example Focus by Almuallim et al. [6] and Branch and 

Bound [149]). However, this strategy is still impractical for high-dimensioned 

problems because it is time consuming.

• Heuristic search The generation of feature subset, in this technique, is ba­

sically incremental (either increasing or decreasing). In each iteration, all re­

maining features yet to be selected or rejected are considered for selection or 

rejection [40]. Since all possible subsets are not examined, heuristic search is 

not guaranteed to converge to the global optimum result. However, it is more 

preferable because it is very simple to implement and very fast. The most popu­

lar methods that belong to this technique are Forward selection (FS), Backward 

selection (BS) methods and stepwise (bi-directional) selection which uses both 

(FS) and (BS) in association.

Stochastic search This strategy search fewer number of subsets than 2n by
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setting a maximum number of possible iterations. It is based on a random gen­

eration of feature subset. For achieving good results, it is essential to assign 

suitable values to parameters which are required in each random generation. 

Various methods have been suggested such as tabu-search [105], simulated, an­

nealing [102], and genetic algorithm [193].

Siedlecki and Sklansky [193] were the first to propose the use of genetic algo­

rithms (GA) for feature selection. In GA, a feature subset is represented by 

a binary string, called a chromosome, of length n with a zero or one in po­

sition i denoting the absence or presence of feature i in the set. The fitness 

of each chromosome is evaluated through an optimization function in order to 

determine how likely the chromosome is to survive and breed into the next 

generation. A population is maintained and evolved by creating new offsprings 

from the fittest chromosomes using the process of: (i) crossover, where parts 

of two different parent are combined to create a child, (ii) mutation, where a 

child is created by randomly selecting bits in a single parent and flipping the 

bit value from zero to one or vice versa.

2.8 Classification methods

The classification task is to assign a class to the pattern according to the corresponding 

feature vector. It can be divided into two main categories: supervised classification 

and unsupervised classification.

In supervised classification (or discrimination), the User has a set of data samples 

with associated labels or the class types. These are used as exemplars in the classifier 

design. In unsupervised classification(or clustering), the data are not labeled and the



Chapter 2. Texture Analysis and Classification 51

User seeks to find groups in the data and the features that distinguish one group from 

another. This section will discuss the different distance metrics and the most popular 

methods in the supervised classification that have been used in this research.

2.8.1 Distance metrics

In general, there are two ways to compare two patterns; one is the inverse of the other: 

(i) to compute the distance between the image features, (ii) to evaluate the similarity 

between them. Several types of functions, known as distance metrics or similarity 

measure, have been proposed. Duda et al. [50] have presented four properties for 

distance metrics d between vectors a and b:

1. Nonnegativity: d(a,b) > 0

2. Reflexivity: d(a, b) =  0, if and only if a =  b

3. Symmetry: d(a,b) =  d(b, a)

4. Triangle inequality: d(a, b) +  d(b, c) > d(a, c)

The following distance metrics are used, in this work, because they are the most 

commonly used [184]:

LI norm:
n

(2.33)

L2 norm:
n

(2.34)
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Cos distance (Normalized Correlation):

d(a, b)
aTb

4M\
where a¿, bi are an i — th element of vectors a and b respectively.

(2.35)

2.8.2 k-Nearest Neighbour

It is an easy and efficient, and also known as lazy classification algorithm, where there 

is no work done (if k is known) in training stage and all the work is conducted during 

testing. The algorithm first calculates the distances between a single query sample 

and each of the other training samples based on one of the the distance metrics that 

were discussed in Section 2.8.1. The training samples closest to that sample are 

defined as its “nearest neighbours” . The query sample is then assigned to the class 

from which a majority of it’s k nearest neighbors are from, where k is typically an 

integer less than 10. Choosing big values for k yields smoother boundaries, which 

makes the classifier more robust to noise but less discriminative [147]. When k is 

1 , the algorithm seeks the nearest neighbor and the label of the testing sample is 

recognized as its nearest neighbor’s class.

The other major attraction of the kNN classifier, in addition to having to optimize 

the selection of only one parameter k, is its asymptotic performance. This fact comes 

from the famous result of Cover and Hart (1967) [34] which shows that the error rate 

of the 1-nearest-neighbor classifier is never more than twice the Bayes rate for the 

same data. The theoretical basis of the kNN classifier is well described in [39].
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2.8.3 Support Vector Machines

The Support Vector Machine (SVMs), are among the most powerful methods for data 

classification. Thus they have attracted extensive interest in the machine learning 

research community [216] and have been employed in a wide range of classification 

and regression problems such as face detection [154], face verification [162], Gender 

classification [145], 3D Object Recognition [170] and bioinformatics [43]. SVM is 

ideally suited to two class classification problems. In this case, it aims to determine 

a maximal separating hyperplane between two classes so that the classification error 

is minimized. Figure 2.16 demonstrates the example of maximum-margin hyperplane 

for two sets of data points. It is shown that there are many linear hyper planes that 

separate the data. However only one of these achieves maximum separation. It is 

called Optimal Separating Hyper plane (OSH) and the samples on the margin are 

called the support vectors.

Figure 2.16: Two examples of a separating hyperplanes

Mathematically, Given a training samples (Xi,yi) with Xi £ 3?", Hi £ { — 1, -1-1} for 

1 <  z < ¿, where l is the number of instances, so the canonical hyperplanes can be
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defined as follows:

Hi : wT Xi — b =  +1 

H2 : wT Xi — b =  — 1
(2.36)

where b is the offset of the hyperplane from the origin and w is an n dimensional 

vector and perpendicular to the separating hyperplane (see Figure 2.17).

Figure 2.17: Linear separation of the data points into two classes

Based on the above definition, any solution must satisfy the following constraint:

{
wT Xi -  b >  +1 V yi =  +1 

wT X i - b < - 1 V yi =  —1

These can be combined into one set of inequalities:

(2.37)

Vi {wT Xi -  b) >  1 , i 1, 2 , - - - , 1. (2.38)
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Below, the optimal separating hyperplane for the case where the training data are 

linearly separable will be first considered. Then, we generalize the idea of optimal 

separating hyperplanes to the case of linearly nonseparable data and kernel trick.

Linearly separable data

For linearly separable data, the separating hyperplane can be written as, wT x ~ b  =  0, 

The distance between each of canonical hyperplanes and the separating hyperplane 

is l/||ry||. Now optimizing the separating margin is equivalent to maximizing the 

distance between H\ and / / 2- Since the largest width between them is 2 / ||iu||, the 

learning problem of SVM can be formulated as follows [222]:

minimize | ||iu||

subject to Ui(wT Xi — b) >  1 Mi
(2.39)

The optimization problem (2.39) can be solved by saddle points of the Lagrange’s 

function, which is:

minimize L(w , b,a) =  -  ||iu|| — cq [yi (wT Xi — b) — l] (2.40)
i=1

where {cq : 1, • • • /; cq >  0} are Lagrangian multipliers.

To find the values w, b, and cq >  0, that minimize L, we partially differentiate 

Equation 2.40 with respect to b and w and equate the derivate to zero. The dual 

form of the Lagrangian becomes as follows [222]:

maximize LD =  ]T]-=i on -  \ Ylj=x a i aj Vi Vj x?  xj 

subject to ai yi =  0, a* > 0 Mi
(2.41)
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Linearly non-separable data and kernel case

In many practical problems data is not linearly separable, so the formalism need to be 

changed to account for that. Hence, in order to relax those constraints, positive slack 

variables {£*, i =  1 , • • • , l, Q >  0}  were introduced, into the original constraints [216] 

along with an additional penalty value C  for the points that cross the boundaries to 

consider the misclassification errors:

minimize \ ||iy|| +  C YLi=i Ci 

subject to yi(wT x3 — b) >  1 — Co Cj >  0
(2.42)

To get rid of u>,6, £, the previous technique (that was used in linear case) have been 

implemented, the dual form of the the Lagrangian is built as:

maximize LD =  on -  \ ELi Y13=i on Vi Vj x x d 

subject to Yli=i ai Vi =  0, 0 < at <  C Vi

Kernel trick

The initial SVMs algorithm that suggested by Vapnik [216] was a linear classifier. 

Boser [16] proposed a good scheme to create nonlinear classifiers by the kernel trick. 

The Kernel function K(xi ,Xj )  =  4>{xi)T4>{xj) is a map that transforms data from 

the original space in which the classes may not be linearly separable, to a higher 

dimensional space in which they are. The discriminant function, with this function, 

can be written as, g(xi) — wT(f>{xi) +  b and the corresponding dual form comes of

(2.43)
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replacing XiXj in program 2.43 by K(xi,Xj)  [19]:

maximize LD =  Y!i=i ai ~  | E != i Y!j=i W Ui Vj

subject to ^ =1 « i Z/i =  0, 0 < a* < C Mi

maximize
(2.44)

There are many kernel functions to build SVM-based classifier. However, the most 

commonly used kernel functions are:

• linear: K(xi,Xj)  =  xfxj .

• polynomial: K(xi ,Xj ) =  (7x j x j  +  r)d, 7  > 0.

• sigmoid: K(xi,Xj)  =  tanh(yxjXj + r ) .  Here 7 , r, and d are kernel parameters.

The scheme that is used for selecting kernel parameters will be discussed in Section 

6.2. SVMs for Multi-classes classification problem can be found in [73].

2.8.4 Sparse Representation

mance for face recognition as reported in [226]. The problem of image classification 

based on SRC can be formulated as follows [226]:

Let us assume that we have k classes training samples, a basic problem in pattern 

recognition is to correctly determine the class which a new test sample belong to. We 

arrange the n* training samples from the ith class as columns of a matrix:

• radial basis function(RBF): K(xi,Xj)  =  exp(—7 ||xj — Xj||2) , 7 > 0.

A Sparse Representation-based classification (SRC) can often achieve high perfor­

(2.45)
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A dictionary matrix A is built by concatenating Aj, i =  1, 2, k as follows:

A =  [Ai , A2, . . .  Ak] e  Rmxkn\ (2.46)

Under the assumption of linear representation, a test pattern will approximately 

lie on the linear subspace spanned by training samples so it can be represented as a 

combination of all n training samples (n =  k ■ r i i ) :

y =  Ax G Rm (2.47)

where x is an unknown coefficient vector. It is noted that only those entries of x that 

are non-zero correspond to the class of y. This is the motivation to seek the sparsest 

solution to y =  A x , solving the following optimization problem:

(1°) : xo =  arg min ||x||0 subject to Ax =  y (2.48)

where ||-1|0 denotes the /°-norm) which counts the number of the nonzero entries in 

a vector. It can be shown that if the solution x0 is sparse enough, the solution of 

^-minimization problem is equal to the solution of following T-minimization problem 

[226]:

(.I1) : £i =  arg min ||a;||1 subject to Ax =  y (2.49)

With the solution x\ to Equation 2.49, we can compute the residual between a 

given probe image and each gallery image as follows:

k

y ~ Y l  xCj Wi
3  =  1

n =
2

(2.50)
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The identity of the given probe image is then determined as the one with smallest 

residual.

2.9 Information Fusion Techniques

Different information sources when used for the same recognition task may often lead 

to different errors. Therefore the fusion of complementary sources of biometric infor­

mation has the potential to produce more reliable results and to reduce recognition 

error rates. Basically, most biometric-based authentication systems can be divided 

into four main components:

• Sensor unit: for capturing the biometric data;

• Feature extraction unit: the acquired data passes through this procedure in 

order to extract a discriminative representation of it.

• Matching unit: the generated feature vectors are compared to those stored in 

the template and the matching scores are produced from this stage.

• Decision unit: to determine, based matching score, if the claimed identity is 

genuine (accept) or it is imposter (decline).

Therefore, the fusion-based systems can occur, as illustrated in Figure 2.18 at four 

potential levels (or stages): sensor level, feature level, matching score level and deci­

sion level. In other words, it can be performed before implementing the classification 

(pre-mapping fusion) or after implementing it (post-mapping fusion). Pre-mapping 

techniques include fusion at the sensor and the feature levels while post-mapping 

techniques include fusion at the match score and decision levels.
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2.9.1 Sensor-level fusion

Sensor-level fusion can be performed either by:

(a) consolidation of raw data acquired from sensing the same biometric trait with 

multiple compatible sensors. For example, constructing a panoramic face using snap­

shots of five standard cameras that simultaneously capture multiple views of a sub­

jects face[229] or building a 3D model of the face by combining multiple 2D face 

images obtained from different viewpoints [131]. Wang et al.[218] used two sensors 

to respectively capture palmprint and palm vein images. However, they suggested 

for the future work, to obtain palmprint and palm vein almost simultaneously using 

single camera by either switching the filters, or obtain fully registered images by using 

one camera which has good sensitivity in the visible and near infrared spectrum.

(b) integration of multiple instances (snapshots) of the same biometric trait ob­

tained using a single sensor. A good example is Image mosaicking which is construct­

ing a more complete fingerprint image or face template using multiple impressions 

[174] or 2D face snapshots [196] with the same camera or sensor.

Although sensor level fusion is expected to improve the recognition accuracy, it 

may not be applicable if the data instances are incompatible or if the correspondences 

between points in the raw data are not known in advance [180]. An interesting and 

simple combination technique between two modalities is found in [26], where the 

normalized, masked ear and face images are concatenated to form a combined face- 

plus ear image. It was found that the multimodal recognition using both the ear and 

face results in significant improvement over either individual biometric, for example, 

90.9% percent in the analogous experiment.
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2.9.2 Feature-level fusion

Feature level fusion refers to combining different feature vectors that are extracted 

from different multimodalities or from the same modality using different feature ex­

traction techniques. This combination strategy is usually done by concatenating two 

or more feature vectors to form a single feature set.

It is stated in [178] that such a fusion type is practically difficult to achieve for a 

number of reasons. For example, the dimensionality of the resulting feature vector, 

which can lead to the curse of dimensionality problem. Although, this is a general 

problem in most pattern recognition applications, it is more severe in biometric sys­

tems because of cost, time and effort involved in collecting large amounts of biometric 

data and increasing computational load.

Hence, merging extracted features into one single feature vector usually involves 

applying appropriate dimensionality reduction or feature selection methods. It is also 

necessary to separately normalize the different feature sets before concatenating them 

because this step prevents certain features from dominating distance calculations 

merely because they have large numerical values [50].

Tan and Triggs [204] combined two of the most successful feature extraction ap­

proaches, Gabor wavelets and LBP for face recognition and they showed that the 

fused feature gives considerably better performance than when used separately. Ex­

amples of feature level fusion schemes extracted from different multimodalities, in the 

literature, can be found in Chibelushi et al. [31] (voice and lip shape ), Son and Lee 

[199](face and iris) and Ross and Govindarajan[179] (face and hand geometry).
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2.9.3 Score-level fusion

Each classifier, using the same biometric trait or different ones, provides a matching 

score indicating the proximity of the feature vector with the reference vector. At 

this level, it is possible to combine these scores to assert the veracity of the claimed 

identity. This kind of fusion, also referred as opinion level fusion, currently appears 

to be the most useful fusion level because of its good performance and simplicity.

