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Abstract

In recent years, great cffort has been placed on the development of
flexible statistical models, which can capture the rich and diverse
structures found in real data. Complex models are often intractable,
and they require non trivial techniques for inference. In the Bayesian
setting, the most common intractability problem is related with nor-
malizing constants which cannot be calculated directly. In this case,
MCMC methods are a useful tool for posterior simulation of the model
parameters, and many ideas have been developed to enable the con-
struction of the chains with the desired stationary densities. Fre-
quently, ideas applied for posterior simulation from doubly-intractable
distributions involve an approximation error; general exact methods
are only available for models in which both the data and the param-

eters take values in fnite-dimensional spaces.

In the present work we propose a novel idea, based on a series ex-
pansion representation of the intractable functions, to enable MCMC
simulation for models in which either the data or the parameters are
infinite-dimensional. We achieve this by introducing a suitable set, of
latent variables with unknown and possibly infinite dimension. The
MCMC construction is then made for a tractable latent model, from
which the density of interest can be recovered through marginaliza-

tion.

We illustrate the applicability of the method in various situations.
We show that the latent variable construction of the retrospective re-
jection sampler commonly known as exact simulation algorithm for
diffusions, is a particular case of the latent variable construction we

propose. We provide an idea for an alternative exact simulation and



inference scheme, through a Markov chain construction. We also

present two related nonparametric mixture models, for time series
and regression analysis. Their novelty is in the construction of the
mixture weights. which gives them great flexibility but introduces an
intractable component generated by the infinite-dimensional paraime-
ters; we show how our methodology can be applied to enable MCMC
inference for these models. We also show how our ideas can be used
for inference when the power likelihood for nonparametric mixture
models is used; a problem which is of interest in many settings and,
to our knowledge, has not been solved without the introduction of

some approximation error.

Finally, we discuss the matter of Bayesian consistency for Markov
models. Unrelated to the driving theme of the thesis, the problem
naturally arises from some of the models studied. We make a first
step towards a general result for strong consistency which can be used
both for discretely observed diffusions and for the time series model

we propose.
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Introduction

The first word in the title of this work is Bayesian, we therefore begin by con-
sidering a basic Bayesian model: a likelihood function [(yi.,|¢) for a sample of
observations, yi., := (y;)i—,, cach modelled as a realization of a random variable
Y;, taking values on a state space Y; and some prior distribution II for the pa-
rameter (/ € ©. DBaycsian inference is then carried out based on the posterior
distribution
I (0] y1:n) o< f (y1:0]0)T1(6). (1)
For simplicity of notation, we assume throughout that all densities exist, with
respect to some reference measure on Y" x ©. Furthermore, we freely denote by
IT both prior distribution and density, allowing the interpretation to be inferred
from the context; the same liberty is taken with the use of 1, which denotes the
generic reference mweasure with respect to which densities are defined, on the ad-

equate spaces.

The title of the thesis also mentions intractable components, because we focus

on models for which the likelihood function has the representation

/(y1n|9) = g(y1:7w H)h(yln 9) (2)

where the function g is tractable but & is not, either because there is no analytic
expression for it or because its evaluation is too computationally expensive for any
practical application, hence making it an intractable component. As will become
clear in later chapters, we are using the term tractable in a wide sense, referring
not necessarily to functions which can be evaluated directly, but to functions

which can be addressed using methods previously established in the literature.
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Finally, we are interested in models which are either nonparametric, or de-
fined on infinite-dimensional state spaces, or both. In other words, either the
parameter () or each observation y;, is an infinite-dimensional object. Thus, we

say that the intractable component is infinite-dimensionally generated.

There is extensive literature regarding the problem of intractable components
in statistical models (see e.g. DiCiccio et al., 1997; Evans & Swartz, 1995; Smith,
1991). However, most of it is concerned with the approximation of intractable
normalizing constants when both the observations and the parameters are finite-
dimensional. Noteworthy exceptions are found in the context of discretely ob-
served diffusions (see Sorensen, 2004), and models involving some nonparametric
priors. as we mention in the next chapter; but the results are specific to the mod-
els studies and not applicable in other situations. Both for general and particular
models. three mainstream approaches can be identified: analytic approximation,
usually based on Laplace transforms and other mathematical representations; nu-
merical integration or some form of adaptive quadrature method based on classi-
cal analysis techniques; and Monte Carlo simulation methods, which use samples
drawn from the distribution of interest to estimate features of it. In all of these
methods, choices must be made which determine the quality of approximation
that can be achieved. In high-dimensional situations application of such methods
may be very computationally demanding; in the infinite dimensional set-up, it is

not clear how they could be employed.

The idea we propose is simple. Rather than trying to approximate the in-
tractable component, h, we replace it by a latent structure based on a power
series expansion.

We start by factorizing the likelihood function in a standard way
f(y1:a]0) = Hf(yilylri—l): (3)
i=1

where y is considered as a fixed known point, an artifice to simplify notation. In

this case, the tractable and intractable components of equation (2) can also be
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factorized, and we have

f('.’/’il?/l:i—b 9) = .(h'(.?/l:i.- 9)hi(?/1:z'~ 9)~ (4)

Assuming that each h; can be represented by some adequate series expansion

oo

'/11» Z 7/12 6) (5)

in term of a sequence (h;,)r,>0 of fully specified functions, we propose using
the indices ky., = (kq,.... k,) as latent variables. We incorporate them into the

likelihood expression (3), thus obtaining an extended model

f(?h:m kf1:n|9 H gz Y1:is C’z k; a)h'i,k,: (ym‘- 9)- (6)

The dependence of each of the functions g; and h;x, on the complete set of
variables y;.; represents only the most general case. More commonly, the de-
pendence structure assumed by the model, simplifies these expressions. so that
only a fixed number of variables y;_m.; = (Yi—m,- - .. ¥;) is required for their eval-
uation. For example, if independence between observations is assumed, then
f(?/il?/l:i—l) = .f(?/i)7 therefore .(h‘(?h:i,@) = !h‘(?/z',o) and h'i,ki(i'llzi, 9) = h‘i,k,’_(?/iv 0).
Similar simplifications apply when Markov dependence of some order is assumed.

While the representation of equation (5) may not always be available for
an arbitrary function h;, it covers a wide spectrum of the intractable component
problems that can be found in the literature. In the following chapters, we present

a variety of models for which the method works. We focus on two cases:

i) By defining c;x,(0) = [r(0)]% /k;! for all i = 1,...,n, k; € N, some fixed,
known function r : © — [0.00); and adequate functions (%, x,)r,;>0, we deal

with an exponential intractable component,

hi(y1:4,0) = / exp{7(0)bi(y14, 0, \) }dv(N) (7)

This is relevant in the context of inference for discretely observed diffusions
(see e.g. Beskos et al., 2006b), where A is a continuous function and the

reference measure v is a Weiner measure.
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Notice that, in this case,

f(ki|y1m, 0) o< % / [0 (Y14 b’,/\)]k"dz/()\) (8)

may be intractable. However, conditional on the observations y,.;, the model
parameter # and the auxiliary variable A, each latent variable k; has a

Poisson distribution with mean parameter r(0)b;(y1.4. 6. A).

ii) By making, for every 0 € © and every ¢ = 1.....n, ¢;o(0) =1, ¢;1(0) = «
and ¢, (0) = o) [k;! == a(a +1)...(a + k; — 1)/k!, for k; > 1 and some
known. fixed 0 < a < 1; and assuming

ki
h/i,ki(yl:i7()) — [1 _ b’i(yl:iae)] ) (9)
for some bounded function b; : Y x © — [0,1], we obtain an adequate
representation for functions of the type
1
[bi (Y10, 0)]"

Intractable components of this form are common in the literature, and in

hi(Y1:n.0) = (10)

the following chapters we illustrate this with three nonparametric models in
the contexts of time series analysis, regression analysis and power-likelihood

estimation for i.i.d. observations.

In this case, the conditional distribution of k; given y;.; and 6 is the negative

binomial with parameters o and 1 — b;(y1.. (), i.e.

sl 0) = S5 [ b)) (1)

In particular, when o = 1, then k;|y1,;.0 is a geometric random variable,
and we can write

hi(y1:4,0) = Elki|y1.4. 0] + 1. (12)

Before we can apply standard techniques designed for inference involving func-
tions of infinite dimensional objects, such as h; x,(y1.:. 0) for the latent model (6),

we introduce additional auxiliary variables.
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Let (S.B(S)), be some measurable space and assume we can define, for each
i=1,..., nand [ =1,..., k; a function b;; : Y x © x Sk — [0.00) such that

hzk '/11 /k Hbzl Y1:is 0, S21k:)dl/(511k:) (13)
S

Notice that we are again favouring simplicity in the notation, trusting that any
ambiguity in the use of b to denote different functions is resolved by the variables
involved. We use the same principle when using f to denote densities and I to
denote priors, regardless of the random variables and spaces on which they are
defined.

Under assumption (13) we introduce a set of auxiliary variables sy.,1.4, =

{sig:i=1.....n;1=1,...,k;}, and arrive at the extended latent model

ki

./(!/]n kl:n- '51:n,1:k7:|9 HJz Jl u bz,l Y:i, 0 Si,1:k; ) (14)

=1
from which the original likelihood (3) can be recovered by integrating over the
k1., and Sy1.,1.4,. However, in this last expression, the dimension of the state
space Sk of latent variables is itself random, as it depends on k;. This poses an
issue for inference which we resolve following the ideas of Godsill (2001). That

is. we consider infinite-dimensional latent variables si., 1.00, €ach $; 1.0 defined on
(S*,B(S*>)), and a full latent model

n ki
L (W1 k1ine S1:m,1:0010) = 9(Y1:n, 0) H Ci g (0) (H bii(y1:4, 0, 81‘,1:@)) (H H(Si,l))
B

i=1 I>k;

(15)
where I1(s) denotes a completely known density on (S, B(S)). At this point, infer-
ence can be carried out using basic MCMC methods, such as the Gibbs Sampler
and the Metropolis-Hastings algorithm, by observing that, at any iteration of a
Markov chain update scheme, the k., are given, so only a finite number ;.5 1.,

of latent variables is needed.

Summarizing, we are concerned with inference for doubly intractable distri-

butions with infinite-dimensionally generated intractable components; we achieve
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it through the introduction of adequate infinite-dimensional latent variables. We
do not present output diagnostics or study theoretical rates of convergence of the
proposed Markov chain schemes. Our aim is simply to propose a means of making
MCMC simulation possible for some doubly intractable models for which, to our
knowledge, there is no available methodology. We acknowledge this is simply a
starting point and much work may yet be done. However, as it stands, our ideas
are widely applicable, and we illustrate this through a series of examples, ranging
from univariate continuous processes to multivariate regression models and from
independent and identically distributed observations to time series.

Only general ideas have been presented in this Introduction. Many details
and considerations must be made concerning each specific example. We address

them in the following Chapters, hoping that the illustrations will serve to clarify.

Outline of the thesis

In Chapter 1 we present some background material, relevant for the present work.
It is divided into three sections. The first one provides a review of some Bayesian
models currently used in the context of independent and identically distributed
observations, discretely observed continuous-time Markov processes, time series
analysis and regression analysis. The second gives a review of auxiliary variable
constructions and MCMC methods, for simulation and posterior inference for
complex and intractable models. The third is a brief exposition of current results
on Bayesian consistency for i.i.d. observations.

The next four Chapters provide examples of intractable models for which our
auxiliary variable approach is applicable. Chapter 2 focuses on discretely observed
diffusions. In Chapter 3 we propose a nonparametric model for stationary time
series, for which both the transition and the invariant densities have an infinite
mixture representation. A similar model is developed in Chapter 4 in the context
of nonparametric regression, for which the covariate space may include combi-
nations of both continuous and discrete variables. Chapter 5 is concerned with
inference for infinite mixture models. when a smoothed version of the likelihood,
a power likelihood, is used. In each Chapter, we provide a latent model for which

inference is feasible via MCMC posterior simulation for the model parameters.



INTRODUCTION

Chapter 6 is somewhat different. We develop a new result for posterior con-
sistency, in the context of Bayesian estimation of the transition density of a time
homogeneous Markov process. This is not directly related with the latent model
approach studied in this thesis, but it is relevant to some of the results and models
presented in previous Chapters.

Each of the Chapters 2 to 6 ends with a discussion of the results and methods
presented within, as well as some ideas for extending them. Chapter 7 provides
a more general discussion of the overall results and methods developed in the
thesis, some relations between the models studied in the previous Chapters, as
well as some ideas for future work which involve the combination of some of the

models and ideas found in different chapters.



Chapter 1

Background

In this Chapter, we present some background material on models and methods
currently found in the literature. We do not intend to cover the subjects exten-
sively, but rather to provide a context for the present work, as well as the basis
over which we build our own models and results.

We begin with an overview of some statistical models. It is followed by a
section on auxiliary variable schemes, resulting in latent models which make in-
ference possible. simpler or more efficient. We then discuss some of the algorithms
currently available for simulation and posterior inference via Markov Chain Monte
Carlo methods. Finally, we define Bayesian posterior consistency and review some

of the current results regarding asymptotic properties of Bayesian models.

1.1 Statistical Models

Our starting point is a sample, y1., = (y1,....4n). For i =1,...,n, each obser-
vation, 1;, is considered as a realization of a random variable Y;. Two elements
define a Baycsian statistical model. First, the joint density [ of (Yi,..., ¥ )s
which characterizes the random mechanism generating the observations. Since
this density is assumed to be unknown, a family F of density functions is defined,
containing all “candidate” densities. The second element of the model is a prob-
ability measure II over &, describing the uncertainty about such mechanism and

incorporating any prior belief about it. Bayes theorem can then be used to up-
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date the prior into a posterior distribution, thus learning about the phenomenon
of interest.

We distinguish here between two types of models, depending on the size of
the J space and. therefore, the nature of the prior Il imposed on it. When each
density fy € F can be indexed by some finite-dimensional parameter 8 € ©. the
prior IT is a probability measure on the parameter space © which. in turn, induces
the prior on JF; this is known as a parametric model. A nonparametric model
is defined when the prior I1 is a probability measure defined on the space P of
probability measures over Y. If we consider the support of II as the subset of P
for which probability measures have a well defined density. this induces a prior
on a functional space F of densities, too large to be indexed by what is commonly
considered a parameter. In practice, it is common to use a representation for
each density f € F in terms of an infinite-dimensional parameter, over which the
prior II is defined. This induces a prior on F and on P, hence Bayesian models
with infinite dimensional parameters are also known as nonparametric.

The capacity of the model to explain a complex phenomenon about which
little is known a priori, in other words, its flexibility. depends on the size of the
space of densities F under consideration. For parametric models, the larger the
dimension of ¢, the larger the family of densities indexed by it. In the limit,
an infinite dimensional parameter is sufficient for representing entire functional
spaces. Therefore, nonparametric models are considered more flexible than para-
metric ones.

The problem of defining a prior IT ou JF is closely related to the problem of
parametrizing the space, either by a finite or infinite-dimensional parameter 0.
If the parameter space © is finite. the flexibility of the model. that is. the size
of F, depends on the parametrization itself. Diffusion models arc an example of
complex parametric models. For nonparametric models, a simpler representation
may be found for each element of F; the complexity in this case falls on the
definition of the prior on the infinite-dimensional ©.

There are many ways to specify the family . Here, we consider three of them,
where the distinction is made with respect to the type of dependence structure

assumed for the data:
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i)

Independent and identically distributed observations.

Each function / € F is a density on the state space Y, and for any sample
size n, the likelihood function for y1., = ()", can be represented as the

n-fold product
Frn) =[] £(ws)- (1.1)
i=1

The main assumption in this case is that the random variables (Y;)I, are
independent and identically distributed (i.i.d.) according to f. In fact,
from the Bayesian point of view, the observations are only conditionally in-
dependent given their common density f, something related to the concept
of exchangeability. However, we use the term i.i.d. observations to refer to

this type of model, as is commonly done in the Bayesian literature.

We discuss some existing nonparametric models for i.i.d. observations in
Section 1.1.1.

Observations with a Markov type dependence.

