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Abstract

Objective prior distributions represent a fundamental part of Bayesian infer­
ence. Although several approaches for continuous parameter spaces have been 
developed, Bayesian theory lacks of a general method that allows to obtain priors 
for the discrete case.

In the present work we propose a novel idea, based on losses, to derive objec­
tive priors for discrete parameter spaces. We objectively measure the worth of 
each parameter values, and link it to the prior probability by means of the self­
information loss function. The worth is measured by taking into consideration 
the surroundings of each element of the parameter space. Bayes theorem is then 
re-interpreted, where prior and posterior beliefs are not expressed as probabilities, 
but as losses. The approach allows to retain meaning from the beginning to the 
end of the Bayesian updating process. The prior distribution obtained with the 
above approach is identified as the Villa-Walker prior.

We illustrate the approach by applying it to various scenarios. We derive ob­
jective priors for five specific models: a population size model, the Hypergeometric 
and multivariate Hypergeometric models, the Binomial-Beta model, and the Bi­
nomial model. We also derive the Villa-Walker prior for the number of degrees 
of freedom of a t distribution. An important result in this last case, is that the 
objective prior has to be truncated.

We finally apply the idea to discrete scenarios other that parameter spaces: 
model selection, and variable selection for linear regression models. We show 
how an objective model prior can be obtained, by applying our approach, on the 
basis of the importance that each model has with respect to the other ones. We



illustrate various cases: nested and non-nested models, models with discrete and 
continuous supports, uniparameter and multiparameter models. For the variable 
selection scenario, the prior includes a loss component due to the complexity of 
each regression model.
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Chapter 1 

Introduction

Objective Bayes represents an important aspect of Bayesian analysis and, more in 
general, of statistical inference. The motivations behind objective Bayesian proce­
dures can be different, but all originate from the same assumption: there is little 
or no prior knowledge about the quantity of interest; or, as it may be also the case, 
the knowledge is intentionally ignored. It is not our intention to contribute to the 
debate about the “legitimacy” of objective Bayes (debate far from being over). 
Detailed discussions on the matter can be found, for example, in Berger (2006). 
Our work focuses on Bayesian objective methods for discrete parameters where, 
according to the literature, there is a lack of a general approach for defining prior 
distributions. We believe that the void can be filled by solving a foundational 
gap affecting objective Bayes: probabilities cannot be directly obtained through 
objectivity. Instead, we claim that they have to be derived through the objective 
definition of loss functions.

The Bayesian framework can be formalised as follows. Let us consider the 
Bayesian model M  =  {f(x\9),7r(9)}: f(x\9) represents a family of probability 
distributions chosen to model exchangeable or independently and identically dis­
tributed (i.i.d.) outcomes; n(9) is the prior distribution representing the initial 
guess with respect to the true value of the unknown parameter 9 £ 0 . Bayesian
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inference is then performed on the basis of the posterior distribution

7t(9\x ) OC f(x\9) X 71(9), (1.1)

where the initial guess about 9 is updated on the basis of the information gained 
from an experiment, expressed by the likelihood f(x\9).

We assume that the densities exist, with respect to some measure on X  x 0 , 
where X  is the support of f(x\9) (x G X),  and 0  is the parameter space. For 
simplicity in the notation, 7r indicates both the prior and the posterior; the context 
will give indications on which one is discussed. Furthermore, x represents both 
the random variable from which the observations are drawn in an experiment, and 
the vector of observations itself: x  =  (x\,. . . ,  xn); 9 can be a scalar or a vector of 
parameters: 9 — (9\,. . . ,  Qj).

Here tt(9) in (1.1) represents the initial uncertainty we have about the true 
value of 9, and can be defined in two ways: subjectively or objectively. The for­
mer presumes some knowledge about 9 prior to the experiment. The method to 
subjectively obtain the prior distribution are beyond the scope of this thesis, and 
therefore not discussed; discussions about subjective Bayes can be found, among 
others, in Ramsey (1964), de Finetti (1937), Lindley (1972), French (1982) and 
Goldstein (2006). In the objective approach, the idea is to have a procedure that, 
free from personal considerations, allows one to define n(9) once f(x\9) has been 
chosen. This case constitutes the main topic of the thesis.

If prior distributions are the building blocks of the Bayesian approach, objec­
tive priors represent one of the cornerstones. Even though it is appealing (and 
advisable) to rationally take advantage of any suitable prior information that may 
be available, this is not always feasible. In some circumstances there is no such 
initial information; and in others, even though this knowledge is theoretically 
available, it might be prohibitive even to think about using it. As an example, 
consider complex and large models, where the number of parameters can be easily 
of the magnitude of hundreds or thousands. It would be unrealistic to think that a 
subjective definition of the prior for each one of these parameters can be performed.
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The literature about objective priors is vast. Several general methods to ob­
jectively obtain tt(6) have been designed: Jeffreys’ prior (Jeffreys, 1961), reference 
priors (Bernardo, 1979), Probability Matching Priors (Welch and Peers, 1963), 
among others.

When 6 is discrete, solutions to find an objective prior tend to be problem 
specific. No effective general cases have been so far proposed. For this reason, we 
focus on discrete scenarios, and propose a general approach that may be applied to 
any model for which the parameter takes values on a discrete space. For example, 
the number of trials n in a Binomial model; or the number of populations units 
R that have a certain property in a Hypergeometric distribution. Furthermore, 
the approach is extended to other discrete problems: model selection and variable 
selection for linear regression models. In fact, procedures to assign prior mass to 
each model, in an objective way, can be defined.

A second aspect about objective priors is that, in general, they are improper. 
In practice, this does not constitute an issue, as long as the posterior is proper, 
thus suitable for inference. The marginalisation paradox that may rise from the 
use of improper priors (Dawid et ah, 1973), has been overestimated (Berger, 2006). 
In fact, objective improper priors have been and still are widely used. However, a 
conceptual gap remains: the prior and posterior do not represent the same “thing” , 
as the posterior represents probabilities while the prior does not. Therefore, if we 
regard at the Bayesian procedure as a process with an input (the prior) and an 
output (the posterior), there is no retention of meaning from one end to the other. 
Attempts to justify this incongruence, mainly from a probabilistic point of view, 
have been made. Our method gives a new view of the problem resolving the con­
ceptual gap.

The idea we propose is simple and it is the following. Instead of representing 
initial beliefs by probabilities directly, we objectively represent them through losses 
and, by means of the self-information loss function, derive the prior mass. Recall 
that objectivity arises from the absence of knowledge, actual or alleged, about the 
true value of the parameter, we can see the justification of this approach, as we can
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still have an idea of the worth that each parameter value represents in the model. 
And by assigning the mass to each parameter value by a measure of its worth, we 
are not subject to the constraints of properness, intrinsic in a probability measure.

The worth of an element of the parameter space can be assigned by answer­
ing the following question: ’’What do we lose, if an element of the parameter 
space is removed and it is the true one?” More formally, let us consider the prior 
distribution n(9) for the discrete parameter 9 G 0 . If a prior mass 7r has been 
assigned then we link this to a worth by means of the self-information loss func­
tion — log7r(0) (Merhav and Feder, 1998). We can then find an objective way 
to associate a loss to each 9, representing its worth in the model line-up, and 
the prior distribution n(9) then follows. Furthermore, we note that in this way 
the Bayesian approach is conceptually consistent, as we update an initial worth 

assigned to 6, through the application of Bayes’ theorem, to obtain the resulting 
worth expressed by — log 7t(9\x ). Indeed, there is an elegant procedure akin to 
Bayes which works from a loss point of view, namely that

- l o g 7r(0|x) =  K  -  log f(x\9) -  log7r(0), 

which has the interpretation of

Loss(0|x,7r) =  K  +  Loss(0|x) +  Loss(0|-7r).

This is a cumulative loss function for assessing the loss of 9 in the presence of 
two pieces of mutual information x  and n. Here K  is a constant which does not 
depend on 9.

The next part that we have to clarify is how the worth is objectively assigned. 
The worth to be assigned to each model is equal to the Kullback-Leibler divergence 
(Kullback and Leibler, 1951) measured from the model to the nearest one. This 
is justified by the fact that, if the model is misspecified (which it would be if 
we remove 9 and it turned out to be the true value), the posterior distribution 
accumulates asymptotically at the nearest model with respect to the Fullback - 
Leibler divergence (Berk, 1966); also, refer to Theorem 3.1. Thus, this divergence 
represents the loss incurred by removing the model, and is the true one, and this
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will be the quantification of the worth of that model. The objectivity of this 
measure is obvious, as it will depend on the available set of options (i.e. choice of 
the family of densities) solely. Thus, we have that the utility of keeping 9 in 0  is 
u(9) =  DKL(f(x\9)\\f(x\9')), where DKL(-1|-) is the Rollback Leibler divergence 
(refer to Section 2.1.1). We can therefore associate a loss to each parameter value 
as

1(9) =  - D KL(f(x\9)\\f(x\e')),

representing the loss in keeping 8 in the space 0 . We link this measure of the 
worth of 9 via the self-information loss function by setting — log7r(0), and the 
resulting prior is

tt(9) <x  exp{D(f(x\6)\\f(x\6'))} .

Outline of the work

In Chapter 2 we present a review of the current objective approaches to derive 
prior distributions for parameter spaces. It has three sections. The first one 
discusses motivations for an objective Bayesian approach, criticisms, and a gen­
eral discussion on improper priors. The second section discusses three approaches 
for continuous parameter spaces: Jeffreys’ prior, reference priors and probability 
matching priors. The last section of the chapter refers to the challenges in defining 
objective priors for discrete parameter spaces, illustrating the current methodolo­
gies. Chapter 3 contains the main result of the thesis: the novel approach we 
propose that allows to design objective priors for discrete parameter spaces. After 
a section discussing our motivations, we briefly discuss loss functions in general 
and, in particular, the self-information loss function. The last section of the chap­
ter presents the formal definition of our approach.

The following two chapters provide examples of the application of our approach 
to specific models. Chapter 4 focuses on five particular models discussed in Berger 
et, al. (2012). In Chapter 5 we show how our approach can be applied in estimating 
the number of degrees of freedom of a t density. In the chapter we also provide 
the analysis of the posterior, both for i.i.d. samples and a regression model with 
¿-distributed errors.
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Chapter 6 is a first example of the application of our objective approach to 
model selection problems. We first briefly review major objective approaches, 
then present our method with some illustrations: nested and non-nested mod­
els, discrete and continuous supports, uniparameter and multiparameter models. 
Chapter 7 refers to a particular type of model selection scenario: variable selection 
in linear regression models. Our prior is derived and its use is illustrated on a real 
data situation. Comparison with other two objective priors is carried out on the 
basis of marginal posterior inclusion probabilities. The chapter includes also some 
interesting results that, although not directly relevant to the work discussed in 
this thesis, are noteworthy and should drive future investigation.

Finally, Chapter 8 provides a general discussion of the overall results of the 
thesis, including some ideas for future work. In particular, possible extension 
of our approach to continuous parameter spaces and other selection problems 
(polynomial regression and mixture models, for example). In each of the chapters 
from number 4 to number 7 we present a discussion of the specific results obtained 
therein.
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Chapter 2 

Background

In this Chapter, we review and discuss some of the objective procedures to assign 
prior probability to parameter spaces. To set the appropriate context for this work 
it is paramount not only to examine these process from a mathematical point of 
view, but to grasp what is the motivation behind their development.

We start by presenting some historic facts about the origins of Bayesian infer­
ence. We show that, in fact, this has been the first type of inference. We move then 
to discuss invariance property, which represents the trigger for the development of 
Jeffreys’ priors. Reference analysis and probability matching priors are presented 
next, alongside with other less general objective approaches. Finally, as the core of 
this thesis is about discrete parameter spaces, we review some approaches designed 
specifically to deal with this type of scenarios.

2.1 Notation and initial considerations

The literature about objective Bayes is full of different terminology about prior dis­
tributions defined through objective approaches. Some words are non-informative 
prior, ignorant prior, vague prior. As these refer, at least in principle, to the same 
concept, we use throughout this work the adjective objective prior. By objective 
prior, we mean a prior distribution that is obtained through a procedure that does 
not involve subjective input after a model has been chosen.

We consider the model M  =  {f(x\6),6 e 0 } .  where x  G X,  with X  being

7



2.1. Notation and initial considerations

the support of f(-\9), and 0  the parameter space. The aim is to make inference 
about the value of the unknown parameter 9. In a Bayesian framework, this is 
achieved by obtaining a distribution of the parameter, posterior to the observation 
of a sample x =  (aq,. . . , x n) drawn from f(-\9). The posterior is the result of 
the combination of the information contained in the sample, expressed by the 
likelihood function f(x\9), and the prior n(9) representing the uncertainty about
6

7 r(0 |:r)
f(x\9)n(9)

J f(x\9)7T(9) d9

Throughout this thesis, we assume that all probability functions exist with respect 
to some reference measure on X" x 0 .

As it appears from the above, a key step is the definition of n(9). In essence, 
there are two ways of doing this. If we possess sufficient and sensible information 
about 9, we can use it to elicit the prior. The information can come in various 
forms, such as expert knowledge, but in many circumstances it derives from his­
torical data. A subjective prior is extremely powerful, if both the basis and the 
process of elicitation are robust and rational. However, the conditions for elicita­
tion are not always possible, or realistic. Sometimes this prior information is not 
available, because there is no sufficient (or not at all) historical data; or because 
models are complex, in the sense that the number of parameters is too high to 
allow a sensible elicitation for each one of them.

There are also other more subtle motivations in deciding not to subjectively 
define n(9), as detailed in Berger (2006). First, the idea of subjectivity in the 
non-scientific community creates the belief that the analysis does not bear the 
necessary scientific rigour. For example, there may be the concern that results not 
supported solely by experiments, which could be objectively replicated, are some­
how the consequence of skilled “manoeuvres” intent to support biased outcomes. 
Objective Bayes can also be considered as a way of connecting with frequentist 
methods. In Bayarri and Berger (2004) there is an exhaustive review of literature 
aimed to support the argument that objective procedures are an interface between 
the Bayesian and the classical (i.e. frequentist) approach.

Besides motivations, in Berger (2006) it is also possible to find criticisms to
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objective Bayes. In addition to the alleged lack of scientific rigour mentioned 
above, doubts are driven by the presence of multiple objective methods which, in 
some cases, lead to different results. Thus, the necessity to choose between these 
methods is perceived as a weakness in the overall idea. The general approach for 
discrete parameter spaces (Berger et ah, 2012) suffers from this issue.

2.1.1 Definitions

The objective approach we propose is based on an asymptotic property of the pos­
terior distribution, when the model is misspecified, which involves the Kullback- 
Leibler divergence (Kullback and Leibler, 1951).

Definition 2.1 (Kullback-Leibler divergence). The Kullback-Leibler divergence 
between probability mass functions f(x\9) and f{x\(f) is given by

If f(x\9) and f(x\4>) are probability density functions, the Kullback-Leibler diver­
gence has the form

Objective prior distributions are, in general, improper.

Definition 2.2 (Improper distribution). A probability mass function f(x\0), with 
x  € X  mid 9 e  Q, is improper if

If f(x\9) is defined in the continuous, that is it is a probability density function, 
then it is improper if

5~2f(x\9) =  ° ° -
x

9
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2.1.2 A few words on improper priors

Objective approaches lead in many circumstances to improper priors, in the sense 
that these distributions do not integrate (or sum, in the discrete case) to one. This 
happens because, as we want to represent as less knowledge as possible about the 
parameter value, the parametric space is often unbounded.

There are cases where objective priors are proper. For example, a commonly 
accepted objective prior for the parameter 9 E (0,1) of a binomial distribution, 
representing the probability of success, is ir(6) =  Be(  1 /2 .1 /2), where Be is the 
Beta density. However, a bounded parameter space is not per se a sufficient condi­
tion for having a proper objective prior. As an example, if we consider a Negative 
Binomial distribution with parameters (r,p), where r > 0 and p e (0,1), the usu­
ally recommended objective prior for p is n(p) oc p_1(l — p)-1 2̂; this distribution, 
although the parameter space is bounded, turns out to be improper. Finally, there 
are scenarios where for an unbounded parameter space it is possible to have proper 
objective priors, as for the case of the ratio of two multinomial parameters, where 
the parameter space is (0, oo) (Bernardo, 1997).

Given that inference depends on the posterior, improper priors can be used 
in practice, as long as the posterior is proper. However, improper priors are 
not probability distributions, and they simply represent positive functions, that 
is a technical device to be used in Bayes theorem to obtain (proper) posterior 
distributions (Bernardo, 1997). But it is obvious that, conceptually, Bayes theorem 
no longer applies.

Berger et al. (2009) give a justification on the adoption of improper prior 
distributions. If an improper prior 7t{6) is defined, then Bayes theorem does not 
apply and its use has to be justified. Berger et al. (2009) show that the posterior 
tt(9\x ) is a suitable limit of posteriors obtained from proper priors. Consider 
the increasing sequence of compact sets of 0 , { 0 j } ° l r  The sequence of proper 
priors 7r(9j), defined on 0 j, is called the approximating sequence of posteriors 
{'^j(9\x)}(̂ =1, approximating the formal posterior t[{6\x). Thus, the sequence of 
posteriors is said to be expected logarithmically convergent (to the formal posterior)

10
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if
limj->0o DKL(n(-\x)\\nJ(-\x))fj (x) dx =  0, ( 2 . 1)

where f j(x) =  f e  f(x\6)TTj(9) dO. The conclusion is that a prior distribution 
satisfying the property in (2.1) yields a posterior that, in expectation, is an ap­
proximation of the formal posterior; in the sense that it approximates the posterior 
that would be obtained by restricting the sample space 0  to a large compact set.

2.2 Review for continuous parameter spaces

2.2.1 A brief discussion on the term non-informative

We do not wish to debate on etymological aspects, but we deem appropriate to 
spend a few words to clarify the meaning of non-inf ormative, when it is referred to 
prior distributions. For an interesting discussion on the matters, refer to Bernardo 
(1997).

Bernardo and Smith (1994) pointed out that “there is no prior that repre­
sents ignorance” . Every prior distribution carries some amount of information 
(although sometimes minimal), in the sense that it depends on the model that has 
been chosen. In fact, it is commonly agreed that objectivity is intended from the 
moment that the model has been selected to represent the quantity of interest. 
Therefore, when we refer to a prior distribution representing “ignorance” , it has 
to be understood in the above sense.

Many terms have been used to label this type of distribution: conventional, 
default, flat, formal, neutral, non-subjective and objective (Bernardo, 1997). Inde­
pendently on what expression we decide to adopt, there is some common agreement 
on what a prior which is not elicited should represents: derive posterior distribu­
tions, through Bayes theorem, where the contribution from the observations is as 
large as possible. In other words, it is the data that should dominate the scene.
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2.2.2 Inverse Probability and the Uniform Prior

Even though in Bayes’ essay (Bayes, 1763) the prior distribution is not mentioned, 
it is clear that, in his attempt to estimate an unknown probability, he used a con­
tinuous uniform distribution as the prior for the unknown parameter. A simplified 
illustration of the experiment described by Bayes is as follows. Consider a pool 
table of a length that conventionally we refer to as one. A ball is placed on it 
following a uniform distribution. What we have to guess is the distance of the ball 
from one of the ends of the table, say the left-end. To do this, we throw another 
ball on the table, and the number of times it is closer to the left-end than the 
other ball is counted. We use this information to make our guess.

The inference problem, in modern terms, is to estimate the parameter p of a 
Bernoulli distribution. To do this, even though not explicitly stated, Bayes puts 
a uniform prior on the parameter space: that is 7r(p) oc 1, with p E [0,1]. He then 
considers the likelihood of observing x successes, given p , which is the number of 
times the second ball gets closer to the left-end of the table than the first ball. 
Thus, he combines the prior information with the likelihood function f(x\p) to 
obtain the posterior distribution of the parameter

n(p\x) = f(x\p)n(p) 
f  f(x\p)n(p)dp

px( 1 — p)7
f 0' px( 1 — p)n~xdp 

(n +  1)!
(n — x)\ x\

px( i - py ( 2 .2 )

which is a Beta distribution with parameters x +  1 and n - x - 1-1. Note that, while 
the successes are independent when they are conditional on p, they are not when 
they are unconditional on p, i.e. marginalised.

Of course, the above result in (2.2) is the outcome of a reinterpretation pro­
cess, where modern considerations have been made. Nevertheless, it seems that at 
least two key points can be noted. First, from this example it appears that Bayes 
intention was of starting with an initial guess and update this by consequent ob­
servations. This, as we know, is the core of the Bayesian framework. Second, his
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initial guess was made in a condition of total ignorance, and he has translated 
this ignorance in a probability distribution that treats equally each value in the 
parameter space; in other words, Bayes considered the uniform distribution as the 
distribution for ignorance.

This idea was developed, independently from Bayes, by Laplace a few years 
later; possibly in a more comprehensive and sophisticated manner (Laplace, 1774). 
We are not going to detail Laplace’s contribution, as it would lead to the results we 
have outlined above. Besides a formal definition of Bayes theorem, as it is today 
known, he has clearly specified what a prior distribution representing ignorance 
should be. His idea that, if we know nothing about the value of a parameter 
there is no reason to assigning more mass to a value than another, took the name 
of indifference principle and it dominated the statistical inference scenery up to 
the birth of the frequentist approach. As mentioned in Fienberg (2006), Laplace 
started the statistical quest of finding prior distributions that reflect ignorance; a 
quest that it is still going on under the name of objective Bayes.

In his work, Laplace reinforced the concept that a prior distribution on the un­
known parameter of a Bernoulli distribution p , which aims to represent ignorance, 
has to be uniform on the interval [0,1]. He has also adopted the same approach 
for other cases, such as for location parameters. As reported in Fienberg (2006), 
Laplace has clearly expressed that the posterior distribution for a parameter 9, is 
proportional to the likelihood function, times the (uniform) prior distribution

tt(9\x ) oc f(x\6).

The concept of uniform prior is implied.
The terminology inverse probability appearing in the title of this section, re­

flects the concept of inferring backwards from the data to the parameters or, as it 
can also be put, from the effect to the causes. However, the name came into use 
later and was used until the middle of the last century, when replaced by Bayesian 
inference (Fienberg, 2006).
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2.2.3 Jeffreys

The main criticism about uniform priors is that they do not represent ignorance. 
Knowing nothing about 0 and knowing that it can take any value with the same 
probability are two well distinct facts. The above criticism to uniform priors 
mainly came from the fact that, in general, they are not invariant under one-to-one 
reparameterisations. This property is by many seen as a must for an objective prior 
(Dawid, 1983; Jaynes, 1968; Bernardo, 1997). In particular, Jaynes asserts that 
the way a model is parametrised involves subjectivity; as such, a prior distribution 
that is influenced by this subjective choice, cannot be considered entirely objective. 
The state of knowledge about a model does not change by simply rearranging its 
parameters. Let us better understand the meaning of invariance under one-to-one 
reparameterisations. Consider a statistical model f(-\0) with the prior it(0) oc 1 , 
that is a uniform. If we do not have any knowledge about 6, we also do not have 
any knowledge about I/O. Therefore, by applying the change-of-variables formula 
for random variables on the one-to-one transformation g(</i) =  1/0, we have

7rO) =  1 •
d{l/9) 9 : (0)

which is not uniform.
In designing an objective approach to derive priors, Jeffreys stressed the im­

portance that the resulting distributions were invariant under any one-to-one (dif­
ferentiable) transformations. He then based his method on the considerations that 
Fisher information (Edgeworth, 1908), 1(6), is a quantification of the amount of 
information about the parameter 6 that is expressed by the model, and that it is 
invariant under these type of transformations. Fisher information is defined as

1(0) ■E" { ^ l0f’ f ( x W

where E# is the expectation with respect to model f(x\0), and log f(x\0) is the 
log-likelihood function. For example, Casella and Lehmann (1998) show that, 
if ip =  h(0) and 0 are two parameterisation of the same estimation or decision
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problem, and 0  is a continuously differentiable function of 9, then

I(9) =  i m h ' ( 0 ) ) \  (2.3)

where h'{6) represents the derivative of h(9) with respect to 0. Expression (2.3) 
links the Fisher information of the parameterisation 9 and the one of the param-
eterisation 0. Thus, by taking the square root of both parts in (2.3), we have

I{9)1/2 =  J (0 )1/2|h'(d)|.

Therefore, the prior for 6 will be linked to the prior for its reparameterisation 0  
by

7r(d) (X J(d)1/2 = 7r(0) 1/0(601, (2.4)

which is the well known expression of Jeffreys prior, that is the square root of the 
determinant of Fisher information. On the right-hand-side of (2.4) it is possible to 
recognise the transformation formula, showing Jeffreys prior invariance property.

As an illustration, Jeffreys prior for the parameter 9 G (0,1) of a Binomial 
distribution with known n, is given by n(9) cx 9~l/2{ 1 — 61)-1/2; that is, a Beta 
with both parameters equal to 1/2. Also, if we consider a Normal distribution with 
unknown mean n and known variance, it can be shown that 7r(/r) oc 1; showing that 
the uniform prior can still be a valid objective prior, in the sense that is complies 
to the desiderata of being invariant under one-to-one reparameterisations.

An important limit of these type of priors, noticed by Jeffreys himself, is that 
in general it does not lead to acceptable results when applied to a vector of pa­
rameters. Let us consider a distribution function f{x\9), where 9 =  [9i, . . .  ,9d\T 
is a vector of d parameters. The Fisher information matrix for this vector of 
parameters is given by

Thus, Jeffreys prior for the multiparameter case can be found by taking the square

15



2.2. Review for continuous parameter spaces

root of the determinant of the Fisher information matrix, that is

7r(0) oc det(I(d))1 /2.

The prior obtained according to Jeffreys’ rule for the unknown parameters 
(p, a) of a normal distribution is tt(p, ct) oc l/cr; this prior has poor convergence 
performance (Chopin et. ah, 2009).

To overcome this weakness, Jeffreys suggested to consider the two parameters 
as independent a priori: n(p,a) — 7r(ii)n(a) oc l/cr2 which has desirable prop­
erties. To distinguish between the two priors, we call the first one as Jeffreys’ 
rule prior (as it has been obtained applying directly Jeffreys’ method), whilst the 
second (assuming parameter independent a priori) is called Jeffreys independent 
prior.

2.2.4 Reference priors

We examine in detail reference priors because, as we will see in Section 2.3, they 
represent an important building block of what can be considered the more evolute 
general approach for deriving objective priors for discrete parameter spaces that 
can be currently found in the literature.

Approaches based on Jeffreys’ method where used to deal with multiparameter 
problems until the early 70’s (Bernardo, 1997), when marginalisation paradoxes 
began to emerge. Up to then, no particular issues were identified in using im­
proper priors, such as Jeffreys’ , in Bayesian inference. It appeared that having to 
deal with a proper posterior was sufficient, independently of the prior used (i.e. 
proper or improper). These paradoxes, presented and discussed in a systematic 
way in Dawid et al. (1973), show that the use of improper priors in multiparameter 
problems may lead to marginal posterior distributions that, do not posses Bayesian 
properties, as it would be the case if proper priors would be instead adopted. In 
Berger (2006) and Berger and Sun (2006), there are interesting discussions about 
the marginalisation paradoxes. In particular, it is agreed that the avoidance of 
these paradoxes, through the design of appropriate priors, may not be a funda­
mental task. It is in fact possible to find optimal posteriors even though they suffer
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from the paradox. Conversely, there are posteriors (also coming from subjective 
priors) far from being good which are free from the paradox. As such, we decided 
not to further pursue this topic.

Even though reference priors were not a direct answer to the above paradox 
(Bernardo, 1997), they allow one to deal with multiparameter problems avoiding 
the marginalisation paradoxes. Based on the work of Lindley (1956), who first 
thought about using information theory concepts to measure the difference in 
information between prior and posterior, Bernardo (1979) laid the groundwork 
for reference priors. The work was subsequently developed and structured and, 
finally, grouped under the name of reference analysis. Extensive reference on the 
subject can be found in Berger and Bernardo (1989, 1992a,b), Clarke and Sun 
(1997, 1999) and Berger et al. (2009).

The basic idea of the reference prior is as follows. The posterior distribution, 
as known, is the “combination” of the prior knowledge about the parameter and 
the likelihood. Therefore, if we measure the difference in information between the 
posterior and the prior, this difference can only be the information about the pa­
rameter (the unknown quantity of interest) that is contained in the data. We have 
already mentioned that the aim of an objective approach is to obtain posterior dis­
tributions where the contribution of the data is as large as possible. And this can 
be interpreted as defining a prior such that the difference in information between 
posterior and prior, called the missing information, is maximised (in expectation). 
An important contribution of reference priors is that they allow, through a step­
wise procedure, to deal with multidimensional parameter spaces, where only a 
number of them are considered of interest, and the remaining are considered as 
nuisance parameters. If there are no nuisance parameters (plus certain regularity 
conditions are satisfied) and, in particular, in the one-dimensional case, reference 
priors coincide with Jeffreys’ rule prior. When there are nuisance parameters, the 
reference priors will in general differ from Jeffreys’ rule prior.

We start by presenting the case of a model with one parameter only, as for 
this situation reference priors are defined without heuristic components. We then 
extend to the multiparameter case where, as Berger et al. (2009) state, not all
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definitions and theorems are supported by non-heuristic arguments as for the 
uniparameter case. Reference priors in the presence of nuisance parameters are 
discussed in this extension.

Missing information

The notion of missing information introduced by Bernardo (1979) is based on the 
concept of gain in information provided by an experiment, discussed by Lindley 
(1956).

Let us consider a set of observations from a statistical distribution f(x\9), with 
9 G 0  is an unknown parameter. A random sample of size n from f(x\9) can be 
represented by the sequence of i.i.d. random variables x =  (aq,. . . ,  x n). The 
gain in information provided by the experiment is based on information theory 
concepts developed by Shannon (1948), and it is given by the Kullback-Leibler 
divergence between the prior distribution for 9, 7r(0), and the posterior given the 
data, tt(9\x ). That is

The expected gain in information K£  is given by the expectation of (2.5)

where the expectation is taken with respect to the marginal m{x) =  J f(x\9)n(9)d9. 
The missing information is the value of 7Q for large values of n. and the prior that 
maximises this missing information is the reference prior. That is, the distribution 
7t(9) maximizing =  lim^oo K*.

Definition of reference priors

Let us now discuss the derivation of reference priors for the case where 6 is a 
scalar.

K n =  DKL(7r(9\x)M9))

(2.5)

K : = E x { D K L { x ( 9 \ x m » m ,
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We have introduced the definition of expected logarithmic convergence condi­
tion in Section 2.1.2, anticipating that reference priors satisfy this property. In 
particular, Berger et al. (2009) define as permissible prior any ir(6) for which this 
is true. Consider model M  =  {f(x\9),9 G 0 } .  Note that x  represents the entire 
vector of observations, and the model M  represents, in the context of reference pri­
ors, the probability model for the actual vector of observations. In fact, the theory 
of reference priors requires the theoretical possibility to replicate the experiment .

Definition 2.3 (Permissible prior). A strictly increasing probability function 77(9) 
is a permissible prior for model M , if

1. ti(9\x) oc f(x\9)n(9) dO < oo for all x  G X ;  and

2. for some increasing sequence { 0 J }^=1 of subsets of the parameter space, such 
that linij^oo 0 j =  0 , and J n(9) d9 < oo,

where Hj(9) is the renormalised restriction of tt(9) to 0 7, 7ij(9\x) is the cor­
responding posterior, fj (x)  =  f  f(x\9)7Tj(9) d9 the corresponding predictive 
distribution, and n(9\x) oc f(x\9)n(9). S is the intrinsic discrepancy between 
the distributions: 6{p,q}  =  min { D KL(p\\q), D KL(q\\p)}.

To measure the difference in information between prior and posterior, which 
is at the basis of reference priors, Berger et ah (2009) suggest Shannon’s expected 
information (Shannon, 1948; Lindley, 1956).

Definition 2.4 (Expected information). For m.odel M , the information expected 
from one observation, with prior n (9), is

where m(x) =  /@ f{x\9)n(9) d9 is the marginal for observation x, and ir{9\x) 
f(x\9)n(9)/m(x).
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The expected information I(n\M) represents what it is gained in observing x 
from model M,  given that the prior on 9 is 7r. If we extend the information to 
a sequence of k vectors of observations, x ^  =  (aq,. . .  , oq), intuitively, the gain 
will be higher, as we would learn more and more from the data as k becomes 
bigger. Thus, if we indicate by I{ji\Mk) this information, we would expect that, 
for k —y oo, the result would be a quantification of the missing information about 
9, given the initial one represented by the prior ix(9). So, if we define by V  the set 
of priors that can represent the initial information we have about 9, the sought 
distribution will be the one in this set that maximises the missing information.

Two issues raises when the parameter set is continuous. The first one is that the 
lim^oo I(n\Mk) is not finite, in general; second, on unbounded sets, the expected 
information is not defined. To solve these problems, Berger et al. (2009) consider 
the following

Definition 2.5 (Maximising Missing Information property). Let M  be a model 
with continuous parameter 9 G 0  6 M, and let V  be the class of proper prior 
distributions for 9. The function 7t(9) is said to have the Maximising Missing 
Information (MMI) property for model M, given V, if for any compact set 0 O G 0  
and any p G V

lim {/(7r0|Mfc) - / ( p 0|Mfc) }  > 0 ,
k-*oo

with 7i"o and po the (renormalised) restrictions to Oo of, respectively, n andp.

The definition of the MMI ensures that the missing information exists for any 
k. This is a consequence of the restriction to a compact set. This “device” , as 
labelled by Berger et al. (2009), allows one to handle the fact that the missing 
information diverges when k tends to infinity; and this is done by noting that 
the reference prior will always provide more (missing) information than any other 
potential prior in the set V.

Now, Berger et al. (2009) are ready to give the formal definition of reference 
prior for model M .

Definition 2.6 (Reference prior). A function 71(9) =  n(9\M,V) is a reference 
prior for the model M, given V , if it is permissible and has the MMI property.
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It is worth to mention that, prior to this formal definition, the justification 
of working with the maximisation of missing information was somehow heuristic. 
For example, refer to Bernardo (1979) and Berger and Bernardo (1989).

It is key, for the existence of the reference prior, that both I(iiQ\Mk) and 
I(p0\Mk) are finite, when we consider the (artificial) replications k of the experi­
ment (Berger et ah, 2009).

Properties of the reference prior

Reference priors hold three desirable properties (Berger et al., 2009) for an ob­
jective prior distribution. These are independence from the sample size, com­
patibility with sufficient statistics and consistent under reparameterisation. The 
first property says that, if x =  (x i , . . .  ,x n) is a random sample from model 
M  = {f(x\6),9  G  0 } ,  with reference prior tt(0), then n(9\Mn) =  ir(9\M) for 
any fixed n. This property is satisfied for i.i.d. observations. In cases where ob­
servations are not i.i.d., such as time series, then the reference prior may depend 
on n.

Consider model M  as above, with sufficient statistic t =  t(x) G  77 Let 
Mt — {f(t\ 6 ) ,t  G  77$ G  0 }  be the transformed model in terms of t. Then, 
because expected information is invariant under this type of transformation, we 
have n(9\M) =  n(9\Mt), where tt(-) is the reference prior for 9.

For model M  above, consider the one-to-one transformation of 9 given by 
4>{6). Let indicate the model reparametrised according to this transformation. 
Then, for the invariant property under one-to-one transformation of the expected 
information, 7r(0|M )̂ will be the reference prior induced from 7r(9\M) by the 
appropriate probability transformation.

Practical computation of reference priors

Definition 2.6 has no practical use. To compute reference priors Berger et al. 
(2009) give the following theorem. Consider vector x ^  — (x1:. . . ,  x^) of (artificial) 
independent replicates of a vector of observation, and let i*. =  tk(x 1, . . .  ,Xk) G  T  
be any sufficient statistics of x^k\
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Theorem 2.1. Assume a standard model M  =  {f(x\9),9  G 0 c i }  and the stan­
dard class Vs of candidate priors. Let ir*(9) be a continuous strictly positive func­
tion such that the corresponding formal posterior

n*(9\tk)
f{tk\9)n*(9) 

Je f(tk\0)TT*(9) d9’

is proper and asymptotically consistent, and define, for any interior point 90 of 0 ,

7Tfc(0) =  exp n{tk\9) log ir*(9\tk) dtk and

7r(0)
v *k(0 )
lim — 77TT 

k ->oo 7Tk (U 0 )

If (i) each nk(9) is continuous and ^k{9)/^k(9o) is either monotonic in k or is 
bounded above by some h(9) which is integrable on any compact set, for any 
fixed 9 and sufficiently large k, and (ii) tt(6 ) is a permissible prior function, then 
n(9\M,Vs) =  7r(0 ) is a reference prior for model M  and prior class Vs.

Generalisation to the multiparameter case

Reference priors for the case where the model has more than one parameter are 
computed by simply generalising the case of one parameter. However, Berger 
et al. (2009) assert that not all definitions and theorems can be extended. In 
particular, Theorem 2.1 does not have an analogous explicit representation for 
the multiparameter case. However, it is in principle possible to simply consider a 
model M  =  {f(x\9),9 E 0 } ,  and Bernardo (1979) showed, somehow heuristically, 
that the distribution maximising the expected missing information,

w « ) ) } ,

which is computed for large n (i.e. n —> oo) is Jeffreys’ prior. That is

n(9) oc det(I(9 ))1//2. (2.6)
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This can be seen as the distribution maximising the expected missing information 
on each compact set 0 j of 0 , given by n(9j) oc det(/(0)), were (weakly) converging 
to (2.6), as shown in Bernardo (1979).

The result in (2.6) is an important aspect of reference priors, as anticipated. 
If there are no nuisance parameters, that is if all the parameters are of interest 
(or, in the case of uniparameter models, the parameter), then Jeffreys’ prior is 
the reference prior, in the sense that it is the prior distribution which maximises 
the expected missing information. The result has been formally shown by Clarke 
and Barron (1990, 1994). Under regularity conditions, which assure asymptotic 
posterior normality, by repeated sampling from model M  =  {f(x\9),9  E 0 }  the 
above result is attained by the prior

The result holds for uniparameter and multiparameter models.