Basically, it is divided into two groups: combination and classification. In the 

former approach, the matching scores are gathered using fixed rule (e.g. Maximum 

rule, Minimum rule, Sum rule, Product rule, Mean rule) to produce one score, which 

is used to make the final decision. Kittler et al. [103] investigated a number of 

different fusion methods including product, sum, min and max rules, finding that the 

sum rule outperformed others.

In the latter approach, the matching scores are considered as input features for a 

two-class pattern recognition problem and classifiers such as Neural Networks [221], 

SVM [183] and Decision Tree [177] can be used to arrive at the final decision. Ross 

and Jain [177] have shown that the combination approach performs better than some 

classification methods such as linear discriminant analysis and decision tree.

Prior to score fusion take place, normalization must be carried out in order to 

transform the scores into a common domain. According to the literature, there are 

various well-known score-normalization techniques (i.e. Min-Max, Z-Score, Tank, 

Median-MAD, Double-sigmoid) . Min-Max and Z-Score are chosen because they have 

shown to be amongst the widely used and most effective methods for this purpose
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[85]. Min-max Normalization is calculated as:

n — min
x = -----------------

max — min

where, x is the normalized score, n is the raw score, and max and min functions 

specify the maximum and minimum end-points of the score range respectively. Z- 

Score Normalization (ZS) converts the scores to a distribution with the mean of 0 

and standard deviation of 1. It is given by the following form:

(2.51)

n  —  p

a
(2.52)

where, n is any raw score, and p and o  are the arithmetic mean and standard deviation 

of the given data.

2.9.4 Decision-level fusion

The output (decision), in a verification system, is an Accept or a Reject while in an 

identification system, the classifier outputs a list of possible classes with rankings for 

each subject in order to identify an individual.

In this fusion approach, also denoted as abstract level fusion, decisions that are pro­

duced from multiple classifiers are are combined via techniques such as decision level 

include AND/OR rules, majority voting [110], weighted voting based on Dempster- 

Shafer theory [228], etc.

Fusion at the decision level is considered to be the least powerful, on the basis 

that decisions have less information content compared to earlier levels of fusion [178]. 

However, Kumar et al. [109] showed that fusion at decision level outperformed fusion at
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feature level for multimodal system based on fusion of hand geometry and palmprint.

On other hand, the ranks in identification systems, could be consolidated using 

techniques such as: the highest rank, the Borda count,and logistic regression ap­

proaches [71], etc. This technique is called rank-level decision.

2.10 Conclusion

The chapter has been structured in two blocks. In the first, the different applications 

of texture analysis were discussed and works on the topic of texture analysis ap­

proaches and the techniques that have been used for feature selection were reviewed. 

In the second block, the classification approaches that have been used in this the­

sis were illustrated in details and the different schemes for fusing information were

described.



Chapter 3

Face Recognition: Review

3.1 Introduction

Depending on the application, a face recognition system can be working either in 

identification or verification mode. Face verification involves a 1 : 1 matching (com­

parisons) as the system needs to confirm or reject the claimed identity associated 

with the input face, whereas face closed-set identification is a 1 : N- comparisons 

problem. The input to the system is an unknown face, and the system reports back 

the determined identity from a database of known individuals. Phillips et al in the 

Face Recognition Vendor Test (FRVT) 2002 [165] define another scenario referred to 

as the watch-list or open-set identification, where the test individual in this mode 

may or may not be in the entire database. The image is recognized if a close enough 

match is on the stored watch list. All the identification experiments in this thesis are 

closed-set.

Facial recognition systems are usually consist of four stages, (1) detection of the 

face (in a complex background) and localization of its exact position, (2) extraction

6 6
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of facial features such as eyes, nose, etc, followed by (3) normalization to align the 

face with the stored face images, and (4) face classification or matching. Figure 3.1 

shows the architecture of two face recognition system modes. The following sections 

describe each of these main sections in some detail and present a review of literature.

3.2 Challenges of Face Recognition

Over the past two decades, major advances have occurred in the area of face recog­

nition, with many systems capable of achieving recognition rates greater than 90% 

[166]. However, real-world scenarios (such as those encountered in uncontrolled envi­

ronments) remain a challenge [1] ,this comes from an inadequacy in the following two 

directions:

1. Face acquisition process: The performance of face recognition systems is 

significantly affected by facial appearance-based factors, some of them intrinsic 

(facial expression, age) and others are extrinsic (pose changes, partial occlusions 

and uncontrolled environmental conditions (illumination variations)). These 

variations are further increased by changes in the camera parameters, such as 

aperture, sensor spectral response and lense aberrations. Figure 3.2 illustrates 

some of these challenges.

Some recent efforts have focused on using video input, and different features 

(e.g., skin texture) to overcome the performance drawbacks in 2D still face 

recognition [1], Others tried to investigate the use of novel sensors, such as 

infrared or 3D images, which can help overcome limitations due to viewpoint 

and lighting variations [55]. An interesting comparative study between the
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performance of visible and infrared techniques can be found in [29].

2. Pattern classification process: Many face recognition systems suffer from 

the so-called small sample size problem (SSS) which exists if the number of 

available training samples per individual is much smaller than the dimensional­

ity of the sample space. Therefore, the system cannot build reliable models of 

each person to recognise the face identity from a probe image.

(a) frontal (b) non-frontal (c) lighting (d) expression

(a) glasses (b) sunglasses (c) hat (d) scarf

Figure 3.2: Examples of different challenges (adapted from [156]

3.3 Face Detection

The first problem that needs to be addressed in any face processing system is face 

detection. This is concerned with identifying and locating human faces in an image 

regardless of (i) their position (ii) scale (iii) presence or absence of glasses and beards
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(iv) facial expressions (v) occlusion between faces or if faces are partially occluded 

by other objects (vi) image illumination (vii) image orientation. Face localization is 

a face detection problem with the assumption that an input image contains only one 

face. A comprehensive survey of face detection approaches can be found in Yang et 

al [232] and Hjelmas et al [70].

Face detection plays a critical role for the success of any face processing sys­

tem such as face recognition, facial expression recognition, facial feature extraction, 

biometric systems, face tracking, gender classification, and attentive user interfaces. 

Additionally, many algorithms used for face detection can be extended to detect other 

objects like pedestrians, cars, and signs, etc.

The following subsections give a brief review of face detection techniques in gray 

images and the Viola-Jones algorithm as the most popular face detector in the gray 

facial images. Then, two famous techniques for detecting faces in colour images are 

presented. They are skin-based detection and illumination-based detection. Finally, 

recent advances of face detection approaches are briefly discussed.

3.3.1 Face Detection in Gray-Scale Images

Face detection in gray facial images, according to [232], can be classified into four 

categories: •

• Knowledge-based methods: In this top-down approach, face is represented 

using a set of human-coded rules that describe the facial features and their 

relationships. For example, the centre part of face has uniform intensity values, 

the difference between the average intensity values of the centre part and the 

upper part is significant and the face often appears with two eyes that are
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symmetric to each other, a nose and a mouth. Yang and Huang [230] presented 

a hierarchical knowledge-based method to detect faces.

• Feature-based methods: In contrast to the previous approach, numerous 

methods have been proposed to first detect invariant structural features and 

then to verify the presence of a face. This bottom-up approach can be per­

formed based on several cues such as edges of facial features (eyes, nose, mouth, 

eyebrows, etc) [236], face texture [38], shape information [8], etc.

• Template Matching Methods: A standard face pattern is hand-coded (not 

learned) by (a) predefined template that based on edges or regions such as the 

shape template [35] or (b) deformable template that is based on facial contours 

like Active Shape Model (ASM) [114]. In these methods, the correlation values 

of an input image with the standard patterns are computed to locate faces.

• Appearance-Based Methods: Contrasted to the template matching meth­

ods where models are predefined by experts, appearance-based models are 

learned from positive and negative examples of faces. In general, these methods 

rely on techniques from machine learning and statistical analysis to find rele­

vant characteristics in face and non-face images. Different classifiers have been 

proposed for the training stage, in appearance-based methods, such as Neural 

network [182], Eigenface [213], Support Vector Machine (SVM) [154], Adaboost 

[52], etc.
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3.3.2 The Viola-Jones Detector

Viola and Jones detector also known as “Haar-Cascade” [217] has been shown to 

be a highly effective face detector that is used in a large number of real-time face 

detection applications. There are three main characteristics of this method to obtain 

an efficient performance and good accuracy:

Haar-like features

The features that Viola and Jones used are based on Haar wavelets. Haar wavelets are 

single cycles of the square waves (one low interval and one high interval). A square 

wave, in two dimensions, is a pair of adjacent rectangles - one dark and one light. 

Figure 3.3 shows four different simple feature types that were used in the standard 

Viola-Jones detector.

Figure 3.3: Haar-like features, the pixelsum of the white areas are subtracted from 
the pixelsum of the black areas [217]

Integral images

The integral image is also known as “Summed-up table” . It is a two dimensional 

lookup tables in the form of a matrix with the same size of the original image. The
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integral value for each pixel is the sum of all the pixels above it and to its left. This 

allows to calculate the rectangle sum at any position or scale using only four lookups:

sum =  7(4) +  7(1) — 7(2) — 7(3) (3.1)

where A,B,C,D belong to the integral image I, as illustrated in Figure 3.4. These 

sums will be compared to thresholds calculated during training stage. Based on 

those feature templates within a window of 24 x 24 pixels features are detected at all 

positions and sizes which can lead to a very large number of features and associated 

numbers.

A B
1 2

•i
C D

2_________,

Figure 3.4: The Integral Images trick [217]

Adaboost

The Adaboost (adaptive boosting) is a machine-learning algorithm that aims to select 

few best features that fit the positive examples from the very large number of integral 

image features [52]. A cascade architecture is adopted to build a strong classifier from 

a sequence of weak classifiers (Figure 3.5).
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nonface nonface nonface

Figure 3.5: Cascade architecture (adapted from [217])

Recent Advances

Due to its robustness, Viola-Jones face detector has become dominant in many real 

world applications, hand detection [104], eye detection [134], license plate detection 

and even for ecological applications such as wild life surveillance [20].

It is also used for eye localization to localize the face in the first step. For instance, 

in [51], three approaches for eye localization were applied on a facial region that was 

obtained through Viola-Jone face detector and then these different approaches were 

compared. Recently, Asteriadis et al.[9] proposed a scheme that first implements 

Viola and Jones detector to locate the face and utilizes distance vector fields (DVFs) 

to locate facial features.

Despite the excellent performance of such a system, the training time is rather 

lengthy (may take days in training) so recent work has focused on the improvement 

of the boosting architecture. These include the enhancement of AdaBoost training

[122], the use of new features to represent faces in different poses [45], [75] and optimal 

selection of features by exploiting their statistics before the training stage [227], [18].
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3.3.3 Skin-Based Face Detection

In many applications from face detection to hand tracking, human skin colour detec­

tion has been used and it has proven to be an effective feature. Different colour paces 

have been utilized to label pixels as skin such as RGB [171], HSV (or HSI) [197], 

YCrCb [23], etc. Several methods have been suggested to build a skin colour model 

such as parametric or nonparametric methods [21], [87], [37].

The parameters in a unimodal Gaussian distribution are often estimated using 

maximum likelihood [21], [100], [233]. The colour histogram for the skin of people 

with different ethnic backgrounds does not form a unimodal distribution, therefore, 

this multimodal distribution is represented by mixtures of Gaussians. The parameters 

in a mixture of Gaussians are usually estimated using an EM algorithm [87],

In contrast to the parametric methods mentioned above, Crowley et al [37] built 

a histogram h(r,g) of (r,g) values in normalized RGB colour space. According to 

this algorithm, a pixel is classified to belong to skin colour, if h(r,g) >  r, where r  is 

a threshold selected empirically from the histogram of samples. Jones and Rehg [93] 

conducted a large-scale experiment analyzing 1 billion labeled skin tone pixels which 

were collected in normalized RGB colour space. They found that the performance of 

the histogram model for skin detection outperformed a Gaussian mixture model in 

accuracy and in computational cost.

3.3.4 Illumination-Based Face Detection

Hsu, Mottaleb and Jain [74] proposed a face detection algorithm for colour images. 

In this approach, face localization was performed using a lighting-compensated skin 

detection model in YCbCr colour space based on Terrillon et al [206] comparison of
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nine colour spaces. A lighting compensation method was first introduced because 

different lighting conditions causes the appearance of the skin-tone to change. A 

nonlinearly transformation was performed on the YCbCr colour space to make the 

skin cluster luma-independent because the skin-tone colour depends on luminance. A 

parametric ellipse in the nonlinearly transformed Cb-Cr colour subspace is used as a 

model of skin distribution.

This algorithm then exploits facial features such as eyes, mouth and head contours 

for verifying each face candidate. According to this method, two separate eye maps, 

one from the chrominance components of the image and the other from luminance 

component, are built. The eye map from the chroma is based on the observation that 

high C'b and low Cr values are found around the eyes. It is constructed by:

EyeMapC =  i  { ( Q ,)2 +  (Crf  +  (Cr/C „ )} (3-2)

where C&, Cr and Cr are the normalized blue, red and negative of red chroma compo­

nents respectively. These values were normalized to the range [0,255]. The eye map 

from luma is based on the observation that eye regions contain both dark and bright 

pixels, so brighter and darker pixels in this component around eye can be emphasized 

by implementing gray-scale morphological operators (e.g. erosion and dilation). They 

use gray-scale dilation and erosion with a hemispheric structuring element to build 

the eye map from the luma as follows:

EyeMapL y (x ,y )  ®9a(x,y)
Y { x , y )  Qg<r{x ,y )  +1

(3.3)

where the gray-scale dilation © and erosion © operations on a function /  : F  C Ji2 —>•
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3? using a structuring function gc : G C 5ft2 —>■ are defined in [80]. The eye map

from the chroma is enhanced by histogram equalization and then combined with eye 

map from the luma by an AND (multiplication) operation, i.e.

EyeMap = (EyeMapC)AN D(EyeMapL) (3.4)

The resulting eye map is then dilated and normalized to brighten both eyes and 

suppress other facial areas as shown in Figure 3.6

Figure 3.6: Eye Map Construction adapted from Hsu et al.[74]

The mouth map, according to this method, is based on the observation that mouth 

region contains stronger red component and weaker blue component as compared to 

other facial regions, which means in YCbCr colour space that Cr is greater than Cj, 

for mouth region. The mouth also has a relatively low response in the Cr/Cb feature,
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but it has a high response in Cf. Therefore its map (Figure 3.7) is constructed as

follows:
MouthMap =  C 2r ■ [C2r -  r\ ■ Cr/Cbf

V =  0.95 • n '52(x,y)£FG C r [ x ,  V ) 2

iY .{X,y)eFG-c r(x,y)/Cb(x,y)

(3.5)

Then they form an eye-mouth triangle for all possible combination of two eye candi­

dates and one mouth candidate. Every eye-mouth triangle is verified by checking (i) 

luma variations of eye and mouth blobs; (ii) geometry and orientation constraints of 

the triangles; and (iii) the presence of a face boundary around the triangles. A face 

score is computed for each verified eye-mouth triangle based on its eye/mouth maps, 

ellipse vote and face orientation and the face with highest triangle score that exceeds 

a threshold is retained.

