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Abstract

In recent years, great effort has been placed on the development of 
flexible statistical models, which can capture the rich and diverse 
structures found in real data. Complex models are often intractable, 
and they require non trivial techniques for inference. In the Bayesian 
setting, the most common intractability problem is related with nor­
malizing constants which cannot be calculated directly. In this case, 
MCMC methods are a usefrd tool for posterior simulation of the model 
parameters, and many ideas have been developed to enable the con­
struction of the chains with the desired stationary densities. Fre­
quently, ideas applied for posterior simulation from doubly-intractable 
distributions involve an approximation error; general exact methods 
are only available for models in which both the data and the param­
eters take values in fnite-dimensional spaces.

In the present work we propose a novel idea, based on a series ex­
pansion representation of the intractable functions, to enable MCMC 
simulation for models in which either the data or the parameters are 
infinite-dimensional. We achieve this by introducing a suitable set of 
latent variables with unknown and possibly infinite dimension. The 
MCMC construction is then made for a tractable latent model, from 
which the density of interest can be recovered through marginaliza­
tion.

We illustrate the applicability of the method in various situations. 
We show that the latent variable construction of the retrospective re­
jection sampler commonly known as exact simulation algorithm for 
diffusions, is a particular case of the latent variable construction we 
propose. We provide an idea for an alternative exact simulation and



inference scheme, through a Markov chain construction. We also 
present two related nonparamctric mixture models, for time series 
and regression analysis. Their novelty is in the construction of the 
mixture weights, which gives them great flexibility but introduces an 
intractable component generated by the infinite-dimensional parame­
ters; we show how our methodology can be applied to enable MCMC 
inference for these models. We also show how our ideas can be used 
for inference when the power likelihood for nonparametric mixture 
models is used; a problem which is of interest in many settings and, 
to our knowledge, has not been solved without the introduction of 
some approximation error.

Finally, we discuss the matter of Bayesian consistency for Markov 
models. Unrelated to the driving theme of the thesis, the problem 
naturally arises from some of the models studied. We make a first 
step towards a general result for strong consistency which can be used 
both for discretely observed diffusions and for the time series model 
we propose.
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Introduction

The first word in the title of this work is Bayesian, we therefore begin by con­
sidering a basic Bayesian model: a likelihood function f(yi:n\6) for a sample of 
observations, y\:n :=  (.//,)"=1, each modelled as a realization of a random variable 
Yi, taking values on a state space Y; and some prior distribution II for the pa­
rameter 0 £ 0 . Bayesian inference is then carried out based on the posterior 
distribution

For simplicity of notation, we assume throughout that all densities exist, with 
respect to some reference measure on Y" x 0 . Furthermore, we freely denote by 
II both prior distribution and density, allowing the interpretation to be inferred 
from the context; the same liberty is taken with the use of //, which denotes the 
generic reference measure with respect to which densities are defined, on the ad­
equate spaces.

The title of the thesis also mentions intractable components, because we focus 
on models for which the likelihood function has the representation

where the function y is tractable but h is not, either because there is no analytic 
expression for it or because its evaluation is too computationally expensive for any 
practical application, hence making it an intractable component. As will become 
clear in later chapters, we are using the term tractable in a wide sense, referring 
not necessarily to functions which can be evaluated directly, but to functions 
which can be addressed using methods previously established in the literature.

n „ (% 1:n) oc /(yi:„|0)II(0). (1)

/(yi:n|0) =  9(yim,9)h(yi:n,9), (2)

1



INTRODUCTION

Finally, we are interested in models which are either nonparametric, or de­
fined on infinite-dimensional state spaces, or both. In other words, either the 
parameter 0 or each observation . is an infinite-dimensional object. Thus, we 
say that the intractable component is infinite-dimensionally generated.

There is extensive literature regarding the problem of intractable components 
in statistical models (see e.g. DiCiccio et al., 1997; Evans & Swartz, 1995; Smith, 
1991). However, most of it is concerned with the approximation of intractable 
normalizing constants when both the observations and the parameters are finite­
dimensional. Noteworthy exceptions are found in the context of discretely ob­
served diffusions (see Sorensen, 2004), and models involving some nonparametric 
priors, as we mention in the next chapter; but the results are specific to the mod­
els studies and not applicable in other situations. Both for general and particular 
models, three mainstream approaches can be identified: analytic approximation, 
usually based on Laplace transforms and other mathematical representations; nu­
merical integration or some form of adaptive quadrature method based on classi­
cal analysis techniques; and Monte Carlo simulation methods, which use samples 
drawn from the distribution of interest to estimate features of it. In all of these 
methods, choices must be made which determine the quality of approximation 
that can be achieved. In high-dimensional situations application of such methods 
may be very computationally demanding; in the infinite dimensional set-up, it is 
not clear how they could be employed.

The idea we propose is simple. Rather than trying to approximate the in­
tractable component, h, we replace it by a latent structure based on a power 
series expansion.

We start by factorizing the likelihood function in a standard way
n

f{y\-.n\0) =  Ylf(yi\yui-i), (3)
i= 1

where y0 is considered as a fixed known point, an artifice to simplify notation. In 
this case, the tractable and intractable components of equation (2) can also be

2



INTRODUCTION

factorized, and we have

f{Vi\yi-.i-i, 8) =  (h(Vl:i-0)hi(ViH, 8). (4)

Assuming that each hi can be represented by some adequate series expansion
OO

hi(vi-.i, 9) =  ^ 2  ci,ki(9)hi,ki(Vi:i-9)- (5)
fc;= 0

in term of a sequence of fully specified functions, we propose using
the indices fc1:„ =  (fci,. . . ,  kn) as latent variables. We incorporate them into the 
likelihood expression (3), thus obtaining an extended model

n

f  {yi:ni l̂:n\9') =  [)i {yv.ii 9)Cî ki {9)hî k. (yi:j, 6). (6)
i=1

The dependence of each of the functions gt and h on the complete set of 
variables yi ;t represents only the most general case. More commonly, the de­
pendence structure assumed by the model, simplifies these expressions, so that 
only a fixed number of variables yt-m-.i =  {Vi-mi ■ ■ ■ ■ Vi) is required for their eval­
uation. For example, if independence between observations is assumed, then 
f{yi\yv.i-i) =  f{])i)i therefore gi{yhi, 9) =  gi{yt, 9) and hitki{y1:i,6) =  hi>ki{yi,6). 
Similar simplifications apply when Markov dependence of some order is assumed.

While the representation of equation (5) may not always be available for 
an arbitrary function hi, it covers a wide spectrum of the intractable component 
problems that can be found in the literature. In the following chapters, we present 
a variety of models for which the method works. We focus on two cases:

i) By defining ci:k.{9) =  [r{9)]ki/ki\ for all i =  1 ki 6 N, some fixed, 
known function r : 0  —> [0. oo); and adequate functions {hitki)ki>0, we deal 
with an exponential intractable component,

hi{yv.i,9) =  J  exp{r{9)bi{y1:i,9 : \)}dv{\). (7)

This is relevant in the context of inference for discretely observed diffusions 
(see e.g. Beskos et ai, 2006b), where A is a continuous function and the 
reference measure v is a Weiner measure.

3



INTRODUCTION

Notice that, in this case,

f(.ki\yi-.n,o) oc J [ M ^ M ) ] fcidKA) (8)

may be intractable. However, conditional on the observations yi:i, the model 
parameter 9 and the auxiliary variable A, each latent variable kt has a 
Poisson distribution with mean parameter r(9)bi(yi:i,9, A).

ii) By making, for every 0 £ 0  and ever}' i =  1 , . . . .  n, Cifi(O) =  1, = a
and 0^(9) =  a ^ /k il  := a(a +  1 ) . . .  (a +  kt — 1 )/&*!, for > 1 and some 
known, fixed 0 < a < 1; and assuming

hiM(Vi:i,0)= [ l - M : Vi:i,9)]ki, (9)

for some bounded function br : Y* x O —y [0,1], we obtain an adequate 
representation for functions of the type

hi{yi:n>0)
1

( 10)

Intractable components of this form are common in the literature, and in 
the following chapters we illustrate this with three nonparametric models in 
the contexts of time series analysis, regression analysis and power-likelihood 
estimation for i.i.d. observations.

In this case, the conditional distribution of fc, given and 9 is the negative 
binomial with parameters a and 1 — b^y^.O), i.e.

r(A;8 +  a)
ki\T{a) [l -  b(yl:i,9)]. ( 11)

In particular, when a =  1, then k,\y]-t. 0 is a geometric random variable, 
and we can write

hi(y1:i,9) =  E[ki\y1:i.9\ +  1. ( 12)

Before we can apply standard techniques designed for inference involving func­
tions of infinite dimensional objects, such as hiik.(yi:i,9) for the latent model (6), 
we introduce additional auxiliary variables.

4



INTRODUCTION

Let (S. 23 (S)), be some measurable space and assume we can define, for each 
i =  1 ,___n and l =  1 , . . . ,  ki a function bij : Y 1 x  9  x Ski —» [0. oo) such that

KkXvi.i-0) 0 , *»,!:**) d l/ ( .S i,1:fcj). (13)

Notice that we are again favouring simplicity in the notation, trusting that any 
ambiguity in the use of b to denote different functions is resolved by the variables 
involved. We use the same principle when using /  to denote densities and II to 
denote priors, regardless of the random variables and spaces on which they are 
defined.

Under assumption (13) we introduce a set of auxiliary variables simp:** =  
{.Sj; : ? =  1 .-----n; / =  1 , . . . ,  ki}, and arrive at the extended latent model

n k{

J (yV .n .h ;n .S l :n ,V .k i  \0) =  £/i(2/l:z? @}^i,ki ($) @i *'t,l:fcj)> (14)
i=l i=l

from which the original likelihood (3) can be recovered by integrating over the 
k\:n and . However, in this last expression, the dimension of the state
space § fc,: of latent variables is itself random, as it depends on ki. This poses an 
issue for inference which we resolve following the ideas of Godsill (2001). That 
is. we consider infinite-dimensional latent variables si:„,i:oo, each siil:0O defined on 
(S°°, B(S°°)), and a full latent model

f { y i : m  ^ 1:71’ ¿’ l:n ,l:oo I»)=»(»I»..«) n «•*(») n i,l:ki
i=  1 a=i

(15)
where n(s) denotes a completely known density on (§, 23(B)). At this point, infer­
ence can be carried out using basic MCMC methods, such as the Gibbs Sampler 
and the Metropolis-Hastings algorithm, by observing that, at any iteration of a 
Markov chain update scheme, the k\:n are given, so only a finite number si:nii :fc. 
of latent variables is needed.

Summarizing, we are concerned with inference for doubly intractable distri­
butions with infinite-dimensionally generated intractable components; we achieve

5



INTRODUCTION

it through the introduction of adequate infinite-dimensional latent variables. We 
do not present output diagnostics or study theoretical rates of convergence of the 
proposed Markov chain schemes. Our aim is simply to propose a means of making 
MCMC simulation possible for some doubly intractable models for which, to our 
knowledge, there is no available methodology. We acknowledge this is simply a 
starting point and much work may yet be done. However, as it stands, our ideas 
are widely applicable, and we illustrate this through a series of examples, ranging 
from univariate continuous processes to multivariate regression models and from 
independent and identically distributed observations to time series.

Only general ideas have been presented in this Introduction. Many details 
and considerations must be made concerning each specific example. We address 
them in the following Chapters, hoping that the illustrations will serve to clarify.

Outline of the thesis

In Chapter 1 we present some background material, relevant for the present work. 
It is divided into three sections. The first one provides a review of some Bayesian 
models currently used in the context of independent and identically distributed 
observations, discretely observed continuous-time Markov processes, time series 
analysis and regression analysis. The second gives a review of auxiliary variable 
constructions and MCMC methods, for simulation and posterior inference for 
complex and intractable models. The third is a brief exposition of current results 
on Bayesian consistency for i.i.d. observations.

The next four Chapters provide examples of intractable models for which our 
auxiliary variable approach is applicable. Chapter 2 focuses on discretely observed 
diffusions. In Chapter 3 we propose a nonparametric model for stationary time 
series, for which both the transition and the invariant densities have an infinite 
mixture representation. A similar model is developed in Chapter 4 in the context 
of nonparametric regression, for which the covariate space may include combi­
nations of both continuous and discrete variables. Chapter 5 is concerned with 
inference for infinite mixture models, when a smoothed version of the likelihood, 
a power likelihood, is used. In each Chapter, we provide a latent model for which 
inference is feasible via MCMC posterior simulation for the model parameters.

6



INTRODUCTION

Chapter 6 is somewhat different. We develop a new result for posterior con­
sistency, in the context of Bayesian estimation of the transition density of a time 
homogeneous Markov process. This is not directly related with the latent model 
approach studied in this thesis, but it is relevant to some of the results and models 
presented in previous Chapters.

Each of the Chapters 2 to 6 ends with a discussion of the results and methods 
presented within, as well as some ideas for extending them. Chapter 7 provides 
a more general discussion of the overall results and methods developed in the 
thesis, some relations between the models studied in the previous Chapters, as 
well as some ideas for future work which involve the combination of some of the 
models and ideas found in different chapters.
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Chapter 1 

Background

In this Chapter, we present some background material on models and methods 
currently found in the literature. We do not intend to cover the subjects exten­
sively, but rather to provide a context for the present work, as well as the basis 
over which we build our own models and results.

We begin with an overview of some statistical models. It is followed by a 
section on auxiliary variable schemes, resulting in latent models which make in­
ference possible, simpler or more efficient. We then discuss some of the algorithms 
currently available for simulation and posterior inference via Markov Chain Monte 
Carlo methods. Finally, we define Bayesian posterior consistency and review some 
of the current results regarding asymptotic properties of Bayesian models.

1.1 Statistical Models

Our starting point is a sample, yi:n =  (yi,. . . ,  yn). For i =  1. . . .  ,n, each obser­
vation, yi, is considered as a realization of a random variable Yt. Two elements 
define a Bayesian statistical model. First, the joint density /  of (Vi, . . . .  Yn), 
which characterizes the random mechanism generating the observations. Since 
this density is assumed to be unknown, a family T  of density functions is defined, 
containing all “candidate” densities. The second element of the model is a prob­
ability measure II over T, describing the uncertainty about such mechanism and 
incorporating any prior belief about it. Bayes theorem can then be used to up­



1.1 Statistical Models

date the prior into a posterior distribution, thus learning about the phenomenon 
of interest.

We distinguish here between two types of models, depending on the size of 
the 3  space and. therefore, the nature of the prior II imposed on it. When each 
density f() E IF can be indexed by some finite-dimensional parameter 0 E 0 , the 
prior II is a probability measure on the parameter space 0  which, in turn, induces 
the prior on if; this is known as a parametric model. A nonparametric model 
is defined when the prior II is a probability measure defined on the space IP of 
probability measures over Y. If we consider the support of II as the subset of fP 
for which probability measures have a well defined density, this induces a prior 
on a functional space 3  of densities, too large to be indexed by what is commonly 
considered a parameter. In practice, it is common to use a representation for 
each density f  E 3  in terms of an infinite-dimensional parameter, over which the 
prior II is defined. This induces a prior on 3  and on IP, hence Bayesian models 
with infinite dimensional parameters are also known as nonparametric.

The capacity of the model to explain a complex phenomenon about which 
little is known a priori, in other words, its flexibility, depends on the size of the 
space of densities 3  under consideration. For parametric models, the larger the 
dimension of 0, the larger the family of densities indexed by it. In the limit, 
an infinite dimensional parameter is sufficient for representing entire functional 
spaces. Therefore, nonparametric models are considered more flexible than para­
metric ones.

The problem of defining a prior II on 3  is closely related to the problem of 
parametrizing the space, either by a finite or infinite-dimensional parameter 0. 
If the parameter space 0  is finite, the flexibility of the model, that is. the size 
of 3. depends on the paramo! rization itself. Diffusion models arc an example of 
complex parametric models. For nonparametric models, a simpler representation 
may be found for each element of 3; the complexity in this case falls on the 
definition of the prior on the infinite-dimensional 0 .

There are many ways to specify the family 3. Here, we consider three of them, 
where the distinction is made with respect to the type of dependence structure 
assumed for the data:

9



1.1 Statistical Models

i) Independent and identically d istributed  observations.

Each function /  G J  is a density on the state space Y, and for any sample 
size n, the likelihood function for =  (y,)™=1 can be represented as the 
n-fold product

n

/(yi:n) =  n ^ ) '  (L1)
i= 1

The main assumption in this case is that the random variables (Y))"=1 are 
independent and identically distributed (i.i.d.) according to / .  In fact, 
from the Bayesian point of view, the observations are only conditionally in­
dependent given their common density / ,  something related to the concept 
of exchangeability. However, we use the term i.i.d. observations to refer to 
this type of model, as is commonly done in the Bayesian literature.

We discuss some existing nonparametric models for i.i.d. observations in 
Section 1.1.1.

ii) O bservations w ith  a M arkov type  dependence.

Each function /  £ J  is a conditional density and for any sample size n, the 
likelihood function for y\:n — (y,)”=1 is again a product,

n

f  (jh-.n) .f (j/i\]Ji—1; Vi—2i • • ■ i Vi—m)• (1-2)
i= 1

The main assumption in this case is that the random variables (Yj)”=1 
are dependent and each Y* is conditionally independent on the rest, given 
(Y ))W _m. This is known as an order m Markov dependence structure, or 
simply Markov when m =  1. Some considerations regarding the initial 
m data points are needed in this case, as the expression (1.2) depends on 
(yi-m- ■ ■ ■ • i/o)- Unless otherwise stated, the initial points are assumed to be 
fixed and known. In other words, the first observations enter the likelihood 
expression as fixed, known quantities and not as realizations of random 
variables.

We present a large family of parametric models for this type of data and 
discuss some nonparametric models in Section 1.1.2.

10
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iii) O bservations dependent on covariates.

The sample is defined by pairs of data, (y,x)i:n, where each yt represents 
a realization of the variable of interest, while xt, the covariate, provides 
additional information about the behaviour of >). Each function /  6 J  is 
again a conditional density, and the likelihood function for a sample of size 
n takes the form

n

f(yi:n\Xl:n) =  Y[f{yi\Xi)- (1-3)
i= 1

The variables (b )"=1 are assumed to be independent, but the mechanism 
generating each Yt is allowed to vary, depending on the value of the cor­
responding covariate x.t. Formally, the random variables (Vj)"=1 are condi­
tionally independent given the (x,;)"=1, and variables with common covariate 
values are i.i.d. The covariates may be modelled either as fixed or random 
values, however we consider here the case of non random covariates only.

Models of this type, used to capture the way in which each random variable 
Yi depends on the covariate value ay, are known as Regression models. 
In Section 1.1.3 we discuss some of the nonparametric regression models 
present in the literature.

1.1.1 Nonparametric Models for i.i.d. Observations

We begin by considering a parametric model for independent and identically 
distributed random variables. This provides what is perhaps the most basic and 
frequently used construction for the likelihood function of a sample of size n, as 
the n-fold product of a single function, evaluated at each data point yt,

n

f(yv.n\0) =  H f ( yi\0). (1.4)
¿=i

Calling this a model for i.i.d. observations is arguably an abuse of terminol­
ogy, since the likelihood expression (1.4) implies only that the observations arise 
from random variables which are conditionally independent, given the parameter 
9. In fact, the assumption behind this model is somewhat milder than that of in­
dependence. It is enough to assume the observations possess a form of symmetry 
known as exchangeability.

11
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To formalize and set the notation, assume each observation yt is a realization 
of a measurable random variable Yt defined on a probability space (Q. A, P), called 
the sample space, and taking values on a complete and separable metric space 
(Y. d), known as the state space, with Borel cr-algebra 'B(Y). The space (T, 23(CP)) 
of probability measures over Y, is again complete and separable under the metric 
of weak convergence, and we can therefore define a probability measure II over 
it.

Let v be a cr-finitc measure on (Y, 23(Y)) with respect to which densities 
are defined, in in the present work, most random variables take values on the 
p-dimensional Euclidian space Y C Kp, on a discrete space Y C TP, or a product 
of them. Therefore v is the Lcbesgue measure, the counting measure or a product 
of them.

Denote by 3  the set of density functions over (Y.'B(Y)), and by =  { fy : 
0 £ 0 )  C 3  a set of densities parametrized by 6 £ 0 . A random variable Y is 
distributed according to P £ 7  or has density J' £ 3  if, for every B £ 23(Y)

Let Y°° denote the infinite product space of Y, with corresponding Borel 
a—algebra 23(Y°°) =  ('B(Y))00. For each probability measure P £ 7, we denote 
by P°° the corresponding product measure over Y°°, with density /°° .

Finally, let fiy £ 3  denote Dirac’s delta measure on y £ Y, that is, a probability 
measure with all the mass accumulated on y. The corresponding density is the 
indicator function 1 {y} £ 3, given by

We are now ready to define the concept of exchangeability and present some 
models commonly used when this property is assumed.

D efinition 1 (Exchangeability) A finite set (Yf)"=1 of random variables is 
called exchangeable if and only if every permutation of them has the same joint 
distribution. A sequence (Yi)i>i is exchangeable if every finite subset, is exchange­
able.

(1.5)

(1.6)

12
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Exchangeability is a sensible assumption in many situations, when the order 
in which the observations are received and incorporated into the model does not 
affect the information they contain regarding the mechanism that generates them. 
The use of the term i.i.d. in this case is justified by the following theorem (see 
e.g. Schcrvish, 1995, Chapter 1), stating that a sequence of exchangeable random 
variables is conditionally i.i.d. given a probability measure known as de Finetti’s 
measure, and vice versa.

T heorem  1 (de F inetti’ s Representation T heorem ) A sequence Y =  
of random variables taking values on Y is exchangeable if and only if there exists a 
probability measure 11 over (CP, 3(CP)) such that, for any D =  £ ^ (Y 00),

P[Y £ B] =  P[Yi £ Bp, i >  1] =  [  P °°(P )n (dP ).
JT(Y)

Furthermore, the de Finetti measure II for the sequence is unique and equal to 
the limit of the empirical distributions,

1 - AII =  lim — Syi.n—tOG 77, ^ J ?2=1
Therefore, if exchangeability is assumed, the the choice of a likelihood function 

given by expression (1.4) is justified, and a Bayesian model for exchangeable 
sequences can be represented in a hierarchical form as

v. ~  p -

p ~ n .  (i.7)

In this case, we use fp £ T  to denote the density corresponding to a probability 
measure P  £ T.

When the model is parametric, we may write

Yi ~  P<y,

o ~  n , (i.8)

since the prior on ( 0 , 3 ( 0 ) )  induces a prior on the parametric family {Pg : 0 £ 
0 }  C T. The densities in this case are denoted by fg.

13
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A variety of well known models are available in the parametric case. Non- 
parametric models are more complicated and here we present some of the ideas 
commonly used to define them.

Let us first consider a finite state space, Y =  {y1:. . .  ,yj}. Every probability 
P G CP can be expressed as

j
p =  (!-9)

j=i

for some weights 0 < Wj <  1 such that J2j wj =  ' and points Yj =  y3 G Y. If 
the fixed points and weights are replaced by random variables, the distribution 
over them defines a prior probability measure n  over CP. A simple way to do so 
is to assume the points (Yj)j=1 are i.i.d. random variables taking values in Y, 
and distributed according to some probability Pn• An independent probability 
measure may be defined on the simplex {w\, . . . ,  Wj G (0,1) : ^Zjwj =  !}• Po 
can be chosen as a simple parametric measure; the distribution for the weights 
requires a more careful selection, to guarantee that they add up to one. If both 
distributions have full support, the prior II they induce on CP will also have full 
support. A possible choice for the distribution of the weights is the Dirichlet 
distribution defined below.

D efinition 2 (D irichlet D istribution) Letw\,... ,iuj be a set of random vari­
ables, such that Wj Ga(7j, 1), where 7j > 0 for every 0 < j < J and JY  7j > 0. 
The Dirichlet distribution with parameter 71 ,j =  (71. . . . ,  7j )  is the joint distribu­
tion of the random variables (uq,. . .  ,Wj) defined by

E j '=1 wr

and it is denoted by {w\.j) ~  Dir(-|7i:j ) .

A generalization of this idea for an infinite sample space Y gives place to the 
Dirichlet Process, possibly the most widely known and used model in Bayesian 
nonparametrics.

14
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1.1.1.1 D irichlet Process and Stick-Breaking Priors

When the state space Y is not finite but countable, it is still possible to represent 
every probability measure over it as a weighted sum of Dirac’s delta measures 
over the elements of the space,

OO

P =  > (i-io)
i=i

However, a more careful prior specification on the weights w =  i is required
to guarantee that wj =  1 ail(l wj > 0 for every j. One idea is to use the rep­
resentation commonly known as Stick-Breaking, in which the weights are defined 
through a sequence of independent Beta distributed variables, Vj ~  Be(oj, Q), by 
making w\ =  v\ and for j  >  1,

wi = v-j n a - V ) .  (1-11)
j'<j

This multiplicative structure for the definition of the weights ensures that they 
add up to 1 (see Ishwaran &; James, 2001), whenever the parameters for the 
Beta-distributed variables satisfy the condition

OO

X ^ l°g (1 +  w )  =  °°- ( f -12)
3 =  1 *

The prior on the weights is complemented by an independent base measure P0 
from which the atoms (Yj)j>i are assumed to be independently distributed. The 
prior n  is the joint distribution for the weights and the atoms, or more formally, 
the probability measure on IP induced by it. As with the finite state space case, 
n  has full support whenever /  o does.

When aj =  1 and Q =  C > 0 for every j ,  this corresponds to a representation 
of the Dirichlet process given by Sethuraman (1994). This is, however, not the 
only characterization of the process, which owes its name to the first definition 
given by Ferguson (1973). He specified a set of finite dimensional distributions 
for a stochastic process, based on the Dirichlet distribution, and proved the Kol­
mogorov consistency conditions to guarantee the existence of the process.

15
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D efinition 3 (D irichlet P rocess) Let Pq be a probability measure over (Y , B (Y )) , 
and let C £ (O.oo). A random measure P E 1P has a Dirichlet Process distri­
bution with parameter C,P0 if for every j  =  1 .2 , . . .  and every measurable parti­
tion ( Y i , . . . ,  Yj) of Y, the vector (P (Y i ) , . . . ,  P(Yj))  has a Dirichlet distribution, 
Dir(-|CPo(Yi),. . . ,  CPo(Yj)). We denote this by P ~  DP(-|CPo)-

Intuitively, each path P =  {pj)j>i of a Dirichlet process constitutes a proba­
bility measure on Y, where each pj represents the probability assigned to a point 
yj E Y. Therefore, the law of the process constitutes a probability measure n 
over V.

Since its original introduction, the Dirichlet process has been widely studied 
and used. Its popularity is somewhat related to its many characterizations which, 
through adequate generalizations, allow the definition of new processes which can, 
in turn, be used as distributions for random probability measures. In the same 
paper where he introduced the process, Ferguson (1973) presented an equivalent 
definition, related to the Poisson-Dirichlet distribution (see Pitman, 1996, for 
more details) which is worth mentioning. However, we do not provide it, as it is 
not relevant to the present work.

Blackwell & MacQueen (1973) introduced yet another characterization of the 
Dirichlet process in terms of a generalized Polya urn. We present it here, because 
it allows the simulation of a sample from a Dirichlet process, through a closed 
expression for the predictive distribution.

Theorem  2 Let ( Yn)n>\ be a sequence of random variables with distribution de­
fined by a generalized Polya urn with parameter QPq, i.e.

P[W+1 G • | Y1, . . . ,Yn] =

P [n  e  •] =  Po(-)

CPo(-) +  ^¿(' )
c +  n

Then

(a) The sequence { Pn}n>i of probability measures with support in Y, defined by

(Po + Yfi=iPr, =
C +  n

converges a.s. to a discrete probability measure P supported on Y.

16
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(b) P ~ D P ( -  | (P 0).

(c) Given P, the random variables Y\, Y2 , ... are conditionally independent with 
distribution P.

We present below some well known results and properties of the Dirichlet process.

Lem m a 1 If P ~  DP(- | (To), then P is almost surely a discrete measure.

This is clear from the stick-breaking representation of the process, but not from 
Definition 3. This gives evidence of the relevance of the various characteriza­
tions of the process, since each one may be more convenient for proving different 
properties.

Lem m a 2 Let V’i:n be a sample of size n from a Dirichlet process P with param­
eter (To, be.

Then, the conditional distribution of P given the sample is again a Dirichlet 
process, i.e.

In other words, if a Dirichlet process is used as a prior for a nonparametric model, 
then the posterior is also a Dirichlet process.

Different representations of the Dirichlet process have been generalized to de­
fine new nonparametric priors. We focus on the stick-breaking representation

ters, we consider the Stick-breaking priors obtained when ay =  a and Q =  (  for 
all j.

P~DP(-|CP„).

(1.10) and the construction of the weights given by (1.11). In the following chap­

17
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An alternative nonparametric model, is obtained when the weights are con­
structed based one single beta distributed random variable, v ~  Be(a. Q. through 
a geometric structure

This process, known as the geometric stick-breaking (GSB) prior, was defined 
by Fuentes-García et al. (2010), who prove it has the same support as the MDP 
model. Its proposed advantage would be a reduction in the variability of the 
weights, due to the simplification of their construction, thus improving estima­
tion. In fact, the use of the GSB prior may be interpreted as the removal of a 
hierarchical level of the nonparametric model structure, achieved by substituting 
the weights of the Dirichlet process, by their expected values. More clearly, the 
expected values of the weights in the Dirichlet process are given by

which is a reparametrization of expression (1.13), for the Geometric stick-breaking 
weights.

All these stick-breaking constructions, as well as other nonparametric priors 
based on normalized stochastic processes (see e.g. Lijoi et al., 2005) share the 
limitation of assigning probability 1 to the space of discrete probability mea­
sures. This is enough when countable state spaces are considered, but when Y 
is uncountable, more flexible models are desirable. Many efforts have been made 
to define nonparametric priors supported on sets of continuous probability mea­
sures. The first and probably most used solution is once more a generalization of 
the Dirichlet process.

1.1.1.2 N onparam etric M ixture M odels

Consider now an uncountable state space Y and a parametric family =  (K0 : 
0 £ @) C T of density functions over it. Notice that we have changed the 
notation, using K0 to denote parametric densities, also called kernels, in order to 
clearly distinguish them from general, possibly nonparametric densities, denoted

v{\ — v)j 1. (1.13)

(1.14)

b y / -
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Basic results of linear algebra and functional analysis may be used to define 
the subspace 5F(Xe) C X generated by X© as the set of all densities over Y which 
can be represented as a convex combination of elements of X©. In other words,

{ oc oc ^

/  =  W 3 K g .  : V j, K g .  e X v . W j  > 0 and y ^  wj =  1 > . (1.15)

j = i  l = i  J
In particular, when B =  Y and Kg =  l{e}, then T(X©) =  Jd is the space of all 
discrete densities over Y ; but if every Kg is a continuous density, then so is every 
/  G X(X©).

As done before, for the finite and countable state space cases, a prior II on 
T is induced by defining independent priors over the parameter space 0  and the 
simplex j C [ 0 . i P : f >  =  l | ,  (1.16)

together with the choice of the parametric family of kernels X©. Furthermore, 
II assigns probability 1 to the subset of probability measures with densities in 
X(X©). Therefore, in order to define a prior on the set Te of continuous density 
functions it is enough to choose a family of continuous kernels. A common choice 
is Kg(-) =  N(-|/r, a2), the normal density function with mean fi and variance a2, 
where 0 =  (/r,cr). For 0  =  R x  {a } ,  where a > 0 is any positive number, the 
family X© of normal densities is a basis for the subspace J c C J  of continuous 
densities. Therefore, when the Gaussian kernel is used, T^X©) =  3“e> since any 
continuous density over Y can be expressed as a convex combination of normal 
density functions.

From the previous section, we know that the Dirichlet process can be used 
to define the desired prior, by first defining an a.s. discrete random probability 
measure

OC

,rA r  ( l -17)
1 = 1

on the parameter space 0 . which, in turn, induces a prior on X(X©). We use the 
notation

OO

fp(y) =  I(y\wi:oo.0i;oo) =  '^2wjK(y\9j), (1.18)
l=i
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to make the dependence between each /  C T(UCe) and the choice of the weights 
and particles in P explicit.

This model is known as the Mixture of Dirichlet Process (MDP) prior and it 
can also be represented in a hierarchical way as

Yi\9i^K{. |0,),

6j\P~P,  (1.19)

P - D P ( - K P o ) .

This MDP model was first introduced by Lo (1984), who noticed that a contin­
uous density over the sample space Y can be defined as a convolution of measures, 
since

/ P( - ) =  /  K(-\9)dP(0), (1.20)
Je

defines a continuous density, whenever K  is continuous, regardless of the choice 
of the mixing probability measure, P. If a prior is assigned to P which gives 
probability one to the set of discrete measures, the above equation becomes (1.18).

Different Stick-breaking priors on P result in diferent nonparametric mixture 
models, all of which can be represented by equations (1.18) and (1.17). There­
fore, throughout this thesis, we use the term nonparametric mixture model with 
parametric kernel K(-\6) and a stick-breaking prior with parameters (ctjXj) and 
base measure P0, to refer to the complete model

Vi\w 1 :0 0 : ^ 1:00  ~  f p
oc

/>(•) =  '52wjK(-\0j)\
l=i

Wi =  v\ and Wj =  Vj j Q ( l  — ty) ,V  j  >  1; (1.21)
j'<i

Vj ~  Be(-|a,-,C,-);

9j~Po,

The assumption Oj =  a and Q =  ( for all j  is used to simplify notation, and all 
results can be extended for the more general choice of stick-breaking parameters.

Nonparametric mixture models with almost surely discrete random mixing 
probability measures are not the only way to define a prior over the set T  of
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continuous densities. An interesting alternative involves the use of normalized 
continuous processes (Nieto-Barajas et al., 2004; Regazzini et al., 2003). However, 
for the purpose of this thesis, we focus on nonparametric mixtures with the stick­
breaking representation.

1.1.2 Markov Models

We consider two large families of Markov processes commonly used as statistical 
models: real valued diffusions, in continuous time; and nonparametric time series, 
in discrete time.

1.1.2.1 Real Valued D iffusion Processes

Diffusion processes have been widely studied in the context of probability theory 
and in many other areas, ranging from the natural sciences like biology or genetics, 
to the realms of economics and finance. One of the main features of this family of 
stochastic processes, the continuity of their paths, makes them attractive models 
for several phenomena.

There are different ways to define diffusions, and they are all closely related 
with Brownian motion, the predecessor and simplest of all real valued diffusions.