Nuisance parameters

Bernardo (1979) proposed to apply reference priors to the case of nuisance param­
eters. The procedure is, in short, as follows. Consider a model M  as above, where 
the parameter of interest is 6 and the nuisance parameter is A. To deal with this 
problem, Bernardo (1979, 2005) proposes the following three-steps algorithm.

1. The prior for the parameters (9, A) can be written as n(9, A) =  7t(X\9 )7t(9 ). 
Model f(x\9,\), conditional on 9, depends on A only. Therefore, the one- 
parameter reference prior 7r(A|0) can be found.

2. The nuisance parameter can then be integrated out to derive the marginal

7T(0) =  I(9 ) l/2

where

model
(2.7)
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3. The one-parameter reference procedure can then be applied to (2.7) to obtain 
7r(0) and, therefore, 7r(0, A). The reference posterior for the parameter 9 will 
then be

tt(Q\x) (x f f(x\9 ,X)7i{9 ,\ )d\  =  f(x\9)n(9).
J A

However, the prior 7r(A|0) is improper, so that (2.7) is not a valid statistical 
model. In this case, the proposed solution is to restrict the integral to a sequence 
of compact sets. In particular, it is defined the increasing sequence of subsets 
of A, converging to A. By restricting 7r(A|0) on each A j, we obtain the
marginals

fj(x\e) =  f f(x\9, A)7Tj (A|0) d\,
J Aj

from which we can derive the reference posteriors TTj(0\x). Note that 7t,(A|0) 
represents the renormalised proper restriction of 7t(A|0) to A,-. In other words, 
from the sequence { A j } ^  we obtain the sequence of posteriors {71 (̂0|x)}°^1, and 
the required reference posterior for the parameter of interest is given by ir(0 \x) =  
hmj_>oo 7Tj(0|x).

The reference prior does not depend from the nuisance parameter, but it may 
depend on the choice of the parameter of interested. In the former case, for any 
ip =  ip {6 , A) such that (9, ip) is a one-to-one function of (9, A), we have

7t(9, I ip) =  IT (9, A)

which is the probability transformation of the reference prior. In the latter case, 
the reference prior for 9 is not the same as the reference prior for p =  p(6 , A), unless 
(p is a one-to-one transformation of 0, or it does not (asymptotically) depend from 
it. The reason is that the prior maximising the expected missing information about 
9 is not (in general) the same that maximises the expected missing information 
about <p (Bernardo, 2005).

In this case as well, under regularity conditions (i.e. asymptotic normality) 
the prior for the parameter of interest coincide with Jeffreys’ prior.

The approach for dealing with nuisance parameters can be extended to models

d(9,X)
d(9,ip)
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where the number of parameters is greater than two. Consider the (¿-parameters 
model M  =  {f(x\9), 8 =  ( 6*1, . . . ,  0¿} . 0 6 0 } .  If the parameter of interest is, for 
example, 01; and therefore the remaining d — 1 parameters are nuisance param­
eters, and under normality hypotheses for the conditional posterior of 6 \ given 
{ 82, . . . ,  &d} and for the marginal of 0l5 the algorithm for one nuisance parameter 
described above can be extended to obtain each element of the

71(8 ) =  7r(0d|0i,. . .  ,0d_ 1) • - - 7r(02|0i)7r(0i) (2.8)

which corresponds to the reference prior distribution for that particular ordering 
of the parameters. Intuitively, (2.8) represents the distribution maximising the 
missing information about parameter 8 1 , but also the one which maximises the 
missing information about 82 given 8 \ and so on so forth. Practically, the reference 
priors are obtained “backwards” , that is, before finding 7r(éfi), one has to find 
7t(02|#i ), and so on. Bernardo (2005) shows that the prior is sensible to the ordering 
of the parameters. In fact, this ordering should reflect the prior knowledge in terms 
of inferential importance for the parameters, being 8 \ the most important one and 
8d the less important one. The formal procedure to deal with reference priors for 
multiparameter models can be found in Bernardo and Smith (1994).

It is important to see that in the multivariate case, unlike for the univariate 
case, the reference prior does not yield Jeffreys’ prior, as the following exam­
ple shows. The reference prior for a location-scale model (Fernández and Steel, 
1999a), is 7Tr(//,(t) =  cr-1 , both for ordering (//, <7) and (a, ¡i). Whilst Jeffreys’ is 
7Tj(n,a) =  <7-2 , which we know already to be inappropriate as it produces both 
marginalisation paradoxes (Dawid et al., 1973) and strong inconsistencies (Eaton 
and Freedman, 2004).

The problem of eliminating nuisance parameters in the Bayesian framework, 
especially for practical purposes, is important. It is true that, because in the 
framework we can compute the marginal posterior of the parameter(s) of interest, 
this may appear as a false problem. However, Liseo (2005) shows that there 
are practical consequences in eliminating nuisance parameters; several approaches 
within the Bayesian framework are considered. In particular, for objective Bayes, 
the integrated likelihood approach (Berger et ah, 1999), and the reference prior
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approach (Liseo, 1993).

2.2.5 Other priors based on maximising missing informa­
tion

In the literature it is possible to find other approaches in finding objective priors 
based on the concept of maximising the missing information. On the line of 
reference priors, the idea is to find a prior distribution for which the expected 
“difference” in the prior and posterior distributions is maximum. As we have 
seen, in reference prior the “difference” between the distributions is measured by 
means of the Kullback Leibler divergence.

Clarke and Sun (1997, 1999) use the Chi-squared distance to maximise the 
expected missing information. If we consider density p (x ) and density q(x), the 
Chi-square distance between the two is given by

Dx2 (p(x)\\q(x)) =  j  dx-

Therefore, for model M  =  {f(x\9),9  E O}, the prior n(9) is the one which 
maximises

XVM) = l  { I d o )

where n(9\x) is the posterior and m (x) the marginal of x. The main result by 
Clarke and Sun (1997, 1999) is that, in the case of the uniparameter exponential 
family of distributions, where the canonical parameter is the parameter of interest, 
the prior obtained by maximising the expected Chi-squared distance between prior 
and posterior is different from Jeffreys’ (including the case of nuisance parame­
ters). In particular, it turns out to be the fourth root of the Fisher information.

Ghosh et al. (2011) consider a more general divergence

RP(tt)
1 — /  { / TT/3 (9)n1 P(9\x) d9} m(x)p(dx)

0 ( 1 - 0 ) 0 < l , (2.9)

where pidx) is a dominating measure. Expression (2.9) represents a family of
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divergences, indexed by /?; when ¡3 —> 0, for example, (2.9) becomes the Kullback- 
Leibler divergence. Other interesting cases are when ¡3 =  —1, for which is the 
Chi-square distance, and ¡3 =  —1/2, for which it represents the Bhattacharrya- 
Hellinger distance (Hellinger, 1909; Bhattacharyya, 1943). The main result of 
Ghosh et al. (2011) is that Jeffreys’ prior is the prior distribution which maximises 
the expected missing information in (2.9), with the exception when the Chi-square 
distance is considered (i.e. f3 =  — 1)

2.2.6 Probability matching priors

A different approach in obtaining objective prior was firstly proposed by Welch 
and Peers (1963) and Peers (1965). The idea is to obtain prior distributions such 
that, exactly or as an approximation of a certain order, the posterior probability 
of the Bayesian credible set coincide with the corresponding frequentist coverage 
probability. To grasp the idea, we see the following example from Datta and 
Sweeting (2005).

Exam ple 2.1. Consider a random variable x normally distributed with unknown 
mean 9 and variance equal to 1. The prior we put on 6 is the uniform, which is 
known to be improper: ir(9) oc 1. Thus, the distribution of x and the posterior for 
6 are the same, that is f(x\9) =  n(9\x). If we consider the posterior distribution of 
Z — 9 — x, we have P\ {9 < 9a x̂)|x} =  Pe {9 < 9a(x ) }  =  a, with 9a(x) — x  +  z — a 
and za is the a-quantile of the standard normal distribution. We can then see that 
a credible interval for 9 with posterior probability equal to a, is also a confidence 
interval with confidence level equal to a.

We then say that the uniform distribution is Probability Matching Prior (PMP).
The main reason PMP method has been developed lies in its frequentist prop­

erties. In particular, objective priors can be seen as those prior distributions that 
“let the data speak” (Kass and Wasserman, 1996), in the sense that the major 
contribution to the posterior should come from the likelihood (as discussed above). 
One then may argue that the posterior should lead to inference results that are 
close to the one coming from classical inference: if the posterior probabilities agree 
with the sampling ones, we would have obtained the desired result of letting the
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data “speak” . It is in fact for this that probability matching is seen as a property 
that objective priors could have. An interesting conclusion in this direction can be 
found in Datta and Sweeting (2005), where they argue that PMP cannot be seen 
as a general approach in defining objective priors but, rather, as a nice property 
that priors can have, alongside the invariance property, for example. The main 
reasons behind this apparently not-favourable argument with respect to PMP, can 
be sought in the fact that there are many matching criteria and that, in the mul­
tiparameter case, there may be infinite possible priors.

The probability matching property can be obtained either exactly or asymp­
totically. The former is difficult to attain, making the latter of more frequent 
application. An example on exact PMP can be found in Lindley (1958), Datta 
et al. (2000a) and Datta and Mukerjee (2004). The authors developed in succes­
sion proofs more and more general for a transformation r  =  g{9) resulting in a 
location model with a location parameter. In this case, by assigning a uniform 
prior on the location parameter, exact matching holds.

We will discuss asymptotic PMP in the reminder of the section.

PM P for one parameter models

The asymptotic matching can be reached in different orders of approximation. 
There is not a unique terminology on what is classified as first-order, second-order 
and so on. We use the same approach as in Datta and Sweeting (2005), where 
an approximation of the coverage probability differs from the credible interval by 
terms of order n_1 is defined as second-order, and one that differs by terms of 
n-3/2 is defined as third-order.

Let us consider the random sample x  =  (aq,. . .  ,x n) from the density f(x\9), 
with 9 G 0  G M. Under regularity conditions, we choose the «-quantile of the 
posterior distribution 9nia such that for the posterior probability we have

P  {9 <  9nâ\x} =  a +  0 (n ~7),
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for some strictly positive 7 ; and, at the same time, for the coverage probability 
we have

P {9  < 6 ^a} =  a +  0(n~1). (2.10)

Then we say that some order of matching has been achieved. In particular, if 
7 = 1, the second-order probability matching has been achieved. If 7 =  3/2, then 
the third-order probability matching has been achieved. Welch and Peers (1963) 
has showed that equation (2.10) holds if and only if n(6 ) oc { I ( 6 ) } 1̂ 2. Therefore, 
Jeffreys’ prior is second-order probability matching. This particular method for 
obtaining PMP, is called the quantile matching method, as it is based on finding 
an appropriate quantile of the posterior distribution. And it can be extended to 
two sided intervals by finding quantiles 9^^ and #(. Q such that

p  {On,a <  0 <  o'nj x }  =  P  {e^ a <  e <  e’va ]  =  a,

for some order of precision 0 (n7).

PMP for multiparameter models

Let us first consider the case where a model f(x\6 i , . . .  ,9d) with d >  1, has one 
parameter of interest and d — 1 nuisance parameters. It is known (Dat.ta and 
Sweeting, 2005) that the approximation to normality, both from a Bayesian and 
a frequentist point of view, holds at the first-order level. As such, similarly to 
the uniparameter case, for multiparameter models there is always a PMP of order 
()(n ]/'2). Consider the scalar parameter ()■> and the vector of nuisance parame­
ters given by (6 2 , . . . ,  0 )̂. Let 6 n a be the «-quantile of the marginal posterior 
distribution of ffi satisfying

P  { 6 1  < 0n,a\x} =  a,

where x is a random sample from f(x\9i,. . .  ,Qd). Then, the prior 7r(-) is of second- 
order probability matching prior with respect to the parameter of interest ffi if

p  {01 <  07.,a} =  «  +  0 (n_1),
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for every a  6 (0,1). Whilst it is possible to find cases where the PMP is the same 
independently of the parameter of interest, in general, the prior changes when the 
parameter of interest changes.

There are two types of PMP in the multiparameter case: the simultaneous 
marginal PMP, and the joint PMP. For the first type, the priors are simultaneously 
PMP for each parameter of interest and, in general, second order PMP of this kind 
do not exist (Peers, 1965: Datta, 1996).

The second type of PMP for multiparameter models are the joint probability 
matching priors. These are obtained by matching the joint posterior and frequen- 
tist cumulative density functions. These have been discussed by Mukerjee and 
Ghosh (1997).

Other types of matching priors include, matching priors for highest posterior 
density regions, moment matching priors and predictive PMP. Highest posterior 
density (HPD) regions are, either in uniparameter or multiparameter models, d- 
dimensional intervals with associated the highest volume, for a given credible 
interval. When these regions have also frequentist validity, in the sense that they 
match the corresponding confidence region (or interval) we have the HPD matching 
priors. For models where 9 is a scalar parameter, Peers (1968) and Severini (1991) 
have shown that for location and for scale models, Jeffreys prior is HPD matching.

A particular type of matching priors has been proposed by Ghosh and Liu 
(2011), and it goes under the name of moment matching priors. The basic idea is 
to define prior distributions such that the posterior mean matches, up to a certain 
order of approximation, the maximum likelihood estimator (MLE).

A first motivation for these type of priors is that, for obvious reasons, they share 
the same optimal asymptotic properties held by MLE’s. A second motivation is 
that credible regions for the parameters of interest, can be found only on the basis 
of posterior mean and variance. And these regions, approximatively, match the 
confidence intervals based on maximum likelihood.

Some interesting remarks (Ghosh and Liu, 2011). Moment matching priors, 
conversely to probability matching priors, are not invariant under one-to-one repa-
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rameterisations. In the multiparameter case, the approaches are similar (Ghosh 
and Liu, 2011).

Another way of looking at the matching approach is to consider predictive 
distributions. We consider a future observation y from the model f(x\6 ), with 
6 e © a real-valued parameter. On the basis of a random sample x =  (x\,. . . ,  xn), 
the Q-quantile 9nâ of the predictive distribution, based on the prior 7r(-), is such 
that

P {Y  > 9n,a\x} =  a.

If it is also the case that

P { Y > d ^ a} =  a +  0 ( n - i),

then tt(6)  is predictive probability matching (Datta et ah, 2000b; Sweeting, 2008), 
with 7 typically equal to 2. Similarly to PMP, the matching can be achieved at 
quantile level, as discussed above, but also in terms of the highest predictive den­
sity region (Sweeting, 2008). These type of priors have some interesting properties 
(Sweeting, 2011), such as avoiding the problems related to improper priors, as the 
only requirement is that ir(9) > 00. Furthermore, it seems a more appropriate 
approach when the interest is predicting data yet to be observed. However, unlike 
PMP, the prior can depend on the value of a.

2.3 Review of objective approaches - Discrete 
parameter spaces

We now examine objective approaches to define prior probabilities on discrete 
parameter spaces, which represent the main topic of this work. The literature 
on the matter tends to be model-specific, in the sense that there are not many 
approaches designed to be applied to (virtually) any discrete parameter space; 
rather, specific discrete priors are defined for each particular model. Appropriate 
model-specific priors will be examined in Chapters 4 and 5. It can be said that 
objective Bayesian estimation, when the parameter of interest has a discrete space
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(either finite or infinite), has always been challenging, and none of the methods 
discussed in Section 2.2 can be directly applied to such type of parameter spaces. 
Tools such as Fisher information are not defined in discrete scenarios.

If we first consider (for historical reasons) Jeffreys’ prior, we know that for a 
positive unbounded real-valued parameter 9, the prior would have the form 1/9. 
Therefore, Jeffreys (1961) proposes the prior tt(N)  oc 1/N for the unrestricted 
integer parameter iV =  0,1,2, . . . .

Rissanen (1983) proposes a method to derive objective priors for discrete pa­
rameter spaces based on information theory concepts. On signal decoding, to be 
precise. We briefly discuss this approach later in the section.

For what it concerns reference priors, Bernardo and Smith (1994) show that, in 
the case of a finite parameter space, the resulting prior is the uniform distribution, 
as the following proposition explains.

P roposition  2.1. Let x be the observation from distribution f(x\9), where 9 is 
a discrete parameter defined over a finite space: 9 G © =  {9\,. . . ,  9^}. The 
reference prior for the parameter 9 is then the discrete Uniform: 7t(0j) =  c, for 
j  =  1 , . . . ,  N, with c >  0.

This result is a consequence of the fact that, if the parameter space is finite, than 
the expected missing information is finite as well, and it is equal to the entropy

N

H[n(9)\ =  -^ 7 r (0 j) lo g 7 r  (0j),
3=1

which is maximised if and only if 7r(9) is a discrete Uniform.
This result is not satisfactory (Berger et ah, 2012), as it is not always advisable 

to have a uniform prior for discrete parameters with a structure. For example, 
suppose we wish to estimate the number of elements in a finite population having 
a certain characteristic. This problem can be represented by a Hypergeometric 
probability distribution, which has a specific structure. Therefore, Berger et al. 
(2012) present a method, based on four embedding approaches, to derive prior 
distributions for discrete parameter spaces. This approach represents the most 
general and recent one that allows to derive objective priors distributions for dis-
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Crete parameter spaces; hence, it will be discussed in detail.
We also discuss the principle behind the approach proposed by Barger and 

Bunge (2008), based on the linear difference score function (Lindsay and Roeder, 
1987), which allows to obtain a discrete version of the Fisher information matrix 
for some specific models.

A  universal prior for integers

The prior proposed in Rissanen (1983) applies to the set of natural numbers: 
A  =  { 1 ,2 , . . . } .  This prior has the form

7T (N) =
1 1

N\og2N
1 1

log2••-log2N c
N  =  1,2, . . . (2 . 11)

where c = syffj 2~ log2 N ~  2.865064, with log2 N =  log2 N  +  log2 log2 N  H----- , which
is the sum (finite) of all the terms that are non-negative. The prior in (2.11) 
derives from estimation problems related to information theory. Here the aim is, 
given a message x =  ( x i , . . .  , xn) generated by some probability model f ( x \6), to 
identify the shortest code that allows to describe x and the unknown parameter 
6 . This is achieved by minimising on 6 the following

L{x,6) =  - l o g 2 f(x\9) +  L(9), (2.12)

where f(x\9) is the likelihood, and L(6 ) represents the total number of bits required 
to encode the parameter. Rissanen (1983) bases his result by optimising the worst 
case code performance; where the performance of a code is measured by the inverse 
of the ratio of the entropy and the mean code length

min
L

N isup lim y <
t V -s -o o  '
1 i =  1 k

m m
N

E
i = 1

By setting L(N) =  log2(A ) +  log2c, a rewriting (2.12) in terms of powers of two, 
the expression is minimised for n(N) =  2~L N̂\ which represents (2.11).

The first term in (2.11) corresponds to the objective prior proposed by Jeffreys 
for discrete numbers; the remaining terms have the function to make 7t(N)  proper.
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By setting 7r(0) =  1/2, and replacing c with 2c, the prior in (2.11) becomes suitable 
for any parameter defined on the non-negative integers.

Prior based on the linear difference score function

It is well know that Fisher information is not defined for discrete parameter spaces, 
and it can only be found for likelihood functions which are differentiable with 
respect to the parameters. As such, Jeffreys’ prior, and consequently, reference 
priors are not defined. However, Barger and Bunge (2008) have derived objective 
priors for discrete parameters of some specific model, on the basis of the linear 
difference score (LDS).

Definition 2.7. Let f(x\N) be a distribution with unknown discrete parameter N  
and let L(N) be the likelihood function. Then, the difference score function in N  
is given by

U(N)  -  m z L
'  ’  UN)  L '

where V  is the backward difference operator.

The difference score can be seen, in discrete parameter settings, as the equivalent 
of the score function for continuous parameter settings. If the difference score 
for N  can be expressed as U(N)  =  (x — /pv)/c/v, where pN and cn are function 
of N,  then the variance of the difference score is the information in N.  And 
this information is interpretable as the Fisher information in the discrete case. 
Therefore, recalling the connection between Jeffreys’ prior (and reference prior as 
well) and Fisher information, we have ir(N) oc {Var(U (TV))}1/2.

Example 2.2. Let x be a random variable with a binomial distribution, x ~  
Bin(n,p), where the parameter n, representing the number of trials, is unknown, 
and the parameter p, representing the probability of success at each independent 
trial, is known. As the likelihood is L(n\x) =  (/.)px(l — p)n~x, the LDS is given by

U(n)
Q p c( l - p ) n- x - { n~1)pc( l - p ) n- 1

cy(i - p ) n ~ x

n — x 
n(l - p )
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x — np 
n( 1 — p)

Therefore, the information about n is

Var(U(n)) =  Var(x) l_

P
n ( l  - p Y

leading to Jeffreys’ prior 7r(n) oc (1 /n )1/2.

In addition to the binomial case in Example 2.2, Barger and Bunge (2008) 
derive a prior with the same principle for two Poisson-based models, with appli­
cations to estimation of the number of species.

It is worth mentioning that the class of models with the LDS property, that is 
models for which the LDS can be factorised as U(N) =  (x —/j,n ) /c/v, is substantial, 
as shown in Lindsay and Roeder (1987). However, it appears that no research has 
been performed to generalise the results in Barger and Bunge (2008) to this wide 
class. Perhaps, it could be interesting to explore this possibility and find, if any, 
possible general results connected to Jeffreys rule (or reference analysis).

2.3.1 “Reference” priors for discrete parameter spaces

What is probably the most recent, and most comprehensive, approach to define 
objective priors for discrete parameter spaces, has been introduced by Berger 
et al. (2012). As we have mentioned, when reference analysis is applied to finite 
parameter spaces, the result is a uniform prior, and this is not always a desirable 
result when the problem has certain types of structure.

The general idea in Berger et al. (2012) is to embed the discrete problem into a 
continuous one, such that the structure is preserved, and then apply the standard 
reference analysis (as seen in Section 2.2.4) to derive the objective prior of interest. 
The particularity of this method, which we believe representing also one of its 
major limits, is that it does not exist a unique way to embed the discrete problem 
into a continuous one; therefore, there is not a “universal” method that can be 
applied indistinctly to any model with discrete parameters. In addition, when
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more than one method can be applied for the same model, the priors obtained are 
in general different, and it is necessary to adopt some comparison procedures to 
identify the most appropriate.

It has to be noted that, even though we refer to this priors as reference, they 
are not strictly as such, in the sense that they do not arise by the asymptotic 
maximisation of the missing information of the original (discrete) problem. In fact, 
Berger et al. (2012) do not call these prior as reference; however, for simplicity and 
consistency with the work here presented, we prefer to label them as “reference” 
priors.

Let us consider model f(x\9), with 6 e 0 , where the set 0  is discrete. The 
embedding approaches identified by Berger et al. (2012) are four, and we will 
discuss some applications in Chapter 4. The approaches are the following.

A pproach  1: assuming param eters are continuous The first approach and, 
possibly, the most simple, is to treat the discrete parameter 6 as continuous. It can 
be applied, for example, in the estimation process for a Hypergeometric model.

There are some limitations to this approach, however. It is quite likely that the 
“new” probability model will not integrate to 1 , and a normalising constant has 
to be introduced. Therefore, the actual model is going to be K(9)~ 1 f(x\9), where 
K{9)  =  J f(x\9)dx. As such, it may be possible that the new continuous structure 
is no longer the same as the discrete one; therefore, Berger et al. (2012) do not 
recommend this approach when a new normalisation constant is introduced.

A way to overcome this problem, when feasible, is to treat as continuous the 
data x as well. It may be possible that no additional normalising constant is 
added, and the approach can be applied. An example is when a: is a uniform 
random variable on the discrete set of integers { 1 , 2 ,9}.  By considering both 
x  and 6 as continuous, we obtain the new problem x  ~  17(0, 9), and no additional 
normalising constant is added. In this case, the reference prior for 9 (Bernardo 
and Smith, 1994) is 7r(9) oc 1/9.

A pproach  2: continuous hierarchical hyperparam eter This approach con­
sists in adding a hierarchical level of modelling, with the aim of having a contin­
uous parameter (i.e. hyperparanreter), for which standard reference analysis can
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be applied. In general, we will have the model f* (6 \6 *), with 9* continuous, rep­
resenting the probability distribution of the discrete parameter 9. The problem is 
solved by finding the objective prior n(9) =  f  f*(9\9*)n*(9*) d6 *, where n*(9*) is 
the reference prior for the continuous hyperparameter 9*.

Although this is an appealing approach, it is rare to have scenarios where it 
can be applied. In addition, even when applicable, it is possible that there is more 
than one way of adding a hierarchical level, leading in general to different objective 
priors. It appears then that the objectivity of this approach, even in the limited 
number of circumstances under which is feasible, may be severely impaired.

A pproach  3: consistent estim ator To understand this approach, we recall 
that reference priors are based on considering the asymptotic behaviour, for k —» 
oo, of a set of k (imaginary) independent replications of the data observed from the 
model, that is x k̂> =  (xi , . . . ,  x k), where each element is a vector of observations in 
turn (refer to Section 2.2.4). Analogously, this approach first considers a consistent 
linear estimator 9k of 9 (which is continuous for k —> oo); then finds its asymptotic 
sampling distribution, and pretends that the parameter 9 is continuous in this 
distribution. Finally, the reference prior is derived with the usual procedure. For 
example, if ck{9k — 9) is normally distributed with zero mean and variance cr2 (9), 
for some constants ck, the prior will be given by ir(9) oc a(9)~x (Bernardo, 2005).

There are two important issues with this approach. First, the estimators used 
can only be inefficient (Berger et al., 2012), leading to conceptual (i.e. philosoph­
ical) problems. Second, different estimators may lead to different priors which, as 
discussed for Approach 2, raises some conceptual concerns about the objectivity of 
the method. Berger et al. (2012) suggest that this approach, more than resulting 
in objective priors, simply gives prior distributions which have to be validated by 
other criteria (e.g. frequentist coverage properties).

A pproach  4: param eter-based asym ptotics The fourth approach defined 
by Berger et al. (2012) consists in letting the discrete parameter go to infinity 
and, in the limiting asymptotic distribution of x, let 9 be continuous. Thus, 
standard reference analysis is applied to obtain a prior for 9. In other words, a 
formal limiting operation in 6 is used to make the parameter of interest continuous.
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2.3. Review of objective approaches - Discrete parameter spaces

Recalling the example introduced in Approach 1, we note that x / 6  has a uniform 
distribution on the discrete set {0 ,1/ d , . . . ,  (6  — 1 )/6 , 1}. As 6 tends to infinity, 
we can replace the elements of the set by the continuous interval (0,1). Therefore, 
we can consider the distribution of x / 6  ~  [7(0,1), and pretending both x  and 9 as 
continuous, we have tt(6 ) oc 1 /6 .

The limit of this approach is that it defines a prior for large values of 0, but it 
may not represent a suitable solution for relatively small values of the parameter. 
As such, similarly to Approach 3, this can be seen more as a method to suggest 
objective priors which will require validation by other means.
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Chapter 3

An Objective Prior Based on 
Loss Functions

In this chapter we present a new method to derive objective prior probabilities for 
discrete parameter spaces. In Chapter 1 we have mentioned that our approach 
aims to obtain the prior mass for a parameter value by objectively measuring a 
loss. Therefore, in order to have an appropriate understanding of our method, we 
briefly introduce loss functions and, in the specific, we discuss the self-information 
loss function. We then give the formal definition of our method. The generalisation 
of our approach to other discrete scenarios, such as model selection and variable 
selection, will be outlined in Chapter 6 and Chapter 7, respectively.

3.1 Criterion

The essence of an objective approach is (or should be) to provide a result that 
does not involve subjective input. We understand that the above statement can 
be somehow too strong, and it is therefore necessary to put it into the appropriate 
context.

In Bayesian parametric inference, a prior has to be assigned to the parameters 
of the model. There is now common agreement (Bernardo, 2005) that the objec­
tivity of a Bayesian procedure is considered from the moment the model has been 
chosen. In other words, whilst it is possible to define a sort of automated process
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3.1. Criterion

that derives a prior distribution for the parameter of a model, the choice of the 
statistical model is subjective. We can then conceptually represent an objective 
Bayesian criterion as a sealed black box, containing principles and procedures, 
where we input the chosen model and the prior for the parameters is returned.

We believe that the choice of the model necessarily includes its parameterisa- 
tion. The idea of prior distributions that are invariant under one-to-one trans­
formations, as discussed in Chapter 2, it is at the basis of Jeffreys’ prior, for 
example. A thorough discussion on the invariance property for the most common 
objective priors is carried out by Datt.a and Ghosh (1996). The message there is 
that, although invariance is a nice property to have, it does not constitute a neces­
sity. After all, it is plausible to assume that a choice of a particular model would 
include the choice of its parameterisation as well. Furthermore, for discrete pa­
rameter spaces, the concept of invariance under one-to-one transformation looses 
meaning, given that assumes differentiability.

An important criticism to objective Bayes, as seen in Section 2.1, relates to 
the existence of several approaches which may lead to different priors for the same 
problem. It is in fact legitimate to expect that, if an objective prior distribu­
tion on a parameter space (for a given model) exists, this should be unique and 
independent from the procedure applied to obtain it. For continuous parameter 
spaces this is true in some specific circumstances: when both reference prior and 
probability matching prior lead to Jeffreys’ prior, for example. But it is not true 
in general. For discrete parameter spaces the picture is more complicated. From 
one side, different approaches lead to different priors (Berger et ah, 2012), forc­
ing to select the best option on the basis of some criterion (mostly subjective). In 
addition, there are no general Bayesian procedures that allow to objectively deter­
mine a prior distribution for any discrete parameter. The lack of such a procedure 
represents the main motivation of our work. It is in fact on this ground that we 
have developed the criterion presented in the thesis.

The criterion proposed, as anticipated, deals with losses instead of probabilities
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3.2. Loss functions

directly. For this reason, our idea allows a different interpretation of the Bayesian 
framework. Prior probability represents the uncertainty about the true value of 
the parameter; therefore, if we assume to have no knowledge about the parameter 
value, it makes perfectly sense that this cannot be encapsulated in a proper prior 
distribution as, in other words, our uncertainty would be “infinite” . This concept 
has been expressed in Bernardo and Smith (1994), where they claim that is not 
possible to objectively define a prior representing the absence of knowledge (i.e. 
ignorance). We can then notice an incongruence in applying Bayes theorem: we 
begin the process by defining a prior distribution which does not represent proba­
bilities, update it through the likelihood function, i.e. expressing the information 
contained in the observed data, and we obtain a posterior distribution which is 
proper. There is then a conceptual deficiency brought by the fact that we start 
the Bayesian procedure with an entity of a certain nature (the prior) and we end 
it with another entity of different nature (the posterior). And, as the Bayesian 
paradigm is based on updating initial beliefs through observation, the fact that 
the meaning (nature) is not retained throughout the process is a conceptual incon­
gruence. We will see later in Section 3.3 that Bayes theorem can be represented 
in terms of loss functions, allowing for the retention of meaning throughout the 
process.

The next section discusses loss functions and their properties, in general, as 
they represent an important component of our idea.

3.2 Loss functions

Loss functions are used to measure the loss /(•) that one would incur if an event e 
occurs, and the loss is quantified by 1(e). For general considerations on loss func­
tions see, for example, Hirshleifer and Riley (1992). In some cases, loss functions 
are used to associate a loss to a pair of events, say e and a; in this case, the loss of 
any combination of the events will be expressed by l(a,e). In particular, if event 
a is under our control whilst event e is not, the first one is identified as action, 
and the loss function represents the cost deriving from a specific action we take 
(or decision we make), when the event that is out of our control arises.
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3.2. Loss functions

Another way of looking at loss functions is by considering the fact that each 
action we take leads to certain consequences which do not depend on the action 
only, but also on external circumstances which can only be predicted up to a a 
certain level of certainty. In this light, the cost of the consequence is measured by 
a loss function.

Regardless of the way we look at the problem, which is undoubtedly a decision 
problem, it is licit to assume that a rational behaviour would be the one that aims 
to minimise the loss. In particular, given that the cost of our actions depends on 
something uncertain, the aim is to minimise the expected loss, where the weights 
of this expectation are represented by a probability distribution describing our 
uncertainty around the random event.

In statistics, for example, loss functions can be applied in estimation or predic­
tion (Berger, 1985). In inference the unknown quantity of interest is the parameter 
of a model; in prediction, the quantity of interest is the future value of a random 
variable. To illustrate this, let us assume that we are interest in estimating a 
parameter 0 G 0  of a given family of densities

Definition 3.1. Let X  be the set of all possible outcomes of random variable x. 
A decision rule S is a function that maps these outcomes (or a subset of X  in 
the continuous case) into space A ,  representing all the possible actions that can be 
taken: 6 : X  —> A.

In other words, action a =  S(x) represents the estimate of 0, based on the obser­
vations. The loss function can be then re-interpreted as a real-valued function, 
upper bounded by zero, which measures the cost of estimate a of the true (and 
unknown) value of the parameter 9. That is, If a =  h(x),0). S(x) represents the 
estimator of 9, and a possible loss function employed is l(5(x),9) =  (S(x) — 9)2, 
which expectation with respect to the probability distribution f[x\9) represents 
the risk function

R(S(x), 9) =  [  (6 (x) - 9 ) 2f(x\9)d6.
J x

The above loss function is called the squared-error loss function. Other possible 
loss functions are the absolute-error loss function, l(5(x),9) =  |<5(x) — 91, and the
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3.2. Loss functions

0 - 1  loss function

l(6 ( x ) , 0 )
0 if 9 e  Oi
1 if 0 e  Qj (j  ^  i)

where 0 ; U 0., =  0 . More information on loss functions and how to select the 
most appropriate one can be found, for example in French and Insua (2000) and 
Berger (1985).

3.2.1 Self-information loss function

An important type of loss function that we consider is the self-information loss 
function. In order to understand it properly, we need to introduce the information 
theory concept on which it is based upon: self-information.

Uncertainty and information are highly related. In fact, we can say that they 
represent two sides of the same coin. For if there is no uncertainty, then there will 
be no information as well. To understand this, let us first assume that we have 
complete information with respect to an event, say e. In this case there would 
be no uncertainty around it as we would be one hundred percent sure about its 
realisation. At the other extreme, if we have no information about event e, we 
immediately see that we are in the maximum possible level of uncertainty. From 
the point of view of uncertainty, it is clear that the more uncertainty we have 
about e the more information we will gain if e occurs; similarly, if the level of 
uncertainty is zero, its realisation will no add any information to the existing one.

Rem ark 3.1. Information is a measure of the decrease of uncertainty from the 
receiver point of view, for if we are highly certain about an event, its occurrence 
would not significantly decrease our uncertainty. If we are highly uncertain, its 
occurrence would considerably decrease the level of our uncertainty.

The measure of the information content associated with the level of uncertainty 
of a probabilistic event e is called self-information, and it is based on the following 
three axioms.

A xiom  3.1. When event e has an associated probability of occurrence equal to 
one, the self-information it carries is zero.
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3.2. Loss functions

A xiom  3.2. Self-information is a decreasing function of the probability associated 
with event e. In other words, the higher the probability that event e occurs, the 
lower the level of self-information the event carries, and vice versa.

From Axioms 3.1 and 3.2, we see that the self-information is a non-negative and 
unbounded function.

A xiom  3.3. If events e and el are independent, the self-information of the joint 
event representing the simultaneous occurrence of both e and el, is equal to the 
sum of the self-information associated with each event.

The logarithmic function simultaneously satisfies the above three Axioms.

Definition 3.2. Let e be an event with probability of occurrence equal to P(e),  for 
some probability function P. The self information associated with (the occurrence 
of) e is given by

/(e ) =  lo g ( l /P(e)) =  — log P(e).

Thus, from Axiom 3.1, we have that if P(e) =  1, then 1(e) — 0. From Axiom 
3.2, we have that, if P(e) < P(e'), then 1(e) > I(e ’ ). Finally, from Axiom 3.3, 
if P(ee') =  P(e)P(e')  (i.e. the two events are stochastically independent), then 
I(ee') = 1(e) +  I(e').

Before formalising the self-information loss function, as discussed in detail 
in Merhav and Feder (1998), we give an intuitive definition of it. To do this, 
we take into consideration the familiar statistical task of estimating a parameter 
characterising a probability distribution. This task, as usual, is to make a sensible 
guess on the parameter 9 of f(x\9), with x  ~  f(x\9). Given an observed sample, 
the inference is made by means of a loss function. Let ns first consider the simple 
case where the sample size is n =  1. Thus, the self-information loss function for 
the estimation of 9, on the basis of observation x\ ~  f(x\9), has the form

1(6,xi)  =  - l o g / ( x i | 6>). (3.1)

If we observe x\, and 9 represents our sensible guess about the true value of 
the parameter, loss function (3.1) measures the self-information of our choice by
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3.2. Loss functions

considering the probability associated with the distribution of aq, when 9 is the 
parameter value. In particular, if what we have observed (i.e. X\) is very likely to 
be generated by the distribution f(x\9), then the loss associated to the estimate 
would be relatively low; in fact, the probability f(xi\9) would be relatively large. 
On the other hand, if it is unlikely that x\ conies form the distribution f(x\9), the 
loss associated to the sensible guess would be relatively large.
It can be noted that the self-information loss function is nothing more than the 
likelihood function for the observed value X\. For a sample of size n, that is x — 

(aq,. . . ,  x n), the likelihood of having observed this sample is given by YYi=\ f ( x i\6)- 
Therefore, by extending equation (3.1) to the general case of n observations from 
x, we have

1(6, x) = “ log ( f [ f (x i\9 )
\ i = i  

n
=  (3.2)

i = 1

which is called cumulative self-information loss function, and it can also be derived 
by Axiom 3.3, considering that (aq,. . .  , xn) is a random sample. In other words, 
the self-information loss for a sample of size n, on the basis of the choice (i.e.
estimate) 9, is given by the sum of the self-information loss in choosing 6 for
each element of the sample. An interesting aspect is that equation (3.2) can be 
rearranged as

n
v(9,x) =  exp {1(8, x ) }  =  J\f(xi\0), (3.3)

i= 1
where is clear that, in order to minimise the (self-information) loss, we need to 
maximise the likelihood function, on the right-hand-side of (3.3). Our best guess 
of 9 is nothing more than the Maximum Likelihood Estimate (MLE) of the pa­
rameter.