Figure 3.7: Map-based Mouth Construction adapted from Hsu et al.[74]
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3.4 Face Normalization

After a face has been detected in an image by a face detector, there are sometimes 

pre-processing steps which may be implemented to improve the performance of the 

facial recognition systems.

• Geometric Normalization is one of the key steps in most face recognition 

systems. Especially for systems that are based on the frontal views of faces, 

it may be desirable to normalize the shifts and rotations of facial images in 

the head position so that image comparison and feature extraction may be 

conducted on corresponding areas of facial images.

Formally, let (xr, yr) and (x\, y{) be the locations of the centres of right and 

left eyes respectively, the amount of horizontal rotation of the face, is then 

determined using Equation 3.6:

6 =  tan 1 , Vr~yij 
y x r —  Xi

(3.6)

In order to align the eyes, the whole image is then rotated by the angle 9. The 

direction of the rotation (clock-wise or counter clock-wise) is determined by the 

polarity of difference of vertical distances (yr — yi) between the right and left 

eye centres. The new coordinates of every point in the face and, therefore, the 

new locations of eyes and mouth centres are given by Equation 3.7:

x

V

cos 6 

sin 9

— sin 9

cos 9
(3.7)
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• Illumination normalization: Face images taken under different illuminations 

can reduce recognition performance. The illumination normalization technique 

aims to eliminate these effects among different images. It is generally per­

formed after the geometric normalization. Figure 3.8 shows example of these 

techniques: Multi Scale Retinex (MSR) [91], the wavelet-based normalization 

technique (WA) [47], Istoropic-diffusion based normalization (IS) [69] and the 

adaptive non-local means based normalization technique (ANL) [201].

• Image size normalization: The acquired image size is changed to a default 

image size on which the face recognition system operates.

• Histogram equalization: If the images are too bright or too dark this step is 

done in order to enhance image quality because it modifies the contrast range of 

the image and therefore some important facial features become more apparent.

3.5 Face Recognition Approaches

Still Face recognition techniques can be categorized into two main classes [14]: global- 

based (Holistic) approach and Local-based (Analytic) approach. Some recent methods 

try to exploit the advantages of both approaches at the same time so they are classified 

as hybrid. A comprehensive survey of 2D face recognition approaches is found in [245] 

and [1].

In Holistic approach, a single feature vector that encodes the whole face image 

is used as the input of a classifier. This technique works well for classifying frontal 

views of faces. However, its performance can be highly affected by face occlusion such 

as wearing sunglasses or masks and image variation due to pose and or illumination
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Figure 3.8: Different techniques for Illumination normalization; (a) first column: 
Original image (b) second column: MSR [91] (c) third column: WA [47] (d) forth 
column: IS [69] (e) fifth column: ANL [201]
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change [101]. To avoid this problem face alignment can be implemented before the 

classification stage.

In contrast with the previous approach, classifying local facial components can 

limit the influence of the facial acquisition conditions to those within the small com­

ponent regions. To discriminate between different persons using such systems, facial 

features such as mouth, nose and eyes have been used for face recognition [224], 

Heisele [14] compared local and global approaches and concluded that “the compo­

nent system outperformed the global systems for recognition rates larger than 60%” .

LBP and Gabor wavelets are considered as two of the most popular and successful 

local face representations, in recent years. Gabor features extract shape information 

over a broader range of scales. In contrast, LBP is a good choice for coding fine 

details of facial appearance. Both representations are computationally efficient, rich 

in information and their complementary nature makes them a good choice for fusion. 

A simple fusion technique is to separately extract Gabor and LBP features in parallel, 

and then, combine them on feature level, matching score level, or decision level [205]. 

Tan and Triggs [205] combined these two feature sets and projected them to PCA 

space. They concluded that the combination method has only around 2/3 of the 

errors of either feature set alone.

Another way of fusion is the serial technique, which consists in applying multi­

scale Gabor filtering prior to LBP feature extraction. Zhang et al [242] proposed the 

extraction of LBP features from images obtained by filtering a facial image with 40 

Gabor filters of different scales and orientations, and only the magnitude value of the 

result was taken into their account. A downside of the method which is called Local 

Gabor Binary Pattern Histogram Sequence (LGBPHS), is the high dimensionality
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of the representation of the extracted features. Zhang et al [238] argued that phase 

parts of Gabor wavelet are also useful for face recognition. Thus they presented 

the Histogram of Gabor Phase Patterns (HGPP) method which encoded the Gabor 

phases through LBP and forming local feature histograms.

Zou et al [246] compared PCA, Gabor wavelets and LBP for FERET and AR 

databases. The comparison of the three local feature representations was conducted 

on four 37 x 37 windows centred at four facial landmarks (two eyes, nose, and mouth). 

They concluded that Local Binary Pattern is a good local feature, but it is inadequate 

for non-monotonic illumination changes, which often appear in facial regions such as 

the nose. The Gabor jet is their choice for local feature representation because of 

its robustness to illumination variations. Their main drawback was that they still 

detected facial features manually.

3.5.1 Holistic Approaches

In the Holistic approach, a single feature vector that encodes the whole face image is 

used as the input to recognition system so it is provided in high-dimensional form. A 

Dimensionality Reduction (DR) is the common way to attempt to resolve this prob­

lem. Principal Component Analysis (PCA) [213] and Linear Discriminative Analysis 

(LDA) [12] have been the two most popular for this purpose and two state of art FR 

methods, Eigenfaces and Fisherfaces, built on the two techniques, respectively have 

been proved to be efficient and very successful.

However, PCA and LDA consider only the global scatter (Euclidean structure) of 

training samples and fail to discover the underlying structure, if face images lie on 

a nonlinear submanifold hidden in the image space. To overcome these drawbacks,
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the manifold learning methods were proposed by assuming that the data lie on a 

low dimensional manifold of the high dimensional space [181]. Locality Preserving 

Projection (LPP) is one representative of these methods. A face subspace which is 

obtained by LPP is characterized by a set of feature images, called Laplacianfaces 

[67].

It is generally believed that LDA-based algorithms are superior to PCA based 

ones. However, many LDA based algorithms suffer from SSS problem. The traditional 

solution to the SSS problem is to first utilize PCA as a pre-processing step and then 

LDA is performed in the lower dimensional PCA subspace. More effective solutions, 

called Direct LDA (D-LDA) algorithms, have been proposed [28].

Although the so called Direct LDA (D-LDA) method [28] provides an effective 

solution to this problem, it is still a linear method. Thus it could fail to capture the 

important information that may be contained in higher order relationships among the 

image pixels of a face pattern. As a result, there has been interest in developing low 

dimensional representations through kernel based techniques for face recognition, for 

instance, Kernel PCA (KPCA) [186] and Kernel LDA (GDA) [10]. These methods 

can discover and model the nonlinear structure of the face images.

The enhanced Kernel D-LDA (KDDA) [133] is a new kernel discriminant analysis 

algorithm that built on D-LDA and GDA so it generalizes the strengths of the recently 

presented D-LDA and the kernel techniques while at the same time overcomes many of 

their limitations. Additionally, its computational complexity is significantly reduced 

compared to the other two popular kernel methods, GDA and KPCA.
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3.5.2 Gabor-based methods for face recognition

There are two possible strategies for extracting Gabor-based features [191]: either 

using features from the whole filtered image (holistic methods), or extracting the 

features from selected points (nodes) in faces and using them for recognition (analytic 

methods).

Holistic methods suffer from a dimensionality problem (feature vectors are too 

long) so this problem has been tackled by the use of dimension reduction or down- 

sampling techniques [130]. Analytic methods mainly vary in the way they select the 

nodes, which can be divided into: graph-matching based methods such as Dynamic 

Link Architecture (DLA) [112], Elastic Bunch Graph Matching (EBGM) [224] and 

non-graph matching based methods, for instance, detecting feature points manually 

[172] or by applying a ridges and valleys detector to a face image [89]. The recent 

improvement of the analytical methods includes the optimal selection of Gabor pa­

rameters via boosting techniques [234],

3.5.3 LBP-based methods for face recognition

Ahonen et al [3] proposed the basic methodology for LBP based face description. 

It divides the facial image into local regions and LBP texture descriptors are ex­

tracted from each region independently. The descriptors are then concatenated to 

form a global representation of the face. Extensive experiments in [3] showed the 

superiority of the proposed scheme over all considered methods (PCA, Bayesian In- 

tra/extrapersonal Classifier and Elastic Bunch Graph Matching) on all four probe 

sets of the FERET database.

Most of the existing works adopt the aforementioned technique to extract LBP
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features for facial representation. To address the issue of selecting LBP settings (such 

as the size and the location of local regions, the number of neighboring pixels, the 

most discriminative bins of an LBP histogram etc.), boosting learning is commonly 

used. For instance, by shifting and scaling a subwindow over face image, in [239], 

many more subregions are obtained and boost learning is adopted to select the most 

discriminative subregions in terms of LBP histograms. Compared with the approach 

in [3], the boosting LBP-based method achieves a slightly better recognition accuracy.

The authors of [244], employed Laplacian PCA (LPCA) for LBP feature selection 

and pointed out the superiority of LPCA over PCA and KPCA for feature selection. 

Another approach for deriving compact and discriminative LBP-based feature vectors 

consist of applying Dimensionality reduction methods (or Subspace learning). For ex­

ample, a linear discriminant analysis (LDA) is exploited to project high-dimensional 

multiscale LBP features into a discriminant space [24], Yang and Wang [231] intro­

duced Hamming LBP for face recognition. The experimental results on the FRGC 

dataset revealed that the Hamming LBP outperforms the original LBP, especially 

when variations of illumination and facial expression exist.

Liao and Chung [126] investigated the impact of using an ellipse neighborhood for 

LBP-based feature. The combination of this LBP variant, an elliptical binary pattern 

(EBP), with a local gradient measure provided improved results in face recognition 

experiments compared to the ordinary LBP. Another extension of LBP operator is 

the multiscale block local binary pattern (MB-LBP) which has gained popularity 

especially in facial image analysis. Li et al. [127] utilized MB-LBP operator for face 

recognition.

Tan and Triggs [205] developed a very effective preprocessing chain for normalizing
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illumination variations in face images. Their method consists of gamma correction, 

Difference of Gaussian (DoG) filtering, masking (optional) and equalization of vari­

ation. In addition, a three-level operator called Local Ternary Patterns (LTP) has 

been proposed and employed for face recognition.

3.6 Partial Face Recognition

There have been a considerable number of research studies addressing the face recog­

nition problem from full frontal/profile facial images. However, there have been only 

a few studies reported in the literature for Partial Face Recognition (PFR) scenarios. 

Sato [185] showed that certain facial sub-images (such as eye, nose, and ear) could be 

used for recognition. It has been shown in [62] that there is no significant difference 

between the half (right or left) and full face images for recognition.

A new framework that utilizes the eye region and the bottom face region for 

access control is presented in [150]. More recently, an alignment free approach [125], 

is presented to deal with the PFR problem. That approach adopts a variable-size 

description which represents each face with a set of keypoints descriptors. Then, a 

probe face image is sparsely represented by a dictionary of gallery descriptors.

3.7 Skin Information for Face Recognition

Some researchers have focused their work on studying only skin marks. For instance, 

Pierrard et al [168] presented a method to extract irregularities in facial skin, in par­

ticular nevi (moles, birthmarks) using normalized cross correlation (NCC) matching 

and a morphable model. Lee et al [118] proposed a Content-Based Image Retrieval
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(CBIR) for matching and retrieving tattoo images which are considered as a soft 

biometric [86]. Firstly , features of tattoos were extracted based on SIFT and then 

their system computed the similarity between the query tattoo image and tattoos in 

the criminal database.

In [86], an Active Appearance Model (AAM) was used to locate and segment 

facial organs (e.g., eyes, nose, and mouth). Then, Laplacian-of-Gaussian (LoG) and 

morphological operators were used to detect facial marks. Experimental results based 

on FERET and Mugshot databases show that the use of facial marks improves the 

rank-one identification accuracy of a state of the-art face recognition system. A 

combined algorithm consists of a traditional Eigenfaces matcher with a skin mark 

matcher has been proposed in [243]. The resulting combined face matcher delivers 

better performance than either one of the single matchers. The AR Face Database 

was used in the experiments.

Lin et al [128] used both skin marks and skin texture as additional means of 

distinctiveness to improve the performance of face recognition system. Each face 

image is factorized into four layers: global appearance, facial organs, skin texture, 

and facial irregular details. In the third layer, a new skin texture representation has 

been established based on texton-distribution which comprises three stages: Filtering, 

Dictionary Building, and Discriminant Learning. In the fourth layer, SIFT operator 

has been used to extract facial irregularities. However, the accuracy achieved by 

the skin layer alone was limited. The experiments are conducted on XM2VTS [142] 

databases.
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3.8 Databases of Facial Images

There are several face images databases which have been made available by the re­

search community. Each of these databases is designed to address specific factors 

covering a wide range of scenarios. Table 3.1 reviews the most popular 2D face 

images databases.

Table 3.1: Different examples of recent databases of facial images

Database Year Resolution Color

PUT 2009 2048 x 1536 Colour

HRDB 2006 1024 x 768 Colour

FRVT/FRGC 2005 2272 x 1704 Colour

Cas-Peal 2003 360 x 480 Colour

ND HID 2003 1600 x 1200 Colour

Banca 2002-2003 720 x 576 Colour

U of Texas 2002 720 x 480 Gray

KFDB 2002 640 x 480 Colour

Equinox 2002 240 x 320 Gray

CMU-Hyper 2002 640 x 480 Gray

XM2VTS 2002 720 x 576 Colour

CMU PIE 2000 640 x 486 Colour

AR 2000 768 x 576 Colour

FERET 1993,1996,2000 256 x 384 Gray

Yale (B) 1993,1996 640 x 480 Gray
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3.8.1 XM 2VTS

The XM2VTS database[142] is a multi-modal database consisting of face images, 

video sequences and speech recordings taken of 295 people of both sexes and different 

ethnic origins with 4 face images for each person. This data set contains 1180 facial 

images with size of 720 x 576 pixels. The distance between the two eyes ranges from 

84 up to 122 pixels. Over a period of five months, recordings were acquired during 

four sessions under controlled conditions (uniform illumination, blue background).

Since the data acquisition was carried out over a long period of time, significant 

variability of appearance of people is presented in the recordings e.g. changes of hair 

style, facial hair, shape and presence or absence of glasses. About 42.97% (507 images) 

of the dataset face images contain spectacles which represents another challenge in 

this dataset because glasses have a strong influence on skin appearance in an image. 

In addition, areas of skin in some images are affected by facial expressions, shading 

from other body areas or they are likely to be artificially changed by makeup or other 

factors.

3.8.2 FRGC

The Face Recognition Grand Challenge (FRGC ver 2.0) [164] is a large database 

containing high resolution 2D images (2,272 by 1,704 pixels) with controlled or un­

controlled lighting and 3D meshes with shape and texture information. In total 50,000 

recordings of 625 subjects is contained in this database.