Each function f € F is a conditional density and for any sample size n, the

likelihood function for yy., = (y;), is again a product,

n

f(hn) = H Floslyi-1: Yoy~ - » s i)+ (1.2)

i=1

The main assumption in this case is that the random variables (Y;),
are dependent and each Y; is conditionally independent on the rest, given
()}-);zli_m. This is known as an order m Markov dependence structure, or
simply Markov when m = 1. Some considerations regarding the initial
. data points are needed in this case, as the expression (1.2) depends on
(Y1—me e s yo). Unless otherwise stated, the initial points are assumed to be
fixed and known. In other words, the first observations enter the likelihood
expression as fixed, known quantitics and not as realizations of random

variables.

We present a large family of parametric models for this type of data and

discuss some nonparametric models in Section 1.1.2.

10
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iii) Observations dependent on covariates.

The sample is defined by pairs of data, (y,);.,, where each y; represents
a realization of the variable of interest, while x;, the covariate, provides
additional information about the behaviour of Y;. Each function f € JF is
again a conditional density, and the likelihood function for a sample of size

n takes the form

yln'-Tln Hf yzlfrz (13)
i=1

The variables (Y;)%, are assumed to be independent, but the mechanism
generating each Y; is allowed to vary, depending on the value of the cor-
responding covariate z;. Formally, the random variables (Y;)I, are condi-
tionally independent given the (x;),, and variables with common covariate
values are i.i.d. The covariates may be modelled either as fixed or random

values, however we consider here the case of non random covariates only.

Models of this type, used to capture the way in which each random variable
Y; depends on the covariate value x;, are known as Regression models.
In Section 1.1.3 we discuss some of the nonparametric regression models

present in the literature.

1.1.1 Nonparametric Models for i.i.d. Observations

We begin by considering a parametric model for independent and identically
distributed random variables. This provides what is perhaps the most basic and
frequently used construction for the likelihood function of a sample of size n, as

the n-fold product of a single function, evaluated at each data point y;,
J(rnl0) = T/ (w:l0)- (1.4)
i=1

Calling this a model for i.i.d. observations is arguably an abuse of terminol-
ogy, since the likelihood expression (1.4) implies only that the observations arise
from random variables which are conditionally independent, given the parameter
6. In fact, the assumption behind this model is somewhat milder than that of in-
dependence. It is enough to assume the observations possess a form of symmetry
known as exchangeability.

11
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To formalize and set the notation, assume cach observation ; is a realization
of a measurable random variable Y; defined on a probability space (2. A, P), called
the sample space, and taking values on a complete and separable metric space
(Y. d), known as the state space, with Borel g-algebra B(Y). The space (P, B(P))
of probability measures over Y, is again complete and separable under the metric
of weak convergence. and we can therefore define a probability measure IT over
it

Let v be a o-finite measure on (Y, B(Y)) with respect to which densities
are defined. In in the present work, most random variables take values on the
p-dimensional Euclidian space Y C RP?, on a discrete space Y C ZP, or a product
of them. Therefore v is the Lebesgue measure, the counting measure or a product
of them.

Denote by JF the set of density functions over (Y.B(Y)), and by Fo = {fy :
0 € ©} C F a set of densities parametrized by § € ©. A random variable Y is
distributed according to /> € P or has density [ € F if, for every B € B(Y)

PIY € B = P(B) = i;f(y)du(y)v (15)

Let Y* denote the infinite product space of Y, with corresponding Borel
o—algebra B(Y™) = (B(Y))>™. For each probability measure P € P, we denote
by P> the corresponding product measure over Y*°, with density f°°.

Finally, let 4, € P denote Dirac’s delta measure on y € Y, that is, a probability
measure with all the mass accumulated on y. The corresponding density is the

indicator function 1y, € &, given by

otherwise.

- 1 if 7 =1,
L@ ={§ (1.6

We are now ready to define the concept of exchangeability and present some

models commonly used when this property is assumed.

Definition 1 (Exchangeability) A finite set (Y;)™, of random wvariables is
called exchangeable if and only if every permutation of them has the same joint

distribution. A sequence (Y;)i>1 is exchangeable if every finite subset is exchange-

able.

12
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Exchangeability is a sensible assumption in many situations, when the order
in which the observations are received and incorporated into the model does not
affect the information they contain regarding the mechanism that generates them.
The use of the term i.i.d. in this case is justified by the following theorem (see
e.g. Schervish, 1995, Chapter 1), stating that a sequence of exchangeable random
variables is conditionally i.i.d. given a probability measure known as de Finetti’s

measure, and vice versa.

Theorem 1 (de Finetti’s Representation Theorem) A sequenceY = (Y;)i>1
of random variables taking values on'Y is exchangeable if and only if there exists a
probability measure 11 over (P, B(P)) such that, for any B = Q;o, Bi € B(Y™),

PlY € B| = PlY; € B i > 1] = / P=(B)TI(dP).
PY)

Furthermore, the de Finetti measure 11 for the sequence is unique and equal to
the limit of the empirical distributions,

= lim — E Jy;-
n—oo M.

Therefore, if exchangeability is assumed, the the choice of a likelihood function
given by expression (1.4) is justified, and a Bayesian model for exchangeable
sequences can be represented in a hierarchical form as

iid

Y; < P;
P~TI (1.7)

In this case, we use fp € F to denote the density corresponding to a probability
measure P € P.

When the model is parametric, we may write

Y iid Po,

0 ~ 11, (1.8)

since the prior on (©,B(0)) induces a prior on the parametric family {F, : 0 €
©} C P. The densities in this case are denoted by fy.

13
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A variety of well known models are available in the parametric case. Non-
parametric models are more complicated and here we present some of the ideas

commonly used to define them.

Let us first consider a finite state space, Y = {g;. ..., ys}. Every probability

P € P can be expressed as
J

P = Z w0y, (1.9)
j=1

for some weights 0 < w; < 1 such that ZJ. w; = 1 and points 7~J =g; €Y. If
the fixed points and weights are replaced by random variables. the distribution
over them defines a prior probability measure IT over P. A simple way to do so
is to assume the points ()7j)jj~’:l are i.i.d. random variables taking values in Y,
and distributed according to some probability Fy. An independent probability
measurce may be defined on the simplex {wy,...,w; € (0,1) : Zj w; = 1} I
can be chosen as a simple parametric measure; the distribution for the weights
requires a more careful selection, to guarantee that they add up to one. If both
distributions have full support. the prior II they induce on P will also have full
support. A possible choice for the distribution of the weights is the Dirichlet

distribution defined below.

Definition 2 (Dirichlet Distribution) Let@y,...,w; be a set of random vari-
ables, such that ), g Ga(y;. 1), wherey; > 0 for every0 < j < Jand }_;v; > 0.
The Dirichlet distribution with parameter y1.; = (71, .. ., vs) is the joint distribu-
tion of the random variables (wy, . . .. wy) defined by

le
J J -
> =1 Wy
and it is denoted by (wy.7) ~ Dir(-|y1.5).
A generalization of this idea for an infinite sample space Y gives place to the

Dirichlet Process, possibly the most widely known and used model in Bayesian

nonparametrics.

14
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1.1.1.1 Dirichlet Process and Stick-Breaking Priors

When the state space Y is not finite but countable, it is still possible to represent
every probability measure over it as a weighted sum of Dirac’s delta measures

over the elements of the space,
oo
D .0~
P= Z w;0y., (1.10)

However, a more caretul prior specification on the weights w = (w;);>1 is required
to guarantee that 37, w; = 1 and w; > 0 for every j. One idea is to use the rep-
resentation commonly known as Stick-Breaking, in which the weights are defined
through a sequence of independent Beta distributed variables, v; ~ Be(«;, (;), by

making w; = v; and for j > 1,

Wy =y H(l —vjr). (1.11)

J'<y
This multiplicative structure for the definition of the weights ensures that they
add up to 1 (see Ishwaran & James, 2001), whenever the parameters for the

Beta-distributed variables satisfy the condition
ad (Ij
) log(1 + ) = o0. (1.12)
i=1 G

The prior on the weights is complemented by an independent base measure F,
from which the atoms (Y;);>1 are assumed to be independently distributed. The
prior II is the joint distribution for the weights and the atoms, or more formally,
the probability measure on P induced by it. As with the finite state space case,
IT has full support whenever Fy does.

When «; =1 and (; = ¢ > 0 for every j, this corresponds to a representation
of the Dirichlet process given by Sethuraman (1994). This is, however, not the
only characterization of the process. which owes its name to the first definition
given by Ferguson (1973). He specified a set of finite dimensional distributions
for a stochastic process, based on the Dirichlet distribution, and proved the Kol-

mogorov consistency conditions to guarantee the existence of the process.
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Definition 3 (Dirichlet Process) Let Py be a probability measure over (Y, B(Y)),
and let ¢ € (0,00). A random measure P € P has a Dirichlet Process distri-
bution with parameter (Py if for every j = 1.2,... and every measurable parti-
tion (Y1,...,Y;) of Y, the vector (P(Y1),..., P(Y;)) has a Dirichlet distribution,
Dir(-|¢Po(Y1), ..., CPo(Y;)). We denote this by P ~ DP(-|CF).

Intuitively, each path P = (p;);>1 of a Dirichlet process constitutes a proba-
bility measure on Y, where each p; represents the probability assigned to a point
y; € Y. Thercfore, the law of the process constitutes a probability mecasure I1
over P.

Since its original introduction, the Dirichlet process has been widely studied
and used. Its popularity is somewhat related to its many characterizations which,
through adequate generalizations, allow the definition of new processes which can,
in turn, be used as distributions for random probability measures. In the same
paper where he introduced the process, Ferguson (1973) presented an equivalent
definition, related to the Poisson-Dirichlet distribution (see Pitman, 1996, for
more details) which is worth mentioning. However, we do not provide it, as it is
not relevant to the present work.

Blackwell & MacQueen (1973) introduced yet another characterization of the
Dirichlet process in terms of a generalized Polya urn. We present it here, because
it allows the simulation of a sample from a Dirichlet process, through a closed
expression for the predictive distribution.

Theorem 2 Let (Y,,),>1 be a sequence of random variables with distribution de-
fined by a generalized Polya urn with paramcter (1%, i.e.
P[Y: € ] = (")

IP)[Yn+1 S | Yi5mems Yn] = CPO() —Z Jrz—;zl 5)1() )

Then

(a) The sequence {I,}n>1 of probability measures with support in' Y, defincd by
Chy + Z?:l 6Yi

(+n
converges a.s. to a discrete probability measure P supported on Y.

P, =

16
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(b) P ~DP(-| (F).

(c) Given P, the random variables Y1.Ys,. .. are conditionally independent with
distribution P.

We present below some well known results and properties of the Dirichlet process.

Lemma 1 If > ~ DP(- | ([%), then I’ is almost surely a discrete measure.

This is clear from the stick-breaking representation of the process, but not from
Definition 3. This gives evidence of the relevance of the various characteriza-
tions of the process. since each one may be more convenient for proving different

properties.

Lemma 2 Let Y1., be a sample of size n from a Dirichlet process PP with param-
eter CFy, i.e.

| &P,

P ~DP(:|CF).

Then, the conditional distribution of P given the sample is again a Dirichlet

Process, i.e.
P| Yy ~ DP (-\CPO + Zdn> -
=1

In other words, if a Dirichlet process is used as a prior for a nonparametric model,

then the posterior is also a Dirichlet process.

Different representations of the Dirichlet process have been generalized to de-
fine new nonparametric priors. We focus on the stick-breaking representation
(1.10) and the construction of the weights given by (1.11). In the following chap-
ters, we consider the Stick-breaking priors obtained when «; = o and (; = ( for

all 7.

17
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An alternative nonparametric model, is obtained when the weights are con-
structed based one single beta distributed random variable, v ~ Be(a. (), through
a geometric structure

w; =v(l —v) 7L (1.13)

This process, known as the geometric stick-breaking (GSB) prior, was defined
by Fuentes-Garcia et al. (2010), who prove it has the same support as the MDP
model. Its proposed advantage would be a reduction in the variability of the
weights, due to the simplification of their construction, thus improving estima-
tion. In fact, the use of the GSB prior may be interpreted as the removal of a
hierarchical level of the nonparametric model structure, achieved by substituting
the weights of the Dirichlet process, by their expected values. More clearly, the

expected values of the weights in the Dirichlet process are given by

w2 (e57) i

C+1\C+1

which is a reparametrization of expression (1.13), for the Geometric stick-breaking
weights.

All these stick-breaking constructions, as well as other nonparametric priors
based on normalized stochastic processes (see e.g. Lijoi et al., 2005) share the
limitation of assigning probability 1 to the space of discrete probability mea-
sures. This is enough when countable state spaces are considered, but when Y
is uncountable, more flexible models are desirable. Many efforts have been made
to define nonparametric priors supported on sets of continuous probability mea-
sures. The first and probably most used solution is once more a generalization of

the Dirichlet process.

1.1.1.2 Nonparametric Mixture Models

Consider now an uncountable state space Y and a parametric family Ko = (Kp :
0 € ©) C F of density functions over it. Notice that we have changed the
notation, using K, to denote parametric densities, also called kernels, in order to

clearly distinguish them from general, possibly nonparametric densities, denoted
by f.

18
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Basic results of linear algebra and functional analysis may be used to define
the subspace F(Ko) C F generated by Ko as the set of all densities over Y which

can be represented as a convex combination of elements of Kg. In other words,

FKe) = {f = ij[\'(;j 1V j. Ky, € Ko.w; > 0 and Zuy = 1} . (1.15)

Jj=1 Jj=1
In particular, when © =Y and Ky = 1 43, then F(Kg) = Fyp is the space of all
discrete densities over Y; but if every Kj is a continuous density, then so is every
[ € F(Ke).

As done before. for the finite and countable state space cases, a prior II on
P is induced by defining independent priors over the parameter space © and the
simplex
0
{(’wj);-’il C [0.1]: ij = 1} ; (1.16)
j=1
together with the choice of the parametric family of kernels Xg. Furthermore,
IT assigns probability 1 to the subset of probability measures with densities in
F(Xeo). Therefore. in order to define a prior on the set Fe of continuous density
functions it is enough to choose a family of continuous kernels. A common choice
is Kg(-) = N(+|pt, 0%), the normal density function with mean ;2 and variance o2,
where 0 = (pu,0). For © = R x {0}, where o > 0 is any positive number, the
family Ko of normal densities is a basis for the subspace F, C F of continuous
densities. Therefore, when the Gaussian kernel is used, F(Kg) = Fe, since any
continuous density over Y can be expressed as a convex combination of normal
density functions.
From the previous section, we know that the Dirichlet process can be used
to define the desired prior, by first defining an a.s. discrete random probability

measure o
4=1

on the parameter space ©. which, in turn, induces a prior on F(Kg). We use the

notation

Jp(y) = J(Ylwieo: O1.00) = Z’ij(’!/|9j)- (1.18)
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to make the dependence between each f € F(Kg) and the choice of the weights
and particles in P explicit.
This model is known as the Mixture of Dirichlet Process (MDP) prior and it

can also be represented in a hierarchical way as

iid
Yil0; ~ K(-10;),
0;1P % P, (1.19)

P ~ DP(-|CR).

This MDP model was first introduced by Lo (1984), who noticed that a contin-
uous density over the sample space Y can be defined as a convolution of measures.

o) = [ KCi0)aP() (1.20)

defines a coutinuous deunsity, whenever K is continuous, regardless of the choice
of the mixing probability measure, P. If a prior is assigned to P which gives
probability one to the set of discrete measures, the above equation becomes (1.18).

Different Stick-breaking priors on I” result in diferent nonparametric mixture
models, all of which can be represented by equations (1.18) and (1.17). There-
fore, throughout this thesis, we use the term nonparametric mixture model with
parametric kernel K'(-|¢) and a stick-breaking prior with parameters (o, (;) and

base measure F,, to refer to the complete model

iid
yilwlzoo-, 91:00 l’zv fP

fr() = 3 wik(-10;);

wi=v and w;=v; [[(Q—-v),Vj>1; (1.21)
7'<J
iid
vj ~ Be(:|a;, G);
0; ~ P,

The assumption a; = o and (; = ¢ for all j is used to simplify notation, and all
results can be extended for the more general choice of stick-breaking parameters.
Nonparametric mixture models with almost surely discrete random mixing

probability measures are not the only way to define a prior over the set F of
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continuous densities. An interesting alternative involves the use of normalized
continuous processes (Nieto-Barajas et al., 2004; Regazzini et al., 2003). However,
for the purpose of this thesis, we focus on nonparametric mixtures with the stick-
breaking representation.