The above example of deriving the self-information loss function in a scenario 
of parameter estimation, can be generalised, and it goes under the subject of 
universal prediction (Merhav and Feder, 1998).

Let us assume that we have observed outcomes (aq, - - - ,xn) from a certain
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phenomenon with support X. The idea is to predict the next outcome, x ni on 
the basis of the first n — 1 observations. That is, we make a decision bn, and we 
measure the quality of this decision by means of the loss l(bn, xn). As seen, this loss 
can be measured in different ways. Another way of proceeding is by considering 
the level of confidence we may have about each possible next outcome xn. That 
is, define a probability function on xn given observations xn~l — (aq,. . .  ,xn_i). 
This probability distribution is indicated by the function bn(-\xn~l). Once we 
have observed xn, we can evaluate the “goodness” of bn by considering its value 
for xn: bn(xn\xn~l). The loss function representing this evaluation should give 
relatively low values for relatively high values of bn; vice versa, the function would 
give relatively high values for low probabilities. The self-information loss function 
represents an appealing candidate for this role. Thus, we have that, for every 
probability distribution b =  {b(x) ,x  £ X } ,  for every x  £ X,  the self-information 
loss function is defined as

l(b,x) =  -log6(a;),

where we consider the logarithm to be the natural logarithm.
There are several reasons why this particular loss function is appealing. As 

discussed in Merhav and Feder (1998):

• It satisfies the condition that it has to decrease monotonically with the 
probability assigned to an event;

• As it is based on logarithms, which transform products into sums, this loss 
function is one of the easiest to work when dealing with joint probabilities;

• In estimation problems, shows that the best guess is the MLE.

3.3 The formal definition of our approach

This thesis proposes a procedure to define objective prior distributions for dis­
crete scenarios. These include objective prior distributions for discrete parameter 
spaces and objective prior masses on model spaces in model selection and variable 
selection problems.
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Let us assume that a specific probability distribution f(x\6 ) has been chosen 
to model a certain quantity of interest. This probability distribution has the form 
of either a probability mass function, if the quantity of interest takes values in 
a discrete set, or of a probability density function. In this case, the quantity of 
interest is defined over a subset of the set of real numbers K, or a subset of it. 
The parameter 9, which can be a vector of parameters, takes values in the discrete 
space 0 .

The aim is to assign a prior probability n(9) representing the initial uncertainty 
around the true value of the parameter.

If 7r(9 ) is determined through objective Bayesian methods, this distribution 
will often be improper. This fact raises some important concerns about defining 
objective probabilities directly. Contrary to the subjective approach, whereby the 
prior and the posterior retain the same meaning, the same can not be said of an 
objective prior. For the posterior derived from it must, at some point, represent 
beliefs in order to be used. We believe that a solution to this difficulty is not to 
be objective by assigning a mass to every element of the discrete parameter space 
0 , but by assigning a worth to every one of them. In other words, to “work” with 
losses instead of probabilities. Recalling that objectivity arises from the absence 
of knowledge, actual or alleged, about the true value of the parameter of interest, 
we can see the justification of the proposed approach, as we can still have an idea 
on the worth that each parameter value represents in the model.

The worth of an element of the parameter space can be assessed by describing 
and evaluating what is lost if this value is removed from the space. And by 
assigning a mass to each parameter value as a function of its worth, we are not 
subject to the constraint of properness, intrinsic in a probability measure.

By looking at the problem of assigning a prior mass from a differ perspective, 
we can connect it with the self-information loss function discussed in Section 3.2.1. 
For the prior probabilities represent a probability assignment on the elements of 
9: 7T =  { 7t(9), 0 £ 0 } .  We can then assign a loss to each element of the parameter 
space by setting 1(71, 6 ) =  —logir(9). This loss will be expressed simply as 1(9). 
Thus, if a prior 7r has been assigned, we can then link this to a worth of each 
element by means of this particular loss function. Therefore, we can identify an
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appropriate objective way to associate a loss to each 9 E 0 . representing its worth 
in the model, and the prior distribution n(6 ) then follows.

Before discussing how the worth can be objectively determined, let us examine 
the impact of our approach on the Bayesian paradigm. We note that, by consid­
ering the worth as expressed by the self-inform,ation loss, the Bayesian approach 
is conceptually consistent, as we update the initial worth assigned to 9, through 
the application of Bayes theorem, to obtain the resulting final worth expressed by 
the self-information loss — log7r(6>|rrr). Indeed, there is an elegant procedure akin 
to Bayes which works from a loss point of view, namely that

— log t:(9\x ) =  K  -  log f(x\9) -  log7r(d), (3.4)

where K  is a constant which does not depend on 9. Equation (3.4) can be read in 
the following way: the initial information (expressed by the self-information loss) 
contained in the probability statement about 9, is updated on the basis of the 
information contained in the sample (expressed by the log-likelihood function) in 
order to obtain the posterior information about the parameter (again, expressed 
by the self-information loss, which in this case is contained in the probability 
statement of the posterior distribution). In terms of losses, equation (3.4) can be 
interpreted as a cumulative loss function for assessing the loss of 9 in the presence 
of two pieces of mutual information, x and 7r. That is, the information coming 
from the data and the information coming from the prior. We can then rewrite 
the equation as

Loss(d|x, 7r) — K  +  Loss(6,|x) +  Loss(6l|7r).

To better understand how the worth can be objectively measured, we recall 
that our approach assign a level of “importance” to each element 9 of the discrete 
parameter space 0  by considering what do we lose if we remove from the space 
that parameter value, and it is the true value. The following theorem (Berk, 1966, 
1970) is at the foundations of the quantification of the worth. Note that is a 
simplified version of the actual theorem.

Theorem  3.1. Consider model M  — {f(x\9),9 e 0 } .  Let us assume that the
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3.3. The formal definition of our approach

true value of the parameter is 9q 0 . The posterior distribution for the parameter 
7r(0|:r) oc f(x\9)n(9), for some prior distribution n(9), asymptotically accumulates 
on the value 9' G 0 , such that DKL(f(x\&o)\\f(x\9')) attains its minimum.

The result of Theorem 3.1 states that, if a parameter value is removed from 
the parameter space, and it is the true parameter value, the posterior tends to 
accumulate on a specific value of 0 : the value such that the distance from the true 
model, with respect to the Kullback-Leibler divergence, is minimised. In other 
words, the divergence above represents the utility of keeping 9 in the parameter 
space.

The objectivity of this measure of utility is obvious, as it will depend on the 
available set of options solely, which is determined by the choice of the model. 
Once we have selected the model we want to use to represent the quantity of 
interest, the worth of each element of the parameter space would be determined 
by considering the relative “position” of the possible models.

To better illustrate how an objective criterion to assign a worth to each element 
of the parameter space can be derived, the following example may be helpful. Let 
us assume we have a scenario where the possible models are three: / j ,  / 2 and 
/ 3, that is f i  =  f(x\6i), f 2 =  f{x\92) and f 3 =  f(x\93), with parameter space 
© =  {9i ,92,93}. Let us also assume that / j  and f 2 are very similar, whilst / 3 is 
significantly different from the other two. We do not question the rational behind 
this choice of model options, we just assume that there is one. If we remove from 
the scenario either / j  or f 2l as they are relatively close, there is no appreciable 
change in the whole structure of options, as we still have the remaining model 
(either f 2 or f\) to support that specific position. On the other hand, if we 
remove / 3, the structure of options is considerably different from the original, as 
only two very similar models are left. We then see that / 3 is more “valuable” 
than / i  or / 2, because, if it is removed, the scenario is significantly altered; or, 
alternatively, we can say that the loss in removing / 3 is higher than the loss in 
removing either / j  or f 2. An important aspect is that the loss associated to each 
model takes into consideration the surrounding models: the more “isolated” 9 is, 
the more its worth, the higher its “prior probability” .

The formal derivation of the prior distribution for 9 on the basis of our idea,
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can be expressed as follows. The worth associates to a particular value of 9 
is represented by the Kullback-Leibler divergence between the model with 6  

and the nearest one. That is, u(9) =  mine^e D KL(f(-\9)\\f(-\9')). Therefore, 
— rnme'̂ e DKL(f(-\9)\\f(-\9')) has to represent the loss in keeping 6 in the pa­
rameter space. We link the loss to 7r(9) via the self-information loss function as 
follows

space. As in fact we have already seen, the self-information loss function represents 
the loss at 9 when the probability assignment n has been defined; that is, 1(9, 7r) =  
— Iog7r(0). Therefore, the prior can be obtained by computing the exponential on 
both sides of (3.5), with the result

The prior distribution in (3.6) represents the core of our approach. It shows 
some important aspects and properties. First, the objective criterion, on the basis 
of which we define a prior for a discrete parameter space, consider both the value 
in the parameter space on which the mass is going to be put on. as well as the 
surrounding elements. It is in fact the relative proximity to other models that 
dictates the importance of the value of 9.

It is now necessary to make a fundamental consideration about loss functions 
in relation to our approach. Loss functions, in general, depend on a constant; in 
fact, if the objective is to minimise the loss, multiplying by a real constant does 
not affect the result. In our case, however, we have that the objective approach 
aims to equate two particular types of loss, as explicited in (3.5): the loss in in­
formation represented by the self-information loss, and the loss in information in 
selecting the wrong model, represented by the Kullback-Leibler divergence to the 
nearest model. Therefore, given that we equate two losses in information (i.e. the 
same “thing” ), there is no need to introduce a scalar constant.

log7r(0) =  ~ mm&D KL(f(-\0)\\f(-\9’)), (3.5)

for both sides of (3.5) represent the loss measured at point 9 of the parameter

(3.5)

(3.6)
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In general, when the worth of an element of 0  is zero, then n(9) oc 1. In other 
words, if the loss associated to a value of the parameter is zero, it is not worthy 
to keep it in the set, then the prior distribution expresses this by assigning a mass 
proportional to one. However, sometimes it is desirable that the prior behaves in 
a more logical way. That is, if the worth is zero, then it has to be that n(9) =  0.

To obtain this result, we proceed as follows. The worth associated to a partic­
ular value of 9 is represented by a function g(-) of the minimum Kullback- Leibler 
divergence, where this divergence represents the utility u(9) >  0 of that particular 
value of the parameter. To identify the appropriate form of function g(-), we make 
the following considerations. We map the worth of 9 to its prior mass by means 
of the self-information loss function, — log7r(0) =  —g(u(9)), and therefore

tt(0) o c  exp {$ (« (0 ))} • (3.7)

Given relation (3.7), function g should take value —oo when the worth of 9 is zero, 
and approach Too as the worth increases. A natural way of defining g , so that it 
will have the appropriate behaviour, is to put

g(u) =  log(e“ -  1). (3.8)

While g(u) =  log« would appear more obvious, to map (0, Too) to (—oo, 0), we 
believe it is more appropriate to remain as close as possible to the original scale 
- i.e. u, rather than the log-scale (the Kullback-Leibler divergence is already on 
a log-scale). Hence equation (3.8), which is close to the u scale while mapping 0 
to —oo. By setting the functional form of g in (3.7) as it is defined in (3.8), we 
derive the objective prior for the discrete parameter 9

tt(9) o c  exp ^ m m QD KL(f(-\9)\\f(-\9'))^ -  1, (3.9)

which has the sought after property of assigning null mass to element of the param­
eter space that have no worth, in the sense here discussed. The Kullback-Leibler 
divergence between nearest models tends to be very small. As such, we have that, 
in general, log(eu — 1) ~  logu. Hence, the difference in using log(e“ — 1) rather
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than the more direct logu, is going to be minimal.

3.4 Discussion

In this chapter, we present our novel idea to derive objective prior distributions 
for discrete parameter spaces. We show that, by considering the worth of each 
element of the parameter space, with respect to the surroundings elements, a prior 
distribution can be obtained by considering losses. We measure the worth as the 
distance from f(-\9) to the nearest model, with respect to the Kullback-Leibler 
divergence. The prior is then derived by linking the worth, interpreted as a loss, 
to 7t(9) by means of the self-information loss function

The prior is objective given that, once the model f(-\9) is chosen, the nearest 
neighbour depends solely on the structure of the model itself.

The prior we obtain is, in general, improper, as the illustrations in Chapter 
4 show. The application of Bayes theorem to improper priors is problematic. 
However, we show in (3.3) that working with losses allows a reinterpretation of 
the Bayesian procedure, where prior and posterior retain the same meaning. In 
particular, the beliefs about 9 are represented by losses instead of probabilities; 
and this occur both at the beginning of the procedure, when prior beliefs are 
defined, and at the end, when posterior beliefs are obtained.

The idea can be extended to other discrete spaces, such as model spaces. Chap­
ter 6 shows how a model prior can be obtained through the same criterion. Chapter 
7 shows a further extension to a particular case of model selection: variable selec­
tion.

For simplicity and convenience in the exposition, the objective prior obtained 
by applying our approach will be indicated as the Villa-Walker prior.
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Chapter 4

Discrete Parameter Spaces

The content of this chapter constitutes the body of Villa and Walker (2013a).

In this chapter we discuss objective priors for specific discrete parameter spaces. 
We apply the approach discussed in Chapter 3, in particular in Section 3.3, to some 
common discrete problems. Along with our proposed prior, for each of the specific 
problems treated, we discuss alternative results as found in the literature.

The models we discuss are: a population size model, the Hypergeonretric 
model, the multivariate Hypergeometric model, the binomial-beta model, and the 
binomial model. For all these scenarios the approach we adopt is to have a prior 
distribution that assigns zero mass when the associated loss is zero, as discussed 
in Section 3.3.

4.1 A  population size model

The first case considered is the estimation of the size of a population by means of a 
Type II censoring. In this experiment, we have a sample of N  units with a lifetime 
that is modelled by an Exponential distribution with rate parameter A. Both N  
and A are unknown. The experiment is ended when a predetermined number of 
failures R is reached. The times associated with each failure are indicated by 
11 <  . . .  < t,R. For example (Berger et ah, 2012), if we were interested in assessing 
the reliability of a specific software, N  would represent the unknown number
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4.1. A population size model

of bugs in the application, and t i , . . .  , tR represent the exponentially distributed 
length of time of each of the first R reported bugs.

Failure times t\ <  . . .  <  tR: which are assumed to be independent, have the 
following joint probability density function

iV!
■, tr\N, A) =  _  A exp{A[fi +  . . .  +  (N  — R)t.R}}, N  >  R. (4.1)

As shown in Goudie and Glodie (1981), the variables V =  (G +  . . .  +  tR)/tR and 
W  =  tR are minimal sufficient for N  and A. Given that the transformation from 
( t i , . . . , t R) to ( c t i , . . . ,  c t R), for c > 0, induces the transformations (N, A) to 
(N, cA) and (V, W)  to (V, cW),  a maximal invariant statistics is V. Therefore, the 
joint density for V  and W  is

m  W\N.A) =  A* » '* - 1 exp { -A (V  (4.2)

with 1 < y  < i?, IT > 0 and

[V1 / / ? _  i\
S«(V ) = ^ ( - l ) ‘ - 1 ) ( V - i ) K- 2.

i =  1 ^  '

Marginalising, the density for V  is

1 N\ 1
=  (R -  2)! (N - R ) \ ( V  +  N -  R)R9 r (V ^ 1 < V  < r , (4-3)

which depends on N  only. In other words, inference about N  can be carried out 
with (4.3). This can be obtained by considering Jeffreys’ prior (which is also the 
reference prior) for A given N, that is 7t(A|Â ) =  A“ 1 in (4.2) and integrating out 
A. As / 0°° XR exp{—A(T +  N -  R )W }  dX oc r(i?)[JT (y +  N  — R)}~r , up to a 
proportionality constant, from (4.2) we obtain (4.3).

Common objective priors for N  would be a constant prior, that is 7r(Af|i?) oc 1, 
or the prior 7r(A7’|i?) oc l/N. Note that the latter, for general discrete parameters, 
has been suggested by Jeffreys (1961), as discussed in Section 2.3. However, the
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4.1. A population size model

likelihood in (4.3) tends to one as N  —» oo, and neither the constant nor the 
Jeffreys’ priors would be suitable, as the posterior would be improper.

In Berger et al. (2012), the objective prior for parameter N  is obtained by 
applying Approach 1 introduced in Section 2.3.1. The parameter space of N, 
{R ,R  +  1 ,.. .} ,  is embedded in the interval (R — 0.5, oo), considering the fact 
that f(V\N)  remains a density function with the same normalisation for each 
N >  R — 0.5. Thus, the reference prior would coincide with Jeffreys’ rule prior, 
that is n(N\R) oc \JIr (V), where Ir (N) is the Fisher information derived in 
Lemma 2.1 of Berger et al. (2012)

M in  1 ] RN\
R{ } ~  ^  l  (N -  j Y )  ~ (R — 2)\(N — R)\ Jr,n'

with

The prior is then computed for parameter 9 =  N — R +  1, as to have the re­
parametrised parameter space Af  =  {1, 2, 3 , . . . } .  Thus, the prior for N  proposed 
by Berger et al. (2012) is

7T*{9\R) oc y/lR(d +  R -  1), 9 e M.  (4.4)

For some special cases with R — 2,3,4, the prior in (4.4) has the form

1
9(9+  1 )_____________

n(6\R) =  M.3036 ^  + 4/3

if R =  2, 

if R  =  3,
0 (0+ l)(f>  +  2) 

l f im ,V [ ( »  + 3 )« +  22/5] (0 +  3 )0 +  27/5 
L6° 17 0(0 + 1)(0 +  2)(0 +  3) , f i f  =  4'

(4.5)

The priors in (4.5) are proper, therefore the normalising constant is included. This 
has been numerically verified (Berger et al., 2012) up to R =  100, by showing that 
the tail is of order l/(92; we recall that this is a necessary condition for having a 
proper posterior. Furthermore, the prior distributions are all very similar, except
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4.1. A population size model

for 0 =  1. Therefore, Berger et al. (2012) recommendation is to use the prior for 
R =  2 for any value of R , as it is considered a good approximation. Figure 4.1 
shows a plot of the priors in (4.5).

4.1.1 The Villa—Walker prior for the population size model

The prior distribution for N  obtained on the basis of the objective approach we 
propose, has the form of (3.9). That is

n(N\R) oc exp i m i n ^ D KL(f(N\R)\\f(N'\R))\ -  1, (4.6)

which, as seen in Section 3.3, has the property of assigning zero mass to values of 
N  associated with zero loss.

The Kullback-Leibler between two densities of the from (4.3), which differ for 
the value of N  only, is given by

f(V\N)
f(V\N  +  c)

( R - 2)! (N-R)\ ( V + N - R ) R9 R ( y )  1

D k l (S(V\N)\\ì (V\N + log 

rR

dV

=  log

f(V\N)\og 

N\

(Af+c)!
OR—2)! (TV+c-R)! ( V + N + c - R ) R9RÌV) j

dV

(N +  c - R ) \
(N — R)\ (N +  c)\

RE log V +  N +  c - R  
V +  N - R

where c is an integer, and the expectation is taken with respect to f(V\N). The 
above expression is an increasing function in c, meaning that the nearest model to 
f(V\N), in terms of Kullback-Leibler divergence, is either f (V \N — 1) or f(V\N +  
1). Computationally, we have verified that the nearest model to f(V\N)  is for 
c =  +1, that is f(V\N +  1). The computation has been carried out for R =  2, 
R =  3, R =  4 and R =  5, and for values of N  up to 100. It has to be noted that 
for values of R > 5 and/or values of > 20, the Kullback-Leibler divergence 
becomes very small, and can be considered zero. As it seems reasonable, the 
divergence between contiguous models decreases for —» oc; in fact, considering
the original density in (4.1), we note that, for fixed R and A, the influence of R 
with respect to N  becomes less prominent for large values of the sample units. As 
such, contiguous models are more and ore similar to each other.
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4.1. A population size model

In the light of this result, the prior for the parameter N, given R. is determined 
by (4.6) and is given by

tt(N\R) cx
N  +  l - R

N +  l
exp /V' + JV + l - . R Y  

v V +  N - R  J
-  1 . (4.7)

The prior distribution (4.7) is proper, as the following theorem shows.

Theorem  4.1. Consider the density f(V\N,R) defined in (4.3), with N > R =  
{1 ,2 ,3 , . . . }  and V  e  (1 .R), and where R is known. The prior for the unknown 
discrete parameter N , representing the population size of interest, is proper.

Proof. By applying Jensen’s inequality, we have

N + l - R
N +  1

exp < R E log V + N + l - R  
V +  N - R

1 - R
N +  1

E

1 -

1 +

R

1
V +  N - R

R

-  1 <

1 <

N + l 1 +
1

N — R (4.8)

as V  is positive. The last expression on the right-hand-side of (4.8) can be ap­
proximated by

R
1 + 1

N +  l V N — R

R
-  1

N +  l ) n - r )
- 1

R R R2
N - R  N +  l (N +  1)(N — R) 
R(N  +  1) -  R(N -  R) -  R2 

(N +  1)(N -  R)

(N +  1 ) ( N - R Y

The last term in (4.9) behaves like 1/A^2, therefore the theorem statement is 
proved. □

Theorem 4.1 is necessary given that, as pointed out above, the likelihood func­
tion converges to a constant for —> oo.

57



4.1. A population size model

Figure 4.1: Objective prior for the transformed parameter 6 of the population 
size model, given R =  2, R =  3 and R =  4 (top to bottom at 9 =  1 in both 
graphs). The top graph shows the prior in Berger et al. (2012); the bottom graph 
the Villa-Walker prior.

The prior distribution for N  assigns large mass for small values of the parameter 
space, as expected from the behaviour of the Kullback-Leibler divergence, and 
rapidly decreases to zero. This is graphically verifiable in Figure 4.1, where the 
priors for R — 2, R =  3 and R =  4 have been plotted. Note that, in order to be 
able to compare the obtained prior with the one proposed by Berger et al. (2012), 
we have transformed the sample space of N in 0 =  N — R +  1. From Figure 4.1, 
we can also note that the distributions for different values of R are very similar, 
and have a behaviour that traces Berger et al. (2012) priors.
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4.2. Hypergeometric model

4.2 Hypergeometric model

Let, us consider now a hypergeometric distribution with probability mass function 
given by

with the population size N  and the sample size n both known, and R =  0 ,1 , . . . ,  N, 
representing the units in the population which satisfy a certain criterion (or with 
a certain property). The parameter R is unknown, and the aim is to objectively 
define the prior tt(R,\N, n).

At first glance, it may seem appropriate to assign a uniform prior to R: 
n(R\N,n) =  1/(N +  1). This prior (Briggs and Zaretzki, 2009) assumes that 
any value of R is as likely to be the true one as any other value. Although a 
uniform prior appears to be a sort of “natural” choice when the parameter space 
is discrete, this might not always be the most sensible approach. As pointed out 
in Berger et, al. (2012), a Hypergeometric model shows a well defined structure. 
In fact, when the population size N  grows, the ratio R/N can be seen as the 
probability of success in a Binomial model. Therefore, the prior for R, or possibly 
its reparametrisation p =  R/N , should reflect this structure and resemble the 
commonly used objective prior n(p) ocp_1/2(l — p)-1/2 (Jeffreys, 1961).

It is in fact on the basis of the above considerations, that Berger et al. (2012) 
obtain the prior distribution for R by applying the embedding Approach 2, as 
discussed in Section 2.3.1. The idea is to assume that the unknown parameter has 
a Binomial hierarchical model Bin(R\N,p), where p is an unknown continuous 
parameter. Therefore, the problem reduces in finding the objective prior for p. 
As discussed in Bernardo and Smith (1994), the reference prior for a hierarchical 
model is found by marginalising out the lower level parameters (R in this case),

r E 7Z =  {max(0, n — (N — R)), min(n, R)}

(4.10)
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4.2. Hypergeometric model

and then applying reference analysis (Bernardo, 2005). Thus, the first step gives

f(r\n,N,p)
N

Y ,f ( r\ n ,R ,N ) f (R \ N ,p ) 

V ( i - p ) ” - r,

R= 0

'n
r (4.11)

where f{r\n, R , N) is the distribution in (4.10) and f(R\N,p) =  ( Î )pR( 1 ~ p )N~R. 
We then note that (4.11) is a Binomial model with parameters n and p. Given 
that the reference prior for the parameter p of a Binomial distribution, when n is 
known, is the Jeffreys’ rule prior, that is a Beta distribution with both parameters 
equal to 1/ 2, we have

7 r { R \ N ) Bin(R\N,p)Be(p\l/2,1/2) dp

1 F(R +  1/2)T(N -  R +  1/2) 
7r F{R +  1)T(N -  R +  1) ’ R =  0 ,1 , . . . ,N .  (4.12)

For how it is defined, the distribution in (4.12) is proper. It is worth to mention 
that this objective prior was initially proposed by Jeffreys (1961).

4.2.1 The Villa—Walker prior for the Hypergeometric model

Let us consider two Hypergeometric models which differ for the value of parameter 
R only, say f R =  f(r\N,R,n) and f R> =  f(r\N,R',n).  The Kullback Leibler 
divergence between the two models is given by

¿ W /f lH /jr )  =  E / W  log
f (r\N,R,n) } 
f ( r \N, Rr, n) J

=  E
r£Tl

f(r\N,R,n) log <

f R! (N - R )! ] 
{ m  ( N - R ' ) \ f
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4.2. Hypergeometric model

E
rdTZ

f{r\N, R, n) log

. , R\ 1 , f (N -R )\

( N - R ' - n  +  r)}

(R' - r ) \ ( N  — R' — n +  r)! 
(R -  r)! (N -  R - n  +  r)\

( R ' - r ) !
E log

( R - r ) l

E log
(N — R — n +  r)\ (4.13)

where the expectation is taken with respect to the distribution f(r\N , R, n).
For the construction of the objective prior for the parameter R , it is impor­

tant to keep under consideration some symmetry properties of the Hypergeometric 
model. First, we note that the random process modelled through an Hypergeo­
metric distribution is symmetrical around R =  N/2. In fact, by swapping the role 
of the units which satisfy the criterion, we have

f{r\N, R, n) =  f (n  — r\N, N — R, n),

where r e 1Z and n — r e  {max (0, n — (N — R.)), min (n, R)}. To prove the above 
result, it is sufficient to rearrange the terms of equation (4.10). In other words, 
the model with parameter R is equal to the model with parameter N — R, for 
the same values of N  and n. Another symmetry property of the Hypergeometric 
models is obtained when we swap the role of the drawn units with the not-drawn 
units. In this case we have

f(r\N,R,n) =  f ( R  — r\N,R,N — n).

A probabilistic proof of this property can be found, for example, in Davidson and 
Johson (1993).

In order to obtain the prior distribution for R by applying our approach, we 
need to identify for which value of N' the divergence in (4.13) is minimised. The 
following Lemma 4.1,which has proof in Appendix A, identifies the appropriate 
Kullback-Leibler divergence.

Lem m a 4.1. Consider the Hypergeometric distribution /^ 0, with parameters Rq, 
N and n, where N and n are assumed to be known. If we indicate by /r the
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4.2. Hypergeometric model

Hypergeometric distribution that differs from f Ro only by the number of units in 
the population N which satisfy a certain criterion (i.e. R0), then the Kullback- 
Leibler divergence from f Ro to f R is minimum when R =  i?0 +  l, if Rq < N/2, and 
R =  Ro — 1 if Ro > N/2. If Rq =  N/2, then DKL( fRo\\fRo+1) =  DKL{ fRo\\fRo-i ) .

The result in Lemma 4.1 highlights some important aspects of the Hyperge­
ometric distributions. For fixed values of parameters N  and n, when we let R 
vary in its space, models become nearer and nearer when R tends to the middle 
point (i.e. N/2). Furthermore, the behaviour of the Kullback-Leibler divergence, 
considered in both directions, is symmetrical, property which, as we see below, 
will result in a prior distribution symmetrical as well.

In deriving the objective prior for the parameter R of the Hypergeometric dis­
tribution, we make first the following considerations. We assume that parameters 
N  (population size) and n (sample size) are known. Given the result of Lemma 4.1, 
for R < N/2 the minimum Kullback-Leibler divergence is obtained from (4.13) 
by setting R' =  R +  1

O k lUr WIr+i ) =  ^ 2

=  log

Therefore, for R < N/2, the prior is obtained by applying (4.6), and is given by

n(R\N, n) oc
N — R 
R +  1

exp < E i  R +  1 — r \ 
\N  — R — n +  r )

-  1 . (4.14)

By symmetry, the prior mass for R, when R > N/2, is given by

tt(R\N, n) =  7t(N — R\N, n). (4.15)
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4.2. Hypergeometric model

To illustrate the behaviour of the prior distribution obtained by applying our

N=5

N=25

Figure 4.2: Comparison of the objective prior obtained by (Berger et al., 2012) 
(dashed black line) and the Villa-Walker prior (continuous red line). The prior 
has been computed for n =  3 and for N  =  5 (top graph), N  =  10 (middle graph) 
and N =  25 (bottom graph).

approach, based on loss functions, we have plotted 7i(R\N,n) (normalised) in
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4.2. Hypergeometric model

Figure 4.2 for three different values of N, given n =  3. In particular, N  =  5 
(top graph), N  =  10 (middle graph) and N =  25 (bottom graph). For each prior 
(continuous red line) we have plotted the respective objective prior computed by 
Berger et al. (2012) (dashed black line).

By examining the prior, we note that higher mass is assigned to values of the 
parameter R at the extremes of the parameter space. Then, this mass rapidly 
decreases for values of R —» N/2. This behaviour is common to the three values 
of N. We have computed the prior for other values of N  (not reported here) and 
noted that the shape of the distribution is similar.

If we compare the Villa-Walker prior with the one defined in Berger et al. 
(2012), although they are quite similar, it seems that our prior tends to assign 
more mass to the extreme values (i.e. R — 0 and R =  N) and less mass toward 
the center of the parameter space.

It can also be noted that, as mentioned in Berger et al. (2012), for N  increasing, 
the prior distribution approximates the reference prior for the parameter p of the 
Binomial distribution. Where, as seen above, p is approximated by the ratio R/N.

Figure 4.3: Objective prior for the parameter R of the Hypergeometric model, 
given N =  25 and n =  1 (continuous black line), n =  5 (dashed red line) and 
n =  10 (dotted blue line). For convenience in the comparison, the priors have 
been plotted as curves only, without highlighting the value in correspondence of 
each discrete R.

To conclude, as the prior in (4.14) and (4.15) depends on the parameter n,
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4.3. Multivariate Hypergeometric model

unlike the one specified in Berger et al. (2012), it seems appropriate to analyse the 
behaviour of the distribution as n changes. We have computed the prior n(R\N, n) 
for a fixed N =  25 and three different values of the sample size n, see Figure 4.3. 
In particular, the graph shows the prior distribution for n =  1, n =  5 and n =  10. 
We note that the differences in the mass are minimal and they are limited to 
certain parts of the parameter space. In particular, to values close to R =  0 and 
R =  N. This is a comforting result, as it means that the choice of the sample size 
does not have significant impact on the prior distribution.

4.3 Multivariate Hypergeometric model

Consider the multivariate Hypergeometric distribution M H d(N, R,n)  of dimen­
sion d, with probability mass function

where Nd is the d-dimensional space of non-negative integers, and with n E

For d — 2 we obtain the univariate Hypergeometric distribution, discussed in Sec­
tion 4.2. We assume that parameters N  and n are known, and R =  (_R1;. . . ,  Rd) 
represents the vector of unknown parameters.

The most commonly used objective prior for this scenario is, in essence, Jef­
freys’ prior (Jeffreys, 1961). This is derived by first transforming the problem 
into a continuous one, as it is done in Berger et al. (2012) by applying Approach
2. In this case, the hierarchical model for vector R is a Multinomial distribution 
with parameters N  (i.e. the population size) and p, which is a vector of size d, 
where each element pt =  Rj/N. Thus, the probability mass function for R has the 
following form

(4.16)

{0 ,1 , . . . .N], e U rj = v  e n, and ry <  min(n, Rj) for j  =  1 , . . . ,  d.
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4.3. Multivariate Hypergeometric model

And the objective prior for pd, by applying Jeffreys’ rule, will have the form

Even though we do not specifically discuss nuisance parameters in this work, it 
is important to mention that Berger et al. (2012) have proposed a reference prior 
for the multivariate Hypergeometric model in the case the vector of parameters 
could be identified as the union of two subsets: the parameters of interest and the 
nuisance parameters. The prior obtained is given by

4.3.1 The Villa—Walker prior for the multivariate Hyper­
geometric model

The derivation of the objective prior by applying our approach, is a generalisation 
of what discussed for the univariate case in Section 4.2. The identification of the 
minimum Kullback-Leibler divergence, which forms the basis of the approach, 
becomes rapidly challenging for dimensions of d > 3. As such, we will provide a 
formal procedure for d =  3 only; however, due to the symmetry properties of the 
Hypergeometric distribution, generalisable to any dimension, allow for an intuitive 
extension of the d =  3 result to, virtually, any dimension.

The Kullback-Leibler divergence between the multivariate Hypergeometric dis­
tribution with parameters N, R and n, indicated by /n.r,tu and the multivari­
ate Hypergeometric distributions with parameters N, R  +  a and n, indicated by 
f n,R+a.n. where a £ Zd, is given by

(4.17)

3

66



4.3. Multivariate Hypergeometric model

E
n L

PN,R,n  lo g

R,\ / fN
n

nL Rj +  cij
A

=  E log <! T m ___— ___- Qj ~ rj)!R +  ajy. (Rj — Tj)\

d
¿ l o g
j=1

Rj'-
(Rj +  dj)\

E log
(Rj - r j  +  aj)\

( R j - rj)'-
(4.18)

where E is the expectation of log (fN,R,n/In,R+a,n) with respect to The
following Lemma 4.2, which has a proof in Appendix A, determines the minimum 
Kullback-Leibler divergence from model Pn,r,h-

Lem m a 4.2. Consider the d-dimensional multivariate Hypergeometric distribu­
tion fN,R,n, where parameters N and n, with probability mass function as specified 
in (4.16). If we consider the Hypergeometric distribution fN,R\n which differs 
from fN,R,n by the composition of the unknown d-dimensional parameter vector R, 
then the Kullback-Leibler divergence between fN,R,n and fN,R',n is minimum when 
R' — R +  c, where c is a vector of dimension d with d — 1 zeroes and, in corre­
spondence of the element of R closer to N/2, has a minus or plus one depending 
if the “closeness” is, respectively, from above or below N/2.

To summarise the results obtained in the proof of Lemma 4.2, and to generalise 
to any multivariate Hypergeometric distribution, we have that the smallest differ­
ence between fN,R,n and fN,R+c.n is obtained when only one of the components of 
R is changed. In particular, when the change is an increase or decrease of one unit. 
Therefore, c will have d — 1 elements equal to zero and the remaining equal to 
plus or minus one. From the analysis of the Kullback-Leibler divergence between 
two bivariate Hypergeometric models the nearest model to /v,R,n corresponds to 
the model fN,R+c,m where c will have d — 1 null elements and the remaining one, 
in position i (where i is the index of element i?, of R nearest to N/2, either from 
below or above), and will have value one if Rt <  N/2, and minus one if Rt > N/2.

The objective prior for the R can be found from the result of the previous
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4.3. Multivariate Hypergeometric model

paragraph, and it has the form

7T(R) OC exp {D KL(fN,R,n\\fN,R+a,n)} ~  1,

where vector a is determined so that the divergence is minimised, as discussed in 
Lemma 4.2.

To have a better understanding of the prior we propose, we have computed it 
for the specific case of a bivariate Hypergeometric distribution. In this way it is 
possible to have a useful graphical aid to capture the main characteristics of the 
prior.

Figure 4.4: Graphical representation of the normalised prior, obtained following 
our approach, for the bivariate Hypergeometric model with parameters N =  10, 
n =  3 and unknown R =  (i?i, R2).

In particular, we have considered a bivariate distribution with population N =  
10 and sample size n =  3. In Figure 4.4 we have plotted the normalised prior 
distribution tt(R), with R =  (f?i, R2). We note, from the figure, that the symmetry 
properties are reflected in the distribution of the prior mass. It can be seen that 
the largest mass is put at the edges of the parameter spaces; that is, at the 
points (0,0), (0,10) and (10,0). The mass decreases toward the “centre” of the 
distribution, that is when either or both Ri and R2 approach N/2 =  5.

Jeffreys’ objective prior for R =  (R1,R 2), as reported in Berger et al. (2012),
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4.4. Binomial-Beta model

is computed on continuous parameters. Therefore, it is not possible to perform a 
complete comparison with the Villa-Walker prior. In particular, due to its nature, 
the prior in (4.17) would give infinite values at the borders of the parameter space. 
However, through graphical representation, it is still possible to capture some 
similarities to the Villa-Walker in the behaviour. In Figure 4.5 we have plotted 
the surface (left) of the prior density function for parameter vector R , and the 
contour lines (right).

Figure 4.5: Graphical representation of the Jeffreys’ prior for the parameter R =  
(Ri ,R 2) of a bivariate Hyper geometric model with N  =  25. The plot on the 
left represents the surface of the distribution with highlighted the contours. The 
contours are shown in the right plot, where the lighter colour corresponds to low 
density regions, and the dark colour to high density regions.

By inspecting Figure 4.5, we note the symmetry of the prior, which is remarkably 
similar (at least in terms of behaviour) to the one we obtained considering our 
approach. In fact, the highest density is in correspondence to the three vertices 
of the parameter space. And, as expected, the central area of the triangular 
parameter space has associated relatively low density.