The FRGC data for the experiments is divided into training and testing sets. The 

data in the training set contains 12,776 2D still images from 222 subjects where 6,389 

images are collected in a controlled environment and the others are acquired in an
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Figure 3.9: Examples of XM2VTS database images
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uncontrolled environment. The controlled face images taken in a studio setting are 

taken in the full frontal pose with two facial expressions under two lighting conditions. 

The uncontrolled frontal images are captured with two facial expressions in varying 

illumination, such as hallways or outdoors.

There are six experiments, the two most popular for 2D still face recognition 

problem are Experiment 1 and Experiment 4. Experiment 1 is designed to measure 

the recognition performance on controlled still face images from frontal images. In 

this experiment, 16,028 images from 466 subjects under the controlled environment 

are used to establish 16, 028 x 16, 028 similarity confusion matrix. Experiment 4 

is designed to measure the performance of automatic face recognition on controlled 

versus uncontrolled frontal face still images. In this experiment, the query set contains 

of 8,014 uncontrolled still images and the target set consists of 16,028 controlled still 

images. Thus, the dimension of the similarity confusion matrix is 16,028 x 8,014. 

Figure 3.10 shows the example images of this database.

3.9 Performance Evaluation

During the past decade, many commercial face recognition systems have emerged for 

various application and different testing protocols have been designed such as, the 

FERET evaluations [163] and series of FRVT vendor tests 2006 [166] and 2002 [165] 

which play an important role in the standardization of the testing protocol.

This section will summarise the current understanding by the biometrics commu­

nity of the best scientific practices for conducting technical performance evaluating. 

This section is divided into two parts. In the first part, the criteria to evaluate the 

performance of a biometric verification system is presented. In the second part, the
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Figure 3.10: Examples of FRGC 2.0 database images (controlled and uncontrolled 
images)
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evaluation of the performance of a biometric identification system is discussed.

3.9.1 Face Verification System

The system of face verification has two different types of error, False Acceptance (FA) 

and False Rejection (FR). FA is mistaking biometric measurement from two individ­

uals to be from the same person while FR is mistaking two biometric measurement 

from the same individual to be from two different individuals. Therefore, the per­

formance is evaluated according to False Accept Rate or False Match Rate (FAR or 

FMR) and False Rejection Rate or False Non-Match Rate (FRR or FNMR):

FAR =
Number of FAs

Number of imposter accesses (3-8)

FRR =
Number of FRs

(3.9)Number of total true client accesses 

These two rates are a function of the threshold(t).i.e.for a given threshold (t), there 

will be two corresponding values FAR(t) and FRR(t). Three criteria (two curves and 

one value) have been resulted from this pair[138] and can be used to evaluate the 

performance of a verification system:

Receiver Operating Characteristic (ROC) curve

An ROC curve plots the false acceptance rate (FAR) on the x-axis, against 1 - false 

rejection rate (FRR) on the y-axis (Figure 3.11(a)). This curve is threshold indepen­

dent, allowing performance comparison of different systems under similar conditions.
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Detection Error Trade-off (DET) curve

The DET curve is often preferred to the ROC curve, in the case of biometric systems. 

The DET curve plots FAR on the x-axis against FRR on the y-axis using normal 

deviate scale (Figure 3.11(b)).

Equal Error Rate (EER)

The equal error rate is computed as the point where FAR(t) =  FRR(t) (Figure 3.12). 

Practically, the score distributions are not continuous and a crossover point might not 

exist. In this case (Figure 3.12 (b),(c)), this value is computed as follows [140]:

where t\ =  maxt6s {t\FRR(t) <  FAR(t)}, t-2 =  mintes {t\FRR(t) >  FAR (t)}  

and 5* is the set of thresholds used to calculate the score distributions.

3.9.2 Face identification

Two criteria for evaluating face recognition systems will be presented:

/c-fold cross-validation

Cross-validation method allows using the whole data set for training and testing. 

In k-fold cross-validation procedure, the relevant dataset is divided randomly into 

k subsets of approximately equal size. Subsequently one subset is tested using the

FA R( t l H F R R { h )  if F A R (tl) _  FR R(t2) < FRR(t2) -  FAR (t2)
(3.10)
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False Match Rate

(b)

Figure 3.11: (a)Example ROC curves, (b)Example DET curves [138]
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Figure 3.12: Estimation EER in DET curves [140]
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classifier trained on the remaining k — 1. Then the average accuracy across all k trials 

is estimated as the mean accuracy rate.

Rank-one identification

In the testing protocol, the data is divided into two sets of images: the training set and 

the test set. The performance of identification model is usually evaluated by matching 

a set of test face images with those in the database. The resulted matches are sorted 

according to distance measures and the smallest distance obtained is considered to be 

the top match. Rank-one identification is the percentage of all the correct matches 

among all comparisons.

Cumulative match score

The main question in the identification model is not always regarding the top match 

correct, but is the correct in the top k matches?. This allows to know how many 

images have to be examined to get desired level of performance. The performance is 

reported as a cumulative match score, which can be plotted on graph. The horizontal 

axis of the graph is the rank and the vertical axis is the percentage of correct match.

3.10 Conclusion

The chapter covered different topics that related to face recognition. For instance, 

challenges that met the current face recognition systems were discussed. A com­

prehensive account of the face detection approaches used in current face recognition 

systems were presented. Face normalization was briefly discussed. A brief but com­

prehensive literature review of the current state of the art face recognition approaches
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was presented. Specifically we have made distinction in the holistic and local ap­

proaches for facial features extraction and differentiate them. Different algorithms 

for partial face recognition were briefly discussed and a survey of skin-based meth­

ods for face recognition was presented. Finally, the different ways for evaluating the 

performance of face recognition system were discussed and the facial databases used 

along this thesis were described.



Chapter 4

Automatic Extraction of Facial 

Skin Regions

4.1 Introduction

This chapter presents an automatic method for segmenting four facial regions that 

will be used for the face recognition techniques reported in later chapters. Automatic 

extraction of the facial skin regions requires automatic detection of facial features 

such as eye centres and mouth centre.

Facial features detection is an essential step for the initialization of many face 

processing techniques like face recognition, facial expression recognition, face pose 

estimation methods and face tracking. Many face recognition techniques presented 

in the literature do not clearly state the assumptions made in the system and assume 

perfect localization by relying upon manual annotations of the facial feature positions.

This chapter is organized as follows: Section 4.2 presents an overview of the 

existing eye localization methods. Then, Section 4.3 and Section 4.4 respectively

100
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present novel schemes, that resulted from this research project, for eyes and mouth 

localization. The mouth localization algorithm is a modified version of [74] and 

the eye localization algorithm is a hybrid method which combines geometric and 

colour information to detect the eyes. Section 4.5 shows some examples of eye and 

mouth localization results and it also presents a comparison between the results of the 

proposed algorithm and other published results. Finally, the automatic segmentation 

of four facial regions: forehead, two cheeks and chin are described in Section 4.6. 

Section 4.7 concludes this chapter.

4.2 Eye Localization

There are two ways to find eyes in an image, Eye detection and Eye localization. Eye 

localization when we rely on the bounding box that supplied by a face detector. Eye 

detection when we search for them in the entire image (no prior face detection) [203].

Each of those approaches has its own advantages or disadvantages. For the first 

case, by knowing the region of the face, we can locate eyes easier and faster. The 

rate of false detection decreases; but, the face detection plays a very crucial role. 

If face detector fails for any reason, then eye detector fails as well. In the second 

approach, we search for eyes in the whole image without considering a face location. 

The percentage of true-positive detections with this method can be higher than for 

the first method, however, the speed is slower, and the false-positive rate is expected 

to increase.

A great research effort has been devoted to eye detection and localization. This 

is due to different reasons, among which:

1. It can be considered that both the location of eyes and the inter-ocular distance

f TEMP1£MAn\
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between them are relatively constant on the face for most people so the size, the 

location and the image-plane rotation of face in the image can be normalized 

by knowing only the position of both eyes [76].

2. It has been shown that eye localization has a considerable impact on face recog­

nition accuracy [176]. Further, the accuracy of some face recognition approaches 

(such as PCA or LDA) has been shown to decrease with poor localization [219],

3. In addition, the position of other facial landmarks can be estimated using the 

eye position [115].

4. Eye movements may reveal “interest” , or “attention” of a person for human 

computer interactions as they often reflect a person’s emotions [124].

Despite the considerable amount of research effort which has been spent, the prob­

lem of automatic eye detection is still far from being fully solved [22], Two types of 

images have been used for this problem, namely infrared (IR) and visible-light im­

ages. Methods that use IR images require a special technology and equipment that 

is not always available and have more false detections within an outdoor environ­

ment. Methods for visible light images can be broadly classified into three categories: 

template-based methods [77], appearance-based methods [90] and feature-based meth­

ods [61].

In template-based algorithms, a generic eye model is firstly designed based on eye 

shapes. Cross-correlation is then used for searching eyes in the face images. These 

methods usually have good accuracy, however, they are normally time-consuming. 

Feature-based algorithms exploit the characteristics of the eyes such as edge, intensity 

of iris and the colour distributions of the sclera and the flesh to distinguish the eyes
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from other objects. While these methods are usually efficient, they lack accuracy 

when the input image is with low contrast and they fail in case of partially occlusion 

or rotation of head in depth.

Finally appearance-based methods aim to localize eyes based on their photomet­

ric appearance. These algorithms usually need to collect a large amount of training 

data, representing the eyes of different subjects, under different illumination condi­

tions, and under different face orientations. Once features are extracted, supervised 

classification algorithms such as a neural network or the support vector machine are 

used to differentiate between eyes and non-eyes.

4.3 The Proposed Eye Localization algorithm

In the illumination-based method that proposed in [74], a skin-based face detector was 

first implemented to detect the face before localizing facial features. Later eye/mouth 

maps were used to localize the candidates facial features and further rules depending 

on the shape and geometry of the resulted points were then tested in order to achieve 

to the right locations of eyes and mouth. Shafi and Chung [190] suggested a hybrid 

method that uses the same technique. Their method is tested on PICS [167] facial 

images database. The resulted percentage accuracy equals to 93.75%.

Like other eye localization methods that in [134], [51], and [9], Viola-Jones detector 

is used in the first step in our proposed algorithm to localize the face. Then it 

estimates the eye windows in the face and then colour-based maps are applied only 

on the eye windows.

Geometric techniques for determining eyes regions in the facial images are dis­

cussed in Section 4.3.1 and the proposed colour-based algorithm for eyes localization
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is explained in Section 4.3.2.

4.3.1 The Geometric localization of eyes regions

Face shape variability is highly limited by both genetic and biological constraints, 

and is characterized by a high degree of (approximate) symmetry and (approximate) 

invariants of face length scales and ratios.

Therefore, it is possible to build model that represents the entire database and 

extract eye region from the detected faces simply based on geometrical characteristics 

of faces. The proposed eye regions will be the input for the proposed eye localization 

algorithm described later in Section 4.3.2.

Let b =  [x, y , r] be the vector containing the main parameters of the square resulted 

from face detector, namely the top left corner of cropping image (x, y ) and the length 

of square width r respectively. Based on the anthropometric model of the human face 

and depending on initial experiments on XM2VTS, we suggest that the vectors which 

represent the corresponding right and left eye regions to be br and 6; respectively, 

where:

br =  [x +  0.20r, y +  0.25?", 0.22r], 

bl =  [x +  0.58r, y +  0.25r, 0.22r]
(4.1)

i.e. (x +  0.20?’, y +  0.25?’) and (x +  0.58r,y  +  0.25?’) will be the coordinates of the 

top left corner of the cropping right eye region and left eye region respectively, 0.22?’ 

is the width length of the squares that represent these two regions. This works for 

frontal face images in XM2VTS only. More details are shown in Figure 4.1.
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Figure 4.1: Geometric relationships between the locations of eyes and mouth regions
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4.3.2 Novel Technique for Localizing Eyes in Colour Images

Figure 4.2 illustrates the steps involved for eye localization in the proposed colour- 

based algorithm. The proposed algorithm which will be applied on the eye regions 

that first have been located using the geometric technique that was mentioned in 

Section (4.3.1), can be summarized in the following steps:

Figure 4.2: The proposed hybrid algorithm for eye localization

• Stepl, Construct EyeMapl: Since the area that covers eye and eyebrow is 

the complement of skin in the eye region, we implement an RGB skin detection 

algorithm [106] to build mask of them, EyeMask.

The EyeMask  is then combined with the R component (first component) of 

the eye image by the multiplication operation i.e.

EyeMapl =  (EyeMask) * (R) (4.2)

Like in [74], we fill the background of the EyeMapl with the mean value of R
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in skin region in order to smooth the noisy boundary of detected skin areas.

• Step2, Construct EyeMap2 : We use greyscale dilation © and erosion © with 

structuring element g to construct the EyeMap2  from EyeM apl,  as described 

in the following equation:

EyeMap2 =  (R(x, y) © g{x, y))/{R(x,  y) © g(x, y) +  1) (4.3)

• Step3, Construct EyeM ap : The EyeMap2  is dilated, and then combined 

with EyeM ask  by the multiplication operation to construct EyeMap.

• Step 4: Iris centre: The resulting EyeMap  is dilated, and normalized to 

brighten the iris and suppress other areas. The blob centre represents the iris 

centre. The performance of this algorithm will be discussed in Section 4.5.

4.4 The Proposed Mouth Localization algorithm

Based on initial experiments on XM2VTS database, we suggest that the vectors which 

represent the mouth region to be:

bm =  [x +  0.20r, y +  0.25r, 0.22r] (4.4)

where (x,y)  and r are parameters that were defined in Section 4.3.1.

A map-based scheme, as illustrated in Section 3.3.4, for locating the mouth was 

presented in [74], An analysis of the chrominance components in YCbCr  colour space
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indicates that the mouth contains a stronger red component and weaker blue compo­

nent than other facial regions. Hence, the chrominance component Cr is greater than 

Cb in the mouth region. The mouth also has a relatively low response in the Cr/Cb 

feature, but it has a high response in C/. Therefore, the mouth map is constructed 

as follows:

MouthMap —

r) =  0.95 •
1
n

I  y '
n Z-^(x

Cr ■ K  -  V ■ Cr/Cb)\

Yh{x,y)£FG C r (x, V) 2 

,y )eF G  C r  (x,y)/Cb{x,y)

(4.5)

where both C/ and Cr/Cb are normalized to the range [0; 255], and n is the number 

of pixels within the face mask, FG. The parameter p is estimated as a ratio of the 

average CT2 to the average Cr/Cb.

Since usually multiple blobs are produced by this scheme, we add , as illustrated 

in Figure 4.3, further geometric restrictions in the mouth region to localize the mouth 

centre.

Figure 4.3: The proposed Map-based algorithm for localizing mouth centre
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4.5 Localizations Results on X M 2V T S

Table 4.1 lists the total number of the correctly detected centres of right/left eyes and 

mouth centres. Eyes localizations results are discussed in Section 4.5.1 and results of 

mouth localization are discussed in Section 4.5.2. Section 4.5.3 presents a comparison 

between the results of the proposed method and other published results.