D efinition 4 A continuous time, real-valued stochastic process {Wt : t >  0} is 
called a Brownian motion with drift parameter p, diffusion parameter a2, and 
started at y E  M if the following conditions hold

i) B 'o =  V-

ii) The process has independent increments, i.e. for every n e N  and 0 < t 0 < 
. . .  < t n < oo, the increments Wtn -  Wtn_i} Wtn_x -  Wtn_2, . . . ,  Wtl -  Wto 
are independent random variables.

Hi) For every s >  0 and L >  0, the increment Wt+S — Ws is a normally distributed 
random variable with mean pi and variance a21.

iv) The mapping t i—̂ Wt is almost surely continuous.

If p =  0, cr2 =  1 and y =  0 the process is called standard Brownian motion.
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Even the fact that such a process exists is not trivial, due to the non countable 
nature of the product spaces involved and the continuity condition on the paths. 
Norbcrt Wiener provided the first proof of the existence of a process satisfying 
all conditions in Definition 4; for this reason, Brownian motion is also known as 
Wiener process. The proof found most commonly in the literature constructs a 
standard Brownian motion as the limit of a sequence of adequately scaled random 
walks. Such construction induces a probability measure W  on the space C[o,oo) of 
continuous real valued functions on [0, oo), with Borel rx-algebra *33(G[o,oo)), under 
the topology of weak convergence. Therefore (C[0iOO), ®(C[ol00)), W) is known as 
the canonical probability space for Brownian motion, and the probability W is 
called the Wiener measure.

The definition of standard Brownian motion, together with some properties 
of the model allow the construction of other Brownian motion processes. Specif­
ically, if W =  {Wt : t >  0} is a standard Brownian motion on any probability 
space, then the process Y =  {Yt : i >  0} defined by Yt =  y + <jWt + pi is a Brown­
ian motion started at y , with drift and diffusion parameters p and u2, respectively. 
In particular, we denote by W v the measure induced by Y on (C[0jOO), 23(C[o,«>))), 
when p =  1 and a2 =  1, giving place to the following definition.

D efinition 5 A Brownian family is a stochastic process W = {Wt : t > 0} 
adapted to a filtration {At : t > 0} on a measurable space and a family of
probability measures {P'y : y E R } such that W is a Brownian motion started at 
y under the probability measure Py.

In fact, it is enough to have Py[lTo =  y] =  1. This idea can be generalized, 
resulting in a wider definition of Brownian motion.

D efinition 6 An adapted process W =  {Wt,At : t > 0} on a probability space 
(D .yl.P), which is a Brownian motion under P and such that¥[W0 E B] =  P0(B) 
for every B E !B(R), is called Brownian motion with initial distribution Po.

Clearly, when Po — Sy for some y E R, we simply have P =  Py.
From the definition, we know that Brownian motion is a process with con­

tinuous paths and stationary independent increments. The converse is also true, 
any process with such properties is a Brownian motion.
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It can be shown that a Weiner process is a time homogeneous (strong) Markov 
process. A Brownian motion on the canonical space is therefore completely de­
fined by the distribution P0 of the initial point Wo, and a family { ft : t >  0} 
of transition densities. In fact, an adapted process Y = {Yt : t >  0} on 
(e [o,oo),®(e[o,oo))! {A }t> o ,P ) such that, for every B G 3(M)

i) P[W0 e R] =  P0{B) and

ii) for every t, s > 0

F[Wt+se B\Ws =  y0]=F[W l eB\W0 = yQ\= I N(j/|^ +  y0,a2t)dy,
Jb

is a Brownian motion with drift coefficient /i, diffusion coefficient a2 and initial 
distribution Po, where /*(•) =  N(-|//,. rr2) denotes the normal density function with 
mean //, and variance a2.

This means that the finite dimensional distributions of Brownian motion arc 
all multivariate Gaussian distributions. A Brownian motion started at y, with 
drift coefficient /i and diffusion coefficient a2 is, therefore, a Gaussian process 
with mean function y,{t) =  y,t and covariance function cr(s?t) =  cr2m in {s,i}.

Brownian motion has many important and interesting properties. We consider 
here only two of them, which arc essential to the definition of diffusion processes 
in particular, and to the development of stochastic calculus in general. A Weiner 
process W =  {Wt : L >  0} has unbounded variation and finite quadratic variation. 
Formally, for any T G [0,oo), consider a sequence (Tra)n>1 of partitions of [0, T], 
i.e.

=  {0 = % < . . . < %  =  T}.

Assume that, for every n >  1, 7n C Tn+1, and

m ax{/" — —> 0 as n —> oo.
i

Then
n

lim \BU -  =  oo a.s., (1-22)n z Jz=l
n

fim -  Btj l )2 =  T in L2. (1.23)
¿=i
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1.1 Statistical Models

The unbounded variation (1-22) means that the Riemann-Lebesgue-Stieltjes
theory of integration does not allow us to define an integral of the form

However, the definition of this integral and more general ones, where the integra­
tor is any stochastic process with finite quadratic variation, give rise to the field 
of stochastic calculus. They are known as Ito integrals and they are defined for 
integrands in a family of stochastic processes known as supermartingales, which 
includes, in particular, continuous functionals of Brownian motion.

The theory of Ito calculus, or stochastic calculus, is extensive and mathemat­
ically complex, so we do not discus it here. We merely present some of the results 
that are most important for the definition of diffusions and our use of them as 
statistical models. In particular, we focus on real-valued diffusions, so we only 
require the stochastic calculus version of some of the main results of univariate 
standard calculus. We begin by presenting Ito’s formula, which substitutes the 
fundamental theorem of calculus.

Lem m a 3 (I to ’s form ula) Let h : R  —> R be a twice continuous differentiable 
function and let W  =  {Wt : t >  0} be a Weiner process. Then, for all t > 0

Rearranging the terms in the above expression, we may write the stochastic 
integral of h! =  dh(y)/dy with respect to Brownian motion, as

the familiar expression h( Wt) — h{ Wf), from the fundamental theorem of calculus, 
plus a compensation term, which is a Lebesgue-Stiltjes integral. This result is 
essential to the construction of the latent likelihood expression we present in the 
next section, to allow simulation and inference for diffusion models.

Another fundamental result is Girsanov’s formula, which extends the principle 
of change of measure to Itô integration.

(1.24)

(1.25)

(1.26)
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T heorem  3 (G irsanov-C am eron-M artin ) Let W  =  {Wt : t > 0} be a stan­
dard Brownian motion defined on the canonical space (C[oi00), 23(C[0)OO)), W ), with 
the natural filtration {^lt}t>o- Let Y =  {Yt : t > 0} be an adapted process on the 
same space, such that

W f  K'
Jo

s < 0

Define, for each t > 0,

Wt =

and assume the stochastic process Z =  {Zt : t >  0} given by

=  1, 0 < /. < 00. (1.27)

-  /  Y'ds, 
do

(1.28)

is a martingale.
Then, for every 

on (C[o,oo)! At • Pi),

(1.29)

t G [0. oo), the process {Ws : 0 < s < t} is a Brownian motion 
adapted to {A t}o<s<t, where Pt is defined as

{A) =  /  Z f(w)dW(w). A e A t. (1.30)

The theorem can be expressed more generally, not only for the canonical space. 
However, this choice guarantees the existence of a probability measure P on 
A oq =  B(C[o,cx>)) such that, restricted to At it coincides with Pt. Therefore, 
the complete process W = {Wt : t >  0} is a Brownian motion with respect to P. 
Furthermore, the measures P and W  are mutually absolutely continuous when re­
stricted to At, with Radon-Nykodim derivative given by Zt =  dPt/dW . However, 
P and W  are not, in general, absolutely continuous on the complete ®(C[0>Oo))-

Before the development of ltd calculus, diffusions were defined as continuous 
time Markov processes characterized by their infinitesimal generators. Consider 
a real valued time homogeneous Markov family Y = {Yt : t > 0}, {Py : y G P }  
on a filtered space (Q, A. {.Af} t>o). Denote by C2 the set of real valued, twice 
continuously differentiable functions on R and, for h G C2, let

Ev[h(Yt)] =  [  h{Yt(ej))d¥y(u). (1.31)
Jn
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1.1 Statistical Models

The infinitesimal generator of Y is a linear operator S defined by

Sh(y) =  Bm Vy £ (1.32)

for every integrable function h (see e.g. Ethier & Kurtz, 1986; Lamperti, 1977, 
for more on generators of Markov processes).

Let D be the second order differential operator associated with the drift co­
efficient a : M —>■ R. and the diffusion coefficient a : M. —> (0. oo], i.e.

m(y) d2h{y)
d y2

+  a(y) (1.33)

D efinition 7 Let Y =  {Yt : i >  0}, {Py : y £ M}, (A }i> o ) be a real
valued time homogeneous Markov family. Then Y is called a diffusion process if 
the following conditions hold

i) Y has (a.s.) continuous sample paths.

ii) For every bounded h £ C2, with bounded continuous first and second order 
derivatives,

Sh -  T>h. (1.34)

Hi) For every y £ R

Ey [yi - y ] =  ta(y) +  ° (0 ; i1-35)
^y\(^t — y)2\ =  i^iy) +  o(i). (1.36)

The drift coefficient a can be interpreted as the instantaneous expected rate of 
change of the process, while a2 represents the instantaneous rate of change of the 
process variance. Diffusion processes are therefore defined in terms of infinitesi­
mal characteristics, which cannot be captured by discretization. This constitutes 
one of the problems for inference on discretely observed diffusion models, which 
reflects in the intractability of the resulting likelihood functions, as we explain at 
the end of this section.
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1.1 Statistical Models

The construction of diffusion processes, from Definition 7 follows an analytical 
approach. Assuming that the transition densities

for the Markov family exist, they must satisfy the forward and backward Kol­
mogorov equations. It follows from condition (1-34) that, fixing y0 £ R, the 
forward equation is given by

A diffusion process can then be defined by finding a solution to the above, known 
as Fokker-Planck-Kolmogorov equations, since the family of transition densities 
characterizes the finite-dimensional distributions of a Markov process with fixed 
initial point.

When diffusion processes are used as statistical models, it is assumed that a 
sample y\:n =  (? /].... yn) is a partially observed realization of a diffusion path. 
Formally, we consider a diffusion process Y = {Yt : / >  0}, started at a known, 
fixed point Yq =  y0 E R, and assume each y* is a realization of Yti, for times 
ti < t2 < .. . < tn. This is commonly referred to as a discretely observed 
diffusion.

The likelihood for the sample is the density associated to the finite dimen­
sional distribution of (Ytl, . . . ,  Ytn) under the probability measure POT, evaluated 
at (yi, . . .  yn). We assume the drift, and diffusion coefficients characterizing the 
diffusion process satisfy all necessary conditions for the existence of the transition 
densities {ft : t > 0}. The likelihood function, then, takes the form

It(y\yo)ày =  Pyo[Yt £ dy] for each y, y0 £ R and L >  0, (1.37)

5*ft(y\yo) =  \ jj^[v2(y)ft{y\yo)\ -  ^[a(y)ft(y\yo)]-, (1-38)

while the backward equation is. for a fixed y £ R

n

(1.40)
¿=1

where Aj =  U — ti-\.
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Provided sufficient smoothness conditions on a and <r, the existence of a so­
lution to the Fokker-Planck-Kolmogorov can be guaranteed. However, in all but 
a few cases, such solutions do not have an analytic form, and therefore, the dis­
cretely observed diffusion model has an intractable likelihood function.

The advent of ltd calculus provided a new way to define diffusion processes, 
as solutions to stochastic differential equations (SDEs), and the constraints on 
the drift and diffusion coefficient for such solutions to be well defined are milder 
than those required for the existence of the transition densities. Thus, the use 
of stochastic calculus transformed diffusion processes into an extensive and rich 
family of processes. Although we are only interested in a subset of it, for which 
densities exist, we rely on the construction of diffusions as weak solutions to 
stochastic differential equations (SDEs), through the use of Girsanov’s formula, 
in order to deal with the intractability of the model. In this section, we discus 
the construction of diffusion processes only. In the next section, we present a 
latent variable extension, based in this construction, which Beskos et al. (2006a) 
developed to enable the simulation of diffusion paths, as well as inference for 
discretely observed diffusion models.

Consider a Brownian family Y  =  {Yt : t >  oc}, {W y} ye]R, defined on the 
canonical space (C[o,oo)>®(C[o,oo))); with natural filtration, and a continuous, thus 
Borel-measurable function, a : R —> R, such that

|«(y)| <  C(1 +  |y|). V y e R .  (1.41)

for some C >  0. In this case, it can be shown that

Z, =  exp j  jT  a(Ys) dY„ -  ~ ^  a2(Ys) d s j  (1.42)

is a martingale under each W y. Applying Girsanov’s theorem, the process

Wt =  Yt — Y0 — [  a(Ys)ds (1.43)
■Jo

is a Brownian motion started at Wq =  0, under the measure Py defined by 
dPy/d W y =  Z f on A, . Rearranging terms gives

Yt =  Y0 +  f a{Ys) d s - W t, (1.44)
Jo
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1.1 Statistical Models

which in differential notation, corresponds to the SDE

dYt =  a(Yt)dt -  dWt; Y0 =  V- (1-45)

The definition of the Brownian motion on the canonical space, guarantees the 
existence of the unique measure Py, for each y, so that the complete process 
Y =  {Yt : t >  0} is defined on (C[0,oo)-23(C[o,oo))>Py)- It can be shown that Y 
satisfies the conditions of Definition 7, making it a diffusion process with drift 
coefficient a and diffusion coefficient 1.

This idea may be generalized to define a diffusion process with general diffu­
sion coefficient a, as a weak solution to an SDE

dTt =  a (y t)di -  a(Yt)dWt. (1.46)

The construction of diffusions as solutions to stochastic differential equations 
was suggested by P. Levy and developed by K. Ito. The SDE (146) is said to 
have a strong solution when a process Y can be constructed, which satisfies the 
equation with respect to a given filtration and a given Brownian Motion. A weak 
solution exists when the probability space, the filtration and the driving Brownian 
motion are part of the solution and not part of the statement of the problem. For 
more detail on this type of constructive definition of diffusion processes and the 
difference between strong and weak solutions sec c.g. Karatzas k  Shreve (1991); 
Revuz k  Yor (1999). Throughout the present work, we are only interested in 
weak solutions, since they are sufficient for a diffusion process to be used as a 
statistical model.

For simplicity, we limit our analysis to discretely observed diffusion models for 
which the diffusion coefficient is constant rr =  1 and the drift coefficient belongs 
to a parametric family (a# ’■ 0 £ 0 } .  Thus, the likelihood of the model takes the 
shape

n

f ( y v .n \ 0 )  =  YlfAi{yi\yi-i,o)- (1.47)
i—1

The Bayesian model is completed by a prior II on the parameter space 0 , which 
induces a prior on the space T  of, possibly intractable, transition densities im­
plicitly defined by the choice of diffusion and drift coefficients.
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1.1.2.2 N onparam etric T im e Series M odels

In the most general sense, time series are countable sequences of random vari­
ables recorded over time. This defines an order which is assumed to be relevant, 
in other words, even though i.i.d. or exchangeable sequences of data, formally 
constitute time series, the term is used only for stochastic processes in which 
the order matters. The law of the process is thus, generally described in terms 
of conditional distributions of the ordered sequence. Therefore, given a sample 
Uo-.n =  (¡Jo....... 'i/n),the likelihood for a time series model has the form

n
fiVOrn) =  MVO- ■ ■ ■ Vm-1) fi(Ui\Vi-l, ■ • • • Vi-m) ■ (1-48)

i—m

In other words, in a time series model, the observations are assumed to be re­
alizations from a discrete time stochastic process with order m < n Markov 
dependence. If the process is time homogeneous, the densities are time invariant, 
so we may write

n
J (VOin) J (,(/0: • • • ! j m -1) | j ,/ {V ilV i—l i  ■ ■ ■ > V i - m ) -  (1-49)

i=m

A general practice is to assume the first observations, y0:m_i are fixed, so that 
/o (yo:m l) =  1 {t/chm-ib or that such density is fully known. In either case, the 
fo(t/0:m—i ) may be removed from the likelihood expression. An alternative, is to 
assume the process is stationary, and therefore fully specified by the conditional 
density /(y j|y»-i,. . . ,  yi-m)- In this case, /o(i/o:m-i) may be included in the like­
lihood expression, but model specification is only required for the conditional 
densities, since the invariant density is uniquely defined by them.

A case which deserves special attention occurs when m — 1, and the time 
series model is simply a discrete time Markov model. The simplest and most 
commonly used is the normal linear autoregressive model, AR.(l), where each 
observation is assumed to be a realization of a random variable Yt with a 
dependence structure given by

Yi =  A) +  PlYi- 1 +  ft; fi ~  N(-|0, w2), (1.50)
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for some ft0, fti ER  and u) > 0. When ¡di | < 1, the process is stationary. Clearly, 
both the transition structure and the invariant distribution for this type of model 
arc very limited, but many more flexible models have arisen as generalizations of 
this simple idea. In particular, the nonparametric model we propose in Chapter 
3 originates on the simple AR(1) model.

In the context of statistical inference, time homogeneous order m Markov 
processes are commonly known as autoregressive models, since they can be con­
structed as regression models, in which the covariates for each observation are 
the previous m observations iji-m- ■ ■ -Vi-1- Prom this perspective, autoregressive 
models are defined through the conditional densities

f  (.Vi ■ • • ) Vi-rn) (1.51)

and they are as flexible as the regression form chosen for such conditional densi­
ties. In the AR(1) case

f(yi\yi-i,P,uj) =  r%i|/3b +  A ?/* -i,^ 2)- (1-52)

More general forms of regression lead to more general transition densities and 
therefore to more flexible dependence structures of the stochastic process they 
define. Therefore, one approach for the definition of nonparametric process is 
to construct nonparametric conditional densities to define the transition mech­
anism. In this sense, any one of the flexible regression models presented in the 
next section can be used to define a time series model. However, when flexible 
transition densities are defined, desirable properties of the resulting process, such 
as stationarity are difficult to verify and so this type of constructions focus on 
transition density estimation and prediction, with no regard for the stationarity 
of the process.

Examples of this type of construction are given by Muller et al. (1997), who 
define the transition density of an autoregressive model as a semiparametric finite 
mixture of AR,(1) models, assigning a Drichlet Process prior on the model param­
eters. Tang & Ghosal (2007a) define a mixture of Dirichlet process model for the 
transition density, with a Gaussian kernel, and the correlation structure intro­
duced through a hyperbolic tangent link function as the mean for the parametric 
kernels.
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The construction of flexible transition structures is only as complicated as the 
definition of flexible conditional densities in regression models. It is additional 
requirements, such as stationarity that make the problem more challenging. Until 
recently the construction of parametric stationary time series with non-normal 
invariant distributions was a difficult enough task. Pitt et al. (2002) and Pitt 
& Walker (2005) provide a latent variable construction for stationary processes 
with general parametric invariant densities. Their idea is to define a joint density 
for an observation y and a latent variable s, as fe(y,s) =  fe(y\s)fg(s) from 
which the conditional fo(s\y) can be obtained via Bayes theorem. A stochastic 
process is then defined via a Gibbs sampling scheme in which the observation 
i/j is updated from the conditional fe{yi\si), while the latent variable is updated 
from the conditional fe($i\yi-i)- The process has a stationary density given by 
the marginal of fg(y, s), namely

M v )  =  J  M y ^ M * ) ^ * ) '  (i-53)
and the transition density is simply the conditional distribution

v MVi-Vi-1) =  I  .fg(vM)fe^\yi-i)djy(s)

1 M v i )  J  M v \ * ) M * ) d lK * )
For a large family of parametric densities, an adequate latent variable may be 
chosen to ensure the desired stationary density. The transition may not have a 
closed form, but the Gibbs sampling construction ensures the models are naturally 
suited for MCMC inference.

More flexible models are needed to accommodate the complex dynamics ob­
served in real life data. Mena & Walker (2005) generalize the above construction 
by considering the latent structure to be a random probability measure. In this 
case, the joint density is expressed as f(y,dP) =  fp(y)U(P). Once again, a 
stationary Markov process is defined through this structure, with stationary and 
transition densities given by

/(?/) =  J f P(y)dU(P)-

= 1WT = 7 I  M v m { P 'v‘^

(1.55)

(1.56)
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The integrals, in this case, constitute nonparametric mixtures, defined in terms of 
a nonparametric prior II and the corresponding posterior II(-|y) given an observa­
tion. The expressions are intractable and inference methods are only available for 
particular cases of the general construction. In order to enable inference through 
MCMC methods, Mena & Walker (2005) consider a joint density /(¿/.¿.y, 1) di­
rectly defined as

.f{Vi,Vi-1) =  J  (1.57)

In other words, conditional on the random probability P, the observations are 
independent and identically distributed, and their dependence is induced only 
through the correlation structure of the Gibbs construction for the distribution 
P. over time. II is a Bayesian nonparametric prior and, specifically, Mena & 
Walker (2005) base it on the Gaussian process prior of Leonard (1978) and Lenk 
(1991). This model results in a transition density which is the predictive density 
function given a single observation from the Bayesian model, i.e.

f{yi\yi-i) =  j fp{yi)dR(P\yi-i)- (1-58)

This can be nonparametric since the Il(-|y) is a probability measure that can 
accommodate two functions; one being the mean density f(y) and another to do 
with the variance process V(y), based on J P 2(y)dlI(P). Then f(yl\yl-i) is a 
function of 1), V ('¡/¿-i)). On the other hand, the stationary density is given 
by the parametric mean density of the process,

f(y) = J  /p (y)d n (p ). (1.59)

While stationarity is a desirable property which facilitates estimation of rele­
vant quantities, it is difficult to construct stationary models for which both the 
transition mechanism and the invariant density are sufficiently flexible. There­
fore, attempts at defining flexible models often result in a compromise between 
flexibility and statistical properties.

In order to overcome the issue of the lack of flexibility of the stationary 
density, Martinez-Ovando k  Walker (2011) propose a transition density defined 
as a nonparametric mixture, extending the Gibbs sampler model construction
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1.1 Statistical Models

from Pitt et al. (2002) and Mena &; Walker (2005) described above. By adding a 
hierarchical level to the latent structure, they construct a process for which both 
the transition and the stationary densities are defined as nonparamctric mixtures. 
The price to pay for the added complexity is a lack of interpretability which ob­
scures the effects of the prior choices; and a model complexity which requires 
careful choices of the mixing components and probabilities to ensure feasibility 
of the MCMC inference procedures.

Other examples of nonparametric time series models define the transition 
density as a mixture of parametric conditional densities, i.e.

= I K-e{yi\yi-\)&P{0\yi-i). (1.60)
•>  ©

for some conditional density function or kernel Kg. In general, this type of mod­
els need not be stationary. Furthermore, constraints must be imposed on the 
structure of the dependent mixing measures Py(-) =  P(-\y) and the correspond­
ing priors, in order to ensure inference is feasible. We discuss this further in the 
following section and in Chapter 4, in the context of regression models. Suffice to 
say that the constructions proposed by Muller et al. (1996) and Martinez-Ovando 
& Walker (2011) provide evidence of the difficulty in defining nonparametric tran­
sitions for which nonparametric stationary distributions exist.

The idea of using latent structures to induce time dependence has been widely 
explored, even to an extreme in which the latent structure is itself the object of 
interest in the estimation procedure. The area of hidden Markov models has a 
place of its own in Bayesian literature and many models have been proposed (see 
e.g. Cappe et al., 2005). Nonparametric extensions (Van Gael et al., 2008) allow 
for great flexibility in the transitions, but emphasis is placed on inference for the 
latent structure, so inference for the transition density for the observations may 
not be possible.

Finally, in many models, flexibility is achieved by forcing non stationarity and 
non homogeneity of the transition mechanism over time. It is common in this case 
to define transition densities through dependent mixture models in the manner of 
nonparametric regression models, incorporating time as a covariate. Some models 
of this type can be found in Griffin V Steel (2006, 2011); Zhu et al. (2005) and 
Williamson et al. (2010); more can be obtained from the nonparametric regression
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models described in the following section, by incorporating time and/or previous 
observations as covariates for the transition density of a stochastic process.

There is an extensive literature regarding the definition of time scries mod­
els and the methods used for statistical inference, both in the classical and the 
Bayesian settings. We do not cover all of it here, as we are only interested in the 
more flexible nonparametrio ideas. In Chapter 3 we propose a time homogeneous 
autoregressive stationary model with fully nonparametric transition and invariant 
densities, which can be generalized to obtain higher order Markov dependence as 
well as a dependence structure changing over time.

1.1.3 Nonparametric Regression Models

The contents of this section constitute the introduction of Antoniano-Villalobos 
et al. (2012).

The standard linear regression model assumes a response variable y £ Y is 
related to some covariate x £ X through a linear function with additive normal 
errors, that is

y =  0X  +  c; c ~  N(c|0, a2).

where, for a p-dimensional covariate x, 0 is & (p+l)-dimensional vector of constant 
coefficients, and we define X  =  (1.x).

This is, however, a limited and unrealistic model in most applications. Real 
life data exhibit a more complicated relation between covariates and response 
variables, so there is a need to construct models that allow for a more flexible de­
pendence structure. One of the most popular approaches consist in representing 
the regression function as a linear combination of basis functions, such as splines 
or wavelets (Denison et al., 2002; Dimatteo et al., 2001). Another common prac­
tice. when more flexibility is desired, is to place a Gaussian Process prior on 
the unknown regression function (Rasmussen & Williams, 2006), thus defining a 
nonparametric model.

These models achieve flexibility for the mean function, however, they are 
still limited, in the sense that they only allow for a basic structure of the errors. 
Many data sets present departures from classical distributional assumptions, such
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as normality or the uni-modality of error distributions. It is common to observe 
non standard variances, skewness and unconventional tail behaviour in different 
regions of the covariate space, X. To capture such behaviour, nonparametric ap­
proaches for modelling the conditional density f{y\x) in its entirety, are becoming 
increasingly popular.

As stated in Section 1.1.1.2, a flexible model for independent and identically 
distributed observations can be defined as an infinite mixture of parametric mod­
els, given by

OC

fp(y) =  ^ 2 wjK(y\0j), (1.6 1)
3 = 1

where K{-\9) is a parametric family of density functions defined on Y and P is 
an almost surely discrete random probability measure on the parameter space 0 , 
characterized by some atoms 03 £ 9 , and weights Wj >  0, such that Yljwj =  1 
(a.s.).

For covariate dependent density estimation, the mixture model can be adapted 
by allowing the mixing distribution P to depend on the covariate value x, and 
replacing the parametric kernel K(y\9) with some parametric regression model 
K(y\x,9), such as a linear regression model. Hence, for every x £ X,

fpx(y\x ) =  j  K(y\x,9(x))dPx(9(x)). (1.62)
As in the i.i.d. case, the Bayesian model is completed by assigning a prior 

distribution on the family { Px}xex of covariate dependent mixing probability 
measures. If, for every x, the prior gives probability one to the set of discrete 
probability measures, then each mixing distribution admits a representation de­
fined by a weighted sum of atom masses,

OO

Px — ^ ' wj  ( x )^0j (x) >
3 = 1

and

OO

fpx(y\x ) = (L63)
3 = 1
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where Oj{x) G 0 , and the weights Wj(x) >  0 are such that J2jv’j(x) — 1 (a.s.) 
for all x G X.

A first proposal along the lines of model (1.62) was given by Cifarelli X Regazz- 
ini (1978), with a focus on discrete covariates. They induce dependence between 
a finite number of random probability measures, through the base measure of a 
Dirichlet Process. Their proposal extends Antoniak’s (1974) mixture of Dirichlet 
Processes, by defining, for some finite N and X =  {1 ,___.V}.

l\- ■.. ,/V W l)......U{N) ~  I I DP(c (^o (-W ^))),
x= l  ' '

where C is a function on X taking values in (0, oo), and for some distribution II.
u{i),.. .,u(N)  ~  n .

In terms of equation (1.63), this implies that the weights are allowed to vary 
with x, but are constructed independently across x. Thus, dependence of the 
conditional densities for different covariate values is induced through the covariate 
dependent atoms, given by

@j(x)\u(x) ^ o (-K ^ ))- (1-64)

To allow continuous covariates, Muliere & Petrone (1993) extend this idea by 
assuming u(x) =  (/?, cr2) V x G X  and

0 ,-(x )M :r )^ N (-\X0,a2), (1.65)

where X  =  ( l ,x ) .  The limitation of this construction is the restrictive nature of 
the induced dependence.

The general model (1.63) is introduced by MacEachern (1999; 2000), assuming 
a Dirichlet Process prior as the marginal distribution of Px. This choice is justified 
by the connection of the DP with finite mixture models, its simple prior elicitation 
and large support, as well as the availability of computational procedures for 
inference.

MacEachern’s general class of models is now known as Dependent Dirichlet 
Processes (DDP). The basic assumption underlying their construction is that
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each {vjj(x)}xe\ is a stochastic processes, with a correlation across j  given by the 
stick breaking construction,

wi(x) =  vi(x). and Wj(x) =  Vj(x) ]^[(1 — ry (x)), j > 1. (1.66)
i'<3

where the {?y (x )} ;cex are independent processes such that, marginally

V j { x )  Be(l, ( (x ))  for j  =  1 .2 , . . . ,

for some function £ : X —>■ (0, oo). Moreover, the {6)J (x )}xeX are independent 
stochastic processes with marginal distribution Pqx , and independent of the Vj [x).

A popular version of the general model, the single-weight DDP is obtained 
when W j ( x )  = Wj for all x  6 X. Its attractiveness results from the fact that in­
ference can be carried out using any of the well established algorithms for DPM 
models mentioned in Section 1.2.2.2. Single-weight DDP mixtures have been suc­
cessfully applied to address a wide range of problems, from classical regression 
(MacEachern, 2000, 2001) to ANOVA (De Iorio et al., 2004), spatial modelling 
(Gelfand et al., 2005), time series analysis (Rodriguez &; ter Horst, 2008), dis­
criminant analysis (Cruz-Mesia et al., 2007), longitudinal analysis (Miiller et al., 
2005), and survival analysis (De Iorio et al., 2009; Jara et al., 2010).

Recent developments explore the use of covariate dependent weights. To sim­
plify computations and ease interpretation, atoms are usually assumed not to 
depend on the covariates, and are therefore referred to as single-particle DDPs. 
It can be argued that both the single-weight and the single-particle versions of 
the model have a large enough support to describe the variability found in real 
data (see Barrientos et al., 2012). The general model with covariate dependent 
weights and atoms, on the other hand, is usually considered too flexible for effec­
tive estimation.

The main constraint for the construction of DDP models with covariate de­
pendent weights, is the need to specify a prior such that ^2jWj(x) =  1 a.s. for 
all x  G  X, which is non trivial for an infinite number of positive weights. The 
stick-breaking representation (1.66) propsed by MacEachern is justified by the 
need to satisfy this constraint. A wide variety of models present in the literature 
follow this structure and differ only in the construction of the V j ( x ) .
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One of the first approaches to covariate dependent weight mixture models, de­
veloped by Griffin k  Steel (2006), incorporates dependency in the weights by re­
ordering i.i.d. beta random variables, {vj}, according to some concept of distance 
in the covariate space. They successfully apply this idea to stochastic volatility 
and spatial modelling; but do not discuss how to handle discrete covariates.

Dunson k  Park (2008) introduce the kernel stick-breaking approach for the 
construction of covariate dependent weights, where V j ( x )  = V jK (x \i f t j ) for some 
kernel function on X, with parameter ipj. They use this idea in and epidemio­
logical study; Reich k  Puentes (2007) apply it to a spatial data-set concerning 
hurricane wind fields. Both examples involve continuous covariates oidy; to in­
corporate discrete covariates, adequate kernels must be specified.

Another common model defines V j { x )  =  i { g ( x \  V> j)), where i : R  - »  [0,1] 
is a monotone, differentiable link function and g is a real-valued function on 
X. Common choices for g, are simple linear functions, linear combinations of 
basis functions, and Gaussian Processes (see e.g. Chung k  Dunson, 2009; Dunson 
k  Rodriguez, 2011; Ren et al., 2011). Applications of this approach include 
stochastic volatility models and image segmentation. Alternative options for g 
must be explored if discrete covariates are present.

Other proposals focus exclusively on discrete covariates (see for example, 
Müller et al., 2004; Rodriguez et al., 2008; Teh et al., 2006).

An interesting idea that has received recent attention in the literature is to 
model the joint distribution of y and x through a nonparametric mixture of 
density functions on Y x X. Inference is carried out for the joint density, via the 
usual methods for nonparametric mixture models. Conditional density estimates 
are then obtained from the posterior inference based on the joint model. However, 
as stated by Müller k  Quintana (2004), this approach “wrongly introduces an 
additional factor for the marginal of x in the likelihood and thus provides only 
approximate inference” . In fact, including this additional factor, forces a fit of 
the marginal distribution of x, thus degrading the performance of the conditional 
density estimate. This approach was hrst introduced by Müller et al. (1996), 
and subsequently studied and employed by Hannah et al. (2011); Kang k  Ghosal
(2009) ; Park k  Dunson (2010); Shahbaba k  Neal (2009) and Müller k  Quintana
(2010)  .

39



1.2 MCMC Methods and Latent Variables

1.2 M CM C Methods and Latent Variables

Most of the existing literature regarding intractable components is concerned with 
the approximation of intractable normalizing constants when both the observa­
tions and the parameters are finite-dimensional.

Consider a Bayesian parametric model

Y i ~ / m  
o ~  n.

The posterior density, given a sample y\:n =  (jq___,yn) is

= m n u n v < m (1.67)

The prior II is sometimes chosen to be conjugate with the likelihood, to guarantee 
the expression above has a closed form. However, in general, the posterior density 
can be known only up to proportionality and the integral in the denominator 
constitutes an intractable normalizing constant.

Three mainstream approaches can be identified to deal with this type of prob­
lem: analytic approximation, usually based on Laplace transforms and other 
mathematical representations (see e.g. DiCiccio et al., 1997); numerical integra­
tion or some form of adaptive quadrature method based on classical analysis tech­
niques (see e.g. Evans k  Swartz, 1995); and Monte Carlo simulation methods, 
which use samples drawn from n n to estimate relevant features of the distribution. 
While analytic approximation and numerical integration may be convenient for 
some distributions, they are not always available and their statistical properties 
are difficult to establish. For these and other reasons, Monte Carlo simulation 
is considered a more adequate approach for statistical analysis, specially in the 
Bayesian context (for more on the advantages of the Monte Carlo approach see 
e.g. Smith k  Roberts, 1993).