4.4 Binomial-Beta model

Let us now consider the Binomial-Beta model. This particular model arises as 
the marginal distribution of a Binomial model with parameters n =  1 ,2 ,... and
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4.4. Binomial-Beta model

p G (0,1), where p is in turn modelled through a Beta density. That is, x\n,p 
Bin(n,p) and p ~  Be(a,b). Thus, the Binomial-Beta distribution is given by

f(x\n) = r 1 n\ T{a +  b) 
!q (n — x)\x\ T(a)r(6) 

n\ r(a + b) rl

x-\-a— 1 /p—  - ( i - p ) n" a:+6- 1dp 

j f + a _ 1 ( l  _ p ) n - x + 6 - i d j9
(n — x)\xl r (a )r (6) ,/0

n\ T(a +  b) T(x +  a)T(n — x  +  b)
(n — x)\x\ T (a )r(6) r(n  +  a-|-6)

for x  =  0 ,1 , . . . ,  n. The parameter of interest is the number of trials n.

(4.19)

The uniform prior on n is not an appropriate solution (Berger et ah, 2012). In 
fact, we note that the tail of the marginal likelihood (for fixed x) has the form

n\ T(n — x +  b)
(n — x)\ T(n +  a +  b)

1 1________________  _
na+fe~i(n — x )(l — 6) na'

that, is, f(x\n) can be approximated by l /n a, which is not integrable for a < 1 . 
Therefore, if the prior of n is uniform, the posterior would be improper.

The objective prior proposed by Berger et al. (2012) is obtained by applying 
the Approach 3 discussed in Section 2.3.1. Recalling that this approach aims to 
apply reference prior theory with a consistent estimator, the following non efficient 
estimator has been identified

f(x\n) oc

n =
a +  b 

ak

k

3=1

where k is the number of independent samples from (4.19). As the mean and the 
variance of n are given by, respectively, E[n|n] =  n and Var[n\n] =  n(n +  a +  
b)a~2(a +  b +  1)—1A;~1, by applying the central limit theorem we have

f(fi\n) ~  N
n(n +  a +  b) \

a2(a +  b +  1 )k J
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Pretending that n is continuous, and applying reference analysis, we obtain

which coincides with the prior obtained by applying Jeffreys’ rule.
Although the prior distribution in (4.20) is the one chosen by Berger et al. 

(2012), it is worth to mention that the decision is the result of the comparison with 
the prior obtained by applying Approach 4 in Section 2.3.1. With this approach, 
the prior obtained was 7r2(n) oc 1/n. In both circumstances the prior distribution 
for n is suitable, in the sense that the posterior is proper. However, Berger et al. 
(2012) compare ni and 7r2 on the basis of the respective frequentist coverage of 
credible sets of the posteriors. In particular, for values a — b =  5, a =  b =  20 
and a =  b =  50, the approximate frequentist coverage and the average posterior 
coverage are compared, resulting in a better performance of tt\ over 7r2. It can then 
be concluded that the fact that Hi (n) depends on the the value of the parameters 
of the Beta, a and 6, gives a superior prior distribution.

4.4.1 The Villa—Walker prior for the Binomial-Beta model

We now illustrate the prior distribution for parameter n of the Binomial-Beta 
model in (4.19) obtained by applying our objective criterion. In order to perform 
a sensible comparison with the result presented by Berger et al. (2012), we apply 
the same conditions to the parameters of the Beta distribution. That is, a, b >  1.

To find the model which is nearest, in terms of Kullback-Leibler divergence, 
to f n =  f(x\n), we first note that, as P(x =  n\n') =  0 for n > n', we have

Therefore, the nearest model will have the parameter representing the number 
of trials larger than n. The Kullback-Leibler divergence between model f n and 
f n+j, j  =  1 ,2 ,..., is given by

1
(4.20)(X

y/n(n +  a +  b)

DKL{fn\\fn') =  00 n > n .
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DKL(fn\\fn+j) =  J ^ fn log
x=0
n

=  f  n l0§

fn

x=0

x=0

=  log

+E

fn+j

nl F(n —x +  6)
(n — a:)! T(n +  a +  b)

(n +  j)\ T (n +  j  — x  +  b) 
(n +  j  — x)\ T{n +  j  +  a +  b)

n\ T(n +  j  +  a +  b)
(n +  j)\ T(n +  a +  b)

f (n  +  j  — x)\ T(n — x +  b)
\ (n — x)! T(n +  j  — x +  b) J

E  /*• *°g

(4.21)

The Kullback-Leibler divergence in (4.21) is minimum when n' =  n +  1. This is 
a sensible result given that model f(x\n) and model f(x\n +  1) are more similar 
to each other than f(x\n) and f(x\n +  2). This has been computationally verified 
by calculating the difference DKL{fn\\fn+2 ) — D K L (fn\\fn+1), for different values 
of the parameters a and 6, and noting that it is positive.

In detail. The divergence between f n and f n+u by setting j  — 1 in (4.21) is

DKL(fn\lf„+l) =  log ( ! + E
n +  1

log n +  1 — x 
n — x  +  b

(4.22)

and the divergence between f n and /n+2 is

D K ¿(/nil fn+2 ) log

+E

/  (n +  a +  b)(n +  a +  b +  1)\
V (n +  l)(rc +  2) /

/  (n +  1 — x)(n +  2 — x) \ 
\(n — x  +  6)(n — x +  b +  l ) )

(4.23)

In Figure 4.6 we have plotted the difference between the two divergences, that is 
(4.22) and (4.23), for n — 1, . . . ,70,  and for a =  b — 5 (continuous-red curve), 
a =  b =  20 (dashed-blue curve) and a =  b =  50 (dotted-black curve). It is easy to 
note that the value of DKL(fn\\fn+2) ~  D K L (fn\\fn+\), is always positive.
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4.4. Binomial-Beta model

Figure 4.6: Value of the difference between the Kullback-Leibler divergence 
DKL(fn\\fn+2) and the Kullback-Leibler divergence DKL(fn\\fn+i). The difference 
has been computed for different values of the parameters of the Beta distribution. 
That is, a =  b =  5 (continuous red line), a =  b =  20 (dashed blue line) and 
a =  b =  50 (dotted black line).

By applying our approach, the objective prior for n based on (4.22), is given
by

ir(n) oc e x p {D KL(fn\\fn+1) } - 1
n +  a +  b

n 1
exp < E log n +  1 — x 

n — x  +  b -  1 , (4.24)

or, equivalently

7T(n) oc n +  a +  6 -pr fn  + 1 — x \ Pn
n +  1 „ \n — x +  b Jx = 0  '

- 1 . (4.25)

The prior in (4.25) is improper. The following Theorem 4.2 shows that, with 
only one observation, the posterior distribution is proper.

Theorem  4.2. Let us assume that we observe the data point X\ from a Binomial- 
Beta distribution with parameters a > 1, b, n and p. Also, assume a prior distri­
bution for the parameter n as n(n) oc exp{DKL(Pn\\Pn+i)} ~  1. Then, the posterior
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4.4. Binomial-Beta model

distribution given by

n(n\xi) oc

is proper.

Proof. As discussed in Berger et al. (2012), and mentioned at the beginning of 
this section, the tail of the marginal likelihood of n behaves like l/na which, for 
a >  1, converges. Thus, we have

As (n +  1 — x)/(n — x  +  b) < 1, because of the condition b >  1, the product term 
is small or equal to one. Therefore

as a > 1 . And, as /na} < cxd in (4.26), the theorem statements follows. □

The following Theorem 4.3, which proof in in Appendix A, shows that the 
posterior distribution for n is consistent.

Theorem  4.3. Consider the family of Binomial-Beta distributions f n, with n =  
1,2, . . .  and common parameters a and b. We also assume that the true value of 
n is n0. Given the prior distribution n (n) and the set of observations from f no, 
x =  (x\,. . .  ,Xk), the mass of the posterior corresponding to no converges to one 
almost surely. That is,

(4.26)

< oo,

n(nQ\n >  n0, x i , . . . , x k) 1
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4.5. Binomial model

for k —> oo.

To have a feeling of the behaviour of the prior in (4.24), we have computed its 
mass for different values of the parameters a and b. In particular, as shown in the 
bottom plot of Figure 4.7, we have computed the prior for a =  b =  5 (continuous- 
red curve), a — b — 20 (dashed-blue curve) and a =  b =  50 (dotted-black curve). 
The choice of the parameter values has been done in order to compare our result 
with the one obtained by Berger et al. (2012), where objective priors for the same 
values of a and b have been computed. These priors are showed in the top plot of 
Figure 4.7.

By inspecting the bottom plot of Figure 4.7, we note that the prior obtained 
with our approach puts more mass on the lower values of the parameter n. The 
value of the mass, then, rapidly decreases toward zero as n increases. We can 
interpret this behaviour as the fact that Binomial-Beta models with a small value 
of n have more worth than models with a large value of n. Also, when n is 
sufficiently large, models tend to have similar importance. Furthermore, the three 
curves a very similar, suggesting that the parameters of the Beta distribution for p, 
that is a and b, play a marginal role in the determination of the prior distribution.

As expected, on the basis of the discussion in Berger et al. (2012), which we 
have repeated at the beginning of this section, the prior distribution based on 
(4.20) is sensible to the value of the parameters a and b. In particular, from the 
top plot in Figure 4.7, we note that the main difference occurs for values of n 
relatively low, where values of a and b relatively large, produce relatively small 
prior mass. However, as n grows larger, the three priors tend to assign similar 
mass to the same value of n.

4.5 Binomial model

The last model we discuss in this chapter in the Binomial distribution. Let us 
assume that the random variable x  is binomially distributed with number of trials 
n and probability of success p. Its probability mass function is

x =  0, 1, . . . ,  n.
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4.5. Binomial model

Figure 4.7: Objective prior obtained by applying our method (bottom) and objec­
tive prior obtained by Berger et al. (2012) (top). For both approaches, the prior 
has been computed for a =  b =  5 (continuous red line), a =  b =  20 (dashed blue 
line) and a — b =  50 (dotted black line).

We assume p known, which means that we will initially discuss the prior for n, 
given p. The goal is to define a function which assigns positive mass to all the 
possible values of n, where n =  1,2, . . . .  In the following discussion, we indicate 
the prior for n as it(n), whether it depends functionally on p or not. In other 
words, some of the following priors are for n given p, but we consider this as 
implicit in the notation it(n).

The natural objective prior mass function for n would be the uniform, that is

7r(n) oc 1, (4.27)
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as this gives equal weight to each possible value of n, and this would hold whether 
p is known or unknown. However, as n is theoretically infinite, the posterior 
obtained from (4.27) would be improper when p is unknown. This issue has been 
discussed, for example, in Berger et al. (1999) and Berger et al. (2012).

In Draper and Guttman (1971), we find the following objective prior mass 
function on the parameter n, considering p as known

where N  is a large preselected integer with 1 <  n < N. For example, if n were 
the number of units with a certain characteristic within a population, N  could 
represent the size of the population. The authors show that the estimate of the 
parameter n obtained by using the prior (4.28), is represented by the mode of the 
posterior distribution 7r(n\x), where x represents the observations. Furthermore, 
without defining in explicit form the prior mass function for n, it is shown that 
the estimate is the same when p is considered unknown; this is done by assuming 
the parameters to be independent and defining a beta prior mass function for p.

Raftery (1988) adopts a hierarchical Bayesian approach. In particular, the 
issue of n being discrete is overcome by first assuming that the parameter has a 
Poisson distribution, and then by assigning an objective prior to the continuous 
hyper-parameter. The result is a prior mass function of the form

Note that prior (4.29) coincides with the generic Jeffreys’ prior for unbounded 
integer parameters, as introduced in Section 2.3.

Raftery’s prior is improper, as it diverges for n going to infinity. Even though 
this does not represent a problem in a Bayesian approach, as loxrg as the posterior 
is proper, Rissanen (1983) (by applying his general method to obtain objective 
priors for integer parameter spaces discussed in Section 2.3) proposes a modified 
version of it by reducing the dominating factor l/n just enough to make the whole 
prior proper.

The objective prior for n we examine in details, is the one in Berger et al.

7r (rz) — 1/N, (4.28)

7T(n) oc l/n. (4.29)
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(2012). The prior is derived by applying Approach 3 in Section 2.3.1. In particular, 
the following linear estimate of n is considered

1
n =  \p k

x3i
3=1

where k is the number of independent samples from a Binomial distribution with 
parameters p and n; that is, (aq,. . . , x^). As

E[n\n,p\ = n  and Var(n\n) =  [n(l — p)]/[kp\,

for the central limit theorem, we have

p(n\n1p) ~  N  ( n n ,
/n(l  — p)

kp

By considering n as continuous, and applying Jeffreys’ rule, the prior for n will be

7Ti(n) oc 1 /y/n. (4.30)

The prior in (4.30) is not the only that can be derived through the continuous 
embedding technique illustrated in Berger et al. (2012). In fact, not only by using 
another approach (e.g. Approach 4, discussed in Section 2.3.1) a different prior 
for n can be derived. It is possible to derive a different objective prior for the 
parameter by using a different consistent (and inefficient) estimator for n. For 
example, by considering

n =  (V l +  16S2 -  l ) / 2, 

with S2 =  xj/k. The relative prior is then

, . 1 2pn +  1 — p
7r(n oc —7= x —, : -  -  - - = .

y/4p2n2 +  2pn(3 — 5p) +  1 — 6p (l — p)

Similarly as done in Section 4.4, the “optimal” prior is selected by comparing the 
frequentist performances of the posterior distribution. In this important to note 
that priors (4.30) and (4.31) result in posteriors with very similar distributions,
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although the priors themselves are different. The argument in support of the first 
one, as discussed in Berger et al. (2012), is on the basis that (4.30) has a simpler 
functional form than (4.31).

4.5.1 The Villa—Walker prior for the Binomial model

Let us consider the following two binomial distributions: f n and f n>, with n =  
1,2, . . . ,  n' =  1,2, . . .  and n ^  n', where n and nl represent the number of trials 
for each distribution. Furthermore, we assume that both distributions have the 
same value of the known parameter p. The Kullback-Leibler divergence between 
fn and f n' is given by

D jK L ( f n W f n ')  =  + O O ,

if n' < n; else

D K L { f n \ \ f n ' )  =

where E represents the expected value with respect to f n. The following Lemma 
4.3, which proof is in Appendix A, shows that the nearest model to f no is f no+i-

Lem m a 4.3. Consider the binomial distribution f no. If we indicate by f n, with 
n > no, the generic binomial distribution that differs from f no only by the number 
of trials, then the Kullback-Leibler divergence from f no to f n is minimum when 
n — n0 +  1.

Thus, the minimum divergence from model f n is obtained by setting n! =  n +  1 
in expression (4.32), which results in the following Kullback-Leibler divergence
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D k l ( S n \ ] f n + l )  =  J2{  -  P * ” " 1 1 0 8  ( "

’ ' I p ' i i - p r - ' i o g l " 4 1
X \ X

n\ x\(n-\- l — x)\

-E
x = 0

+  [n -  (n +  1)] log(l -  p)

= E{(:>*(1-pr‘Iogv, (n+1)l
-  log(l - p )

=  ¿ J  |log(n +  1 -  x) Q p * ( l  - P ) n“ x| -  log(n +  1) -  l o g ( l - p ) .

Therefore, the prior distribution is obtained by applying (4.6) and has the form

7T(n) oc
1 ( n
— —  e x p j  J ] l o g ( n + l - x )

(n +  1)(1

which can alternatively be written as

n
x

Px( i - Py

7r(n) °c n { ( n + 1 - x ) O x(1 p)B“* }  -  1, (4.33)

The form of the prior in (4.33) is useful to employ in some analytical procedures. 
The objective prior for n obtained is improper. In fact, we have that

E
71=1

1
(n + 1)(1 — p)

f [ { ( n  +  l - x P ^ - }
x = 0

- 1 >

E
71=1

1
(n + 1)(1 - p )

-  1 , (4.34)

as n ”=o |(n +  1 “  x )^ )pJ(1” p̂ ” x| / ( l  — p ) > l .  Therefore, the left-hand side of 
(4.34) diverges as well, given that X ^ i [ V { ( n +  1)(1 — p)} — 1] =  o°. Therefore, 
given that the prior distribution is improper, we need to show that the resulting 
posterior is proper. This is stated in Theorem 4.4 below.
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Theorem  4.4. Assume that we observe the data point x\ from a binomial distribu­
tion with parameters n and p. Also, assume a prior distribution for the parameter 
n as 7r(n) oc exp {-D/aX/nll/n+i)}- Then, the posterior distribution is given by

7r(n|:ri) oc > n { („ + i _ ,)(> • < .-,> ■
( n + l ) ( l - p ) £ *

-  1

x ( « 5 )

is proper.

Proof. The likelihood function in the posterior (4.35) converges for n 
fact we have

oo. In

n = x  i  v  N  7 '

V
X \  oo

X E n\
(i - pY1 — p J ( (n — Xi)!

and as n\ /{n — xi)! =  n x (n — 1) x • • • x (n — X\ +  1) < nXl, it follows

i / „ \ xi ° ° ( '  i 1 /  \ xi ° °
(  P  ̂ x E K ' d - P ) ” } .X\\ \ 1 — p

X
n = x  i

Xi! \ 1 — p
n = x  i

To prove that {nXl(l — p)n] converges, we show that

(n +  1)X1(1 - p ) n+1 lim  -------- :— ---------------< 1.n-H-oo nXl (1 — p)r

In fact, we have

, (n + l)Xl (1 — p)n+l ( i n + l Y \  ■
™  J ( l - p ) «  = -“ S - 1 ( —  ) (1 - p)1 = 1 -(1 - p) < 1,

Therefore, the series

n —>oo I  V  Tl

E K ' d  - p )” } <  00. (4.36)
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converges. From the result in Lemma A .l in Appendix A, we have

1 n

{n +  1)(1 — p)
j; :! j ^ ( n  +  1 —  £ ) ( * ) (4.37)

x = 0

By combining the results in (4.36) and (4.37), we conclude that

< oo,

that is that the posterior distribution for n becomes proper after only one obser-

The consistency of the posterior distribution is examined in the following The­
orem 4.5. The proof in in Appendix A.

Theorem  4.5. Consider the family of binomial distributions f n, with n =  1,2, . . .  
and common parameter p. Also assume that the true value of the parameter n 
is n0. Given the prior distribution n (n) and the set of observations from f no, 
x  =  (x\,. . . ,  Xk), the mass of the posterior corresponding at converges to 1 
almost surely. That is,

for k —> oo.

To have an understanding of the objective prior for n, we have computed and 
plotted it, for a given value of p =  0.5, and for n — 1 , . . . ,  100. The result is 
shown in Figure 4.8. We see that the highest mass is put on n =  1, as the largest 
divergence is Thrz.(/i H/2), and that it will decrease as n increases. This is obvious, 
as the difference between a binomial with n number of trials and the binomial with 
n - F l  number of trials, diminishes as n tends to infinity; as such, the Kullback 
Leibler divergence measured between the two models tends to zero and so does

vation. □

7r(n0|n >  n0,x  1, . . . ,  x k) -+ 1
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the prior.

Figure 4.8: Comparison of our prior (continuous red line) and the one obtained 
by Berger et al. (2012) (dashed black line). The priors refer to parameter n given 
p -  0.5.

The comparison between the prior we propose and the prior defined by BBS is 
straight forward. By simply inspecting expression (4.30), we notice that the BBS 
prior distribution assigns large mass to small values of n, and that it decreases for 
n becoming large (Figure 4.8). In particular, the behaviour is similar to the one 
of our prior. Even though our prior depends on the value of p, by computation, 
we have seen that the changes in the prior are negligible.

Unknown p

In the case parameter p is considered as unknown, the joint prior for n and p 
proposed by Berger et al. (2012), derives from the application of Approach 4 
(refer to Section 2.3.1), in combination with the common prior for the probability 
of success of a Binomial model: Jeffreys’ rule prior. The prior for n, when p is 
unknown, will have the form ii(n) oc 1/n, whilst the prior for p is the common 
Beta with both parameters equal to 1/2. That is

yr(n,p) oc -  , ------ (4.38)
u V p ( ! - p )
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Berger et al. (2012) argue that, although in Jeffreys writings there is no reference 
to a prior for the parameter vector (n,p) of a Binomial distribution, it is quite 
plausible to believe that he would have chosen a prior of the form of (4.38). In 
fact, it is well known that Jeffreys’ prior for p is a Be( 1/2,1/2); also, as discussed 
in Section 2.3, Jeffreys proposed 1/n as a prior for an infinite positive parameter. 
Therefore, prior (4.38) can also be interpret by the product of the priors that 
Jeffreys has (or would have had) proposed for this particular problem.

Raftery (1988) proposed as prior for n and p , simply 1/n. This prior has the 
tail of the posterior that becomes sharper and sharper as n grows, as shown in 
Berger et al. (1999).

Although it is not in the scope of this thesis to discus in details the application 
to our approach to continuous parameter spaces, it is not complicated to combine 
the results for n discussed in this chapter with the common Beta prior for p. 
In fact, we can define the prior on n and p and n(n,p) oc 7r(7i\p)7T(p), where 
7r(p) Be{ 1/2,1/2) (Jeffreys’ prior) would be a natural choice. That is

< n ’ P ) a  (ra+1)1(1_ p) exp I E  los(n + 1 - x ) { ! V (1 ~ p)r
„ £=0

-  1 

1x
V p i 1 -  p y

which, even though improper, it yields to a proper posterior.
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Chapter 5

Objective Prior for the Number 
of Degrees of Freedom of a 
Distribution

The content of this chapter, included the illustrations, is taken from Villa and 
Walker (2013c).

In this section we introduce an objective prior for the number of degrees of 
freedom of a Student’s t probability density function. From now on, the model 
will be simply identified as t. distribution or t density.

The objective prior we propose, based on the approach thoroughly discussed 
in Section 3, assumes that the parameter is, representing the number of degrees of 
freedom, is discrete. We will motivate our choice later in the chapter.

The parameter is is typically problematic to estimate. In particular, a problem 
in objective Bayesian inference is that improper priors lead to improper posteriors, 
whilst proper priors may dominate the likelihood (Fonseca et ah, 2008).

The prior that we construct takes into consideration an important property of 
the t distribution: its convergence to a Normal density when is tends to infinity. 
Actually, the approximation to normality reaches remarkable levels for relatively 
small values of the number of degrees of freedom. It is in fact common practice to 
assume the approximation as acceptable for is >  30. As a consequence, the prior
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we propose is truncated.

5.1 Introduction

In disciplines such as finance and economics, extreme values tend to occur at a 
probability rate that is too high to be effectively modelled by distributions with 
appealing analytical properties, such as the normal. This is the case, for example, 
of financial asset returns and market index values, whose behaviour of extreme 
values is better represented by distributions with tails heavier than the normal 
distribution; in particular, see Fabozzi et al. (2010), the t distribution represents 
an appealing alternative. Furthermore, in Maronna (1976), Lange et al. (1989) and 
West (1984), it is pointed out that heavy-tailed data are more efficiently handled 
by regression models for which the error term is assumed to be ¿-distributed. In 
fact, it is shown that the influence of outliers is significantly reduced, leading to a 
more robust analysis; in particular, the smaller the number of degrees of freedom, 
the more robust the analysis tends to be. As such, the possibility of discerning 
between t distributions with different numbers of degrees of freedom, especially 
when the value of this parameter is small, represents an important step of the 
regression analysis and, in general, whenever a t model is deemed to be the most 
suitable in representing the observations of interest.

By considering the three-parameter representation of the t density, we intro­
duce an objective Bayesian prior mass function for the degrees of freedom v of a 
t distribution, conditional on the mean parameter p and variance parameter a2. 
Hence, it will be of the form 7r(i/|p, a2). However, we first review some of the most 
important priors for u existing in the literature.

Let us define by n(u) the prior distribution for the number of degrees of freedom 
of a t density. In the case the number of degrees of freedom are considered as a 
continuous quantity , we have u E (0, oo). If v is consider to take values in a 
countable set, then we would have v =  1 ,2 ,....

The likelihood for v given p and a2 tends to a positive constant as v —>• +00 

(Anscomber, 1967). As such, to have a proper posterior, the prior distribution has
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to tend to 0 as u —> +oo. Therefore, the natural objective prior

n(u) oc 1,

cannot be adopted as the posterior would be improper. In fact, as shown in 
Fernández and Steel (1999b), this behaviour of the likelihood function may lead, 
in general, to an improper posterior when the prior distribution is improper.

To overcome this issue, Jacquier et al. (2004) proposed a truncated uniform 
prior on the discrete integer degrees of freedom. In particular, they note that the 
variance of a t density exists only for values of v >  3. Furthermore, for values 
of v 6 [41,50], the model does not have significant changes in behaviour and 
therefore, their discrete uniform prior is

7r(zz) oc 1, 3 <  v <  40.

According to Fonseca et al. (2008), this type of priors is inappropriate, because the 
estimate of the number of degrees of freedom is sensitive to the chosen truncation 
point.

Geweke (1993) proposes a prior distribution that is exponential. In this case, 
the parameter v is considered continuous and the distribution depends on a value 
c, which is strictly positive

n { y )  oc cexp {— c u }  v  >  0.

This prior, in our opinion, cannot be considered as strictly objective. In fact, 
different values of c will lead to a different distribution of the mass over small 
values of z/, where it is more critical to be able to estimate the number of degrees 
of freedom. Furthermore, as shown in Fonseca et al. (2008), the exponential prior 
tends to dominate the data.

In Fonseca et al. (2008), a linear regression model with p covariates and error 
term ¿-distributed is considered. The authors define two prior distributions for v, 
both based on Jeffreys’ prior Jeffreys (1961): the independence Jeffreys prior
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7X j { v )  OC
2{v +  3) 1 1/2 
v{v +  l ) 2 J

 ̂ > 0, (5.1)

and the Jeffreys-rule prior

VTj(i') OC ' l l 1 ( v )
V

V I)
p/2

u > 0 . (5.2)

It is shown that both priors are proper, and that they lead to proper posteriors.
Prior distributions, though not objective, for the number of degrees of freedom 

of a £ distribution, are given by Juárez and Steel (2010), where a non-hierarchical 
and a hierarchical prior are considered. The first is a particular gamma, with 
parameters 2 and 1/100, leading to the density

— e "^ 10 
100

(5.3)

This prior has the property of covering a large range of relevant values of degrees 
of freedom and allows for all prior moments to exist. The hierarchical prior is 
obtained by considering and exponential distribution for the scale parameter of 
the gamma, with shape parameter 2. The resulting density is

where k >  0 is the hyper-parameter. The authors compared the performance of 
their priors with the Jeffreys7 independent prior proposed by Fonseca et, al. (2008), 
noting that there were no significant differences for values of v below 50.

It has to be noted that in Geweke (1993), Fonseca et al. (2008) and Juárez and 
Steel (2010), the number of degrees of freedom is considered as continuous.

5.2 Preliminaries

We make here some fundamental preliminary considerations.
We consider the parameter space of v to be discrete, that is restricted to
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positive integers. The motivation is practical. In fact, the Kullback-Leibler di­
vergence between contiguous densities rapidly decreases to zero, making necessary 
large amount of information about v (i.e. observations) in order to discern be­
tween different t distributions (Jacquier et ah, 2004). We could make more dense 
the parameter space, for example v =  {1,1.5, 2, 2 .5 ,...}  (or even more dense), 
and apply our criterion to derive a prior, but the resulting increase in precision of 
the estimate of v would not be of any practical use, as, for example, there is no 
sensible difference in having a t density with 7 degrees of freedom and one with 
7.1 degrees of freedom.

The second remark we would like to discuss originates from the well known 
property of the t distribution to converge to a normal distribution when the degrees 
of freedom tend to infinity. That is, from a certain point in the parameter space of 
degrees of freedom, the distribution can be considered as normal. The key point 
we wish to make is that it is not fundamental where the quantification of this 
turning point is (i.e. where a t distribution turns into a normal), but the fact that 
there is one, and that every t distribution with a value of u equal or larger than 
this turning point is considered the same model, that is, a normal distribution. 
We take this point to be 30 based on theoretical results, see Chu (1956), and also 
Section 5.3. It follows that the set of parameter values on which the prior 7t(u) is 
built becomes a finite set of models and u translates to a label associated to each 
model. If we indicate the turning point as the set of models is represented
by , fvmax-1, Umax}, where the first {vmax -  1) models are t distributions
with degrees of freedom u =  1, 2 , . . . ,  umax -  1, and f Vrnax ^  N(p, a2).

A direct consequence of this consideration is that it reveals an important con­
ceptual gap common to other objective approaches to derive ir(v). Even though 
it is theoretically possible to discern between two t distributions with any num­
ber of degrees of freedom, provided a sufficiently large number of observations is 
available, this task loses meaning when the number of degrees of freedom is large 
enough. It follows that, if we want to assign prior mass to models, for example, in 
intervals [/200, • • • 1 / 299] and [/300, • • •, / 39g], this mass has to be the same for each 
element, as these models are in practice not distinguishable. As such, if we define 
a prior of u for values that go from one to infinity, this prior has to be uniform
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in the interval [z/TOax, +oo), and therefore improper. But, as we have discussed 
above, all the models in this interval are (approximatively) represented by a nor­
mal distribution and, as a result, the set of options has to be finite with the last 
element equal to a normal. Furthermore, as all the models from f Vmax onwards are 
virtually the same model (i.e. normal), if n(u) is defined over the whole sample 
space, it means that a large amount of mass is put on the normal model. And 
there is no apparent justification for this approach.

If random variable x  has a t distribution with degrees of freedom u, location 
parameter fi and scale parameter a2. its probability density function is represented 
by

f(x\v,n ,a2) Q z - f i n
va2 )

2

— OO < X < oo,

where £?(■,•) is the beta function. Both location and scale parameters are con­
tinuous, with —oo < n <  oo and a2 > 0. The density of x  can equivalently be 
expressed in terms of the precision parameter A =  1/cr2 as follows

f{x\u,n,\) =
B ( \ A )

A A(:r — //,)" v
v

OO < X < oo.

We mainly focus on the particular case where fi — 0 and a2 =  1; it is always 
possible to move from a t distribution with n =  0 and a2 =  1 to a t distribu­
tion with any value of the parameters (and vice versa) by simply applying the 
relationship x ^ ^  =  // +  <7.zy (U ■ In any case, as we are interested in comparing 
t distributions that differ only in the number of degrees of freedom, to avoid a 
cumbersome notation, the t model with u degrees of freedom and parameters // 
and a2 is represented as / „  in lieu of f(x\u, fi, a2).

Let us consider the following t distributions: f v and _/j/, with v v'. Also, 
we assume that location and scale parameters are equal for both densities, with 
fi =  0 and a2 — 1. The Kullback-Leibler divergence between f v and f v> is given
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by

DKL{fu\\fu') - D M i
dx

L

i
-oo l/2,is/2)

x
is

o  \  -a±x 2  \  2

log <

9\ -^±i 2  \  21 /  X
\/vB{ 1/2,v¡2) \ + is

. 2 \ - ^
> dx

1
y/l?B{ 1/2, i/f 2) V v‘

x

=  log
y fi/ B (l^ )\  zy+1

E„ log ( 1 +  -Z2
l / +  1E,y log 1

o r

(5.4)

where Ev represents the expected value with respect to /„ . To identify the nearest 
model, in terms of Kullback-Leibler divergence, we have numerically computed 
the expression in (5.4), for is > 1 to compare .Dkx(/„||/„_i ) and DKL{fv\\fu+\)- 
Figure 5.1 shows that DKL{fu\\fiy-i) > D KL{ fw\\fv+i), for any is, and that the 
divergence decreases as the number of degrees of freedom tend to infinity. The 
result obtained is independent from the choice of ¡i and a'2.

Figure 5.1: Numerical computation of DKL(fu\\fu_i) -  DKL(fu\\fv+1), for is =  
2 , . . . ,  30. The result does not depend on p and a2.

We have anticipated that the prior we propose is truncated, and that this is 
done to avoid assigning more mass than appropriate to the normal model. As 
such, the Kullback-Leibler divergence at the points of the parameter space near
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to and at the truncation have to be discussed separately. First, we note that the 
minimum Kullback-Leibler divergence at the truncation point is given by

D k l { N o A U ) =  /  Wo,1 logfJ  — c N(0,1

log

A

\[7h :

dx

1
2En \x<2\ +

u + l
2

E  N tag ( l +

(5.5)

where Af0,i is the standard Normal, and E N represents the expected value with 
respect to Ar0,i. If we indicate by f Umax the Normal model at the truncation point, 
the nearest distribution to f Vmax_x is fvmax_2, as the numerical computation in Table 
5.1 shows. The results can be summarised as follows. If the set of densities is given 
by { h , f 2 , - - - , f v max̂ u max}, with f Umax «  W(0,1), the minimum divergence for 
v =  1,- • m W 2 is D KL{fv\\fv+1); for f Vrnax̂  and f Umax it is DKL{fv\\fv- 1).

D k l (U max — 1 I I A  max — 2 max )

30 2.0399 x 10~06 0.0021
60 1.3121 x 10"07 0.0005 x 10~°4
90 2.6168 x IO’ 08 0.0002 x 10~°4
120 8.3194 x 10“ 09 0.0001 x 10“ 04
150 3.4174 x 10“ 09 7.9029 x lO"05
180 1.6513 x 10“ 09 5.4735 x 10” 05

Table 5.1: Comparison of the Kullback-Leibler divergence from / I/ma2,_1 to / % ti_2 
and from fvmax_1 to /^max, with / „ max «  N (0,1). It can be noted that the last t 
distribution is closer to the t distribution on its left than to the standard normal.

5.3 The Villa—Walker prior for u

To define the prior mass function for the degrees of freedom n of a t distribution, we 
need to make the following considerations. We assume that the location parameter 
¡i and the scale parameter a2 (or, equivalently, the precision A) are known. Let us 
consider a random variable x  with a t distribution with parameters u, ¡i and a2.
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Therefore, for v —y +oo we have x  A  N(fi ,a2). It is common practice to assume
normality for v >  30. Chu (1956) shows that the proportional error in using 
the distribution function of a standard normal, <f>(x), as an approximation to the 
distribution function of x, F(x),  is smaller than 1/u for every v > 8, where the 
proportional error is defined as E =  | (F (x)/$(x)) — 1|. In fact, the approximation 
of a t distribution to a normal density is always to a certain level of precision and, 
apart from computational limitations, it is always possible to find a sample size 
large enough to be able to discriminate the two distributions for a given precision 
level. In any case, the prior mass function for the parameter v is defined over a 
set of models composed by t distributions with increasing number of degrees of 
freedom and, as a final model, a normal distribution. This normal distribution 
can be seen as the model that incorporates all the remaining t distributions for 
which we assess that the value of u is too high to make them distinguishable from 
a normal. Therefore, as introduced in Section 5.2, the prior 7r(v) is a function that 
associates a mass to each model in the finite set { / i ,  / 2, . . . ,  / W 1 , fvrnax}, where 
f u (for u =  1 , ,  Vmax-i) is a t distribution with v degrees of freedom, and f Vmax 
is the normal distribution iV(/r,cr2).

For the remainder of this section, without loss of generality, we focus on the 
special case where /j, =  0 and a2 =  1. Our criterion is based on the fact that, if 
the true model is removed from the set of all possible models, then the posterior 
distribution will tend to accumulate on the nearest model in terms of the Kullback- 
Leibler divergence. Then

and the derivation of the prior probability from this loss is given by the self­
information loss function

The prior mass to be put on each model in the set of options is then obtain by
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applying (3.6), and is given by

7t(u) o c

ex p {D KL(fu\\fu-i)}

exp { D KL(fv11 f u+l)}

if v >  vmax -  1

if V < Vmax -  V
(5.6)

The prior for values of v < vmax — 1 is obtained by replacing equation (5.4) in the

7 r(l/)  OC -------- —-----— V --------- exp

=  u +  1

f  v + l ^ ' ( x 2\
1 r, E„ log 1 + -
l  2 L V v  ) \

v +  2 r (
+ E„

2
log 1 x

v + l ■ (5-7)

The prior mass for i;max — 1 is again obtained by replacing (5.4) in the first of 
(5.6), for which we set u' =  vmax — 2

ir(i'-i) o c ------ 77=777r  ¡¿n -----exp
V 2 ’ 2 )

V - \  +  1 
2

V - l

E;¡7-1 log 1

2 E"‘ 1 log 1 +

X
V-l

X
V-\ -  1

(5.8)

Note that in equation (5.8) we have replaced umax — 1 by v_ x. Finally, the prior for 
vmax is obtained by replacing (5.5), for which v =  umax — 1. in the second equation 
of (5.6), obtaining

7T (v„ oc exp ,Ejv (x2) + z'-i EN (5.9)

To have a picture of the prior on u, we have plotted its behaviour for three 
distinctive values of i7mai; in particular, in Figure 5.2 we have explored the cases 
where the prior has been truncated at v =  30,60 and 90. The prior puts the highest 
value of mass on the first model, the t distribution with 1 degree of freedom, and 
gradually decreases toward 1 as u increases. This is a direct consequence of the 
fact that the models become more and more similar to each other, resulting in a
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Figure 5.2: Normalised prior distributions for u truncated at umax =  30, vmax =  60 
and vmax =  90. In the left column we show the distributions on a non-zero scale 
graph, whilst in the right column the graphs are scaled to zero.

Kullback-Leibler divergence converging to 0. The priors look uniform for v >  5; 
however this is a perception caused by the fact that the scale is distorted by the 
larger values of the prior for the small values. While the prior does look uniform, 
it is not and the subtle differences are sufficient for the prior not to behave as 
a uniform prior. And something close to uniform for high degrees of freedom is 
coherent. For if mass 7r(z/) has been put on v then one would expect the mass on 
ix(v +  1) to be very similar simply because the / „  and f u+i are almost the same 
density.

The prior distribution has also been analysed for t distributions with different 
values of n and a2. We have observed that the prior is not affected by changes 
in the location parameter /i. Although the scale parameter a2 has some effect on 
the prior, that is a larger mass is assigned to values of u <  5 for increasing values 
of cr2, there is no change in the tail of the distribution. However, the posterior 
is not significantly affected by this, given that the main effect of the prior on the
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posterior is in the tails, where the priors are remarkably similar, refer for example 
to (Berger et al., 2012).

5.4 Posterior analysis

We now analyse the posterior for the degrees of freedom when the prior obtained 
with our approach is used on simulate data. We first analyse the result on simu­
lated data from an identically distributed sample. Then, we assume to deal with 
a regression model where the error term is supposed to follow a t distribution.