Table 4.1: Localizations results

Correct Localization %

Right Eye centre Localization 98.90

Left Eye centre Localization 98.47

Mouth centre Localization 99.58

4.5.1 Eye Localization results

Precise eye center detection is a challenging task. An eye can be open or close, 

and when open the iris may be pointing at any direction. Another reason behind the 

difficulty is the high variability of eyes. They may, for ethnicity and race reasons, have 

very distinct shape, pupil size, and colors. Wearing glasses is another factor which has 

a strong influence on how eyes are seen in an image because 507 individuals (42.97%) 

wear glasses in this dataset.

In addition, sometimes there are external drawbacks like cast shadows, and light­

ing. We consider the detection to be correct if the estimated position of eye centre is 

located anywhere in the iris. Figure 4.4 shows examples of correct localizations and
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Figure 4.5 shows incorrect localization of eyes using the proposed algorithm.

4.5.2 Mouth Localization results

We consider the mouth centre detection to be correct if the estimated position locates 

in any place on the lips. The proposed mouth detection method produces good results 

even in challenging cases such as individuals with dense beards, red skin, lighting 

variation, different head positions and wide open mouths showing teeth. Only five 

images in the XM2VTS database had lips wrongly detected. These are shown in the 

last row in Figure 4.6.

4.5.3 Comparison with other Published Results

The method has been compared with other published results that were tested on the 

same database for the eye center localization task. Unfortunately, no mouth centre 

detection method tested on the XM2VTS database has been found.

In order to evaluate the performance of the proposed algorithm, the criterion of 

[88] is used. The criterion is a relative error measure based on the distances between 

the corrected and the estimated eye positions. It is defined as:

deye ~
max(dr, di)
l i e - c r || (4.6)

where Cr and Ci are the correct eye centre positions and dr, di distances between 

the detected eye centres and the correct ones, ||.|| indicates the distance between two 

points [88].

If the relative error is less than threshold T, the detection is considered to be
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Figure 4.4: Examples of correct localization using the proposed algorithm
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Figure 4.5: Exam ples o f  incorrect localization  using the proposed  algorithm
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Figure 4.6: Exam ples o f  correct and incorrect detection  using the proposed  algorithm
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correct. As explained in [88], deye =  0.25 means the maximum one of two distances 

roughly equals half an eye width. Table 4.2 lists the performance of the proposed 

method and other methods for detecting eye centre point for T =  0.1 and T  =  0.25. 

The experimental results show that the proposed method is significantly superior to 

other methods for smaller value of the threshold. Figure 4.7 depicts the success rates 

for various values of the threshold using the proposed algorithm.

Table 4.2: Comparison of the proposed method performance with other published 
methods

Database T =  0.1 T =  0.25

Method in [88] 93.00% 98.40%

Method in [36] 93.00% 99.00%

Method in [66] - 97.90%

The proposed method 96.95% 98.00%

4.6 Segmentation of Facial Skin Regions

Face shape variability is highly limited by both genetic and biological constraints, 

and is characterized by a high degree of (approximate) symmetry and (approximate) 

invariants of face length scales and ratios. Therefore, we refer to the anthropometric 

model of the human face in order to extract facial skin regions correctly.

Once the positions (xr,y r) and (.xi,yi) of the right and left eye respectively have
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T h re s h o ld

Figure 4.7: Eye centre localization  for various threshold T
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been determined, the distance between them is calculated as follows:

d =  V (x r ~ xi)2 +  (yr ~ yi)2 (4.7)

This distance serves as the principal parameter for measuring the centre location 

and size of the other facial feature regions. For instance, face is represented in [192] 

by an ellipse that is placed at 0.4d below the midpoint of the two eyes. The length of 

the major axis is given as 3d and of the minor axis is given as 2d. Figure 4.8 shows 

an example of geometric face model.

Figure 4.8: The geometric face model that was used in [192]

Figure 4.9 shows the distances (anthropometric measurements) D 1 to DA which 

are used for building human face model. Their descriptions as follows:

Dl: the distance between eye centers.

D2: the distance between right/left eye center and right/left eyebrow center.

D3: the distance between midpoint of eye centers and nose tip.

D4: the distance between midpoint of eye centers and mouth center.
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Figure 4.9: Distances that are used in [192], [198] for building the anthropometric 
model of human face

The facial proportions of two different geometric models ([192], [198]) are listed 

in Table 4.3.

Table 4.3: Two examples of the anthropometric of the model human face

[198] [192]

D2/D1 0.33 0.4

D3/D1 0.6 0.6

D4/D1 1.1 1

The rectangular areas for confining the facial skin regions are also approximated 

using distance between two eyes as the measurement criteria. We will focus on four 

prime regions of interest corresponding to forehead, right cheek, left cheek and chin 

because they present regions of the face that are clearly visible in a frontal-view face 

image. These areas are kept large enough to cover each of the facial skin regions
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completely. The proposed dimensions of forehead, right/left, cheek and chin regions 

are: d x 0.5d, 0.5d x 0.5d, 0.5d x 0.5d, 0.5d x 0.5d respectively.

Figure 4.10 shows these windows and their cropping points are given by:

A =  (xc — 0.5d, yc — 0.45d),

B =  (xr -  0.44d, -  0.06d),

C =  (xi — 0.06d, yAvm _  o.06d) and 

D =  {xm -  ym +  0.2d),

where {xc,y c), (xr,yr), (xi,yi) and (xm,ym) represent the coordinates, after geometric 

normalization, of midpoint of eye centers, right eye center, left eye center and mouth 

center respectively.

Figure 4.10: The proposed locations of the four regions of interest: Forehead, Right 
Cheek, Left Cheek and Chin
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4.7 Conclusion

An automatic method for localizing eyes in colour images was presented in this chap­

ter. This method has been compared with other published results. Experimental 

results on the XM2VTS database shows that the proposed method is significantly 

superior to some of other methods for smaller values of the error rate (threshold). 

Based on the position of eye and mouth centres, four locations of four skin regions in 

the face image have been suggested. These regions will be used in the next chapters.



Chapter 5

Facial Skin Texture as a Source of 

Biometric Information

5.1 Introduction

This chapter focuses on the extraction of usable forehead regions from facial images 

and their initial pre-processing to provide useful information for the task of biometric 

person identification/ verification.

The proposed algorithm automatically segments the forehead region based on the 

locations of eyes and divides it into non-overlapping patches. Features were firstly 

extracted from these patches and then concatenated to form a feature vector that 

represents the forehead region, k — N N  was used in the classification process. The 

features were extracted separately using Gabor filter and LBP operator and their 

classification performance were compared. The experiments of the proposed method 

were carried out using the XM2VTS database.

120
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The chapter is organized as follows. Section 5.2 describes the the proposed algo­

rithm. Section 5.3 provides the experimental results and performance comparisons. 

Finally, conclusions are given in Section 5.4

5.2 Overview of the Proposed Algorithm

The overall block-diagram of the proposed system is shown in Figure 5.1. This section 

will describe the various stages of the proposed algorithm.

5.2.1 Face Normalization

The first step in the processing chain is to extract a normalized forehead region from 

face images. Since it is assumed that all the subjects are roughly placed at the 

same distance from the camera, no scale adjustments are necessary. Only rotation of 

the face, as illustrated in Section 3.3, and then cropping of the forehead region are 

performed. Figure 5.2 shows the face before and after applying face normalization.

Figure 5.2: Face normalization
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5.2.2 Forehead localization

Based on the geometric model of the face in [192], the vertical distance between eyes 

and eyebrows may be set to OAd where d is the interocular distance. Therefore, the 

proposed forehead windows are rectangles of size d x 0.5d above the eyebrows region 

as shown in Figure 5.3.

Figure 5.3: Forehead region localization

5.2.3 Forehead Partitioning

In the proposed algorithm, the forehead image is treated a collection of smaller sub­

images, referred to here as patches. For the purpose of feature extraction it is neces­

sary to establish the optimum patch size for texture analysis. This could be the whole 

of the extracted forehead. Alternatively a number of smaller patches can be chosen 

inside the forehead region for extracting features which can then be concatenated to 

form longer feature vectors.

Subdividing the pure skin forehead region into non-overlapping patches (of equal 

sizes) is explored with varying partitionings : 1 x 2 ,  2 x 2 ,  2 x 4 ,  2 x 8 ,  4 x 4  and
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4 x 8 as shown in Figure 5.4. The l x l  subdivision indicates the whole forehead 

being used for analysis without any partitioning.

Figure 5.4: Partitioning pure skin forehead region

5.2.4 Forehead Representation and Classification

Each forehead region is decomposed into equal non-overlapping square patches and 

each patch is then analyzed to extract separately the Gabor and LBP-based fea­

tures that will be described in the following subsections. Finally, the feature vectors 

extracted from patches are concatenated to form a forehead feature vector.

Forehead Representation using Gabor-based feature

To obtain Gabor-based features of a patch image / ,  it is convolved with a bank of 

scale and orientation selective Gabor filters:

ruv(x,y , f u,0v) =ip(x,y\ f u, 9V) * I(x , y) (5.1)

where u,v indicate the filter scale and orientation respectively.

Responses of the Gabor filters ruv in Equation (5.1) are computed for several
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frequencies f u and orientations 9V. The values of the frequency f u and the orientation 

9V were discussed in Section (2.4.3). All means ¡iuv and standard deviations <juv of 

the magnitude \ruv\ are computed as follows:

î uv =  ^  ( 'y ]I'i"uvI> and ouv / /  ( (| W» | Fuv)  ̂ (5.2)
x  y  y  X y

A feature vector F is finally constructed using the collections of means and standard 

derivations. This is denoted as:

F  — [MOO COO M01 • • • Mm—In—1 Cm_ in —l] (5 -3 )

where m is the total number of scales and n is the total number of orientations to be 

used in the filter bank.

We report, in Section 5.3, on an investigation to establish the optimal parameters 

used for the class of images that are to be classified with these filters in our work. 

It is observed that the patches that are extracted from different forehead images are 

not of the same size because they are depending on the inter-distance of the two eyes 

which is not fixed for all database images.

However, the Gabor-based features were not affected by this variation because 

they consist of means and standard deviations of the modulus-of-convolution images 

obtained by convolving the patch image with a bank of Gabor filters of different scales 

and orientations. Therefore, the dimension of Gabor-based features depends only on 

the number of scales and number of orientations which are chosen after some tests.

As a result, every forehead image can be represented using Gabor wavelet filter 

by feature vectors that have 2Imn elements - where m is the total number of scales
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and n is the total number of orientations in the filter bank and l is the total number 

of patches.

Forehead Representation using LBP-based feature

The dimension of the standard LBP feature vector that is derived from each patch 

is fixed at 256 elements irrespective of the patch size. Thus, every forehead is repre­

sented by 256/ elements using LBP(8,1) or LBP(8,2) operators, where l indicates the 

number of patches in the forehead. The length of the LBP-based feature is reduced 

by using uniform and rotation invariant operators, so each patch image is represented 

using LBP(8,l,u2) and LBP(8,l ,n ) operators by feature vectors that have 59 and 36 

elements respectively instead of 256. Thus, every forehead in this case is represented 

by a vector with dimensions of 59/ and 36/ respectively.

Classification

A k-Nearest-Neighbour (k — N N ) classifier with k =  1 is used as a common platform 

to compare the different feature extraction methods.

5.3 Experimental Results

Matlab is used as our coding platform. We will discuss the results of the proposed 

algorithm which is tested on the XM2VTS database in two different scenarios: Iden­

tification scenario and verification scenario.
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5.3.1 Experiment 1: Identification Scenario

This experiment has been conducted on a subset of the XM2VTS database to evaluate 

the performance of the Gabor-based features for skin texture classification. The data 

used consists of pure skin forehead region as labeled manually. The number of these 

images in this group is 336 pure skin foreheads which came from 84 different persons. 

Only three partitionings for the forehead region were evaluated. These were: 1 x 2 ,  

2 x 4  and 4 x 8  with patch size of 0.5d x 0.5d, 0.25d x 0.25d and of 0.125(7 x 0.125(7 

respectively. Table 5.1 lists the recognition accuracy achieved for different parameter 

settings.

The results indicate that the partitioning with larger analysis windows signifi­

cantly improve by increasing the number of orientations/scales. For example, when 

the number of scales/orientations has changed from 4/4 to 12/12 respectively, the 

classification accuracy improves only from 60.12% to 64.29% for the 4 x 8  partition­

ing but from 58.33% to 67.86% for the 2 x 4  partitioning and from 35.12% to 56.55% 

for 1 x 2.

The best recognition rate of 68.16% has been obtained at the least orientation 

value of 8 and least scale value of 16. Additionally, it is noted that increasing the 

number of scales and orientations of the Gabor filter bank will increase the complexity 

of the system and the computational time, and will not always result in an increase 

in the classification accuracy.

5.3.2 Experiment 2: Verification Scenario

The aim for conducting this experiment is threefold: (i) to determine the appropri­

ate number of scales and orientations that can be used for Gabor features, (ii) to
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Table 5.1: Classification accuracy using Gabor features

Orientation Patch Scales
4 6 8 12 16

1 X 2 35.12% 37.20% 38.99% 44.05% 45.54%
4 2 X 4 58.33% 62.80% 65.18% 65.77% 66.96%

4 X 8 60.12% 62.20% 61.91% 62.50% 62.20%

1 X 2 36.61% 42.26% 43.75% 49.11% 50.59%
6 2 X 4 61.01% 63.09% 65.48% 66.07% 67.56%

4 X 8 60.12% 62.80% 63.39% 63.39% 63.39%

1 X 2 42.26% 45.83% 48.81% 53.57% 54.76%
8 2 X 4 61.61% 65.48% 66.96% 67.86% 68.16%

4 X 8 60.42% 63.09% 63.99% 63.99% 63.69%

1 X 2 41.67% 48.51% 51.49% 55.06% 56.84%
10 2 X 4 62.50% 65.48% 66.67% 67.86% 67.86%

4 X 8 61.31% 62.20% 63.10% 64.29% 63.99%

1 X 2 44.34% 49.40% 53.57% 56.55% 57.14%
12 2 X 4 62.50% 65.18% 67.56% 67.86% 66.96%

4 X 8 61.91% 63.09% 63.69% 64.29% 63.99%

1 X 2 46.73% 49.40% 55.06% 57.44% 58.04%
16 2 X 4 62.50% 65.18% 67.56% 67.26% 67.86%

4 X 8 61.91% 63.39% 63.99% 64.29% 63.99%
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investigate the different LBP operators (standard, Uniform 'u2\ Rotation invariant 

Vi ’) using different radius and sample points, and (iii) to decide the patch size for 

achieving the best performance.

The experiment has been conducted on the whole XM2VTS database (1180): 460 

forehead images that came from 115 different persons have been ’manually’ deter­

mined as faces with pure skin forehead regions. Half of the entire dataset is used as 

the training set and the remaining represents the test set. Table 5.2 lists the Equal 

Error Rates (EER) obtained for both Gabor and LBP approaches for varied patches 

size.