Since drawing samples from complex and often high dimensional distributions 
directly may not be possible, estimation is usually achieved through a family of 
methods commonly known by the acronym MCMC, which stands for Markov 
Chain Monte Carlo.

40



1.2 MCMC Methods and Latent Variables

The idea behind MCMC methods is the following. Suppose we wish to es­
timate some quantity associated to some distribution, in this case, II". Then 
a stationary Markov chain is constructed with equilibrium density equal to IT". 
Independently of the initial point of the chain, if enough time is allowed, con­
vergence should occur, so that the simulated values can eventually be regarded 
as a sample from the desired marginal distribution. Such sample can then be 
used to generate Monte Carlo estimates of the quantities of interest, relying on 
asymptotic properties of the Markov process.

One such asymptotic result tells us that the sequence of random variables 
{Qi}i>o which constitute the Markov chain, converges in distribution to a random 
variable 0 distributed according to II". Formally,

This allows, with some caution, the use of the Markov chain realizations as a 
sample from the desired distribution. Of course, successive realizations are corre­
lated, therefore an adequate spacing may be allowed between consecutive sample 
elements to generate an approximately i.i.d. sample from IP. Alternatively, in­
dependent runs of the Markov chain may be used to generate a sample of the 
desired size.

The second commonly applied result in the context of MCMC states that, for 
any integrable function h,

where the integrability, the almost sure convergence and the expectation are all

allows the use of consecutive realizations from a single run of the Markov chain 
to calculate an ergodic average of the function of interest, obtaining an unbiased 
estimate for the expectation.

There is by now an extensive literature on theoretical results concerning the 
convergence of MCMC methods, as well as output analysis and convergence diag­
nostics to ensure that, in practice, the Monte Carlo error of the estimates can be

0, 9 ~  IT.

i= 1

with respect to the invariant measure of the Markov chain, in this case II". This
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considered small or negligible. Some useful references on this subject are Besag & 
Green (1993); Robert & Casella (2004); Smith & Roberts (1993); Tierney (1994).

However, before studying the asymptotic properties of an MCMC scheme, 
a Markov Chain with the desired stationary distribution must be constructed. 
There are two basic standard methods commonly used for this, known as the 
Gibbs sampler (GS) and Metropolis-Hastings (MH) algorithms.

For a p-dimensional parameter 0 — (G\....... 9P), the Gibbs sampler involves
successive sampling from the full conditional distributions where 9 _ j

stands for the vector 0 from which the component j  has been removed. A more 
elaborate version of the algorithm allows for blocks of variables to be sampled 
simultaneously, from the conditional distributions given the variables not included 
in the block. The choice of blocks should minimize the correlation structure of 
successive states of the Markov chain. Thus, bigger blocks improve the speed of 
convergence of the chain to the equilibrium distribution, at the price of sampling 
from multivariate distributions. In practice, a compromise solution must be found 
between efficiency and the possibility to sample directly from high-dimensional 
multivariate conditional distributions. Even in the simplest form of the algorithm, 
for many models, sampling directly from the full conditional distributions is not 
possible or the correlation structure of the resulting Markov chain is so strong as to 
make the convergence of the MCMC scheme unfeasible. Furthermore, a sampling 
scheme of this type can only be applied for finite-dimensional parameters.

The Metropolis-Hastings algorithm avoids the problem of simulating exactly 
from a full conditional distribution. Each realization of the Markov chain is 
updated by generating an observation 6' from a proposal distribution q, which 
may depend on the current state 9. The proposal is then accepted as the new 
state for the chain with a probability which, in order to ensure the resulting 
Markov chain has the desired limiting distribution, is calculated as

Calculation of the intractable normalizing constant for the posterior distribution, 
that is, the marginal distribution for the data, is therefore not required. Since 
the acceptance probability depends on the choice of q, the performance of the 
algorithm can be improved by a suitable choice of the proposal distribution.

( 1.68)
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However, in many more complex statistical models, the intractability is orig­
inated by the normalizing constant of the likelihood function. We discuss this 
problem in the following Section.

1.2.1 M C M C  for Doubly-Intractable Distributions

Assume the sample consists of i.i.d. observations, each of them distributed ac­
cording to a parametric density which is known up to proportionality. In other 
words,

i m  =
9(y-0)
m '

(1.69)

where

z i°) = I 0(y,0)di/(y)J Y
(1.70)

is intractable.
For simplicity, we consider posterior inference for a single observation, i.e. 

n =  l. Given a prior n  on the parameter space C-), the posterior density for the 
parameter is given by

n „W) =  n  ( « ) / ( # )  =  n  (e)g(y.o)/z(Q)
i(y) /e [n(«)9 (!/.«)/Z(»)]di/(»)'

(1.71)

In this expression, the integral in the denominator is an intractable normalizing 
constant. Furthermore, the g(9) appearing in the numerator is the intractable 
normalizing constant for the conditional distribution of the data given the param­
eter. Therefore, in the literature, expressions of this type are sometimes called 
doubly-intractable distributions.

Traditional methods used for inference in the presence of single intractabil­
ity are not applicable here. A Gibbs sampler can only be used when the target 
distribution is known at least up to proportionality. On the other hand, imple­
mentation of a Metropolis-Hastings update scheme would require the evaluation 
of the ratio

nn(0')q{0\e') = n(0')g(y,0r)q(0\0') m
n " (% (0 '|0 )  u{e)g(y ,e)q(e>\e) z { v y  K J

in order to calculate the acceptance probability. The expression, therefore de­
pends on the ratio of intractable normalizing constants, which is not available.
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Once again, a variety of methods have been proposed to deal with this problem 
and they can be divided into two main groups. The traditional approach consists 
of approximating the unknown ratio through the use of pseudo-likelihoods, im­
portance sampling techniques or more elaborate approximate sampling schemes, 
such as bridge sampling or path sampling. See e.g. Gelman & Meng (1998) for 
a discussion of this type of methods and Andrieu &; Roberts (2009) for more 
modern versions of the proposed algorithms.

Unfortunately, the use of approximate ratios leads to a Markov chain with a 
stationary distribution which only approximates the desired posterior El". This 
may lead to problems in the Monte Carlo estimation, as shown by Murray & 
Ghahramani (2004) in the context of undirected graphical models. Approxima­
tion issues are more evident for high-dimensional parameters, for which accurate 
estimation of the intractable ratio is more challenging. In a nonparametric set­
ting, where parameters are infinite-dimensional, it is unlikely that effective general 
methods of this type can be designed.

An alternative idea, proposed by Mpller et al. (2006), enables exact MCMC 
simulation from 11" through the introduction of an auxiliary variable s, with state 
space Y, through the latent likelihood

(i.73)

MCMC simulation is implemented for the joint posterior distribution

n  {0 )M y,0 )n(v ,Q ) /m  
fy Is [n(fl)/(*|y, 0)g(y, 0)/Z{())}d*/(0,5)'

(1.74)

The posterior density Iln(0) can be recovered from the above expression by 
marginalization over s, so a Markov chain with stable distribution defined by 
(1.74) would produce a sample with the desired marginal distribution.

The intractable constant Z{9) still appears in this latent distribution. In 
order to deal with it, Mpller et al. (2006) propose a MH scheme with proposal 
distribution given by

q(s',6'\s.9,y) =  q(9r\9: y)q(sr\dr). (1.75)
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where q(9'\9,y) represents the usual choice for the parameter update step. The 
additional term

q(s'\0’) = gW,&)
Z(O')

(1.76)

is designed to ensure that evaluation of the intractable ratio is not required for 
the calculation of the acceptance probability. The MH ratio in this case is given 
by

n  V ,  6Q</(«, 9\s\ ff) 11(0')g(y, 9')q{9\9', y) g(s, 9)J\s’ \9'. y)
Un{s,9)q(s',9'\s,9) U{9)g(y,9)q(9'\9,y) g(s',9')f(s\9: y)'

The main assumption here is that an exact sample can be generated from the 
proposal distribution. In other words, it must be possible simulate observations 
from the model density f(-\9) for any possible parameter value 9 £ 0 .

The proposal distribution q for the MH scheme is fixed, and so the performance 
of the algorithm in terms of the overall acceptance rate ('an only be affected by 
the choice of the target distribution, i.e. the conditional f(s\9.y). A common 
choice is given by

. W ,  » ) = / ( * !  b  =  (1-78)

for some fixed value 9, which may be an estimate of the parameter based on some 
pseudo-likelihood approximation.

Murray et al. (2006) interpret this as a one-sample importance sampler where 
an estimate of the ratio of intractable normalizing constants is calculated as the 
ratio of two estimates given by

m  9(s'.9) , g{s',9')
Z(9')~ g(s',9'Y ~  Z{&) ’

Z{0) _  g(s, 9) s g{s, 9)
Z(9) ~  g(s, 9) '  8 ~  Z{9) '

(1.79)

(1.80)

They propose to improve the performance of the algorithm by substituting the
single auxiliary variable s by a vector ,s1:*. =  {.sq....... ,sfc} of auxiliary variables, for
some k > 1 chosen a priori and fixed throughout. They explore the performance 
of the algorithm as a function of k.

Alternative Markov chain constructions are also provided by Murray et al. 
(2006). which result in simpler and more efficient updating schemes. The idea
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is to choose different proposal distributions for the MH scheme, which produce 
direct estimates of the ratio of normalizing constants Z(9)/Z(9') instead of the 
ratio of estimates of the original algorithm. The choice of q ensures that the 
intractable component cancels out from the acceptance ratio, making the MCMC 
feasible. However, this methods still rely on the possibility of producing exact 
samples from f(-\9) in order to update the auxiliary variables.

In the following Chapters, we present some large families of models for which 
this assumption fails, due to the infinite-dimensional nature of the state space 
Y (Chapter 2) or the parameter space 0  (Chapters 3, 4 and 5). It is this type 
of models that provide a motivation for the present work, extending beyond the 
scope of normalizing constants to deal with other forms of intractability.

1.2.2 Latent Variables for M C M C  Methods

The idea of extending a model by introducing latent variables, to enable or 
simplify MCMC simulation, is not limited to the Metropolis-Hastings updating 
schemes presented above. Auxiliary variable extensions have been used for many 
years within the conditional sampling step of Gibbs samplers. An overview of the 
early developments on the use of auxiliary variables for MCMC simulation can 
be found in Besag k  Green (1993).

Assume one seeks to generate realizations from some density f(y), which 
may be a full conditional within a Gibbs sampling scheme. In the most general 
setting, the variable of interest is augmented by an auxiliary variable s which may 
or may not have a physical interpretation. The conditional distribution f(y\s) 
is specified, to produce a joint f(y ,s ) =  f{y)f(s\y). The desired sample can 
then be produced by constructing a Markov chain which converges to J'(y, .s) and 
therefore, marginally, to f(y). If a Gibbs sampling scheme is already in place, 
this is achieved simply by adding one step to the updating loop. Clearly, the 
usefulness of the method depends on the possibility of choosing a density which 
enables a simple simulation from both conditionals, f{y\s) and f(s\y).

Swendsen k  Wang (1987) introduced a latent variable approach to improve 
the performance of the Gibbs sampler for the Potts model, a generalization of the 
popular Markov random field model known as the Ising model. A more general
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methodology for enabling and simplifying MCMC simulation through the use 
of auxiliary variables was introduced by Damien et al. (1999). The method, 
commonly known as slice sampling, provides an alternative to the traditional 
Metropolis-Hastings and rejection-based methods. Their main contribution is 
showing that, for a general family of complex models, it is possible to introduce 
the latent variable .s in such a way that direct simulation from the conditionals, 
specifically from f(y\s) is possible.

The general idea behind the slice sampler is the following. Assume the target 
density f(y ) can be factorized as f(y) oc 7r(y)g(y), where tt is a density and g is 
a non negative invertible function, in the sense that the sets As =  {y : g(y) > s} 
can be found. Damien et al. (1999) propose the introduction of a latent variable 
s with positive support , by defining the joint density

f{y. s) octt(j/ )1 { s <  g(y)}. (1.81)

In this case, the conditional density f(s\y) is simply a uniform on (0.g(y)) and 
the conditional f{y\s) is n(y) restricted to the set As. For a p-dimensional state 
space Y, when sampling from the corresponding truncated density may be diffi­
cult, the problem is solved by updating each component consecutively, using the 
corresponding full conditionals. That is, it is necessary to sample from 7r(y,|y_j) 
restricted to the set AjtS =  {y, : y(y) > s }, for which it is only required that y(y) 
is invertible for given values of y_j, for each j  = 1,. . .  ,p.

More flexibility may be achieved by substituting the uniform random auxil­
iary variable approach implicit in the use of 1 {¿> < y(y)}, with a more general 
gij(s) 1 {s  <  y2(y)}, which results in the need to sample from two truncated densi­
ties, corresponding to the full conditionals. There is no general way to choose the 
most convenient latent variable; suitable options depend on the context. How­
ever, Damien et al. (1999) provide many examples in which at least one choice 
may be found which allows direct sampling from the full conditionals.

Another way to define useful auxiliary variables for sampling from complex 
models, known as partial decoupling, is found in Higdon (1998). It is particularly 
useful in the context of Markov random fields.

Many other latent structures have been proposed, originating in specific mod­
els, with the purpose of improving the mixing or convergence properties of Markov
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chain simulators, reduce the correlation of the samples or improve the quality of 
the estimates. We do not give here a full review on the subject, but present some 
particular simulation algorithms, based on latent variables, which are relevant for 
the present work.

1.2.2.1 Latent Variables for Truncated Density Simulation

In this Section, we illustrate the use of latent variables to simulate from a trun­
cated density as part of an MCMC scheme. This is relevant for the applications 
we present in the following Chapters, which require the simulation from truncated 
normal and gamma densities. The results and methods in this section are taken 
from Damien & Walker (2001).

Let us first consider a truncated univariate normal density

f (y ) °C exp(—f/2/2 ) l  {a < y < b}. (1.82)

A latent variable s is introduced, via the joint density

f(y. s) oc 1 {0 < 5 < exp(—y2/ 2) } l  {a < y < b}, (1.83)

which clearly has the desired marginal /(y ) .  Since 0 < s < exp(—y2/2) if and 
only if \y\ < \J—‘l logs, the corresponding conditional distributions are given by

M V ) =  u(.s|0,exp(?y2/2 ) )  (1.84)

f(y\s) =  U m a x  ja, — 21ogs| . min 16. V - 2 1 o g s } j ,  (1.85)

where U(-|a, b) denotes the density function for the uniform distribution on (a, b).
When a sample from the truncated density (1-82) is required within a Gibbs 

sampling scheme, it may be obtained simply by adding an extra full conditional at 
each iteration. Thus, a rejection or MH step is substituted by the straightforward 
sampling of two uniformly distributed variables, which in many cases may be more 
efficient.

This idea is extended by Damien k  Walker (2001) to the problem of sampling 
from a truncated multivariate normal density

/(?/i- • • • ? Vp) oc exp | - ^ ( ? / - /;,)'E_1(?y - //,)| l A(v)- (1-86)
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assuming the truncation region for yt given all the rest can be written as (rq, ht). 
Once again, they introduce a latent variable s, through the joint density

i\yi.. . . ,yv:s) oc e x p ( -s /2 ) l  j s  > e x p [ - l /2 (y  -  /¿)'E_1(y -  p)\ | l  A(y),

so the full conditional distributions are given by

/(*|yi....... Up ) oc exp (—*‘/2 ) l  { . >  exp [—l/2(:r -  / i ) '£ _1(* -  p ) \

fiVilV-i- s) OC 1 {vi e (ai,bi) n Di}

where ^ : (y — p,)'T,~1(y — p) <  s } .  So once the bounds are found
by solving the quadratic equation, the Gibbs sampler can be implemented by 
updating p uniform random variables and one truncated exponential. For the 
last one, the cdf inversion technique is suggested.

Another truncated density considered by Damien & Walker (2001) and used 
within the present work is the Gamma,

f{y) oc e x p ( -y ) l  {a < y <  6}, (1.87)

for some 0 < a < 6 < oc.
The latent variable extension proposed corresponds to the joint density

/(?/, -s) oc ?/“ -1 l  {0 < s < exp(—y)}l {a < y < b}. (1.88)

leading to full conditional distributions given by

f(s\y) =  U(.s|0,exp(—?;)),

f(y\s) oc y°~l 1 (a < y <  min{ò. -  log y } ) ,

the second of which can once more be sampled using the cdf inversion technique.
In the following Chapters we use this idea to sample from full conditional 

densities within a more elaborate MCMC scheme, in cases where the truncated 
regions are more complex or where more general multivariate truncated densities 
are involved.
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1.2.2.2 Slice Sampler for M DP Models

Sampling from the MDP model described in Section 1.1.1.2 is a complex problem, 
mainly because of the possibility of choosing form an infinite number of discrete 
mass points, arising from the Dirichlet process prior. The first algorithm to allow 
sampling from the posterior distribution defined by this model is owing to Escobar 
(1988). It is usually referred to as a marginal method, as it relies on integrating 
out the random distribution function, thus removing the infinite dimensionality 
problem. Many variations of this method have been defined over the years, for 
example by MacEachern & Müller (1998) and Neal (2000).

Even though marginal sampling methods may be sufficient for certain applica­
tions, it is sometime convenient to avoid the integration of the random measure. 
For example, when the random measure itself is an object of interest in the in­
ference process. In such cases, it is preferable to sample using an MCMC scheme 
with includes the random measure in the updating process. The first algorithm 
of this type, known as conditional methods, was introduced by Ishwaran L Zare- 
pour (2000), who proposed an approximation to the MDP model based on the 
hierarchical representation (1.19). Papaspiliopoulos & Roberts (2008) proposed 
an algorithm to produce an exact sample by using retrospective sampling tech­
niques, while Walker (2007) and Kalli et al. (2011) achieve the same with a slice 
sampler.

In the following Chapters simulation for mixture models wall be done using the 
slice sampling methodology. Therefore, we introduce the method, as presented 
by Kalli et al. (2011) for the MDP model with a Normal parametric kernel. This 
idea, as well as that of the retrospective sampler method, relies on the stick 
breaking representation (1.18). That is,

OO

f  ( y \ ^  1:ooj ^l:oo) =  Y . ' ‘ ’M y \ o , Y  (1 -8 9 )
j=1

The prior II is defined by 9j ~  P0 and, for a collection of random variables, 
vj Be(«j, Q  the weights are given by Wj =  Vj .(1 — vy), with w\ =  v\.

The slice sampling method introduces suitable auxiliary variables, conditional 
on which, only a finite number of weights and particles needs to be sampled at
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each step of an MCMC scheme for posterior simulation. The first latent variable 
to be introduced is a uniform random variable, u, taking values on (0,1). This 
results in the latent expression

OO

f(y.u\wl:oo.91:oo) -  J 2 K (y\°j)i{u < wj}- (i-90)
i=i

Let Au =  {j : Wj > u}. Since ^2jWj =  1, the weights must define a sequence 
decreasing to 0. Therefore, the cardinality Ju — YlyLi 1 iwj >  '«} of Au, is 
finite. Furthermore, conditional on u, the density for y is a finite mixture with 
Jy components:

f{y\u,wl:00,9l:0C) =  w u 1 Y  K (y\°j), (i-9i)
j e A u

where Wu = YhjeAuwi- An additional latent variable, d may be introduced, 
to index the specific component from which the observation is generated. This 
results in the joint density

J'{y- u, d\wUoc, 6»1:oo) =  K{y\6j)l {a < wd}. (1.92)

The important features of this expression are that given u, the index d can only 
take a finite number of values, and there arc no sums involved, so the likelihood 
for n observations can be expressed as a simple product of terms. If we introduce 
a pair of latent variables (u, d) for each observation, the full likelihood for the 
model is given by the product

n

f  (yi:m l̂ini l̂:n| l̂:ocn l̂:oo) ^  (Hi I ̂ di) 1 { ^  ^di} ? (1.93)
i— 1

and the posterior distribution for the model can be identified as
n

hi ( l̂ioo* l̂:oo |,£/l:n? l̂:n* ^l:n) ^  11(^1 :oo i l̂:oo) n K (yi 1^ )1  {Ui < wdi}. (1.94)
i=1

Posterior simulation can now be carried out using a Gibbs sampler. However, 
a more efficient sampler (see Kalli et ai, 2011) can be defined if the uniform 
auxiliary variable of the latent model (1.92) is substituted by a non uniform 
term, resulting in the latent expression

/(y ,  w, d\wi:00, #1,00) =  eidwdK(y\9d)l {u <  e~c<i}, (1.95)
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for some known 0 < £ <  1. A Gibbs sampler implemented for this method 
should control the size of the Au and improve the mixing. In fact the terms 
{ e^ } j>i rnay be substituted by any positive sequence, each of which will result 
in a different balance between algorithmic efficiency and computational time. For 
more information on suggested options, see Kalli et al. (2011).

The posterior distribution for the complete latent model is given by
n

Hn(wi:0o91:oo\y1:n.u1:n.dhn) oc U(ru1:00.91:oo)Y lw diê di K(yi\0di)l {ui < e~̂ di}.
i= 1

Posterior simulation can be carried out using a Gibbs sampler, at each step of 
which we need to update the latent variables di:n, ul:n. and the variables weights 
and particles characterizing the density of interest, w1:oo, 01;oo. Clearly, it is not 
possible to update an infinite number of variables, but given the latent variables, 
it is enough to sample a sufficiently large, but finite, number of them. Exactly 
how many, can be inferred from the full conditionals distributions,

n(0#| • • •) OC Pü(03) \\ K{yi\03)- (1.96)
di—j

n (t’j | • • •) =  Be(u,- | öij.Q)] (1.97)

n(iq | . . . )  =  U(tij|0, (1.98)

U{di | . . . )  oc wdieidiK{yi\9j)l{e~idi > Ui}\ (1.99)

where
n

OLj =  otj +  5 ^ 1  {di =  j }  (1.100)
¿=1
n

0  = 0  + (i.ioi)
i= l

The weights are defined through the usual stick breaking construction (1.11).
In order to sample from U(di | . . . )  exactly, only a number ./, =  L~£-1 log y,J 

of the weights and particles is needed. Therefore, at any given iteration of the 
Gibbs sampler, we only need to update J =  maxj{ Jj} of them.

The best strategy for sampling the kernel parameters 9j =  (//_,-, <r?) will be 
determined by the base measure P0 specification and the choice of kernel function
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K(-\9). We discuss some adequate methods in the next Chapters, as required by 
different examples.

The method can be adapted to obtain a similar representation for the Geo­
metric stick-breaking prior. It is this flexibility, along with the simplicity of the 
resulting updating procedure, that makes the slice sampler so useful for the latent 
variable estimation procedures we present in this thesis.

1.2.2.3 M C M C  for Parameters of Unknown Dimension

Assume we have a family of models such that, for every k G K, the dimension 
of the parameter space 0*, for the model likelihood f(yi:n\k, 9k), depends on the 
index k. In a Bayesian setting, uncertainty about the models is expressed through 
a prior Yl(k,Ok) Il(fc) U(Ok\k). The posterior probability for model k is given 

by
Un(k\y1:n) =  — i - .  f  f(y1:n\k, 9k) n(fc) n (0fc|fc) du(9k). (1.102)

J  [VV.n) Jp)k

This expression, commonly known as the marginal likelihood for the model, does 
not have, in general a closed from. Therefore, inference is carried out through 
MCMC methods.

Early approaches (Chib, 1995; Chib & Greenberg, 1998) rely on independent 
MCMC simulation for each model k in order to estimate the marginal likelihoods 
and calculate Bayes factors for model selection. This idea, however, is only fea­
sible when K is finite and relatively small.

An alternative idea (Carlin & Chib, 1995) is to implement MCMC simulation 
simultaneously over the indexing variable k and all possible model parameters. 
The compound space K x K has a fixed dimension but it may be too 
big for the MCMC methods to be of use. Godsill (2001) proposes a general 
methodology based on Metropolis-Hastings and Gibbs sampling schemes, using 
the relationship between the different models to make the sampling more efficient. 
The method is particularly useful in the case when the models have some sort 
of nesting structure. It has the advantage of relying on basic MCMC simulation 
ideas, and therefore any convergence properties of the Markov chains may be 
verified in the standard way.
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In the present work, we make use of Godsill’s version of the reversible jump 
sampler (Green, 1995), based on a Metropolis-Hastings construction with a spe­
cific choice of proposal distribution.

We consider a fully nested, possibly infinite, family of models. Let K =  N 
and, for every k >  0, assume model k has a parameter 9i:k =  (0l5. . .  0*.), such 
that 0j 6 0  for all j  and for k! < k the first k' elements of 9\.k coincide with 9[.k,. 
In this case, Godsill’s algorithm uses a Metropolis sampling scheme for (k. 0) in 
the infinite dimensional space N x 0 N. The proposal distribution for updating 
from a state (k, 9\:k) to a state (k!, 9\.k,) takes the form

p(Ä/röi:̂ |Ä:.01:fc) = p 1(A/|fc)p2(0i:fc,|01;fc)n (^ +1:oo|̂ 1:fc/), (1.103)

where
if k' > k  
if k' <  k

„  / / /  \Q \ _  /  9(^fc+l:fc'l^l:fc)l ei;fc( l̂:fc)P%V l:k' l"l:fcj — S , (O' \

and n(0/t+i:oo|0i:fc) is a pseudo-likelihood, in the sense that

f(k, 9\Vl:n) =  f(k< 01:fc|l/l:n)n(0fc+1:OO|0i:fc).

(1.104)

(1.105)

It therefore takes advantage of the nesting structure to minimize the number of 
variables that need to be sampled.

The acceptance probability corresponding to this proposal is given by

=  . J ,  v{k,(h.M\kko[:k\f{kk(rl:k,\yi..n) \
\ • p(k',9[:kl\k.91:k) f ( k ,e hk\y1:n) j  

=  • f j  P i ( k \ k , ) p 2{ 0i : k K : k > ) f { k f j y h k l \ y i : n ) \
I ' P\{k'\k)p2{O\;k,\0i:k)f{k,0l:k\yl:n) J

If, k' > k, this becomes

a — min
Pi{k\k')f(k',e'vk,\yv.n)

Pi(k'\k)q(6,k+l.k,\9l:k)f(k,01;k\y1:n)
(1.107)

when k > k', we have

a =  min < 1, Pi(k\k?)g(0k'+1:k\t)[:kl)f(k,J)'1.kl\yi:n)
Pi{k'\k)f(k,01:k\y1:n)

(1.108)

So the acceptance ratio does not depend on any parameter value 9j or (9' for 
j  > max{/r. k1} and therefore only a finite number of variables needs to be updated 
at any step of the algorithm.
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1.2.3 Exact Simulation and Inference for Diffusions

Auxiliary variable schemes can also be useful outside the context of MCMC meth­
ods. We illustrate this in the present Section.

Recall the discretely observed diffusion model described in Section 1.1.2.1. 
Throughout this section, we use y\:n =  (ytl, . . . ,  yt2) to denote a sample of size n, 
for fixed, known times 0 < t\ < . . .  <  tn < oo. In other words, we assume each 
observation yt. is the observed value, at time U, of a single realization, or path, 
of a diffusion process Y =  {Yt : t > 0}, defined by an SDE

dYt =  ae(Yt)dt +  dWt, (1.109)

and started at some fixed, known Y() — y0. We assume that, for every 9 G 0 , 
condition (1.41) is satisfied, so that the process is well defined and Girsanov's 
change of measure formula (Theorem 3) applies. Under this assumption, the 
transition densities for the process exist; in most cases, however, they do not have 
an analytic form. Therefore, the likelihood of the discretely observed diffusion 
model, given by

n

f(y,n\e) =  U f ^ \ y ^  \  =  U — ij_i, ( l .n o )
i= l

is intractable.
Many methods have been proposed to face this issue. Until recently, they 

all relied on different forms of approximation or interpolation techniques, includ­
ing approximate simulation; analytic approximations of the transition density 
or the complete likelihood functions; and direct approximation of the maximum 
likelihood estimator. Some of these methods are described in Bamdorff-Xielsen 
& Sorensen (1994); Bibby & Sorensen (1995); Kelly et al. (2004); and Sorensen 
(2004) gives a review of them.

An important theoretical breakthrough, was brought about by the definition of 
a method, known as the exact simulation algorithm, which allows the simulation 
of diffusion paths at arbitrary time points within a closed time interval [0, f], 
with no approximation error. The exact simulation algorithm, first presented 
by Beskos & Roberts (2005), is a retrospective rejection sampler, based on a
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factorization of the diffusion paths in terms of a finite set of points, known as the 
skeleton, connected by independent Brownian bridges. Initially designed for a 
limited family of diffusion processes with rather restrictive conditions on the drift 
and diffusion coefficients, the result was later extended by Beskos et al. (2006a), 
Beskos et al. (2006b) and Beskos et al. (2009), to cover most of the diffusion 
process commonly used for statistical modelling. In the present work, however, 
we focus on the simplest version of the algorithm (EAl in Beskos et al., 2006b), 
as it suffices for illustrative purposes.

Since, the finite dimensional distributions of the process are, as the transition 
density, generally unavailable, the first key for the exact simulation of diffusion 
paths, is to express the law of the diffusion of interest, in terms of a Brownian 
Motion, for which the transition densities are known and easy to simulate from. 
Beskos et al. (2006b) achieve this through the application of Girsanov’s formula 
(1.29).

For every fixed l >  0 the density of the law P:vo of the diffusion Y started at 
Vo =  i/o, restricted to At, with respect to the Weiner measure W yo is given by

/.(• to ,» )  =  ^ ^ = e x p { £ a » ( y . ) d V ' . - t  j ‘ aHY,)isY  (1.111)

We use the notation /  to indicate this is not a transition density with respect to 
Lebesgue measure, but a density on (Cp.oo), ®(G[o,oo))) with respect to a Weiner 
measure.

In order to deal with the stochastic integral in the above expression, assume 
that the drift coefficient ne is continuously differentiable and integrable, for every 
0 € 0 . Denote by

( 1. 112)

some antiderivative of n0, so that A'e =  o0 for every 0 £ 0 . Then, an adequate 
version of Ito’s formula (1-26) can be applied and equation (1.111) above becomes

M-\Vo,0) =  e x p jy M n )  -  Ae(Y0) -  ± J* [a20(Ya) +  J0(Ya)]ds} . (1.113)

Since we are considering stochastic processes defined on the canonical space 
(G[o,oo)-‘B(C[o,oo)))i all random variables involved are defined by the coordinate
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mapping, i.e. for each y £ C[o,oo) and t >  0, Yt(y) =  yt. Therefore, for any 
continuous function y, we can write

This expression is the base for a simple, but impossible, rejection algorithm, 
in which a Brownian motion path y =  {ys : 0 < s < t} started at y0 is sim­
ulated, and accepted with probability proportional to ft(y\yo<0). The impos­
sibility comes from the fact that, even though the finite dimensional distribu­
tions of Brownian motion are known multivariate normal distributions, this is 
enough only to simulate a finite number of points in a Brownian motion path. 
The integral in the above expression, however, depends on the complete function 
y — {ys : 0 <  s < £}, making it intractable.

Beskos et al. (2006a) deal with this problem by introducing a set of latent 
variables. In the simplest form of the exact simulation such variables are defined 
through an auxiliary homogeneous Poisson process in the following manner.

Assume that the drift coefficient of SDE (1.109) is such that, for every 9 £ 0  
we can write

for some l : 0  —> R  and r : © —> (0. oo). It is then possible to define a bounded 
function (pg : R —» [0,1] as

The expression for /  can then be rewritten in terms of <fg as

ft(y\yo,0) =exp{yle(i/t) -  Ae(y0) -  Z(0)}exp j - r ( 0 )  J v?e(y8)d s | . (1.117)

The second key for the exact simulation of diffusion paths is the realization 
that

(1.115)

(1.114)

(1.116)

exp (1.118)
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is the probability that a realization of a homogeneous Poisson point process on 
[O.f] x [0,1], with intensity r(9) has 0 points under the graph s i-> ipe(ys)- This 
allows the evaluation of the acceptance probability for a Brownian path proposal, 
based only on a finite number of points, generated retrospectively, at times de­
termined by the Poisson process.

The exact, simulation algorithm is therefore defined as follows:

i) Generate a realization of the Poisson process, i.e. a Poisson random variable 
k with mean parameter t r(0), and, conditional on k a set (ti, . . . ,  r*,) of i.i.d. 
uniform random variables on [0. t] and a set (m ,. . . ,  a*,) of i.i.d. uniform 
random variables on [0.1] and independent of the r1:fc.

ii) Simulate (yT, , . . . ,  yTk) from the fc-dimensional distribution of a Brownian 
motion started at y(l.

iii) If there are no points of the Poisson process under the graph s i->- <pe{ys), 
in other words, if

then accept the Brownian path as a realization of the diffusion process.

In reality, the algorithm accepts simultaneously any complete Brownian path
{tjs : 0 < s <  I,} passing through (yr, ....... yTk). Therefore, for arbitrary times
0 < ¿i < . . .  <  tn <  t, the corresponding points of the diffusion path can be sim­
ulated via Brownian bridge interpolation between (yT], ,yTk). Since the finite 
dimensional distributions of a Brownian bridge are simply multivariate normal 
distributions with known mean vectors and covariance matrices, this second stage 
can be carried out without problems.

The accepted pairs (tj, yTj)j=1 are known as the skeleton of the path, and con­
ditional on the skeleton and the skeleton size, k, the rest of the path is simply a set 
of independent Brownian bridges. More about the factorization of diffusions into 
Brownian bridges, and milder conditions on the drift and diffusion coefficients, 
can be found in Beskos et al. (2008).

k
(1.119)
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For every time interval [0, i], the exact simulation algorithm accepts or rejects 
a complete skeleton simultaneously. Since the expected number of points of a pro­
posed skeleton is tr(0), the acceptance rate decreases as t increases. An optimal 
acceptance rate is achieved when t =  1 /r(0) (see Beskos et al., 2006a). Therefore, 
for larger values of t, a good performance of the algorithm requires that the time 
interval of interest is split into smaller intervals and then the Markov property 
used to produce the complete path. Clearly, the number of such smaller intervals 
will grow with t, affecting the performance of the algorithm. In the next Chapter, 
we propose an alternative MCMC scheme suitable both for simulation of diffu­
sion paths and Bayesian inference, which is not based on rejection sampling and 
therefore does not need to be adapted depending on the size of the time interval 
under consideration.