1.1.2 Markov Models

We consider two large families of Markov processes commonly used as statistical
models: real valued diffusions, in continuous time; and nonparametric time series,

in discrete time.

1.1.2.1 Real Valued Diffusion Processes

Diffusion processes have been widely studied in the context of probability theory
and in many other areas, ranging from the natural sciences like biology or genetics,
to the realms of economics and finance. One of the main features of this family of
stochastic processes, the continuity of their paths, makes them attractive models
for several phenomena.

There are different ways to define diffusions, and they are all closely related

with Brownian motion, the predecessor and simplest of all real valued diffusions.

Definition 4 A continuous time, real-valued stochastic process {W; : L > 0} is
called a Brownian motion with drift parameter p. diffusion parameter o?, and
started at y € R if the following conditions hold

it) The process has independent increments, i.e. for everyn € N and 0 <ty <
... £ty < 00, the increments W, — Wy, Wi, — Wy oy, Wy — Wy,
are independent random variables.

111) For everys > 0 andl > 0, the increment Wys—Ws is a normally distributed

random variable with mean pl and variance o?(.
iv) The mapping t — W; is almost surely continuous.

Ift=0,0%=1 and y = 0 the process is called standard Brownian motion.
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Even the fact that such a process exists is not trivial, due to the non countable
nature of the product spaces involved and the continuity condition on the paths.
Norbert Wicner provided the first proof of the existence of a process satistying
all conditions in Definition 4; for this reason, Brownian motion is also known as
Wiener process. The proof found most commonly in the literature constructs a
standard Brownian motion as the limit of a sequence of adequately scaled random
walks. Such construction induces a probability measure W on the space Cjg o) of
continuous real valued functions on [0, 0o), with Borel o-algebra B(C ), under
the topology of weak convergence. Therefore (Cjgoc), B(Clo,c)), W) is known as
the canonical probability space for Brownian motion, and the probability W is
called the Wiener measure.

The definition of standard Brownian motion. together with some properties
of the model allow the construction of other Brownian motion processes. Specif-
ically, if W = {W, : t > 0} is a standard Brownian motion on any probability
space, then the process Y = {Y; : { > 0} defined by Y; = y+ oW, +ul is a Brown-
ian motion started at y, with drift and diffusion parameters p and o2, respectively.
In particular, we denote by WY the measure induced by Y on (Cjp,«). B(Cjo,0))),

when =1 and o2 = 1, giving place to the following definition.

Definition 5 A Brownian family is a stochastic process W = {W, : t > 0}
adapted to a filtration {A; : t > 0} on a measurable space (2. A), and a family of
probability measures {PY : y € R} such that W is a Brownian motion started at
y under the probability measure PY.

In fact, it is enough to have PY[W, = y] = 1. This idea can be generalized,

resulting in a wider definition of Brownian motion.

Definition 6 An adapted process W = {W,;, A : t > 0} on a probability space
(2, A.P), which is a Brownian motion under P and such that P[W, € B] = Py(B)
for every B € B(R), is called Brownian motion with initial distribution Pp.

Clearly, when Fy = ¢, for some y € R, we simply have P = P¥.
From the definition, we know that Brownian motion is a process with con-
tinuous paths and stationary independent increments. The converse is also true,

any process with such properties is a Brownian motion.
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It can be shown that a Weiner process is a time homogeneous (strong) Markov
process. A Brownian motion on the canonical space is therefore completely de-
fined by the distribution Iy of the initial point Wy, and a family {f; : ¢t > 0}
of transition densities. In fact, an adapted process Y = {Y; : { > 0} on
(Cl0,00): B(Cl0,00))- {As }t>0, P) such that, for every B € B(R)

i) P[W, € B] = Py(B) and
ii) for every t,s >0

P[Wiis € BIWs = yo] = P[W, € B|Wy = yo] = / N(ylut + yo. o*t)dy,
B

is 2 Brownian motion with drift coefficient p, diffusion coefficient o2 and initial
distribution P, where f;(-) = N(:|;. #?) denotes the normal density function with
mean 4 and variance o2.

This mecans that the finite dimensional distributions of Brownian motion arc
all multivariate Gaussian distributions. A Brownian motion started at y, with
drift coefficient g and diffusion coefficient o2 is, therefore, a Gaussian process
with mean function p(t) = put and covariance function o(s.t) = o> min{s, t}.

Brownian motion has many important and interesting properties. We consider
here only two of them, which arc essential to the definition of diffusion processes
in particular, and to the development of stochastic calculus in general. A Weiner
process W = {W, : { > 0} has unbounded variation and finite quadratic variation.
Formally, for any T" € [0, 00), consider a sequence (T,),>1 of partitions of [0, 77,
i.e.

Te= 0= £... < =T}
Assume that, for every n > 1, T,, C T,,41, and

max{(} — (7 ;} -0 asn — oo.
2

Then

lilmz 1By, — By, | =00 as., (1.22)

hmz w—Bi,_,)>=T in L2 (1.23)
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The unbounded variation (1.22) means that the Riemann-Lebesgue-Stieltjes

theory of integration does not allow us to define an integral of the form

/Otg(s)dWS. (1.24)

However, the definition of this integral and more general ones, where the integra-
tor is any stochastic process with finite quadratic variation, give rise to the field
of stochastic calculus. They are known as [to integrals and they are defined for
integrands in a family of stochastic processes known as supermartingales, which
includes, in particular, continuous functionals of Brownian motion.

The theory of 1t6 calculus, or stochastic calculus, is extensive and mathemat-
ically complex, so we do not discus it here. We merely present some of the results
that are most important for the definition of diffusions and our use of them as
statistical models. In particular, we focus on real-valued diffusions, so we only
require the stochastic calculus version of some of the main results of univariate
standard calculus. We begin by presenting It6’s formula, which substitutes the

fundamental theorem of calculus.

Lemma 3 (Ité’s formula) Let h : R — R be a twice continuous differentiable
function and let W = {W, : t > 0} be a Weiner process. Then, for allt >0
t 1 /A
h(Wi) — h(Wy) = / h'(Ws)dW, + 5/ h"(W;)ds. (1.25)
0 0
Rearranging the terms in the above expression, we may write the stochastic

integral of i’ = dh(y)/dy with respect to Brownian motion, as

/ RV )W, = h(Wh) — h(Wa) — % / W) ds, (1.26)
0 0

the familiar expression (W;) — (W), from the fundamental theorem of calculus,
plus a compensation term, which is a Lebesgue-Stiltjes integral. This result is
essential to the construction of the latent likelihood expression we present in the
next scction. to allow simulation and inference for diffusion modecls.

Another fundamental result is Girsanov’s formula, which extends the principle

of change of measure to It6 integration.

24
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Theorem 3 (Girsanov-Cameron-Martin) Let W = {W, : t > 0} be a stan-
dard Brownian motion defined on the canonical space (Cp ooy, B(Clo,00)). W), with
the natural filtration {As¢}es0. Let Y = {Y; :t > 0} be an adapted process on the

same space, such that
t
WU des-<0} =1, 0<t<oo. (1.27)
0

Define, for each t > 0,
o

W, = W, — / Y, ds, (1.28)

J0
and assume the stochastic process Z = {Z; .t > 0} given by

¢ 1 7 .
Z :exp{/ Y,dW, — -/ )(jd,s} (1.29)
J0O 2 0

Then, for every t € [0.00), the process {W, : 0 < s <t} is a Brownian motion
on (Cpo,00), At Pt), adapted to {At}o<s<t, where Py is defined as

s a martingale.

P(A) = /4 Zi(w)dW(w). A€ A,. (1.30)

The theorem can be expressed more generally, not only for the canonical space.
However, this choice guarantees the existence of a probability measure P on
Ao = B(Cjo0)) such that, restricted to A; it coincides with P;. Therefore,
the complete process W = {W,« : 1 > 0} is a Brownian motion with respect to P.
Furthermore, the measures P and W are mutually absolutely continuous when re-
stricted to A, with Radon-Nykodim derivative given by 7, = dP;/dW. However,

P and W are not, in general, absolutely continuous on the complete B(Co,))-

Before the development of Ito calculus, diffusions were defined as continuous
time Markov processes characterized by their infinitesimal generators. Consider
a real valued time homogeneous Markov family Y = {Y; : t > 0}, {P¥ : y € R}
on a filtered space (€2, A.{A¢}t>0). Denote by Cs the set of real valued, twice
continuously differentiable functions on R and, for h € Gy, let

By (1] = | A(¥i(w)aP) (1.31)
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The infinitesimal generator of Y is a linear operator G defined by

sh(y) = L1 00) —(0)

Vy R, (1.32)

for every integrable function h (see e.g. Ethier & Kurtz, 1986; Lamperti, 1977,
for more on generators of Markov processes).

Let D be the second order differential operator associated with the drift co-
efficient & : R — R. and the diffusion coefficient o : R — (0. 0], i.e.

1 d2h(y)

Dh(y) := 50°(y) dh(y)

(1.33)

Definition 7 Let Y = {Y; : Lt > 0}, {P¥ : y € R}, (A, {A}i>0) be a real
valued time homogeneous Markov family. Then Y is called a diffusion process if
the following conditions hold

i) Y has (a.s.) continuous sample paths.

it) For every bounded h € Cs, with bounded continuous first and second order
derivatives,

Gh = Dh. (1.34)
i11) For every y € R

E,[Y: — y] = ta(y) + o(t); (1.35)
Ey[(Yt — y)Q} = 1o?(y) + o(L). (1.36)

The drift coefficient v can be interpreted as the instantaneous expected rate of
change of the process, while o2 represents the instantancous rate of change of the
process variance. Diffusion processes are therefore defined in terms of infinitesi-
mal characteristics, which cannot be captured by discretization. This constitutes
one of the problems for inference on discretely observed diffusion models, which
reflects in the intractability of the resulting likelihood functions, as we explain at

the end of this section.
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The construction of diffusion processes, from Definition 7 follows an analytical
approach. Assuming that the transition densities

Jt(ylyo)dy =P[Y; € dy] for each y,yo € R and ( > 0, (1.37)

for the Markov family exist, they must satisfy the forward and backward Kol-
mogorov equations. It follows from condition (1.34) that, fixing yo € R, the
forward equation is given by

fe(ylyo) _ oo 107 0
o = 5l = 555 @h0)] - 5 @A) (1:38)
while the backward equation is, for a fixed y € R
Afe(yl i 1 0? 0
—f% = Sfe(ylyo) = 502(1/)@3.ﬂ(yl.7/o) - ()’(?/)%ft(?ll?/o)- (1.39)

A diffusion process can then be defined by finding a solution to the above, known
as Fokker-Planck-Kolmogorov equations, since the family of transition densities
characterizes the finite-dimensional distributions of a Markov process with fixed

initial point.

When diffusion processes are used as statistical models, it is assumed that a
sample y1., = (y1....yn) is a partially observed realization of a diffusion path.
Formally, we consider a diffusion process Y = {Y; : ¢ > 0}, started at a known,
fixed point Yy = yo € R, and assume each y; is a realization of Y;,, for times
tp, < ty < ... < tlp. This is commonly referred to as a discretely observed
diffusion.

The likelihood for the sample is the density associated to the finite dimen-
sional distribution of (V,,...,Y;,) under the probability measure P¥, evaluated
at (y1,...yn). We assume the drift and diffusion coefficients characterizing the
diffusion process satisfy all necessary conditions for the existence of the transition
densities {f; : t > 0}. The likelihood function, then, takes the form

S(n) = [ ] o ilyicn). (1.40)

where A,L = tl — ti—l-
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Provided sufficient smoothness conditions on « and o, the existence of a so-
lution to the Fokker-Planck-Kolmogorov can be guaranteed. However, in all but
a few cases, such solutions do not have an analytic form, and therefore, the dis-
cretely observed diffusion model has an intractable likelihood function.

The advent of 1to calculus provided a new way to define diffusion processes,
as solutions to stochastic differential equations (SDEs), and the constraints on
the drift and diffusion coeflicient for such solutions to be well defined are milder
than those required for the existence of the transition densities. Thus, the use
of stochastic calculus transformed diffusion processes into an extensive and rich
family of processes. Although we are only interested in a subset of it, for which
densities exist, we rely on the construction of diffusions as weak solutions to
stochastic differential equations (SDEs), through the use of Girsanov’s formula,
in order to deal with the intractability of the model. In this section, we discus
the construction of diffusion processes only. In the next section, we present a
latent variable extension, based in this construction, which Beskos et al. (20062)
developed to enable the simulation of diffusion paths, as well as inference for

discretely observed diffusion models.

Consider a Brownian family Y = {Y; : ¢ > oc}, {W¥},er, defined on the
canonical space (C’[Om), ‘B(G[Om))), with natural filtration, and a continuous, thus
Borel-measurable function, a : R — R, such that

a(y)] < C(A+yl). VyeR, (1.41)
for some C' > 0. In this case, it can be shown that
5, = e {/Ota(ys) dy, — %/Ot o2(Y,) ds} (1.42)
is a martingale under each W¥. Applying Girsanov’s theorem, the process
We=Y, - Y, — /Ot a(Ys)ds (1.43)

is a Brownian motion started at Wy = 0, under the measure PY defined by
dPY/dWY = Z;, on A,. Rearranging terms gives

t
Y: =Y, + / a(Ys)ds — Wy, (1.44)
0

28
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which in differential notation, corresponds to the SDE
dY; = a(Yy)dt —dW,;; Yy =vy. (1.45)

The definition of the Brownian motion on the canonical space, guarantees the
existence of the unique measure PY, for each y, so that the complete process
Y = {Y; : { > 0} is defined on (Cjp,cc). B(Cpo,00)), P¥). It can be shown that Y
satisfies the conditions of Definition 7, making it a diffusion process with drift
coefficient « and diffusion coefficient 1.

This idea may be generalized to define a diffusion process with general diffu-

sion coefficient o, as a weak solution to an SDE
dY; = a(Y)dt — o(Y;)dW,. (1.46)

The construction of diffusions as solutions to stochastic differential equations
was suggested by P. Lévy and developed by K. Itd6. The SDE (1.46) is said to
have a strong solution when a process Y can be constructed, which satisfics the
equation with respect to a given filtration and a given Brownian Motion. A weak
solution exists when the probability space, the filtration and the driving Brownian
motion are part of the solution and not part of the statement of the problem. For
more detail on this type of constructive definition of diffusion processes and the
difference between strong and weak solutions sce c.g. Karatzas & Shreve (1991);
Revuz & Yor (1999). Throughout the present work, we are only interested in
weak solutions, since they are sufficient for a diffusion process to be used as a

statistical model.

For simplicity, we limit our analysis to discretely observed diffusion models for
which the diffusion coefficient is constant ¢ = 1 and the drift coefficient belongs
to a parametric family {ap : @ € ©}. Thus, the likelihood of the model takes the
shape

Fnl0) = 11 fai(wilia. 0). (1.47)
=1

The Bayesian model is completed by a prior IT on the parameter space ©, which
induces a prior on the space F of, possibly intractable, transition densities im-

plicitly defined by the choice of diffusion and drift coeflicients.
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1.1.2.2 Nonparametric Time Series Models

In the most general sense, time series are countable sequences of random vari-
ables recorded over time. This defines an order which is assumed to be relevant.
in other words, even though i.i.d. or exchangeable sequences of data, formally
constitute time series, the term is used only for stochastic processes in which
the order matters. The law of the process is thus, generally described in terms

of conditional distributions of the ordered sequence. Therefore, given a sample

Viws = (Yo < =55 Yn),the likelihood for a time series model has the form
S (o) = Jo(Yo- - - - Ym-1) H filyilyio1s .- Yi-m)- (1.48)

In other words, in a time series model, the observations are assumed to be re-
alizations from a discrete time stochastic process with order m < n Markov
dependence. If the process is time homogeneous, the densities are time invariant,

SO we may write

n
S (om) = S oy - 1) [ [ S0l - s t5-m)- (1.49)
i=m
A genceral practice is to assume the first observations, yg.,,—1 arc fixed, so that
Jo(Yo:m-1) = 1y 1}: or that such density is fully known. In either case, the
Jo(Yo:m—1) may be removed from the likelihood expression. An alternative, is to
assume the process is stationary, and therefore fully specified by the conditional
density f(yilyi—1,.-.,Yi—m). In this case, fo(yo.m_1) may be included in the like-
lihood expression, but model specification is only required for the conditional
densities, since the invariant density is uniquely defined by them.