This table suggests that the achievable performance with Gabor features is better 

than with LBP features, showing that the best EER of 0.065 for Gabor features has 

been obtained using 6 scales, 6 orientations with a 4 x 4 partitioning. If no patch 

partitioning is used, the resulting EER is significantly higher at 0.213.

It also shows that the performance of the standard LBP approach using 8 sample 

points with radius equal to 2 outperforms other LBP operators. If no patch parti­

tioning is used an EER of 0.165 is achieved with this method. Features using the 

forehead partitioning of 2 x 4 and 4 x 4 ,  achieved the best results for LBP and Gabor 

approaches respectively for this dataset. It is clear that the performance of LBP 

approach does not significantly improve using rotation invariant features because all 

images were normalized in the pre-processing stage.

Their DET curves are presented in Figure 5.5. Since only one partitioning scheme 

should be used, the error that is produced from Gabor and LBP-based features at 

partitioning 2 x 4 is less that the error that is produced from them at 4 x 4 so this
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experiment suggest that the 2 x 4  partitioning is an appropriate choice for the parti­

tioning scheme. The best EER of 0.066 for Gabor features with a 2 x 4 partitioning 

has been obtained using 8 scales and 12 orientations.

DET Cun«

False Accept Rate

Figure 5.5: DET curves for Gabor and EBP approaches; W indicates partitioning 
scheme, Gabor parameters are: S: No of Scales and O: No of Orientations, LBP 
parameters are: R: Radius and P: Sample Points
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5.4 Conclusion

We have presented a novel technique for extracting biometric information from the 

forehead region. Pure skin forehead region are manually labeled and the performance 

of Gabor-based and LBP-based features in classifying forehead regions that contain 

only pure skin are then compared. The effects of changing the parameters of the 

Gabor filter-bank and LBP approaches are investigated. The results indicate that the 

forehead region alone provides useful biometric information for person recognition.



Chapter 6

Explicit Integration of Identity 

Information from Skin Regions to 

Improve Face Recognition

6.1 Introduction

Most of the global-based face recognition systems use a single feature vector for 

encoding the whole face image so resizing the facial images into low resolution images 

is often first step [121], As expected, micro-structures of facial skin texture may be 

lost and subtle details are not explicitly modeled because only the global appearance 

of the faces are utilized.

Therefore, the main objective of this chapter is to combine the conventional face 

recognition systems with skin texture features (from the region which has the most 

useful information), to compensate for the information which has been lost in the 

dimensionality reduction stage. Thus we have to compare different facial regions in

133
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order to get the region which has the most important biometric information.

Biometric system using facial skin texture, that was developed in the previous 

chapter, has some drawbacks. For instance, facial skin regions may be obscured by 

hair, facial hair or spectacles. In that chapter, manual annotation was used to label 

the forehead region that contains only skin texture. This chapter reports on the 

development of a novel Skin/Non-Skin classifier based on Support Vector Machines 

(SVM), in order to automatically exclude non-skin areas in facial images.

The chapter consists of seven sections. The partitioning scheme is presented in 

Section 6.2. The SVM approach for Skin/Non-Skin patch classifier is discussed in 

Section 6.3. Section 6.4 presents a comparison between the performance of different 

facial skin texture regions. The proposed approach for the fusion of scores from skin 

and whole face channels of identity information is described in Section 6.5. The results 

obtained are reported and discussed and compared with other methods in Section 6.6. 

Section 6.7 provides conclusions for this chapter.

6.2 Partitioning of Facial Skin Regions

The preliminary experiment, in Section 5.3.2, suggested that the patch of size 0.25d x

0.25d is a good choice for partitioning scheme, where d is the interocular distance, so 

the forehead will be divided into eight patches while other regions, right cheek, left 

cheek and chin will be divided into four patches as illustrated in Figure 6.1. This 

novel decomposition approach is proposed to eliminate, using SVM-based classifier, 

patches that may be obscured by hair, facial hair or spectacles and take into account 

only the pure skin patches.
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Figure 6.1: The partitioning of facial skin patches in the four regions

6.3 Skin/Non-Skin Patch Classifier based on SVM

An SVM classifier is considered as one of the most suitable approaches for two- 

class problem, in order to be processed by an SVM classifier, these patches must be 

represented as labeled feature vectors. The labels in this case would be numbers 0 

and 1 that represent non-skin and skin patches respectively. The patch is labeled 

as non-skin if it is covered partially or completely by facial hair, hair, spectacles,etc. 

Otherwise it is considered as a skin patch.

Figure 6.2 illustrates the patch classification scheme which aims to automatically 

distinguish pure “skin” patches from “non-skin” patches. The feature vector and 

model building will be discussed in the following sections.
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Figure 6.2: Skin/Non-Skin classifier, S: Skin patch, N: Non-Skin patch

6.3.1 Patch representation using feature-level fusion

The Gabor-based and LBP-based features that were described in Section 5.2.4, are 

first extracted from each patch. Twelve orientations and eight scales have been used 

to generate a series of Gabor responses. As a result, every patch can be represented 

by a Gabor-based feature vector that has 192 (=  8 x 12 x 2) elements.

The dimension of the LBP derived feature vector is also fixed at 256 elements 

irrespective of the patch size. A feature-level fusion algorithm is applied to combine 

the different sources of information.

It is necessary to separately normalize the different feature sets before concatenat­

ing them into a single vector. The normalized features used are given by:
Z - a = l  J i

where /* is the feature component before normalizing, f t is the feature component 

after normalizing and N  is the dimension of the feature set. Therefore, the fused
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feature for each patch (448 elements long) will be used to learn the texture of skin 

and non-skin patterns.

6.3.2 Model selection

In the case of two-class linearly separable data, as illustrated in Section 2.8.3, SVMs 

aims to find a maximal separating hyperplane between two classes. This “optimal 

separating hyperplane” is the boundary which separate the the two classes the best.

In the case of two-class nonlinearly separable data, the technique is extended to 

nonlinearly separable data by transforming the data to some high space, where it is 

linearly separable. This enables us to determine the optimal separating hyperplane 

in that space. This requires using a mapping kernel function. The Gaussian RBF 

function, which is given by Equation 6.1 was used as a mapping kernel.

K ( x i , X j )  =  exp( - 7  ||Xi  -  Xj\\2) ,  7  > 0. (6.1)

According to [72], RBF kernel has less numerical problems as compared to the 

polynomial and sigmoid kernels and the linear kernel cannot separate nonlinearly 

separable data, whereas the RBF can so this kernel function is highly recommended 

in [72],

To optimize the parameters of the model, Hsu [72] has proposed a procedure to 

get reasonable results with LIBSVM [25]. To get appropriate generalization ability, 

the cross validation process was conducted to choose parameters. The procedure is 

given by the following steps [72] and described by algorithm 2:

1 . A “grid search” space is considered of (C,7 ) where C =  2-5 , 2~3, ..., 215 and



Explicit Integration of Identity Information from Skin Regions 138

7  =  2-15, 2- 13, 23.

2. Using five-cross-validation on the training set, to evaluate the validation per­

formance for each hyper-parameter pair (C ,7 ) in the search space.

3. The optimal parameters pair ((7,7 ), the one with the best five-cross-validation 

accuracy, is selected.

4. The SVM model is built using the best parameters.

5. Using the trained model to test the testing set.

A lgorithm  1 Grid search for determining optimum values of gamma and C

C : penalty for errors 

7 : the kernel parameter

Accuracy, the percentage of the training data that currently classified for current 7 
and C  using five cross-validation

Accuracybest represents the best Accuracy obtained

1: for C 4r- 2~5, 2~3, .., 215 do 

2: for 7 <— 2-15, 2-13, .., 23 do

3: Compute Accuracy for current 7  and C Accuracybest <— Accuracy

4: if (Accuracy >  Accuracybest) then

5: Record 7 and C

6 : end if

7: end for

8: end for
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6.3.3 Experiment (1): Building the classifier

The experiment was conducted on the XM2VTS database. The data set consists 

of square patches from different skin regions (forehead, right region, left region and 

chin). Both skin and non-skin classes should be divided into training and testing sets.

Training set

The training set consists of 5900 (295 x 20) patches came from 295 persons. The total 

number of skin and non-skin patches are 4556 and 1344 patches respectively. The 

statistics of non-skin class are listed in Table 6.1.

Table 6.1: The statistics of non-skin class

Noise Percentage

Hair and facial hair 82.74% (1112/1344 patches)

Spectacles 12.43% (167/1344 patches)

Blue background 4.84% (65/1344 patches)

The main question is what should be the proportion of skin and non-skin classes 

in the training set? Four trials (Table 6.2) will be experimented and the testing 

accuracy will be computed for every trial.

The next step is to decide the associated model parameters (C,7 ), so we applied 

five-fold cross validation to the training patches set in the four trials. Then, the 

testing accuracy will be computed using the corresponding parameters. In the end, 

the model with the smallest testing error will be adopted.
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Table 6.2: Four trials for determining the proportion of skin and non-skin classes

Trial Non-skin Skin proportion

Trial 1 1000 1000 equal size, big size set

Trial 2 1000 500 skin class size is half non-skin class size

Trial 3 500 1000 non-skin class size is half skin class size

Trial 4 500 500 equal size, small size set

Testing set

The test set contained 344 facial patches for the non-skin class and such as the number 

for skin patches was chosen. Thus, there were 688 testing samples in total. In the 

evaluations, the testing accuracy will be used as a figure of merit. The test accuracy 

was defined as the total number of correctly classified patches divided by the total 

number of patches classified (= 688). Table 6.3 lists the four trials and the results of 

testing phase.

Table 6.3: Four trials for building the classifier model

Trial C 7 Cross-Validation {%) Testing- Accuracy (%)

Trial 1 512 2 93.45 93.17

Trial 2 128 2 93.80 86.34

Trial 3 128 8 93.26 91.28

Trial 4 512 2 93.00 88.08

Table 6.3 shows that the size of the two classes in the training set has significantly 

affect on the testing accuracy. It also suggests that the first model “Trial 1” should be 

used for building the proposed classifier because it produces the best testing accuracy
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i.e. 93.17%. Figure 6.3 shows the results of the training phase for Trial 1. The 

circle denotes the area of optimum accuracy (optimum Cross-Validation^ 93.45%) 

corresponding to the best value of the parameters C =  29 and 7  =  21.
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Figure 6.3: Grid search on C — 2~5, 2~3, .. .  , 215 and 7  =  2-15, 2-13, . . . ,  23.

6.3.4 Experiment (2): Classifying the twenty patches

The aim of this experiment is to automatically classify the twenty facial patches. The 

model that resulted from Experiment 1 will be used to classify the patches. The data 

consists of 1180 facial images where every face image has twenty patches.

B e s t lo g 2 (C ) =  9 , lo g 2 (g a m m a ) =  1, A c c u ra c y  = 9 3 .4 5 %  
(C  = 5 1 2 , g a m m a  = 2)
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Figure 6.4 shows the total number of classes as determined automatically by the 

proposed Skin/Non-Skin Classifier which represent the twenty different patches. The 

individual is considered if the patch belonging to him is classified as a skin patch in 

all the four sessions.

Figure 6.4: The total number of the classes of usable skin images for the twenty 
patches

This figure shows that the top area of forehead (1-4) has more noise than the 

bottom area (5-8). This noise could come from the hair line or its shadow. It can 

also be seen that the lower chin area (19-20) has a higher of classified skin patches. 

The issue with low skin patches in the upper chin area (17-18) could be due to the 

lower lip area (or its shadow) being present in the selected patches. Additionally, the 

left cheek area (13-16) has more noise than the right cheek area (9-12), this could be
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due to the head pose variation.

Overall, the lower chin area has the highest rate of skin patches for the images 

provided by the XM2VTS database [142] used. There will be, in Section 7.2, a 

comparison between these patches for identity recognition.

6.4 Comparison between different facial skin re­

gions for identity recognition

The motivation of this experiment is to determine the relative biometric information 

content of different face regions namely forehead, right cheek, left cheek and chin in 

order to achieve to the region which has the most useful information.

6.4.1 Overall region Skin/Non-Skin classification

Each overall region window can be classified into two classes depending on the labels 

of its patches. These classes are: (i) pure-skin region if all the patches are classified 

as skin, (ii) non-skin region if at least one of the patches is classified as non-skin. 

Figure 6.5 shows the advantage of using the decomposition into eight patches for 

the forehead region classification rather than doing a Skin/Non-Skin classifier for the 

whole forehead region. It is seen that with the proposed approach forehead regions 

that have a small amount of non-skin content will not be classified as Pure-Skin 

Forehead, thereby only leaving regions purely composed of skin texture for further

processing.
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Figure 6.5: An example of the classification results of applying the Skin/Non-Skin 
classifier on (left) the whole forehead region and (right) eight patches separately

6.4.2 Experimental Results

The experiment was conducted on the XM2VTS database [142]. As determined by 

Skin/Non-Skin classifier, only 111 , 160, 153 and 240 of the 295 people have images that 

could be used for the forehead, right cheek, left cheek and chin regions respectively. 

For the identification scenario, the images from the fourth session are chosen as the 

probe set, and the first three sessions are used as the reference gallery set.

Two levels of fusion are compared: feature-level and score-level. Each region, 

in feature-level fusion, is represented by concatenating the feature vectors extracted 

from every patch to form a forehead feature vector. Thus, the four regions: forehead, 

right cheek, left cheek and chin will be respectively represented by four feature vectors 

with dimensions of 8 x 448, 4 x 448, 4 x 448 and 4 x 448.

Table 6.4 shows the rank-1 identification results for each region. These results 

suggest that forehead region yields the highest recognition accuracy. Similar observa­

tions have been reported by Lin et al [129]. They did face recognition experiments on 

three facial regions: forehead, nose and left eye and concluded that forehead region 

produces the best recognition rate.

The rank-1 identification of chin region is in the second rank. This may be due 

to the fact that forehead and chin regions are less affected by expression variations.
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However, the size of chin region is half of the forehead region size. This indicates to 

the importance of chin region skin features.

Table 6.4: Rank-1 identification accuracy (%) of the proposed system for four facial 
regions

Forehead Right Cheek Left Cheek Chin

Gabor 87.39 74.38 68.63 75.42
LBP 80.18 66.25 64.05 69.17

Feature-Level fusion 90.99 78.75 73.20 82.50
Score-Level fusion 89.19 78.13 77.78 80.83

For the verification scenario half of the experimental data are used for training 

and half of them are used for testing. Table 6.5 lists the resulting Equal Error Rates 

of the proposed system for each of these regions. Figure 6.6 shows the FRR against 

FAR of different regions. Evidently, the DET curve for the forehead region indicates 

the best performance in the verification scenario.