Beskos et al. (2006a) propose the use of the exact simulation algorithm for 
estimation of the parameter and the transition density for the model, mainly 
focusing on maximum likelihood estimators and their properties. To do so, they 
observe that the transition density of the diffusion, with respect to W yo, can be 
obtained from equation (1.117), by integrating out the rest of the path. In other 
words, we can write

ft{Vt\Vo,0) — exp{^e('</i) — At»(yo) — ¿(0)}E\y!/o

And, since the density with respect to Lebesgue measure of any point of a Brow­
nian motion path is a known univariate normal density, a change of measure 
leads to an expression for the transition density of the diffusion (with respect to 
Lebesgue measure),

ft(yt\yo,0) =  N(yt\yo-.t) exp{ A/,(yt) -  A„(y0) -  1(0)}

E'W»o exp <i°) [  MVs)d*
Jo

Vt
( 1. 120)

The expectation term in the above expression is intractable, but it coincides with 
the acceptance probability for the exact simulation algorithm, when yt is fixed. 
This is the base for the inference methods studied by Beskos et al. (2006a,b, 
2009).
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Even though it is not stated explicitly by the authors, the exact simulation
algorithm, defines a latent expression for the transition function, given by 

ft{yt,k,u1:k, T1:k,yri, . . .yTk\y0,0) =  N(yt\y0,t)exp{Ae{yt) -  Ae(y0) ~ 1(0)}

diffusions, using this expression. If a prior II is defined on the parameter space 
0 , inference can be carried out through MCMC methods in the following manner.

i) Initialize the Markov chain by choosing some value 0 for the parameter.

ii) Through the use of the exact simulation algorithm, generate independent 
Skeletons for a diffusion path, between consecutive observations, given the 
current parameter value.

iii) Update the value of the parameter by sampling from the full conditional 
distribution, given the skeletons and the observations. The full conditional 
density is proportional to the prior Id multiplied by the product of the latent 
transition densities for all the data points. Since this density depends only 
on a finite number of points and can be evaluated up to proportionality, 
any usual MCMC simulation method can be used to generate the new 0.

In Chapter 2, we show how the latent model used for this inference method 
can be seen as a particular case of the general latent model given by expression 
(15). We provide an expression for the full model, using a change of notation, and 
propose an alternative MCMC algorithm which can be used both for simulation 
of diffusion sample paths and for Bayesian posterior inference.

j=i

Or, integrating out the uniform random variables ui:k, 

ft{Vt,k,T1.je,yn , . . . y Tk\y0,e) =  N(yt\y0, L) exp{ A 0(yt) -  A„(y0) -1(0)}

Beskos et al. (2006b) consider Bayesian estimation for discretely observed
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1.3 Bayesian consistency

In a Bayesian nonparametric setting, the simplest scenario assumes {Yi}t>\ is a 
sequence of i.i.d. random variables from a distribution with probability density / 0 
defined on the sample space Y. Inference begins by defining a prior II on the set 
IT of density functions over Y. Each observation yt is assumed to be a realization 
of the variable lb  We say the model is consistent at / 0 if the posterior probability 
accumulates all of its mass around / 0.

There is some disagreement between Bayesian statisticians about the useful­
ness of the consistency property, mostly arising from the different views about the 
justification behind Bayesian procedures. In short, some Bayesians do not agree 
that a single /o exists for which the modelled random variables are i.i.d., since, 
under an exchangeability assumption, de Finetti’s theorem guarantees only con­
ditional independence. In the present work, we study consistency as a property 
that some people may want to verify and refer the reader to Diaconis & Freed­
man (1986) for arguments supporting the relevance of consistency in Bayesian 
procedures.

Given a sample of size n, the posterior mass assigned to a set A C T  is given

is the likelihood ratio between /  and / 0. As it stands, if the posterior II” accu­
mulates its mass around / 0 as n grows, this would only describe a behaviour for 
the particular sample at hand. A more useful property would give us information 
on the behaviour of the posterior, regardless of the particular sequence observed.

Doob (1949) showed that, under weak conditions, consistency follows for II 
almost every observed sequence. This, however, is not enough for a practical 
interpretation, since the true density can fall on a null set of the prior, in which 
case consistency fails for / 0. Therefore, a stricter and more formal definition of 
consistency is required.

by

f R n ( f ) n ( d f )
(1.122)

where

(1.123)
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Effectively, the idea of Bayesian consistency is that, as more data is gathered, 
it should be possible to identify the true density /o generating the data more 
accurately, for almost every sequence we may observe, i.e. almost surely with 
respect to the joint law of the complete sequence.

To formalize, if we denote by Po the probability measure corresponding to /o, 
we may think of the sequence { Vi}i>i as defined on the product space Y°°, with 
joint probability measure Pq3. We say that the Bayesian model with prior il is 
consistent if for every neighbourhood B of / 0, we have

n n(B c|T0. • • ■, Yn) ------ » 0 a.s. [Pg°]. (1.124)
n—kx>

In this case, the posterior distribution is considered as a random object, due to
its dependence on the random sample Y\:n =  {Y i___, V^}. However, once this
has been clarified, we use the notation y\:n, even when probability statements 
refer, more formally to the random variables Y1:ni. Throughout the rest of this 
chapter, all such probability statements are made with respect to Pg°.

Clearly, the concept of consistency depends on the definition of B, that is, 
on the topology imposed on the functional space T. Different topologies lead to 
different types of consistency and we consider the two most relevant cases below.

1.3.1 Weak Consistency

A common topology to consider when dealing with functional spaces is the weak 
topology, associated to the concept of weak convergence. It is said that B C T  is 
a weak neighbourhood of Jo if it contains a set of the form

f e J - . <r>lfo <  E, i =  1, (1.125)

where the (<A)(Li are bounded continuous functions, for some k E N.
A density /  G T  is in the weak support of the prior if every weak neighbour­

hood B of f  has positive prior probability, i.e. 11(B) > 0.
Diaconis & Freedman (1986) proved that even when fo is in the weak support 

of the prior, weak consistency does not follow. A stronger condition is required, 
to guarantee the prior assigns enough mass on tighter neighbourhoods of / 0.
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Such tighter neighbourhoods are defined in terms of the topology induced by the 
Kullback-Lebiler divergence on T.

For every pair of functions J\, f2 £ IF, the Kullback-Leibler divergence from 
f\ to f2 is given by

This does not define a distance since, in particular, it is not symmetric. However, 
the Kullback-Leibler divergence can be used to define a system of neighbourhoods 
in a space of density functions, thus inducing a topology. For every /  G  T, a 
Kullback-Leibler neighbourhood of /  is constructed as a countable union of balls 
of the form

A density /  £ T  is in the Kullback-Leibler support of the prior if every weak 
neighbourhood Bk of /  has positive prior probability, i.e. H(Ba ) > 0. If /o is in 
the Kullback-Leibler support of the prior, that is

it is said that the Bayesian model satisfies the Kullback-Leibler property.
Schwartz (1965) showed that the Kullback-Leibler property is a sufficient 

condition for weak consistency. This condition is stronger than the requirement of 
/o being in the weak support of the prior, since Kullback-Leibler neighbourhoods 
of a function are contained in weak neighbourhoods.

Weak consistency is a desirable property when inference is focused on es­
timating specific quantities related to the density, such as means or variances. 
However, as noted by Barron et al. (1999), if the interest of the inference is the 
density itself, it is convenient to seek convergence in some stronger sense, as weak 
neighbourhoods of Jo may contain densities which do not truly resemble Jo-

1 .3 .2  Strong consistency

A Bayesian model is said to be strongly consistent when the posterior density 
accumulates all of its mass around strong neighbourhoods of the true density /o

(1.126)

BK(f,e) =  { f e ? : K { f J ) < e } . (1.127)

n [ f l * ( /0,e)] > 0  Ve > 0, (1.128)
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as n grows. The strong topology in a functional space is usually defined with 
respect to the L\ distance, given by

M / 1 , / 2 )  =  /  l / i ( 3/) -  / 2(y)|<My). (1.129)
•/Y

When limited to a space of density functions T, the p  distance is equivalent to 
the total variation metric on the corresponding space IP of probability measures, 
defined by

dT(l\.P2) =  sup |P1( £ ) - P 2(£)|. (1.130)
Bg3 (Y)

The advantage of using the L\ metric is that functional analysis results guarantee 
the separability of 3  with respect to L\. Furthermore, it can be shown that the 
Hellingcr II distance on T, given by

H 2( f i , f 2 )  =  \  f  W h { y )  -  V f 2 ( y ) } 2dv{y) =  1 -  f  V .f i{y)f2(y)  dv(y),
^ J Y J Y

(1.131)
is topologically equivalent to the L\ distance, with

H2{h-J2) <  P ( / i , / 2) <  v /2 / / ( / , . / , ) .  (1.132)

for every /\, / 2 G  T. This implies that convergence with respect to the L\ distance 
and convergence with respect to the Hellinger distance are equivalent. This last 
one being more manageable in many calculations, strong consistency for density 
estimation is usually defined in terms of the Hellinger distance.

Following that convention, we say that the Bayesian model is strongly consis­
tent when

n n(Pe) —> 0 a.s. for all e >  0.

where
Ae =  { f  E ? :  H {fJ 0) > e }

is a set of densities e-bounded away from / 0 with respect to the Hcllinger distance.
The Kullback-Leibler property ensures the prior probability accumulated around 

Jo is large enough so that, as the sample size n grows, the posterior probability 
assigned to weak neighbourhood does not vanish to zero. However, in order to 
achieve strong consistency, it is also necessary to ensure that the prior does not
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concentrate too much mass on densities which can track the data. Therefore, 
more restrictive conditions are required for a model to be strongly consistent. 

Recall the posterior mass assigned to a AE is given by

r r * ( /y
JAe Rn(fMdf)  
j R n(m (d .f ) '

(1.133)

Establishing convergence of this ratio proves a challenging task. However, The 
denominator docs not depend on the set At and therefore its treatment is inde­
pendent of the topology defined on T, so different approaches treat the numerator 
and the denominator separately.

The first result providing sufficient conditions for strong consistency is due to 
Barron et al. (1999). They show that, under the Kullback-Leibler property

I  Rn(f)U(df) >  exp(—nc) a.s., (1.134)

for any c > 0 and sufficiently large n. Therefore, the denominator cannot decrease 
to zero faster than at exponential rate. In order to guarantee strong consistency, 
a second condition is required, to guarantee the convergence to zero of the nu­
merator at a faster rate. Barron et al. (1999) and Ghosal et al. (1999) provide 
such condition, namely, the existence of a sequence (9r„ )n>i C 3~ such that for 
every large n

i) n(T£) < Ci exp(—7t.c2)

ii) J(6, T„) <  n/3,

for some c\:c2 > 0 and 0 < S,/3 sufficiently small. The difference between the 
two results is in the definition of the J(5, CF„). For Ghosal et al. (1999), it denotes 
the Li entropy, i.e. the minimum k such that can be expressed as a union 
of k balls of Li-size 5 around / 0; while for Barron et al. (1999) it denotes the 
bracketed entropy and is therefore slightly more restrictive.

The increasing sequence (Tn)n>i C T  is called a sieve and under the above 
condition and the Kullback-Leibler property, Ghosal et al. (1999) construct a 
sequence of uniformly consistent test to prove /  =  /o against /  £ Jn D As. 
Therefore, we refere to this as the sieve and uniformly consistent test approach 
to consistency.
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The construction of sieves and tests is often difficult, thus the relevance of an 
alternative approach proposed by Walker (2003, 2004). The introduction of this 
idea requires some additional notation.

Let
Lua =  /  R n U W f )

J  A
denote the integrated likelihood ratio over a measurable subset A C T. Then, 
the posterior mass assigned to A can be expressed as

LnAIT (A ) =
L  ’

(1.135)

where In =  Ln7 =  f  Rn(f)TI(df).
The predictive density, with posterior restricted to the set A is given by

fnA(y) =  \ /(y )d lP 4( / ) ;  y e ¥.
Ja

where

<in "A( f )=
1 ( /  c .4)dnn(/)

X,dn»(/)

Assuming the existence of a sequence {fj)j>i C Ace such that, for some 6 < e,

n

A C (J  Aj\ Aj =  { f e ? : H { f J j) < 5 }  V j 
j=i

and

Ev^j < oo, (1.136)
3 = 1

Walker (2004) proves that

LnAe =  j  ttnA'(I)H (d /) <  exp(-nd) a.s.

for any 0 < d < -  log(() +  1 — e) and sufficiently large n.
Combined with the exponential bound (1.134) provided by the Kullback- 

Leibler condition, this implies strong consistency. Since the space T  of densities
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1.3 Bayesian consistency

is known to be separable with respect to the Hellinger distance, a countable cover 
for Ae of Hellinger-size 5 is always available. Therefore, this result adds to the 
Kullback-Leibler property a single condition on the prior, given by expression 
(1.136).

The key to Walker’s result is the identity

L'n+IA   ./ri^(i/n+1) /. . ay\
/„ ( i fe + i) ' ;

In Chapter 6 we use an analogous expression to find sufficient conditions for strong 
consistency in the context of transition density estimation for Markov models.

It can be seen that {Ln/i }n>o defines a martingale and, even though this is 
not relevant to the consistency result, Walker’s method has come to be known as 
the martingale approach.

For general models, conditions for strong consistency may hold, but be diffi­
cult to verify. Moreover, even if the conditions provided above fail, it does not 
follow that the model is not strongly consistent, since all of the results for strong 
consistency found in the literature provide conditions which are sufficient but not 
necessary. Walker & Hjort (2001) argue that, in this cases, it may be preferable 
to base Bayesian estimation on a consistent sequence (Qn)n gei of pseudoposterior 
distributions.

For each n G N and some a G (0,1), they define a probability measure Qn by

Qn{A) L  « ! ' " ( / )  n (d /)  
IK~a(J) n(d/)

and then use the sieve and uniformly consistent test approach of Barron et al. 
(1999) to prove that the Kulback-Leibler property alone guarantees that

Qn(Ae) —>■ 0 a.s. for all e > 0.

In other words, inference based on the (1 — cv)-power likelihood results in strong 
consistency estimates for the true density jo ­

in Chapter 5 we deal with the problem of Bayesian inference for this type of 
power likelihood, for a large family of Bayesian nonparametric mixture models, 
and this last result provides one of the motivations.
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1.3 Bayesian consistency

1.3.3 An Important Counterexample

As we have mentioned above, existing results for strong consistency provide only 
sufficient conditions. This may raise the question of whether any condition, other 
than the Kullback-Leibler property is necessary. In this section we present an in­
teresting example constructed by Barron et al. (1999) to show that the Kullback- 
Leibler property is not enough to guarantee posterior consistency when nonpara- 
metric densities are involved.

The idea is to define a prior which assigns equal probability to a set 7 e of 
continuous densities and a set 7 , of piecewise constant densities. The roll of the 
first set is to ensure the Kullback-Leibler property is satisfied, while the second 
ensures posterior probability does not accumulate almost surely on arbitrarily 
small Hellinger neighbourhoods of the true density for the data.

The example starts by assuming we have a sequence (Kn)n>i of i.i.d. random 
variables uniformly distributed on [0,1], so / 0(.x) =  1. To construct the prior, 
first consider, for each positive integer N, the following partition of [0.1]

IN =  {[o. 1/2JV2), [1/2N2. 2/2N2) , . . . ,  [(2N2 -  l ) /2 N2, 1]}. (1.138)

Let Tjv be the set of all density functions which arc constant on every interval of 
IN and take only the values 0 and 2. Then, the cardinality of is qN =  ( 2̂ 2). 
The prior will assign equal mass

n(/) 1
CqN2N2

(1.139)

to every function /  G 7jv, where C is a normalizing constant,

OO

N=1N*'
(1.140)

Making 7 , =  (Jw=i this means exactly 1/2 of the prior probability is accu­
mulated on 7*.

The rest of the prior mass is assigned to the parametric family

7© =  { f0 =  exp(0 +  v ^ " 1) : 9 e (0 .1 )}. (1.141)
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1.3 Bayesian consistency

with probability induced by the density on the parameter space:

11(0) < x e x p ( - l /0 ) l {O  < 0 < 1}, (1.142)

where d> denotes the standard normal cumulative distribution function.
For every fe £ T<_), the Kullback-Leibler divergence to the true density is 

K{feJo) = 0 ,  so the Kullback-Lciblcr property is satisfied. At the same time, 
the squared Hcllinger distance between f0 and any density /  £ %  is / / 2 ( / ,  / 0) =  
2 — \/2 and Barron et al. (1999) prove that

limsuP n n(J*) =  1 a.s. (1.143)
n—too

Therefore, the model is not strongly consistent. In Chapter 5 we illustrate this 
lack of consistency via MCMC estimation of the Hellinger distance between the 
true density generating the data and the estimated predictive density.

69



Chapter 2

Discretely Observed Diffusions

Consider a discretely observed diffusion model defined by an SDE

dYt =  ao(Yt)dl +  dWt. (2.1)

In general, the transition function

J M v o , 9 )  (2.2)

is intractable, as explained in Section 1.1.2.1. However, the exact simulation 
algorithm presented in Section 1.2.3, defines auxiliary variables which result in 
the latent expression (1.121). In the present Chapter, we show how this latent 
expression can be viewed as a particular case of the general auxiliary variable 
scheme described in the Introduction, and which constitutes the object of study 
of the present work.

We propose an alternative MCMC algorithm, based on the complete latent 
model, which can be used both for simulation and for Bayesian inference. Since 
the model is the same and no approximation is used, apart from the usual Monte 
Carlo error, the results obtained in this manner are equivalent to those obtained 
via the original exact simulation method. Our algorithm, however, is not based 
on the simultaneous acceptance or rejection of complete sample paths and is 
therefore equally applicable, regardless of the length of the time interval [0, f] 
under consideration.
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2.1 The Latent Model

2.1 The Latent Model

We begin by considering the likelihood function for the diffusion model, given a 
sample yo-.n — (ytu •••,%„)> with known observation times 0 =  to < h < ... < 
tn < T, i.e.

n

f(yo:n\9) \  =  Li- Li- 1- (2.3)8=1
where yo is considered to be hxed. The Bayesian model is completed by the 
definition of a prior Ft on the parameter space 0 .

We assume throughout this chapter that the model satisfies all the conditions 
required for the application of the EA(1) algorithm presented in Section 1.2.3. In 
other words, for every 0 £ 0 , a weak solution to the SDE (2.1) can be constructed 
through the application of the Girsanov-Carmeron-Martin change of measure for­
mula (Theorem 3). Furthermore, the drift coefficient a# is continuously differen­
tiable and integrable, with a tractable expression for the antiderivative

Ag(u) =  j  a0(u)du] (2.4)

tractable functions l : 0  ->• M and r : 0  - »  (0. oo) can be found such that

K0) <  inf | K ( “ ) +  a® («)]/2 j ;  (2.5)

r{0) >  sup (  [a2e(u) +  o'e(u)\/2 -  1(9) (2.6)
ueM f J

As before, we define a bounded function ip0 : R —> [0,1] given by

M u )  (2.7)
In this case, the transition densities for the diffusion process admit the repre­

sentation given in equation (1.120), which we write here as

fAiiytilvu-!, 0) =  ■. 0)hi(yti,ytî ,9). (2 .8)
where

giiVu-.yu^:0) =  N(t/ti|?/ti_1: A ,) exp {A0(yti) -  A0(yu_1) -  [l(0) +  r(9)\ }  ;
(2.9)

hi(yti,yti _ ,,0 ) =  Ewvii_1 exp jr (0 )  ^  [l -  (pe(ys)]ds| yu (2.10)
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2.1 The Latent Model

The self-similarity of Brownian Motion ensures the Weiner measure W 11**-' is 
well defined on the set C[tj_1)t.], as the measure induced on C[0.A,j by a Brownian 
motion W  started at Wo =  yt, ,.

Notice that the Markov property of the diffusion process guarantees that, for 
each i =  1. . . .  ,n, the conditional density for yti given the previous yto. . . . ,  yu_x, 
is given by f^XVtilVti-ii )̂- Therefore, equation (2.7) corresponds with expression 
(4), the starting point for the latent variable expansion presented in the Introduc­
tion of the thesis, for a general Bayesian model. Moreover, if we define an infinite 
dimensional variable A,: =  {y8 : 0 < s < A,;} G C(0,Ai)» the complete path between 
the two consecutive observations yi-i,yu with reference measure v induced by 
the Brownian motion conditional on Wo =  yt, ., and Wa, =  ytr In other words, a 
Brownian bridge measure. It then becomes evident that equation (2.10) has the 
same form of expression (7), namely

The latent model construction of Beskos et al. (2006b) proceeds from here by 
introducing an auxiliary Poisson process to aid in the estimation of the intractable 
integral hi. We argue that the latent variable k can be alternatively be derived 
from the known series expansion for the exponential function,

(2.11)

and

(2.12)

(2.13)
k=0

from which it follows that

(2.14)
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2.1 The Latent Model

Thus, we arrive at the general expression
OO

(2.15)
ki=0

which characterizes our method.
In this case, (‘i,ki{9) =  [r(9)]kt /kJ. and

hi,ki — hi,ki(ytii Uti-.\ •. 9) — [l -  (pe(ys)]ds
— 1

ki
Vti (2.16)

T i l )

We can then replace the fĉ -th power with a product,

H y t i - v u - ,>M) = (  f  i1 - M y s ) ] d s \  = I I  /  t1 ~ M y n , i )\d(
\ J t i— 1 / «'¿¿-l

f t i  j-tf fc«

=  /  ■ ■■ n t 1 -  ^ ( l / r J l d K i )  • • -d(Tt,fci) =  b i ( y U i y u_ l , 0 . S i ti:k.),

(2.17)

where sijt =  (rhi. yTil). This expression depends only on the values of the path 
yT]....... yTk and not on the values between them. Therefore, we may write

hi,k,(viiVi-i- 0) @ x)\ytj\

= E Vyvti_1 \pi{ytiyti_ i! 9. Stp,^)! yti\
kj (2.18)

bi,l 2/i—1 : )dlz(Stil;fci),
¡=1

where =  [/4_ i . /¿] x R, with reference measure v given by the product of the 
fcj-fold product Lebesguc measure on [U-i, / ¿] and the /^-dimensional distribution 
of the Weiner measure W Vti~1 on £[£¿—1, ¿¿], conditional on Wt. =  yt, for every
i =  1___, n. It is, however, more convenient to revert to Lebesgue measure,
since the finite-dimensional densities of Brownian motions are known multivariate 
normal densities. So we write

hi,ki(yi,Vi-1-0)
ki

hjiviVi-1,9, SiA:ki)du(si :̂k),
i=l

(2.19)
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2.1 The Latent Model

where

K i i V i - V i - ^ O ■■ s i,\.ki) =  N(a;<i(i)|.Ti)(i_i),Tii(i) — r^q-i)) [l -  ip0 ( x iti ) \ ,  (2.20)

depends on the observations only through the convention .r^o) =  Vt, ■ The latent 
variables siti =  (r^, xiti) take values on §  =  [0. A*] x R and v is the corresponding 
Lebesgue measure. The notation (/) for the subindices in the normal density 
functions represents a permutation of the T i^  such that 0 < t* )̂ <  . . .  < r ,^ )  
and is simply an aid to factorize the multivariate normal density into univariate 
normal densities. This is the notation we use throughout the remaining of this 
Chapter. We have replaced yTi, with x̂ i to emphasize the fact that we are dealing 
here with auxiliary variables, as opposed to observations, denoted by yti.

Through the above construction, we have arrived at a latent model for dis­
cretely observed diffusions in the form of the general latent likelihood (15) antic­
ipated in the Introduction to this thesis, namely

II /(sw) ) •
l>ki )

(2.21)
where

/  fci
}  (yi:m  ̂l:n i Sl:n,l:oo|̂ ) ä iih .m  0 ) 11 Ci,fc,(̂ ) ( |  ^ ^ ¿ , l : f c j )

¿=1 \/=l

=  GXp {A0{yt) Mvo) -  t [ m  +  r(0)] } n n(vu\vu-r> A,); ( 2.22)

(2.23)

the functions bhi are given by equation (2.20); and denotes any fully known
density function on [ti_i.fi] x R. In the next section, we present a convenient 
choice for MCMC simulation.

This is the latent model induced by the latent variable construction proposed 
by Beskos et al. (2006a) for Bayesian inference using their exact simulation al­
gorithm. The original likelihood (2.3) can be recovered from the latent expres­
sion, by integrating out all auxiliary variables. However, the latent likelihood 
expression can be presented using a more compact notation, in which the latent 
variables are not indexed by i. This alternative representation is better suited for
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2.1 The Latent Model

the alternative MCMC algorithm for Bayesian inference we present in the next 
Section.

Let k =  Yjiki, and si:oo =  Ui,({st<}- Then, for each / >  1, st =  (p ,x ;) takes 
values in [0. t] x l .  In order to write the double product

as a single product, in terms of the new indices for the latent variables, we need 
to account for the clustering structure induced by the observation times, which 
is relevant, since xy0 =  yt,_] for every i. We do this by introducing new notation.

Let Tk =  (rj)f=1U(ii)"=1. For each l — 1.......A;, let p_i and f/+1 be the skeleton
times or observation times immediately to the left, and right of p. In other words

f;_i =  m a x {f e f j - . T K  p } ;  p +1 =  m in{r G Tk : p <  r } .  (2.25)

Denote by Xi the point corresponding to a time p, i.e.

and notice that, for the ordered skeleton, the point to the left of r(p is either 
some observation time /., or the previous skeleton time p^-i)- Analogously, p i+i) 
may be equal to rq+p or some observation time.

With this new notation, we can rewrite

where the factorial terms account for the arbitrary reindexation of the latent 
variables, and how that affects the ordering of the p values into the different 
[/¿_i. ti\ time intervals between consecutive observations. Thus, we arrive at the 
compact form of the latent model which we use throughout the rest of this chapter.

(2.24)

(2.26)

S{v\-.n: k, Äl:oo|0) =  g(yi:n, ö)Cfc(0) 6|(j/1:„, 0, S1:k) f(si)
1=1

k

l>k

(2.28)
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2.2 MCMC Simulation and Posterior Inference

where g(yi:n, 9) is defined by equation (2.22), Ck(9) =  [r(9)]k/k\ and

b l ( y i : n , 9 , S i :k) =  [l -  <Pe{xi)] N(®(|) |x(j_i), f(|) -  (2.29)

In the next section, we show how a fully MCMC based Bayesian inference 
method is possible for this model.

2.2 M CM C Simulation and Posterior Inference

We propose the use of a Gibbs sampling algorithm to produce a sample from the 
latent model defined by the extended likelihood (2.28) and the prior distribution 
n  over the parameter space 0 . In other words, we propose a sampling scheme 
in which each of the latent variables, k,s1:oo and the parameter 0 are updated by 
drawing samples from their full conditional distributions. In some cases, direct 
sampling is not possible, therefore we use a hybrid method in which some of the 
updates are done through a Metropolis-Hastings step.

Recall that each latent variable S; =  (ti,Xi) can be decomposed into a time 
rI and a point X[, and, given k, the set sy:h is called the skeleton, following the 
terminology introduced by Beskos et cd. (2006b). The skeleton points and times 
are updated separately. Notice that, conditional on k, the values for l > k 
i.i.d from a known density and, more importantly, they do not appear in the 
full conditional density expression for the rest of the variables. Therefore, at 
any step of the algorithm, only a finite number of variables needs to be recorded 
and updated. In fact, we use the additional variables only to represent the fully 
extended model space proposed by Godsill’s 2001 (Section 1.2.2.3 of the present 
work) to deal with the sampling of variables with random dimension.

The algorithm begins by initializing the necessary variables. A sensible way to 
do this is by initially making k =  0, so that no other latent variable initialization 
is needed. The initial value for the parameter 9 can be chosen in the usual way, 
by simply fixing a value or drawing one from the prior distribution n.
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2.2 MCMC Simulation and Posterior Inference

2.2.1 Updating the Skeleton Size, k

The latent model can be interpreted as a family of fully nested models {fk}k>o, 
indexed by k, where

/o(l/l:n|0) °C g{yi:n, 0), (2.30)

and for each for each k >  1

fk(,yi:n\̂ l:k: OC diVl'-ni (n • (2-31)

Therefore, following Godsill (2001), we extend the sampling space to include 
the complete set of variables s(:oo and the index k for the model in the MCMC 
simulation scheme. We update the model index k through a Metropolis-Hastings 
step with proposal distribution given by

q{k',s'vk,\sl:k,Q.yl:n) =  q{k'\k)q{s\.k,\s1:k.0. yhn) ( JJ  /( .s,) ) . (2.32)
\l>k'

where
p if kr =  k +  1

q(k'\k) —  ̂ 1 — p if k! =  k — 1 
0 otherwise,

for some 0 < p <  1, and

(2.33)

(l { Tk + l )Cl(.X 'k-\-l\Tk+l^ s l:k i 2/l:n) 1 si:fc (sl:fc) ^  ̂  ̂+ 1
if k' =  k — 1

0 otherwise,
(2.34)

In other words, the only possible changes for k are to k + 1  or k — 1. If a move 
down is proposed, the skeleton has to be adjusted by dropping the last point 
sk, while the rest remain the same. If a move up is proposed, the skeleton is 
augmented with a new proposed skeleton point .sfc+1 =  (rfc+i,xk+i), drawn from 
a proposal distribution q{r'k+1)q(x'k+1\Tk+1Si:k, 0, y\-n). At this point any choice 
would lead to a valid MCMC chain with the desired equilibrium distribution, as 
long as the acceptance probability is given by

(1 — p)_____ f{k +  1, Sl:fc+ll ,̂ j/l:n)_____
P  q{& k+ l |̂ l:fe> y i:n )f (J ^ : 2/l:n)

(2.35)
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2.2 MCMC Simulation and Posterior Inference

when k! =  k +  1; or, when k! =  k — 1, by

a =  min 1. P (l(Sk\Sl:k 1 ) ^ i 2/l:n)I (A 1) ®l:fe l|^) ?/l:n)

( 1 - p )  /(A:, si:fc|6>. yi:„)
(2.36)

However, many expensive calculations can be avoided by a suitable choice of 
proposal distribution, which we now present.

First, we let q(rk+1) =  U(-|0, T), so the new time is generated uniformly over 
the complete time interval under consideration. Before we determine the proposal 
distribution for the new skeleton point, xk+\, recall that

/(fc +  l,.s1:fe+1|0. ?/!,„) oc ['
k-\-l fc+1

(* +  !)! y

[r(0)]k+1
(fc +  1)!

k+1

i=i
-  (po{xi)\ N (í(¡) |x-(/-l) , f(p -  T(/_1)).

(2.37)

The product of normal terms in this expression corresponds to the k+ 1-dimensional 
distribution of a Brownian motion path at times T1:k+i, conditioned to pass 
through every observation yti at time /,, and evaluated at x\:k+\. Recall that 
ffc and fk+2 denote the times immediately to the left and right of rk+1, respec­
tively, so that f fc < rk+i < rk+2, while xk and xk+2 denote their associated points. 
The (k: +  1)-dimensional distribution for the Brownian motion path can be fac­
torized as the product of the ¿-dimensional distribution at times ri:k and the 
conditional distribution for the state of the process at time Tk+i given all others. 
Formally,

fc+i
J jN ( x (l)|ff(i_1),f(i) -  % _!)) =  N(xfc+i|/ifc+i.fffc+1)
1=1

k
I lN ( . x (i) | i (,_!), f(0 -  T(;_1}), (2.38)
i=i

where the subindex (l) represent the ordering of T\:k+\ on the left hand side 
expression, and the ordering of T\:k on the right side product. The mean and
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2.2 MCMC Simulation and Posterior Inference

variance of the conditional normal distribution for rfc+1 are given by

d'fc+i

{ Tk+ 1 — h ) { f k + 2  — Tfc+l) 

Tk+2 ~ Tk

(2.39)

(2.40)

We are now ready to define the proposal distribution 

Q^k+l ltfc+1 > @i Ul:n) hJ(xfc_|-i l/Tfc-)-], (2.41)

the use of which simplifies the calculation of the acceptance probability for the 
Metropolis-Hastings step to

./ ( ' 1 :k ,(/l :n) tX n N (x(/)|x(i_ i ) ,f (i) - f ((_ i ) ) l { 0  < n <  T}. (2.44)

It is difficult, from this expression to derive an update scheme for the skeleton 
times, since each f(i-i) may be a skeleton time or an observation time. Therefore, 
we use again the properties of the multivariate normal distribution to rearrange 
this product. For each l, we write the k-variate normal density represented by 
this product, into the k -  1-variate normal and the univariate conditional for xi 
given all the other variables, as we did in the previous section.

Thus, we update each r( from the full conditional distribution

when k' =  k +  1; (2.42)

2.2.2 Updating the Skeleton Times, T i ±

For the skeleton times r1:fe, the full conditional distribution is given by
k

1=1

/( 'ri|T-i, X hk -  Ul-.n) N^X/l/p, erf) 1 { t,_i < T; < fj+i}, (2.45)

where

(2.46)

rr,2
(r; -  T ;_ i ) ( f j+ i -  Ti)  

?l+1 — T -l
(2.47)
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2.2 MCMC Simulation and Posterior Inference

Conditional on everything else, each T; appears only in the normal distribution, 
evaluated at Xi, corresponding to a Brownian bridge connecting the closest points 
to the right and left of 77.

As a function of p, the above expression does not resemble any known density. 
Therefore, we update each 77 using a Metropolis-Hastings step, with uniform 
proposal distribution

q(ri\T_i) =  U(p|p_i. p +1). (2.48)

The calculation of the acceptance probability requires only the evaluation of a 
ratio of normal density functions.

2.2.3 Updating the Skeleton Points, xi k

The full conditional distribution for the skeleton points .r1:fc, is given by

k
.f(Xl:k\Tl:k,6-Vl:n) OC I T *  -  ipe(.T;)]N(.r(0|.r(*_1}, f(i) -  f (/_ i)). (2.49)

i=i

We can use the same factorization as in the above section to update each xi from 
the full conditional distribution

f(xi\x-i, T1:fc. yi:n) oc [l -  v?o(^i)]N(.t;|/p , af), (2.50)

where /p and af are given by (2.46) and (2.47) respectively.
Since 0 < [l — (fie(xi)] < 1, a simple rejection algorithm can be implemented 

for this update, by generating the new xi from the normal distribution and ac­
cepting it with probability [l — <pe(xi)\.

Note that, up to this point, the value of the parameter is fixed. Therefore, 
without the need for a prior, II or for additional updating steps, this algorithm 
can be used for exact simulation of a diffusion bridge on a time interval [0, T], 
with fixed end point yr■ It is enough to consider a single observation at time 
in =  T in all of the update steps described above.