A case which deserves special attention occurs when m = 1, and the time
series model is simply a discrete time Markov model. The simplest and most
commonly used is the normal linear autoregressive model, AR(1), where each
observation y; is assumed to be a realization of a random variable Y; with a

dependence structure given by

Yi=Plo+6Yiate; € ~ N(-0,w?), (1.50)
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for some 3y, f1 € R and w > 0. When || < 1, the process is stationary. Clearly,
both the transition structure and the invariant distribution for this type of model
arc very limited, but many more flexible models have arisen as generalizations of
this simple idea. In particular, the nonparametric model we propose in Chapter
3 originates on the simple AR(1) model.

In the context of statistical inference, time homogeneous order m Markov
processes are commonly known as autoregressive models, since they can be con-
structed as regression models, in which the covariates for each observation y; are
the previous m observations ¥; . ...y;—1. From this perspective, autoregressive

models are defined through the conditional deunsities

Falvi-a, - s¥im) (1.51)

and they are as flexible as the regression form chosen for such conditional densi-
ties. In the AR(1) case

F(ilyi1, B,w) = N(ysl Bo + Brys—1,w?). (1.52)

More general forms of regression lead to more general transition densities and
therefore to wore flexible dependence structures of the stochastic process they
define. Therefore, one approach for the definition of nonparametric process is
to construct nonparametric conditional densities to define the transition mech-
anism. In this scnse, any onc of the flexible regression models presented in the
next section can be used to define a time series model. However, when flexible
transition densities are defined, desirable properties of the resulting process, such
as stationarity are difficult to verify and so this type of constructions focus on
transition density estimation and prediction, with no regard for the stationarity
of the process.

Examples of this type of construction are given by Miiller et al. (1997), who
define the transition density of an autoregressive model as a semiparametric finite
mixture of AR(1) models, assigning a Drichlet Process prior on the model param-
eters. Tang & Ghosal (2007a) define a mixture of Dirichlet process model for the
transition density, with a Gaussian kernel, and the correlation structure intro-
duced through a hyperbolic tangent link function as the mean for the parametric
kernels.
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The construction of flexible transition structures is only as complicated as the
definition of flexible conditional densities in regression models. It is additional
requirements, such as stationarity that make the problem more challenging. Until
recently the construction of parametric stationary time series with non-normal
invariant distributions was a difficult enough task. Pitt et al. (2002) and Pitt
& Walker (2005) provide a latent variable construction for stationary processes
with general parametric invariant densities. Their idea is to define a joint density
for an observation y and a latent variable s, as fy(y,s) = fo(y|s)fo(s) from
which the conditional fy(s|y) can be obtained via Bayes theorem. A stochastic
process is then defined via a Gibbs sampling scheme in which the observation
y; is updated from the conditional fp(y;|s;), while the latent variable is updated
from the conditional fy(s;|y;—1). The process has a stationary density given by
the marginal of fy(y, s), namely

o) = [ Sool)sa(s)av(s) (1.53)
and the transition density is simply the conditional distribution

il 5§ Jowi-yiz1) | fo(wils) fo(slyi—1) dv(s)
fowlir) == ey = T Thahm ) - Y

For a large family of parametric densities, an adequate latent variable may be

chosen to ensure the desired stationary density. The transition may not have a
closed form, but the Gibbs sampling construction ensures the models are naturally
suited for MCMC inference.

More flexible models are needed to accommodate the complex dynamics ob-
served in real life data. Mena & Walker (2005) generalize the above construction
by considering the latent structure to be a random probability measure. In this
case, the joint density is expressed as f(y,dP) = fp(y)II(P). Once again, a
stationary Markov process is defined through this structure, with stationary and

transition densities given by

fly) = /fp(?/)dH(P); (1.55)

. :f(yi-yz--l): 1 -
Flanlia) J(yi-1) J(Yi-1) ./fP(y)dH(Pl'/z_l)' (1.56)
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The integrals, in this case, constitute nonparametric mixtures, defined in terms of
a nonparametric prior II and the corresponding posterior II(-|y) given an observa-
tion. The expressions are intractable and inference methods are only available for
particular cases of the general construction. In order to enable inference through
MCMC methods, Mena & Walker (2005) consider a joint density f(y;, v; 1) di-
rectly defined as

.[(7/1’77/1’—1) — /fP(?/i)fP(?/i—l)dH(P)' (1~57)

In other words, conditional on the random probability P, the observations are
independent and identically distributed, and their dependence is induced only
through the correlation structure of the Gibbs construction for the distribution
P. over time. II is a Bayesian nonparametric prior and, specifically, Mena &
Walker (2005) base it on the Gaussian process prior of Leonard (1978) and Lenk
(1991). This model results in a transition density which is the predictive density

function given a single observation from the Bayesian model, i.e.

F(wilyi-1) = /fP(yi)dH(Plyi—l)- (1.58)

This can be nonparametric since the II(:|y) is a probability measure that can
accommodate two functions; one being the mean density /(y) and another to do
with the variance process V (y), based on [ P?(y)dII(P). Then f(yi|yi_1) is a
function of (f(yi—1), V(yi-1)). On the other hand, the stationary density is given
by the parametric mean density of the process,

f(y) = / Jp(y)dTI(P). (1.59)

While stationarity is a desirable property which facilitates estimation of rele-
vant quantities, it is difficult to construct stationary models for which both the
transition mechanism and the invariant density are sufficiently flexible. There-
fore, attempts at defining flexible models often result in a compromise between
flexibility and statistical properties.

In order to overcome the issue of the lack of flexibility of the stationary
density, Martinez-Ovando & Walker (2011) propose a transition density defined

as a nonparametric mixture, extending the Gibbs sampler model construction
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from Pitt et al. (2002) and Mena & Walker (2005) described above. By adding a
hierarchical level to the latent structure, they construct a process for which both
the transition and the stationary densitics arc defined as nonparametric mixtures.
The price to pay for the added complexity is a lack of interpretability which ob-
scures the effects of the prior choices; and a model complexity which requires
careful choices of the mixing components and probabilities to ensure feasibility
of the MCMC inference procedures.

Other examples of nonparametric time series models define the transition

density as a mixture of parametric conditional densities, i.e.
Flodid) = [ Kofurly)dP (0lgior), (1.60)

for some conditional density function or kernel Kjy. In general, this type of mod-
els need not be stationary. Furthermore, constraints must be imposed on the
structure of the dependent mixing measures Py(-) = P(-|y) and the correspond-
ing priors, in order to ensure inference is feasible. We discuss this further in the
following section and in Chapter 4, in the context of regression models. Suffice to
say that the constructions proposed by Miiller et al. (1996) and Martinez-Ovando
& Walker (2011) provide evidence of the difficulty in defining nonparametric tran-
sitions for which nonparametric stationary distributions exist.

The idea of using latent structures to induce time dependence has been widely
explored, even to an extreme in which the latent structure is itself the object of
interest in the estimation procedure. The area of hidden Markov models has a
place of its own in Bayesian literature and many models have been proposed (see
e.g. Cappé et al., 2005). Nonparametric extensions (Van Gael et al., 2008) allow
for great flexibility in the transitions, but emphasis is placed on inference for the
latent structure, so inference for the transition density for the observations may
not be possible.

Finally, in many models. flexibility is achieved by forcing non stationarity and
non homogeneity of the transition mechanism over time. It is common in this case
to define transition densities through dependent mixture models in the manner of
nonparametric regression models, incorporating time as a covariate. Some models
of this type can be found in Griffin & Steel (2006, 2011); Zhu et al. (2005) and

Williamson et al. (2010); more can be obtained from the nonparametric regression
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models described in the following section, by incorporating time and/or previous
observations as covariates for the transition density of a stochastic process.
There is an extensive literature regarding the definition of time series mod-
els and the methods used for statistical inference, both in the classical and the
Bayesian settings. We do not cover all of it here, as we are only interested in the
more flexible nonparametric ideas. In Chapter 3 we propose a time homogeneous
autoregressive stationary model with fully nonparametric transition and invariant
densities, which can be generalized to obtain higher order Markov dependence as

well as a dependence structure changing over time.

1.1.3 Nonparametric Regression Models

The contents of this section constitute the introduction of Antoniano-Villalobos
et al. (2012).

The standard linear regression model assumes a response variable y € Y is
related to some covariate © € X through a linear function with additive normal
errors, that is

y=PBX+c; c~N(c0,0?).

where, for a p-dimensional covariate x, f is a (p+1)-dimensional vector of constant
coeflicients, and we define X = (1, z).

This is, however, a limited and unrealistic model in most applications. Real
life data exhibit a more complicated relation between covariates and response
variables, so there is a need to construct models that allow for a more flexible de-
pendence structure. One of the most popular approaches consist in representing
the regression function as a linear combination of basis functions, such as splines
or wavelets (Denison et al., 2002; Dimatteo et al., 2001). Another common prac-
tice, when more flexibility is desired, is to place a Gaussian Process prior on
the unknown regression function (Rasmussen & Williams, 2006), thus defining a
nonparametric model.

These models achieve flexibility for the mean function. however. they are
still limited, in the sense that they only allow for a basic structure of the errors.

Many data sets present departures from classical distributional assumptions, such

35



1.1 Statistical Models

as normality or the uni-modality of error distributions. It is common to observe
non standard variances, skewness and unconventional tail behaviour in different
regions of the covariate space, X. To capture such behaviour, nonparametric ap-
proaches for modelling the conditional density f(y|x) in its entirety, are becoming
increasingly popular.

As stated in Section 1.1.1.2, a flexible model for independent and identically
distributed observations can be defined as an infinite mixture of parametric mod-

els, given by
y) =) wiK(yl)), (1.61)
j=1

where K (-|0) is a parametric family of density functions defined on Y and P is
an almost surely discrete random probability measure on the parameter space ©,
characterized by some atoms ¢; € ©, and weights w; > 0, such that " jwi =1
(a.s.).

For covariate dependent density estimation, the mixture model can be adapted
by allowing the mixing distribution P to depend on the covariate value x, and
replacing the parametric kernel K(y|f) with some parametric regression model

K (y|z, ), such as a linear regression model. Hence, for every z € X,

fr.(0k2) = [ K (o1, 0@)ar. 0(2)). (1.62)

As in the i.i.d. case, the Bayesian model is completed by assigning a prior
distribution on the family {F,}.ex of covariate dependent mixing probability
measures. If, for every z, the prior gives probability one to the set of discrete
probability measures, then each mixing distribution admits a representation de-

fined by a weighted sum of atom masses,

P Z w] ()9 ()

and

Jr.(ylz) = Zw] K (yle,0;(x)). (1.63)
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where 6;(z) € O, and the weights w;(x) > 0 are such that >_jwi(r) =1 (as.)
for all x € X.

A first proposal along the lines of modecl (1.62) was given by Cifarelli & Regazz-
ini (1978), with a focus on discrete covariates. They induce dependence between
a finite number of random probability measures, through the base measure of a

Dirichlet Process. Their proposal extends Antoniak’s (1974) mixture of Dirichlet

Processes, by defining, for some finite N and X = {1...... N},
N
Pro.o.. Pylu(l)..... w(N) ~ H DP (C(J?)Pg(~|'u,(.’lf))>,
=1

where ( is a function on X taking values in (0, 00), and for some distribution II,
w(l).... ,u(N) ~ 1L

In terms of equation (1.63), this implies that the weights are allowed to vary
with x, but are constructed independently across x. Thus, dependence of the
conditional densities for different covariate values is induced through the covariate

dependent atoms, given by
0;(z)|u(x) £ Po(-|u(z)). (1.64)

To allow continuous covariates, Muliere & Petrone (1993) extend this idea by
assuming u(z) = (B.0?) V z € X and

0;(x)lu(z) % N(-|X8,0%), (1.65)

where X = (1,z). The limitation of this construction is the restrictive nature of
the induced dependence.

The general model (1.63) is introduced by MacEachern (1999; 2000), assuming
a Dirichlet Process prior as the marginal distribution of P,. This choice is justified
by the connection of the DI” with finite mixture modecls, its simple prior clicitation
and large support, as well as the availability of computational procedures for
inference.

MacEachern’s general class of models is now known as Dependent Dirichlet

Processes (DDP). The basic assumption underlying their construction is that
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each {w;(7)}.ex is a stochastic processes, with a correlation across j given by the
stick breaking construction,

wi(r) =vn(z). and wj(z) =v;(z) H(l —vp(x)), j > 1, (1.66)

3'<J

where the {v;(z)}.ex are independent processes such that, marginally
v;(z) b7 Be(1.¢(z)) for j =1.2....,

for some function ¢ : X — (0,00). Moreover, the {0;(x)},ex are independent
stochastic processes with marginal distribution Fp,, and independent of the v;(z).

A popular version of the general model, the single-weight DDP is obtained
when w;(z) = w; for all # € X. Its attractiveness results from the fact that in-
ference can be carried out using any of the well established algorithms for DPM
models mentioned in Section 1.2.2.2. Single-weight DDP mixtures have been suc-
cessfully applied to address a wide range of problems, from classical regression
(MacEachern, 2000, 2001) to ANOVA (De Iorio et al., 2004), spatial modelling
(Gelfand et al., 2005), time series analysis (Rodriguez & ter Horst, 2008), dis-
criminant analysis (Cruz-Mesia et al., 2007), longitudinal analysis (Miiller et al.,
2005), and survival analysis (De Iorio et al., 2009; Jara et al., 2010).

Recent developments explore the use of covariate dependent weights. To sim-
plify computations and ease interpretation, atoms are usually assumed not to
depend on the covariates, and are therefore referred to as single-particle DDPs.
It can be argued that both the single-weight and the single-particle versions of
the model have a large enough support to describe the variability found in real
data (see Barrientos et al., 2012). The general model with covariate dependent
weights and atoms, on the other hand, is usually considered too flexible for effec-
tive estimation.

The main constraint for the construction of DDP models with covariate de-
pendent weights, is the need to specify a prior such that } . w;(z) = 1 as. for
all » € X, which is non trivial for an infinite number of positive weights. The
stick-breaking representation (1.66) propsed by MacEachern is justified by the
need to satisfy this constraint. A wide variety of models present in the literature

follow this structure and differ only in the construction of the v;(z).
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One of the first approaches to covariate dependent weight mixture models. de-
veloped by Griffin & Steel (2006), incorporates dependency in the weights by re-
ordering i.i.d. beta random variables, {v;}, according to some concept of distance
in the covariate space. They successfully apply this idea to stochastic volatility
and spatial modelling; but do not discuss how to handle discrete covariates.

Dunson & Park (2008) introduce the kernel stick-breaking approach for the
construction of covariate dependent weights, where v;(x) = v; K(x|t;) for some
kernel function on X, with parameter ¢);. They use this idea in and epidemio-
logical study; Reich & Fuentes (2007) apply it to a spatial data-set concerning
hurricane wind fields. Both examples involve continuous covariates ouly; to in-
corporate discrete covariates, adequate kernels must be specified.

Another common model defines v(z) = £(g(z;1;)), where £ : R — [0.1]
is a monotone, differentiable link function and g is a real-valued function on
X. Common choices for g, are simple linear functions, linear combinations of
basis functions, and Gaussian Processes (see e.g. Chung & Dunson, 2009; Dunson
& Rodriguez, 2011; Ren et al., 2011). Applications of this approach include
stochastic volatility models and image segmentation. Alternative options for g
must be explored if discrete covariates are present.