Table 6.5: Equal Error Rate of the proposed system for four facial regions in the 
verification scenario

Forehead Right Cheek Left Cheek Chin

Gabor 1.08e-01 1.16e-01 1.33e-01 1.29e-01
LBP 1.26e-01 1 .10e-01 1.44e-01 1.29e-01

Feature-Level fusion 8.64e-02 9.09e-02 1.27e-01 1.15e-01
Score-Level fusion 6.76 e-02 7.81e-02 1 .01e-01 1.06e-01
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Figure 6.6: DET curves of the performance of the proposed system on four facial 
regions in the verification Scenario
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6.5 Skin texture features for improving face recog­

nition systems

This section investigates the possibility of exploiting facial skin texture regions to 

further improve the performance of face recognition systems. The forehead region is 

chosen as a representative of facial skin texture since it achieved the best recognition 

result (90.99%) as shown in Table 6.4.

The overall block-diagram of the proposed system is shown in Figure 6.7. It 

processes the information from the overall face and the facial skin region in two 

separate channels and combines the results of these independent classifications, where 

possible, at the final stage using score fusion techniques. This section will give a step- 

by-step description of the proposed algorithm.

6.5.1 Global Feature Extraction

The following pre-processing procedure was applied to all images in the database:

1. A rotation step, which, based on the manually labeled eye coordinates, aligned 

and normalized facial images.

2. Face detection using the Viola-Jones detector [217], which extracted the face 

regions from the facial images.

3. Cropping and down-sampling them to a fixed size (90 x 110 pixels).

Later, five different methods global methods for face recognition are implemented. 

They are based on the following algorithms: PCA [213], LDA [12], KPCA [186], 

GDA [10] and KDDA [133],
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6.5.2 Skin Feature Extraction

The skin channel processing on the other hand includes:

(a) skin region localization (described in 5.2.2),

(b) feature extraction of skin texture (described in 6.2.1),

(c) region classification into skin and non-skin (described in 6.4.1) and

(d) [overall] classification using a Sparse Representation Classifier (SRC).

6.5.3 Fusion Technique

The fusion of the output produced by the whole-face and forehead region classifiers 

are combined at score-level in two possible ways:

• Scheme 1: Z-score normalization [85] is first implemented on the scores ob­

tained from forehead-region and whole-face classifiers. Then the fused score 

will be equal to the summation of both scores if forehead-based score is avail­

able, otherwise, the fused score will be equal to the whole face-based score.

• Scheme 2: The fused score will be equal to the forehead-based score if is avail­

able, otherwise, the fused score will be equal to the whole face-based score.

6.6 Experimental Results

Several experiments were conducted on the XM2VTS dataset using gray level images. 

For the purpose of comparison with published results, 295 x 3 images from the first 

three sessions are selected for the training stage. The probe set is composed of 295 

images from the fourth session. As determined by the Skin/Non-Skin classifier, only
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111 of the 295 individuals in the database have images that could be used in the 

forehead region texture channel. For the identification scenario, the images from the 

fourth session are chosen as the probe set, and the first three sessions are used as the 

reference gallery set.

6.6.1 Performance of the whole-face channel

Table 6.6 shows a performance comparison for PCA, LDA and kernel-based methods 

KPCA [186] and GDA [10] both employing the polynomial kernel function k(x, y ) = 

(.x -y )d of degree d =  2. KDDA [133] is also implemented using a RBF kernel function 

k{x , y) =  exp (— \\x — y ||2 / o 2) with variance o 2 =  l.lle7 .

We find that the choice of the distance metric is important as it affects the classifi­

cation performance (e.g. cosine distance appears to work better for the measurement 

of the similarity and the LDA-based methods appear to work worst when used in 

conjunction with the /1-norm).

Table 6.6: Rank-1 identification of several whole-face methods using three different 
distance metrics ______________________________________

method /1-norm /,2-norm Cos

PCA 76.95 75.93 77.63
LDA 20.00 64.41 67.80
KPCA 73.90 72.88 77.29
GDA 32.20 75.93 84.75
KDDA 80.34 81.69 91.19
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6.6.2 Performance of the pure-skin channel

Table 6.7 lists rank-1 identification rates for the subset of images with usable fore­

head regions of the proposed skin-based algorithm using two different classification 

approaches, the SRC [226] and the k-nearest neighbour with k — 1. We can see that 

the SRC outperforms the k — N N  classifier (for all distance metrics).

Table 6.7: Rank-1 identification accuracy for the proposed skin-based algorithm with 
forehead region

Classifier Accuracy%

/i-norm 90.99
Nearest Neighbour fê-norm 85.59

Cos 88.29

Sparse Representation 96.40

6.6.3 Performance of the combined channels

Figure 6.8 shows the improvement in the performance of different face recognition 

systems after combination with the skin information. Although the database contains 

only a relatively small number of images where the forehead region can provide pure- 

skin patches, nevertheless the use of this information improves the performance of face 

recognition system from 77.63% to 84.07% (PCA) , from 67.80% to 75.25% (LDA), 

from 77.29% to 83.73% (KPCA), from 84.75% to 88.14% (GDA) and from 91.19% to 

93.22% (KDDA) using Scheme 2. The highest rank-1 identification accuracy is equal 

to 93.56% which is produced from score-level fusion of KDDA scores and forehead- 

based score using Scheme 1.
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Figure 6.8: Improving holistic approaches by skin-based information.

6.6.4 Comparison with the state-of-the-art techniques

We compared the best result of the proposed fusion algorithm to several previously 

published results on the XM2VTS dataset based on the common evaluation protocol 

mentioned above. These methods included: Bayesian classification [123], Bayesian

[123], Kernel LDA [123], LDE [123],Multi-class NDA [123], NNSA [123] [123], wavelet 

decomposition using three levels [237], direct correlation of face image intensity [220], 

direct correlation using local area image intensity around each of the 35 fiducial points 

chosen according to a face graph model [220], and Bayes [220]. It is noted, from Table 

6.8, that the proposed method achieves comparable performance to the best of the 

published results.
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Table 6.8: Comparative recognition results for the proposed algorithm and other face 
recognition methods

Method Accuracy %

Bayesian [123] 88.50
Kernel LDA [123] 89.80

LDE [123] 90.20
Multi-class NDA [123] 91.50

NNSA [123] [123] 93.60
Wavelet level[2] [237] 77.29
Wavelet level[3] [237] 80.34
Wavelet level[4][237] 78.31
Local intensity [220] 80.30

Global intensity [220] 84.10
Bayes [220] 92.90

Proposed Algorithm 93.56
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6.7 Conclusion

The development of a novel Skin/Non-Skin classifier was an essential step for auto­

matically excluding non-skin areas in facial images. A comparison between different 

facial regions was implemented and these results suggest that the forehead region 

yields the highest recognition accuracy followed by the chin region. The forehead 

skin information was combined with the kernel discriminant analysis KDDA at score- 

level. The experimental results indicate that the face recognition accuracy can be 

improved by the explicit exploitation of identity information in pure skin regions.



Chapter 7

An Adaptive Scheme for 

Skin-based Face Recognition

7.1 Introduction

This chapter presents a fully automated and novel method for face recognition based 

on exploiting facial skin texture as a source of biometric information. The twenty 

extracted patches that were passed, in the previous chapter, through a SVM-based 

classifier will be used for identity recognition.

The chapter is organized as: A comparative study between the performance of 

these patches will be presented in Section 7.2 to investigate which patch has the 

most significant contribution to biometric recognition. Section 7.3 will describes the 

adaptive strategy for combining pairwise patch distances between individuals with 

different numbers of usable skin patches.

Experiments using the XM2VTS database will be discussed in Section 7.4 and 

Section 7.5 will concludes this chapter. The results show that the proposed method

155
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achieves comparable performance to the best of the published results and suggests 

that it may be particularly useful to combine this method with the traditional face 

recognition algorithms because it can automatically cope with the problem of noise 

in skin areas.

7.2 Recognition by Facial Skin Patches

The motivation of this experiment is to identify which face patches contain significant 

facial information. Therefore, face recognition experiments will be conducted using 

only individual facial patches one at a time. The total number of individuals as 

automatically determined by Skin/Non-Skin Classifier was shown in Section 6.3. Since 

the distance between the two eyes in the XM2VTS database ranges from 84 up to 

122, the size of facial patches ranges from 21 x 21 pixels up to 30 x 30 pixels.

For the recognition scenario, the people patches from the fourth session are chosen 

as the probe set, and the first three sessions are used as the reference gallery set. Two 

levels of fusion are compared, Feature-level and score-level fusion. Table 7.1 records 

the rank-1 identification for the twenty different patches.

The results show that some facial patches appear to exhibit significantly higher 

recognition performance when compared to the other patches. For instance, these re­

sults suggest that the upper chin area (17-18) yields the highest recognition accuracy. 

These results can be used for weighting the proposed adaptive algorithm which will 

be presented later.
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Table 7.1: Rank-1 identification(%) at two different levels of fusion for the twenty 
patch images

Patch Feature-Level (%) Score-Level (%)

1 16.95 20.34
2 11.86 18.31
3 17.29 21.02

4 15.25 21.02

5 19.66 25.42
6 17.29 23.05
7 17.97 24.75
8 18.31 27.80
9 23.05 26.10
10 18.64 28.14
11 20.34 25.09
12 25.42 35.59
13 20.34 26.78
14 21.70 25.42
15 21.02 29.83
16 22.03 23.05
17 27.80 38.64
18 33.22 45.09
19 27.12 31.19
20 23.73 30.85
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7.3 An Adaptive Scheme for Skin-Based Face Recog­

nition

The enrollment and authentication phases of the proposed system (Figure 7.1) con­

tain the following steps:

(1) Face and facial features detection,

(2) Face normalization (Section 5.2.1),

(3) Localization of facial skin regions (Section 4.6),

(4) Partitioning of Facial Regions into twenty non-overlapping patches (Section 6.2),

(5) Feature extraction of these patches using Gabor and LBP approaches (Section 

5.2.4) and fused feature of them (Section 6.3.1),

(6) Training a “Skin/Non-Skin” classifier in the training mode (Section 6.3.3), and

(7) Application of this classifier to classify every patch into skin or Non-skin classes 

(Section 6.3.4).

(8) Matching: To obtain the distance matrix, local distances are first computed be­

tween skin patches of the query face image and the corresponding skin patches of the 

reference templates in the database.

Then the global distance between the probe and gallery image is a weighted sum 

of the local distances adapted in such a way to include the contribution of each usable 

skin patch to the recognition stage. Finally, the person is identified as the one whose 

image produces the smallest global distance. More details for computing these two

distances as follows.
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Figure 7.1: The framework of the face recognition system
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7.3.1 Computing local distances

To match a probe image p  against one of the records in the database, gallery local 

distances should be calculated patch by patch as shown in Algorithm 2. Hence, the 

difference of two patches can be represented by the distance of two feature vectors, 

after checking (using line 2 in algorithm 2) that they are both skin patches. There 

are many methods to measure the distance of two vectors such as l\ and h norms.

Algorithm 2 Local Distances computation between the gallery c/j and probe p  

Input:

P a tc h L a b e l(g i)  : the labels of the patch for ith gallery image gi:

F e a t u r e (g l ) :the features set of the patch for Ah gallery image <?j,

P a tc h L a b e l (p ) : the labels of the patch for the probe image p,

F e a t u r e (p ) : the features set of the patch for the probe image p.

Output: d E !ftlx20.

1: for K  =  1 to 20 do

2: if { P  a tch P a b el K { x i )  =  1 and P a tc h  L abel k (u ) =  1) then

3: dx — the distance between F e a t u r e K (x i )  and F e a t u r e ^ y );

4: else

5: dK =  -1

6: end if

7: end for

7.3.2 The global distance

The simplest way to get an overall score or distance of combination is to simply add 

the local distances from different patches, i.e. equal weights are assigned since we do
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not know the relative importance of each patch. Since it is possible for the images 

of the same subject to have different number of usable facial skin patches extracted, 

the matching of any two facial images based on facial skin patches could result in 

matching n patches in one image against m patches in the other, where n 7̂  m.

Therefore, for matching two images p and gt based on their facial skin patches, it is 

essential to identify the set of common skin patches between them. The corresponding 

elements of this set are compared and the distances are combined, weighted with the 

reciprocal of the number of common patches N.

It is noticed that, if there is no common skin patches between the probe image p 

and the '¿tli gallery image gz, the resulted global distance Dist(p,gi) will be equal to 

zero (the minimum distance), so we could replace it with a very large number, say 1012, 

to guarantee that the corresponding image would not be returned as identification 

result. Algorithm 3 describes this procedure.

7.4 Experimental Results

We use a four-fold cross-validation analysis for testing, thereby, the 1180 face images 

are partitioned into 4 sets. Each set contains one face image for each individual. For 

each experimental trial, one set is chosen as the probe set, and the remaining three 

folders are used as the reference gallery set. The pair-wise distances are then com­

puted between the probe image and the gallery set. The mean of rank-1 identification 

rates of the proposed method on the four experimental trials are reported in Table 

7.2.

The analysis of performances in Table 7.2 shows that the proposed algorithm 

using the l\ — norm distance performs significantly better than using /2 — norm. In
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Algorithm 3 Global Distance computation between the gallery and probe p

Input: d G 5ftlx2°, the local distances between the ith gallery image gt and the probe 
image p.

Output: Dist G 9ftlx l.

Initialization: Dist =  0, A(Number of common patches)= 0.

1: for K  =  1 to 20 do

2: if dx > 0 then

3: Dist =  Dist +  d

4: N  =  N  +  1;

5: end if

6: end for

7: if N ^  0 then

8: Dist =  Dist/N ;

9: else

10: Dist =  1012;

11: end if

Table 7.2: Mean of rank-1 identification rates (%) of the proposed method using two 
different similarity measures with cross-validation

li — norm 
(%)

U — norm 
(%)

Gabor 73.56 66.86
LBP 78.64 64.58

Feature-Level fusion 85.34 73.22
Score-Level fusion 87.12 80.25
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addition, it shows that the different similarity measures perform differently for each 

feature set. For instance, Gabor feature set performs better than LBP feature set 

in the system which uses ¡2 — norm  distance while LBP feature set works noticeably 

better than Gabor when l\ — norm  distance is used in the proposed system.

It is evident that fusing these two types of features, Gabor and LBP, at feature 

level gives much better performance than the individual features alone. However, 

fusing them at score level provides a further performance improvement. This suggests 

that these two feature sets do extract different but complementary information. The 

cumulative match score vs rank is used to show the performance of each algorithm, in 

Figure 7.2. Fused features at score level again exhibit obvious evidence of superiority 

in performance over other methods.

7.4.1 Comparison to previous work

Using the protocol mentioned in Section 7.4.1, we compared the proposed adap­

tive method, which is obtained by using the F~ norm distance and fused scores of 

Gabor-based and LBP-based features, to several previously published results on the 

XM2VTS dataset.

These methods include wavelet decomposition using three levels [237], PCA [220], 

direct correlation of face image intensity [220], and direct correlation using local area 

image intensity around each of the 35 fiducial points chosen according to a face graph 

model [220].

Table 7.3 lists the Rank-1 identification of every partition. It is noted that the 

proposed new method of integrating the Gabor and the local binary pattern features 

achieves comparable performance. It also indicates that skin texture-based feature is



An Adaptive Scheme for Skin-based Face Recognition 164

(a )

(b)

Figure 7.2: Cumulative match score curves of four different algorithms using (a) 
li — norm  distance (b) Z2 — norm  distance
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not short term biometric trait since the data acquisition was distributed over a long 

period of time (a period of five months) [142].