A diffusion path with free end point can also be simulated in this manner, by 
adding an extra update step for the end point.
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2.2 MCMC Simulation and Posterior Inference

2.2.4 Updating the End Point, yx

If the algorithm is being used to simulate observations from a diffusion path on 
[0. T\ and the end point is now known, tjr must also be part of the MCMC scheme. 
In this case, it must be updated from the full conditional distribution

/(iir|Mi:fc:0,yo:n) oc exp{A ,(yT)}N (yT\xm, T - f m), (2.51)

where fm =  m ax{r £ T} is the maximum of the observation and skeleton times, 
and xm is the corresponding observation or skeleton point.

The method used to sample from this distribution depends on the specific 
shape of the A0 function. However, the form of the density suggests that a 
rejection algorithm or a MH step with normal proposal distribution might be a 
good choice in many cases. In Section 2.3 we present two illustrations for which 
we use a rejection sampler for the update of the end point yr-

When the algorithm is being used for posterior simulation, this step may still 
be useful. If we make T > t.n, the time of the last observation, this provides 
a sample from the predictive distribution at time T. Furthermore, the sample 
obtained for the skeleton would include the complete interval [0, T], so that ob­
servations from the predictive distribution at any time / £ [tn, T] can be obtained 
by Brownian Bridge interpolation between the observations, the skeleton points 
and the final point yT.

We now proceed with the final update step required for MCMC posterior 
simulation from the diffusion model.

2.2.5 Updating the Parameter 6 .

Observe that, conditional on the latent variables, the parameter is independent 
of the data, with full conditional density

f(0\k, si:«,) =  f(9\k, Xi,k) oc n(0) exp {A,

Ho]‘mii=i

o (y t )  -  M y o )  -  t [ m  +  r(0)] } 

-  < P o ( x i ) ] -
(2.52)

81



2.3 Illustrations

Clearly, no general method can be suggested to simulate from this density, 
since it depends on the shapes of the functions A, r, l and <p. In the next Section, 
we consider two examples, for which the parameter space 0  is a bounded interval 
[a, b] G R. We therefore use a Metropolis-Hastings step with uniform proposal 
distribution q =  U(-|a, 6). Other proposal distributions may be explored, which 
depend on the conditioning variables k, x1:k, but for the concrete examples we 
study it is not clear what a better choice would be, and the uniform proposal 
seems to work well.

2.3 Illustrations

In this Section we illustrate our methodology with two concrete examples of real 
valued diffusion processes. In each case, we generate a sample from the true model 
and use our algorithm to perform Bayesian inference. We compare our results 
with those obtained using the original exact simulation algorithm of Beskos et al. 
(2006b).

2.3.1 Example 1: Sine Diffusion

In this example we consider the diffusion process defined by the SDE

d Yt =  sin(Kt — 9)di +  d Wt, (2.53)

so the drift coefficient is given by

(*o{y) =  sin(y — 9). (2.54)

When 9 G 0  =  [0. 2n), the SDE has a unique solution Y to which we refer as the 
sine diffusion.

In this case,
A„(y) =  /  a„(x)dx =  -  cos(y -  9), (2.55)

Jo
therefore JR Ao(y)dy is not defined, which means the process does not have a 
stationary density.
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For each 0 6 0 , consider the function

&?(?/) =  o2e(v) +  <4(y) =  sin2(y -  0) +  cos(y -  0) (2.56)

and notice that 4#(y) >  - 1  for all y 6 R and 0 6 0 . Therefore, we define

' = '<*>=$ H r }  = 4  (257)
Also, 4y[y) =  sin(y -  0) [2cos(y -  0) -  l] = 0  when sin(y -  0) =  0, in which case 
| cos(y — 0)| =  1; or when cos(y — 0) =  1/2, in which case | sin(y — 0)| =  \/3/2. 
Furthermore,

4e(y) =  -2 s in 2(y -  0) +  cos(y -  0) [2cos(y -  0) -  l ] . (2.58)

So, when sin(y — 0) =  0 and cos(y -  0) =  1, the function 4#(y) has an inflexion 
point; when sin (y -0 ) =  0 and cos (y -0 ) =  -1 ,  the function has a local minimum; 
and it has a local maximum when cos(y — 0) =  1/2 and | sin(y — 0)| =  \/3/2. 
Therefore the maximum is reached at 4«(tt/ 3) =  5/4, and we define

r =  r(0) =  sup 
?/eR

&(?/)
2

9
8'

(2.59)

Finally, the bounded function used in the transition density expression is given

by

M v )  =   ̂ 1 cos(y - 9) I1 -  cos(y -  v)] ■ (2-6°)
We first illustrate the use of our algorithm for the simulation of diffusion 

paths. We fix the parameter at a known value 0O =  2 and simulate a total of 
N =  1,000,000 skeletons for the diffusion in the time interval [0,1]. We do the 
same using the retrospective rejection sampler of Beskos et al. (2006b) (EA1) and 
our MCMC alternative, with parameter p =  1/2 for the proposal distribution for 
the MH step update for k (Section 2.2.1). The choice of T =  1 is made to keep 
the time interval for simulation close to the optimal value of T =  1 /r(0 ) =  9/8 
for the EA1. The large Monte Carlo sample is chosen to allow a comparison of 
the skeleton times and points produced by each algorithm. If the sample is kept 
smaller, the number of realizations with a large k value would not be large enough 
for any interesting comparison.
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Figure 2.1 shows histograms of the size k of the skeletons produced by each 
algorithm. As we can see, the skeleton size distributions are similar, with the one 
corresponding to the EA1 algorithm showing a slightly heavier left tail and the one 
corresponding to the MCMC algorithm showing a heavier right tail. However, 
this can be attributed to the fact that the skeletons produced by the MCMC 
scheme are correlated, unlike those generated by the EA1 algorithm.

Figure 2.1: Histogram of the skeleton size k for the sine diffusion with fixed 
parameter Oq =  2 and initial point y0 =  0, on the time interval [0.1]. The 
histogram on the left corresponds to the original exact simulation algorithm; the 
plot on the right corresponds to the MCMC version we propose.

The ultimate goal of the algorithms, when the parameter is fixed and known, is 
path simulation. We set £ {0.2,0.4,0.6. 0.8} and simulated the corresponding 
diffusion points yt. by Brownian Bridge interpolation between skeleton points, 
for each of the skeletons obtained from the exact simulation algorithms. This 
generates, for each i, a sample of size N =  1, 000,000 for each of the the diffusion 
points Yti. Figure 2.2 shows estimated marginal densities for each one of those 
points. Once again, we can see the plots are similar, with a smaller variance 
displayed by the MCMC simulated data, attributable to the correlation in the 
sample.

The large Monte Carlo sample size of N =  1. 000. 000 allows us to visualize 
some of the aspects of the skeletons produced by each algorithm. Figure 2.3 
illustrates the behaviour of the ordered skeleton times T(p, for l =  1 , . . . ,  6 and 
their associated points xyy Once again, we can see the similarity between the 
plots, with some differences observed for l =  6. Notice that only skeleton samples
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(a) EAl algorithm (b) MCMC algorithm

Figure 2.2: Marginal densities of the sine diffusion Yti at various times. The plots 
correspond to smoothed histograms of the data simulated using retrospective 
rejection sampling (left) and the MCMC approach (right).

with k > 6 can be used in this case. As we can see from the histograms in Figure 
2.1, this is not a common occurrence, so the differences arc: explained by the small 
sample sizes.

While it seems reasonable to conclude that both algorithms produce equivalent 
results, it is recommendable to use thinned samples from the MCMC algorithm, in 
order to reduce the correlation between consecutive states visited by the Markov 
Chain.

We now proceed to illustrate the use of the MCMC algorithm presented in the 
previous section, for the purpose of parameter estimation. We produce a sample 
of what is commonly known as high density data. That is, a high number of 
observations per time unit. In order to avoid the argument of correlation in the 
sample induced by the MCMC approach, we produce the data using retrospective 
rejection sampler. Once again, we fix the true value of the parameter at 0 =  2. 
This time, we generate a single skeleton for the sine diffusion in the time interval 
[0.100] and use Brownian bridge interpolation to simulate 10. 000 equally spaced 
data points, i.e. 100 observations per time unit. Figure 2.4 shows the data and
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(a) EA1: skeleton times (b) EA1: skeleton points

(c) MCMC: skeleton times (d) MCMC: skeleton points

Figure 2.3: Marginal densities of the first six ordered skeleton times ry) (left) 
and points xy) (right), for the sine diffusion. The plots correspond to smoothed 
histograms of the data simulated using retrospective rejection sampling (above) 
and the MCMC approach (below).
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the skeleton used to produce it.

Figure 2.4: 10,000 data points from the sine diffusion in the time interval [0,100], 
with parameter 0 =  2 and initial point yo =  0.

We define a uniform prior V\(0) =  U(#|0,2ir) on the parameter space and use 
the MCMC algorithm to produce a sample from the posterior distribution n"(0), 
for increasing sample sizes. Specifically, we consider the data set consisting of the 
first n =  2,000 data points, in the time interval [0,20] and produce a posterior 
sample of size N =  10.000 from the MCMC algorithm, with a burning period 
of 10. 000 iterations and a thinning of 1 every 10 iterations for the sample. We 
repeat the analysis for the time intervals [0. T],T =  40. 60,80,100, in other words, 
we increase the sample size by 2,000 points every time.

The estimated posterior densities for the parameter are shown on the left 
hand side of Figure 2.5. We can see that the posterior mass seems to accumulate 
around the true value 0q =  2 as the sample size n and the limit T of the time 
interval of observation grow.

The right panel of Figure 2.5 shows the estimated predictive densities for 
the process yT at time T =  101, for each of the samples. The sine diffusion 
does not have a stationary density, therefore we don't expect to recover a fixed 
marginal behaviour. However, as the interval of observations approaches the 
time of prediction, we can observe the evolution of the predictive distribution. 
As expected from a regular diffusion process, the variance decreases towards the 
end, as the point y10i is highly correlated to f/ioo> the last data point.
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Figure 2.5: Estimated posterior density for the parameter of the sine diffusion 
(left) and predictive density for the observation at time T =  101.

2.3.2 Example 2: Hyperbolic Diffusion

Now, we consider the diffusion process defined by the SDE

dr, =  6 ■ h  dl d ir,. (2.61)

so the drift coefficient, is given by

M v )  =  0 rr~----9 ' (2.62)
v l +  y

We refer to the process Y defined as the weak solution to this SDE, as the 
Hyperbolic diffusion (see Bibby Sorensen, 1995). When 0 < 0, Y is an ergodic 
stationary process with invariant density

M y)  oc exp{2H „((/)}, (2.63)

where
Ae = f ao(x)dx =  9\/l +  y2. (2-64)

Jo
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Observe that n'0(y) =  0 / ( l + y 2)3/2 and r>|(y) =  02y2/ ( l  + y 2), so we can define

Ce (Z/) =  a£(y) +  a'0(y)
()2y2 9

1 +  y2 (1 +  y2)3/2
9

1 + y 2
(2.65)

Therefore

Cé(y) =
Oy

(i +  y2)2
( 2 .66)

For 0 < 0, we have 20 -  3 /^ /T T y 2 < 0, so £p(y) =  0 only when y =  0. Further­
more, £'0(y) < 0 when y <  0 and ^ (y ) > 0 when y > 0, so &(y) has a unique 
minimum at £w(0) =  9. Consequently, we may define

1(9) =  inf
ye R

9
2

(2.67)

It is equally straightforward to realize that

lim &(y) =  lim £g(y) =  92, (2.68)
y —¥ oo y —y—oc

so we can take
m  =  sup -  1(9)1 =  - ' k l ~  9). (2.69)

ye® l 2 J 2
Finally, we get

^ f a ) - ^ ) ( "g(!/)r - - , (g))  (2jo)

= (T T^K T^) ( ‘ + 92(1 -  "> -  T f T ? )  ■ <2-71»

Therefore, the Hyperbolic diffusion with parameter space 0  C (—00,0) satis­
fies all the necessary conditions for the application of the latent variable extension 
and MCMC method described above.

We fix the true value of the parameter at 90 =  —2 and generate a single 
skeleton for the hyperbolic diffusion in the time interval [0. 24]. We then generate 
a sample of 2,400 equally spaced data points via Brownian bridge interpolation 
between skeleton points. Once again, we have 100 observations per time unit. 
Figure 2.6 shows the data and corresponding skeleton.
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Figure 2.6: 2,400 data points from the hyperbolic diffusion in the time interval 
[0.100], with parameter 90 =  - 2  and initial point y0 — 0.

We define a uniform prior 11(0) =  U(0| -  11,0) on the parameter space. Once 
again, we produce a sample from the posterior distribution IT' (6), for increasing 
sample sizes. For this, we use the MCMC algorithm with a Monte Carlo sample 
size of N — 10,000, with a burning period of 10.000 iterations and a thinning 
of 1 every 10 iterations of the Chain. We consider the data set consisting of the 
first n data points, in the time interval [0. T], for T =  3.6,12, 24, and n =  1007b 
Figure 2.7 shows the estimated posterior densities for the parameter.

Figure 2.7: Estimated posterior density for the parameter of the hyperbolic dif­
fusion.

As with the sine diffusion, the estimated posterior density seems to accumulate 
around the true value 0O =  — 2 as the sample size n and the limit T  of the time 
interval of observation grow. This occurs at a faster rate than with the sine
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diffusion, a phenomenon that may be related to the stationarity of the hyperbolic 
diffusion. Such stationarity also raises the question of accurate estimation of the 
stationary density. On the left hand side of Figure 2.8 we show Monte Carlo 
estimates of the stationary density for the different sample sizes, as well as the 
true stationary density. The normalizing constant for the latter is calculated 
via numerical integration. It can be seen that the estimated density accurately

(a) Stationary density (b) Data histogram

Figure 2.8: True and estimated stationary density for the hyperbolic diffusion 
with parameter 0o — —2 (left panel). Smoothed histograms for the data at 
increasing sample sizes on the right panel.

recovers the true stationary density of the process. Notice that the initial point 
y0 =  0 was not chosen arbitrarily, but as the mode of the stationary density. On 
the right hand side of Figure 2.8 wc present smoothed histograms of the samples 
with increasing size used for inference throughout. This shows that the sample, 
produced by the MCMC version of the exact simulation algorithm, adequately 
reproduces the stationary density of the process, as would be expected.
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2.4 Discussion

The retrospective rejection sampler of Beskos et al. (2006b) was originally meant 
for the simulation of diffusion paths at arbitrary points in time. It was then shown 
to be well suited for maximum likelihood estimation of the model parameters, 
appearing in the diffusion and drift coefficients. The discussion of its use for 
Bayesian inference has so far been limited. One of the main advantages of the 
method, from the simulation point of view, is its exactness, derived from the 
rejection technique rather than a Markov Chain construction. When using the 
algorithm for maximum likelihood based inference, a Monte Carlo error must be 
introduced and, when the focus is on Bayesian inference, the MCMC approach 
is inevitable for posterior simulation of the parameter. It can be argued that the 
model still provides advantages with respect to other approximation methods, 
deriving from the well known properties of MCMC estimation.

The exact simulation algorithm relies on the introduction of a set of latent 
variables, the skeleton, conditional on which, the parameter is independent of the 
observations. More importantly, latent variables and parameter are conditionally 
independent, given the discrete observations, from the unobserved diffusion path 
between observation points. In this Chapter, we have shown that the latent vari­
able construction is consistent with a more general auxiliary variable method for 
dealing with intractable likelihoods. We have shown how an MCMC approach for 
posterior simulation can be implemented, which does not depend on the length of 
the time interval in which the process is observed. The Markov chain alternative 
to the original algorithm seems more naturally suited for Bayesian inference with 
no additional source of error being introduced. Furthermore, the posterior simu­
lation method we propose, allows us to generate posterior samples of the diffusion 
skeleton beyond the time interval defined by the data. This is an advantage when 
the emphasis of the analysis is on prediction.

As with the original rejection sampler, the MCMC approach can be used both 
for path simulation and posterior parameter simulation. The acceptance rate for 
the rejection sample decays with an increasing time interval size. Therefore, it 
is recommended that the simulation is carried out by dividing the interval into 
smaller sets of optimal length and performing the simulation sequentially in each
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of this sets, with a dependence structure based on the Markov property. For 
a large time interval, this may become costly, since the gain in acceptance rate 
may not compensate the growth of the number of times that this step must be 
repeated. The MCMC approach, on the other hand, requires a certain amount of 
iterations before convergence, but it can be performed once over the entire time 
interval regardless of its size. Future work could include a careful analysis of the 
convergence properties of the MCMC algorithm and a performance comparison 
with the rejection sampler. We believe it may be possible to find conditions on 
the diffusion and time interval for simulation, under which each of the algorithms 
is more efficient. At this point we can only provide empirical evidence, based 
on the two examples presented above. For the sine diffusion, a sample size of 
10,000 data points in the time interval [0,100] made posterior inference using 
the retrospective sampler too time restrictive to present any results here. For 
the hyperbolic diffusion, a sample of 2. 500 points within the time interval [0,25] 
made even the MCMC approach slow.

At this point all algorithms have been implemented in Matlab (R2012a). Fu­
ture work would also include the use of more efficient computer languages and a 
more careful handling of variables to improve computer speed. Then, a sensitivity 
study of the algorithm to the hyperparameters would be advisable.

Finally, we may consider the extension of the method to a wider family of 
diffusion processes. First,, by replacing the constant diffusion coefficient with a 
general parametric function, then by removing some of the conditions on both the 
drift and diffusion coefficients. We believe this could be done through the intro­
duction of further latent variables which would not greatly affect the simulation 
methods presented here.
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Chapter 3

Stationary Time Series Model

In this Chapter we construct a flexible stationary model with nonparanietric in­
variant and transition densities. We believe such construction is a straightforward 
way to apply the nonparametric mixture idea in the time series context.

The likelihood for the nonparametric model has an intractable component 
generated by an infinite mixture of parametric functions for which none of the 
available methods for posterior simulation can be applied. We show that this 
likelihood is an example of the general case studied in this thesis. Consequently, 
we provide a latent model extension for which posterior inference is possible using 
existing techniques for MCMC based inference.

We provide some illustrations, involving transition density estimation for dif­
ferent sets of simulated data. Interestingly, the stationary model can recover the 
transition density of time homogeneous processes which are not stationary. The 
complete analysis of this behaviour is beyond the scope of the current work, there­
fore we only briefly discuss the ability of the model to recover a non stationary 
transition in terms of the flexibility of the transition densities described by the 
model.

3.1 The Model

In order to illustrate the main idea behind the construction we propose, we start 
by considering a very simple parametric first order stationary time scries model, 
the normal AR(1) (1.50) of Section 1.1.2.2.
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For fixed Aj, Pi £ R and u> > 0, the transition density for this model is

N(yi|A> +  (3-1)

where 9 =  (An A - tu)- If \P\ \ <  1, the stationary density is given by

N(y|/r, cr2). (3.2)

where fi — Ao/(l — A )  and a2 =  tu2/ ( l  -  f32).
A common idea in the context of regression is to define a more flexible condi­

tional density as a mixture of parametric densities

f(y\x) =  [  K„(y\x)dPx(0). (3.3)
Je

We discuss this type of models in the next chapter. Here, we focus on the conse­
quences of this type of structure for an autoregressive model, with nonparametric 
transition density given by f(iji\yi-i) defined above, where the normal autore­
gressive transition density is a common choice for the parametric kernel.

As mentioned in Section 1.1.2.2, the problem with this type of models is to find 
conditions on the parametric kernels and mixing distributions which guarantee 
stationarity, while allowing inference. To resolve this problem, we return to the 
basic normal AR(1) model. The transition and stationary densities define a joint 
density

N2{(y.x) |(/i,M),S), (3-4)

where

£ = a2 (  p 1 )  ; iov P =  A- (3-5)

Note that both of the marginals for this bivariate normal density are identical 
and equal to the stationary density.

In general, consider a parametric bivariate density Ke(y, x) for which the 
marginals are identical; i.e

Ke(y)=  I K9(y, :x)dv(x) and Kg(x) =  j  Ke(y. x) du(y). (3.6)

Clearly, a Markov process with transition density Ky(yn\yr-i), has a stationary 
density given by the marginal Kg(y), since

Ko{yn) =  /  K${yn\yn-i)Ke(Vn-i)dv(yn-i)- (3.7)
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3.1 The Model

As with all simple parametric models, the dynamics of this process is easily 
overwhelmed by real data. We propose a nonparametric version of this model, ap­
plying the nonparametric mixture construction directly over the bivariate density 
Kfi(y.x), thus ensuring that the overall stationarity of the model is preserved.

We begin with the stick breaking representation for nonparametric mixture 
models presented in Section 1.1.1.2, where each component K0 is a parametric 
density over the product space Y x Y. In other words, for every y and x in Y, we 
construct a joint density,

OO

J p ( y ■ * )  =  w i  K d i (y-x) • (3'8)
3 = i

The prior Yl(P) is given by a stick-breaking process with base measure P0 and 
parameters (ctj.(j) for the Beta distribution defining prior for the weights. In 
other words,

OO

P\W \:oo, 01:oo =  ^  W3 (3-9)
j - 1

and conditional on v\:oo,

Wl Vi and Wj =  Vj ]^[(1 — ?y),
j ' < j

(3.10)

so the prior is defined for the v\:oo and the 0i:oo independently as
OO

n(01:oo) = J] Po(d̂ ); (3.11)
3 =1 

oo
n(t>iMo) =  XI 0 )-  (3-12)

3 =  1

Following the same principle observed in the parametric case, we define a transi­
tion density as the conditional distribution for this joint, i.e.

E j —1 Wj  K o j  (Vn: y n - 1) 
E£Ll wj KojiVn-l)

(3.13)

As before, this transition then defines a stationary Markov process with invariant 
density given by the marginal

fp(y) = wj to)- (3-14)
3 =1
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Observe that the transition mechanism can be re-expressed as

OO
. fp {V n \ V n - l ) = Y .  W j { V n -1) KOj {Vn\Vn-\) ,

j=l
(3.15)

where
(3.16)

Therefore we have constructed a model for which both the transition and the 
stationary densities are defined as nonparametric mixtures.

Looking at equation (3.15) it is tempting to think of this model as a transition 
density mixture, in the spirit of (1.60). However, we do not propose a mixture 
of conditional distributions, but a mixture of bivariate ones; the nonparametric 
nature of the transition density is just a desirable consequence. In doing so, no 
additional conditions need to be verified to guarantee the existence of the station­
ary density. Any choice of a stationary parametric kernel, when combined with 
its corresponding stationary density to produce a joint over which the mixture is 
defined, results in a nonparametric stationary model.

The dependent weights (3.16) have an interpretation in terms of the region 
of applicability of each parametric model Kg within the state space ¥. We dis­
cuss this interpretation in Chapter 4, in the context of nonparametric regression 
models.

So far, we have only defined what Martinez-Ovando & Walker (2011) refer 
to as a benchmark model. The construction is simple and the stationarity and 
flexibility are given by it, so no additional conditions need to be verified. This 
model, however, has not been used in the previous literature, as it has been 
considered to be practically intractable, due to the infinite mixture appearing in 
the denominator. Only a finite version of this model has been studied by Midler 
et al. (1997), who define a finite mixture of autoregressive AR(1) models, directly 
for the transition density and do not discuss conditions for stationarity of the

In the next Section, we apply the general methodology developed in the in­
troduction to this thesis, for a particular choice of joint kernels. We construct

process.
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a tractable latent model, therefore enabling posterior inference for the nonpara- 
metric time series model, with normalized weights and a normal density kernel.

We are assuming the hist observation y0 is fixed, but this is only in order to 
simplify notation, and is not an important assumption. We could equally assume 
that the first observation arises from the stationary density of the time series 
model, by including an additional factor

in the likelihood expression.
Due to the nature of the denominator of the likelihood expression (3.17) we 

have an intractable component. Our aim is to show how to undertake Bayesian 
inference for this model using well designed latent variables which result in a 
viable latent model, as anticipated in the Introduction.

To make this concrete, we adopt a particular parametric model based on the 
normal distribution. That is,

3.2 The Latent Model

The likelihood function for the nonparametric autoregressive model with normal­
ized weights, given a sample y0:n =  (yo,. ■ ., yn) is the product

(3.17)

and a stick-breaking prior fl is placed on the probability measure

OO
(3.18)

OO

(3.19)

K o ( y , r )  =  N2((l/,x)K/t,/*).£),

where
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for some — 1 <  p <  1. Hence, 0 =  (//,, rr2, p). In this case, the transition mecha­
nism, modelled as the conditional density, is given by

Kg(y\x) =  N(y\p +  p(x -  p). (1 -  p2)cr2).

And the stationary density is simply Kg(y) =  N(y|//.rr2). Therefore, we are 
considering a nonparametric mixture of normal AR(1) models, but the joint mix­
ture construction together with the choice of parametrization for the parametric 
kernels guarantee, as explained in the previous Section, the stationarity of the 
resulting time series model.

In order to illustrate the ideas while keeping the notation simple, we consider 
mixtures over means, i.e. the u2 and p are fixed across mixture components. 
Consequently, in what follows, we use

Kotivlx) =  N{y\/ij + p { x -  p,j),(l -  p2)a2),

KSj{y) =N(y\pj :a2).

As we have done in the Introduction and Chapter 2, we focus, for each con­
ditional density f  (y%\yi-.i-i) =  /(:Vi\yi-\) individually, and observe that it can be 
factorized as the product of a tractable and an intractable function

f  (.Vi \Vi—l) =  9 i (Vi * Vi — 1' ^l:ooi 1 l̂:oo) ■ (3.20)

where
OO

9i(yuVi-1,^ 1:00̂ 1:00) =  <7~y Kg.(yi.yi-i) (3.21)
i=i

is tractable in the sense that it is a standard nonparametric mixture model for 
which MCMC methods are available (see Section 1.2.2.2). On the other hand, 
for a given

1, W\:0o, $l:oo)
1

E *  i w3 exP { —1(2/*-1 -  Ab)2/^ 2} '
(3.22)

can be seen as an intractable normalizing constant for the density on y% defined 
by Si-
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The denominator in this expression is bounded by 1, and hence it is possible 
to use the identity

CO

^ (1  -  b ) k =  b ~ l for any 0 < b <  1 (3.23)
k=0

to write oo
h i ( y i - i , W 1:00, 9 1:00)  — ^  ̂[l (l/i—1 ■ l̂:oo’ l̂:oo)] i (3.24)

fci=0
where OO / |

1? l̂:oo* l̂:oo) ^  ̂ X̂p \ — ( i/ i-l Mj) /' & r • (3.25)

Then k i is
3

introduced as a latent variable, arriving at the expression

f ( V i : k i\ y i—l) = 9 i (V i' Vi— 1 > l̂:oo) [l (iJi—1 > ̂ l:oo > ̂ l:oo)] (3.26)

The original transition density (3.20) can be recovered by marginalization with 
respect to k,  but in the latent expression, the intractable component has been 
moved from the denominator to the numerator. At this point, posterior inference 
via MCMC methods would still require the sampling of the infinite dimensional 
parameters W\:ao and 0i:oo, so further manipulation is required.

As we mentioned before, the tractable function g t can be dealt with using 
standard techniques for nonparametric mixture models with a stick-breaking rep­
resentation. We use the slice sampling ideas of Kalli et al. (2011) presented in 
Section 1.2.2.2. Concretely, we introduce a latent variable d,, which acts as an 
index for the specific component from which yi is generated, conditional on y ,_i, 
thus, we write

9i(Vi,Vi-i,d,wd,0d) =  <nvdK9d(yi,yi-i). (3.27)

We deal with the intractable component in a similar manner, by first realizing 
that

i k-
hi,ki == [1 b i{ j j i—\^W\-OÔ 0l;OO)\ 

ki /  oo=n
¡=i \j=i

oo oo ki

=  E  ••• E
D it i = l  1 1= 1

1 -  exp <j (y,-1 -  ¡J-jf/v2

1

(3.28)

1 -  exp { ~  (yt-1 -  liDijf/cr2
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3.3 Posterior Inference via MCMC

Then, we introduce the indices /\ i :fc, as latent variables, defining the latent 
expression

bi,i(yi-i,wDij- boi'i, D iti) =  wDi l 1 -exp< ; — -  (i/t-i -  VDi}l)2/a (3.29)

Notice that equation (3.28) coincides with the general latent expression (13)
in the Introduction. The latent variables s id — D id for each i  =  1-----, n and
l =  take values on § =  N, with reference measure v given by the
counting measure.

Finally, the full latent expression for the likelihood of the time series model is 
given by

} p (y i :m  d i ;n , k\.n: ) 1 1  9 i (y i :  9i —1> d. Wdi @d) 1 1  ^i ,i(l /t 1' ^ D i j  - ^Di i i ^ i , l )
i=1 1=1

71
=  a n Y \ w di N 2 ( ( y i .y j - i ) | ( / i d i .t idi ) . E )

i=i
1 -  exp <j (y4_i -  liDu)2/^3

from which the original likelihood is recovered by adding over the d1:n,A:1;n and 
- The introduction of this latent variables makes posterior simulation for 

the (wj), a2 and p possible via MCMC, through the usual slice sampling 
method. In order to deal with the variable size of the sampling space induced by 
the dependence of each D i ^  on kt, we extend the model further by adding an 
infinite sequence Dt,i>k, of latent variables which interact with the latent model 
through fully known densities, in the manner of Godsill’s 2001 general algorithm 
presented in Section 1.2.2.3.

3 .3  P o s t e r i o r  I n f e r e n c e  v ia  M C M C

The Bayesian model is completed by defining a prior on the mixing measure P; 
effectively, on the rr2, p and the w1:oo, /q :oo. We use a stick-breaking process prior, 
so for independently distributed Be(aj.Q) variables, (vj)^ .  for some Qj, Q > 0,
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3.3 Posterior Inference via MCMC

we let
w\ =  V\. and for j  >  1. Wj =  Vj — ?;'•). (3.30)

j'<3
Concretely, we illustrate the methods using a Dirichlet Process prior, making 
cij =  1 and Q — C- Alternatively, to show' that the same method can be applied 
for other stick-breaking constructions, we use the Geometric stick-breaking prior 
presented in Section 1.1.1. Recall that, in this case, the weights are defined as

Wj =  v(l — v ~  Be(a.£). (3.31)

In both cases, the base function for the prior is given, independently for each of 
the Hi:oo, a2 and p, as follows. We let the {Hj)j>i be independent and identically 
distributed from a Normal distribution N(-|m, i_1). For r  =  a~2 we use a Gamma 
prior Ga(a. c). Finally, we define a discrete uniform prior for p on some discrete 
set R C  (—1,+1). Alternative base measures may be used and inference would 
still be possible. However, this particular choice simplifies the calculations, and 
as we show7 in the illustrations, they are sufficient for the purpose of estimation, 
at least in the set of examples we present.

Together with the latent model, this prior provides a joint posterior density 
for all the variables which need to be sampled for posterior estimation, i.e. the 
parameters (<r,p. u;1:oo./¿i:0O) and the latent variables (di:nki:n, Du^k.). We now 
describe how each of this variables can be sampled through an MCMC scheme, 
using a general Gibbs sampler structure with Metropolis-Hastings steps when 
sampling from the full conditional distributions is not possible.

3.3.1 Updating the Indices, d; and D, i

There is still an issue due to the infinite possible values that each of the A ,i and 
di can take. We overcome this, using the slice sampling technique, previously 
discussed. In order to reduce to a finite set the values from which this variables 
must be sampled at each step of the MCMC algorithm, we extend the joint model 
further, through the introduction of indicator variables, 1

1 (z\ <  e~̂ di) and 1 ( z .
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3.3 Posterior Inference via MCMC

for some £ > 0. Hence, the full conditional distributions for the latent indices are 
given by

P (di = j | • - -) oc wj e°  K0j{yi, Vi-1) 1 {1 <  j  < J■/}

and

P(A ,i =  j\ ■ ■ ■ ) oc WjCi3

where

Ji =  log Vi\; Ju =  L -U 1 log ■

Notice that the full conditional densities for the variables involved in the 
MCMC algorithm do not depend on values of the weights and means (iij,Wj) for 
j  > ,J =  max,,j{ Ji, Therefore, at any given iteration, we only need to sample
the (i ) for j  =  1 ,....... 7, thus solving the problem of the infinite number of
mixture components.

3.3.2 Updating the Mixture Weights, Wi:J

We next describe how to sample the w\:j  at each iteration of the MCMC algo­
rithm. As is well known, when a Dirichlet Process prior is used, these can again 
be calculated as w\ — v\ and Wj — <’ ? I W 1 -  vi) for J > 1. This time, the v\,j 
must be independently sampled from their full conditional distribution, which 
can be identified as

f(vj\ ■ ■ ■) — B e(atj + rij +  TV,-, Q + + Nf).

1 -  exp { - -  (yi-i -  Ihf I ^ 1 {1 < j < Ji,i}

where

nJ =  ^ 2 1 {di =  j);1=1
n

rij =  ^ 2  1 (dl > 7); 
¿=1

n hi

=  (d v = 7);
i= 1 1= 1

n ki

w/  = E E 1 (Df > 7)'
¿=1 i=i

(3.32)
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3.3 Posterior Inference via MCMC

Alternatively, if a Geometric stick-breaking prior is used, the updated weights 
are calculated as Wj =  ?;(1 — where v is sampled from the full conditional
distribution given by

/H - - - ) = B e ( d ,C ) ,

where

n—1

â =  ex -|-1 T “hi)!
i = 1

c — c + ^2
i— 1

n—1

i= 1 . i=l

3.3.3 Updating the Correlation Coefficient, p

A discrete prior for the correlation coefficient p, results in a discrete full condi­
tional distribution given by

P(p =  r •••) 0C7r(r)(l - p 2) V  exp | — J J /i'Sr V,  |

where

Vi I I'd.,

V i-1  l^di
, S r — 1 r

r 1 (3.33)

for every r £ Ft.. This can be sampled directly, given a particular choice of It and 
discrete prior 7r over it.

3.3.4 Updating the Precision Term, r =  a  2

Before updating the r, it is convenient to introduce some additional latent vari­
ables linn.ufcj, wffiich allow us to substitute the terms

exp - / xd< i)2/ ît2
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3.3 Posterior Inference via MCMC

in the latent likelihood expression, with truncation terms

ki

IP
i=l

uiti < 1 -  exp

Recall that r  =  a~2 is assigned a Ga(r|a, c) prior, which is the conjugate prior 
for the precision of the Normal density kernel. Therefore, the full conditional 
distribution for r is a truncated Gamma distribution,

/(r| • • •) oc Ga(r|d, c) 1 (r  >  T),

where

a =  a +  n /2;

1 "
- = c+ö E # iv1k;2=1

T =  max
-21og (l -u g )  

(yi-VD^)2
i — 1 , . . . ,  tz, l 1 , . . . ,  ki ^,

and the /h, T,p are defined as in expression 3.33.
Numerous sampling routines may be used to sample from this truncated dis­

tribution. We use the latent variable based MCMC method of Damien & Walker 
(2001), presented in Section 1.2.2.1.