Other proposals focus exclusively on discrete covariates (see for example,
Miiller et al., 2004; Rodriguez et al., 2008; Teh et al., 2006).

An interesting idea that has received recent attention in the literature is to
model the joint distribution of y and z through a nonparametric mixture of
density functions on Y x X. Inference is carried out for the joint density, via the
usual methods for nonparametric mixture models. Conditional density estimates
are then obtained from the posterior inference based on the joint model. However,
as stated by Miiller & Quintana (2004), this approach “wrongly introduces an
additional factor for the marginal of x in the likelihood and thus provides only
approximate inference”. In fact, including this additional factor, forces a fit of
the marginal distribution of z, thus degrading the performance of the conditional
density estimate. This approach was first introduced by Miiller et al. (1996),
and subsequently studied and employed by Hannah et al. (2011); Kang & Ghosal
(2009); Park & Dunson (2010); Shahbaba & Neal (2009) and Miiller & Quintana
(2010).
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1.2 MCMC Methods and Latent Variables

Most of the existing literature regarding intractable components is concerned with
the approximation of intractable normalizing constants when both the observa-
tions and the parameters are finite-dimensional.

Consider a Bayesian parametric model

iid

Yi ~ [(:0)
0~ TII.
The posterior density, given a sample 1., = (y1....,Yn) I8

1(6) = — LOTTL, o) 87

Jo THO) T iy J (il 0)d(0)°

The prior II is sometimes chosen to be conjugate with the likelihood, to guarantee
the expression above has a closed form. However, in general, the posterior density
can be known only up to proportionality and the integral in the denominator
constitutes an intractable normalizing constant.

Three mainstream approaches can be identified to deal with this type of prob-
lem: analytic approximation, usually based on Laplace transforms and other
mathematical representations (see e.g. DiCiccio et al., 1997); numerical integra-
tion or some form of adaptive quadrature method based on classical analysis tech-
niques (see e.g. Evans & Swartz, 1995); and Monte Carlo simulation methods,
which use samples drawn from I1" to estimate relevant features of the distribution.
While analytic approximation and numerical integration may be convenient for
some distributions, they are not always available and their statistical properties
are difficult to establish. For these and other reasons, Moute Carlo simulation
is considered a more adequate approach for statistical analysis, specially in the
Bayesian context (for more on the advantages of the Monte Carlo approach see
e.g. Smith & Roberts, 1993).

Since drawing samples from complex and often high dimensional distributions
directly may not be possible, estimation is usually achieved through a family of
methods commonly known by the acronym MCMC, which stands for Markov
Chain Monte Carlo.
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The idea behind MCMC methods is the following. Suppose we wish to es-
timate some quantity associated to some distribution, in this case. II". Then
a stationary Markov chain is constructed with cquilibrium density cqual to T17.
Independently of the initial point of the chain, if enough time is allowed, con-
vergence should occur, so that the simulated values can eventually be regarded
as a sample from the desired marginal distribution. Such sample can then be
used to generate Monte Carlo estimates of the quantities of interest, relying on
asymptotic properties of the Markov process.

One such asymptotic result tells us that the sequence of random variables
{0;}i>0 which constitute the Markov chain, converges in distribution to a random
variable 0 distributed according to II". Formally,

0, = 9 ~ II".

i—00

This allows, with some caution, the use of the Markov chain realizations as a
sample from the desired distribution. Of course, successive realizations are corre-
lated, therefore an adequate spacing may be allowed between consecutive sample
elements to generate an approximately i.i.d. sample from II". Alternatively, in-
dependent runs of the Markov chain may be used to generate a sample of the
desired size.

The second commonly applied result in the context of MCMC states that, for

any integrable function £,

N—o0

% Z h(0;) === E[h(0)],

where the integrability, the almost sure convergence and the expectation are all
with respect to the invariant measure of the Markov chain, in this case II". This
allows the use of consecutive realizations from a single run of the Markov chain
to calculate an ergodic average of the function of interest, obtaining an unbiased
estimate for the expectation.

There is by now an extensive literature on theoretical results concerning the
convergence of MCMC methods, as well as output analysis and convergence diag-

nostics to ensure that, in practice, the Monte Carlo error of the estimates can be
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considered small or negligible. Some useful references on this subject are Besag &
Green (1993); Robert & Casella (2004); Smith & Roberts (1993); Tierney (1994).

However, before studying the asymptotic properties of an MCMC scheme,
a Markov Chain with the desired stationary distribution must be constructed.
There are two basic standard methods commonly used for this, known as the
Gibbs sampler (GS) and Metropolis-Hastings (MH) algorithms.

For a p-dimensional parameter ¢ = (0;..... 0,), the Gibbs sampler involves
successive sampling from the full conditional distributions IT"(0;]0_;), where _;
stands for the vector € from which the component j has been removed. A more
elaborate version of the algorithm allows for blocks of variables to be sampled
simultaneously, from the conditional distributions given the variables not included
in the block. The choice of blocks should minimize the correlation structure of
successive states of the Markov chain. Thus, bigger blocks improve the speed of
convergence of the chain to the equilibrium distribution, at the price of sampling
from multivariate distributions. In practice, a compromise solution must be found
between efficiency and the possibility to sample directly from high-dimensional
multivariate conditional distributions. Even in the simplest form of the algorithm,
for many models, sampling directly from the full conditional distributions is not
possible or the correlation structure of the resulting Markov chain is so strong as to
make the convergence of the MCMC scheme unfeasible. Furthermore, a sampling
scheme of this type can only be applied for finite-dimensional parameters.

The Metropolis-Hastings algorithm avoids the problem of simulating exactly
from a full conditional distribution. Each realization of the Markov chain is
updated by generating an observation ¢’ from a proposal distribution g, which
may depend on the current state . The proposal is then accepted as the new
state for the chain with a probability which, in order to ensure the resulting
Markov chain has the desired limiting distribution, is calculated as

) " (0")q(0)¢
min {1, %} . (1.68)
Calculation of the intractable normalizing constant for the posterior distribution,
that is, the marginal distribution for the data, is therefore not required. Since
the acceptance probability depends on the choice of ¢, the performance of the

algorithm can be improved by a suitable choice of the proposal distribution.
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However, in many more complex statistical models, the intractability is orig-
inated by the normalizing constant of the likelihood function. We discuss this

problem in the following Section.

1.2.1 MCMC for Doubly-Intractable Distributions

Assume the sample consists of i.i.d. observations, each of them distributed ac-

cording to a parametric density which is known up to proportionality. In other

words,
I(410) = "é’%’), (1.69)
where i
70) = [ 9(s.0)v(y (1.70)

is intractable.
For simplicity, we consider posterior inference for a single observation, i.e.
n = 1. Given a prior Il on the parameter space O, the posterior density for the

parameter is given by

() = 1{6)F(wl) _ ___(O)e(y.0)/2(6) (1.71)

J(y) Jo[T1(0)g(y.0)/2(0)] dv(0)

In this expression, the integral in the denominator is an intractable normalizing

constant. Furthermore, the g() appearing in the numerator is the intractable
normalizing constant for the conditional distribution of the data given the param-
eter. Therefore, in the literature, expressions of this type are sometimes called
doubly-intractable distributions.

Traditional methods used for inference in the presence of single intractabil-
ity are not applicable here. A Gibbs sampler can only be used when the target
distribution is known at least up to proportionality. On the other hand, imple-
mentation of a Metropolis-Hastings update scheme would require the evaluation
of the ratio

I(¢)q(010) _ TU0)g(y.0)a(010") 2(0) -
I(0)q(0'10)  11(0)g(y, 0)q(0"|0) Z(0")

in order to calculate the acceptance probability. The expression, therefore de-

pends on the ratio of intractable normalizing constants, which is not available.
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Once again, a variety of methods have been proposed to deal with this problem
and they can be divided into two main groups. The traditional approach consists
of approximating the unknown ratio through the use of pseudo-likelihoods, im-
portance sampling techniques or more elaborate approximate sampling schemes,
such as bridge sampling or path sampling. See e.g. Gelman & Meng (1998) for
a discussion of this type of methods and Andrieu & Roberts (2009) for more
modern versions of the proposed algorithms.

Unfortunately, the use of approximate ratios leads to a Markov chain with a
stationary distribution which only approximates the desired posterior II". This
may lead to problems in the Monte Carlo estimation, as shown by Murray &
Ghahramani (2004) in the context of undirected graphical models. Approxima-
tion issues are more evident for high-dimensional parameters, for which accurate
estimation of the intractable ratio is more challenging. In a nonparametric set-
ting, where parameters are infinite-dimensional, it is unlikely that effective general
methods of this type can be designed.

An alternative idea, proposed by Moller et al. (2006), enables exact MCMC
simulation from II" through the introduction of an auxiliary variable s, with state
space Y, through the latent likelihood

9(y.0)
Z(0)

J(s,910) = [ (sly,0) ) (y]0) = J(s|y.0) (1.73)

MCMC simulation is implemented for the joint posterior distribution

(s, 6) = I1(0) f (sly, 0)g(y,0)/ 7 (0) (1.74)

Ly Jo [I(O0) f(sly. 0)g(y. 0)/Z(0)] dv(0, 5)

The posterior density II"(0) can be recovered from the above expression by

marginalization over s, so a Markov chain with stable distribution defined by
(1.74) would produce a sample with the desired marginal distribution.

The intractable constant Z(€) still appears in this latent distribution. In
order to deal with it, Moller et al. (2006) propose a MH scheme with proposal
distribution given by

q(s',0']s.0,y) = q(0'|0,y)q(s'0"). (1.75)
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where q(6']0.v) represents the usual choice for the parameter update step. The

additional term
g(s',0")
Z(0"

is designed to ensure that evaluation of the intractable ratio is not required for

q(s'|()’) =

(1.76)

the calculation of the acceptance probability. The MH ratio in this case is given
by

1" (s", 0")q(s. 0] 0") _ TI(6")g(y,0")q(016". ) g(s,0)/(']0". y) (1.77)
(s, 0)q(s', 0'|s,0)  TL(O)g(y,0)q(0'0,y) g(s',0")f(s]6,y) '

The main assumption here is that an exact sample can be generated from the

proposal distribution. In other words, it must be possible simulate observations
from the model density f(-|0) for any possible parameter value 6 € ©.

The proposal distribution ¢ for the MH scheme is fixed, and so the performance
of the algorithm in terms of the overall acceptance rate can only be affected by
the choice of the target distribution, i.e. the conditional f(s|0.y). A common
choice is given by

F(s10,y) = f(s]0) = 9;9(;) (1.78)

for some fixed value é, which may be an estimate of the parameter based on some

pseudo-likelihood approximation.
Murray et al. (2006) interpret this as a one-sample importance sampler where
an estimate of the ratio of intractable normalizing constants is calculated as the

ratio of two estimates given by

20) ~ o0y " Z0) (1.79)
Z(6) _ g(s.0) g(s,0)
20) "~ g.0) °~Z0) L)

They propose to improve the performance of the algorithm by substituting the
single auxiliary variable s by a vector s1.x = {$1.....sx} of auxiliary variables, for
some k > 1 chosen a priori and fixed throughout. They explore the performance
of the algorithm as a function of k.

Alternative Markov chain constructions are also provided by Murray et al.

(2006). which result in simpler and more efficient updating schemes. The idea
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is to choose different proposal distributions for the MH scheme, which produce
direct estimates of the ratio of normalizing constants Z(6)/Z(¢') instead of the
ratio of estimates of the original algorithm. The choice of ¢ ensures that the
intractable component cancels out from the acceptance ratio, making the MCMC
feasible. However, this methods still rely on the possibility of producing exact
samples from f(-|f) in order to update the auxiliary variables.

In the following Chapters, we present some large families of models for which
this assumption fails, duc to the infinite-dimensional nature of the state space
Y (Chapter 2) or the parameter space © (Chapters 3, 4 and 5). It is this type
of models that provide a motivation for the present work, extending beyond the

scope of normalizing constants to deal with other forms of intractability.

1.2.2 Latent Variables for MCMC Methods

The idea of extending a model by introducing latent variables, to enable or
simplify MCMC simulation, is not limited to the Metropolis-Hastings updating
schemes presented above. Auxiliary variable extensions have been used for many
years within the conditional sampling step of Gibbs samplers. An overview of the
early developments on the use of auxiliary variables for MCMC simulation can
be found in Besag & Green (1993).

Assume one seeks to generate realizations from some density [(y), which
may be a full conditional within a Gibbs sampling scheme. In the most general
setting, the variable of interest is augmented by an auxiliary variable s which may
or may not have a physical interpretation. The conditional distribution f(y|s)
is specified, to produce a joint f(y,s) = f(y)f(sly). The desired sample can
then be produced by constructing a Markov chain which converges to [(y, s) and
therefore, marginally, to f(y). If a Gibbs sampling scheme is already in place,
this is achieved simply by adding one step to the updating loop. Clearly, the
usefulness of the method depends on the possibility of choosing a density which
enables a simple simulation from both conditionals, f(y|s) and f(s|y).

Swendsen & Wang (1987) introduced a latent variable approach to improve
the performance of the Gibbs sampler for the Potts model, a generalization of the

popular Markov random field model known as the Ising model. A more general
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methodology for enabling and simplifying MCMC simulation through the use
of auxiliary variables was introduced by Damien et al. (1999). The method,
commonly known as slice sampling, provides an alternative to the traditional
Metropolis-Hastings and rejection-based methods. Their main contribution is
showing that, for a general family of complex models, it is possible to introduce
the latent variable s in such a way that direct simulation from the conditionals,
specifically from f(y|s) is possible.

The general idea behind the slice sampler is the following. Assume the target
density f(y) can be factorized as f(y) < 7(y)g(y), where 7 is a density and g is
a non negative invertible function, in the sense that the sets A, = {y : g(y) > s}
can be found. Damien et al. (1999) propose the introduction of a latent variable

s with positive support, by defining the joint density

fly.s) ocm(y)1{s < g(y)}. (1.81)

In this case, the conditional density f(s|y) is simply a uniform on (0. g(y)) and
the conditional f(y|s) is m(y) restricted to the set A,. For a p-dimensional state
space Y, when sampling from the corresponding truncated density may be diffi-
cult, the problem is solved by updating each component consecutively, using the
corresponding full conditionals. That is, it is necessary to sample from 7 (y;|y_;)
restricted to the set A; s = {y; : g(y) > s}, for which it is only required that g(y)
is invertible for given values of y_;, for each j =1,...,p.

More flexibility may be achieved by substituting the uniform random auxil-
iary variable approach implicit in the use of 1 {s < g(y)}, with a more general
35(8)1 {s < g2(y)}, which results in the need to sample from two truncated densi-
ties, corresponding to the full conditionals. There is no general way to choose the
most convenient latent variable; suitable options depend on the context. How-
ever, Damien et al. (1999) provide many examples in which at least one choice
may be found which allows direct sampling from the full conditionals.

Another way to define useful auxiliary variables for sampling from complex
models, known as partial decoupling, is found in Higdon (1998). It is particularly
useful in the context of Markov random fields.

Many other latent structures have been proposed. originating in specific mod-

els, with the purpose of improving the mixing or convergence properties of Markov
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chain simulators, reduce the correlation of the samples or improve the quality of
the estimates. We do not give here a full review on the subject, but present some
particular simulation algorithms, based on latent variables, which are relevant for

the present work.

1.2.2.1 Latent Variables for Truncated Density Simulation

In this Section, we illustrate the use of latent variables to simulate from a trun-
cated density as part of an MCMC scheme. This is relevant for the applications
we present in the following Chapters, which require the simulation from truncated
normal and gamma densities. The results and methods in this section are taken
from Damien & Walker (2001).