5.4.1 Sampling algorithm

By combining the likelihood function for parameter v (given // and o 2) for a t 
distribution, that is

L(v\n,o2,x ) =  J [̂
i = 1

1
B (  1/2, u/2)

(xj - / i ) 2\
va2 )

U±1
2

with the appropriate prior for v in (5.7), (5.8) or (5.9), in which we have in­
cluded parameters /i and a2, we obtain, respectively, the following three posterior 
distributions

7T(v\fi,cr2,x) oc
7=1 [ B  (1-/2, u/2) \ vo2

V ^ ( i /  +  l ) f l ( i , * ± i )

1/2

1 + (■Xi -  n) 2  \  2

exp < -
v + 1

E„ log 1 +
{ x -  n f

o 2v

v +  2^
+  — — E„ log 1 (s -  h)2

o 2(y +  1)

for values of v — 1 , . . . ,  vmax — 2

v r ^ - i l n,a2,x) oc Yl
L=1 1 B (1/2, u/2) \ vo2

1/2 (x%~ n ) 2\ 2
V O 2
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y V V - ,  -  l ) f l  (|,
s ja ‘ v^

exp ^-1 +  1 
2

+  ̂ E ,

E„ log | l +  f c f i £cr2̂
(x -  n)2

log 1 +
ct2 ( z/ _ i -  1)

for v =  vmax -  1, and

Tr{umax\n,a2,x )  oc J
=i \ B(y1/2^ / 2) \,y(J

1/2
(z» ~ fj) 

ua2

9 \2  \  2

\/27T cr2
e x p  - ~ E n [ ( x  -  fJ,)2/a2] +

v~\ EN

for v =  umax. It has to be noted that the posterior distribution is proper as it is 
finite. Furthermore, the actual posterior for the general case, that is when ¡i ^  0 
and (T2 ^  1. needs to take into consideration the priors for these parameters. 
We have chosen proper priors for both the location and the scale parameters so 
that the posterior distributions are proper as well. In particular, 7r(/r) is normally 
distributed and 7 r ( c r 2 )  has an inverse gamma distribution, both with relatively 
large variance. However, we have also run the simulations with the well known 
objective priors, that is 7 r ( / / )  o c  1  and 7 r ( c r 2 )  o c  1/cx2, and no significant differences 
were seen.

The above expressions are not analytically tractable. Thus, to study the pos­
terior distribution of the number of degrees of freedom u, it necessary to use 
Monte Carlo methods. The main part of the sampling structure is a Gibbs sam­
pler, used to sample from the conditional distribution of each parameter u, p. and 
a2: at each step, given that the conditional distributions are complex as well, we 
perform Metropolis-Hastings algorithms.

5.4.2 Independent and identically distributed samples

For the first simulation study, we have considered the t distribution with v =  3, 
fi =  0 and a2 =  1: x  ~  t(3, 0,1). We have obtained a random sample of n — 100
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observations and considered a prior truncated at umax =  31; that is, /31 ss iV(0,1). 
For the parameter of interest v, in Figure 5.3 we have plotted the histogram of 
the posterior distribution.

5000
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1000

0
0 2 4 6 8 10 12

v

Figure 5.3: Posterior histogram of the parameter u for an independent sample of 
size n =  100 drawn from a t distribution with u =  3, p =  0 and cr2 =  1.

The statistics of the posterior distribution are reported in Table 5.2. The 
posterior distribution is skewed. As such, the most appropriate statistics to be 
used as the estimate of u is the median. We note that, for the parameter of 
interest u, the median of the posterior is in line with the degrees of freedom of the 
distribution and that is included the 95% credible interval.

Parameter Mean Median C.I. (95%)
3.12 3 (2, 6)

h 0.08 0.08 (-0.17, 0.33)
cr2 1.09 1.07 (0.70, 1.59)

Table 5.2: Posterior mean, median and 95% credible interval for the simulated 
data from a t distribution with u =  3, p, =  0 and cr2 =  1.

To show that the truncation does not affect the estimate of the number of 
degrees of freedom, for this case, we have performed simulations for different 
values of vmax. In particular umax — 35,45,60 and 90. In Figure 5.4 we have 
plotted the posterior histogram for u with the above truncation points. It can
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be seen that the distributions are remarkably similar. However, we would like to 
stress one more time that a truncation point of 30 (or 31) gives sensible results; 
therefore, the above analysis is for illustrative purposes only.
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Figure 5.4: Histogram of the posterior distribution of v obtained by truncating 
the prior at different points. In particular, at umax =  35 (top left), umax =  45 (top 
right), vmax — 60 (bottom left) and Umax =  90 (bottom right).

Large number of degrees of freedom

Let us now analyse the performance of our objective prior when the data is sim­
ulated from a t density with v =  20, that is a relatively high number of degrees 
of freedom. In this region of the parameter space consecutive t models are sig­
nificantly close, therefore difficult to discern. The histogram of the posterior is 
plotted in Figure 5.5.

We note that the posterior is not very informative, although the median value 
is v =  20. The reason, as anticipated at the beginning of this section, has to be 
ascribed to the relative closeness between t models when the number of degrees 
of freedom is relatively large. An objective prior, which intent is to “let the data 
speak” , would not heavily contribute to the posterior, in terms of information. 
Of course, should the number of observations increase, the posterior would be 
definitely more concentrated around the true value of the parameter, v =  20. We
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v

Figure 5.5: Histogram of the posterior distributions of the parameter v with data 
simulated from a t density with 20 degrees of freedom.

do not discuss in the detail how a posterior distribution has to be interpreted, as 
it is not in scope for this thesis. However, the top histogram in Figure 5.5, clearly 
indicates a more likely value of the number of degrees of freedom at v =  20. This 
is also the mode of the distribution.

The wrong model

In Section 5.3, where we have discussed the motivation that lead to a truncated 
prior for the parameter v, we argued that this is advisable as the t distribution 
rapidly converges in distribution to a Normal model, for u - »  +oo. It is then 
advisable to analyse how our prior performs when simulated data is sampled from 
a t distribution with a number of degrees of freedom above the truncation point.

We have then analysed the behaviour of our prior distribution, truncated at 
Vmax =  31, with data simulated from a t distribution with 50 degrees of freedom. 
It can then be assumed as if the data was originated by a standard Normal model. 
In Figure 5.6 we have plotted the histogram of the posterior distribution for v. 
The posterior tends to accumulate at the truncation point. This behaviour would 
suggest that the data analysed derives from a model with a number of degrees 
of freedom that is at least as large as v =  31 (i.e. the truncation point). The 
interpretation then, would be to assert that we are examining a phenomenon which 
is normally distributed. Obviously, we know that the data has been simulated from
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Figure 5.6: Histogram of the posterior distributions of the parameter u with data 
simulated from a t density with 50 degrees of freedom.

a t density; but this density has a number of degrees of freedom sufficiently large

at vmax =  31, this reflects the fact that we believe that from that point (included) 
onward, the model can be assumed as normal. Hence, the appropriateness of the 
conclusion.

Small sample size

It is well known that Bayesian analysis has better pay off for relatively small 
sample sizes. Therefore, we thought appropriate to test the performance of our 
prior distribution with an i.i.d. sample of size n — 30. The sample has been 
obtained from a t model with parameters u =  5, ¡i =  0 and a2 =  1, and the prior 
was truncated at umax =  31. The results of the simulation are in Figure 5.7 and 
Table 5.3. The posterior for u, although showing a tendency to accumulate on 
the true value of the parameter, presents a positively skewed behaviour stronger 
than the case of large sample size. This is reflected by the summary statistics: 
whilst the median gives a sensible result, the mean indicates a higher value for u. 
As said, in the presence of skewed distribution, the central value would be more 
effectively represented by the median, rather than the mean; therefore, the median 
is the estimate of v.

to be approximated by a Normal model. Given that the prior has been truncated
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v

Figure 5.7: Histogram of the posterior sample of v. Observations (n =  30) are 
sampled from a t distribution with v =  5, p =  0 and er2 =  1.

Parameter Mean Median C.I. (95%)
u 8.33 5 (2,28)
V 0.12 0.12 (-0.25,0.47)
a2 1.17 1.12 (0.52,2.10)

Table 5.3: Posterior mean, median and 95% credible interval for the simulated 
data (n — 50) from a t distribution with v =  5, ¡i =  0 and cr2 =  1. The posterior 
for the number of degrees of freedom is positively skewed, therefore the median 
represents a more suitable estimate of the true value of the parameter.

5.4.3 Regression model

In Section 5.1, at the beginning of this chapter, we have mentioned the importance 
of assuming ¿-distributed the error term of a regression model when there are 
outliers. West (1984) discusses in detail the effect of outliers in Bayesian linear 
regression. Let us consider the linear regression model

Vt =  x'i/3 +  £i i =  l , . . . , n ,

where y i , . . .  ,yn are the observations of the dependent variable, x i , . . .  , xn is a 
set of p 4- 1 vectors representing the covariates, (3 is the vector with the p +  1 
parameters (including the intercept) and, finally, £ i , . . . ,  en is a set of exchangeable 
random variables with common distribution with one mode ad symmetric around
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zero. That is, et ~  51(0, cr), where a is a scale parameter, in general unknown. 
The idea is that, if we choose function g(-) to be heavy-tailed, relatively to the 
Normal distribution, the regression model would be less influenced by outliers in 
the observations.

We consider the case where the scale parameter a is known only, as this is the 
assumption for our analysis. Let n(/3) be the prior for the vector of parameters. 
Thus, by representing as Dn the set of n observations of the dependent variable 
and the covariates (i.e. the data), we have that the score function of the posterior 
tt(/3|L>„) is given by

where function h(-) is the so-called influence function (from Af-estimation theory)

determines the effect on the posterior distribution carried by an observation ¡/¿. 
In particular, when the distribution of the error term is outlier-prone (O ’Hagan, 
1979), the corresponding influence function would be in a such a way that, the 
more the observation of the dependent variable is far from its centrality, the less 
the influence in the estimate will have. On the other hand, if g(e) is outlier- 
resistant, the effect of an observation yl relatively distant from the centre will not 
be negligible.

O ’Hagan (1979) introduces clear conditions under which a distribution is either 
outlier-prone or outlier resistant. On the basis of this, he shows that, among the 
others, the t density is an outlier-prone distribution, therefore suitable to model 
the regression error term when there are relevant outliers in the data set. He 
also shows that the Normal distribution, more commonly used as the distribution 
of the error term, is outlier-resistant. Thus, not appropriate to handle outliers. 
Although the appropriate choice for representing the behaviour of the error term 
in a regression model seems to be a f density, it is still more common to assume 
that this distribution is Normal. This is because the latter is more tractable than 
the former.

For our simulation, we consider a linear regression model with one covariate,

of g{e) and has the form h(e) =  —d/d,£\ogg(e). The influence function is what
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that is
V i\x i  ~  t ( ß 0 +  ß u X i ,c r 2 \ v )  i =  l , . . . , n ,  (5.10)

where ß Q and ß \  are the regression parameters, a2 the regression variance and v the 
number of degrees of freedom of the ¿-distributed errors. For the purpose of this 
simulation, we have set ß 0 =  10, ß i  =  10, a 2 =  4 and v  — 5. We have generated 
n =  100 observations from a uniform with parameters 0 and 1: x t U{ 0,1). 
Then, values yr have been obtained according to the model in (5.10).

The prior for v is the one obtained according to our approach. In particular, 
for this simulation we have considered a prior truncated at vmax =  31. As for 
the independent sample, we have used a Gibbs sampler with Metropolis-Hastings 
steps for each parameter. Figure 5.8 shows the histogram of the posterior for

v

Figure 5.8: Histogram of the posterior distributions for v in a linear regression 
study. The parameters of the regression model where the data has been sampled 
from, were v =  5, /3q =  10, (3i — 10 and a2 =  4.

Parameter Mean Median C.I. (95%)
V 5 4.67 (4. 6)
ßo 9.99 9.99 (9.70, 10.26)
ßi 10.17 10.17 (9.68, 10.67)
a2 3.89 3.87 (3.36, 4.50)

Table 5.4: Posterior median and 95% credible interval for the regression simula­
tion. The parameters were set to u =  5, (30 =  10, /?i =  10 and a2 =  4.
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u, and Table 5.4 the statistics of the simulation. By inspecting both sources of 
information, we conclude that the prior has performed well.

5.5 Application

To illustrate the proposed prior on real data, we analyse a sample of the daily 
closing values of the Dow Jones Industrial Average index of the U.S. stock mar­
ket. In particular, the data from 11 November 2008 to 4 May 2009, that is 98 
observations. This data sample is part of a wide sample analysed in Lin et al. 
(2012), which ranged from 22 October 2008 to 22 October 2009. Given that the 
objective of Lin et al. (2012) was to estimate variance change-points in the series, 
we have focussed our analysis on a subset with estimated constant variance.

Figure 5.9: Daily return (multiplied by 100) of the closing Dow Jones index from 
11 November 2008 to 4 May 2009.

The actual analysis has been performed on the daily returns, multiplied by 
100. That is, X d =  [(1^+1 -  Yd) /Yd] 100, where Yd is the market index at day 
d. The transformed data, for the period of interest, is plotted in Figure 5.9. It 
can be noted that the series is stationary, and that its variance can be reasonably 
considered as constant (for the period).

In Table 5.5 we have reported some basic descriptive statistics of the series. 
The kurtosis is larger than 3 and even though the distribution of the returns does
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not have tails much heavier than a normal, it seems to be appropriate to consider 
a t model.

Mean 0.0035
Variance 4.4813
Skewness 0.3216
Kurtosis 3.5626

Table 5.5: Descriptive statistics of the daily Dow Jones index returns from 11 
November 2008 to 4 May 2009.

Specifically, the model is

Ad — fi +  Ed d — 1 , . . . ,  98,

where ~  i(0, cr2, v). The result of the simulation are compared, when appropri­
ate, with the ones obtained in (Lin et ah, 2012).

We have obtained the posterior distributions for the three parameters by Monte 
Carlo methods. In Figure 5.10 we have plotted the sample, the progressive median 
and the histogram of the posterior of the number of degrees of freedom v only. 
As the posterior distribution of v is skewed, the median represents the sensible 
estimate of the true value of the parameter. The posterior statistics of the param­
eters are reported in Table 5.6. The results from (Lin et ah, 2012) are, v =  8.4873, 
H — —0.0406 and a2 — 3.3749. The authors, as a prior for u. have used the one 
proposed by Geweke (1993) (refer to (5.1)) with hyperparameter A =  0.3. There­
fore, 7t(u) ~  Exp(0.3). It has to be noted that the estimate of the degrees of 
freedom and the mean // are relative to a larger data set, in particular, for the 
first 133 observations. However, the authors conclude that the number of degrees 
of freedom for the whole data set is homogeneous in the range 6.68-8.49 and the 
mean is zero. The median of the posterior distribution, representing our estimate 
of the parameter value, is 8 degrees of freedom. We can then conclude that our 
estimate of u is in agreement with Lin et al. (2012).

We have analysed the data by adopting priors different from ours. In addition 
to the independence Jeffreys’ prior (5.1) and the Jeffreys-rule prior (5.2) proposed
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v

Figure 5.10: Posterior samples (top), posterior progressive median (middle) and 
posterior histogram (bottom) for the parameter u.

by Fonseca et al. (2008), we have considered the non-hierarchical prior proposed by 
Juárez and Steel (2010) in (5.3). The resulting posterior statistics are summarised 
in Table 5.7. We see that both the independence Jeffreys’ and the Jeffreys-rule 
prior give estimation results that do not differ from ours, considering that our prior
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Parameter Mean Median C.I. (95%)
V 9.96 8 (2, 26)
n -0.05 -0.05 (-0.45, 0.36)

a 2 3.07 3.21 (0.03, 5.61)

Table 5.6: Median and credible interval for the number of degrees of freedom, 
location and scale parameters for the daily returns of the Dow Jones index, from 
11 November 2008 to 4 May 2009.

Prior Median C.I. (95%)
7T/(n) 7.30 (3.80, 25.44)
70%) 8.63 (3.46, 31.98)
7Ti%) 15.32 (4.90, 28.89)

Table 5.7: Posterior statistics obtained by using the independence Jeffreys’ prior 
7r/(n), the Jeffreys-rule prior 7Tj%) and the non-hierarchical gamma prior proposed 
by Juárez and Steel (2010)

assumes u discrete whilst both Jeffreys’ do not. However, the credible interval 
of the Jeffreys-rule prior is larger than the one obtained with our prior and the 
independence Jeffreys’ . For the Dow Jones index data analysed here, the posterior 
median of v obtained by applying the gamma prior proposed by Juárez and Steel 
(2010) is in contrast with our results.

5.6 Discussion

The adoption of t distributed models is an important area of application in fi­
nance. This can either be the application of ¿-distributed random variable to 
model a certain quantity, such as financial returns, or the assumption that the 
errors of a linear regression model should have heavier tails than the ones of the 
more commonly adopted normal distribution. While objective priors for continu­
ous parameters, such as the mean or the variance, can be obtained with various 
approaches, the estimation of the number of degrees of freedom of a t distribution 
is not so straightforward.
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An important aspect of the objective prior for the number of degrees of free­
dom we propose, is that it is truncated. This is a consequence of the fact that 
the t density converges in distribution to the Normal density. Therefore, for a 
sufficiently large number of degrees of freedom, the model can be considered as 
normal and it represents the last element in the set of the option models. An 
important property of the proposed prior is that its estimation performance is not 
sensible to the point of truncation. We also add that taking the truncation point 
up to, say, 60 implies an interest in discriminating between a t45 and a f50, for 
example. This is not practical or desirable.

The efficiency of the designed prior for the number of degrees of freedom of a 
t distribution has been demonstrated through two types of simulation. The first 
one is based on data simulated from a t density with given parameter values, and 
the second from data simulated from a given regression model. For the first type 
we have considered a wide range of scenarios, including relatively large value of v, 
“wrong” model (i.e. value of v above the truncation point) and small sample size.

The analysis on real data appears to give comforting results about the prior. 
In fact, for the Dow Jones data sample, the estimation of the parameters of the 
model are in line with the ones obtained by using a different prior. Furthermore, 
our analysis using two well known objective priors supports again the results 
obtained.
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Chapter 6

Objective Model Selection

6.1 Introduction

The content of this chapter is taken from Villa and Walker (2013b).

In this chapter we introduce a novel approach to objectively determine model 
prior probabilities for model selection problems. A particular type of model se­
lection, that is variable selection, will be discussed in Chapter 7. The approach 
is based on our objective criterion (refer to Section 3.1) where we move from the 
parameter space © to the model space AT

We focus on the case where the prior is the pair {f(x\6), tt(6)}, where f(x\9) 
is a probability distribution, characterised by parameter 6 (possibly a vector of 
parameters), and 7r(9) is the prior distribution representing beliefs on the model 
parameters. We assume both f(x\6) and tt(9) specified.

A model selection problem is as follows. We have a set of n observations 
x — ( x i , . . . ,  xn), and a set of possible k models indicated by

Mj =  { / jO ^ j) .  7r( ^ ) } J j  =  1> • • -, k.

The set of the k models is sometimes identified as the models space, that is M. =  
{ M i , . . . ,  Mfcj.The general aim is to compare the k models. The usual way to 
perform this comparison is to compute pairwise Bayes factors between the models
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in the model space. Thus, the Bayes factor between model Mj  and model M, is 
given by

m j{x) =  J  f j{x  16j )7ij[0j ) d9j
m (x) j  fi{x\9i)'Ki{ei) d6i ’ j  £ {!,••■ ,k}  ,

where m.j(x) and rrii(x) are the marginal densities of x  under, respectively, model 
Mj  and model Mt. We can then see that the Bayes factor Bfl is a weighted 
likelihood ratio (for the observed data) of Mj over Mi, where the weights are 
represented by the prior probabilities itj(9j) and 7p(6^). Then, given model prior 
probabilities, P(Mj ), j  =  1 the posterior mass for each element in the
model space, given the data x, is

P(Mj\x)
P{Mi)nrii(x) 

E L i  P(Mj)mj(x)
- i

Although we focus on the model priors, it is still appropriate to examine how 
Bayes factors and posterior model probabilities can be interpreted and used.

Bayes factors can be seen as the “odds provided by the data for Mj  versus M ” 
(Berger and Pericchi, 2001). In other words, they show what are the odds that 
the observations have been generated by model Mj with respect to model M,. A 
Bayes factor larger than one, would indicate that it is more likely that model Mj 
has generated the data than model M,. And, the larger the value of Bji, the more 
strong is this “statement” . On the contrary, a value of the Bayes factor smaller 
than one, would indicate as more likely model Mi (with respect to model Mj). 
Obviously, the closer to zero the value of BJt, the stronger this indication is.

For what in concerns model posterior probabilities P(Mj\x), j  =  1 , . . . ,  k, they 
can be used in different ways. It would seem appropriate that, should one of 
these probabilities be definitely higher in value than the remaining ones, then 
the associated model has to be chosen. However, especially when the number 
of models is large, posterior probabilities tend to be all small in value. In this 
case, (Chipman et ah, 2001), show that a decision theory approach to select the
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appropriate model can be applied. A utility function u(a, A) is chosen, where a 
is the action of choosing model M j, and A is an unknown quantity of interest, 
such as a prediction of x. Thus, the model is selected on the basis of the action a 
maximising the expected utility

P(A\Mj,x)  represents the probability of A  given model Mj  and data x. Note 
that, in this case, the strategy that is used to select a model will depend on the 
utility function u(a, A) adopted in the process.

If the objective is solely prediction, Bayesian model averaging could represent 
an appropriate solution (Hoeting et ah, 1999). The general idea is to consider the 
posterior probability of the quantity of interest (given the data), as the average of 
the posterior probabilities under each model in the model space, weighted by the 
model posterior probabilities. Thus, we can compute appropriate indexes, such as 
mean and variance, of the posterior distribution of A. That is

Sometimes, model averaging is restricted to a subset of the model space. In this 
case, only models with a relatively high posterior probability are considered in 
computing the weighted posterior of A  and its indexes.

where P(A\x)  is the predictive distribution of A given x

k

P(A\x) = ^ P { A \ M j ,x)p {Mj\x)

k

E(A|ar) =  ^  E(A\Mj,x)P(Mj\x)

and

k

Var(A\x)  =  \{Var(A\Mj,  x) +  E(A|M j, x)P(Mj\x)2} P(Mj\x)]

—E(A|x)2.
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There are several reasons why Bayesian model selection has to be preferred to 
a classical approach. Berger and Pericchi (2001) discuss this in detail. Among the 
advantages, we have an easiness in interpretation of the Bayes factors with respect 
to the widely criticised p values. For example, see Sellke et ah (2001).

Bayesian model selection is consistent, in the sense that, if the true model 
is in the set of all possible models, with a sufficient amount of data, this model 
will be selected by the procedure. In addition, if the true model is not in the 
models space, the result in Berk (1966) shows that (asymptotically) the selection 
process will point to the model which is the closest to the true one, in terms of 
Fullback Leibler divergence.

As discussed in Scott and Berger (2010), the Bayesian procedure is an auto­
matic Occam’s razor: the selection is always in favour of the simpler model.

Other positive results in adopting a Bayesian model selection approach include: 
the procedure is the same if the model space has two, three or more elements. 
Nested models, standard distributions or regular asymptotics, are not required. 
Model uncertainty is accounted for; thus, it is not necessary to use part of the 
data for parameter estimation and the remaining for prediction.

On the downside, in the specific when an objective Bayesian model selection 
approach is considered, the following difficulties have to be considered (Berger 
and Pericchi, 2001). Computational issues can arise in the calculation of Bayes 
factors when parameter spaces are large. Similarly, difficulties are encountered for 
selection problems where the number of models is considerably large.

Use of improper priors for the parameters of the models is not possible, in 
general. Given that most objective priors are improper, this leads to strong chal­
lenges for an objective approach. Even the use of “arbitrary” vague priors is not 
advisable, as the results will strongly depend on the level of “arbitrariness” chosen 
for the prior.

Finally, even though some models may have parameters in common, their 
meaning may be different. Thus, prior distributions for these parameters have to 
reflect the difference as well.
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6.2 Current objective approaches

Except, for variable selection problems (Berger and Pericchi, 2001; Scott and 
Berger, 2010), it appears that the main effort in determining objective prior prob­
abilities is concentrated on 1 Comprehensive discussions on the various ap­
proaches in determining the prior distribution for the parameters of the models 
can be found in Berger and Pericchi (2001), Chipman et al. (2001), Perez and 
Berger (2002), Stracham and van Dijk (2003), and the references included in the 
papers. On the other hand, very little discussion has been given to the prior mass 
to be put of the model space, and the usual objective prior is the uniform one; that 
is, P ( Mj ) =  1/k, for j  =  1 , . . . ,  k. In other words, the claimed objective approach 
assigns equal importance to each model in the set of all the possible models.

6.3 The Villa-Walker objective model prior

As anticipated, we obtain the model prior on the basis of the criterion discussed 
in Chapter 3, where we replace the parameter 6 with the model M. We then 
objectively assign a worth to each model via Berk’s result (Theorem 3.1), and link 
it to the prior mass via the self-information loss function. We need to take into 
consideration that the Kullback-Leibler divergence is minimised in expectation, 
where the expectation is with respect to the prior on the model parameters.

We introduce the idea in a simple model selection problem with two possible 
models only. Let us assume that we have to select between models

where we assume that the prior of the parameter 6\ 6 0 i, tx\ (9i ), and the prior 
on the parameter 02 E ©2, ^ (# 2)5 are known and proper. Following the criterion, 
the prior mass on M 1; is determined on the basis on what is lost if model
Mi  is removed, and it is the true one. P{Mf)  is then proportional to the expected 
minimum loss between the models. Hence,

Mx =  {/i(:r|6»i),7ri(6>i)} and M2 =  { / 2(rr|6>2), 7r2(02)} >

( 6 . 1)
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Similarly, the mass associated to M2, P( M2), is proportional to the expected 
minimum loss between model M2 and model M 1; given by

The expressions at the exponential in (6.1) and in (6.2), can also be written, 
respectively, as

where the expectations are taken with respect to the prior distributions.
The most general scenario is represented by a model space of k elements, 

where each model is specified by a vector of parameters of finite dimension. Let 
us consider a model selection problem with model space A4 =  { M i , . . . ,  M*,}, with 
Mj — { fj(x\8j), 7Tj(0j)}, j  =  1, . . .  ,k. A compact notation for the prior mass for 
model Mj  is then given by

In other words, the prior assigned to model Mj  can be seen as if it is obtained 
by measuring the divergence between fj(x\9j) and any other model, and selecting 
the smaller one.

In the following sections we discuss some illustrations for the non-nested and 
the nested model selection case. To simplify the notation, unless otherwise spec­
ified, the numbering of the various models (including the probability and prior 
distribution that form them) starts afresh in each illustration.

(6.2)
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6.4 Non-nested models

In this section we consider scenarios where the elements of the model space are 
non-nested. In the first illustration we compare two discrete models; a Poisson 
and a Geometric probability mass function. Next, we consider a model selection 
problem with two multiparameter continuous densities: Weibull and Log-normal. 
Finally, in the third illustration, we extend the continuous problem to a three 
model selection problem by adding a Gamma density.

6.4.1 Illustration 1: Poisson and Geometric models

Let us assume that we have observed a set of observations x from a phenomenon 
we know to have support X  =  {0 ,1 ,2 ,. . .} .  We want to compare the following 
two models

Mi =  {fi(x\6) =  9xe d/x\ ,7Ti(0)} and M2 =  { / 2(a # ) =  0(1 -  0)x, tt2(</>)} ,

that is, Mi is a Poisson distribution with rate parameter 9 G  (0 ,+oo), and M2 is 
a Geometric distribution with probability of success </> G  (0,1).

Following the objective approach we have outlined in Section 6.3, we first 
consider the mass to be assigned to model M i . By applying (6.1) we have

To determine the mass in (6.3), we first find the Kullback-Leibler divergence 
between a Poisson distribution with parameter 9 and a Geometric distribution 
with parameter <j>. As shown by Theorem B.l in Appendix B, this is given by

P(M i) oc exp { /

9 — log 4> — 6 log(l — </>). (6.4)
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The divergence (6.4) is minimised, with respect to 0, by 0 — 1 /(1+9). By replacing 
this result into (6.4), we obtain the minimum Kullback-Leibler divergence between 
a Poisson and a Geometric distributions

min DKL{fi{x\0)\\f2{x\(l)))
<P

- 9  +  01og(l +  9) +  log(l +  9)

For this illustration, we have considered a Gamma prior on the parameter 9, with 
shape and scale parameter both equal to one; that is, 7Ti(0) ~  Ga( 1 ,1) =  exp(—9). 
Therefore

P (M X) oc exp min D kl
<t>

exp(0.09) =  1.09.

(ii#> ii/2(i
(6.5)

The result in (6.5) is obviously affected by the choice of the prior. In particu­
lar, we note that if the variance of 7/1 (9) increases, corresponding to an increase of 
uncertainty about the true value of the parameter, the mass assigned to model Mi 
increases. For example, if we chose the prior to be ni(6) ~  G'a(lC),1) (correspond­
ing to a variance of 10), the corresponding mass on Mi would be P(M\) oc 2.16. 
Similarly, if the variance decreases, therefore the uncertainty about the param­
eter is more limited, the approach will assign a lower mass. For example, for 
M (9) G a(l,5) (variance equal to 0.04), we have P(M\) oc 1.01. Intuitively,
if we have a relatively high uncertainty about the true value of the parameter, 
the loss (in expectation) we would incur in choosing the wrong model would be 
relatively large. Hence, the model assumes more importance in the overall sce­
nario. Vice versa, if our prior knowledge about the true value of the parameter 
is relatively precise (i.e. low uncertainty), the loss of information in choosing the 
wrong model would be (in expectation) relatively low.

With a similar procedure, by applying (6.2) we obtain the mass for model M2. 
In fact, the Kullback-Leibler divergence between a Geometric distribution and a 
Poisson distribution is given by

DKL{f2{x\(p)\\fi(x\9))
OO

E 0(1 -  0)Mog M l
e~09x/x\ J
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=  lo g 0 +  - l o g ( l  -  0) -  -\ogd  +  9(p (p
oo

+  Y 1  { ^ ( ! ~  0)xl°g ^ ! } ,  (6-6)

which is minimised by 9 =  (1 — (p)/(p (refer to Theorem B.l in Appendix B). We 
replace this result in (6.6), and obtain

1 d) 1 d) ^
uimDKL(f2(x\(j))\\f1(x\d)) =  log0 +  — —  log0 +  — ^  +  ^  {</>(l - 0 ) x logx! |.

The prior for the parameter <p has been selected to be a Beta distribution with 
both shape parameter values equal to two. That is, 7r2(</>) ~  B e(2, 2) oc 0(1 — cp). 
Thus, the mass to be put on model M2 is determined to be

P (M 2) o c  exp | f  m mDKL^f2(x\(p)\\fi(x\d)^(p(l -  (p) dxp

=  exp(0.47) =  1.60. (6.7)

Also in the computation of P(M 2) we see that the prior mass assigned to 
the model depends on the variance of the prior distribution for 0. In particular, 
similarly to the computation of P(M i), the larger the variance the more the mass, 
and vice versa.

Results in (6.5) and (6.7) can be normalised. The resulting prior distribution 
for this model selection problem (i.e. given the chosen models and the prior 
distributions of the respective parameters), is P^{M {) =  0.41 and P^(M 2) =  0.59. 
It is not possible to perform a direct comparison between the variances of the two 
prior distributions, iri(6) and 7r2(0). However, it is plausible to assume that there 
is always the possibility to chose them in a way that the prior masses on the models 
are equal. In fact, if we consider as prior distribution for 6 a Gamma with shape 
parameter 5 and rate parameter 1, and as prior for <p a Beta with both parameters 
equal to two, we obtain P(M\) oc 1.59 and P(M 2) oc 1.60. Normalising, we have 
the uniform prior of the models given by P^(M\) =  0.50 and P^(M 2) =  0.50. 
Under these circumstances, we can assume that the level of uncertainty about 9
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and cj) is virtually the same.
It is also interesting to examine what happens when the uncertainty about 

the parameter value of one model is much larger than the uncertainty on the 
parameter of the other model. For example, let us keep the prior on 4> fixed, that 
is 7r2(0) ~  B e(2, 2), and set 7Ti(0) ~  Ga(20, 1/2). In this case, the variance of 7Ti(0) 
is equal to 80, which is a much larger value than the case where 7Ti(0) ~  Ga( 1.1). 
Thus, we have that P{M\) oc exp(1.43) =  4.17. Normalising, Pn (M i ) =  0.72 and 
Pn (M2) =  0.28.

6.4.2 Illustration 2: Weibull and Log-normal models

In this illustration we consider a scenario where the quantity of interest x  has a 
continuous support X  =  (0, +oo). We also show how the approach can be applied 
to models with dimension of the parameter space larger than one. We consider 
model Mi to be a Weibull density with scale parameter A > 0 and shape parameter 
k > 0. Model M2 is a Log-normal density with location parameter // G K (in 
the log-scale), and shape parameter a2. These distributions are often considered 
as option to model data, for example, in survival analysis studies (Klein and 
Moeschberger, 1997). Note that we will consider the parametrisation expressed 
with the precision parameter r  =  l/cr2 > 0. Therefore

On the basis of our approach, the prior mass to be assigned to model Mi and 
model M2 is determined, respectively, by

P(M i) oc exp i /  /  m m DKL^fi(x\\,K)\\f2(x\ii,T)^TTi(X,K) dXdn > , (6.8)

and

P(M 2) o c  exp <J /  /  m m DKL( f 2 (x\v,T)\\fi{x\\,KŸjTr2{Li,T) d/idr l .
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To compute the mass for model M \, we first obtain the Kullback-Leibler diver­
gence between a Weibull density and a Log-normal density, as shown in Theorem 
B.2 in Appendix B.

DKL( f 1{x\\,K)\\f2{x\n,T))= [  fi(x\X, k) log (  \ dx
Jo I m PPAU

=  log K +  K E(log x) — K log A — -^-E(xK) — -  log T +  -  log(27r)
AK 2 2

+  E(log2 x) — r/xE(log x) +  ^r/x2, (6.9)

where the expectations are with respect to /i(x|A, k), with E(logx) =  log A — 'y/n 
(7 ~  0.5772 is the Euler’s constant), E(aT) =  AK, and E(log2:c) =  7r2/ ( 6/i2) +  
(log A — y //i )2 (7r2/(6 /i2) is the variance of the logarithm of x , that is Ear(loga:) =  
7t2/ ( 6k2)). The minimum of the divergence in (6.9), with respect to parameters // 
and r, is attained at // =  E(logx) =  log A — 7 /k and r =  \/Var(\ogx) =  Qk2/tt2. 
Recalling that, if random variable x  is log-normally distributed with parameters 
fx and r, then random variable y — log a: has a normal distribution with mean ¡i 
and precision r, we see that the minimum divergence between a Weibull and a 
Log-normal is attained when, in the log-scale, both densities have the same mean 
and variance. And this is a sensible result. Thus, by replacing the expressions of 
the expectations of the functions of x into equation (6.9), we have

m inD^L( / 1(x|A,/i)||/2(x|/x,r)) =  log k +  k E(log x) — n log A — — E(r:K)

+  ̂ \og{Var{\ogx)} +  ^ log(27r) +  X-  

=  ^ log(2-7r) +  log 7r — 7 — ^ log 6 —

We note that the minimum divergence, with respect to /i and r , from a Weibull 
density to a Log-normal density, does not depend on the values of parameters A and 
k , and it has value 0.09. An important aspect of this result is that the mass to be 
assigned to model M\ does not depend on the choice of the priors for A and k . By 
applying ( 6 . 8 ) ,  the prior mass for the Weibull density is P(M\) o c  exp(0.09) =  1.09.

With an analogous approach, we compute the value of P (M 2). The Kullback-
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Leibler divergence from a Log-normal density with parameters // and r, and a 
Weibnll density with parameters A and k (refer to Theorem B.2 in Appendix B) 
is given by

where in this case the expectations are with respect to the Log-normal density. In 
particular, E(logx) =  p, E(xK) =  exp{«;2/(2 r) +  fm} and E(log2 x) =  1 /r  +  p2. 
The divergence in (6.10) has minimum for A =  exp {l/(2-y/r) +  /i} and k =  y/r, 
giving

Again, we note that the minimum divergence between the models is a constant,

the prior mass that, in accordance to our approach, is assigned to model M2. We 
then compute this mass as P (M 2) ex exp(0.08) =  1.08.

By normalising, we have that Pjv(M i ) =  0.50 and Pn (M2) =  0.50, which is 
uniform and, in this case, traces back to the common objective approach to assign 
equal prior probability to two models.

The result deriving from Theorem B.2 is easy to derive and it is discussed, 
for example, in Dumonceaux and Antle (1973) and Dumonceaux et al. (1973). In 
essence, the Kullback Leibler divergence between two models with location and 
scale parameters, when minimised with respect to the parameters of either model, 
is independent of the parameter values from the other model. In the light of our 
approach, this means that the choice of the prior distribution for the parameters

+  1

and its value is of 0.08. As such, the choice of 7t2(p , t ) does not have impact on
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has no influence on the value of prior mass assigned to each model. Furthermore, 
for the Weibull and Log-normal models, the Kullback-Leibler divergences are very 
similar, resulting in a uniform model prior.

6.4.3 Illustration 3: Weibull, Log-normal and Gamma mod­
els

The approach we propose can be applied to model spaces with a number of el­
ements as large as necessary. To illustrate this, we consider the case where, in 
addition to the two models introduced in Section 6.4.2, we add a third one. In 
particular, a Gamma distribution with shape parameter a > 0 and rate parame­
ter ¡3 > 0. This distribution as well, is considered as an option to model survival 
analysis data (Klein and Moeschberger, 1997). The model space is then formed 
by the following three models

Mi =

M2 =

m 3 =

i f 2{x\n,T) =

|/s(^| a ,ß ) =

( ! )
K—l

exp ,7Tl(A,/i)

1 /  r  \ 1/2
x \ Y J  exp

ßc

- - r ( l o g x  -  p )2 , 7t2(aî, -r)

F (a )
xa 1 exp(—/3x), 7T3 ( q ;, ß)  ̂ .