3.3.5 Updating the Kernel Means, /¿i j

The sampling of the H\ j  is also not problematic. For each j, the prior for fij 
is N(-|m, f_1), therefore the full conditional distribution, given the rest of the 
variables is a truncated Normal

f(Hj\■ ■ ■) oc Ninjlnij, t j 1) !  {nj G n”=iA,\i}

where

m, = mt
1 - P Y^iVi +  Vi-1)

di=j

tj ~ t  + j2 TTln
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3.3 Posterior Inference via MCMC

and the truncation is defined by the sets Ajj =  (—oc. y, — (ijj) U (y, -f , oo),

with the convention max{0} =  oo, min{0} =  — oc.
Once again, we use the latent variable based MCMC method of Section 1.2.2.1 

to sample from this truncated distribution, but alternative approaches can be 
found in the literature.

3.3.6 Updating the Latent Model Dimension, k

Since the dimension of the sampling space changes with kiy we use ideas involving 
reversible jump MCMC (Godsill, 2001; Green, 1995), as explained in Section 
1.2.2.3.

For each i =  1 , . . . ,  n, with probability 0 < p <  1, we propose a move from kt 
to fcj +  1 and accept it with probability

Clearly, the evaluation of this expression requires the sampling of the additional 
Ditki+1. We take Jh.k,+\ =  J with probability Wj.

Whenever a move of this type is not proposed, and if fc* > 0, we accept a 
move to hi — 1 with probability

in which case, the last latent variable D¿ ^ is dropped.

We have shown it is possible to perform posterior inference for the stationary 
time series mixture model we propose. Now we illustrate this in practice with 
some examples in the next Section.

(3.34)
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3.4 Illustrations

In this Section wc present some examples that illustrate the usefulness of the time 
series model presented in Section 3.1, focusing on statistical properties related to 
prediction.

We present four examples, all of them involving simulated data. In the first 
example, data is simulated from the stationary model with a fixed known number 
of fully known mixture components. In the second example, the data corresponds 
to the discretely observed hyperbolic diffusion discussed in Section 2.3.2. In 
other words, it is data generated by a stationary process which is not stated in 
terms of a nonparametric mixture, but still falls within the general definition of 
the time series model studied in this chapter. In these two examples, we use 
posterior simulation to recover the transition and stationary densities, the latter 
corresponding with the data histogram for a large enough sample.

The last two examples are somewhat more interesting, since they are generated 
from processes for which the stationary density does not exist. Not surprisingly, in 
this case, our model fails to recover the shape of the data histogram. Nevertheless, 
both examples have fixed time homogeneous transition densities and we are able 
to estimate them using the nonparametric stationary mixture model specified in 
Section 3.1.

Therefore, the set of examples is chosen to illustrate how our model can be 
used for transition and invariant density estimation simultaneously, when the 
stationary density exists, and is still useful for transition density estimation, even 
when the data is not generated by a stationary process.

3.4.1 Example 1: Stationary Mixture Model

We generate a sample of size n =  1000 from the stationary mixture model with 
normalized weights described in this Chapter, with three mixture components 
and true parameters p0 =  (—1,0,3)', w0 =  (0.1. 0.4.0.5)', ctq =  1 and p0 =  0.8. 
The data is shown in Figure 3.1.

The prior for the mixing probability P, described above, requires the specifi­
cation of some hyperparameters. We take a discrete uniform prior for p on the set
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Sample from stationary mixture model n=10006

X

I»

-4,0 100 200 300 400 500 600 700 800 900 1000

Figure 3.1: Sample of size n =  1000 simulated from the stationary mixture 
model with three mixture components and true parameters fi0 =  ( — 1.0,3)', w0 =  
(0.1. 0.4. 0.5)', al =  1 and p0 =  0.8.

R =  {r/200 : r =  1 , . . . .  200}. The rest of the parameters for the base measure 
/o are

and we take atj =  1, Q =  1 for all j, corresponding to a Dirichlet process prior 
with unit mass parameter.

Posterior inference in this case can be carried out both for the stationary and 
the transition densities. Results are shown on the right and left panels of Figure

The estimated densities correspond to a Monte Carlo average of the posterior 
sample produced by the Markov Chain scheme for the latent model. We use a 
Monte Carlo sample size of N =  1000 after a burn in period of 9000 iterations.

Notice that the estimate for the transition density corresponds with the pre­
dictive density for Yn+1 given the sample, i.e.

As might be expected, the transition density is recovered by the model better 
than the stationary density. This can be attributed to the fact that each new

m =  0. t =  1/4 for the Rf 

a =  1/2. c =  1 for the r.

3.2

108



3.4 Illustrations

0
0

Figure 3.2: Histogram of the data, with estimated and true stationary densities 
(left) for a sample from the stationary mixture model. On the right, the true 
transition density with the estimated density and the histogram of a sample from 
the predictive.

data point provides more information about the transition mechanism, while the 
information about the invariant measure is disturbed by the dependence between 
data points. However, given that the sample size is relatively small for this type 
of analysis, we believe the estimates to be satisfactory.

3.4.2 Example 2: Stationary Diffusion

We now consider the discretely observed diffusion process introduced in Section 
2.3.2. Recall, this is the process Y =  {Yt : t >  0} defined as a weak solution to 
the SDE dY, =  - e  . Y‘ At +  dW,

v / i + F 5
For 0 < 0, we know this is a stationary process, with invariant density

J'(y) oc exp { 20^/1 +  y2}  •

A sample of size n =  1000 of observations, y\-n at times U =  z;, is generated 
using the exact simulation algorithm of Bcskos et al. (2006b), from the Hyperbolic 
diffusion with true parameter 0O =  —2. The data is shown in Figure 3.3.

The SDE provides a parametric model. However a nonparametric model 
should be flexible enough to recover the dynamics of the process generating the

Stationary density

(a) Stationary density

Transition density f()(y|x=3.1811 )

(b) Transition density
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Sample from a  stationary diffusion n=1000

100 200 300 400 500 600 700 800 900 1000

Figure 3.3: Sample of size n =  1000 from a discretely observed stationary diffusion 
process

data. To illustrate this, we do posterior inference using the stationary time series 
mixture model described in this Chapter, with the following prior specifications. 
The parameters of the prior density for each of the mixture kernel means are cho­
sen as m =  yn and t =  1 /s'2, the sample mean and precision respectively. As in 
the previous example the prior for the mixture precision is a Gamma distribution 
with parameters a =  1/2 and c =  1 and we use a Dirichlet process prior with unit 
mass parameter. The correlation coefficient is kept fixed at p =  1 for illustrative 
purposes.

Stationary density Transition density f(y|x=0.057322)

(a) Stationary density (b) Transition density

Figure 3.4: Histogram of the data, with estimated and true stationary densities 
(left) for a sample from the hyperbolic diffusion. On the right, the estimated tran­
sition density and the histogram of a sample generated from the true conditional, 
via exact simulation.

Again, posterior inference in carried out for the stationary and the transition
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densities, through posterior simulation for the latent model via MCMC, with a 
Monte Carlo sample size of N =  1000 after a burn in period of 9000 iterations. 
Results are shown on the right and left panels of Figure 3.4, respectively.

The the normalizing constant for the true stationary density is calculated 
by numerical integration. The estimated transition density is compared to a 
histogram of a sample of size 1000 points generated from the true diffusion tran­
sition, via exact simulation. Both the stationary and the transition densities can 
be seen to be accurately recovered by the model.

3.4.3 Example 3: Standard Brownian Motion

Standard Brownian motion is a typical example of a non stationary process. For 
discrete observations at times U =  i, the transition density is known and given 
by f(yi\yi-i) — N(y,|yi-i, 1), the standard normal distribution centred at yi-\.

Figure 3.5 shows a sample of n =  1000 observations, y\:n, at times U =  i from 
a standard Brownian Motion path, and the corresponding histogram. The latter 
shows the irregular behaviour of the data, since the marginal distribution of each 
yi changes with i.

Sample from a standard Brownian Motion 
n=1000

Histogram of the data

(a) Data (b) Histogram

Figure 3.5: n =  1000 equally spaced points from a standard Brownian motion 
path (left) and the corresponding histogram (right).

The mixture model we propose for time series is stationary. However, for any 
fixed sample size, it is flexible enough to capture the dynamics of the data, in 
the sense that we may use the model to estimate the transition density. Figure
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3.6 shows estimates of the transition density f(y\x) for two different values of 
x. The plot on the left hand side corresponds to the predictive density, i.e.

Transition density f(y|x=36.5989) Transition density f(y|x=10)

(a) Transition density for x  =  x.n (b) Transition density for x  =  10

Figure 3.6: Estimated transition densities f(y\x) given a sample of n — 1000 data 
points from a discretely observed Brownian Motion path. On the left, x =  36.6 
is the last data point; on the right x =  10.

the estimated conditional density given the last observation, E[/(y|yn)|yi:„]. The 
sample size is relatively small for this type of problems, yet the model can recover 
the transition density shape. The plot on the right corresponds to the estimated 
transition given x =  10, which from the data histogram, we know is in a region of 
the state space not frequently visited by this particular path. This accounts for 
the heavy right tale of the estimated density with respect to the true one. Overall, 
we can conclude that the model recovers the transition mechanism generating the 
data.

3.4.4 Example 4: Non-Stationary Diffusion

Finally, we consider the discretely observed diffusion process introduced in Section 
2.3.1, i.e. a stochastic process Y =  {Yt : t >  0} defined as a weak solution to the 
SDE

dVi =  sin(Ti — 0)dt +  d Wt.

A sample of size n =  1000 of observations, yi:n at times U =  i, is generated 
using the exact simulation algorithm of Beskos et al. (2006b), with true parameter 
(J0 =  2. Figure 3.7 shows the data and corresponding histogram.
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Sample from a non slationary diffusion Histogram of the data

(a) Data (b) Histogram

Figure 3.7: n — 1000 equally spaced points from the sine diffusion with true 
parameter 0 =  2 (left) and the corresponding histogram (right).

Posterior inference in carried out for the transition density, through posterior 
simulation, via the MCMC algorithm for the latent model presented in this Chap­
ter. Once again, the Monte Carlo sample size is N =  1000 after a burn in period 
of 9000 iterations. The parameters of the prior density for each of the mixture 
kernel means are chosen as m =  yn and t =  1 /s2, the sample mean and precision 
respectively. As in the previous example, the prior for the mixture precision is a 
Gamma distribution with parameters a =  1/2 and c =  1, and we use a Dirichlet 
process prior with unit mass parameter; the correlation coefficient is kept fixed 
at p =  1.

Figure 3.8 shows the estimated transition density f(y\x) given the last obser­
vation, x =  yn (left panel) and given x =  —20 (right panel). The true transition 
density for this data is unknown, but the estimates are compared against his­
tograms of samples of size 1000, generated from the true model via exact simula­
tion. Given the irregularity of the data, exhibited in the histogram of Figure 3.7, 
and the relatively small sample size, the heavier tails of the estimated densities 
with respect to the exact simulated samples is justified. Overall, the transition 
density estimates can be considered accurate.
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Transition density f(y|x=-25.4333) Transition density f(y|x=-20)

(a) Data (b) Histogram

Figure 3.8: Estimated transition densities f(y\x) given sample of n =  1000 data 
points front a discretely observed sine diffusion. On the left, x =  yn =  —25.4; on 
the right x =  —20.

3.5 Discussion

We have presented a stationary Markov model for which both the transition and 
stationary densities are nonparamctric. The construction is based on an infinite 
mixture of joint parametric kernels ko(y, x) for which both marginals are identical. 
The stationary density for the process is then given as the infinite mixture of such 
marginals, and the transition density is the corresponding conditional density, 
given by the ratio between the joint and the marginal mixtures. The infinite 
sum in the denominator can be seen an intractable normalizing constant for the 
conditional density, or transition. We then extend the model by the introduction 
of latent variables, based on a series expansion for the normalizing constant; and 
some existing auxiliary variable methods in the context of inference for mixture 
models, and model selection with unknown parameter space dimension. The 
stationary model falls within the general class of intractable models studied in 
this thesis and the latent model is a particular example of the auxiliary variable 
scheme we propose for MCMC posterior inference with no approximation error.

We have illustrated the use of the stationary nonparametric model for poste­
rior estimation of the transition and stationary densities when the data is gen­
erated by some true but arbitrary stationary process. In this case, a fixed true 
joint density for pairs of observations is available, and the model is able to recover
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it. At the same time, the stationary density is estimated and estimation of the 
transition density follows as a ratio of the two.

When the data is generated by a non stationary but time homogeneous pro­
cess, the model is still able to estimate the transition density, as we have empir­
ically shown through some examples. In this case, there are no fixed marginal 
and joint densities to replicate, so the numerator and the denominator in the 
transition density expression do not have a direct interpretation. It is a known 
fact that a ratio can remain constant even when the numerator and denominator 
change. An analogous phenomenon explains the capacity of a stationary model 
to replicate a non stationary transition mechanism. Future work will involve the 
study of the properties of this model, as well as possible interpretations of the 
numerator and denominator expressions defining the transition density, when the 
data is not stationary.

We have demonstrated the latent model construction and MCMC algorithm 
for a particular choice of parametric joint kernel, the bivariate Gaussian density. 
However, other kernel choices arc available. Furthermore, the condition requiring 
both marginal densities to be equal is only needed to guarantee the stationarity 
of the mixture Markov model. Arbitrary joint kernels can be used to construct 
general autoregressive models if stationarity is not an issue. This includes the 
definition of multivariate time series models.

We have focused here on stationary Markov models. However, a higher order 
Markov dependence structure may be obtained if the nonparametric mixture is 
defined over multivariate kernels. If the joint kernel includes m +  1 random 
variables, an order m Markov transition can be defined as the ratio between the 
joint mixture over the m-variate marginal from which the (m +  l)-th variable 
has been integrated out. Future work would include the study of this type of 
autoregressive models and their properties.
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Chapter 4

Nonparametric Regression Model

The contents of this chapter constitute the body of Antoniano-Villalobos et al.
(2012).

As mentioned in Section 1.1.3, Bayesian nonparametric mixture models for 
regression have become a subject of intense research activity. This is due to the 
flexibility that models of this type can achieve, while retaining useful statistical 
properties. For these models to be truly flexible, it is necessary to construct 
covariate dependent weights which can be guaranteed to add up to one at each 
point of the covariate space.

Formally, we recall the nonparametric regression mixture model given by

and a prior specification on the particles an(l covariate-dependent weights
{u ;j(x )}° l1, which must satisfy the constraint

The usual way to satisfy this condition is the stick-breaking definition (1.66) of 
MacEachern’s 1999 dependent Dirichlet processes. This is in fact, the only ap­
proach for which exact posterior sampling methods are available. Effectively, 
posterior simulation is made possible by imposing restrictions on the structure of

OO

(4.1)

OO

(4.2)
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the dependent weights. The construction poses challenges in terms of the various 
choices that need to be made for functional shapes and hyper-parameters, when 
defining the {nj(ir)}\-fi1. The difficulties are amplified by the lack of interpre­
tation of the quantities involved. Moreover, combining continuous and discrete 
covariates in a useful fashion is far from straightforward.

On the other hand, condition (4.2) is easily satisfied by defining normalized 
weights, a version of which is given by

W j ( x )
WjK(x\iljj)

£ ” . i  <4 A-(■•<#')’
(4.3)

where the denominator must be finite a.s. We argue that this construction has 
a natural interpretation in the Bayesian setting, which allows for a simple choice 
of the kernel and hyper-priors involved. Moreover, it is shown to be applicable 
to both continuous and discrete covariates.

It is to be noted that the infinite sum in the denominator of (4.3) introduces an 
intractable normalizing constant for which no posterior simulation methods are 
available to date. Only finite versions of this type of model have been introduced 
in the literature (see e.g. Adams et al., 2009; Mpller et al., 2006; Murray et al., 
2006; Pettitt et al., 2003), since simulation methods are available only for the 
finite case. However, the construction bares a resemblance to the time series 
model of Chapter 3. Therefore, in a similar fashion, we present it as an example 
of our general approach to dealing with intractable components of an infinite­
dimensional nature and present the latent structure that allows posterior inference 
through the use of MCMC methods.

4.1 The Model

The aim in this Section is to motivate the normalization approach, as an alterna­
tive to the stick-breaking construction of the covariate-dependent weights W j ( x ) .  

The idea is to insist that a parametric regression model, used as a component 
for a mixture, must incorporate information about its range of applicability, or 
where it holds, within the covariate space. This concept is unrelated to the way in
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which the covariates are provided in practice, be it in a random or deterministic 
fashion.

For concreteness, let K(y\x. 0) be the normal linear model N(y|A)0, cr2), where 
X =  ( l ,x )  and 0 =  (/3, a2). Bayesian nonparamctric modelling can be conceived 
as the placement of parametric components throughout suitable spaces. Hence, 
we need to think about how to construct and define a component, for a regression 
model. Our first claim is that K(y\x,0) is not in itself sufficient to adequately 
define a component. The reason being that, as it stands, it would suggest that 
each and every parametric model in the mixture model is equally valid through­
out the complete covariate space X. This is not a sensible or realistic working- 
assumption.

In most applications where a nonparametric regression model is sought, spe­
cific parametric components arc only assumed to behave locally. Hence, for each j, 
we need to specify a region C j  C  X within which the parametric model K { y \ x .  Oj) 

holds. The sets (Cj) need not constitute a partition, thus allowing for regions 
of the covariate space X within which more than one parametric model has an 
effect. Each region Cj is, of course, unknown to the experimenter, hence, in a 
Bayesian framework, the uncertainty about it should be incorporated into the 
overall model. This is achieved by specifying, for every j  and every A C  X, the 
probability that model j  applies within the set A.

With this in mind, we introduce the notion of n(.d|.7'), the prior probability 
that regression model j  applies within the set A. This naturally leads to the idea 
of a parametric density function p(x\j) =  K(x\ipj) for which

Note that the conditional densities p(x\j) are not related to whether the covari­
ates are picked by an expert or sampled from some distribution, which itself could 
be known or unknown. They only indicate where, in X the experimenter believes 
the regression model j  provides a good description of the data. In other words, if 
asked to provide a candidate covariate value for which component j  applied, the 
experimenter would provide such a value by sampling it from p(z\j) =  K(x\ipj), 
since K(x\ij)j) is modelling where the j-th  component, namely K(-\x, 9j), applies.
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4.1 The Model

It is not clear at this point, how this probability setting can be incorporated 
into the nonparametric regression model. To proceed, we consider Wj =  II(j), the 
prior probability, according to the experimenter, that an observation is generated 
by the parametric regression model j. Hence, n (d|j) n ( j)  defines a joint measure 
on X x N, corresponding to the probability that an observation is generated from 
the parametric model j  and that this model provides indeed a good fit for the 
data within the set A of covariatc values.

It is important to clarify that the density
OO

p(x) =  £ > ( j > W )
j=i

does not correspond to the distribution from which the covariates are sampled, 
if indeed they arc sampled; it simply represents the distribution of where the 
combined regression models hold. Therefore,

n(.4) — J p(x) dx

is the prior probability that the complete nonparametric regression model applies, 
for an arbitrary observation within the set A of covariates.

Once n ( j )  =  Wj and p(x\j) -- K(x\ij)j) have been defined, we ('an provide 
a form for Il(jjx ) based on an application of Bayes Theorem; namely n (jjx ) oc 
n (j) x p(x\j).

Recalling the nonparametric mixture model
OC

fp(y\x) =  '^2wj (x)K(y\x,0j ),
3 =  1

each covariate dependent weight W j [ x )  represents the probability that the para­
metric model j  applies to an observation with covariate value x. In other words, 
W j ( x )  = U(j\x). Therefore, putting things together and incorporating the nor­
malizing constant, we arrive at the normalized expression for the covariate de­
pendent weights, i.e.

A  ’’  E “ =i wr
where 0 < Wj <  1 for all j  and YlJLi wj =  1-
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4.2 The Latent Model

We believe this representation for the covariate dependent weights is easy to 
interpret, in terms of the prior probabilities of observations coming from regres­
sion model j  combined with prior specifications as to where regression model j 
applies. Furthermore, K { x\ i p j )  can be modelled via a standard family of density 
functions, such as the normal, if x  is a continuous covariate. In this case, the in­
terpretation would be that there is some central location //,_,• E X where regression 
model j  applies best, and a parameter r, describing the rate at which the appli­
cability of the model decays around y,j .  On the other hand, if x  is discrete, then 
a standard distribution on discrete spaces can be used, such as the Bernoulli or 
its generalization, the categorical distribution. Even if x  is a combination of both 
discrete and continuous covariates, it is still possible to specify a joint density by 
combining both discrete and continuous distributions. This is demonstrated in 
the next Section.

Given a sample =  {(yi-^’ i ) ....... (;yn.x n)}, the likelihood function for
the MDP model with normalized weights is given by

The expression in the denominator can be seen as an intractable normalizing 
constant generated by the infinite sequences of weights, Wi:00 and kernel param­
eters '01-00, 0i;oo- Thus, the model falls within the scope of this thesis, and in 
the present Section we provide the latent variable extension that allows us to 
undertake Bayesian inference via MCMC posterior simulation. As mentioned in 
the Introduction, we rely for this, on the series expansion

4.2 The Latent Model

with covariate dependent weights defined in equation (4.1). 
Alternatively, for every n, we may write

OG
(4.4)

k= 0
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4.2 The Latent Model

as the key for incorporating auxiliary variables to the likelihood expression, thus 
obtaining a viable latent model.

In order to illustrate ideas with a simplified notation, we start by considering 
posterior estimation with a single data point. We assume the first q elements of 
x represent discrete covariates, each xm taking values in { ( ) , . . . , Gm}, for m =  
1 . . . ,  q\ the last p elements of x represent continuous covariates. In this case, we 
have

where 03 =  (fij.a'j), 0 j =  (Pj,Pj-T), A" =  (1.x) and Cat(-|pm) represents the 
categorical distribution, i.e.

Again, to simplify the expression, we are using r7 =  r  for all j. This is not a 
strong restriction, and it may be removed by making some realistic assumptions 
on Tj.

The likelihood for this model may be written as

Q V
K(xltpj) — I  Cat(.xm|pj)Jn) I N(xm+q,I/rj)m, Tm ).

m= 1

where
oo

i=1
<i+P

A:(x |0j) =  n  K (X™- IV’j.m),
m= 1

and

m =  1 . . . . .  q
K (./ m | V ) —

e x p {  2 1 m—q ^ m  Pj ,m—q) }" ^  Q "b 1 ) ■ • • ; q A  P ‘
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4.2 The Latent Model

Notice that we have redefined the kernel function K (.r; %bj) by cancelling the pre­
cision term r  from the normal density, which appears both in the numerator and 
the denominator of the normalized weights expression. In this way, we guarantee 
that 0 < b(x,wi:00,xpi:oo) < 1 for all x E X. and sequences w1:oc and t/>i:oo. We 
can, therefore, apply the series expansion (4.4) to write

1
b ( x ,  W l:oo> ̂ l:oo) = £

fc=0 .
1

3 = 1
= E

k=0 Lj=l

-1 fc

E ^ t 1 ~ K (x \ ¿̂)]

Then, we introduce k as a latent variable, and obtain the latent model

f P{xj. k\x) =  Y  wjk  (*l f y )K (y\x> °j)
3 = 1

1 k

Y  wi [i_ A’(xi ̂ j)\
. 3  =  1

After moving the infinite sum from the denominator to the numerator, we can 
now deal with the mixture in the usual way (see for example Kalli et al., 2011). 
As for the time series model of Chapter 3, we first introduce a latent variable d to 
indicate the mixture component to which a given observation is associated, thus 
obtaining

fp{y, k, d\x) =  wdK(x\'t/}d) K(y\x, 6d) E ' c t 1 -
. 3  =  1

k

For the remaining sum, we have the exponent k to consider. Therefore, we 
introduce k latent variables, I)\, . . . .  /  A, arriving at the latent model

k
f P(y.k,d, Dl:k\x) =  wdK(x\i/3d) K(y\x,0d) JJwDl[l -  K{x\^Dl)\.

i=i

It is easy to check that the original likelihood (4.5) is recovered by marginalizing 
over the d, k and /41:fc.

For a sample of size n >  1 we simply need n copies of the latent variables. 
Therefore, the full latent model is given by

n

fp{yi:ni kl:m d\-n. D\\n,l-.ki |-̂ l:n) A (Xj | ifid-) K {lJi\Xi, 0di)
i= 1

K
]Jw Di l [1 -  K(xi\4’Di l)].
i=i
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4.3 Posterior Inference via MCMC

Inference can be achieved via posterior simulation, using the slice sampling method 
of Kalli et al. (2011) to deal with the infinite possible values that the di:n and 

^i:n,i:fci can take.
Once again, the original likelihood

71 /  OO
fo{yi:n\x\:n) =  I W(Xi’ K {Vi |®i. Gj)

i= 1 \ j = l

can be easily recovered by marginalizing over the dl:n. fc1:n, and D ■ However, 
the introduction of this latent variables makes Bayesian inference possible, via 
posterior simulation of the weights wi:oo, and kernel parameters 6fi:oo, '</q:0c> as we 
show in the next Section.

4.3 Posterior Inference via M CM C

A prior for P, defined by a prior specification for the weights wi:oo, and parameters 
0hoo and ipi:oc, completes the Bayesian model.

Our focus is on Stick-Breaking priors ( Section 1.1.1.1), and we define the 
base measure / q through its associated density / 0, given by the product of the 
following components,

MPjiVj) =  N(/3j |/3o.(T2E_1)G a(l/(72|d,c);
p

fo(Hj,r) =  | N (W m ) ) G a(l/Tm|om. cm) ,
m= 1

7
fo(pj) =  Dir(p^m|7m).

m=1

Together with the joint latent model, this provides a joint density for all the 
variables which need to be sampled for posterior estimation, i.e. the ( ) ,  
j  =  1,... ,oo and the (fc,, A,«)> z =  1 , . . . ,  n; Z =  1 , . . . ,  fc*.

4.3.1 Updating the Indices, dj and Du

We deal with the infinite sample space for the indices d.hn and Di:n,i:ki as we 
did in section 3.3.1, by using the slice sampling technique of Kalli et al. (2011).
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4.3 Posterior Inference via MCMC

Accordingly, in order to reduce the choices represented by (dt. />,;/) to a finite 
set, we introduce new latent variables, ry/), which interact with the model 
through the following indicating functions

1 {ui < e~̂ di) and 1 < e~^Di’1), (4.6)

for some £ > 0. Hence, the full conditional distributions for the index variables 
are given by

P(ck =  j\ ■ • •) oc wj e °  K{xi\ipj)K(y^Xi.Qj) 1 {1 < j  <  •/,};

P(A,i =  j\ ■ ■ ■) oc W j  e *3 [i -  K (x<|V»j)] 1  { !  < J <  A } '

where ,Jt =  log iaJ; Jtii =  log vu\ ■
At any given iteration, the full conditional densities for the variables involved 

in the MCMC algorithm do not depend on values beyond J =  max;,* {Ji, J^ }, so 
we only need to sample a finite number of weights and kernel parameters.

4.3.2 Updating the Mixture Weights, wi;j

The Wi j  can be updated at each iteration of the MCMC algorithm in the usual 
way, that is, by making W\ =  V\ and, for j  > 1, wj =  vj n , ,< y( l -  Vj>). The v1:J 
must be independently sampled from the corresponding full conditionals, which 
can easily be identified as

f{vj\ ■■■) =  B e ( a . j  + Vj  +  Njt Cj +  nf + N+).

where the rij,  N j ,  v,j and N j  are given by expression (3.32).

4.3.3 Updating the Regression Kernel Parameters #i j

The variables involved in the linear regression kernel, that is, the /?i-j and cr‘{.j are 
updated in the standard way, well known in the context of Bayesian regression.
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4.3 Posterior Inference via MCMC

We sample independently for each j , from the full <

where h =  t j '(Eft +  X ';, .) ;

dj =  a +  Ujl 2;

Cj
W3

Here, 2Lj denotes the n3 x  (1 +  p +  1)  matrix, with rows given by =  (1,  x ' )  for 
di =  j\ y. is defined analogously; and Ij denotes the identity matrix of size ny

4.3.4 Updating the Covariate Kernel Parameters

Similar to what we did for the time series model in Section 3.3.4, to update the 
it is convenient to introduce an additional set of latent variables. In order

to do so, observe that, for any integer M  and vector (bi .......5m ) £ (0 ,1)A/, the
following identity holds

M M
l - T T fc™ =  ^ /  IT  K™1 {Um < b +  ( !  -  “ rn)1 {Um > bm}]dU,

m=l

where U =  (i/1?. . . ,  Um), u =  (u i....... uM) and U is the set of M -dimensional
{0 ,1 } vectors of which at least one entry is 0.

We can, therefore, introduce latent variables Ui,i,m), for i =  1 . . . . .  ri,
l =  1....... ki and m =  1 , . . . ,  q +  p, to deal with the terms [ l  — K ( x i , m \ij’j yh)]

in the likelihood. The full conditional density for ipi:j is thus extended to the 
latent expression

J n q+p
f(dPl:Ji Wl:n,l:fcj,l:g+pj t^l:n,l:fcj,l:g+pl ’ ) n w n n  K  ( X i ^ d ^ f n )

j =  1 i=  1 771=1
ki

¿=1
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4.3 Posterior Inference via MCMC

where I\i.rn =  K {xi rn\'il’D, , m), from which the original conditional density can be 
recovered by marginalizing over the Uijtm).

The latent variables can be sampled from their full conditional
density by first observing that they are independent across i =  / , . . . ,  n and
l =  1...... , kt. For each uititi-.q+p, is a (q +  p)-dimensional vector of zeros
and ones with at least one zero entry. There are 2p+q — 1 such vectors and the 
update must be done according to the full conditional distribution given by

This is a discrete probability measure with finite support, so the sampling can be 
done directly.

Conditional on Ui,i,\-.q+p-, the latent variables f/jyrp+g are independent. Each 
Ui,i,m  is uniformly distributed in the interval

Hence, the additional variables do not pose a problem for posterior simulation. 
Furthermore, the introduction of these new variables transforms the latent term, 
introduced to deal with the intractable normalizing constant, into a truncation 
term over the usual posterior density for the nonparametric mixture. Posterior 
sampling for the ‘ipv.j is therefore achieved by independently sampling from trun­
cated densities.

We first consider the update of the pi:j, which is achieved by sampling each 
f)j m. for rn = h ... q. independently from a truncated Dirichief distribution,

q+ p  r

771=1 L

f  (Pj,m | ' ’ ’ ) OC Dir(P,-m | îj,m) 1 (Pj,77i £ Rj,m) • 

The truncation region is defined as

where, for g =  0 . . . .  Gm,

r„■
d i= j

m ax{f/M?ml  (x,i,m  — i/) • ^ i , l — l}
o ) .
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4.3 Posterior Inference via MCMC

Next, we consider the (il:j  and r. First, we sample each rm, for m =  1,. 
independently from a truncated gamma density,

■,P

f{i~m | • • •) oc Ga(r/t | cm) l  (rm < Tm < Tm),

where

fl'm — I! rn "F J t
1

G"m — cm +  ^

Tm =  max -

An =  m m { ( ;

i= 1 3 = 1

-2 log 

2 log

■ ^ i,l,m +q  O f »

■ M’l.l.rn+q =  1
^i,m+q P'D i'hm j

Finally, we sample each fijih independently from a truncated normal distribu­
tion,

| •••) ocN(/ij ,7n | AJ,mi (7~mSj,rn) ) 1 \ £ P'1 î,l,r
D i,i= j

where

Sj,m — T̂Ti "F ^ j ,

H' 7,771 T,s
1 /  ^

I ^m/^0,77t T  /  j %i,m+q

i’m \ <k=3 y

The truncation is defined through the intervals

A,i,77i I X i,m +q
2 log f

• ■Ti,m+q ~t
2 log f A,i,m+q

letting AijiiTn =  when Uj>ii7n+P =  1; and R \ /lj^m =  /¿j,m when Ui,i,m+p =  0.

4.3.5 Updating the Latent Model Dimension, ki;n

As we have done in the previous chapters for the update of each fcj, wre use the 
ideas of Godsill (2001), presented in Section 1.2.2.3 to deal with the change of
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4.4 Illustrations.

dimension in the sampling space. We start by proposing a move from Ay to Ay +  1 
with probability 1/2, and accepting it with probability

min j l .  [1 -  K{xi\il’Di'k.+l)]} .

The evaluation of this expression requires the sampling of the additional index 
Di'ki+i, and we choose =  j  with probability Wj.

Similarly, if Ay > 0, a move from Ay to Ay — 1 is proposed with probability 1/2, 
and accepted with probability

min j l ,  [1 -  •

Thus, we have shown it is possible to perform posterior inference for the 
nonparametric regression model proposed, via an MCMC scheme applied to the 
latent model. We have successfully implemented the method in Matlab (R2012a), 
and present some results in the next Section.

4.4 Illustrations.

4.4.1 Example 1: Non-Linear Variance

In many situations, the error distribution for the variable y, with respect to 
the mean regression line, may evolve with x. We consider such a situation in 
the following example, where n =  200 data points (displayed in Figure 4.1) are 
simulated assuming a linear mean function non-linear increasing variance;

Xi ~  U(x|0,10),

yMi N \ +  exP 2 10) )  •

The covariate dependent weights for our model are given by

Wj exp{ —r /2 (x  — My)2}
W&Oj) =  ^ 5 --------------J----- 7T7---------- \2VE y =1 Wy e x p { -r /2 (x  -  yr )2\
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4.4 Illustrations.
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(a) Simulated data

Figure 4.1: The data with y plotted against x on the left. On the right, the 
predicted regression function for a grid of x values (blue solid line); 95% pointwise 
credible intervals (blue dashed lines); and the true regression function (in black).

The prior parameters for the weights {u)j)j>\ are fixed at aj =  1 and Q =  1, 
for all j, corresponding to a Dirichlet process. The hyperparameters for the base 
measure for (0j,ipj), are selected as

f t  =  (0 .1 /2)'; £ -1 =  diag(10,1/4); a =  1; c = l ;

y  o =  5; s =  1/4; a =  1; c =  1.