Let us first consider a truncated univariate normal density
f(y) < exp(—y*/2)1{a <y < b}. (1.82)
A latent variable s is introduced, via the joint density
f(y.s) < 1{0 < s < exp(—y*/2)}1{a <y < b}, (1.83)

which clearly has the desired marginal f(y). Since 0 < s < exp(—y?/2) if and
only if |y| < v/—2log s, the corresponding conditional distributions are given by

o) = U(sl.expo/2) (1.8
flyls) = U<y|max{a,—\/Togs}.min{b.\/Togs}) (1.85)

where U(+|a, b) denotes the density function for the uniform distribution on (a, b).
When a sample from the truncated density (1.82) is required within a Gibbs
sampling scheme, it may be obtained simply by adding an extra full conditional at
each iteration. Thus, a rejection or MH step is substituted by the straightforward
sampling of two uniformly distributed variables, which in many cases may be more
efficient.
This idea is extended by Damien & Walker (2001) to the problem of sampling

from a truncated multivariate normal density

S yp) X exp {—%(y —)E "y — /t)} 1 a(y). (1.86)
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assuming the truncation region for y; given all the rest can be written as (a;, b;).

Once again, they introduce a latent variable s, through the joint density

so the full conditional distributions are given by

J(slyr..... yp) o exp(—s/2)1 {.s > exp[—1/2(x — )’ (2 — p)] }
F(yily—i.s) o< 1{y; € (a;,b;) N B;}

Iy—1

where B; = {yi c(y— )Xy —p) < s}. So once the bounds are found
by solving the quadratic equation, the Gibbs sampler can be implemented by
updating p uniform random variables and one truncated exponential. For the
last one, the cdf inversion technique is suggested.

Another truncated density considered by Damien & Walker (2001) and used

within the present work is the Gamma,

J(y) <y texp(—y)1{a <y < b}, (1.87)

for some 0 < a < b < 0.

The latent variable extension proposed corresponds to the joint density
Sy, s) oy '1{0 < s < exp(—y)}1{a < y < b}. (1.88)
leading to full conditional distributions given by
J(sly) = U(sl0.exp(~y)),
f(yls) o« y*'1(a <y < min{b.—logy}),

the second of which can once more be sampled using the cdf inversion technique.

In the following Chapters we use this idea to sample from full conditional
densities within a more elaborate MCMC scheme, in cases where the truncated
regions are more complex or where more general multivariate truncated densities

are involved.
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1.2.2.2 Slice Sampler for MDP Models

Sampling from the MDP model described in Section 1.1.1.2 is a complex problem,
mainly because of the possibility of choosing form an infinite number of discrete
mass points, arising from the Dirichlet process prior. The first algorithm to allow
sampling from the posterior distribution defined by this model is owing to Escobar
(1988). It is usually referred to as a marginal method, as it relies on integrating
out the random distribution function, thus removing the infinite dimensionality
problem. Many variations of this method have been defined over the years, for
example by MacEachern & Miiller (1998) and Neal (2000).

Even though marginal sampling methods may be sufficient for certain applica-
tions, it is sometime convenient to avoid the integration of the random measure.
For example, when the random measure itself is an object of interest in the in-
ference process. In such cases, it is preferable to sample using an MCMC scheme
with includes the random measure in the updating process. The first algorithm
of this type, known as conditional methods, was introduced by Ishwaran & Zare-

pour (2000), who proposed an approximation to the MDP model based on the
hierarchical representation (1.19). Papaspiliopoulos & Roberts (2008) proposed
an algorithm to produce an exact sample by using retrospective sampling tech-
niques, while Walker (2007) and Kalli et al. (2011) achieve the same with a slice
sampler.

In the following Chapters simulation for mixture models will be done using the
slice sampling methodology. Therefore, we introduce the method, as presented
by Kalli et al. (2011) for the MDP model with a Normal parametric kernel. This
idea, as well as that of the retrospective sampler method, relies on the stick

breaking representation (1.18). That is,

F (Y100, 01:00) Z’“’ (y10;)- (1.89)

The prior II is defined by 0; ~ Py and, for a collection of random variables,

; 1~ Be(«;, ¢;) the weights are given by w; = v; [ ], vjr), with wy = vy.

jrei(l =
The slice sampling method introduces suitable auxiliary variables, conditional

on which, only a finite number of weights and particles needs to be sampled at
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each step of an MCMC scheme for posterior simulation. The first latent variable
to be introduced is a uniform random variable, u, taking values on (0,1). This

results in the latent expression

T, wlwisses Ories) = Z K(yl0;)1{u < w;}. (1.90)

j=1

Let Ay = {j : wj > u}. Since ) w; = 1, the weights must define a sequence
decreasing to 0. Therefore, the cardinality J, = >>77, 1{w; > u} of A,, is
finite. Furthermore, conditional on u, the density for y is a finite mixture with
J, components:

F(lt, Wrco, O1:00) = W, ' Y K(y16;), (1.91)

JEAu

where W, = > ., w;. An additional latent variable, d may be introduced,
to index the specific component from which the observation is generated. This

results in the joint density
J(y.u, d|wrs. 01:00) = K (y]0;)1 {u < wy}. (1.92)

The important features of this expression are that given u, the index d can only
take a finite number of values, and there arce no sums involved, so the likelihood
for n observations can be expressed as a simple product of terms. If we introduce
a pair of latent variables (u,d) for each observation, the full likelihood for the
model is given by the product

n

f(yl:n- Uin, dl:nlwl:oo- ()1:00) = H K(yz|()d,)1 {ui =< lUd,'}s (193)
i=1

and the posterior distribution for the model can be identified as

n

™ (W1:00+ O1:00 [Y1:0s Uiim~ d1:n) X (w100, O1:00) H K (yi|04,)1 {u; < wy,}. (1.94)

=1
Posterior simulation can now be carried out using a Gibbs sampler. However,
a more efficient sampler (see Kalli et al., 2011) can be defined if the uniform
auxiliary variable of the latent model (1.92) is substituted by a non uniform

term, resulting in the latent expression

(W, A0, O1:00) = ¥ wa K (y]04)1 {u < e84}, (1.95)
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for some known 0 < ¢ < 1. A Gibbs sampler implemented for this method
should control the size of the A, and improve the mixing. In fact the terms
{ei }].2] may be substituted by any positive sequence, each of which will result
in a different balance between algorithmic efficiency and computational time. For
more information on suggested options, see Kalli ef al. (2011).

The posterior distribution for the complete latent model is given by

n
I (w1:0001:00[Y1:m: Urem: B1in) O T(W100. Orio0) | [ e, €% K (3]0, )1 {us < €%},
i=1

Posterior simulation can be carried out using a Gibbs sampler, at each step of
which we need to update the latent variables d.,,, u1.,, and the variables weights
and particles characterizing the density of interest, wi..o, (h.0. Clearly, it is not
possible to update an infinite number of variables, but given the latent variables,
it is enough to sample a sufficiently large. but finite, number of them. Exactly

how many, can be inferred from the full conditionals distributions,

(0;]...) o< 2o(0;) [T & (il0y); (1.96)

di=j
H(?‘j | v ) = Be(’(}j | d]éj), (197)
O(u; | ...) = U(w]0,e%); (1.98)
O(di | ...) o waet™ K (y]0,)1 {()_M" > u;}; (1.99)

where

& = a;j+ Y 1{d=j} (1.100)

i=1
G = G+ 1{d>j} (1.101)

i=1

The weights are defined through the usual stick breaking construction (1.11).

In order to sample from II(d; | ...) exactly, only a number J; = |—£~!log y;]
of the weights and particles is needed. Therefore, at any given iteration of the
Gibbs sampler, we only need to update J = max;{J;} of them.

The best strategy for sampling the kernel parameters 0; = (j;, 072) will be

determined by the base measure F, specification and the choice of kernel function
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K (:|f). We discuss some adequate methods in the next Chapters, as required by
different examples.

The method can be adapted to obtain a similar representation for the Geo-
metric stick-breaking prior. It is this flexibility, along with the simplicity of the
resulting updating procedure, that makes the slice sampler so useful for the latent

variable estimation procedures we present in this thesis.

1.2.2.3 MCMC for Parameters of Unknown Dimension

Assume we have a family of models such that, for every k € K, the dimension
of the parameter space Oy for the model likelihood f(y1.n|k,0k), depends on the
index k. In a Bayesian setting, uncertainty about the models is expressed through
a prior 11(k,0;) — 11(k) [I(0k]|k). The posterior probability for model k is given
by

I, (k|y1n) = S (W1 k. Or) TL(K) TL(Ok | k) A (Or). (1.102)

1
Fyin) Jo,
This expression, commonly known as the marginal likelihood for the model, does
not have, in general a closed from. Therefore, inference is carried out through
MCMC methods.

Early approaches (Chib, 1995; Chib & Greenberg, 1998) rely on independent
MCMC simulation for each model k in order to estimate the marginal likelihoods
and calculate Bayes factors for model selection. This idea, however, is only fea-
sible when K is finite and relatively small.

An alternative idea (Carlin & Chib, 1995) is to implement MCMC simulation
simultaneously over the indexing variable k£ and all possible model parameters.
The compound space K x [[,cx O has a fixed dimension but it wmay be too
big for the MCMC methods to be of use. Godsill (2001) proposes a general
methodology based on Metropolis-Hastings and Gibbs sampling schemes, using
the relationship between the different models to make the sampling morce cfficient.
The method is particularly useful in the case when the models have some sort
of nesting structure. It has the advantage of relying on basic MCMC simulation
ideas, and therefore any convergence properties of the Markov chains may be

verified in the standard way.
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In the present work, we make use of Godsill’s version of the reversible jump
sampler (Green, 1995), based on a Metropolis-Hastings construction with a spe-
cific choice of proposal distribution.

We consider a fully nested, possibly infinite, family of models. Let K = N
and, for every £ > 0, assume model k has a parameter 6y, = (61,...60;), such
that 6; € © for all j and for k¥’ < k the first &’ elements of 6, coincide with 6., .
In this case, Godsill’s algorithm uses a Metropolis sampling scheme for (k,0) in
the infinite dimensional space N x ON. The proposal distribution for updating
from a state (k,0).x) to a state (k',07,,.) takes the form

Pk 0o . Or) = p1 (K 1K)P20 100 ) TG 1 ), (1.103)
where
/ _ ) a0 |Or6)L 0, (014) if k' >k
p2(()11k1|(}l:k) = { 191:k/(0/1:k/) if K S ko (1104)

and I1(0k41.00]01:1) is a pseudo-likelihood, in the sense that

S (k. 0lyrn) = S (K, 01| Y1) TL(Ok1:0001:1)- (1.105)

It therefore takes advantage of the nesting structure to minimize the number of
variables that need to be sampled.

The acceptance probability corresponding to this proposal is given by
p(k7 013k|k,‘ ()llk')f(k’l ()/l:k’ Iyl:'n) }
p(k'la Hi;kl |I< glzk)f(k, Hl:klyl:n)

( =min {1.

/ i % ond p 1.106
— min {1_ P1(k|K)pa (06|01, ) ] (K 7()];k/|y1:n)} (1.106)
pl(kllk)p2(0,l:k’|913k)f(ka elzklyl:n)
If, ¥ > k, this becomes
: pl(k‘.lk’,)f(kl79,1-k’|y1:n) }
a=minq 1, : : 1.107
{ P00y 1 101) 8, Oral) (1.107)
when k& > k', we have
, Pr(EIE) GOk 41k 0 ) K O | Y1) }
a =min < 1, = - . 1.108
{ h (k,|k‘)f(k ()lzklylzn) ( )

So the acceptance ratio does not depend on any parameter value 6; or ¢} for
j > max{k. k¥'} and therefore only a finite number of variables needs to be updated
at any step of the algorithm.
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1.2 MCMC Methods and Latent Variables

1.2.3 Exact Simulation and Inference for Diffusions

Auxiliary variable schemes can also be useful outside the context of MCMC meth-
ods. We illustrate this in the present Section.

Recall the discretely observed diffusion model described in Section 1.1.2.1.
Throughout this section, we use y1., = (Yi,, - - -, Ys,) to denote a sample of size n,
for fixed, known times 0 < {; < ... < t, < 0o. In other words, we assume each
observation vy, is the observed value, at time ;, of a single realization, or path,
of a diffusion process Y = {Y; : t > 0}, defined by an SDE

and started at some fixed. known Yy = 3. We assume that, for every 6 € O,
condition (1.41) is satisfied, so that the process is well defined and Girsanov's
change of measure formula (Theorem 3) applies. Under this assumption, the
transition densities for the process exist; in most cases, however, they do not have
an analytic form. Therefore, the likelihood of the discretely observed diffusion

model, given by

n

f(Wal) = HfA,»(yilyi—h())- Aj =1 —ti1, (1.110)
i=1
is intractable.

Many methods have been proposed to face this issue. Until recently, they
all relied on different forms of approximation or interpolation techniques, includ-
ing approximate simulation; analytic approximations of the transition density
or the complete likelihood functions; and direct approximation of the maximum
likelihood estimator. Some of these methods are described in Barndorff-Nielsen
& Sorensen (1994); Bibby & Sorensen (1995); Kelly et al. (2004); and Sorensen
(2004) gives a review of them.

An important theoretical breakthrough, was brought about by the definition of
a method, known as the exact simulation algorithm, which allows the simulation
of diffusion paths at arbitrary time points within a closed time interval [0,¢],
with no approximation crror. The cxact simulation algorithm, first presented

by Beskos & Roberts (2005), is a retrospective rejection sampler, based on a
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1.2 MCMC Methods and Latent Variables

factorization of the diffusion paths in terms of a finite set of points, known as the
skeleton, connected by independent Brownian bridges. Initially designed for a
limited family of diffusion processes with rather restrictive conditions on the drift
and diffusion coefficients, the result was later extended by Beskos et al. (2006a),
Beskos et al. (2006b) and Beskos et al. (2009), to cover most of the diffusion
process commonly used for statistical modelling. In the present work, however,
we focus on the simplest version of the algorithm (EA1 in Beskos et al., 2006b),
as it suffices for illustrative purposcs.

Since, the finite dimensional distributions of the process are, as the transition
density, generally unavailable, the first key for the exact simulation of diffusion
paths, is to express the law of the diffusion of interest, in terms of a Brownian
Motion, for which the transition densities are known and easy to simulate from.
Beskos et al. (2006b) achieve this through the application of Girsanov’s formula
(1.29).

For every fixed ({ > 0 the density of the law P¥ of the diffusion Y started at

Yy = yo, restricted to Ay, with respect to the Weiner measure W is given by

dP; ()

5 -t 1 [t
JiC190,0) = =7 =exp{/0 ae(Ys)dYs—§/0 ag(Ys)ds}. (1.111)

We use the notation f to indicate this is not a transition density with respect to
Lebesgue measure, but a density on (Cjo), B(Cpo,0))) With respect to a Weiner
measure.

In order to deal with the stochastic integral in the above expression, assume
that the drift coefficient oy is continuously differentiable and integrable, for every
0 € ©. Denote by

Ag(u) = / ap(u)du (1.112)

some antiderivative of ay, so that A = a for every 6 € ©. Theu, an adequate

version of It6’s formula (1.26) can be applied and equation (1.111) above becomes

Je(lyo, 0) = exp {A()(Yt) — Ap(Yo) — %/0 [ (Ys) + af,(Ys)]ds} . (1.113)

Since we are considering stochastic processes defined on the canonical space

(Clo,00)- B(Clo,0))). all random variables involved are defined by the coordinate
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1.2 MCMC Methods and Latent Variables

mapping, i.e. for each y € Cp) and t > 0, Yi(y) = 5. Therefore, for any

continuous function y, we can write

ool 0) = exp { o)~ Aoon) — 5 [ [o3o0) + ah(u]as |

This expression is the base for a simple, but impossible, rejection algorithm,
in which a Brownian motion path y = {ys : 0 < s < t} started at yo is sim-
ulated, and accepted with probability proportional to ft(y|y0.0). The impos-
sibility comes from the fact that, even though the finite dimensional distribu-
tions of Brownian motion are known multivariate normal distributions, this is
enough only to simulate a finite number of points in a Brownian motion path.
The integral in the above expression, however, depends on the complete function
y ={ys : 0 < s < t}, making it intractable.

Beskos et al. (2006a) deal with this problem by introducing a set of latent
variables. In the simplest form of the exact simulation such variables are defined
through an auxiliary homogeneous Poisson process in the following manner.