Table 7.3: Rank-1 identification(%) of the proposed method and other five methods 
on the XM2VTS face database using their protocol

Partition / 2 3 4 Mean(%)
Wavelet (level[2]) [237] 77.29 81.69 82.03 83.73 81.19
Wavelet (level[3]) [237] 80.34 85.42 83.05 84.75 83.39
Wavelet (level [4]) [237] 78.31 85.42 81.69 83.39 82.20

PCA [220] 86.40 84.40 82.00 83.40 84.10
Full intensity [220] 89.20 85.10 86.10 84.10 86.10

Local intensity [220] 87.50 89.20 84.40 80.30 85.40
Proposed method 84.41 86.44 87.80 89.83 87.12

In order to compare our results with the texton-based method presented in [128], 

we used the protocol that has been used in that paper. For each person, we chose 

the first two partitions as the gallery set, while the other two partitions are used as 

the probe set. Thus, we have 590 gallery samples, and 590 probe samples. Table 7.4 

shows that the proposed method significantly outperforms that in [128].

Table 7.4: Rank-1 identification(%) of the proposed system and another skin-based 
algorithm on the X M2VTS face database using its protocol

Approach Accuracy(%)

Proposed method 83.05
Texton-based method[128] 66.90
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7.5 Conclusion

A novel method for face recognition is presented in this chapter. By partitioning the 

face image into several patches, we apply the Skin/Non-Skin Classifier that includes 

the skin patches and exclude patches that may be obscured by hair, facial hair or 

spectacles. An adaptive method working on the usable skin patches is presented for 

face recognition. The experiments on the XM2VTS database have been carried out 

to demonstrate that this adaptive scheme is able to utilize all available skin texture 

information for biometric recognition. The results also indicate that facial skin texture 

is not short term biometric trait.



Chapter 8

Partial Face Recognition using the 

Forehead Region Alone

8.1 Introduction

This chapter presents a scheme for face recognition in application scenarios where 

only a partial image of the forehead region available for classification. Images of the 

forehead (above the eye-brows) are chosen for this study as they are less influenced 

by facial expressions. A scheme for segmenting the head region in such images is 

presented. The forehead region is then extracted, without the use of facial landmarks 

such as eye locations, and analyzed to segment and exploit available skin patches for 

classification.

We do not assume the presence of the eyes in the images so the challenges, as 

some of them are illustrated in Figure 8.1, will be (i) how to detect partial faces in 

images with high illumination variation (ii) how to localize the forehead without any 

of the usual landmarks such as eye locations (iii) how to detect pure-skin forehead
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regions in the presence of possible occlusions by hair, head coverings, etc. (iv) how 

to recognize such regions without using facial landmarks for alignment.

The system is tested on FRGC ver2.0 database and presents promising recognition 

results for a very challenging problem. The outline of the chapter is organized as 

follows: Section 8.2 presents the overview of the proposed algorithm. Sections 8.3 

and 8.4 are devoted to the experimental results and conclusions respectively.

Figure 8.1: Challenging samples

8.2 Overview of the Proposed Algorithm

The overall block-diagram of the proposed system is shown in Figure 8.2. This section 

will give a step-by-step description of its components.
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8.2.1 Partial-Face Segmentation

We assume that the input to the system are images that contain only the upper head 

region (above the eyes). Therefore, we implement the following steps for subtracting 

the background:

• Step 1: Image is first processed to obtain a gradient image (which is less sensitive 

to illumination variations [56]) and thresholded to form a binary image.

• Step 2: The resulting blob (non-zero pixels) is bounded in a rectangle but it still 

contains some background pixels as well as pixels from the skin and non-skin 

(hair) regions of the face.

• Step 3: A skin detection algorithm [106] is used to identify pixels belonging to 

the skin region in the bounding rectangle.

• Step 4: A k-means clustering algorithm is then used on all the non-skin pixels 

within the rectangle to classify them further into background and hair classes.

• Step 5: All the background pixels are removed and the partial-face image is 

segmented from the background to obtain a mask of the face region available 

for further processing.

8.2.2 Automatic Cropping of Forehead Region

In a conventional full face recognition scenario, a forehead window can be easily 

determined using the eye centers (Section 5.2.2). For the problem posed in this 

chapter, there is no such landmark present so the localization of the forehead window
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becomes the principal challenge facing this approach. To solve this problem, the 

following steps are implemented:

1. An automated algorithm was developed that exploits head shape cues for lo­

calizing a virtual landmark ; the segmented region centroid. This point is the 

centroid of the binary mask mentioned in Step 5, in Section 8.2.1.

2. The forehead window was chosen to be a rectangle of size of 21 x /, where l 

indicates the estimated horizontal distance between the right eye center and 

the centroid. This choice was based on results in Section 5.2.2.

3. Since the coordinate of right eye center is unknown, the value of l is inferred from 

the model that represents the distribution of l and h, where h is the horizontal 

distance from the centroid to the last skin-pixel in the right side of the face. 

These two distances are illustrated in Figure 8.3 (a).

4. A polynomial model is chosen to perform a parametric regression analysis on the 

training data. This training data contains image where the eyes are included. 

The polynomial degree is determined by minimizing Akaike’s information cri­

terion (AIC) [5]. The AIC is given by:

AIC =  2Jfc- 21n(L) (8.1)

where k is the number of training data, and L is the maximum likelihood of 

the estimated model. A model with minimum AIC value is chosen as the best 

model to fit the data (Figure 8.3(b)).
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8.2.3 Feature Extraction

After the forehead windows are cropped, they are resized to 80 x 160 pixels. Then they 

are divided into eight non-overlapping patches with equal size. Extensive experiments 

have been conducted to determine the optimal patch size, number of orientations and 

scales. We have found out that for this database, the optimum number of orientations 

and scales for Gabor features are 16 and 10 respectively and the best patch size was 

found to be of size 40 x 40 pixels.

The texture features are extracted from every patch in order to implement two 

classification stages; (i) Skin/Non-Skin classification and (ii) Identity classification. 

Each patch, in both stages, is represented by a combined feature vector of Gabor and 

LBP-based feature sets that are separately computed.

The LBP operator [152] is first used for extracting features from the input patch. 

This vector FL is combined with another set of features extracted using Gabor filters.

The Gabor feature vector used is different for the Skin/Non-Skin classifier and the 

identification classifier as shown below. An input patch I is transformed to multiple 

Gabor images, r0jS, by convolving it with Gabor filters ip0tS that are illustrated in 

Section 5.2.4.

r0}S{x ,y ; o, s) =  I (x ,y )  * 'ip0tS(x ,y ) (8.2)

where o and s denote the orientation and scale of the Gabor filters respectively, and, 

* denotes the convolution operator.
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i. Features for Skin/Non-Skin classification All means, fios, and standard 

deviations, oos, of the magnitude |r0)S| are computed as follows:

hos I t-o.s | y and o0S =  VoA - F os)2 (8.3)
x  y  y  X y

A feature vector Fs is constructed using the collections of means and standard deriva­

tions where m, n are the total number of scales and orientations respectively. It is 

denoted as:

Fs =  [¿Too O~00 hoi - • • Fm—ln—1 ^m-ln-l] (8-4)

ii. Features for Identity classification For an efficient texture characterization 

and local representation of the input patch, the Entropy is added as another feature 

to the previous statistical measures. This is defined as:

eos = - ^ ( p l o g 2(p)) (8.5)

where p is the probability of each intensity level in the image. A modified feature 

vector Fj, is used for classification, as follows:

F l  —  [h O O  C 00  COO h O l  • • ■ h m  — I n — 1 C h n — I n — 1 • (8.6)

iii. Feature-Level fusion Finally, a feature-level fusion algorithm is applied to 

combine the different sources of information together.i.e

Fs [F l ,

F i  =  [F l , F / ] ;

(8.7)
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It is necessary to separately normalize the different feature sets before concatenating 

them into a single vector. The normalized features used are given by:

after normalizing and N  is the dimension of feature set. This procedure leads to a 

feature vector size of 576(256 +  2(16 x 10)) for the Skin/Non-Skin classifier and a 

feature vector size of 736(256 +  3(16 x 10)) for the identification classifier.

This classifier aims to distinguish pure “Skin” patches from “Non-Skin” patches be­

cause only such patches that contain skin texture alone will be used for identity 

classification. A patch is considered to be non-skin if it is covered partially or com­

pletely by hair, otherwise it is labeled as a skin patch. The fused features vector, as 

explained in Section 8.2.3, is used in the training stage to learn the texture of skin 

and non-skin patterns. In our experiments, we use the LIBSVM software library [25] 

for building SVM classifiers and we deploy the Gaussian RBF as the mapping kernel.

8.2.5 Overall Classification and Score Fusion

The k Nearest Neighbour classifier k — NN(k  =  1) is implemented in this study. The 

/ 1-norm is used as the distance metric since it is observed that it provides better 

results compared to the /2-norm and the cosine angle (Section 6.5.2).

The output scores from the eight classifiers are fused using the mean-rule in order

(8.8)

where fi is the feature component before normalizing, f t is the feature component

8.2.4 Skin/Non-Skin Classifier
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to make the final decision. If a patch is covered by hair it will not be passed to the 

classifier and an output score of zero will be recorded for that patch (see Figure 8.2).

8.3 Experimental Results

To evaluate the proposed algorithm, we generated a large database of partial faces 

from the Face Recognition Grand Challenge Ver2.0 (FRGCv2.0) database [164] which 

consists of 16,028 frontal face images of 466 subjects. Figure 8.1 shows examples from 

this database showing the significant variations in scale, lighting, partial occlusion and 

pose. Two interesting examples of the output of the proposed technique for forehead 

localization are shown in Figure 8.4.

250 subjects were randomly selected and one image from every subject was chosen 

to build the model mentioned in Section 8.2. Next, half of the remaining images were 

chosen for testing and the other half were used for training. It was found that the 

rank-1 identification of the proposed partial face recognition algorithm is equal to 

54.10%. This result is encouraging given the amount of variability in the face images, 

and indicates that facial skin texture may be a source of useful biometric information, 

even when no landmarks are available.

8.4 Conclusion

We have proposed a novel alignment free approach to deal with the problem of recog­

nizing a face from its partial image. The system is tested on FRGC ver2.0 database 

and presents promising recognition results for a very challenging problem.
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Figure 8.4: T w o  exam ples o f  cropping forehead from  the head centroid



Chapter 9

Conclusion and Future work

This section will give conclusions and suggest future research directions in the follow­

ing two sections, respectively.

9.1 Conclusions

The work presented in this thesis focused on the topic of using skin texture feature 

for face recognition particularly when the face images are high-dimensional.

The theoretical background is covered in Chapter 2 and Chapter 3 of this thesis. 

Chapter 2 presents a thorough review of the topic of texture analysis, in particular 

the numerous applications of texture analysis and those techniques which are used 

for extracting texture features. It then gives an overview of a number of commonly 

used classification approaches, with particular attention given to their use in the field 

of texture classification. Topics covered in Chapter 3 include the challenges of face 

recognition, the components of a face recognition system and the measures commonly 

used for assessing the performance of face recognition systems.
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Questions Q1 and Q2 in Section 1.2 are answered in Chapter 4. It describes 

an automatic method for segmenting the facial skin areas. It also shows that the 

automatic extraction of the facial skin regions requires a precise localization of eye 

centres and mouth centre. Thus, a new scheme for the precise localization of the eye 

centres in 2D still images is presented in this Chapter. It is one important subject 

of this thesis because eye localization (detection) is the fundamental step for the 

initialization of other methods, mostly face recognition techniques.

The topic of extracting the texture features from the facial skin areas (Q3, Q4, 

Q5, Q6) is covered in Chapter 5. Pure-skin forehead region in the face images are 

manually labeled and Gabor and LBP approaches are then used to extract skin texture 

features. The experiments that are conducted on XM2VTS database indicate that 

the forehead region alone provides useful biometric information for person recognition 

and it is not short term biometric trait. The effects of changing the parameters of the 

Gabor filter-bank and LBP approaches are also investigated and tuned to optimize 

the recognition accuracy.

To develop an automatic skin-based face recognition system, we need to build 

Skin/Non-Skin classification technique. Chapter 6 illustrates this classifier which is 

able to automatically handle the noise in skin areas such as hair covering forehead 

region, facial hair covering chin region or sometimes dark sun glass covering parts 

of cheeks. We also in Chapter 6 compare the discriminative capabilities of different 

facial regions such as forehead, chin, right cheek and left cheek. Since the results 

suggest that the forehead region yields the highest recognition accuracy, its informa­

tion was combined with the kernel discriminant analysis KDDA at score-level. The 

empirical results indicate that the face recognition accuracy can be improved by the



Conclusion and Future work 180

explicit exploitation of identity information in pure skin regions. The results of the 

fused system are comparable to or better than those obtained by the state-of-the-art 

methods.

An adaptive skin-based method for face recognition is proposed in Chapter 7. 

The first step is to automatically extract several patches from face images. Then 

patches that may be obscured by hair, facial hair or spectacles are excluded by using 

Skin/Non-Skin Classifier. Finally, An adaptive method working on the usable skin 

patches is applied for face recognition. The experiments on the XM2VTS database 

have been carried out to demonstrate that this adaptive scheme is able to utilize all 

available skin texture information for building face recognition system.

Finally, Chapter 8 is devoted to a novel alignment free approach to deal with the 

problem of recognizing a face from its partial image. The system is tested on FRGC 

ver2.0 database and presents promising recognition results for a very challenging 

problem.

9.2 Future Directions

The following issues are suggested for future work:

1. Skin areas segmentation: The automatic segmentation of skin areas from 

facial images is an application for which texture analysis has been shown to be 

effective. One possible avenue for further research is the use of recent approaches 

of texture segmentation such as Graph-Cut.

2. Photometric normalization: Chapter 8 has presented a novel alignment free 

approach to deal with the problem of recognizing a face from its partial image.
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The proposed algorithm has been evaluated using FRGC ver2 database which 

has a significant variation in illumination. Thus, it is possible to investigate 

the photometric rectification algorithms to handle more extreme illumination 

variations that are exist in this dataset.

3. Feature extraction: The system that tested in Chapter 8 on FRGC ver2.0 

database presents promising recognition results for a very challenging problem. 

By extracting other rotation-invariant texture features, it may be possible to 

further improve this representation, leading to lower overall classification error 

rates.

4. Classification: Exploration of using different types of classification techniques 

such as Neural Network or Bayesian classifier may lead to improved perfor­

mance.

5. Resolution: An investigation into the effects of images resolution on the overall 

performance is another avenue for possible future research.

6. Enhancing face recognition systems: The field of face recognition is an 

active and challenging research field. Chapter 6 showed that the global face 

recognition system could be improved by skin texture features. There exists 

much potential to improve the results presented in this thesis by fusing the 

proposed adaptive algorithm (that is in Chapter 7) to several kinds of global 

face recognition systems.
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