We generate a Monte Carlo sample of size 5,000 iterations with a burn in period 
of 5,000. The initial states assigns one component to each observation, with 
parameters generated from the prior. The right hand plot in Figure 4.1 depicts 
the estimated regression function for a grid of covariate values (blue solid line) 
and 95% pointwise credible intervals (blue dashed lines). The true regression 
function, shown in black, is a simple linear function, and the model recovers it 
well.

Predictive densities were estimated for all covariate values in the grid. The 
plot on the right of Figure 4.2 displays the predictive density estimates f(y|x) 
for x =  0,2.4,6 .8,10. On the left, we show point and 95% credible interval 
estimates for y. For high values of the covariate, the variance of the conditional 
density is slightly overestimated; while for small covariate values, the transition

(b) Predicted regression function
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4.4 Illustrations.

(a) Predictive densities (b) Data and prediction

Figure 4.2: The predictive densities, for x =  0 .2 ,4,6 .8.10, with solid lines de­
noting the prediction and dashed lines denoting the true density, are shown on 
the left. The right side plot presents the data, the prediction and 95% credible 
intervals computed from the predictive densities.

density mode is slightly underestimated. However, the general dynamics of the 
variance function are well captured. Furthermore, the 95% credible intervals 
for y\x contain the observations and seem to accurately reflect the information 
present in the data.

Observing Figure 4.1 could lead one to believe that all subjects are assigned to 
the same component with a high posterior probability. However, there is a more 
complex aspect to this example; the variance of the error distribution increases 
with x. In fact, in order to capture this feature, most of the posterior samples of 
the component allocation, group the data into three clusters. The configuration 
with the highest posterior probability is depicted in Figure 4.3.

4.4.2 Example 2: Non-Linear Regression Curve

To demonstrate the ability of the model to recover complex regressions functions 
with the presence of both continuous and discrete covariates, we simulate n =  200 
data points (depicted on the left of Figure 4.4) through the following formulas,
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4.4 Illustrations.

Figure 4.3: The configuration with the highest posterior probability, where the 
data are coloured by component membership.

xhl ~  Bern(l/2), xit2 ~  U(-| -  5,5).

V i f a  ~  N([l { x itl =  1} -  1 {zitl =  0}] z?2, 1).

Our model is given by

/p(y|s) =
i=i

w(z; fy) =
Wj  p]\?  0} p)\Xl 1} cxp{ —t /2(.t2 -  / / j )2} 

E f = !  Wj' pS 1=0} p !'{,i 1=1} c x p { - r /2 (x 2 -  Aty)2}

We use the prior for the weights W\:oc and parameters 0\:oc, 'ipi-.oo described in 
Section 4.3. Specifically, wc define a Dirichlct Process prior with unit mass and 
set the following hyperparameters for the base measure,

fa =  (12 .5 ,-25 ,0 )'; E "1 =  diag(50,150.25); 5 =  1; c =  1;

7 =  (1.1)'; Mo =  0; a =  1/4; a =  1; c =  1.

Inference is carried out via MCMC posterior simulation, using the latent model 
representation and the algorithm discussed in the present Chapter. We generate 
a Monte Carlo sample of size 5.000 iterations after a burn in period of 5,000. 
The right side of Figure 4.4 depicts the predicted regression function for a grid of
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4.4 Illustrations.

x2 values with x.\ — 0 in blue and x,\ =  1 in green. The true regression function 
is shown in black. Even though the true function has a peculiar shape, the model 
is able to recover it. This flexibility in estimating the regression function relics 
heavily on the posterior distribution of the covariate dependent weights. The left 
panel of Figure 4.5 depicts the the configuration with highest estimated posterior 
probability, with data points coloured by component membership. The right 
panel of Figure 4.5 plots a posterior sample of the covariate-dependent weights, 
given this configuration, as a function of x2■ Solid lines denote the case when 
X\ — 1 and dashed lines indicate when X\ =  0. It is important to observe that 
aposteriori the weights are able to peak close to one in areas of high applicability 
of their associated linear regression models, and decay smoothly or sharply, as 
needed, when the covariates move away from this area.

4.4.3 Example 3: Alzheimer’s Disease Study

Alzheimer’s disease (AD) is an irreversible, progressive brain disease that slowly 
destroys memory and thinking skills, and eventually even the ability to carry out 
the simplest tasks (ADEAR, Alzheimer’s Disease Education & Referral Center, 
2011). Due to its damaging effects and increasing prevalence, it has become a 
major public health concern, more so amongst populations with increasing life 
expectancy. Thus, early and differential diagnosis, as well as disease-modifying 
drugs or therapies are in great need.

In a clinical trial setting, with the purpose of assessing the effectiveness of 
any proposed drugs or therapies, accurate tools for diagnosis, disease-staging, 
and monitoring disease progression are needed. Unfortunately, definite diagno­
sis requires histopathologic examination of brain tissue, an invasive procedure 
typically only performed at autopsy.

Non-invasive methods can be used to produce neuroimages and biospecimens 
which provide evidence of some changes in the brain associated with AD. More­
over, biomarkers based on neuroimaging or biological data may present a higher 
sensitivity to changes due to drugs or therapies, and over shorter periods of time, 
making them better suited tools than clinical measures for disease staging and 
monitoring disease progression in clinical trials.
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(a) Simulated data (b) Predicted regression function

Figure 4.4: The left panel depicts the data with y plotted against x2. The data 
are coloured by x\. The right panel depicts the true regression function (black 
line) for a grid of covariate values; the red and blue lines represent the predicted 
function for xj =  0 and X\ =  1 respectively.

Configuration post prob:0.053

(a) Partition with highest prob. (b) Covariate-dependent weights

Figure 4.5: The left panel depicts the partition with the highest posterior prob­
ability, where the data are colored by component membership. The right panel 
depicts the covariate-dependent weights associated to this partition with solid 
lines representing Wj(l. x2) and dashed lines representing Wj(0 .x2) for a grid of 
x2 values.
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However, before biomarkers based on neuroimaging or biological data can be 
useful in clinical trials, their evolution over time needs to be well understood. 
Those which change earliest and fastest should be used for diagnosis or as in­
clusion criteria for the trials; those which change the most in the disease stage 
of interest should be used for disease monitoring; and all should be combined to 
assess the disease stage of an individual.

In a recent paper, Jack et al. (2010), propose a theoretical model for the 
evolution of the five most widely studied and well validated biomakers. Their 
model assumes that biomarkers become abnormal in a time ordered manner, 
with a sigmoidal path that varies in steepness across biomarkers. Frisoni et al. 
(2010) discuss the model in further detail, focusing on the evolution of biomarkers 
based on structural Magnetic Resonance Images (sMRI). Recent studies support 
this theory. Caroli & Frisoni (2010) and Sabuncu et al. (2011) assess the fit of 
parametric sigmoidal curves, and Jack et al. (2012) consider a more flexible model 
based on additive cubic splines with three chosen knot points. This last approach 
is the most flexible among the three, but they all impose significant restrictions 
which raise doubts about their conclusions. It is arguably not enough to provide 
evidence that one fit is better than another when only a limited number of curves 
can be compared. Ideally, a more flexible model should be able to choose the 
shape of the regression curve that better fits the data.

The clinical stages of the AD are divided into three phases (Jack et al., 2010); 
the pre-symptomatic phase, prodromal phase, and the dementia phase. During 
the pre-symptomatic phase, some AD pathological changes are present, but pa­
tients do not exhibit clinical symptoms. This phase may begin possibly 20 years 
before the onset of clinical symptoms. The pre-prodromal stage of AD is known 
as mild cognitive impairment (MCI); patients diagnosed with MCI exhibit early 
symptoms of cognitive impairment, but do not meet the dementia criteria. The 
final stage of AD is dementia, when patients are officially diagnosed with AD.

Hippocampal volume is one of the best established and most studied biomark­
ers because of its known association with memory skills and relatively easy iden­
tification in sMRI. Jack et al (2010) and Frisoni et al. (2010) hypothesized that 
hippocampal volume evolves sigmoidally over time, with changes starting slightly 
before the MCI stage and occurring until late in dementia phase. The steepest

134



4.4 Illustrations.

changes arc supposed to occur shortly after the dementia threshold has been 
crossed.

To provide validation for this model, we study the evolution of hippocampal 
volume as a function of age, gender, and disease status. Data was obtained 
from the Alzheimer’s Disease Neuroimaging Initiative database which is publicly 
accessible at UCLA’s Laboratory of Neuroimaging. The ADNI database contains 
neuroimaging, biological, and clinical data, along with summaries of neuroimages, 
including the volume of various brain structures. The dataset analysed here 
consists of the hippocampal volume obtained from the sMRI performed at the 
first visit, for 73b patients. Of the 73b patients in our study, 159 have been 
diagnosed with AD, 357 have MCI, and 218 are cognitively normal (CN). Figure 
4.6 displays the data.

Figure 4.6: Hippocampal volume plotted against age. The data are colored by 
disease status with circles representing females and crosses representing males.

We consider the model developed in this Chapter, specifically, the infinite 
Gaussian kernel mixture model with covariate dependent weights given by

" ’ { x ;  i/)j) =
W 3 n L l  U %  p )img 9) C X P { - t / 2 ( x 3 -  / i j ) 2 } 

£ ?= , “ V n L l  i f ë ,  Æ T ” exp{ -  T/ 2^  -  W')2}

where Gi =  1 (xi represents gender) and G2 =  2 (x2 represents disease status).
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Note that here age (,t3) is a real number, measuring the time from birth to exam 
date, and is therefore treated as a continuous covariate.

The prior distribution for (f%)j>i and (Oj,il>j)j> 1 is described in Section 4.3. 
We use a Dirichlet Process prior with unit mass parameter and set the hyperpa­
rameters for the base measure as

Po =  ( 8 , - 1 , - 1 , - 1 /4 ) ' ;  S " 1 = d ia g (4 ,1 /4 ,1 /4 ,1 /60 ); a =  1; c =  1;

7i =  (1,1)'; 72 =  (1,1,1)'; fM 0 =  72.5; s = 1/4; a = 1; c =  1.

Inference is carried out via MCMC posterior simulation with a Monte Carlo 
sample size of N =  5,000 iterations after a burn in period of 5. 000.

(a) Male patients (b) Female patients

Figure 4.7: Predicted hippocampal volume as a function of age, disease, and 
sex. The data are colored by disease status with dashed lines representing 95% 
pointwise credible intervals around the predictive function.

Figure 4.7 displays the estimated mean regression function for a grid of ages 
with all possible combinations of disease status and sex. Interestingly, we observe 
a confirmation of the hypothesized sigmoidal evolution of hippocampal volume 
with increasing age. Cognitively normal subjects are predicted to have highest 
values of hippocampal volume at all ages, and MCI patients are predicted to have 
higher values of hippocampal volume at all ages when compared with AD patients.
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This indicates that hippocampal volume may be useful in disease staging during 
both the MCI and AD phases. Notice that, as expected, females are predicted 
to have lower values of hippocampal volume, but the decline is predicted to start 
with a lag of approximately five years when compared to males. We should 
comment that there is no data for the subgroup of CN females under 60, which 
reflects on the greater uncertainty in the estimation.

(b) MCI Male

(d) AD Female (e) MCI Female (f) CN Female

Figure 4.8: Conditional density estimates for new covariates with ages of 55, 65, 
75, and 85 and all combinations of disease status and sex.

Figure 4.8 displays the predictive density estimates given a new set of covariate 
values, with ages of 55, 65, 75 and 85, and all combinations of disease status and 
sex. In a clinical trial setting, the preference is for reliable outcome measures, i.e. 
biomarkers with small variability. In general, we observe that variance decreases 
with increasing age, indicating that hippocampal volume is more reliable for 
elderly patients. The difference is more extreme for females as opposed to males. 
In particular, hippocampal volume is predicted to have a large variability for 
young females across all disease stages, with the largest for young CN females,
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but this may not be reliable due to the lack of data for this group. Instead, for 
older females, the variance is much smaller for all disease stages. When comparing 
males across disease status, we notice that young AD patients are predicted to 
show a large variability compared with young MCI and CN patients, while old 
MCI patients are predicted to show the largest variability when compared with 
their CN and AD counterparts.

4.5 Discussion

In this Chapter, we have developed a novel Bayesian nonparametric regression 
model based on normalized covariate dependent weights. The interpretability of 
the construction is not its only relevant feature. The empirical analysis in the 
Illustrations Section shows a great flexibility of the underlying clustering structure 
induced by the model. Specifically, the posterior distribution of the the weights 
allows both a sharp or a smooth placement of the mixture components throughout 
the covariate space, depending on the information contained in the data. This 
allows the model to recover complex shapes for the regression mean function, as 
well as nonlinear dependence of the error distribution on the covariates.

We have illustrated the applicability of the model and latent variable con­
struction for combinations of discrete and continuous covariates, but focusing on 
a univariate continuous response. However, the model can easily be extended for 
other types of response variables, simply by changing the choice of parametric 
kernels in the mixture. For example, the simple regression kernel may be replaced 
by a generalized linear regression model. Future work would involve studying the 
properties of more general models. In particular, the Alzheimer’s disease study 
is an interesting application that could benefit from a more general setting.

Notes and acknowledgements for AD N I data

Data used in Section 4.4.3 were obtained from the Alzheimer’s Disease Neu­
roimaging Initiative (ADNI) database (a d n i.lon i.u c la .ed u ). As such, the in­
vestigators within the ADNI provided data but did not participate in analy­
sis or writing of this. A complete listing of ADNI investigators can be found
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at: h t t p : / /a d n i . l o n i .ucla.edu/wp-content/uploads/how_to_apply/ADNI_ 
Acknowledgement_List.pdf.

The ADNI was launched in 2003 by the National Institute on Aging (NIA), 
the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the 
Food and Drug Administration (FDA), private pharmaceutical companies and 
non-profit organizations, as a $ 60 million, 5-year public- private partnership. 
The primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological markers, 
and clinical and neuropsychological assessment can be combined to measure the 
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 
(AD). Determination of sensitive and specific markers of very early AD progres­
sion is intended to aid researchers and clinicians to develop new treatments and 
monitor their effectiveness, as well as lessen the time and cost of clinical trials. 
The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Med­
ical Center and University of California-San Francisco. ADNI is the result of 
efforts of many co-investigators from a broad range of academic institutions and 
private corporations, and subjects have been recruited from over 50 sites across 
the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 
to 90, to participate in the research, approximately 200 cognitively normal older 
individuals to be followed for 3 years, 400 people with MCI to be followed for 3 
years and 200 people with early AD to be followed for 2 years. For up-to-date 
information, see www. adni - i n f o . org

Data collection and sharing for the Alzheimer’s disease study was funded by 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of 
Health Grant U01 AG024904). ADNI is funded by the National Institute on 
Aging, the National Institute of Biomedical Imaging and Bioengineering, and 
through generous contributions from the following: Abbott; Alzheimer’s Associ­
ation; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; As­
traZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idee Inc.; Bristol-Myers 
Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Com­
pany; F. Hoffmann-La Roche Ltd and its affiliated company Gcncntcch, Inc.; 
GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research
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& Development, LLC.; Johnson & Johnson Pharmaceutical Research V Develop­
ment LLC.; Mcdpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; No­
vartis Pharmaceuticals Corporation; Pfizer Inc.; Scrvicr; Synarc Inc.; and Takcda 
Pharmaceutical Company. The Canadian Institutes of Health Research is pro­
viding funds to support ADNI clinical sites in Canada. Private sector contri­
butions are facilitated by the Foundation for the National Institutes of Health 
(www.fnih.org). The grantee organization is the Northern California Institute 
for Research and Education, and the study is coordinated by the Alzheimer’s 
Disease Cooperative Study at the University of California, San Diego. ADNI 
data are disseminated by the Laboratory for Neuro Imaging at theUniversity of 
California, Los Angeles. This research was also supported by NIH grants P30 
AG010129, KOI AG030514, and the Dana Foundation.

The ADNI database contains many datasets including a file containing the 
left and right hippocampal volume and exam date for the sMRI (USCDVOL.csv), 
demographic information including date of birth and sex (PTDEMOG.csv), and 
diagnostic information (ARM.csv). Preprocessing of the data involved the merger 
of these datasets. In addition, total hippocampal volume was calculated as the 
sum of the left and right hippocampal volume, and age at exam date was cal­
culated in fractions of years based on the date of birth and the date of exam. 
Variable selection and preprocessing of the data was done by Sara Wade.
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Chapter 5

The Power Likelihood

The progress of Bayesian nonparametric methods (see Hjort et al., 2010) has led to 
a surge in theory involving posterior consistency. In Section 1.3 we present some 
of the existing results regarding Bayesian consistency. While infinite dimensional 
Bayesian models provide flexible models, useful in many real life situations, they 
may fail to be strongly consistent, as demonstrated by the famous counterexample 
of Barron et al. (1999), described in Section 1.3.3.

Sufficient conditions for strong Bayesian consistency are. in general, not eas­
ily verified. However, as pointed out by Walker & Hjort (2001), the use of a 
power likelihood guarantees consistency with only the Kullback-Leibler support 
property. That is, for any a G (0,1),

Q n ( A )
f i j - a (/)  n (d /)  

t e * ( / ) n M
is such that

Qn{Ae) —> 0 a.s.

for all e > 0 and Ae =  { /  : >  e}, a set of density functions bounded
away from the true density in the Hellinger sense.

A popular model in Bayesian nonparametrics is the mixture of Dirichlet pro­
cess model, introduced by Lo (1984) and based on the Dirichlet process of Fer­
guson (1973) (see section 1.1.1.2). We consider here a version of this model, for 
which the prior generates random density functions of the type

fp(y) =  I  Ke(y)dP(9).
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In particular, for illustrative purposes, we take K 0 =  N(?/|//,. rr2), the normal 
density kernel, with 0 =  (//, a2); and P is a random distribution function taken 
from a Dirichlet process prior. However, the results can be extended to more 
general stick-breaking priors and parametric kernels.

Bayesian inference for this model, via MCMC methods, is now routine (see 
e.g. Escobar, 1988; Kalli et ai, 2011; MacEachcrn k  Müller, 1998; Neal, 2000). 
Yet it is not clear that inference can be performed when using a power likelihood. 
In this case, we need to estimate

n

Qn(df) cx n (d /)
i= 1

The aim of this Chapter is to demonstrate how the general latent variable 
extension presented in this thesis can be applied to this power likelihood model, 
thus enabling posterior inference through MCMC simulation. Ideas and results 
are taken from Antoniano-Villalobos k  Walker (2012b).

We do not claim here that inference based on a power likelihood would perform 
better than the correct Bayesian posterior inference. In fact, the quantity Qn does 
not have a clear interpretation other than that of an approximate model (when 
a is small) which is consistent. The motivation to use the power likelihood is to 
implement an updating procedure which guarantees consistency for a particular n 
without needing to check non-trivial conditions. Additionally, by using different 
values of a > 0, and comparing the results with those obtained with a =  0, the 
validity of the inference obtained for a given sample can be assessed empirically. 
This idea is explained later in this Chapter.

Furthermore, while our focus here is on consistency, this is not the only mo­
tivation for the use of a power likelihood. In general, raising the likelihood to 
some power smaller than 1 has a smoothing effect, which can be useful in some 
situations. See for example Friel k  Pettitt (2008) for the use of power likelihood 
in the context of simulated annealing algorithms or Ibrahim k  Chen (2000), also 
concerned with rising likelihoods to powers.
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5.1 The Latent Model

5.1 The Latent Model

As in the previous Chapters, our approach relies on the use of latent variables 
to define a latent model, which is marginally equivalent to the use of the power 
likelihood for the model of interest.

We wish to base inference on the power likelihood

n

■ «)  = n/]--(»)•
¿=1

There is no direct use for this expression, so we may use the stick-breaking 
representation for P,

OO

j=i
to obtain an equivalent expression in which the (1 — a) power is applied to objects 
bounded by 1,

/ 1-U(yi:nH:oo: /P:oo- O  =  (j“ n(1_a) ^ 2 ’Wj eXP \ ~  }
i=i Lj=i *■ °  '  .

Here, the (wj)j>i are based on a sequence of independent and identically dis­
tributed Vj ~  Be(l,C) for some C > 0. The (Hj)j>i are independent and iden­
tically distributed from some distribution Po (see Sethuraman, 1994, or Section
1.1.1 for more details). Notice that we are considering a mixture over the means 
of the normal Kernels only, to keep notation simple. Therefore, the prior for the 
single variance parameter a2 is chosen independently.

We could remove the (1 —a) directly using a power series expansion, since, 
for any 0 < b < 1,

OO

61- a =  5 ^ ( - i ) fcafc(1 - 6 ) fc,
fc=o

for some positive sequence (a.k)k>o- However, this is not convenient, as the result­
ing negative terms would invalidate the mixture model representation. On the 
other hand, we see that

OO

-  (>)*,
fc= 0
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where the (ck)k>0 are all positive. In fact, =  1, r.\ =  o and for k > 1,

a ^  a(a + 1)... (a + k — 1)
Ck =  T T  =  k\ '

Therefore, we can rewrite the power likelihood as

fp a (?/l:n) = Y\fp{Vi) X f p a(Vi)-
i=1

which is equivalent to

n oo

i= 1 fc;=0
As wre have done in previous Chapters, we then consider k\.n =  (Aq,. . . ,  kn) as a 
latent variable and rearrange terms to obtain

Jp(y\-.n, k l :n )  OC (T™ J p ( X i ) c ki
i=1

1 -
00 r i

J 2  W 3 eXP \ “ 2^2 (i/i -  Mj)2
J=1  ̂ 17

fcj.

We have changed the notation to emphasize that, even though / 1-u is not a 
density, the latent expression /  is, thus the proportionality sign. This latent 
likelihood remains a complicated expression, but we can now introduce latent 
variables — (Di}i : i =  1, . . .  ,n; l =  1-----, Aq) to substitute the term

1 “  H  W 3 eXP j “ 2^2 _  /b )2
J = 1  ^

by the latent expression

n w ° i ,i 1 — exp
(=i L

From which the desired term can be recovered by summing out the D\:n̂ :ki over 
the positive integers. Therefore, we now' have the latent model

/p(yi:n, fcl:n: A:n,l:fcJ OC <7na jj/p(y<) Cfci J ; W D,
i=l 1=1

1 -exp<J ~7^(yi - m j 2
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5.2 Posterior Inference via MCMC

Furthermore, the term fp(yi) can be dealt with in the usual way, which involves
introducing latent variables d\:n =  (d\....... dn). and replacing fp(xi) by the latent
term

It is easy to verify that summing over the latent variables, (di:n, ki:n and 
returns the (1 —a) power likelihood, with P uniquely characterized by the mixture 
weights (wj)j>i, the mixture means and the variance term a2.

At this point, we are essentially ready to undertake inference for the power 
likelihood, via MCMC.

5.2 Posterior Inference via M CMC

The joint latent model is complemented by the prior for the mixing probability 
measure P. Together, they provide all the variables which need to be sampled for 
posterior estimation, i.e. the latent variables, (di:n, ki:n and D i:n,i:fc4> the mixture 
weights and means, (wj)j>i, the mixture means i and the variance term
a2. This is achieved using an MCMC scheme with a Gibbs Sampler structure 
and Metropolis-Hastings steps.

5.2.1 Updating the Indices, dj and Dn

There is still an issue due to the infinite state space of the indexing variables 
di in and We can deal with this in the same way we have done before,
following Kalli et al. (2011). In order to reduce the state space for this variables 
to a finite set, we can introduce further auxiliary variables u\:n which interact 
with the dpn in the joint model through the indicating functions

Hence, we arrive at the full latent model, given by

i=i

1 [ui < e * * ) ,
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5.2 Posterior Inference via MCMC

for some £ > 0. We can do the same for the Di,n̂ :ki by introducing

1 K ;  < R iDi’1) ■

These variables then allow for finite choices and the easy sampling of the index 
variables. Hence, at each iteration of the MCMC algorithm, we need to sample 
each index from its full conditional distribution, given by

where ■Jl =  [ - £ _1logu,J and =  [ - ¿ T 1 log ?•>{,* J. These values of then
tell us exactly how many of the mixture weights and means we need to sample. 
That is, at any given iteration of the MCMC algorithm, a sampler with the 
correct target distribution would only need to sample these for j =  1 , . . . ,  J, 
where J =  max; z{ ./; , .7/ ,}. since none of the variables involved in the update step 
depend on the values beyond ,/.

5.2.2 Updating the Mixture Weights, wi:j

We next describe how to sample the mixture weights W\.j. As is well known 
these can be constructed from the independent beta distributed variables, V\:j, 
making wi — i\ and Wj =  v3 r i7'<j *  vf)  f°r 1 < j  <  J. The full conditional 
distribution for each Vj can easily be identified as

P(di =  j\ ■ ■ ■) oc Wj e^ exp

P (Diti =  j\ ■ ■ ■) oc Wj 1 — exp 1 (1 <  j < Ji,i)

f(vj| ■ ■ •) =  Be(l +  n.j +  Nj, C +  r?.t +  N f )

where
n I b (VJ

5 3  5 3 1 (D i'1 =nj =  5 3 1 (d i = j) ] Ni
i=  1

rij =  >J ' ) ;
71
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5.2 Posterior Inference via MCMC

5.2.3 Updating the Kernel Variance, a *

Before proceeding, it is convenient to introduce new auxiliary variables uu, for 
i =  1....... n and l =  1.........ki, which transform each product

kin
;=i

1 — exp
1

'2^2 (Vi ~  I1d ,a) 2

into a truncation term,
k.

jQ 1 (̂ ahl < 1 -  exp | -^ ( j fc  -  /¿dJ 2 j  J •

It is more convenient to work with the precision, r  =  a~2 and the full conditional 
distribution for r  is then given by

/(r I  • • • ) oc n (r )  tn ( l—n)/2 exp “ Ì  ? 1 (t >T)
¿=i

where
T — max f - 21° g ( 1 - y ) ; . =  1........ J =  1........, 1

l iVi-UDi,)2 J
Hence, if n (r )  is a Gamma distribution, then the conditional is a truncated 
Gamma distribution, for which numerous sampling routines are available. In 
particular, we use the latent variable approach described in Section 1.2.2.1.

5.2.4 Updating the Kernel Means, /n1:j

The sampling of the means /i 1:j for the Gaussian kernels is also not problematic. 
For each j , we must sample from the full conditional distribution

f(Hj\■ ■ ■) oc n(/xj ) exp j - ^  -  a )2 j 1 Uij G n"=14j,d

where Ajti =  ( - o c .  yt -  ajti] U [iji +  ajti, oo),

aj,i =  max - 2 r “ 1 log(l -  uiti) : A,* =  j\ l =  1, • • • : j

and Ajj =  (—00, 00) if 7̂  j  for every l. So, if the prior is a Normal distri­
bution, then the conditional here will be a truncated Normal distribution from 
which, once again, we may sample using, for example, the latent variable approach 
explained in Section 1.2.2.1.
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5.2.5 Updating the Latent Model Dimension, ki:n

Finally, we need to describe how to update each A:,. Since the dimension of 
the sampling space changes with A:,, we use the Metropolis-Hasting approach of 
(Godsill, 2001). We propose a move from ki to either ki +  1 or A; -  1, with 
probability 1/2 each. The move from ki to ki +  1 is accepted with probability

min < 1 c kj+1 

Cki
1 -  exp { - ¿ ( z / i  -  I

On the other hand, the move from ki to ki — 1 is accepted with probability

min 1 — exp
2 o ^ Vi ^ , ki)2

For the move upwards we need to allocate a value to Di^+i- Hence, we take 
Di,kt+i =  j  with probability Wj. This can be implemented straightforwardly, 
paying special attention to the case when ki =  0, for which we can only propose 
the move to kt +  1 (and not to ki — 1).

5.3 Illustrations

In this section we present some examples. The first one. where the data is simu­
lated from a known density, illustrates the behavior of density estimates based on 
the power likelihood with different values of a, as the sample size increases. The 
second example involves density estimation for a real data set. In both cases, the 
MDP model used is known to be consistent. The third and last example shows 
how the density estimate obtained using the “true” likelihood (a =  0) for an 
inconsistent model, diverges from those obtained using a > 0 which are known 
to be consistent.

5.3.1 Example 1: Consistent Model

We consider a basic simulation set up. Observations are generated from a bimodal 
distribution, defined as a mixture of three normal components with means =  
—1, //2 =  0 and /x3 =  3, with common variance a2 =  1, and weights ?/>i =  0.1,
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(a) n — 10

(b) n  =  100

(c) n =  1000

Figure 5.1: Estimated predictive density based on (1 — a) power likelihood, for 
data simulated from the MDP model with three components, and increasing 
sample sizes.
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w2 =  0.4 and tn:i =  0.5, respectively. To describe the settings for the model 
and algorithm, we took £ =  0.1 and the prior for the kernel means {Hj)j>i was 
taken to be Normal with mean m =  1.2 (roughly in the mid-range of the data) 
and variance t~x — 10. The purpose of this example is to illustrate the effect 
of increasing sample sizes on the density estimates obtained using the power 
likelihood with different values of n, when the model is consistent. Therefore, 
in order to eliminate any additional noise, we fixed the variance of the mixture 
components at the true value a2 =  1.

We estimated the posterior density for sample sizes of n =  10. n =  100 and 
n =  1000 observations, using the power likelihood, with a =  0.25. 0.5 and a =  
0 (the “true” Likelihood). Each time, we used a Monte Carlo sample size of 
N =  5,000, after a burn-in period of 10,000 iterations. Figure 5.1 shows the 
true density / 0 from which the data was generated, and MCMC estimates of the 
predictive density.

When n =  10, we can clearly see the smoothing effect of using a >  0. However, 
since the model is consistent, as the sample size increases, all the estimated 
densities eventually merge, as the posterior accumulates around the true density.

5.3.2 Example 2: Real Data

Here we consider the galaxy data which consist of the velocities of 82 distant 
galaxies diverging from our own galaxy. Once again, we took £ =  0.1 and the 
prior for the ([¿j)j>i was taken to be Normal with mean equal to the mid-range of 
the data and variance equal to the range. The prior for r  =  l/cr2 was chosen to 
be standard exponential and we defined a hyper-prior for £ which is Ga(0.5, 0.1).

Figure 5.2 shows a histogram of the data and the estimated predictive density 
for a =  0. 2/3000.4/3000 and 1/300. It can be seen that, for values of a close to 
0, the power likelihood density estimate approaches the density estimated using 
the “true” consistent model.

The first examples have served to illustrate that the use of the power likelihood 
does not highlight a discrepancy between the a =  0 “true” model and those with 
a >  0, which are known to be consistent. We now present an example where,
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Figure 5.2: Galaxy Data: Estimated predictive density based on (1 — a) power 
likelihood.

for a known inconsistent model, the a > 0 models clearly highlight a discrepancy 
with the 0 =  0 model and hence raise an issue as to the consistency of the “true” 
model.

5.3.3 Example 3: Inconsistent Model

The results found in the literature present conditions for consistency which are 
sufficient only. Therefore, in many cases, even when consistency for a model 
cannot be established, this does not imply it is inconsistent. Hence, if a model 
is chosen which does not satisfy these sufficient conditions, there would be some 
interest in diagnosing a possible case of inconsistency.

We study here the interesting example constructed by Barron et al. (1999) 
to show that posterior inconsistency can occur when nonparamctric densities 
are involved. The inconsistent model is described in section 1.3.3. Recall that 
the idea is to construct a prior which assigns equal probability to a set To of 
continuous densities and a set T* of piecewise constant densities. The role of the 
first set is to ensure the Kullback-Leibler property is satisfied, while the second 
ensures posterior probability does not accumulate almost surely on arbitrarily 
small Hellinger neighborhoods of the true density.

Both the prior and the posterior for this model are non parametric mixtures 
over the space of densities T  =  To U T*. Therefore, a posterior sample can be
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obtained using slice sampling techniques, introducing a latent variable to index 
the mixture component from which the density is sampled (see Kalli et ai, 2011, 
for details). When the latent variable takes the value 0, we obtain /  =  fg by 
sampling the parameter from the corresponding posterior density. In this case, 
the Hellinger distance to the true density is given by

I I( feJo)  = Vl-exp(-0/4).
When the latent variable takes a value N >  0 we know /  E Jy and the Hellinger 
distance, / / ( / . /o) =  v 2  —\/2 is constant. So we may calculate an MCMC esti­
mate of the Hellinger distance between / 0 and a realization /  from the posterior 
n n. Our results are shown in Figure 5.3. The horizontal axis corresponds to the 
sample size n, while the vertical axis shows the MCMC estimate of the Hellinger 
distance between fo and the predictive density, for different choices of a. We see 
that, for small n and small a, the behavior of the estimate is similar to that of 
a =  0. However, for n large enough, all estimates obtained using a > 0 approach 
the true density / 0, as expected from the consistency property. The estimated 
distance for a =  0, on the other hand, remains constant for large n, since the 
“true” model is inconsistent.

Figure 5.3: Inconsistent model: Estimated Hellinger distance between the true 
density / 0 and the estimated predictive density based on the (1 — a) power like­
lihood, for increasing sample size

Hence, in this example, if the model were not known to be inconsistent, 
the plots of posterior predictive distributions obtained using the true likelihood
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(o  =  0) would look different from those obtained with choices of a > 0. This 
discrepancy would or should lead the practitioner to question the appropriateness 
of the model.

5.4 Discussion

With the mixture models now developing at a pace, both to multivariate versions 
and regression models, it is becoming harder to establish conditions for consis­
tency. On the other hand there is no work to be done in this direction if one is 
willing to work with an a > 0, however small.

While using a mixture model with a power less than 1 for the likelihood 
solves the problem of consistency, it brings up the issue of how to do Bayesian 
inference via MCMC. Furthermore, other motivations can be found for basing 
the inference on a smoothed version of the likelihood, obtained by raising it to 
some power smaller than one.

In this chapter, we have demonstrated how power likelihood based inference 
can be done for a nonparametric mixture model. The trick is to see the power 
likelihood as

Rn(f) x R~a(f)

rather than

and to use a power series expansion for b~a, valid for any 0 < b < 1, which is 
guaranteed to have positive weights. We have shown how the likelihood for a 
MDP model can be appropriately manipulated to ensure we obtain a quantity 
bounded by 1. There are other examples for which the principle holds. We can 
consider, for instance, an exponential model where Kg(y) — Oexp(-yd). In this 
case, we can use

Ko{y) oc
0exp(—yO) 

y~le_1

which is, again, bounded above by 1. All of this are examples of the general 
latent variable approach which is the driving theme of this thesis.