Assume that the drift coeflicient of SDE (1.109) is such that, for every 6 € ©

we can write
1(0) < inf { [ag(u) + ap(u)] /2}; (1.114)
r(0) > 8P { [ (1) + ap(u)] /2 — 1(0)}, (1.115)

for some I : © — R and 7 : © — (0,00). It is then possible to define a bounded
function g : R — [0,1] as

vo(u) = 7'(10) (“0("‘) = ap(u) —1(9)> . (1.116)

2

The expression for f can then be rewritten in terms of ¢y as

th(?/|7Jo$”) = exp{/l(,(yt) — Ao(yo) — l(())} exp {*7'(0) /: 999(ys)d5} - (1.117)

The second key for the exact simulation of diffusion paths is the realization
that

e {=r0) [ tor)as} (1.118)
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1.2 MCMC Methods and Latent Variables

is the probability that a realization of a homogeneous Poisson point process on
0.t] x [0,1], with intensity r(¢) has 0 points under the graph s — ©g(y,). This
allows the evaluation of the acceptance probability for a Brownian path proposal,
based only on a finite number of points, generated retrospectively, at times de-
termined by the Poisson process.

The exact simulation algorithm is therefore defined as follows:

i) Generate a realization of the Poisson process, i.e. a Poisson random variable
k with mean parameter ¢ r(6), and, conditional on k a set (7q,. .., 7) of i.i.d.

uniform random variables on [0.(] and a set (uy,...,ux) of i.i.d. uniform

random variables on [0, 1] and independent of the ..

ii) Simulate (y.,,...,¥y. ) from the k-dimensional distribution of a Brownian

motion started at 1.

iii) If there are no points of the Poisson process under the graph s > ©g(ys),

in other words, if
k
[11{eo(yr;) < u;} =1. (1.119)
j=1
then accept the Brownian path as a realization of the diffusion process.

In reality, the algorithm accepts simultaneously any complete Brownian path
{ys : 0 < s < I} passing through (yr,....,yr). Therefore, for arbitrary times
0<t <...<t, <t, the corresponding points of the diffusion path can be sim-
ulated via Brownian bridge interpolation between (Y, ...,y ). Since the finite
dimensional distributions of a Brownian bridge are simply multivariate normal
distributions with known mean vectors and covariance matrices, this second stage
can be carried out without problems.

The accepted pairs (75, yTj)fz1 are known as the skeleton of the path, and con-
ditional on the skeleton and the skeleton size, k, the rest of the path is simply a set
of independent Brownian bridges. More about the factorization of diffusions into
Brownian bridges, and milder conditions on the drift and diffusion coefficients,
can be found in Beskos et al. (2008).
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For every time interval [0, ], the exact simulation algorithm accepts or rejects
a complete skeleton simultaneously. Since the expected number of points of a pro-
posed skeleton is ¢ r(¢/), the acceptance rate decreases as t increases. An optimal
acceptance rate is achieved when ¢ = 1/r(0) (see Beskos et al., 2006a). Therefore,
for larger values of ¢, a good performance of the algorithm requires that the time
interval of interest is split into smaller intervals and then the Markov property
used to produce the complete path. Clearly, the number of such smaller intervals
will grow with ¢, affecting the performance of the algorithmm. In the next Chapter,
we propose an alternative MCMC scheme suitable both for simulation of diffu-
sion paths and Bayesian inference, which is not based on rejection sampling and
therefore does not need to be adapted depending on the size of the time interval

under consideration.

Beskos et al. (2006a) propose the use of the exact simulation algorithm for
estimation of the parameter and the transition density for the model, mainly
focusing on maximum likelihood estimators and their properties. To do so, they
observe that the transition density of the diffusion, with respect to W% can be
obtained from equation (1.117), by integrating out the rest of the path. In other

words, we can write

Fiol0) = exo{ Aul) = Aooe) = 10)} B [exp {=r(0) ["uluas | ]

And, since the density with respect to Lebesgue measure of any point of a Brow-
nian motion path is a known univariate normal density, a change of measure
leads to an expression for the transition density of the diffusion (with respect to

Lebesgue measure),
ft('ytlyo, 9) = N(yt'yO: t) eXP{Ao(yt) — Ao(yo) — 1(9)}
¢ 120
Ewwo [exp{—r(t?)/o <p9(ys)d.s'} ’y,,J . LI

The expectation term in the above expression is intractable, but it coincides with
the acceptance probability for the exact simulation algorithm, when y; is fixed.
This is the base for the inference methods studied by Beskos et al. (2006a,b,
2009).
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1.2 MCMC Methods and Latent Variables

Even though it is not stated explicitly by the authors, the exact simulation

algorithm, defines a latent expression for the transition function, given by

.ft(yta kaul:k- Ti:ks Yrys - - 'ka|y07 9) = N('!/t|'y0a t) exp{AH(yt) - 49(?/0) - l(())}

O T2 (o) < ).

Or, integrating out the uniform random variables .,
Je(es ks Trs Ymy s - - Y90, 8) = N(yelyo. ) exp{ Ao(ye) — Ao(yo) — 1(0) }

[r(0)] 'H[l ~ oolum)]. (1.121)

k!

Beskos et al. (2006b) consider Bayesian estimation for discretely observed
diffusions, using this expression. If a prior II is defined on the parameter space

O, inference can be carried out through MCMC methods in the following manner.
i) Initialize the Markov chain by choosing some value ¢ for the parameter.

ii) Through the use of the exact simulation algorithm, generate independent
Skeletons for a diffusion path, between consecutive observations, given the

current parameter value.

iii) Update the value of the parameter by sampling from the full conditional
distribution, given the skeletons and the observations. The full conditional
density is proportional to the prior IT multiplied by the product of the latent
transition densities for all the data points. Since this density depends only
on a finite number of points and can be evaluated up to proportionality.

any usual MCMC simulation method can be used to generate the new 6.

In Chapter 2, we show how the latent model used for this inference method
can be seen as a particular case of the general latent model given by expression
(15). We provide an expression for the full model, using a change of notation, and
propose an alternative MCMC algorithm which can be used both for simulation

of diffusion sample paths and for Baycsian posterior inference.
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1.3 Bayesian consistency

1.3 Bayesian consistency

In a Bayesian nonparametric setting, the simplest scenario assumes {Yi}iZI is a
sequence of i.i.d. random variables from a distribution with probability density fo
defined on the sample space Y. Inference begins by defining a prior II on the set
F of density functions over Y. Each observation y; is assumed to be a realization
of the variable Y;. We say the model is consistent at fy if the posterior probability
accumulates all of its mass around fj.

There is some disagreement between Bayesian statisticians about the useful-
ness of the consistency property. mostly arising from the different views about the
justification behind Bayesian procedures. In short, some Bayesians do not agree
that a single fy exists for which the modelled random variables are i.i.d., since,
under an exchangeability assumption, de Finetti’s theorem guarantees only con-
ditional independence. In the present work, we study consistency as a property
that some people may want to verify and refer the reader to Diaconis & Freed-
man (1986) for arguments supporting the relevance of consistency in Bayesian
procedures.

Given a sample of size n, the posterior mass assigned to a set A C F is given

by
i an_ Ja Ba(DI(A))
) = T rmar (1.122)
where
Ra(f) = Ul ;; ((ZZB) (1.123)

is the likelihood ratio between f and fy. As it stands, if the posterior I1" accu-
mulates its mass around fy as n grows, this would only describe a behaviour for
the particular sample at hand. A more useful property would give us information
on the behaviour of the posterior, regardless of the particular sequence observed.

Doob (1949) showed that, under weak conditions, consistency follows for IT
almost every observed sequence. This, however, is not enough for a practical
interpretation, since the true density can fall on a null set of the prior, in which
case consistency fails for fy. Thercfore, a stricter and more formal definition of

consistency is required.
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1.3 Bayesian consistency

Effectively, the idea of Bayesian consistency is that, as more data is gathered,
it should be possible to identify the true density f, generating the data more
accurately, for almost every sequence we may observe, i.e. almost surely with
respect to the joint law of the complete sequence.

To formalize, if we denote by Py the probability measure corresponding to fo,
we may think of the sequence {Y;}i>1 as defined on the product space Y, with
joint probability measure Pg°. We say that the Bayesian model with prior IT is
consistent if for every neighbourhood B of f, we have

m*(B°|Yp,...,Y,) — 0  as. [PP)]. (1.124)

n—oo

In this case, the posterior distribution is considered as a random object, due to
its dependence on the random sample Yy, = {Yi...., Y,}. However, once this
has been clarified, we use the notation y;.,, even when probability statements
refer, more formally to the random variables Yi.,i. Throughout the rest of this
chapter, all such probability statements are made with respect to Pg°.

Clearly, the concept of consistency depends on the definition of B, that is,
on the topology imposed on the functional space F. Different topologies lead to

different types of consistency and we consider the two most relevant cases below.

1.3.1 Weak Consistency

A common topology to consider when dealing with functional spaces is the weak
topology, associated to the concept of weak convergence. It is said that B C JF is

a weak neighbourhood of [j if it contains a set of the form

{feg':]/@f—/@fo{<e,¢=1,...,n}. (1.125)

where the (¢;)%_, are bounded continuous functions, for some s € N.

A density f € JF is in the weak support of the prior if every weak neighbour-
hood B of [ has positive prior probability, i.e. II(B) > 0.

Diaconis & Freedman (1986) proved that even when fj is in the weak support
of the prior, weak consistency does not follow. A stronger condition is required,

to guarantee the prior assigns enough mass on tighter neighbourhoods of fj.
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1.3 Bayesian consistency

Such tighter neighbourhoods are defined in terms of the topology induced by the
Kullback-Lebiler divergence on F.
For every pair of functions fi, fo € &, the Kullback-Leibler divergence from
f1 to f2 is given by
K(f.f)= /fglog';—j. (1.126)

This does not define a distance since. in particular, it is not symmetric. However,
the Kullback-Leibler divergence can be used to define a system of neighbourhoods
in a space of density functions, thus inducing a topology. For every f € JF, a
Kullback-Leibler neighbourhood of [ is constructed as a countable union of balls

of the form
Bi(f,e)={feTF:K(f.f) <e}. (1.127)

A density f € F is in the Kullback-Leibler support of the prior if every weak
neighbourhood By of [ has positive prior probability, i.e. TI(Bg) > 0. If fp is in
the Kullback-Leibler support of the prior, that is

I[Bk(fo.€)] >0 Ve >0, (1.128)

it is said that the Bayesian model satisfies the Kullback-Leibler property.

Schwartz (1965) showed that the Kullback-Leibler property is a sufficient
condition for weak consistency. This condition is stronger than the requirement of
fo being in the weak support of the prior, since Kullback-Leibler neighbourhoods
of a function are contained in weak neighbourhoods.

Weak consistency is a desirable property when inference is focused on es-
timating specific quantities related to the density, such as means or variances.
However, as noted by Barron et al. (1999), if the interest of the inference is the
density itself, it is convenient to seek convergence in some stronger sense, as weak

neighbourhoods of [, may contain densities which do not truly resemble [o.

1.3.2 Strong consistency

A Bayesian model is said to be strongly consistent when the posterior density

accumulates all of its mass around strong neighbourhoods of the true density fo
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as n grows. The strong topology in a functional space is usually defined with

respect to the L, distance, given by

Bl ) = / |l — Tl v ). (1.129)

When limited to a space of density functions F, the L, distance is equivalent to
the total variation metric on the corresponding space P of probability measures,
defined by

dr(Py. Py) = sup |Py(B) — Py(B)). (1.130)
BEB(Y)

The advantage of using the [, metric is that functional analysis results guarantee
the separability of F with respect to L. Furthermore, it can be shown that the

Hellinger /1 distance on F, given by

IFMJQ=§Ahﬁl W xm e —1—/¢ Tl Ay

(1 131)

is topologically equivalent to the /., distance, with
H2(fr. fo) < Ia(fr fo) S V2H (i, fo). (1.132)

for every f1, fo € F. This implies that convergence with respect to the 1; distance
and convergence with respect to the Hellinger distance are equivalent. This last
one being more manageable in many calculations, strong consistency for density
estimation is usually defined in terms of the Hellinger distance.
Following that convention, we say that the Bayesian model is strongly consis-
tent when
II,(A:) > 0 as. forall € > 0.

where
A.={feTF:H(f fo) > ¢}

is a set of densities e-bounded away from f; with respect to the Hellinger distance.

The Kullback-Leibler property ensures the prior probability accumulated around
Jo is large enough so that, as the sample size n grows, the posterior probability
assigned to weak neighbourhood does not vanish to zero. However, in order to

achieve strong consistency, it is also necessary to ensure that the prior does not
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1.3 Bayesian consistency

concentrate too much mass on densities which can track the data. Therefore,
more restrictive conditions are required for a model to be strongly consistent.

Recall the posterior mass assigned to a /. is given by

Ly Ra(PTIA)
(A = PR Tty

Establishing convergence of this ratio proves a challenging task. However, The

(1.133)

denominator does not depend on the set A, and therefore its treatment is inde-
pendent of the topology defined on F, so different approaches treat the numerator
and the denominator separately.

The first result providing sufficient conditions for strong consistency is due to
Barron et al. (1999). They show that, under the Kullback-Leibler property

/' B (FAF) > opl—nd) 58, (1.134)

for any ¢ > 0 and sufficiently large n. Therefore, the denominator cannot decrease
to zero faster than at exponential rate. In order to guarantee strong consistency,
a second condition is required, to guarantee the convergence to zero of the nu-
merator at a faster rate. Barron et al. (1999) and Ghosal et al. (1999) provide
such condition, namely, the existence of a sequence (F,),>1 C F such that for

every large n
i) TI(FE) < ¢ exp(—ncy)
i)y J(8, %) < nb,

for some c1,co > 0 and 0 < 6, 8 sufficiently small. The difference between the
two results is in the definition of the J (8, F,). For Ghosal et al. (1999), it denotes
the L, entropy, i.e. the minimum k such that &, can be expressed as a union
of k balls of L;-size § around fo; while for Barron et al. (1999) it denotes the
bracketed entropy and is therefore slightly more restrictive.

The increasing sequence (F,)n,>1 C JF is called a sieve and under the above
condition and the Kullback-Leibler property, Ghosal et al. (1999) construct a
sequence of uniformly consistent test to prove f = f, against f € F, N A..
Therefore, we refere to this as the sieve and uniformly consistent test approach

to consistency.
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The construction of sieves and tests is often difficult. thus the relevance of an
alternative approach proposed by Walker (2003, 2004). The introduction of this
idea requires some additional notation.

Let

mA=AR4nmw)

denote the integrated likelihood ratio over a measurable subset A C F. Then,

the posterior mass assigned to A can be expressed as

LnA

Ir*(4) = 7=,

(1.135)

where I, = Lng = [ Ro(f)I(AS).
The predictive density, with posterior restricted to the set A is given by

faa(y) = /A f)dIa(f); yevY.

where

n gy — L(f € A)dII*(f)

Assuming the existence of a sequence (f;);>1 C A¢ such that, for some 0 < ¢,

AclJA; Aj={feF:H(f.f;) <o} Vi

=1

and

i,/nmj) < o0, (1.136)

Walker (2004) proves that

u%=/munmm<www@as

for any 0 < d < —log(d + 1 — ¢) and sufficiently large n.
Combined with the exponential bound (1.134) provided by the Kullback-

Leibler condition, this implies strong consistency. Since the space F of densities
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is known to be separable with respect to the Hellinger distance, a countable cover
for A, of Hellinger-size 0 is always available. Therefore, this result adds to the
Kullback-Leibler property a single condition on the prior, given by expression
(1.136).

The key to Walker’s result is the identity

Lntia _ Jrna(Ynt1)
LnA fO(yn+1)

In Chapter 6 we usc an analogous cxpression to find sufficient conditions for strong

(1.137)

consistency in the context of transition density estimation for Markov models.

It can be seen that {L,a}.>0 defines a martingale and, even though this is
not relevant to the consistency result, Walker’s method has come to be known as
the martingale approach.