Given that our approach assigns mass on a model on the basis of what it is 
lost if the model is removed from the model space and it is the true model, we 
have to identify, for each model , j  =  1, 2, 3, the model Mr. j  ^  i that is nearer 
(in terms of the expected Kullback-Leibler divergence).

Let us first consider the Weibull model M]. The log P (M X) is proportional to 
the minimum value between

E min DKL(fi(x\X, K,)\\f2(x\fjL, r)) E min DKL(fi{x\X, K)\\f3(x\a, ß))
a,ß

( 6 . 11)

where the expectation are taken with respect to the prior tti(X ,k). From Section 
6.4.2, we know that the value of the first element in (6.11) is 0.09, as the minimum 
divergence from a Weibull density to a Log-normal density does not depend on
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7i"i (A, k). To compute the expected minimum divergence from model M2 to model 
M3, we proceed as seen in Section 6.4.2. First, we determine the Kullback -Leibler 
divergence from Mi to M3, as shown in Theorem B.3 in Appendix B, which gives

DKL(fi(x\\,K)\\f3(x\a,P)) =  [  fi(x\X, k) log (  X|A’ | dx
Jo { J3{x \a , p) J

=  log K +  K E(log x) — K log A — — E(xK) — Q log ¡3

+  logT(o;) — aE(loga:) +  /3E(x). (6.12)

The minimum of (6.12), with respect to the parameter a and ¡3 of the Gamma 
density, is found by solving the following system of equations

E(log;r) =  T (a) — log/3 

E(x) =  a/(3,
(6.13)

from which we see that the two densities are nearer when they have equal expec­
tation for x and log a: (refer to Theorem B.3 in Appendix B). In fact, if a random 
variable has Gamma distribution with shape parameter a  and rate parameter ¡3, 
its expectation is a/(3 and the expectation of its logarithm is T(ct) — log/3; where 
T (q;) =  d { lo g r (a ) }  /da is the digamma function. System (6.13) is solved with 
numerical methods, and the minimum divergence between a Weibull and a Gamma 
has the form

min DKL(fi(x\X, K)\\f3(x\a, (3)) =  log« -  7 -  1 -  cdog/3 +  logT(a)
a ,(3

— a- log A +  a -  +  f3XT ( 1 +  — ] ,
K \ K J

where we have considered that, if x  has a Weibull distribution with parameters A 
and k, then E(x) =  T( 1/k)X/k . In this illustration we assume that the parameters 
of the Weibull are independent. Therefore, the prior 7Ti (A, k) is the product of the 
marginal prior assigned on each parameter, which have been chosen to be identical 
and, in particular, Gamma distributed with shape parameter equal to 25 and 
rate parameter equal to 1. That is, distributions with relatively large variance.
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With this prior, we have obtained E {mina^ DKL(fi(x\X, n)\\f3(x\a, /?))} =  0.05. 
Thus, as this result gives a smaller expected divergence in comparison to the 
one measured to the Log-normal (as computed in Section 6.4.2), the mass to be 
assigned to model M\ is P(M\) oc exp(0.05) =  1.06.

It is legitimate to wonder if it is possible, by selecting a different prior 7Tx(A, k), 
to define a Weibull density which is nearer to the Log-normal than to the Gamma. 
For example, if we chose the Gamma distributions for A and k with the rate 
parameter equal to 2, the expected minimum divergence would have value 0.14, 
and the prior mass for Mi would be based on the expected minimum divergence 
with respect to the Log-normal density.

To determine the prior probability for model M2, we need to identify the 
minimum between

E nrin DKL(f2(x\n, r)||/i(x|A, «))
A.K

E min DKL(f2(x\n, r) ||/3(a;|af, /?))
a , p

In Section 6.4.2 we have shown that the first term does not depend on the pa­
rameters of the Log-normal ad has value 0.08. The Kullback Leibler divergence 
between M2 and M3 is (refer to Theorem B.4 in Appendix B)

DKL(f2 (x\n,T)\\f3(x\a,P)) =  [  f 2(x\fi, t) log (  ^  1 dx
Jo [ f 3(x\a,P))

=  \ log r  -  i  log(27r) -  E(log2 x) +  r/i E(log x)

— ^tfi2 — o lo g ^  +  logL(o;) — aE (logx) +  f3E(x). (6.14)

The minimum of (6.14), with respect to a  and /?, is attained when simultaneously 
E(x) =  a/(3 and E(logx) =  T (a) — log /5; that is, when the two densities have 
equal mean and equal expectation of the logarithm of x. Note that this result is 
analogous to the one obtained when we have determined the minimum divergence 
from Mi to M3. To compute the expected minimum Kullback"Leibler divergence 
between the Log-normal density and the Gamma density, for coherence, we have 
again assumed the parameters as independent: 7rM(/x) ~  Ln(0, 0.1) and 7tt(t ) ~  
Ga(25,1). We have obtained E {minQ)/j DKL( f2(x\ii, T)\\f3(x\a, /?))} =  0.06. With
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this prior, the mass for model M2 is determined on the basis of its distance to the 
Gamma density, and it is P (M 2) oc exp(0.06) =  1.06.

We note that, by increasing the uncertainty around the parameters, this mass 
increases as well. For example, by setting the rate parameter of the prior for r 
to 1/4, we would have an expected minimum divergence of 0.09. In this case, the 
prior probability for the Log-normal would be based on the distance with respect 
to the Weibull.

For the prior probability of model M3, we need to compare

E m m DKL(f3(x\a,P)\\fi(x\\,K)) E min DKL{f3(x\a, P)\\f2(x\n, r))/I,T

First, we see that the divergence from model Af3 to model Mi is given by

DKL(f3(x\a,P)\\fi(x\\,K)) =  [  fs(x\a, (3) log (  \ dx

=  a log ¡3 — logr(a ) +  ctE(logrr) — (3E(x) — log/i 

— KE(logx) +  Klog A +  ^ E ( x K), (6.15)

where E(x) =  a//3, E(logx) =  ^ (a ) — log/5 and E(xK) =  /3~lir(K +  a)/T(a) (refer 
to Theorem B.2 in Appendix B). The minimum of (6.15), with respect to A and 
k , is found by solving

E(xK) =  AK

^ ( k  +  q ; )  —  1 / k  —  ' F ( a ) .

(6.16)

Solving system (6.16), with numerical methods, the minimum Kullback-Leibler 
divergence between the Gamma density and the Weibull density has the following 
expression

minDKL(f3(x\a,/3)\\fi(x\X, k)) =  -  logT(q ) +  Q'F(a) -  a -  log« -  K^(a)
\,K

+  K log /3 +  K log A +  1.

Assuming a and ¡3 independent, prior 7r3(a, /3) can be set as the product of two
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Gamma distributions. For coherence with previous decisions, we have chosen both 
Gamma with shape parameter equal to 25, in order to have relatively high vari­
ance, thus relatively high uncertainty about the parameter values. The expected 
minimum divergence is E {ininyK DKL{h{x\a, f3)\\fi(x\\, /«))} =  0.02.

To assess E {min^^ DKL{f3(x\a, /3)\\f2(x\fi, t) )} , we consider the Kullback- 
Leibler divergence between the two models (refer to Theorem B.4 in Appendix
B)

DKL(f3(x\a,P)\\f2(x\ii,T)) =  [  f 3(x\a, ¡3) log (  ^  \ dx

— a log f3 — log T(a) +  a E(log x) — /3 E(x) — ^ log r

+  “  log(27r) +  E(log2 x) -  rpE(log:c) +  ^ r /A  (6.17)

The divergence in (6.17) is minimised with respect to /i and r when, simulta­
neously, /j, — E(logar) =  T(o;) — log (3 and r =  l/G ar(logx) =  1 /W(a), with 
T^a) =  d {T ( « ) }  /da the trigamma function. We note that the two models are 
at their nearest distance when expectation and variance (of the logarithm) are 
equal. The expression of this minimum divergence is

m m DKL(f3(x\a,P)\\f2 {x\ii,T)) =  -  log T(o!) +  aT (a ) -  a  +  ^ log T '(q;)

+  -  log 27T +  - .
2 6 2

We used the same prior we have used to compute the expected minimum diver­
gence between M3 and M\. The result is E {m in ^  DKL(f3(x\a, /3)||/2(a:|/r, r ) ) }  =
0.06. Therefore, the prior mass for M3 is based on the “distance” from the Gamma 
to the Weibull, and has value P (M 3) cx exp(0.02) =  1.02. The expected minimum 
divergence depends only on the value of the shape parameter.

Unlike for the previous two comparisons, when we have to assign a mass to 
M3, it appears impossible to define prior distributions such that we can invert 
the relationship between the two expected minimum divergences. In fact, both of 
them depend at least on one parameter and, unless there are specific (and strong) 
reasons to justify a different level of uncertainty in the two cases, we should adopt
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Mi m 2 Ms
Mi 0.08 0.06
m 2 0.09 0.02
M3 0.05 0.03

P(Mj) 1.06 1.03 1.02
P*(M',•) 0.34 0.33 0.33

Table 6.1: Expected minimum Kullback-Leibler divergence (by column) among 
the models M\ (Weibull), M2 (Log-normal) and M3 (Gamma). The divergences 
have been computed on the basis of the prior distributions on the parameters of the 
models as specified in Section 6.4.3. The mass is proportional to the exponential 
of the minimum divergence, and the last two rows show this mass for each model: 
non-normalised P{Mj) and normalised Pn (Mj), j  — 1,2,3.

the same prior.
Table 6.1 summarises the expected minimum divergences among models Mi, 

M2 and M3 and, as previously computed, the appropriate prior mass. The nor­
malised prior for this particular model selection problem, and given the selected 
priors for the parameter of the models, are PN(M1) — 0.34, PN(M2) =  0.33 and 
P:v(M3) =  0.33. Even though is not possible to make a direct comparison among 
the level of uncertainty that we have expressed for the parameters of each model 
(via the appropriate prior distributions), we note that, by keeping variances rela­
tively large, the model prior is practically uniform.

6.5 Nested models

Let us now consider the case where models are nested. The simplest scenario 
is when we have only two models, where we can identify an inner (or simple) 
model and an outer (or complex) model. Logic dictates that, if we select the outer 
model when is the inner one the true one, there would be no loss (in terms of 
information), for the inner is a special case of the outer. Therefore, the prior mass 
to be assigned to the inner model will be proportional to one. The mass for the 
outer model will be determined with a procedure analogous to the one we have 
repeatedly examined in Section 6.4. Consider the following example.
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Example 6.1. Let us assume that we want to select between a standard normal 
density and a normal density with the same precision but with the mean that is 
allowed to be different from zero; that is

The general expression of the Kullback-Leibler divergence between two normal 
densities with different means and precisions, say f{x\pi,Ti) =  N(pi,Ti) and 
f(x\n2 ,T2) =  N (p2,r2), is given by

To assign a mass to Mi, we have to find the minimum of DKL( f ( x |0, l)\\f(x\p, 1)) 
which, considering (6.18), is attained for p =  0, resulting in a divergence equal 
to zero. As such, P(M\) cx 1. For M2, we note that D KL(f(x\p, 1)||/(x|0,1)) =  
p2 /2, which is also the minimum, given p. Therefore, the minimum expected 
divergence, with respect to the prior 7r(p), is given by

Thus, taking E(p) =  0, we haveE(p2) =  Var(p). So P (M 2) oc exp {V ar(p )}. The 
result is coherent with what is expected. First, we note that the mass associated 
with the simpler model is proportional to one. Second, the mass on the more 
complex model is related to the variance of the prior distribution for p. IfVar(p) =  
0 (i.e. we put a point mass at p =  0), we have that P(M\) =  P (M 2) =  1/2, as 
it should be. On the other hand, ifV ar(p ) —> 00, P {M 2) increases, as we believe 
more and more that model Mi is wrong. In particular, the larger the variance

oc E (p2).
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(i.e. the more uncertainty about the parameter we have), the larger the mass 
associated to the larger model. Furthermore, our approach allows us to avoid the 
so called Jeffreys-Lindley paradox (Lindley, 1957), by assigning a model prior 
that depends on the model, namely {f(x\/x, 1), 7r(//)}. In fact, the paradox arises 
when P (M \) =  P (M 2) =  1/2, and the uncertainty on // is not zero. For detailed 
discussions on the paradox see, for example, Shafer (1982) and Bernardo (1999).

To generalise, let us assume that we have to select between the following two 
nested models

and M2 =  {f(-\e1,02),n 2(e2\91)ir1(01) } ,

with 6\ £ 0 i, 02 £ 02, aird where the prior distributions for the parameters are 
supposed to be known. The fact that model A f  is nested into model Ai2, implies 
that DKL(ff\9i)\\ff\9i,92)) is minimised, with respect to the pair (9i,92), when 
92 is removed and M2 degenerates into A f. As such, P (M i) oc 1 .

The prior mass to be put on model Af2, according to our approach, will be 
found in the following way. First, we note that it is not necessary to identify the 
minimum Kullback Leibler divergence from model AI2 to model Mi, as parameter 
6\ would have the same value for both models. Hence, if we indicate by 0 the 
parameter in model M 1; in order to distinguish it from 9X in model M2, we have 
that

minDM (/(.|91,92)||/(.|^)) =  )),
<P

that is, when 4> =  9\. Thus, the mass to be assigned to M2 is given by

P(M 2) o c  exp DKL(f(-\91,92)\\f(-\91))ir2(92\91)7r1(91)d 9 2d91

This result can be further generalised if we consider a set of models nested one into 
each other. In this case the mass assigned to each model, except for the largest 
one (i.e. the most complex), will be proportional to one. Furthermore, the only 
mass that has to be actually computed is the one to be assigned to the largest 
model.

From this result, we note that when a model is nested into another one, say
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Mi nested in M2, the prior mass on the simpler model will never be larger than 
the prior mass on the more complex model. That is, P (M 2) >  P (M i). The com­
plex model expresses a more detailed representation of the phenomenon than the 
simple model (i.e. it caries more information). Therefore, in general, it has to be 
P(M 2) > P (M i), and we would have P (M 2) =  P (M i) =  1/2 if and only if Mi 
and M2 are the same model.

Let us now see an example on how the general approach is applied to the 
selection of two nested models of the same family. This example is a generalisation 
the previous one.

Exam ple 6.2. Let us assume that we are interested in selecting between a normal 
density with mean p and precision one, and a normal density with the same mean 
parameter and precision r. The models are

Mi

M2

j / ( ® \t , 1)

| /(o ;| /i,r ) 7r2(/r, r) } .

Applying (6.18), we have that DKL(f(x\p, l)\\f(x\p, r)) =  r(p  — 0)2/ 2 +  (r — 1 — 
logr)/2 , where the mean in M2 has been rewritten as 9 in order to distinguish it 
from the mean of model Mi. By differentiating with respect to 6 and t , we find that 
the minimum is attained when 9 =  p and r  =  1 . And, as expected, the value of the 
divergence at this point is zero. Thus, P (M X) oc 1. The prior mass for M2 is based 
on the divergence DKL(f(x\p , r)||/(x|^, 1)) =  r ( 0 - / i ) 2/2  +  ( l / r - l + l o g r ) /2 .  We 
can see that this is minimised, with respect to p, when the two means are equal, 
and the value is minM D KL(f(x\p, r)\\f(x\p, 1)) =  ( 1 / r -  1 +  logr). Therefore, we 
have

P (M 2) o c  exp | j  j \ ( l - l  +  log r y 2{p ,r )d p d r } .  (6.19)

Similarly as seen in Example 6.1, we note that the farther 7r2 is from a point mass 
at one, the larger P (M 2) becomes. This is shown by the fact that (1 /r  +  logr) in
(6.19) is minimised at t — 1 . And this expresses the idea that the more uncertain 
we are about the simpler model being the true one, the more mass we assign to
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the more complex model. As an illustration, we consider the prior for t  to be a 
Gamma distribution with shape parameter 5 and rate parameter 1. We then obtain 
that P (M 2) o c  exp(0.38) =  1.46. With this result, the normalised prior mass is 
Pn (M\) =  0.41 and Pn {M2) =  0.59. It is of course possible, by changing the prior 
rn2, to obtain a different prior mass for Mi and M2.

Again, we note from Example 6.2 that, when we consider nested models, the 
worth of the larger model is, at least, as large as the worth of the inner model, 
which is intuitive.

In the examples we have seen, we have considered nested models belonging to 
the same family. In the rest of the section, we examine model selection scenarios 
where the alternative models do not belong to the same family, strictly speaking.

6.5.1 Illustration 4: Normal and Student’s t models

The first illustration for nested models not belonging to the same family of distri­
butions, considers a Normal density and a Student’s t density. We have already 
discussed properties and relations between the two models in Chapter 5. We then 
consider model Mi to be a Normal distribution with mean p and precision r, and 
model M2 to be a t distribution with location parameter 9, precision parameter A 
and parameter v representing the number of degrees of freedom. That is

Mi

M2

¿ exp - ■ ¿(x-v)

r ( T ) / a y / 2 r

r ( S ) W
i h— (x — oy

v+1 
2

,7T2(0, A,z/)

The t distribution converges to a normal distribution when the number of 
degrees of freedom tends to infinity (Chu, 1956); as such, the two models can 
be considered nested models which differ from the number of degrees of freedom 
only (for example, see Casellas et al. (2008)). Therefore, as discussed above, we 
have that the minimum Kullback-Leibler divergence between Mi and M2 is zero,
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resulting in a prior mass on the normal model P(M\) oc 1 .
To determine the mass for M2, following our approach, we consider that, as 

shown in Theorem B.5 in Appendix B, we have

DKL(f2(x\9, A, u)\\fi(x\fi, t ))
f

f 2(x\e,x,u) log f 2(x\d,X,u)
dx

log r
v + l

u +  1 V 1 1
-  log F -  +  -  log A -  -  log V

E l log ( 1 +  — (x — 9)

7) log 2 +  E (^2) -  Td E(*) +  (6.20)

The divergence in (6.20) is minimised, with respect to n and r, when =  E(x) =  
6 and r  =  1 /Var(x) =  A. That is, when the two distributions have location 
parameter and scale parameter of the same value. The minimum divergence is 
then

min DKL(f2(x\6, A,i/)||/1(x |//,t )) =  logT -  log T ( 0  -  V- ^ -

E |log ^1 +  ^ {x  -  6)2̂ J | +  ^log^

- ^ l o g ( i / - 2) +  i .

To compute the prior mass for M2, we consider the following prior distribution 
7r2(#,A, v) =  7r2il(zz)7r2:2(A)7r2j3((9|A). Where 7r2)i(zz) is an Exponential distribution 
(Geweke, 1993) with rate parameter equal to 1, 7r2;2(A) is a Gamma with shape 
parameter 25 and rate parameter 1, and 7r2j3(d|A) is a Normal distribution with 
mean zero and precision determined by the prior on A. Thus

P (M 2) o c  exp

=  exp(0.23) =  1.26

im nuKL [J2{x\v,

where the result has been obtained through numerical methods. By normalising, 
we have Pn (M i ) =  0.44 and P/v(M2) =  0.56, which shows that more mass is given
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to the outer model. This is in line with the idea that, in relation to the other 
model, M2 has more worth.

6.5.2 Illustration 5: Nested and non-nested models

In this final illustration, we consider a realistic model selection problem where the 
model space has both nested and non-nested elements, and a total of four models. 
We do this by adding an Exponential model to the selection scenario analysed in 
Section 6.4.3. That is, ilf4 is an Exponential density with rate parameter 9

M4 =  { f 4( x \ 9 ) = 0 e - dx, M 0 ) } -

To identify the prior mass for model M1; in addition to the results in Section 
6.4.3, we need to consider the expected minimum Kullback Leibler divergence 
with respect to the Exponential density. This is given by (refer to Theorem B .6 

in Appendix B)

DKL(fi(x\\,K)\\fA(x\6)) =  fi(x\X, k) log | | dx

=  logK +  AiE(logx) — E(loga;) — «Tog A

_ J _ E( ^ ) _ l o g 0 +  0E(x),

which is minimised for 6 — 1/E(rr) =  A_ 1T(1 +  \/n)~l . As expected, the two 
densities have minimum distance when the respective first moments are equal. 
Then mme D k ^ / ^ x W  K)\\f4(x\6)) =  logk -  7 +  7 / «  +  logT(l +  1/k). We 
note that the minimum Kullback-Leibler divergence between the Weibull and 
the Exponential densities does not depend on the scale parameter A. To compute 
the expected minimum divergence, we have adopted the same prior distributions 
for the parameter of the Weibull we have used in Section 6.4.3. The result is 
E{ming jDa'l ( / i (x |A, n)\\f4{x\9))} =  0.05. Given that this is the smallest expected 
divergence for model M\ (refer to Table 6.2), we have P (M 4) oc (0.05) =  1.06. 

With a similar process, we find the Kullback-Leibler divergence between model
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M2 (Log-normal) and the model M4 (refer to Theorem B .6 in Appendix B)

DKL{f 2 (x\n,T)\\f4(x\e)) =  j i  f 2{x\fl, T) log | | ^X

=  —E(log x) +  ^ log T -  i  log(2yr) -  E(log2 x) 

+ r/j E(log x) — ^rp 2 — log# +  #E(x),

which is minimised for 9 =  1/E(x) =  1/exp {¡i +  l /(2 r ) } ,  as expected. The 
minimum divergence is ming D KL( f 2(x\n,T)\\f4(x\9)) =  {logr-log(27r) +  l +  r } /2 , 
which does not depend on the location parameter /i of the Log-normal density. 
With the same priors for ¡1 and r  considered in Section 6.4.3, we have obtained 
E{minii Z ) ^ ( / 2(x|/r, r)||/4(x|61))}  =  0.05. As the smallest expected divergence for 
model M2 remains the one with respect to the Gamma density (refer to Table 
6.2), we have P(M 2) oc exp(0.03) =  1.03.

For the Gamma model M3, we have (refer to Theorem B.6 in Appendix B)

DKL(f3(x\a,(3)\\f4(x\9)) =  f 3(x\a, ¡3) log j j dx

— alog/3 — logr(o;) +  aE (logx) — E(logx)

—/3E(x) — log# +  9 E(x),

which is minimised by 9 =  1/E(x) =  (3/a. Therefore, we obtain the minimum di­
vergence as mine DKL(f3(x\a, f3)\\f4(x\9)) =  -  log r (t t )+ a 'f '(a )-T (a )-Q i+ log  a +
1. The expected minimum divergence has been computed using the same priors 
for a and f3 defined in Section 6.4.3, obtaining Ejinin^ DKL(f3(x\a, (3)\\f4(x\9))} =  
0.05. In this case as well, the divergence with respect to the Exponential distribu­
tion does not constitute the minimum (refer to Table 6.2), so we have P(M 3) oc 
exp(0.02) =  1 .02.

To compute the prior mass for model M4, we note that, being the Expo­
nential nested into the Weibull and the Gamma models (it is in fact a special 
case of these two densities), we obviously have DKL(f4(x\9)\\fi(x\\, k)) =  0 and 
Dh'L{h(x\9)\\f3(x\a, (3)) =  0. Therefore, we can conclude that P(M 4) oc 1. How­
ever, for completion, we have: Ejminfl DKL(f4(x\9)\\f2(x\n, r ) ) }  =  0.41 (refer to
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Theorem B.7 in Appendix B); where the expectation has been computed with 
respect to the priors for // and r defined in Section 6.4.3.

M i m 2 Ms m 4
M 1 0.08 0.06 0.00
m 2 0.09 0.02 0.41
M3 0.05 0.03 0.00
m 4 0.05 0.05 0.05

P(M j) 1.05 1.03 1.02 1.00
Pn (Mj) 0.26 0.25 0.25 0.24

Table 6.2: Expected minimum Kullback-Leibler divergence (by column) among 
the models M\ (Weibull), M2 (Log-normal), M3 (Gamma) and M4 (Exponential). 
The divergences are computed considering the priors for the parameter of the 
models as defined in Section 6.4.3 and Section 6.5.1. The prior mass is proportional 
to the exponential of the minimum divergence, and the last two rows report this 
mass for each model, non-normalised P (M j) and normalised j  — 1, 2, 3, 4.

Table 6.2 summarised the results for this particular selection problem. We note 
that all the normalised prior probabilities are close to 1/4. Given that we have 
kept the prior uncertainty about the parameter of the models at a relatively high 
level, the result is sensible. However, as we have already discussed in the previous 
illustrations, a change in the informational content within the prior distribution 
on the parameters will cause, in general, a different prior over the model space.

Another interesting consideration is that, by inspecting Table 6.2, we note 
that the expected Kullback-Leibler divergence between models M l, M2 and M3 

and model M4 is constant and it is equal to 0.05. Recalling the results in this 
section, we have that the minimum divergences (in these three particular cases) 
depend only on the shape parameter of the models, respectively k . t  and a .  As we 
have used identical prior distributions for these parameters, the result obtained is 
sensible in the light of the prior information considered.
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6.6 Discussion

Similarly to parameter spaces, we can assign prior mass over a model space by 
quantifying the worth that each model has, in relation to the others. It is impor­
tant to highlight that we don’t have to assume that one of the models is correct: 
we evaluate the worth by thinking what is lost if we remove a model and it is 
correct. By doing this for all models, we obtain an objective value of each of 
their worth, which is then linked to the prior mass via the self-information loss 
function.

An important result we have obtained is that the prior on a model should 
depend on the model itself; that is {f(x\9), 7r(#)}. This is evident in Example 6.1, 
where we compare the Normal density N(/r, 1) to the Normal density N (0 ,1). It is 
well known that assigning equal probability to the two models may result in the so 
called Jeffreys-Lindley paradox. This is because the uncertainty on the parameter 
value (i.e. ¡i) is not “fairly” represented by the equal masses. A common solu­
tion to avoid the paradox, see for example (Bernardo, 1999), is to set n(fi) cx 1, 
which is an expression of maximum uncertainty about the parameter value. And 
our approach is in line with this, by assigning more and more mass to the model 

1) as the uncertainty on fi increases.

The proposed method can be applied to any selection problem. Particular 
results have been obtained for nested models. In fact, when a model is nested into 
another, among all models taken into consideration, its prior mass is zero. The 
result is not surprising, as the more complex model is (at least) as good as the 
simpler one, and there is no information loss in removing the simpler model.
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Chapter 7

Variable Selection in Linear 
Regression Models

In this chapter we discuss variable selection in linear regression models. In par­
ticular, by considering the approach discussed in Chapter 3, we illustrate how 
regression model prior distributions can be defined on the basis of losses.

We begin with a brief overview of objective Bayesian procedures that deal with 
this type of problem. The review includes objective priors for models as well as 
objective priors for the parameters of the model. We then present the prior for 
the model, given a specific type of parameter-specific prior: the (7-prior (Zellner, 
1986). Although (7-priors have some weaknesses (e.g. the information paradox 
discussed in Section 7.1.1), they represent a good compromise, as they allow for a 
closed form representation of the marginal and the posterior distributions.

In the last section we present a result that raises some questions about Bayesian 
procedures for variable selection. The result is not within the scope of the thesis, 
so it will be simply introduced and generally discussed. It is however noteworthy 
as it opens the door to further specific research in the field of Bayesian variable 
selection.
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7.1 Introduction

Consider the linear regression model

Vi — A) +  fiiXii +  • • • +  (3pXPi +  £i, i — 1, . . • , n

where y is the response variable, x i , . . .  ,x p are p covariates and s is the error

assume n > p and the design matrix X  to have full rank. For simplicity in the 
notation, we also assume /30 =  0 for all regression models. Variable selection 
problems consist in finding how many and which one of the p covariates have a 
significant impact on the response variable, and therefore should be included in 
the regression model. We can indicate the generic model by M7, where 7  is a 
p-dimensional binary vector. Each element of vector 7  corresponds to a covariate, 
such that

Note that 7  can be considered as a random variable taking values in the space 
{ 0, 1}P, and each model has associated a dimension dim(7 ) representing the num­
ber of covariates included. The model prior probability is indicated by P (M 7), and 
it represents the prior belief that model M7 is the true one. In a Bayesian frame­
work, inference is based on the model posterior probabilities, which are obtained 
by combining the model prior and the marginal likelihood of the observations y 
under each model.

In (7.1), 7t(/37, A) represents the prior assigned to the parameters of the model: 
the coefficients /?7, and the precision A. The prior 7t(/57, A) is identified in the 
literature as the prior for model-specific parameters. By applying Bayes theorem, 
the model posterior probability is given by

term, with N(0, A), A =  1/cr2 representing the regression precision. We

0 if f f  =  0,

1 if i f  f  0.

(7.1)

P (M fy )  oc f (y \ M fP (M f.
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7.1.1 Prior on model parameters

Although our primary interest is in model prior P (M 7), we deem as appropriate 
to briefly discuss priors for the model-specific parameters. It is clear from (7.1) 
that the marginal likelihood depends on the choice of the priors for /37 and A. The 
literature on the subject is extensive, and its detailed discussion is beyond the 
scope of this work. Recall that Bayesian model selection, and therefore variable 
selection, can be performed by means of Bayes factors (as seen in Chapter 6), we 
note the following challenges (Berger and Pericchi, 2001):

1. The number of Bayes factors that have to be computed rapidly grows when 
the number of covariates grows. For a p covariates case, the number of 
possible models is 2P, clearly resulting in a large number of computations 
that have to be performed even for moderate values of p;

2. Objective (improper) priors can only be used for the parameters common to 
the two models compared through the Bayes factor. The arbitrary constant 
we could multiply each improper prior would not cancel out for the non­
common parameters, resulting in an indeterminate Bayes factor;

3. Vague (proper) priors must not be used. In this case, the resulting Bayes 
factor would be affected by the arbitrary level of “vagueness” of the prior, 
rendering the analysis ineffective in practice; 4

4. Either in subjective or objective Bayes, common parameters can change 
meaning for different models. In theory, the prior distribution on the com­
mon parameters should change in order to reflect the different meaning. 
This issue has not easy solution. Refer, for example, to Berger and Pericchi 
(2001) and the references therein.

The first work in defining objective priors for variable selection problems can 
be found in Jeffreys (1961). The idea is to use objective (improper) priors for 
the common parameters and proper (but not vague) priors for the non-common 
parameters. Jeffreys proposed a Cauchy distribution centred at zero, with scale 
parameter a2, as the prior for fi; the well known objective prior 7 r (c r )  oc 1/<j for 
the standard deviation of the regression.
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A popular prior is the g-prior proposed by Zellner (1986). In this case, we have 
7t(A) oc A-1 for the precision, and 7t(/37|A) N(0,g/X (A ;A 7) *) for the coeffi­
cients of the regression model. The prior has the undesirable property that, if the 
true model is M7, the Bayes factor in favour of this model would (asymptotically) 
tend to a constant rather than to infinity. That is, it converges to (1 +  g)m~p~l . 
This is known as the information paradox. However, as this is the only prior that 
yields a closed form expression for marginal likelihoods (and because the above 
constant is generally very large in value), g-priors are appealing prior distributions. 
For this reason, we will be considering g-priors for our discussions.

A g-like prior, which does not generate the above information paradox, was 
proposed by Zellner and Siow (1980). The idea, is to have a Cauchy prior for the 
coefficients: 7t(/37|A) ~  Ca(0,n/X (A/AT7) ); thus, the Cauchy distribution is ex­
pressed as a scale mixture of normals, 7r(/37|A) cx f  Ar(/37|0, g / X(X'yX 1)~1)7r(g) dg, 
and a prior assigned to g. In particular, n(g) would be an Inverse-Gamma with 
parameters 1/2 and n/2. The downside of this prior is that, unlike the g-prior, it 
does not yield closed form expressions for the marginal likelihoods.

The prior proposed by Zellner and Siow (1980), can be seen as part of the 
hyper-g priors discussed in Liang et al. (2008) (also discussed in Cui and George 
(2008)), where other prior distributions for g , besides the Inverse-Gamma, are 
illustrated.

A different way to deal with the problem of model selection is suggested by 
Berger and Pericchi (1996). They propose to solve the issue of not being able to 
use objective improper priors for the non-comnron parameters by working with 
a particular form of Bayes factor: the Intrinsic Bayes Factor (IBF). The idea 
is to use part of the data, called the training sample, to convert the ordinary 
objective improper priors into proper posteriors. These are then used to compute 
Bayes factors for the remaining data. A conceptually similar solution has been 
proposed by O’Hagan (1995), with the Fractional Bayes Factors (FBF). In this 
case, improper priors are converted into proper, not by using part of the data, but 
by using a fraction of the likelihood function.

Finally, the Bayesian Information Criterion (BIC) is an asymptotic method for 
model selection. It was introduced by Schwarz (1978) with the following form
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where Oj and 6t are, respectively, the maximum likelihood estimates of the param­
eters 6j of model Mj and of model Mt. The BIC is appealing for its simplicity. 
However, it has been shown that the criterion may lead to issues if any of the 
models has irregular asymptotics, or it has a likelihood that tends to concentrate 
at the boundaries of the parameter space.

7.1.2 Model priors

The main point of discussion relevant to this work is on model prior probabilities 
P (M 7). The set of all possible models (i.e. the model space) is discrete, and 
therefore suitable to the novel objective approach we present in this thesis.

In objective Bayesian variable selection, an important role is played by the 
following two ways of assigning prior probability to models. One is intuitive, and 
it assigns equal probability to each model: P{M1) — 1 /2P. The second way, 
discussed in Scott and Berger (2010), is based on the idea that the probability of 
including a covariate in the model, ujj =  P(^j ^  0), can be seen as a Bernoulli 
trial. Therefore, the prior probability of model M7, given u>, is

where it is assumed 7t(uj) ~  Be( 1,1). Prior (7.2) assigns a mass to model M7 which 
value depends on dim(7 ). It is of course possible to assign to a; a Beta prior with 
different values of the parameters; or to use a different probability distribution, 
(see George and McCulloch (1997) and Ley and Steel (2009)). However, the above 
choice seems to be to most appropriate to reflect a priori absence of knowledge 
on the value of u>.

P(M 1\uj) =  u dim{l){ 1 -  cu)p- dim(7).

Integrating out oj, we have

(7.2)
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Definition 7.1. The inclusion prior probability for covariate Xj is given by

where 1(.) is the indicator function, and the summation is extended to all the 2P 
possible regression models.

If we consider the uniform model prior, that is P (M 7 ) =  1/2P, the inclusion prior 
probabilities ujj are all equal to 1/2. This result, according to Scott and Berger 
(2010), leads to an issue (known as multiplicity) which affects the use of Bayes fac­
tors seen as a “multiplicity” of tests of hypotheses. For model prior (7.2) the prior 
inclusion probability is Uj =  1/2 as well; however, as model prior probabilities are 
different from the uniform case, there is a hidden mechanism in the process that 
automatically corrects for multiplicity (Scott and Berger, 2010).

Bayesian inference in variable selection problems can be performed in different 
ways. First, we need to consider that, when the number of covariates is relatively 
large, model posterior probabilities will most likely be of small value. Therefore, 
the choice of the most probable model as the estimate can be both not possible 
and meaningless. A solution is to adopt model averaging techniques (refer to Steel 
(2012) and the reference therein). The general idea is to estimate the quantity of 
interest (e.g. a forecast) with each model (or a selection of the models with highest 
posterior probability) and average the estimates using model prior probabilities 
as weights.

Another solution is to consider posterior inclusion probabilities.

Definition 7.2. The inclusion posterior probability for covariate Xj, is given by

for j  =  1. . . .  ,p.

It is common to consider the regression model composed by the intercept plus 
all the covariates with a posterior inclusion probability larger than or equal to

j  =  l , . . . , p ,
7

(7.3)
7
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1/2. Barbieri and Berger (2004) show that this model, known as the median- 
probability model, generally has better predictive properties than the model with 
highest posterior probability.

7.2 The Villa—Walker prior for linear regression

Our approach to variable selection is in line with the general idea we have presented 
so far. We obtain model prior probabilities, not directly, but by considering the 
worth that each model has in the model space. The worth is determined in a 
similar way to the one we have discussed for model selection in Chapter 6. In 
addition, model complexity has to be taken into consideration: models with a 
large number of covariates tend to fit the data better than models with a small 
number. The “cost” of a better behaviour is, however, a model that is harder to 
interpret and more demanding, in terms of estimation procedure.

Let us consider the regression model M7, with dim(7 ) covariates. The loss of 
removing it from the set of all possible 2P models (which coincides with the utility 
of keeping it), can be represented as

Loss(M7) =  Loss (M ) +  Loss(C'o), (7.4)

The loss in (7.4) is a cumulative loss with two components: one representing the 
worth of the model, indicated by Loss(M), and one that takes into account how 
complex the model is, indicated by Loss(Co). The component P ( M ) of (7.4) is 
defined as in Chapter 6, and it represents what do we lose if regression model 
My is kept in the model space, and it is the true one. This is measured by the 
expected Kullback-Leibler divergence between the regression model M1 and the 
nearest one. Except the full model, each regression model is nested into (at least) 
another model. Therefore, as discussed in Chapter 6, the minimum Kullback- 
Leibler divergence is zero. For the full model, in order to determine the first 
component of the cumulative loss in (7.4), we would need to identify the minimum 
expected divergence with respect to the p models with p — 1 covariates. This 
divergence will obviously depend on the prior for the model-specific parameters. 
However, for moderate to large values of p, it can be assumed that the expected
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divergence is very small; therefore, we can approximate (7.4) with the more simple 
Loss(M7) ~  Loss(Co).