For a consistent model and small a. there is no difference between using the 
likelihood raised to the power (1 — a) when compared with the “true” likelihood
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5.4 Discussion

(a =  0). Yet, for a choice of 0 <  a <  1, the model is proved to be consistent 
(Walker and Hjort, 2001), therefore, for large enough n. the estimate should move 
away from the estimate produced by using a =  0 if the model is inconsistent.

Since results for consistency involve conditions which are sufficient only, there 
are models for which consistency may be present but not theoretically verifiable. 
In such cases, we propose the use of the power likelihood for inference or for 
checking for discrepancies with the true model. Results can then be compared 
between a =  0 and different values of 0 < a < 1. If density estimates are similar, 
the estimation produced by the “true” model may be considered adequate. How­
ever, if the estimates seem different, this may be considered as a warning sign 
that the model may not be consistent. Even for inconsistent models, the power 
likelihood may be used to produce a consistent estimate of the predictive density 
or to assess the quality of an estimate obtained using the “correct” likelihood, by 
comparison.
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Chapter 6

Consistency for Markov Models

transition density of time homogeneous Markov processes. To date, this remains 
somewhat an open problem, due to the lack of suitable metrics with which to 
work. Current results derive from generalizations of consistency results for the 
i.i.d. case and additionally require some non-trivial model assumptions. We 
propose a transformation of the Hellinger distance between join densities which 
does not define a metric in the space of transition densities, but is enough to 
define suitable neighbourhoods around the true transition. We derive conditions 
for posterior consistency which can be applied in general settings and show that, 
under reasonable assumptions, consistency with respect to such neighbourhoods 
is strong. In particular, we apply our result for consistency to a general family 
of nonparametric time series models. Results and illustrations are taken from 
Antoniano-Villalobos & Walker (2012a).

Consider an ergodic Markov process Y =  {Yn} n>0, defined on some separa­
ble filtered space (Y .A , {A „}„>o). Denote by Po the true law of the process. 
Throughout this Chapter, all probability statements will be made with respect 
to Po-

Assume the process is time homogeneous and let /o  be the true transition den­
sity for Y, with respect to some reference measure v. Let be the corresponding 
ergodic measure of the process. That is, for every A E A

In this chapter we are concerned with the problem of Bayesian consistency for the
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and for every integrable function h 6 Li(/y0)

h(y)du0(y) a.s. when n —> oo.

In particular, if the process has a stationary density fo, then the integral in the 
limit is equal to

I  % )/o (?y M d y ). (6.1)

If fo is fixed but unknown. Bayesian inference begins by constructing a prior 
distribution El over the class 7  of transition densities on (Y. A) with respect to 
the reference measure u.

The predictive density for Yn+1, given a sample yo:n =  {yo, • • •, yn}, is

fn{'\yn) = E[/(-|yn)|y0:n] = J /(• |y„)dIT(/),

where IIn denotes the posterior probability given by

IT (.4) SA H M m u )
SlUfi'iuif) '

and

m í ) = n
i=1

M M  i)
foiYilY^)

is the likelihood ratio. In order to simplify the notation, here and in the follow­
ing, we assume that Vo is either a fixed known value i/o, or has a known initial 
distribution.

Accurate estimation of the transition density / 0 and the study of posterior 
consistency are therefore important in the context of prediction for Markov pro­
cess models.

As in the case of consistency for i.i.d. observations, (Section 1.3), the general 
Markov process model is said to be consistent for the transition density f0 if 
the posterior mass accumulates around f0 as n increases. More formally, 11" is 
consistent at J0 if for every suitable neighbourhood li of J'o, we have

Un(Bc\Y0, . . . .Y n) ------ > 0 [Po] — a.s. (6.2)n̂ foo
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Just as with densities, the concept of consistency for transition densities depends 
on the definition of the neighbourhoods. This poses a challenge, since the metrics 
and semimetrics used to define neighbourhoods in density spaces do not adapt 
to transition or conditional density spaces in a straightforward manner. The 
literature concerning consistency for Markov processes is therefore limited, due in 
great part to the difficulty in finding adequate topologies and distances between 
transition densities. A straightforward generalization of the Kullback-Leiblcr 
property for transition densities is possible through use of the the ergodic measure, 
as we explain in Section 6.2.3 below. However, it is not clear how the Hellinger 
distance or the L\ metric can be generalized for the space of transition densities 
in a way that makes them useful for the search of sufficient strong consistency 
conditions.

To highlight the problem of extending the Hellinger distance between densities 
to the space of transition densities, consider, for a fixed x  £ Y and two transition 
densities J\ and / 2 in 1, the squared Hcllinger distance between J\(-\x) and 
/ 2(-|x), given by

ff2{fi(’\x),f2 (’\x)) = ^ [  (y/My\x) ~ Vh(v\x)) M v)
1  J . _____________  (6.3)

= 1  ~ j  Vf i (y\x )/2 (y\x)diy(y).

As it stands, H can not be used to define a topology 011 J", as it depends on 
the current value of x. In order to adapt this and other quantities commonly 
used for densities, to define neighbourhoods in a space of transition densities, the 
dependence on x  must somehow be eliminated.

A similar problem appears in the study of posterior consistency for regression 
models, where a distance between densities for the response variable y depends 
on the value of a covariate x. In this context, Ghosal Sz Roy (2006) and Choi h  
Schervish (2007) define a distance between two conditional densities /1 and / 2 as

M / i , / 2) =  I  H {h ( -\x ) . f2(-\x))dQ(x),

where Q is the distribution for the covariate. The definition of an adequate 
metric in terms of the Hellinger distance is due to the availability of the measure
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Q when assuming the covariates are generated stochastically, i.i.d. from Q and 
independent of the response variable y. In the Markov process case, however, an 
adequate choice of integrating measure is unclear.

Tang & Ghosal (2007b) propose different ways of defining a topology on a 
transition density space. The first is based on the notion of distances on the 
invariant measures associated with each transition and results in a weak topology. 
Alternative ideas arise from using integrated and maximized distances between 
conditional densities respectively, resulting in strong types of neighbourhoods 
in both cases. In the same paper, the authors prove strong consistency in this 
sense for a specific family of transition densities based on Diriclilet mixtures, by 
generalizing the sieve and uniformly consistent tests approach to consistency for 
i.i.d observation (1.3 of the Background chapter). Ghosal & Tang (2006) extend 
this result to a general family 3~ of transitions, providing it is compact with respect 
to the supremum Hellinger distance,

=supH(fi(-\x),f2(-\x)). (6.4)
X

Compactness with respect to Hs is a very strong condition, as a simple exam­
ple may show. Consider a simple normal AR(1) model and let T  =  {A (̂-|Gt , 1) : 
9 6 0  C  R }. The Hellinger distance between transition densities in this case is 
given by

Il2 {fe(-\x),fo*(-\x)) =  1 -  exp j - i x 2( t f - f r ) 2j  .

Therefore, Hs(fo- fe>) =  1 for every 9 ^  9*, so the required compactness is 
achieved only when 0  is finite; a rather restrictive condition for an already lim­
ited model.

Constructing an adequate sieve and proving the existence of a set of uni­
formly consistent tests is difficult in general. Therefore, in order to remove the 
compactness assumption, Ghosal & Tang (2006) leave this approach and instead 
generalize the martingale-based result of Walker (2003, 2004) (also presented in 
section 1.3). By assuming only the separability of 3\ they are then able to prove 
consistency with respect to neighbourhoods of the type { /  : d(f. f0) < e } , where

d(f-fo) =  in f / /2(/(-|rr),/o(-|x)). (6.5)
X
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6.1 Strong Neighbourhoods

Some families of transition densities can be found for which this type of consis­
tency can be considered strong enough. In general, however, neighbourhoods like 
this correspond to a weak topology. Once more, we illustrate this through the 
simple AR(1) example. When x =  0, for every 0 G  0  we have fo(-\0) =  /V(-|0.1), 
yielding

inf H2 (fo('\x),f0*('\x)) =  0 for any 9.6* G  0 ,
X

and therefore d does separate points in 7.
Ghosal & Tang (2006) mention this problem, which extends to the nonlinear 

autoregressive model f(y\x) =  tj(y — t/;(z)), whenever % is a location shift of <j. 
Therefore, non trivial conditions must be imposed on a model if existing results 
are to be used to guarantee strong consistency.

Our main contribution in this Chapter is the definition of a system of neigh­
bourhoods around the true transition density, Jo, based on a natural adaptation 
of the Hellinger distance between bivariate densities. Each transition density 
/  G 7  is extended to a family of bivariate densities. The distance between f  and 
/o is defined as the smallest distance between sets of extended bivariate densities 
(to be explained in section 6.1). This, as we shall see, guarantees the defini­
tion of strong neighbourhoods around Jo, under reasonable conditions satisfied 
by general families of nonparametric models. Neighbourhoods are strong in the 
sense that they separate Jo from other transition densities in 7, under conditions 
milder that those found in previous literature.

We then find sufficient conditions for consistency by extending the martin­
gale result from Walker (2004), assuming only separability of 7  with respect to 
the supremum Hellinger distance Hs. We illustrate this through the problem of 
transition density estimation for a family of nonparametric dependent mixture 
models.

6 .1  S t r o n g  N e ig h b o u r h o o d s

In this Section, we define an operator d : 7 x  7  —> [0.1] and discuss the suitability 
of the neighbourhoods Re =  { /  G  7  : d[f,f0) <  e} in the study of posterior 
consistency for Markov processes.
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6.1 Strong Neighbourhoods

Consider the set 1  of bivariate densities on (Y x Y, A <8>.A). Then, for every 
pair of functions f\. / 2 £ T, the squared Hellinger distance between them is given 

by

b/2(/l,/2) =  ̂I  (y/Tl- \/X) d(l/ X  I/) = 1 -  J  J  y [ J J ^ V X  I/).
For each value x £ Y, and transition density /  £ T, a density /  in T  is defined 

by
/(* ,v l* )  =  /(^|y)/(y|®) V (2, y ) £ Y x  Y.

Therefore, for any / i . /2 £ T, we can define

rf(/i./2 ) =  inf dx(fi, / 2), ( 6 .6)

where dx denotes the Hellinger distance between the two corresponding bivariate 
densities in T, i.e.

< £ (/.,/> ) -  « ’ (/•(•.-I* )-ft - .- l* ))

=  1 ~  J 1  I).

It is important to emphasize the definition of <1 in (6.6) differs from that 
of Ghosal & Tang (2006) (equation 6.5), in that the integral for the Hellinger 
distance in our definition is taken with respect to the product measure v x u, 
and not with respect to v. In other words, it minimizes the Hellinger distance 
between bivariate, rather than univariate densities. The effect of this can be best 
understood by revisiting our example involving the simple normal autoregressive 
model. If /<?(• |.t ) =  N(-\0x. 1) as before, the squared Hellinger distance between 
the univariate functions fe(-\x) and fg*(-\x) ’s given by equation (6). The infimum. 
reached when x =  0 is d(f<>, fir) =  0, even if 0 ^ 0*.

On the other hand, the squared Hellinger distance between the bivariate func­
tions fe{-, -|x) and /<>*(•, -|x) is

dl(fe, fe-) — 1 V4 + (o -  e*y
: exp

, , . 2

- y ( 0 - n 2
2(1 -60*)

4 -h (6> — 6>*)2J

therefore,

inf d?x(foJ0')
X

4{fe,fo-) =  l -
2

\/4 +  (0 -  <>*)2='
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6.1 Strong N eighbourhoods

In this case, d actually defines a distance, so it follows that d(fo- fo*) > 0 whenever 
|0-0*| > 0 .

The following lemma gives a condition under which d allows us to distinguish 
/o from any other transition density, even when it does not define a distance on 
9\ In other words, if the condition is satisfied, Be =  { /  £ T : d ( / , /o )  <  c} 
defines a strong neighbourhood around /o, for any e > 0.

Lem m a 4 Assume 1  is such that for every f  ^  fo in T,

inf j  H2 (f(-\y),fo(-\y))fo{y\x)dv(y)>0. (6.7)

Then, for every £ > 0, BE =  { /  E T  : d(j\ Jo) < e} defines a strong neighbourhood 
around Jo in the sense that

d{f,f0) = 0 * * f  =  f0.

P r o o f  It is clear that /  =  /o =>• d[f. /o ) =  0. Let /  G J  and x £ Y. We first 
observe that _______

/ / 2(/(-|x),./o(-|x)) =  1 -  Eq /(y|®)
Mv\x)

where E0 denotes the expectation with respect to jo- We may also observe that

dl{fJo) = l - E o
1 f(z\y)f(y\x) 
Jo{z\y)Jo(y\x)

x

Now,

E0 1 f(z\y) f(y\z) 
fo(z\v)\ fo(v\x)

=  En

— En

En ' f(z\y) 
fo(z\y)

1 f(y\x)
fo(v\x)

x

X

Since 0 < 1 — / / 2 (./ (-1 /y) - ./()(■ |y)) <  1, from the Cauchy-Schwartz inequality and 
Eo [f(y\x)/f0(y\x) | x] =  1, the above expression leads to

En
' f(z\y)f(y\x) 
Mz\y)f0(y\x)

1

X H—
1

m o H2{f(-\y),fo{-\y)) \x
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6.1 Strong Neighbourhoods

and so

Thus,

■£(/,/„) > i - 1 / 1  -Eo ii2(n-\y) -Mv))\x

d ( f . Jo) = o inf Ed H 2{f(-\y)J0{-\y)) | x
> 0.

=  0. ( 6.8)

Condition (6.7) ensures this only happens when /  =  / 0, completing the proof.

A better understanding of this result derives from the realization that, for con­
dition (6.7) to be violated, it is not enough that / 0(-|x) becomes a mass function 
when we take the infimum over x; at the same time its support must include only 
the values y E Y for which f(-\y) =  fo(-\y)- The following corollary enables the 
use of neihbourhoods based on d for the study of strong consistency for many 
Markov models found in the literature and presented as an illustration of our 
results in section 6.3.

C orollary 1 Assume that for every transition density f  E 1, f(-\x) is a con­
tinuous function of x. If there exists a density function g with full support over 
(Y .A ) such that

inf f0(y\x) > $g(y) My 6 Y, (6.9)
X

for some ft > 0, then
d ( f , f o ) = 0 < * f  =  fo.

P r o o f  We only need to prove d[f. / 0) >  0 whenever /  ^  f0.
Let /  /  /o in 1  and define, for e > 0,

AE =  {y :  H2 (f(.\y),f0(.\y)) >  e}. (6.10)

The space of density functions over (Y, A), to which f(-\y) and ,fo(-\y) belong, 
is separable with respect to the Hellinger distance, so Ae is a non empty set. It 
follows form the continuity of the transition densities (with respect to x), the full 
support of g and condition (6.9), that

inf Po(Adx) =  inf /  f0{y\x)dv(y) > 0 g(y)dv(y) =  PP9(AE) > 0.



6.2 Posterior Consistency

Therefore

inf f  H 2(f( -\y)J0(-\y))f0(y\x)dis(y) >  inf i  H2(f(-\y),f0(-\y))f0(y\x)dv(y) 
x J x Jae

>  einf /  f 0(y\x)du(y) >  0. 
x Jae

( 6 . 11)

The result follows from Lemma 4, thus ending the proof.

Notice that

dlXhJ'i) =  H2 (f1 (-\x).f2(-\x)) +  j  H2 (fi(-\y),f2{-\y)) \J fi(y\x)f2{y\x) u{dy).

And using similar arguments to those in the proof of Lemma 4, we can see that

4 ( / i , / 2) <  2H2(f1 , f 2). (6.12)

This inequality between the squared Hellinger distance on bivariate conditional 
densities and the supremum Hellinger distance on univariate conditional densities 
is useful for the consistency result in the next Section.

6.2 Posterior Consistency

In this Section we establish the basic notation (following the setup of Ghosal &; 
Tang, 2006; Walker, 2004) and present the main Theorem regarding consistency.

6.2.1 Preliminaries and Notation

Let yi:n =  (< /],..., yn) denote a sample of size n from IP0 (formally, from the 
restriction of Po to A n). The likelihood ratio for a transition density /  £ J  is 
denoted by

n r / \ \
R n ( f ) = U

/o (y ib i-i)
Let 11 denote a prior on “J  and define the integrated likelihood ratio over a mea­
surable subset A C  1  as

Ln =  Ln.4 =  /  R n W M -
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6.2 Posterior Consistency

The posterior mass assigned to A is then given by

rP(A) =  y T
* 71n

(6.13)

where In =  Ln3 =  /i„(/)n(d/).
Finally, we define the bivariate predictive density, with posterior restricted to 

the set A as

Below, we provide sufficient conditions for posterior consistency, following the 
martingale approach of Walker (2004) for the i.i.d. case. The equivalent, in this 
case, of the key identity (1.137) is:

Notice that in this case, the ratio is defined with a step of size 2, while in 
the i.i.d. case a size 1 step is sufficient. Furthermore, {lj2n} is a martingale 
with respect to {.A2«}, since Eo^l-Ao] =  Lo =  n (A ) and for every n >  1, 
Eo[T2„ +2|A2„] =  L2nE0[L2n+2/L 2n\A2n] =  L2n. Analogously, {L2n+1} is a martin­
gale with respect to {A2n+1}, since E0[L2n+3|‘A.2r1+i] =  L2n+l for every n >  0.

The posterior mass assigned to A C T, given a sample of size n, is defined 
by the ratio (6.13) and the different results regarding posterior consistency found 
in the literature deal with the numerator and the denominator in this expression 
separately. We do the same here.

6.2.2 The Numerator

The following Lemma regards a general property, essential for the treatment of 
the numerator in equation (6.13).

where

T71+2 J n A Ì U n + 2 : Vn-1-1 \ V n) (6.14)
■L'n Joiyn+zlljn+i l \fjri)
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6.2 Posterior Consistency

Lem m a 5 For each n > 1

En n+2 | An I < V K h - d 2yn(fnA, f0)

P ro o f Notice that Ln is [An]-measurable, so

Eq [\/Ln+2 -An,] = En
Jn

Ln+2

Fy-j
A r

Applying the identity (6.14), and rearranging terms, we obtain

Er n+2 I A n =  V L n E, /nn(?/n+2, J/n+l|?/n)
/ o  (l/n+2 ll /n + l) Jo  (l/n+1 |f/n)

By applying the definition of dx for x =  yn, we arrive at

A r

Er \/~Fn+ 2 | A n \J' L n 1 dyn {^fnA-, ,/ o )

This completes the proof.

Consider a set A of transition densities. If we assume T  is separable with 
respect to some distance d*, then for every 5 > 0, we can find a d*-cover for A of 
size 5. That is, a collection {Aj}j>i such that

OO

.4  C  U  A t
j=1

and for each j  there exists f) E A for which

Aj = { f :d' ( f , f t )<6} .

Lem m a 6 Let Ae C  T be a set of transition densities d-bounded away from /o,

Ae =  { f  G T : d ( / . / 0) >e} .

Assume T is separable with respect to the supremum Hellinger distance, Hs and 
that

(6.15)
i=i
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6.2 Posterior Consistency

for some Hs-cover , {Aj}j>i for Ae, of size < e/y/2.
Then, for some h >  0

CO

^ 2  \JLnAi <  exp(-frfc), 
j=i

[P0]-a.s. for all n sufficiently large.

P ro o f Let {Aj}j>i be a cover satisfying assumption (6.15). Let 7 =  e — \/28 >  0. 
For simplicity, denote Ln] =  LnAj and fnj = fnAj ■

Observe that d(f,g) <  dx(f,g) <  y/2IIs(f,g), for any two densities f,g £ 3  
and x £ Y, by the definition of d and equation (6.12). Therefore, for each j,

dynifnj, fo)  ̂̂ 2/n(/j’ /o) _  dyn(fnj) fj) — d(fjjo) — V2Hs[fnj, fj) ,

and so

d y „ { fn j  > /o) 7 (6.16)

We know from (6.14) that

Ln+2j = Lnj
f n j  (Vn+2-i Vn+11 Vn)

/o {Vn+21 V n + l) /o (?7n+l | Z/ri)

with L0j =  II(/ij) by definition. Taking conditional expectations and applying 
Lemma 5, we get

En 'y/L n+2j Ar < \/L dlAfnvfo)} < y / L ~ { l - T 2)-

Now, if we let k be the smallest integer larger than ra/2, by iterating over k 
we find

E0 s fL ^ i ]  < y i w  (1 -  72)1 < (1 -  72) (”+W2-

Markov’s inequality implies that, for any b > 0,

Pn ^ 2  > exp (-Tib) <  exp (nb) (1 -  g2)n/2 yJTl{Aj).
j = i J i= i
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6.2 Posterior Consistency

Finally, taking b <  — log(l — 72)/2, by condition (6.15), we arrive at

OO
Y \[Kj < exp(-nfc) [P0]-a.s.
3 =1

for all large n.

If T  is not separable with respect to the supremum Hellinger distance, it is 
still possible to achieve the result, whenever d defines a distance over 3\

Lem m a 7 Let Ae C T be a set of transition densities d-bounded away from /o,

A£ = { f e  S':<*(/./„) >e}.

Assume the operator d defined by (6.6) is a distance with respect to which J is 
separable and

j) < oo, (6-17)
3 = 1

for some d-cover , {A ,}j> i for A£, of size S < e/y/2.
Then, the result of Lemma 6 still holds.

P r o o f  The inequality (6.16) is derived from the triangle inequality for d and the 
observation d[f,g) < d.x(f,g) for all f,g G T and x E Y, since

dyXfnj, /o) >  d(fnj- fo) > d(fj.J0) -  d(fnj. fj) > 7. (6.18)

The rest of the proof follows as the proof for the previous lemma.

6.2.3 The Denominator

For every x E Y, the Kullback-Leibler divergence from /o(-|x) to /(• |x) is given 
by

K {f(-\x),fo(-\x)) =  I  log Mv\x)du(y). (6.19)

Once again, an adequate generalization of the semimetric must be found, to 
remove the random element x from (6.19), before a Kullback-Leibler property for 
transition densities can be defined. Since the Kullback-Leibler property regards
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6.2 Posterior Consistency

the prior, this time it is convenient to define a semimetric on J  by integration of 
the additional variable, since in the context we use the expression, such variable 
does not represent an observation. A common practice is to exploit the ergodicity 
of the process to perform the integration.

The integrated Kullback-Leibler divergence between fo and /  is defined as

K { f J o )  =  j  K(f( -\x ) , f0{-\x))dv0(x).

In particular, if the stationary density fo is well defined, then

K (f .Jo )  = E 0 [K{f{-\x),fo(-\x))] =  j  K{f ( -\x ) , f0(-\x))fo{x)du(x).

Lem m a 8 Assume the prior n  has the Kullback-Leibler property at fo, that is

n ({ /  : K(fJo)  <  e }) >  0 for all £ > 0.

Then for every c >  0 and sufficiently large n

In >  exp(—nc) [Po]-a.s.

The proof follows from Fatou’s lemma and the law of large numbers for ergodic 
Markov processes (see Ghosal & Tang, 2006; Tang & Ghosal, 2007b).

6.2.4 Posterior Consistency Result

We now have everything we need to present our main result.

T heorem  4 Let Ae be a set of transition densities d-bounded away from fo,

Ae =  { f e J : d ( f J o ) > e }

with d defined by (6 .6). Assume n  has the Kullback-Leibler property and

£  yJllfAj) < oo, (6.20)
3=1

where one of the following is true:
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6.3 Illustrations

i) The operator d defines a distance on T  and is a countable cover
for Ae of d-size d < e/\/2 ;

ii) or is a countable cover for A£ of lls-size 6 < c/y/2.

Then
Un{Ae) 0 [P0]-a.s.

P r o o f  Let {A ,}  be the cover satisfying condition (6.20), and denote Lnj — Ln/\j 

for simplicity. Then
OO OO ______________

n n(Ae) <  IT  (A ,) <  Y ,  y /Un(Aj)
3=1

OO _____________  OO

=  E v / W ' "  =  , - / 2 E V ^ -
j = 1 3=1

Applying Lemmas 8, and 6 or 7 as required, we have II"(.4£) < exp{ —nb}/exp{—nr} 
for every c > 0 and b < — log[l +  (e—v/2d)2]/2 . Therefore, n Tl( /l£) ->■ 0 as n -4- oo 
exponentially fast, [P0]-a.s.

6.3 Illustrations

6.3.1 Example 1: Normal Autoregressive Model

Recall once more the simple parametric model mentioned in Section 6.1, with 
transition density given by

MVn+ilVn) =  N(-|0yn, 1) 9 e ©  C  R.

This corresponds to the normal autoregressive AR,(1) model

Tn+1 =  9Yn +  tn; e.n ~  N(-|0,1), (6.21)

which is known to be stationary only for 0 6 (0,1). This is one of the simplest and 
common time series models, yet there is no straightforward result guaranteeing 
strong consistency for the transition densities that can be applied to it when the 
stationarity assumption is not satisfied. In particular, Ghosal & van der Vaart
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(2007) provide results for consistency, only when the process is stationary, while 
Ghosal k  Tang’s 2006 results guarantee strong consistency only when 0  is com­
pact. Other ideas, based on the construction of sieves and uniformly consistent 
tests for adequate metrics, would require a careful study for each proposed prior.

On the other hand, the separability of R makes it straightforward to check 
if a prior II on 0  satisfies the conditions of Theorem 4 and, as we mentioned 
before, the operator d defines a metric on the space 7  of transition densities for 
this particular model, even if 0  =  R.

Recall that

d{foJr) =  l -
2

V 4 + ( 0 - 0 - ) 2 '
(6.22)

Therefore, for every 6 >  0,

\0-0*\<8 =  2 y / ( l - 5 * ) - * - l  => d2(fo, /»*) <  6. (6.23)

so a countable d-cover of size 4 for 1  can be defined in terms of a cover of size S 
for R in the following way:

=  +  3 /2 )5) C R ; A j  =  {fg : 9 € B j } \  j  e l .

By symmetry, in order to prove
OO __________  OO _________

d n ( f , e Aj) = Y ,  VWeipKoo
it is enough to show

J2 \Ĵ ( 0  e Bj) < oo,
3=  0

which can be easily verified for any particular choice of f l .

6.3.2 Example 2: Nonparametric Mixture Model

Consider a time series model with transition densities given by

f(yn+i\yn) =  f K(yn+l\yn,9)dPyn{9), (6.24)
Je
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where K (-|0) is a parametric density on Y, for every 0 6 0  and { Px}xe y is a family 
of mixing probability measures on 0 . In the most general case, the Px may be non 
parametric and the prior II placed over them is usually some dependent measure 
valued process. Models of this type are becoming common in the literature; some 
of them can be found in e.g. Mena & Walker (2007, 2005) and Marthiez-Ovando 
& Walker (2011). In particular, the stationary time series model constructed in 
Chapter 3 has this general form.

The family “J  of transition densities of interest for this type of models is defined 
by the support of the prior II.

Assume a sequence of observations {yn}n>o is generated from a time homo­
geneous Markov process with transition density /o £ 3". In other words, there is 
some probability measure Pq such that, for every n,

.foiUn+ilUn) =  /  K(yn+i\yn,9)dPo(0\yn). (6.25)
Je

Assume that
inf K (y | x, 0) > /3g(y), V « /6 Y .0 6  0 , (6.26)

X

for some 3 > 0 and a density function g with full support on Y. Then for every 
y,x £ Y,

fo(y\x) > 3 [  g(y)3P0{9\x) =  3g{y). (6.27)

If additionally, fo(-\x) is continuous on x, then the conditions of Corollary 1 are 
satisfied and the operator d can be used to define strong neighbourhoods around 
/ q. Under this assumptions, strong consistency follows for any prior II for which 
the conditions of Theorem 4 hold. The verification of consistency is therefore 
reduced to checking conditions on the prior.

Note that condition 6.26 hold whenever the state space Y and the parameter 
space © arc compact. Therefore, the results of this Chapter can be applied to 
the general stationary model of Chapter 3 to prove strong consistency, for many 
choices of parametric kernel. The particular Gaussian kernel, however, does not 
satisfy this condition, so further analysis is required before consistency can be 
assessed.
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6.4 Discussion

In this Chapter, we present a result which guarantees consistency of Bayesian 
transition density estimates, for general Markov models. We prove that the 
Kullback-Leibler property, together with a single additional condition on the prior 
distribution for the model, are sufficient to guarantee consistency, in the sense 
that the posterior distribution accumulates all its mass around ^-neighbourhoods 
of the true transition density /o . The opperator d. which we define, does not 
constitute a distance on the space of transition densities. It does, however, al­
low the definition of a neighbourhood system around the true transition density 
generating the data. We provide conditions on which such neighbourhoods are 
strong, in the sense that d(f0. f) > 0 whenever f  ^  f0, therefore allowing us to 
uniquely identify fo-

Our consistency result generalizes the martingale approach of Walker (2003, 
2004) for i.i.d. observations. It succeeds in providing a single set of sufficient con­
ditions which need to be verified for any model, without the need for constructing 
sieves and uniformly consistent tests. A previous result, due to Ghosal k  Tang 
(2006). provides sufficient conditions for a somewhat weaker topology. Our main 
contribution is the definition of the d-neighbourhoods which provide a more use­
ful form of consistency for more general classes of Markov models. Future work 
can be carried out to more accurately describe the conditions on the family of 
transition densities in the Kullback-Leibler support of the prior, for which the d 
operator defines strong neighbourhoods.

The key idea behind our consistency result is to use the Markov dependence 
structure of the data to construct a system of neighbourhoods, based on the 
Hellinger distance between the joint densities defined by the two step transitions. 
This idea can be easily extended to higher dimensions, thus providing consistency 
results for higher order Markov models. Furthermore, similar ideas could be ap­
plicable for regression models, or in general, for the estimation of any conditional 
density.
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Chapter 7

Discussion and future work

The driving theme of this thesis is intractability in Bayesian models. The problem 
is not new, and throughout the years, many methods have been developed to deal 
with it. Some of them rely on approximations for the likelihood functions, for the 
posterior densities of the model parameters, or for point and interval estimates 
directly. A favoured approach consists of MCMC methods, in which Monte Carlo 
estimates are produced by posterior sampling through a Markov chain construc­
tion, of which the equilibrium distribution coincides with the desired posterior 
density. In many cases, such constructions are enabled or facilitated by the in­
troduction of auxiliary variables, resulting in latent models for which posterior 
simulation can be achieved. An emphasis is placed on the definition of exact sim­
ulation methods, for which no approximation error is introduced; Monte Carlo 
error is known to be well behaved, and therefore preferred over a fixed approxi­
mation error.

Various ideas can be found in the literature to deal with intractable posterior 
distributions; many of them can be applied to achieve exact posterior simula­
tion when all random objects are finite dimensional. When infinite-dimensional 
spaces are involved, things get more complicated. An exact simulation algorithm 
for diffusion processes was recently developed by Bcskos et al. (2006b) which 
enables exact posterior simulation for parametric diffusion models, in which the 
state space for the diffusion paths is a functional space. Several methods exist 
which enable posterior inference for Bayesian nonparametric models with a stick­
breaking representation (see e.g. Escobar, 1988; Kalli et al., 2011; MacEachern Sz
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Muller, 1998; Neal, 2000; Papaspiliopoulos & Roberts, 2008). These are examples 
of inference methods developed for intractable models in the presence of infinite- 
dimensional quantities. Each construction is specific to the model at hand and not 
applicable in other situations. In the present work, we approach the problem of 
inference for this type of model with infinitely-generated intractable components. 
The key is to use a power series representation for the intractable functions and 
then introduce the exponents as auxiliary variables for a latent model. Once this 
is done, we arc able to profit from existing methods to construct viable MCMC 
schemes for posterior simulation.

The general idea we propose is applicable in a wide range of situations. We 
illustrate this through various examples. In Chapter 2, we deal with inference 
for discretely observe diffusions and show our series expansion latent variable ap­
proach to be equivalent to the auxiliary variable scheme implicit in Beskos et al. ’s 
exact simulation method. Chapters 3 and 4 propose novel nonparamctric time 
series and regression models, respectively, for which dependent mixture weights 
are constructed via normalization. Even though the construction is simple, only 
the finite mixture versions of these models have been used before, since no infer­
ence method was available for the infinite versions. In Chapter 5 we illustrate the 
use of our method for inference based on the power likelihood of nonparametric 
models. At the end of each chapter, we included a brief discussion on the uses 
and possible extensions for each model. We now proceed with a more general 
discussion.

The models presented in Chapters 3 and 4 are clearly related, the first out; 
being an autoregressive version of the second. For each model, however, we chose 
the parametrization that better suited the study of relevant model properties: sta- 
tionarity for the time series; mean curve shape for the regression. For illustrative 
purposes, we chose to develop the time series model in a simple form. However, it 
should be evident from the regression model construction, that a generalization is 
relatively straightforward. We can, therefore, consider the definition of multivari­
ate time series, with combinations of discrete and continuous variables; covariate 
dependent time series; or state-space models, in which time and other covariates 
can be introduced in the joint mixture model, resulting in complex conditional 
distribution structures. Each of these generalizations would surely present its
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own challenges, but we believe our latent variable and MCMC approach provides 
a good starting point for the analysis of a new family of dependent and time 
dependent processes.

An interesting observation arises from the analysis of a discretely observed 
diffusion path using the stationary model of Chapter 3. Namely, that a flexi­
ble time series model can be a good alternative to the use of diffusion models, 
in situations where the theoretical framework does not suggest a specific' form 
of the diffusion and drift coefficients, or an interpretation of the diffusion model 
parameters. Since diffusion processes are defined through the infinitesimal charac­
teristics of their paths, which can not be observed in real situations, a dependent 
nonparametric process may be better suited for statistical inference. Further­
more, applying the ideas presented in Chapter 5, inference could be achieved for 
a smoothed version of the likelihood, a power-likelihood, thus reducing the effect 
of noisy observations, and producing consistent estimates.

Finally, in Chapter 6, we present a result for Bayesian consistency of transition 
density estimates for Markov models. We find a set of sufficient conditions under 
which a strong type of consistency can be proved, applicable in particular to 
the general family of Markov models defined in Chapter 3, provided a suitable 
choice of the parametric kernel is made. Some work is yet to be done, before the 
result can be applied for more general kernel choices. However, we believe the 
idea of defining neighbourhoods with respect to distances on extended spaces, 
this case, the Hellinger distance over joint densities, is worth exploring. We will 
continue to study this type of quantities, and their potential for defining strong 
neighbourhoods around conditional densities.

As we have mentioned several times thorough this work, we do not claim to 
have exhausted here the subjects of estimation for intractable models, or posterior 
consistency for dependent densities. We have merely set the first stone over which 
we expect to build and, hopefully, succeed in developing better and stronger 
results.
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