To quantify Loss(C'o), we proceed as follows. If we keep model M1 in the model 
space, the loss would be proportional to the number of covariates that have to be 
considered and measured. Therefore, the loss of keeping a model increases as the 
dimension of the model increases. Following our approach (refer to Chapter 3), we 
have that the loss in removing model M7 is equal to the utility in keeping model 
M7. Considering that the loss in keeping model M1 is proportional to the “need” 
of dim(7 ) covariates, we have

/(remove M7) =  «(keep M7) =  —c • (¿¿777.(7 ),

and
/(keep M7) =  c ■ dim(7 ),

where c is a real constant. By considering the self-information loss function, we 
have — log P (M 7) oc c ■ (¿¿777(7 ); which implies

P (M 7) (xe~c-dim̂ \  (¿¿777(7 ) =  0 , 1 , . . . , p. (7.5)

In Section 3.3 we have mentioned that the loss functions involved in our prior 
do not require a constant, as we are equating losses in information. However, the 
loss associated to model M7 has two components of different nature: a loss in in­
formation and a loss due to the complexity of the model, represented, respectively, 
by the first and the second term of the right-hand-side of (7.4). As such, as we are 
no longer equating losses in information only, it is necessary to consider constant 
c, as shown in (7.5).

The following theorem shows the expression for the prior inclusion probabili­
ties.

Theorem  7.1. Let us assume that the model prior for a variable selection problem 
with p covariates is of the form  (7.5). Then, the prior inclusion probability for 
each covariate is given by

LJj =  (1 T ec)-1 , j  — l , . . . , p  and c e M.
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Proof. The prior probability for each model is P (M 7) oc exp{—c • dim(^)}. The 
normalising constant is given by

(e-c + l)p.

Each covariate is included in half of the 2P models, and the total number of co­
variates in the models where a given covariate is included follows Pascal’s triangle. 
For example, if p — 3, we have 23 =  8 regression models; each covariate appears in 
one model with one covariate, three models with, respectively, 2 and 3 covariates, 
and in the full model. Generalising, the prior inclusion probability for covariate 
Xj is given by

(1 + ec)p~l ecp
ecp (1 +  ec)p

1
1 +  ec ’ (7.6)

which proves the theorem. □

We see from (7.6) that the choice of c has an impact on the prior inclusion 
probabilities; in particular, uj decreases as c increases. In Section 7.4 we will 
see that, in an orthogonal design, the marginal posterior inclusion probabilities 
are bounded below by uij; as such, the choice of c impacts the model selected as 
it might determine which covariates will be included. Given that, in principle, 
the choice of c is arbitrary, the implication on the objectivity of our approach is 
clear. However, the following considerations are in order. The threshold for the 
posterior inclusion probability above which we select a covariate is arbitrary as 
well; therefore, the aim of obtaining a model prior that is “purely” objective is, 
somehow, rendered pointless.

In Section 7.1.2 we have mentioned that the median-probability model can be, 
for prediction purposes, a sensible choice. Therefore, by setting c =  1 we would 
have ujj ~  0.27, and Uj E (0.27,1), which comfortably includes the threshold 0.5.
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Obviously, a different choice of c would be equally plausible. For example, if we 
set c — 2.94, the prior inclusion probability will be 0.05, allowing ujj to vary in an 
interval that would include any reasonable threshold.

7.3 Illustration: US crime data analysis

We used the crime data of Liang et al. (2008) as an illustration of our model prior. 
The dataset consists of 47 observations for p =  15 covariates related to crime data 
in the US. For the model specific parameters, we have used a g-prior with g — 215. 
Figure 7.1 shows the posterior inclusion probabilities of aq, . . .  , aq5 (on log-scale) 
obtained by adopting as model prior, in turn, the uniform prior, Scott & Berger’s 
and the prior based on our approach with c =  1 .

>, g-prior
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1 0.6-’«n
I  0.4-
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Figure 7.1: Marginal posterior inclusion probabilities for crime data. The prior 
for the model-specific parameters used are (top-to-bottom, left-to-right) g-prior, 
Zellner-Siow prior, AIC and BIC. The model priors are Uniform prior (left blue 
bar), Scott & Berger prior (middle green bar) and Villa-Walker prior (right red 
bar).

We note that, should we consider the median-probability model, covariates aq, 
aq, X\z would be included in all the three cases. Covariate x4 would appear only
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when the uniform model prior is considered. Unlike the other priors, our prior 
does not does not lead to a sufficiently large posterior inclusion probability for 
covariates X\ and Xu■ It seems that, from the largest to the smallest, posterior 
inclusion probabilities follow Uniform prior, Scott & Bergers’ and our.

In Figure 7.1 we have also shown the results when Zellner-Siow prior for model- 
specific parameters, Akaike information criterion (AIC) and BIC are used. We note 
that, in any situation, the median-probability model obtained with our model prior 
is the most parsimonious; in particular, the resulting marginal posterior inclusion 
probability is consistently not larger than the one obtained by using any of the 
other two model prior. There is a remarkable result when Scott & Bergers’ model 
prior is adopted: under Zellner-Siow prior and AIC, the median-probability model 
includes all the covariates. For reasons beyond the scope of this thesis we have not 
investigated further; however, there may be connections to the results presented 
in Section 7.4 below.

7.4 Some interesting results

Let us consider the simplest variable selection problem in linear regression, where 
we compare the null model with the model with one covariate: p =  1.

Afi : iji =  crEi M2 : yi =  f3xt +  oeu i =  1, . . . ,  n,

where the e* are i.i.d. and o 2 is the regression variance. Let us assume that we 
define the model prior in accordance with Scott and Berger (2010): P {M \) =  
P (M 2) =  1/2 (note that this prior corresponds to the uniform as well). As per 
(7.3), the posterior inclusion probability for x  is given by

u =  P (M 2\y)
f(y\M2)P(M2)

f ( y )
f(y\M2)i/2

{f(y\Mi) +  f(y\M2)}l/2
(1 +  b ì2) 1, (7.7)
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where B x2 is the Bayes factor comparing model M x to model M2 (refer to Section 
6.1). Let us now assume, without loss of generality, that Y^xi =  1- Also, we 
consider the prior for the precision A =  a~ 2 to be proportional to A“ 1, and the 
prior for the coefficient to be the g —prior discussed in Section 7.1.1: that is, 
N((3\0,g/\), for g > 0. Thus, we have

B  =  _________________ f  An/2 exp {-0 .5A  X) Hi) A 1 d\_________________
I  [ /A " /2exp{ — — x i f t ) 2 }  AL2e x p {—0.5gA/32} d/3] A-1 dX 

f  \ n /2 exp { —0.5A X) Vj} A-1 d\ 
f  A” /2-1 exp { —0.5A [y'y — z2/( 1 +  <?)]} dX

where z =  ’¿ByiXi, and where we have not considered the terms that cancel out. 
Hence, the Bayes factor becomes

Bn  — {y'y ¿ V (i + 9 )T n
(y'y)n/2

< 1. (7.8)

From the relationship in (7.7), the result in (7.8) implies that uj >  1/2. That is, the 
posterior inclusion probability for x  is larger than the prior inclusion probability
u  =  P(M 2) =  1/2.

For p =  2 we have four possible models.

Mi : yt =  o£i M2 : yt =  f3xx u +  a£X
M3 : Vi = /32x2i +  oSi M4 : yt = +  ¡32x2i +  a£X

Let us consider an orthogonal design: Y h x u  —  Y h x \i ~  1 and Y h x u x 2i =  0- The 
g-prior on the coefficients will then have the form

7r(A ,&>A) o c e x p | - ^ A  (fjj +  /32) j ,
with likelihood function

f W u f o A )  «  exp I - ^ ( y ' y  +  ß l +  ß l-Z ß iZ x  -  2 ß2z2) j ,
where zx =  YhVix u and 22 =  J2yix 21 • As the design is orthogonal, the term 
2pßiß2 =  0, for p =  0. Under these orthogonality conditions, the marginal like­
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lihood is an increasing function of the model dimension. To see this, let us con­
sider the model prior proposed in Scott and Berger (2010). Therefore, we have 
P{M\) =  P(M 4) =  1/3 and P(M 2) =  P(M 3) =  1/6. If we adopt the g-prior for 
the parameters of the model, the marginal likelihoods are

f(v\Mi) oc (y'y) ~ n/2 

f(y\M2) oc (y'y -  ^ )~ n/2 

f(y\M3) oc ( y ' y - 4 ) ~ n/2 

f(y\M4) oc (y'y - z \ -  z%)~n/2 ,

from which emerges the clear relationship

M M , )  < M M l )  and U a) < f(y\M

For the model posterior probabilities we have

P(Mi\y) oc 1/3 (y'y)~n/2 

P (M 2 \y) oc 1/6 (y'y -  zl/(l +  g ) ) ~ n/2 

P (M z\y) oc 1/6 (y'y -  z\/(\ +  g ) ) ~ n/2 

P (M 4 \y) OC 1/3 (y'y -  (z\x2 +  z\)l( 1 +  g ) ) ~ n/2 ,

which results in

P{M,\y)< 2P (M 2 \y) and 2 P(M 3 \y) < P (M t \ (7.9)

The probability that covariate X\ is in the model can be expressed as 

LJx =  P (x  1 in|x2 in, y)uj2 +  P (x x in\x2 out, y)( 1 -  ui2).

Considering (7.9), we have

P(xi in|x2 in, y) = P(M 4 \y) 1
P (M 4|i/) +  P (M 3|y) 2 ’
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and
P(x i in|x2 out,y) = P ( M 2\y)

P(M2\y) + P ( M M

Thus, ¿Di > 0 . 5 +  0.5(1 — uj2) =  1/2. This implies that uji >  u>i, given that 
oji =  1/2, as discussed in Section 7.1.2. The result holds for u 2 as well. We have 
u 2 — P{x2 in|xi in,y)uj\ +  P(x2 in|xi out,y)(l —u i) . Also

P(x2 in|xi in, y) P(M*\V) 1
P(M4\y) + P(M2\y) 2 ’

and
P (x 2 in|xi out,y) ^ (M 3ly) 1

P{Mz\y) +  P (M i|y) 2 '

Then, from c52 > 0.5c5i +  0.5(1 — u3i) =  1/2, we have c52 > w2.
It is easy to see that the result is valid even if we replace the prior of Scott and 

Berger (2010) with a uniform prior. That is, by setting P{Mj) =  1/4, j  =  1, 2, 3,4.
The above results appear to highlight a key issue in objective variable selection: 

if the design is orthogonal, the posterior inclusion probabilities are bounded below 
by the prior ones and, if we aim to adopt the median-probability model, model 
priors like the Uniform or the Scott and Berger (2010), which result in iOj =  1/2, 
may lead to a model that includes all the p covariates. If, on the other hand, we 
use the Villa-Walker model prior with, say, c =  1, the issue does not appear as 
LUj =  0.27.

The mathematical conclusions discussed above are supported by the following 
simulations. We consider a regression model with p =  2 and a =  1. For n =  100, 
we draw one million of n x p orthogonal design matrices of covariates iV(0,1). 
We uniformly draw f3\ and /52 from the interval (—10,10), and the response vector 
y ~  A/’(/31x i+/32X2, a). Assuming a g-prior (g — n) for the parameters of the model, 
and the model prior proposed by Scott and Berger (2010), we compute marginal 
likelihoods, model posteriors and posterior marginal inclusion probabilities for X\ 
and x2. We see that in the 0.2% of the simulated scenarios ujj < 1 /2  (j  = 1,2). The 
reason of the exceptions is related to the fact that, computationally, orthogonal 
matrices can be obtained with ^ £ 1X2 =  0 up to a certain level of precision only. 
We have also repeated the simulation considering, in turn, f3i =  0 and (32 =  0. The
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results are in line with the above ones. By replacing the model prior with the one 
we propose in (7.5), and leaving the remaining simulation settings unchanged, we 
obtain results consistent with Theorem 7.1. In particular, the percentage of cases 
where the inclusion posterior is less than 0.27 is 0.1%. The percentage is zero for 
fix — 0 (/?2 =  0). Thus, in the case of an orthogonal design matrix, the inclusion 
posterior probability is bounded below by the inclusion prior probability.

7.5 Discussion

In terms of prior probability on the space of models, our proposal based on losses 
leads to a simple result. With respect to the complexity of the model, expressed 
by the number of covariates included, our approach assigns more prior mass to 
the less complex model. The mass then decreases toward zero as we approach 
the full model. The result on actual data shows that our prior tends to be more 
parsimonious when compared to the Uniform model prior or the one in Scott and 
Berger (2010); this is the case when we use the g-prior or the Zellner-Siow prior. 
Noteworthy the result for Scott & Berger’s prior when Zellner-Siow’s prior is used 
for the parameters: the median-posterior probability model includes all the covari­
ates. It has to be noted that, as the Villa-Walker prior depends on a constant c, 
it cannot be considered as “purely” objective; however, this does not constitute 
an issue as the whole Bayesian variable selection procedure includes subjective ar­
guments. Firstly, the threshold that we use to decide which covariate is included 
is arbitrary; second, the determination of the degree of complexity of a model, 
which we assume to be represented by the umber of covariates in the model, is 
not univocal and other plausible criteria may be considered.

Although it is out of the scope of this thesis, the result in Section 7.4 raises 
some questions. In an orthogonal design, which is supposed to be the ideal one, 
posterior inclusion probabilities appear to be bounded below by the corresponding 
prior inclusion probability. This has been proved and illustrated with a simulation 
when p =  2 and the g-prior is adopted. Whilst the marginal likelihood stops 
increasing after a certain dimension of the model, creating an automated Occam’s
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razor (Scott and Berger, 2010), this appear to not occur in an orthogonal design. 
Hence the result. We have not investigated further, but Bayesian approaches for 
variable selection in linear regression model should be revisited considering the 
above outcome. We leave this to future work.
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Chapter 8 

Discussion

The aim of this thesis is to introduce a novel Bayesian approach to derive ob­
jective priors for discrete parameters. We show how the idea of measuring the 
worth of each element in the parameter space leads, through the Kullback-Leibler 
divergence and the self-information loss function, to the prior

ir(9) oc exp{ min D KL(f(x\0)\\f(x\9'))}.

The motivation for developing the prior has to be sought in the fact that no 
general methods to derive objective priors for discrete parameter spaces have been 
proposed. The recent publication by Berger et al. (2012) represents an attempt 
to move in this direction; however, the results lack generality. The application 
of our approach to various discrete models, illustrated in Chapter 4, shows that 
working with losses does not require any pre- or post-process analysis, and that the 
approach is versatile. In Chapter 5, we derive an objective prior for the number 
of degrees of freedom of a t density. The application of our criterion leads to an 
important conclusion: an objective prior for this parameter has to be truncated. 
This is a consequence of the well known property of the t density to converge to 
a Normal density.

Working with losses instead of probabilities allows us to obtain another im­
portant result. Bayes theorem is conceptually problematic when improper prior 
distributions are used. However, by expressing prior and posterior beliefs as losses,
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not probabilities, we derive a meaningful representation of Bayes theorem 

— Iog7r(0|x) =  K  — log f(x\9) — log7r(6 ).

It is important to reiterate that we do not claim our objective priors are proper, 
but that being objective in determining losses gives a coherent interpretation of 
Bayes theorem, as prior and posterior retain the same meaning.

A result from Chapter 6, where we derive objective model prior probabilities, 
is that the prior on a model has to depend on the model itself; where the model 
includes the distribution and the prior on the parameters. The result is presented 
by referring to the well known Jeffreys-Lindley paradox. We show various examples 
of application of our model prior. In particular, we first show that it can be applied 
to cases where the model defined on discrete supports and continuous support. 
We also illustrate how the approach is not affected by the size of the parameter 
space of the models. We extend the illustrations to model spaces with more 
than two models and, in addition, include both nested and non-nested models. 
A noteworthy result is that, if in the set of options we have nested models, the 
computation is largely simplified as there is no loss in moving from the inner model 
to the outer one.

The versatility of our approach to discrete spaces is further illustrated in Chap­
ter 7, where we discuss objective Bayesian variable selection. We show that ap­
proaching the problem of assigning a prior on a regression model via losses, gives 
a prior function that is relatively simple: P(M 1) oc exp{—c ■ dim{7 )}. The prior 
is analysed on real data and compared to the Uniform model prior and the model 
prior proposed by Scott and Berger (2010). It appears that our prior is more 
parsimonious that the other two; in addition, unlike the prior of Scott and Berger 
(2010), does not give singular results when the Zellner-Siow prior is used for model- 
specific parameters. In the chapter we also briefly discuss a result that, although 
not directly related to the scope of this thesis, is interesting: in an orthogonal 
design, when g-priors are used, the marginal posterior inclusion probabilities are 
bounded below by the respective marginal prior inclusion probability. We believe 
that the result deserves a thorough investigation, and will be mentioned in the
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next section, where we present some ideas for future work.

8.1 Future work

What possible represents the main topic of interest for future work, is the extension 
of the approach to continuous parameter spaces. For a successful outcome would 
mean the definition of an objective approach capable of dealing with any parameter 
space. The main challenge is that

min ^ iCL(/(-|0)||/(-|0/)) =  0,

when 0  is continuous. In Appendix A we show how this issue may be solved 
by considering a discretisation of the parameter space. Leaving aside conceptual 
concerns that such procedure may raise, we obtain some noteworthy results. By 
applying it to the parameters of a Normal density, we see that it is always possible 
to build a discretised structure of the parameter spaces such that the priors are 
uniform. But, it is not possible to do the same when the target is Jeffreys’ prior.

Brown and Walker (2012) show that a prior can be obtained by considering 
the following result from Blyth (1994)

l im 4 D K i( / ( - |W H S  +  6)) =  £ / * ( » ) ,

where Ijk{9) is the jk -th element of the Fisher information matrix. By considering 
the loss of keeping 9 equal to — log {Jj) /2, it can be shown that the ap­
proach yields Jeffreys prior when the parameter is a scalar. However, as it seems 
not necessary to consider the result on the log-scale, nor taking its square root, 
further work has to be carried out to be able to classify the process as fully ob­
jective; that is, depending on the choice of the model only.

Other types of discrete scenarios, not discussed in this thesis, can be considered 
for future work. One of these is polynomial regression
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p

Vi =  +  crSi,
j=o

where the objective is to estimate the discrete parameter p. More generally

p

yi =  '%2 Pj<Pj(x ), 
j=o

where <Pj(x) is a basic function different from the polynomial basic function; for 
example, splines or wavelets. For mixture models, such as the one of the form 
X)j=1 ujN(y\0j), we could be interested in assigning a prior on p, in order to 
estimate the number of components in the model.
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Appendix A

Mathematical Support for 
Chapter 4

A .l  Proofs

Proof of Lemma 4.1

Proof. We prove the lemma by considering the sign of the difference between 
D k l {/Rq H/zio+i) and DKL( f Ro\\fRo_1), which depends on the (relative) values of 
Ro, N  and n. This difference is obtained by replacing in (4.13) R with R0 and, 
respectively, R' with R0 +  1 and Rq — 1. Thus

R  K L ^ fR q H/fio-fl) “  D x L i f R o W f R o - i )  =

E ho i  N  ~  N  -  R0 + 1 R0 -  r R0 + 1 -  r
^  L S l  Ro Ro +  l N  — Rq — (n — r) N -  R0 +  1 -  (n -  r)

(A .l)

The proof is performed in two steps. In the first one, we show that the above 
difference is zero when Rq =  N/2. The second step shows that expression (A .l) 
is non-decreasing in R0. First, we consider the case where Ro =  N/2. If n < 
N  — n n < N / 2 , we have that r =  0 , . . . ,  n and, consequently, n — r =  n , . . . ,  0. 
Therefore, equation (A .l) becomes
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A.l. Proofs

D K l ( I N / 2 ||/iV/2+1) “  D k l UN/2\\In /2 - l )  — 

N  — N/2 N  — N/2 +  1
log

N/2 N/2 +  1

EN/2 log

E;v/2 log

N/2 +  1 — r 
N/ 2  +  1 — (n — r) J

N/2
N/2 — (n — r)

By applying the symmetry of the Hypergeometric distribution, as discussed above, 
we have

EN/2 log
N/2 — r 

N/2 — (n — r)
- 0 ,

where we have considered that N  — Rq — N  — N/2 =  N/2 and n — r =  0 , . . . ,  n. 
Similarly, we have

Etv/2 log
N/2 +  1 -  r 1 

N/2 +  1 — (n — r) J
0.

Therefore, DKL( fN/2 \\fN/2+i) -  DKL(fN/2 \\fN/2- i )  =  0. Implying that the di­
vergence DKLifRoWfRo+i) is equal to the divergence ^ ¿ ( /i io ll /i io - i) -  For n > 
N  — n => n > N/2, we have r =  n — N/2, . . . ,  N/2 and n — r =  N/2, . . . ,  n — N/2: 
(A .l) becomes

D K L (fN / 2 \ \ fN / 2 + l) — D  k  L^fN/2  || fN /2—\ 

N — N/2 N — N/2 +  1
log

N/2 N/2 +  1
EN/2 log N/2 — r

N/2 n

EN/2 log N/2 +  1 -  r 
N/2 +  1 — (n — r

By symmetry, and considering that N — R0 =  N — N/2 =  N/2 and therefore that 
n — r =  N/2, . . . ,  n — N/2, we have
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D k l (Jn/2 11̂ iv/2-f-i) — D k l {IN/2 WIn/2- 1 ) =  log { 1} +  0 +  0 =  0.

This shows that, when Rq =  N/2, for any value of n , the Kullback-Leibler di­
vergence from the central point to the distribution with R =  R0 +  1 and to the 
distribution with R — R0 — 1 are equal.

To show that £>,fa,(/floll/flo+i) “  ^A'L(/i?0ll/Ro-i) is non-decreasing, we rear­
range the log-term in (A .l) as follow

Ro — r Ro +  1 — r N — Rp N — Rq +  1 ( A 91
Ro Rq T 1 N — R0 — (n — r) N — Rq + 1 — (n — r)

All the terms in the above expression (A.2) are non-decreasing in R0. Consider 
the first one. As (R q — r) < R0, we have (R0 — r)R 0 <  (Rq — r) +  R0. Therefore, 
(Ro — r)(R 0 +  1) < Rq(Rq +  1 -  r), which gives

R p - r  < R q T 1 r 
Ro Ri + 1

Similarly, for the second term we have (Rq +  1 — r) < (R0 +  1), and

(Rq +  1 — r)(/?o +  1) +  (Ro +  1 — r) <

(Ro +  l — ?")(Rq +  1 +  1) < 
Ro +  1 — r ^

Rq + 1

(Ro +  1 — r)(R 0 +  1) +  (Rq +  1)

(Ro +  l)(R 0 +  1 — r +  1)
Ro +  2 — r 

Ro +  2

For the third term, we have (N  — Rq) > (N — R0 — n +  r). Thus

(N -  Rq)(N  - R q -  7i +  r) — (N  — R0)

(N  — Ro)(N — Ro — n +  r — 1) 
N — R0

N  -  R0 -  (n +  r)

<  (N -  Ro) (N -  Rq -  n +  r)

— (N — Ro — n +  r)

<  (N — Rq — n +  r)(N  — R 0 — 1)
< N - ( R 0 +  1)
-  TV — (R0 +  1) — (n — r)'

Finally, for the last term, we have (N — Rq +  1 ) > (N — R0 +  1 — n +  r). Thus
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(N -  R0 +  l)(iV -  R0 +  1 -  n +  r) -  (N  -  R0 +  1) <

(N  -  R0 +  1 )(N  -  Ro +  l  — n +  r ) - ( N - R o  +  l — n +  r)

(N — R0 +  1 )(N  — R0 +  l — n +  r — 1) <

(N  — Rq +  1 — n +  r) (N  — R$ + 1 — 1) 
N — Rq +  1

which shows that also the last term is non-decreasing. Note that the above 
expression is in general strictly increasing, as the equality is met only if and 
when r =  0 or (n — r) =  0. From these results, we see that the difference 
DKLifRoWfRo+i) -  £ W /flo ll/f lo —l) is increasing in R0. Given it is zero when 
Ro =  N/2, as shown in the first part of the proof, the statement of the lemma 
follows. □

Proof of Lemma 4.2

Proof. The proof will be provided for the specific case of a bivariate Hypergeo- 
metric distribution, that is where R — (i?i, R2l -R3). The general case (d >  3) can 
be derived along the same lines with just more complex notation.

Consider the bivariate Hypergeometric distribution with parameters iV, n and 
R — (R\, R2, R3 ) and the following form of the probability mass function

where R3 =  N — (i?i +  R2) and r3 =  n — (rq +  r2). Also, for parameters r 1, r2 and 
r3 we have max (0, n — (N  — i?i) < r 1 < min ((n, R\))), max(0, n — (N  — R2)) <

<
N — i?0 +  l — n +  r

A — (R0 +  1) +  1
N  — (.R0 +  1) +  1 — n +  r
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r2 <  min(n, R2) and max(0,n — (N — R3)) <  r3 <  min(rz, N  — R3). Given that 
parameter R3 depends on R3 and R2, once N  is fixed, we can consider a two- 
dimension lattice structure formed by the values of R i ,R 2 =  {0 ,1 ,. . .  ,N } as a 
representation of the parameter space.

First, we consider the case where R\ < N/2, R2 < N/2. We have seen in 4.2 
that n plays an important role; in particular we have to distinguish the case when 
is below N/2 or above it. However, as the following proof is substantially based 
on the results there obtained, to keep the exposition simple, we do not make the 
distinction here, being understood that it has to be considered when the prior is 
actually implemented.

If we allow to vary one of the two parameters Ri, R2 at a time, the bivari­
ate Hypergeometric can be interpreted as a univariate Hypergeometric, with bins 
(Z?i, N  — Ri) and (R2l N — R2), respectively. Given the results in 4.2, we have

DKL(f(Ri,R2)\\f(Ri +  l,R 2)) < DKL(f (R 1,R 2)\\f(R1 - l , R a))

D kl ( f(R i, R2)\\f (R\, R2 +  1)) < D kl ( /( /? ! ,  R2)\\f(Ru R2 - l ) ) ,

where, for example, the distribution fN,R,n (with R =  (Ri, R2)) has been indicated 
as f(R i, R2), as we consider only distributions that vary in the value of these pa­
rameters (being N , and n known and common), and this represents a simpler 
notation. Therefore, at each point (R i ,R 2), the following three divergences (ob­
tained by feeding expression (4.18) with the appropriate parameter values) have 
to be compared, in order to find the smallest one

DKL(f(Ri,R2)\\f(Ri +  i,R2)) 

DKL(f (R u R2)\\f(R1:R2 +  l)) 

DKL(f (R l ,R 2)\\f(R1 +  l ,R 2 +  l))

log

log

r 3
R i +  1

Rs
R2 + 1

| +E log< Rl T 1 T\ Ll
. R3 -  r3 ,rj

j> +E log <' R2 + 1 -  r2 'i
. R3 ~ r 3 yrj

log

+E

f RsjR, -  1) |
1 (Rl +  l)(-^2 +  1) /

i (i^i + 1 -  ri)(R 2 + 1 -  r2) ) 
\  (R3 -  r3)(i?3 -  r3 -  1) J
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where the expectation are taken with respect to f (R i ,R 2).
Given the lattice structure of the parameter space (R i , R2), it is logic to assume 

that the divergence DKL(f (R 1,R 2)\\f(Ri +  1,R2 +  1)) is not smaller than any of 
the other two. Therefore, the comparison has to be carried forward between 
D K L (f(R i,R 2)\\f(Ri +  1,^ 2)) and DKL(f(R i ,R 2)\\f(Ru R2 +  1)). Considering 
the difference of the two

DKL{f(Ri,R*)\\f(Ri +  l,R2)) DKL(f(Ri,R2)\\f(Ri,R2 +  l)) =
R 2 +  1 Ri +  1 — T\E log
R\ T 1 R2 T 1 r2

(A.3)

If R\ =  R2, the difference (A.3) is zero. In fact, replacing Ri and R2 with R , r\ 
and r2 with r in (A.3), the right-hand-side becomes

log R +  1 
R + l

+  E [R +  1 — r] — E [R -(- 1 — r] =  0

If we fix either parameter or R2, the log-expression in (A.3) is increasing with 
respect to the other parameter. Say we fix Ri, then when Ri > R2 the minimum 
divergence is DKL( f  (R\, R2)\\f{R\ +  1,R2)) and when Ri < i?2, the minimum 
divergence is DKL(f(R i, R2)\\f(Ri: R2 +  1)). By combing this result with the one 
obtained in 4.2, note that R2 > N/2 implies DKL(f (R 1,R 2)\\f(R1,R 2 +  1)) > 
D K L (f(R i,R 2)\\f{RiiR2 — 1)), therefore is the divergence on the right-hand-side 
that has to be compared with DKL(f (R 1,R 2)\\f(Ri +  1, R2)). If we fix R2 and let 
Ri vary, we obtain analogous results. We can then summarise the identification 
the smallest Kullback-Leibler divergence in the following three cases:

1. Ri < N/2 and R2 < N/2:

. i i R l > R 2 ^  T>KL(/(i?i,i?2)||/(i?i + 1,^2)) 

• if R 1 < K 2 => DKL{f {R l ,R 2)\\f{Rl ,R 2 +  1))

2. Ri < N/2 and R2 > N/2:
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• in this case the minimum divergence is DKL(f(R i, R2)\\f(Ri, R2 — 1)), 
as the distance from R\ to N/2 is always larger than the distance from 
R-2 to N/2, that is N/2 — Ri > R2 — N/2;

• if N/2 — R i =  R2 ~  N/2 the divergences DKL(f(R i ,R 2)\\f(Ri +  1, R2)) 
and DKL(f(R i ,R 2)\\f(Rl ,R 2 -  1)) are equal.

3. > N/2 and R/2 < N/2:

• the minimum divergence is DKL(f(R i, i?2)||/(-Ri —1, ^ 2)) as Ri~N/2 < 
N/2 -  R2-

• if -  N/2 =  N/2 -  R2, then DKL(f {R u R2)\\f{Ri -  1, R2)) is equal 
to DKL( f (R u R2)\\f(Ru R2 +  l))

Proof of Theorem 4.3

Proof. By applying the standard definition of conditional probability, we have

□

7 r ( n 0 | x i , . . .  ,xk)
7 r (n  >  n0\xu . . . , xk)

which is equivalent to
t t ( w  >  n0\xi,.. . ,xk) ^

Tr(no\xi,...,xk)
The expression (A.4) can be written in the following way

(A-4)

(A.5)
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The ratio of the priors in (A.5), 7r(no + j)/ n (n o), converges to zero as j  tends to 
infinity. Thus, we need to show that

E„0
C IV ) r (n 0 +  j  -  Xj +  b) T(n0 +  a +  b) 
(™°) ^(no +  j  +  a +  b) T(n0 — Xi +  b)

>  1,

to prove that the second term in the right-hand-side of (A.5) converges to zero. 
Note that Eno is the expectation with respect to pno. As we have

En0
(n°^ ) T(n0 + j - X j  + b) T(n0 +  a +  b) 
("°) r  (n0 +  j  +  a +  b) T ( n 0 - X i  +  b)

y h  f  r ( a  + b) T(n0 + j - x  +  b) (rip +  j)\
\r(a)T(6) 'X a n0 +  j  +  a +  b (n0 +  j  -  x)\x\

we need to show that

r  (o.+  6) T(n0 + j - x  +  ò) (n0 +  j)\
T(a)T(6) T(n0 +  j  +  a +  b) (n0 +  j  — x)\x\

=  0. (A.6)

We have

T(n0 +  j  -  x +  b) (n0 +  j)\ __ (n0 +  j  -  x  +  b -  1)! (w p + j)!
T(n0 +  j  +  a + b) (n0 +  j  -  x )!x ! (n0 +  j  +  a +  b -  1)! (n0 +  j  -  x)\

{n0 +  j  — x +  (b — 1))! (n0 + j ) !
(«-o +  j  +  (a +  b -  1))! (n0 +  j  -  x)! ’

which, given that we assume a, b >  1, will always tend to zero for j  —> oo, as the 
power of j  at the denominator will always be higher than the one at the numerator. 
Thus, the limit in (A.6) is proved and, therefore, the theorem proof follows. □

Proof of Lemma 4.3

Proof. Consider the Kullback-Leibler divergence between f no and / no+m, with 
m >  1; to prove that DKL(fno\\fno+m) is minimum when m =  1, it is sufficient to
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A.l. Proofs

prove that DKL(fno\\fno+1) < DKL(fno\\fno+2). Hence, we need to show that

- E

i.e. that

E

log 77,0 +  1
X

— log(l — p) <  —E log
n o +  2

x
-  21og(l - p ) ,

log (no +  2)! 
(n0 +  2 — x)\

E log (no +  1)! 
(n0 +  1 — x)\

< — log(l - p ) ,

which holds if
E log n-o +  2

< — log( 1 - p ) .n0 +  2 — x y

Since [(n0 +  2)/(n 0 +  2 — x)\ <  [(n0 +  l ) / (n 0 +  1 — x)], we aim now to show that

E log no +  1
k %  +  1 — x 

Now, applying Jensen’s inequality, we have

no +  1

< - l o g ( l  - p ) .

E log n0 +  1 — x < log E no +  1 
n0 +  1 — x

Simple algebra gives 

n0 +  1E
n0 +  1 — x =  T ^ t ( n o + 1 ) p ^ - p r +1- x < ^

j l - p j ^ 0 \ x J i ~ p

and hence the result follows. □

The following Lemma A .l is functional to the proof of Theorem 4.4 in Section 
4.5.1. The proof follows.
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Lemma A .l . For n =  1 ,2 ,..., x  =  0 ,1 , . . . ,  n and p £ (0.1), we have

)px ( i - p)n- x } < 1. (A.7)^ n i f n + i - z ) ©
i=0

Proof. Re-arrange (A.7) and take the logarithm of both sides

Y  |log(n +  1 -  x) x ( ^ j p x( 1 ~ P)n_x| <  log(n +  1). (A.8)

As for x =  n we have log(n+ 1 — x) =  0, the left-hand-side of (A.8) can be written
as

n — 1  s

Y  { log(n + 1 - x )
x=0 ^

n
x- ® ) x  ) Px ( l - p )

By replacing the n terms log(n +  1 — x) above with log(n +  1), we have

¿ | l o g ( n  +  l - a ; )  x { ^ j p x{ l - p ) n XJ < lo g (n + l )x ]T  j
x=0

and because

p x ( i - p y

lo g (n + 1) x ^  | Q p x( l - p ) n XJ < log(n +  1)

£ { Q p x(1- P r x}  < 1, (A-9)

which is always true as the left-hand-side of (A.9) is the sum of the probabilities 
of a binomial distribution except the last one (i.e. when x =  n). Therefore, the 
relation in (A.8) is satisfied. □

Proof of Theorem 4.5

Proof. By applying the standard definition of conditional probability, the (4.5)
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becomes
7r(w0|a;i,.. . , x k) 

7r(n >  n0\xi,. . . , x k)

which is equivalent to
7i(n > n 0\xu . . . ,x fc)

7r(n0|xi, . . . , x k)

Now, the expression in (A. 10) can be written as

(A.10)

zr= o {nti (noxV ) ( 1 ~ py io+j x n(no + j ) }

n f= i © ( !  ~ P )no x
oc (  k ( n 0+ j \

\  X i  /

(All)

i+ E  nu 1 ("" i
( =  1 t i = l  \ X i )

-(i — p y  x n (n o + j)
ft (no)

To show that the second term on the right-hand-side of (A. 11) converges to zero, 
we consider its expected value with respect to x  and, as the ratio 7 r ( n 0 + j)/n(n0) 
converges to zero as j  —* oo. The following relation has to hold

E

no +  j
x
n0
x

(i - p y < i,

with

E

no T j  
x
nQ
x

(1 ~ P )J
no

= E
x = 0

no

n0 + j

x

x=Q
no

no~x i J ) ( i  - Py=  E i p ’ (1 - p ) ™ " ' 'n° + J

Xnn-x K + j ) ! 
x\ (n0 — x)!E pV -p)' (i - p y  > ■

x = 0

We have
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no +  j
x px( l - p ) n o + j - x  \ _

no
Jim \pX^

7 — > 0 0

_ p)n°-* 1 ( ! _ p)i. K + i ) !
X! (n0 +  j  -  x)\

As

^?° +  +  -  J x (j +  1) x ••■x (ji0 +  j )  <  (n0 +  j ) n°,(n0 + j - x ) !  j  

we have

<

; K  +  j)!
{n0 + j  -  x)\

-  r i
E  w i - p r - j ^ r f h + i )

f  1

x=o  ̂ x"

1=0
nno

And

lim {(1 - p ) 3(n0 +  j ) n°}
J ^o o

=  lim exp { - j [ -  log(l -  p)] +  n0 x log(n0 +  j ) }Ĵ -OC
= o,

given that, for j  —* oo, j  dominates log j .  We can then conclude that

no +  j
x PX(1 ~ P ) n o + j - x  I  _=  0 ,

which implies that the second term of the right-hand-side of (A. 11) converges to 
zero and, therefore, (A. 10) holds, proving that the posterior is consistent. □
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Appendix B

Mathematical Support for 
Chapter 6

In this appendix, we include the details of the derivation of the Kullback-Leibler 
divergences for the models discussed in Chapter 6. We also analytically prove how 
the minimum is attained, where applicable.

B .l Theorems and Proofs

Theorem  B .l (Poisson-Geometric Kullback- Leibler minimum). Consider a Pois­
son distribution with rate parameter 6, fi(x\9) =  9xe~e/x\, and a Geometric dis­
tribution with parameter 0, /2(x|0) =  0(1 — (f>)x . The Kullback-Leibler divergence 
between the Poisson and the Geometric, indicated by DKL(fi(x\9) ||/2(x|0)), at­
tains its minimum, with respect to 0, for 0  =  1/(1 + 9). The Kullback-Leibler 
divergence between the Geometric and the Poisson, DKL(f2(x\(f))\\fi(x\9)), attains 
its minimum, with respect to 9, for 9 =  (\ — 0 ) /0 -

Proof. To prove the first result, we have

x=0
D KL{fi{x\9)\\f2{x\(j))) =  ¿ - y e  0i a ; l o g 0 - l o g x ! - 0 - l o g 0 - a : l o g ( l - 0 )
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B.l. Theorems and Proofs

OO
=  B logB - J 2

x = 0

9 log(l -  (/)).

— 0 — log 0

Differentiating with respect to 0, we have d / d<j){D KL(fi(x\0)\\ f 2(x\(f)))} =  —l/4> +  
0/(1 — (/>). By equating to zero, we have the result stated. For the second result, 
we consider

DKL(f2(x\<f>)\\fi(x\e)) =  Y log (/ +  X log( 1 — (j)) — x  log 9 +  log x\-\-0
x=0 ^

— log^ +  -——  log(l -  <f>) — -  log0 + B + T  { o i l  -  0)1 log:r!
<t> 4> h j  l

To find the minimum with respect to 9\ d/d0{D KL(f2(x\(f))\\fi(x\0))} =  1 — 
(1 — 4>)/(<p9), and by setting equal to zero we obtain the second statement of the 
theorem. □

Rem ark B .l . Assume random variable x has a Weibull distribution with param­
eters A and k,. Then, we have the following results (Johnson and Kotz, 1970)

E(:r) =  AT(1 +  1 /  ac)

E(logx) =  log A — 7 / n

E(log2 x ) =  7T2/(6 k2) +  (log A — 7 / k)2

E(xK) =  AK

Var(\ogx) =  7t2/(6 k2).

Rem ark B.2. If random variable x has a Log-normal distribution with parameters 
p and r, then the following results are true (Johnson and Kotz, 1970)

E(x) =  exp{p +  l /(2 r ) }
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B.l. Theorems and Proofs

E(logx) =  p 

E(log2 x) =  1/t +  p2 

E(aT) =  exp{«-2/(2 r) +  /in}.

Theorem  B.2 (Weibull-Log-normal KullbackTLeibler minimum). Consider the 
Weibull density function fi(x\X, At) =  At/A(x/A)fc-1 exp(—x/\)K and the Log-normal 
density function / 2(x|/r, r) =  x~1{ t/ { exp{—r(log x —p)2/2}. The Kullback- 
Leibler divergence DKL(fi(x\X, K)\\f2(x\p,t )) is minimised for ¡i =  E(logx) =  
log A — 7 / ac and t =  \/Var(\ogx) =  6(At/7r)2, where the expectation is taken with 
respect to f i ( x |A, At). The Kullback-Leibler divergence DKL(f2(x\p, r)||/i(a:|A, k)) 
attains its minimum at A =  E(xK)1/K =  exp{l/(2-v/r ) +  /j,} and ac =  y/r.

Proof. First we see that
/*oo

D KL(fl(x\X,K)\\f2{x\fi,T)) =  / /l(x|A,/t)
Jo

— log A +  (At — 1) log x — (ac — 1) log A — -— h log a; —
AK

2 loST +
1 1 1  1=  log At +  Af. E(log x) — At log A — —  E (xK) — -  log r  +  -  log(27r) +  - r  E(log2 x)

-  rpE (logx) +  ^rp2.

To find the minimum: d/dp{DKL( f 1(x\\, K)\\f2(x\p,r))} =  —rE (logx) +  rp, 
which is solved for p =  E(logx) =  log A—7 / ac; d/dT{DKL( f 1(x\X, At)||/2(m|//, r ) ) }  =  
— 1/(2t ) +  l/{2 E (log 2:r)} — p.E(logx) +  p2/2, which, by setting p =  E(logx), is 
solved for r  =  \/Var(fogx) =  6(At/7r)2. This proves the first statement of the 
theorem. For the second result, we have

2 log(2vr) +  ^r(log2 x - 2  p log + p 2) dx
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=  g loS T ~ \ log(2yr) -  E(log2 x) +  rp  E(log x) -  ~r/r2 -  log «  -  k E(log x)

+ k log A +  -^E(:rK) .

To minimise: d/d\{DKL(f2(x\fi1T)\\f-L(x\X, k,))} =  k/X -  k E ( x k) /Xk+1, has solu­
tion A =  E(xK)1/K =  e x p {l/(2 y/r) +  fj,}; then d / d K { D KL( f 2(x\ i i ,T) \ \ f i (x \ \ ,k ) ) }  =  

— 1/k +  k/t , where we have considered E(loga;) =  p and E (xK) =  1/AK, has

Rem ark B.3. If random variable x has a Gamma distribution with parameters a 
and ¡3, that if f(x\a, (3) =  f3axa~l exp(—¡3x)/T(a), then

refer to Johnson and Kotz (1970).

Theorem  B.3 (Weibull-Gamma Kullback-Leibler minimum). Consider the den­

as the shape parameter. Consider also the Gamma density f 3(x\a,/3) where a and 
(3 are, respectively, the shape and the rate parameter. The Kullback-Leibler diver­
gence ZAkl( / i (x |A, K)\\f3(x\a, (3)) attains its minimum for E(logx) =  T(cn) — log (3 
and E(x) =  a/(3. The divergence D KL(f3(x\a, /3)\\fi(x\\, k ) )  is minimised for 
A =  E(a;'t)1/K and T(/i + a) — 1/k — \k(a:).

Proof. For the first statement, we have

solution k =  y/r, proving the second statement of the theorem. □

E(loga:) =  T (q ) — log (3 

E {xK) =  (3~*r(K +  a )/r{a),

sity fi(x\X, k ),  which has a Weibull distribution with X as the scale parameter and k

OO

/i(x|A,«)< log k  log A +  (k -  1) logx
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By differentiating, we find d/da{DKL( f 1(x\X, K)\\f3(x\a, /3))} =  - lo g /3  +  T (o ) -  
E(logx) and d/dfd{DKL( f 1(x\\, K)\\f3(x\a, (3))} =  -a//3 +  E(x). The resulting 
system formed by equations E(logx) =  T(a) -  log^ and E(x) =  a//3 has to be 
solved numerically (i.e. Newton-Raphson method). For the second statement, we

DKL(h(x\a,l3)\\fi x

which, considering d/d\{DKL(f3(x\a, f3)\\fi(x\\, k) ) }  =  - k/X+k/Xk+1E(xk), and 
k, d/dn{DKL( f3{x\a, /3)\\fi(x\\,K,))} =  — l / / i —T (a) — T («;+«), results in a system 
with equations A =  E (zK) and '¡/(/i -f » )  -  l/n =  T(a:). The system has to be 
solved with numerical methods.

Theorem  B .4 (Log-normal-Gamma Kullback-Leibler minimum). If we consider 
densities f 2(x\^,r) and f 3(x\a, (3), DKL(yf 2(x\yi,T)\\f3(x\a, ¡3)) it is minimised when, 
simultaneously, we have E(x) =  a//3 and E(logx) =  T (a) — log/T The divergence 
DKL{h{x\a, /3)\\f2(x\fi, t)), attains its minimum for n =  E(logx) =  T (o ) — log/5 
and T (q ) — log (3 and r  =  l/Var(\ogx) =  1 /T '(a ).

Proof. The Kullback-Leibler divergence between the Log-normal and the Gamma 
densities is given by

have

'OO

=  a\og(3 — log T(a) +  a E(log x) — (3 E(x) — log k 

— k E(log x) +  k log A +  -i-E(a:K),

□
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Differentiating with respect to a , we have d/da{DKL(f2(x\p, T)\\f3(x\a, /?))} =  
— log/? +  T(o;) — E(logx), which is solved for E(logx) =  'l'(a) — log/3 =  /¿. 
Differentiating with respect to /?, we have d/d/3{DKL( f2(x\^, T)\\fs(x\a ,^))} =  
—a/(3 +  E(x), with solution E(x) =  a/(3 =  exp{p  +  l /(2 r ) } . The minimum is 
obtained by solving the system of equations with numerical methods (i.e. Newton- 
Raphson). We now consider the Rollback -Leibier divergence between the Gamma 
and the Log-normal density

DKL(f3(x\a,{3)\\

The divergence is minimised by considering d / dp {D KL(f^(x\a^ /5)||/2(x|/i, r ) ) }  =  
-rE (loga ;)+r/r , and d/dr{DKL{fz{x\a, /3)\\f2(x\p, r ) ) }  =  - l /(2 r )+ E (lo g 2 x )/ 2 -  
/iE (logx) +  p2 /2. Numerically, the system that has to be solved to find the mini­
mum, is formed by equation /i =  E(logx) =  T (a) — log ¡3 and r  =  l/Var(\ogx) =  
1 /T '(a ).

Theorem  B.5 (t-Normal Kullback-Leibler minimum). The Kullback-Leibler di­
vergence between a t density with location parameter 9, scale parameter X and

□
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number of degrees of freedom u, denoted by / 2(x|6f A, v), and a Normal density 
with mean /i and precision r, denote by /i(x| /i,r ); is minimised for  // =  9 and

Differentiating, we have d/dn{DKL(f2(x\9, A, u)\\fi(x\p, r ) ) }  = - r E ( r )  +  r/i, 

which is solved for /i =  E(ar) =  0; and d/dT{DKL(f2(x\9, A, //)||/i(:r|/r, r ) ) }  =  
— 1/(2t ) +  E(x2)/2  — gE (x) +  p? /2, which is solved for r  =  1/Vrar(x) =  A.

Theorem  B.6 (Weibull-Log-normal-Gamma-Exponential Kullback-Leibler min­
imum). If we consider the Kullback-Leibler divergence between either a Weibull, a 
Log-normal and a Gamma distribution, and an Exponential distribution with rate 
parameter 6, each divergence is minimised for 9 =  1/E(x).

Proof. If we consider the three divergences, we have

Proof. Consider the divergence between the two densities

+  7, l°g A -  ^log(z/7i) -  ^ - L log f l  +  ^ ( x - 9 ) 2)  -  ^log T

=  l°g r

□
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=  log/« +  /■cE(logx) -  E(logx) — k log A — — E(xK) -  log# +  9 E(x),

and

DKL{f2(x\n,T)\\fA(x\9)) =  / 2(x | ^ ,r )| -log x  +  ^ log r  -  ^ log(27r)

— -r ( lo g x  — n)2 — log# +  #x| dx

=  ~E(log x) +  ^ log t -  ^ log(27r) -  E(log2 x) 

+  r/r E(log x) — - r p 2 — log 9 +  8 E (x),

D KL(f3(x\a, (3)\\f4(x\6)) =  j  f 3( x \ a ,P ) i a l o g P  -  logT(a) +  (a -  l) lo g x

— f3x — log # +  9x j- dx

= a log /3 — log T(a) +  aE (logx) — E(logx) — /3E(x)

— log 9 +  9 E(x).

The derivative of each divergence with respect to 9 has the result —1/6 +  E(x), 
which has solution 9 =  1/E(x). In particular, for the Weibull distribution, the 
divergence between the two densities is attained for 9 =  1 / { AT( 1 +  1 /« )} ; for the 
Log-normal, the minimum is at 9 =  exp{ —¡i — l /(2 r ) } . And, for the Gamma, the 
minimum is attained at 9 =  ¡3/a.

□

Rem ark B.4. If the random variable x has an Exponential distribution with pa­
rameter 9, then

E(log2 x ) =  (log 9 +  7 )2 +  7t2/6
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E(logx) =  7r2/ 6.

refer to Johnson and Kotz (1970).

Theorem  B .7 (Exponential-Log-normal Kullback-Leibler minimum). Consider 
the Exponential density with parameter 0 and the Log-normal density with pa­
rameters p and t . The Kullback-Leibler divergence DKL(fA(x\6 )\\f2 (x\p,T)) is 
minimised for p =  E(logx) =  — log# — 7  and t =  l/Var{\ogx) =  6/ 7r2.

Proof The divergence between the two densities is given by

DKL(h(x\0)\\f2 (x\p,T)) =  J  f (̂x\6  ̂ "j l̂og9 Ox T  logx  — log t

+  ilog(27r) +  ^r(logx - /r)2| dx

=  log 6 6 E(ar) +  E(log x) — ^ log r  +  ^ log(27r)

+  ̂ t E(log2 x) -  xp E(log x) +  \rp2.

The derivative with respect to p is d/dp{DKL(f 4 (x\6 )\\f2 (x\p: r ) ) }  =  —r  E(logx) +  
r p , which is solved for p =  E(log:r) =  — log 6 — 7 .  When we differentiate with 
respect to r, we obtain the partial derivative d/dT{DKL(f^(x\d)\\f2 (x\p, r ) ) }  =  
— 1 /(2r) +  E(log2 x)/2 — /i E(logx) +  p2/2, which is solved for r  =  l/Varifogx) =  
6/ 7r2.

□
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Appendix C

Discretisation of the Parameters 
of a Normal Density

A possible way to derive objective priors for continuous parameter spaces through 
our idea, is by discretising the spaces. Here we present the approach for the 
Normal distribution and a generalisation to the exponential family.

Let fj,k(x\fjLj,cr‘j k) be a density of the Normal family, with mean ¡ij £ (—00, 00) 
and variance o 2k > 0. We also assume that the parameter are increasingly ordered, 
that is /ij„i < ¡ij and crj2fc_1 < a2k. Note that it is possible to obtain the same 
results by considering a decreasing order, and in general, there is no substantial 
difference in considering an increasing or decreasing order, as moving from one or 
the other is simply a “mirroring” exercise. As such, we discuss in detail the case 
where the discretised parameters are increasingly ordered and, where necessary, 
we reserve a special treatment for when they are decreasingly ordered.

C .l Unknown mean and known variance

Let us consider the case where the variance is known, and we need to put a prior 
on fi. We have then, a2k — cr2, Vj, A:. We can then simplify the notation for this 
case, by setting j)  =  N([ij,a'2). Thus, applying our approach (as discussed in 
Chapter 3), the prior mass to be put on /n, will be proportional to the minimum 
between D KL(fj\\ fj- i)  and D KL{fj\\fj+x).
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C.2. Known mean and unknown variance

For convenience, we repeat here the expression of the Kullback-Leibler diver­
gence between two univariate Normal distribution, that is

DKL{f{x\nU(jl)\\f(x\n2,a l)) =  ~ - l o g  -  l|  • (C .l)

Therefore, from (C .l) we see that if the nearest model to fj  is f j - i ,  meaning that 
(fij — /i j - i )  < (fij — fij+i), and the prior will be given by

7T(fij) oc exp { (nj -  i )2} .

If the nearest model to f j  is fj+i, that is (fij — fij-i) > (fij — fij+1), we have

7T (fij) OC exp {  (fij -  flj+1)2} .

In other words, in the case where the variance is known, the minimum Kullback- 
Leibler divergence is determined by the density which has the value of the mean 
closer to fij. The prior would then be proportional to the square of the difference 
between the two means.

C.2 Known mean and unknown variance

If the mean is known, and we need to put a prior on the variance, we will have fi:i =  
/i, Vj and fk =  N(fi, a|). To find the minimum divergence between DKL(fk\\fk-i) 
and DKL(fk\\fk+i)i we note that (C .l) has the form x — logx when we consider 
two Normal densities with same mean and different variance. The variable x, in 
this case, represents the ratio of the variances.

In Figure C.l we have plotted function x — logo; in the interval (0,5). From 
this, we can infer the behaviour of the Kullback Leibler divergence computed 
between to Normal distributions with same mean and different variance (where, 
as assumed here, the variance is discretised and the densities considered have 
different and consecutive value of the parameter). When we compare consecutive 
variances, we can have either an increasing scenario (a\ >  cr̂ +1) or a decreasing

179



C.2. Known mean and unknown variance
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Figure C.l: Plot of the function x  — log a;, where x  represents the ratio between 
two (consecutive) variances of a Normal density.

scenario (crjj! < cr|+1). In the former case, the the ratio of consecutive variances 
is larger than one; whilst in the latter, this ratio is smaller than one. In either 
case, the Kullback-Leibler divergence is an increasing function of the difference 
between the two variances.

Let us us now define A*, =  cr1+l/a\. Thus, (C .l) can be written as

(Afc- i  -  log Afc_i -  1) /2  oc (Afc_i -  log Afc_i -  1).

Given that Afc_i— log Afc_i < l/A*,— logl/A^ implies that cr|/a^_1 —\og(al/al_1) < 
<y ‘k/ak+1 — the smaller Kullback-Leibler divergence is DxLifkWfk-i)-
Thus, the prior is

If Afc_i -  log Afc_i < 1/Afc -  log 1/Afc, which implies that o\lo\_x -  \°g{p\lo\_^) > 
&k/at+i ~  l°g((r|/cr|+i), then the minimum divergence is D KL{fk\\fk+i), and the 
prior
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C.3. Unknown mean and variance

C.3 Unknown mean and variance

Let us now consider the case where both parameters are unknown. Thus, fj^ — 
N(idj,(jjk). The discret.ised parameter spaces will now form a lattice structure, 
and from each point in the structure {ffk) we can compute eight divergences.

Theorem C.l and Theorem C.2 below, show that the minimum Kullback- 
Leibler divergence, with respect to f j ik, is attained when only one of the two 
parameter varies.

Theorem  C .l . Let f j }k =  N(fLj,(j2 k), where ¡ij and a2k are the discretised ver­
sion of, respectively, the mean and the variance of the Normal density. Then, 

DKL{fj,k\\fj,k+l) <  D KL(fj,k\\fj-i,k+l) and D k l U M m i ) <  D KL(fj,k\\fj+l,k+l)-

Proof By considering the expression of the Kullback-Leibler divergence between 
two Normal densities in (C .l), we have

This is true for any ¡ij, /ij_i and cr2k+1, proving the first part of the statement. 
Similarly, we have

That is, for f j :k+ii fj+i,k+h fj+i,ki fj+i,k—1> J'j-k 1 ■ f j —i,fc—1> f j —i,k nnd ,/) 1 .a- • 1 •

DKL(fj,k\\fj,k+l) < DKL(fjik\\fj_i:k+i)

(tri -  P i - 1)2 
2

ajM  1

DKL(fj,k\\fj,k+l) <  ^A-L(/j,fc||/j+l,fc+l)
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(fij /U+i) alk
a j,k+ 1 <7

log
fc+ 1

0 < {pj Pj+i)
a j,k+1

(7/c+1
-  1

This is also true for any p j , //J+l and cr|fc+1, proving the second part of the theorem 
statement. □

Theorem  C.2. Let f j jk — N (pj, k), where pj and a jk are the discretised ver­
sion of, respectively, the mean and the variance of the Normal density. Then, 
DKL(fj,k\\fj,k-i) < D KL(fjtk\\fj_itk_i) and DKL(fj,k\\fj,k- i )  < DKL(fj,k\\fj+i,k-i)-

Proof. By considering the expression of the Kullback-Leibler divergence between 
two Normal densities in (C .l), we have

1
2

(hj ~ Pj)2 
i

+ alk 
alk -1

DKL(fj,k\\fj,k-l) < DKL^fj,k \\fj—l,k—l)

<

1
2

( P j - P j - i ) 2 . alk
alk -1 cr

log
k—1

(7

(7k—1
- 1

o < (Pj P j-1)
-Ik - ,

This is true for any pj, Pj~, and cr|fc_1, proving the first part of the statement. 
Similarly, we have

1 j (pj -  pj f
oj,k- 1 (7;

log <7k- 1
-  1 > <

1- j  (pj ~ j+1)
2 I

(7j,k
a

log
k- 1 crfc-i

-  1

182



C.4. Discretisation of the parameters - Special cases

0 <
alk -1

This is also true for any fij, and cr|fc_1, proving the second part of the theorem 
statement. □

The prior mass to be put on depends on the smallest divergence
among D k l { I j,k \\fj,k—i)i 11 ) ? Df(L{fj,k\\fj—i,fc) or DxL{fj,k\\fj+i,k^)-

C.4 Discretisation of the parameters - Special 
cases

With the results discussed above, we can see that the prior depends on the discreti­
sation scheme. For example, in the case where the unknown parameter is the mean, 
the mass will be proportional for the Kullback-Leibler divergence DKL(fjtk\\fj+1}k) 
if the distances between the consecutive means are decreasing. It is then inter­
esting to analyse some particular structures of the discretisation to retrieve well 
known priors.

In this section we show that, while it is possible to construct the discretised 
structures in a way that the prior to be assigned to the parameters is uniform, it is 
not possible (except for the prior on /i) to define a discretisation of the parameters 
such that the prior is Jeffreys’ .

Uniform prior

If the parameter to estimate is the mean, that is the variance is known, the uniform 
prior of ¡i can be obtained by simply considering consecutive means separated by 
equal intervals. In fact, if we set /q — /q_ | =  d. for every j ,  the prior will be

7r(hj) oc exp { (fij -  i i j- i j2} =  1.

It is clear that, in this case, we have DKL(fj \\fj ^1) =  DKL(fJ\\fJ+l). In fact, this 
is a situation where the Kullback-Leibler divergence is symmetrical.
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C.4. Discretisation of the parameters - Special cases

A noteworthy aspect is that this prior can be designed by setting up the se­
quence of means such that every point is always the arithmetic mean of the two 
contiguous ones. That is, if fij =  {p j-i +  Hj+1)/2.

If the unknown parameter is the variance, we can put an uniform prior on it by 
considering the ratio between consecutive variances constant. The general result 
assumes that the variances are increasingly ordered and it is obtained as follows.

First, we note that to obtain a uniform prior for a\, we need D^hifk-i\\fk) = 
DKL(fk\\fk+i)- In fact, from (C .l) we see that the Kullback-Leibler divergence 
between to Normal distribution with common mean but difference variance is not 
symmetrical. Therefore, in order to have a uniform prior, the minimum diver­
gences have to be all in the same “direction” . To obtain this construction, and 
recalling that we set A*, =  cr|+1/crl, we have

The solution of (C.2) is Afc_i =  A*,. Thus, in order to obtain equal “right” 
Kullback-Leibler divergences, we need to have

which means that the ratio between consecutive variances has to be constant: 
o\fo\_x =  A. However, to have the desired uniform prior on the variance, it is 
not sufficient that the “right” divergences are all equal, but also that they are 
always smaller that the ones computed in the opposite direction. In fact, our 
approach requires a prior mass proportional to the minimum Kullback-Leibler 
divergence from the point. To show that DKL( fk\\fk-1) > DKL( fk\\fk+1), given 
that DKL(fk\\fk+i) =  DKL(fk-i\\fk), we see that we need to have

DKL(fk-l\\fk)  — D KL{fk\\fk+l)

(C.2)
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Afc_i -  log Afc_i > ------ log
Afc

Afc-i -  log \ k-i > ~ ------1<
Aik-1

h - i  -  > 21°g Afc_i, (C.4)

where the second inequality in (C.4) holds as the variances are assumed to be in­
creasing. We note that the last inequality in (C.4) has the form of x — l/x > 2 log x, 
with x > 1. In Figure C.2 we have plotted function x  — l/x , represented by the 
continuous red curve, and function 2\ogx, represented by the dashed black curve. 
We can easily see that, for x  > 1, which corresponds to our initial assumptions 
that the variances are increasing, the inequality in (C.4) holds.

Figure C.2: Plot of function x  — l/x (continuous red line) and function 2 log a: 
(dashed black line). The variable x  represents the ratio of two consecutive vari­
ances Xk-i  =  a2k/a2k_v

Should we assume that the variances are decreasing, we would have Xk =  
vl+i/vl <  !• In this case> we would have DKL( fk+1\\fk) =  DKL(fk\\fk_{). By 
inspecting in Figure C.2 the region where x <  1 (i.e. A < 1) we see that the equal 
divergences are always smaller than the one computed in the opposite direction.

For the uniform prior for the mean, we have seen that this can be designed 
by setting each point as the arithmetic mean of the two contiguous points. Sim­
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ilarly, a sensible result can be obtained for the prior on the variance. In par­
ticular, as A -  &k/ak-i has to be constant, from (C.3), this is possible when 
al =  y //a|_1 • <rk+l. In other words, when each point is the geometric mean of the 
contiguous points.

To find the uniform distribution when both parameters fi and a2 are unknown, 
an additional condition has to be included. This is determined as follows.

Let us consider the lattice structure defined by ¡ij and a2 k, where the mean 
points define the columns of the lattice and the variance points the rows on the 
lattice. To clarify: if we fix the variance, changes in the mean are represented by 
horizontal movements. If we fix the mean, changes in the variance are represented 
by vertical movements.

In order to define a uniform prior on (fij, cr2k), we need to design the lattice in 
a way that, at each point, the minimum Kullback- Leibler divergence (measured 
to a contiguous point) is constant. From the above discussions, we know that 
the minimum divergence from a point of the lattice occurs when only one of 
the two parameter varies. That is, it is either a “horizontal” or a “vertical” 
distance. However, from (C .l), we see that it is not possible to keep any of the 
“horizontal” divergences constant. In fact, its value does not depend on the means 
only, by it is inversely proportional to the variance. For example, if > r f - v  
then DKL(fjik\\fj+1,k) < DA-L(/j,fc-i||/j+i,fc-i)- Therefore, the only way to design 
a lattice structure that leads to a uniform prior, is done by forcing one of the 
“vertical” divergences to be constant. In fact, the Kullback-Leibler divergence 
between two Normal distributions with the same mean (refer to (C .l)) depend 
only on the ratio of the variances.

Let us now start by constructing a lattice structure in agreement with the 
conditions we have discussed above to obtain a uniform prior on each parameter 
independently. That is, we put 5 =  fij— fij_i and A =  The first condition
ensures that, in each row, the “horizontal” distances are constant; the second con­
dition ensures that, in each column, the “vertical” distances are constant. Then, 
by construction, the minimum Kullback--Leibler divergence measure from f j k can 
be either DKL(fjtk\\fj-i,k) or DKL(fj)k\\fjM 1). Note that the first divergence can
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be replaced by DxL(fj,k\\fj+i,k), as the Kullback-Leibler divergence is symmetri­
cal in this circumstances. However, on the basis of what said above, the smallest 
divergence has to be the “vertical” one, that is DKL{fj,k\\fj,k+1), for the “horizon­
tal” divergence depends on the row (i.e. on k). To obtain this, we need to set the 
following extra condition

1
A

log > +  1. (C.5)

Equation (C.5) is solve with respect to the variance, and we have

< 1/A -  log(l/A ) — 1 (C 6)

We see from (C.6) that the additional condition is an upper bound for the variance. 
Thus, when both parameters are unknown, and we wish to define a discretised 
parameter space such that the prior mass on each point is uniform, we need to set 
three conditions. Namely, the arithmetic mean for (i, the geometric mean for er2 
and fix an upper bound for the variances, where this bound depends on the first 
two conditions. We note that this limit can be controlled by the distance between 
the means (6) and the ratio between the variances (A).

Jeffreys’ prior

We now discuss the possibility of discretising the parameter space of a Normal 
density and, by applying our approach, retrieve Jeffreys’ prior.

The Jeffreys prior for the mean of a Normal, when the variance is known, is 
a uniform: 7r(/r) oc 1. As such, we can conclude that it is possible to design a 
discretisation of the mean such that the prior mass is a uniform and, in particular, 
this is the result we have discussed in Section C.4 above.

We now show that, on the basis of the proposed prior, it is not possible to
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construct a discrete structure such that Jeffreys’ prior can be obtained, in both 
cases when the parameter is the variance or the pair mean and variance.

The Jeffreys’ prior for the variance of a Normal density, when the mean is 
known, is 7 r (c r 2 ) oc 1/<t2 =  exp(— log a2). Thus, because our approach assigns a 
mass which is proportional to the exponential of the Kullback-Leibler divergence, 
we nee to have — log a2 >  0. Therefore, we need to consider discrete structure of 
variances between zero and one.

If the minimum divergence from fk is DKL(fk\\fk+i), we would have

1 f _ z L
2 l  ¿U  i

which has solution

=  “ log al,

=  cr|+i {a. — l°g(cr|cr^+i ) }  . (C.7)

Given that the variances have to be smaller than one, — log(<72.cr|+1) > 0, and 
ak/°k+1 > 1- Thus, under the assumption that the minimum divergence is 
DKL(fk\\fk+i), it is not possible to have increasing variances. Then, we consider 
the case where the variances are decreasing. We should than have

1 f
2 K - i

1  ̂ > (C.8)

By replacing (C.7) into the right-hand-side of (C.8), we obtain that crl/al_1 +  
log(cr2cr|_1) > 1. However, as we assume decreasing variances, we have crl/crl-i 
and l o g ^ u ^ )  < 0, inequality (C.8) does not hold. Thus, it is not possible 
to simultaneously have the condition for Jeffreys’ prior and DKL(fk\\fk+i) < 
D KL(fk\\fk-i) satisfied.

Let us now assume that the minimum divergence is DxLifkWfk-i)- In this 
case, Jeffreys’ prior would be possible if, for every variance value smaller than 
one, we have
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cr| =  j { i  — log(cr|cr|_i).} (C.9)

If we assume decreasing variances, equation (C.9) never holds. In fact, this equa­
tion implies that o\fa\_x > 1, which is not compatible with decreasing variances. 
If we assume increasing variances, we have

1
2 1 J < 2

(C.10)

which, by substituting (C.9) into the left-hand-side, gives o\la\_yX +  log(<7̂ (7̂ +1) > 
1. Given that in this case cr^/a|+1 < 1 and that log(<j2cq;+1) < 0, inequality (C.10) 
never holds.

We can then conclude that it is not possible to design a discretised structure 
of the parameter space of the variance of a Normal density such that, by applying 
our objective prior, it is possible to obtain Jeffreys’ prior.

Considering the case both the parameters of the Normal distribution are un­
known, we need to distinguish between Jeffreys’ rule prior and Jeffreys’ indepen­
dent prior. We recall that the first one is obtained by applying Jeffreys’ invariance 
method, whilst the second assumes independence of the parameters. Jeffreys’ rule 
prior is 7r(p, cr2) oc 1/er4. Jeffreys’ independent prior, which coincides with the ref­
erence prior, is 7r(p,cr2) =  7r(p)7r(cr2) =  l/cr2. As the prior obtained by applying 
Jeffreys’ rule gives unacceptable results (i.e. the posterior distribution would be 
a chi-square with n degrees of freedom, where n is the sample size, which does 
not take into account the loss of a degree of freedom in estimating the mean), we 
focus our discussion on Jeffreys’ independent prior only.

We have seen that it is not possible to design the lattice structure in such a way 
that Jeffreys’ prior can be obtained by considering the minimum divergence one 
of the “vertical” ones, namely DKL(fjik\\fjtfc+i) and D KL(fjtk\\fjtk- 1). Therefore, 
we show that it is not possible to work out an appropriate structure by aiming to 
have as minimum distance one of the “horizontals” .

We begin by noticing that we can assume the distance between the means
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constant, S =  Hj — h j-i- In fact, should we find an appropriate distance such that 
any of the “horizontal” divergences is the minimum and it leads to Jeffreys’ prior, 
this automatically applies to any column of the lattice. Thus, we consider only 
the divergence DKL(fj,k\\fj-i,k), being the one from j  to j  +  1 identical. Also, we 
recall that the variances have to be confined in the interval (0,1).

Let us assume that the variances are increasing. If DKL(fj,k\\fj-i,k) is smaller 
than Dk l (fj,k| | ) > then

S2
+ 1 = alk

a 2ajM  i
log °lk  A

alk+ iJ
(C .ll)

If DKL(fj,k\\fj-i,k) is the minimum divergence, than it has to be DKL(fj,k\\fj-i,k) =  
log a2 k, which implies S2 =  —2a2k\oga2k. By replacing this result into (C .ll), 
we have <x2 k/a2 k+1 +  \og(a2ka2k+l) > 1. This result is not possible because, by 
assuming increasing variances with value smaller than one, we have cr2k/o2k+l <  1 
and log(cr2k<J2k+1) < 0. As such, any of the “horizontal” divergences, under the 
above assumptions, is never smaller than DxL(fj,k\\fj,k+i)-

If we assume decreasing variances, we show that DKi,(fj,k\\fj-i,k) is never 
smaller than DKL(fj,k\\fj,k-i)- In fact.

h2 + 1 alk
a j,k- 1

-  log (C.12)

Setting S2 =  -2 a 2k log a2k in (C.12) above, we have o ) kl o ) k_x +  log(a2k)a'lk_ l > 
1. As the variances are decreasing and smaller than one, o\kl<j\k-1 < 1 and 
log(a2ka2k_1) < 0, also inequality (C.12) does not hold. Again, given that 
D KL(fj,k\\fj-i,k) can never be the smallest one under these assumption, we con­
clude that Jeffreys’ prior cannot be obtained.

C.5 Extension to the exponential family

The general results discussed above can be generalised to the exponential family 
of distributions.

Let us consider a distribution f(x\6) belonging to the exponential family. The
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general form is

f(x\9) =  c(x) exp {h{x)a{9) — m (9)} , (C.13)

where c(x) and h(x) are functions of x, and a(9) and m{9) are functions of the 
parameter 9 only. If a(9) =  9, the exponential family is said to be in canonical 
form. If we consider the exponential family in canonical form with the simplest 
h(x), that is h(x) =  x, we have

f(x\9) =  c(x) exp {x9  — m (9)} .

Let us consider density f{x\9\) and g(x\92), both belonging to the exponential 
family. Thus, the Kullback-Leibler divergence between f(x\9x) and g(x\92) is given 
by

D k l ( I  {x\9i)\\g(x\92)) =  j f ( x \ 9 x) log | | dx

=  E { h ( x ) }  {a (9 i )  -  a(92) }  +  { m ( 9 2) -  m ( 9 x) }  (C.14)

If the distributions are in the canonical form and h(x) =  x, expression (C.14) 
becomes

D KL{f {x\91)\\g(x\92)) =  E(x)(0i -  92) +  { m ( 9 2) -  m { 9 x) }  .

As the moment of a distribution belonging to the exponential family are obtained 
by differentiating n(9) ,  we have x  =  m'(9 ) .  In this case, the Kullback-Leibler 
divergence between two densities of the exponential family, in their general form, 
becomes

DKL(f{.x\9l )\\g{x\92)) =  m\9i) {h (x )} {a(9x) -  a(d2)}  +  {m (92) -  m(91)} ,

whilst the one in canonical form, with h{x) =  x  becomes
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D KL(f(x\9i)\\g(x\92)) =  m'(6i)(9i -  02) +  { m(92) -  m (0i)} .

Let us now consider a discretisation of the parameter space of 6 for a distri­
bution of the exponential family in the canonical form, f(x\9). To obtain the 
mass to be assigned on 9j, we need to be able to asses which divergence between 
DKL(f(x\9j)\\f(x\9j-i)) and DKL(f(x\9j)\\f(x\9j+i)) is the smallest. We see that

m\9j ){8j

DKL{f(x\9j )\\f(x\9j - 1)) <  DKL(f(x\9j )\\f(x\9j+1))

9 j - 1) +  { m ( 9 j _ i )  -  m{9j)} <  m ' (8 j )(9j -  9j + 1 ) +  { m(9j+x)

m <m(^j+1) —
— m(9j)} 

(C.15)

As m!{9j) is the expectation of the distribution, we see that expression (C.15) 
suggests the condition for the mean of the distribution for which the prior mass 
on 9j is proportional to the divergence from f(x\9j)  to f (x \8 j-1). By inverting 
the inequality sign in (C.15), we have that the prior mass will be proportional to 
D KL(f(x\9j)\\f(x\9J+1)) when

™'(9j) >
m(9j+1) -  m(9j-x) (C.16)

@ j + 1  —  @ j — i

The following Example C.l applies the above results to the special case of a 
Normal density with known variance, expressed in the exponential family form. 
It also shows how the result is consistent with the one obtained in Section C.4.

Exam ple C .l .  Let us consider a Normal distribution with unknown mean p and 
known variance a2. To express this distribution in canonical form, (C.13), we set 
c(x) = exp (—x2/2a2)/\Z2tu72, h(x) — x/a2, a(9) = fi, and m(9) = p 2/2 a2.

By considering either (C.15) or (C.16), and thatm'(p) =  p /u 2, we have

p_ =  P j+ i/2  a 2
a 2 P j+ i

which solved for pj gives the result
ilj - 1
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Hj~i +  pJ+1
N  -  2

The result in (C.17) reconciles with the result we have obtained in Section C .f■ In 
fact, what (C.17) states is that, if we chose each point in the sample space f  zmu 
equal to the arithmetic mean of the two contiguous points, then the divergences 
DKL{f(x\pj )\\f(x\nj-i)) and DKL(f(x\pj)\\f(x\pj+1)) will be equal. Therefore, 
we would obtain the uniform prior on p.

We see that, if we choose pj < (p j- i+  p j+i)/2 at each point, then the minimum 
divergence will be always D KL{f (%\Pj)\\f {x\pj-\)). In f ach this naeans that the 
inequality \pj — p3-\ \ < \pj — Pj+i \ holds. And this inequality has solutions p,j > 
Pj+1 +  |pj — P j-1| and pj < Pj+i — |Pj — P j-1|. Given that we assume Pj~i < Pj+i, 
the only possible solution is the former one, giving

hj- i hj+i 
/ j  2

which agrees with the result previously obtained. With a similar process, it is 
straightforward to see that when we set each point larger than the arithmetic mean 
of the two contiguous points, that is pj > (pj~i — Pj+\)/2, the minimum divergence 
is always DKL(f(x\pj )\\f(x\pj+1)).

In the next example, we consider a Normal density with known mean p =  0 
and unknown variance. In this case as well, we obtain results consistent with the 
previous.

Exam ple C.2. Let us consider a Normal density with known mean p =  0 and 
unknown variance a2. We express it in the form of (C.13) by setting c(x) — 
l/y/2n, h(x) =  x 2, a{9) =  —l/2cr2 and m(6) =  log a2. By applying either (C.15) 
or (C.16), and considering that m'{6) — 1 /a2, we have

2 =  t o g ^ f c + i - log°i,fc-i 
^  — l/(2cr2fc+1) '

By setting Xk — a2fc+, / a2kj then the right-hand-side of equation (C.18) becomes 
—<72k {[log Xk +  log Afc_i/[1/Afc — Afc_i}. Therefore, from (C.17) we have
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- lo g A fc -  logAfc-i _
1/Afc — Afc_!

which can also be written as

Afc-i -  log Ajt-i =  - 1-  -  log

We can than reconcile the previous general results. In fact, if we set Xk-i — 
logA/c_i < 1 / A>t — log(l/Afc), then the minimum divergence will be DKL(fj,k\\fj,k-i)- 
On the contrary, if we set \k-i — log Xk-\ > 1/A^ — log(l/Afc); then the minimum 
divergence will be DKL(f jtk\\fjtk+1).
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