For general models, conditions for strong consistency may hold, but be diffi-
cult to verify. Moreover, even if the conditions provided above fail, it does not
follow that the model is not strongly consistent, since all of the results for strong
consistency found in the literature provide conditions which are sufficient but not
necessary. Walker & Hjort (2001) argue that, in this cases, it may be preferable
to base Bayesian estimation on a consistent sequence () ge1 of pseudoposterior
distributions.

For each n € N and some « € (0, 1), they define a probability measure (), by

_ [ R 1))
[ R (NT(A])

and then use the sieve and uniformly consistent test approach of Barron et al.

@n(A)

(1999) to prove that the Kulback-Leibler property alone guarantees that
Qn(A.) =0 as. foralle > 0.

In other words, inference based on the (1 — «)-power likelihood results in strong
consistency estimates for the true density fp.

In Chapter 5 we deal with the problem of Bayesian inference for this type of
power likelihood, for a large family of Bayesian nonparametric mixture models,

and this last result provides one of the motivations.
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1.3.3 An Important Counterexample

As we have mentioned above, existing results for strong consistency provide only
sufficient conditions. This may raise the question of whether any condition, other
than the Kullback-Leibler property is necessary. In this section we present an in-
teresting example constructed by Barron et al. (1999) to show that the Kullback-
Leibler property is not enough to guarantee posterior consistency when nonpara-
metric densities are involved.

The idea is to define a prior which assigns equal probability to a set Fg of
continuous densities and a set F, of piecewise constant densities. The roll of the
first set is to ensure the Kullback-Leibler property is satisfied. while the second
ensures posterior probability does not accumulate almost surely on arbitrarily
small Hellinger neighbourhoods of the true density for the data.

The example starts by assuming we have a sequence (Y,),>1 of i.i.d. random
variables uniformly distributed on [0, 1], so fo(z) = 1. To construct the prior,

first consider. for each positive integer N, the following partition of [0. 1]
Iy = {[0,1/2N?), [1/2N? 2/2N?), ... [(2N? — 1)/2N? 1] }. (1.138)

Let Fn be the set of all density functions which are constant on every interval of
Iy and take only the values 0 and 2. Then, the cardinality of Fy is yn = (21522).

The prior will assign equal mass

1

) = =———= 1.1
(N = Gz (1.139)
to every function f € Fy, where C is a normalizing constant,
o0
C=Y" = (1.140)

=1

Making F. = Jx_, Fn, this means exactly 1/2 of the prior probability is accu-
mulated on F,.
The rest of the prior mass is assigned to the parametric family

Fo = {fo = exp(0 +V2027) : 0 € (0.1)}. (1.141)
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with probability induced by the density on the parameter space:
[1(0) oc exp (—1/0)1{0 < 6 < 1}, (1.142)

where ® denotes the standard normal cumulative distribution function.

For every fy € Fo, the Kullback-Leibler divergence to the true density is
K (fg. fo) = (), so the Kullback-Leibler property is satisfied. At the same time,
the squared Hellinger distance between f and any density f € ., is H 2( f, fo) =
2 — /2 and Barron et al. (1999) prove that

limsupII"(F,) =1 as. (1.143)

n—oo

Therefore, the model is not strongly consistent. In Chapter 5 we illustrate this
lack of consistency via MCMC estimation of the Hellinger distance between the

true density generating the data and the estimated predictive density.
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Chapter 2

Discretely Observed Diffusions

Consider a discretely observed diffusion model defined by an SDE
dY; = ap(Yy)dl + dW,. (2.1)
In general, the transition function

Je(yelyo. 0) (2.2)

is intractable, as explained in Section 1.1.2.1. However, the exact simulation
algorithm presented in Section 1.2.3, defines auxiliary variables which result in
the latent expression (1.121). In the present Chapter, we show how this latent
expression can be viewed as a particular case of the general auxiliary variable
scheme described in the Introduction, and which constitutes the object of study
of the present work.

We propose an alternative MCMC algorithm, based on the complete latent
model, which can be used both for simulation and for Bayesian inference. Since
the model is the same and no approximation is used, apart from the usual Monte
Carlo error, the results obtained in this manner are equivalent to those obtained
via the original exact simulation method. Our algorithm, however, is not based
on the simultaneous acceptance or rejection of complete sample paths and is
therefore equally applicable, regardless of the length of the time interval [0,¢]

under consideration.
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2.1 The Latent Model

2.1 The Latent Model

We begin by considering the likelihood function for the diffusion model, given a

sample Yo.n = (Ys,,---,Ut, ), with known observation times 0 =ty < t; < ... <
t, <T,i.e.
Fnl®) = T o il 0), s = bs — L, (23)
i=1

where 1, is considered to be fixed. The Bayesian model is completed by the
definition of a prior IT on the parameter space ©.

We assume throughont this chapter that the model satisfies all the conditions
required for the application of the EA(1) algorithm presented in Section 1.2.3. In
other words, for every () € ©, a weak solution to the SDE (2.1) can be constructed
through the application of the Girsanov-Carmeron-Martin change of measure for-
mula (Theorem 3). Furthermore, the drift coeflicient g is continously differen-

tiable and integrable, with a tractable expression for the antiderivative

Ag(u) = /ag(u)du; (2.4)

tractable functions [ : © — R and 7 : © — (0, 00) can be found such that
(0) < i . o : 5
10) < int { o3 + ) 2 (25)
r(0) > sup { [ (u) + ag(u)] /2 — l(H)}. (2.6)

u€R
As before, we define a bounded function ¢y : R — [0, 1] given by
1 [ ad(u) + ap(u)
= —1(0) ). 2.
o) = = (2T ) 27)

In this case, the transition densities for the diffusion process admit the repre-

sentation given in equation (1.120), which we write here as

fAi(ytilyti—l H 0) = gi(ytir Ytioy: o)hi(ytmyii—1 ) 9) (28)
where
gi(ytiv Ytia: 9) = N(yt.t Iyti—l 3 Al) €Xp {AG(yti) - Ao(yti~l) - Az [l((’) + T(())] } ;
(2.9)

it e 126) = By [exp {r(e) / [1- wo(ys>]d-s} y} W)
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2.1 The Latent Model

The self-similarity of Brownian Motion ensures the Weiner measure W¥i-1 is
well defined on the set C, , 4,1, as the measure induced on €jg A, by a Brownian
motion W started at Wy =y, ,.

Notice that the Markov property of the diffusion process guarantees that. for

each i = 1,...,n, the conditional density for y;, given the previous y,. ..., ¥t ,,

is given by fa, (4t |yt,_,.0). Therefore, equation (2.7) corresponds with expression
(4), the starting point for the latent variable expansion presented in the Introduc-
tion of the thesis, for a general Bayesian model. Morcover, if we define an infinite
dimensional variable \; = {y, : 0 < s < A;} € €,a,), the complete path between
the two consecutive observations y;_1,y;, with reference measure v induced by
the Brownian motion conditional on Wy = 1, , and Wa, = y;,. In other words, a
Brownian bridge measure. It then becomes evident that equation (2.10) has the

same form of expression (7), namely
hi(yi- yi-1,0) =/exp{r i(Yt, Yt 1 0. 0) Jdv () (2.11)

and

t;
bi(ytiyii_1 ) 0’ /\) — bi(ytigsgt;_l s 9) = / [1 — «po(ys)]ds. (212)
ti—1

The latent model construction of Beskos et al. (2006b) proceeds from here by
introducing an auxiliary Poisson process to aid in the estimation of the intractable
integral h;. We argue that the latent variable k can be alternatively be derived

from the known series expansion for the exponential function,

exp(rb) = (213
k=0 k|

from which it follows that

i ki]E W1 [(/tt_l [1— SDO(ys)]ds)ki 4

k;=0
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2.1 The Latent Model

Thus, we arrive at the general expression

o0

hi(tees Y:_q,0) = Z Ci e ()i e, (Y14, 9), (2.15)

ki=0

which characterizes our method.

In this case, ¢k, (0) = ['r'(())]k"'/k:i! and

oty ki
ik, (Y1: 0) = D g, (Y15 Y,y - 0) = By {(/ [L= wo(ys)]d8> l?/t,-:l . (2.16)
Jti—1

We can then replace the k;-th power with a product,

ot
bi(yt,-- Yti_1» 0. /\) = </ [1 - LP(/ dS) H/ 1 - ‘19(1 Yri I)]d'( )
ti—1

i
=/ / H 1 — wo(¥r,,) d(nvl)...d(ﬁ.ki) = b; (Yt, Yt,_,» 0+ Si1ik; )
Li—1 Lic1 =1
(2.17)

where s;; = (7., ,). This expression depends only on the values of the path

S Y-, and not on the values between them. Therefore, we may write
7

Ri g (Yis Yio1- 0) =Bge o [bi(Ye,ye,, . 0. X)| s,
:]Ewyn 1[b'(’l/t'7/ti 15 0.8, l-k-)l'l/tv]

/ Hb1lyz Yi— 10511k)d’/(521k)

i =1

(2.18)

where S = [1;_1.1;] x R, with reference measure v given by the product of the
ki-fold product Lebesgue measure on [1,_1.t;] and the k;-dimensional distribution
of the Weiner measure W¥i-1 on (‘Z[t,'_l.t.i], conditional on W, = y,, for every
% /= Lgomss n. It is, however, more convenient to revert to Lebesgue measure,
since the finite-dimensional densities of Brownian motions are known multivariate

normal densities. So we write

. B
i g, (Y, Yi—1,0) = /A__ Hbi,l(!/i:ljz—l,(/, Si1k: )V (Si 1K) (2.19)
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2.1 The Latent Model

where

bia (Ui i1, 0, 5i1k;) = N (2,0 Ti,0-1)s 7o) — Ta=1)) [1 — @o(®i)] (2.20)

depends on the observations only through the convention ;) = . The latent
variables s;; = (7iy, 2;;) take values on S = [0, A;] x R and v is the corresponding
Lebesgue measure. The notation (1) for the subindices in the normal density
functions represents a permutation of the 7; 1.4, such that 0 < 7 ) <... < 7))
and is simply an aid to factorize the multivariate normal density into univariate
normal densities. This is the notation we use throughout the remaining of this
Chapter. We have replaced y,, with z;; to emphasize the fact that we are dealing
here with auxiliary variables, as opposed to observations, denoted by y,.

Through the above construction, we have arrived at a latent model for dis-
cretely observed diffusions in the form of the general latent likelihood (15) antic-
ipated in the Introduction to this thesis, namely

f(yln kl’nv Slnloo'o —9 ylna H(/zkl 0) (Hbzl y1179 Si,1:k; ) (H f(si,l)) .

=1 i=1 I>k;
(2.21)

3

where

9(Y1:n.0) = exp { Ao(ye) — Ao(yo) — t[1(0) + r(0)] } H Ny lye_, Ai); - (2.22)

o1

i (0) = ) (2.23)

the functions b;, are given by equation (2.20); and [(s;;) denotes any fully known
density function on [t;_;.1;] x R. In the next section, we present a convenient
choice for MCMC simulation.

This is the latent model induced by the latent variable construction proposed
by Beskos et al. (2006a) for Bayesian inference using their exact simulation al-
gorithm. The original likelihood (2.3) can be recovered from the latent expres-
sion, by integrating out all auxiliary variables. However, the latent likelihood
expression can be presented using a more compact notation, in which the latent

variables are not indexed by 7. This alternative representation is better suited for
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2.1 The Latent Model

the alternative MCMC algorithm for Bayesian inference we present in the next
Section.
Let k =Y, ki, and $1.00 = |J;;{5i4}. Then, foreachl > 1, 5, = (11, ;) takes

values in [0. (] x R. In order to write the double product

n kj

H H N (0|, 0-1)- i) — Til-1)) (2.24)

i=1 I=1

as a single product, in terms of the new indices for the latent variables, we need

to account for the clustering structure induced by the observation times, which

is relevant, since x; o = ¥y, , for every i. We do this by introducing new notation.
Let Ty = (7)), U(t;)™,. Foreachl=1..... k,let 7,_; and 7,41 be the skeleton

times or observation times immediately to the left and right of 7;. In other words

Ty = max{/; € fj i T,}; Ti41 = min{i‘ € Tk 2Ty L 7'}. (2.25)
Denote by 7; the point corresponding to a time 7, i.e.

-~ Lj if 7= Tj
Ty = { s $ 5 =1, (2.26)

and notice that, for the ordered skeleton, the point 7;_1) to the left of ;) is either
some observation time /; or the previous skeleton time 7;_1). Analogously, 7 1)
may be equal to 741y or some observation time.

With this new notation, we can rewrite

k

- k.,' n
. AL'
H H N (:17i‘([)|.lii,(1_1)-, 7’i,(l)_Ti,(l—l)) = HZE H(

=1 l=1 =1

1

~

|-, T —Te-1), (2.27)

where the factorial terms account for the arbitrary reindexation of the latent
variables, and how that affects the ordering of the 7 values into the different
[ti_1.1;] time intervals between consecutive observations. Thus, we arrive at the

compact form of the latent model which we use throughout the rest of this chapter.

./.(ylzn-, k7 51:30|H) — g(yl:n- Q)Lk(()) (H bl(ylzna 07 5l:k)> (H /(W)) (228)
=1

1>k




2.2 MCMC Simulation and Posterior Inference

where g(y1.,0) is defined by equation (2.22), ¢ (6) = [r(H)]k/k! and
D (Y1ns 0, 51:) = [1 = @0(2) |N(E )| 1-1)» Ty — Tu—1))- (2.29)

In the next section, we show how a fully MCMC based Bayesian inference
method is possible for this model.

2.2 MCMC Simulation and Posterior Inference

We propose the use of a Gibbs sampling algorithm to produce a sample from the
latent model defined by the extended likelihood (2.28) and the prior distribution
II over the parameter space ©. In other words, we propose a sampling scheme
in which each of the latent variables, k, 1. and the parameter () are updated by
drawing samples from their full conditional distributions. In some cases, direct
sampling is not possible, therefore we use a hybrid method in which some of the
updates are done through a Metropolis-Hastings step.

Recall that each latent variable s; = (73, x;) can be decomposed into a time
7, and a point z;, and, given k, the set sy is called the skeleton, following the
terminology introduced by Beskos et al. (2006b). The skeleton points and times
are updated separately. Notice that, conditional on k, the values s; for [ > k
i.i.d from a known density and, more importantly, they do not appear in the
full conditional density expression for the rest of the variables. Therefore, at
any step of the algorithm, only a finite number of variables needs to be recorded
and updated. In fact, we use the additional variables only to represent the fully
extended model space proposed by Godsill’s 2001 (Section 1.2.2.3 of the present
work) to deal with the sampling of variables with random dimension.

The algorithm begins by initializing the necessary variables. A sensible way to
do this is by initially making k£ = 0, so that no other latent variable initialization
is needed. The initial value for the parameter € can be chosen in the usual way,

by simply fixing a value or drawing one from the prior distribution II.
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2.2 MCMC Simulation and Posterior Inference

2.2.1 Updating the Skeleton Size, k

The latent model can be interpreted as a family of fully nested models { fx }x>0,

indexed by k, where
fO(yltnl(}) X g(yl:n~ 9)~ (230)

and for each for each & > 1

k
fk(?/l:nlsl:k: 0) X g(y1:n7 ()) (H bl(yl:n: ()7 51:k)> . (231)
=1

Therefore, following Godsill (2001), we extend the sampling space to include
the complete set of variables s;.., and the index k for the model in the MCMC
simulation scheme. We update the model index k through a Metropolis-Hastings

step with proposal distribution given by

q(K', 8 |51:6, 0, v1:0) = q(K'|K)q(S 10|51 0. Y1:n) (H f(sl)> , (2.32)

>k
where
p ifk=k+1
glk'lk)=¢ 1-p ifkl=k—1 (2.33)
0 otherwise,

for some 0 < p < 1, and

q(TI/c+1)q(m;c+l|Tllc+l’ 51+ 05 Y1:n) L 514 (S1k) ifk'=k+1
(st l01k) = Ly, (1) ifk/=k—-1
0 otherwise,
(2.34)

In other words, the only possible changes for k are to k+1 or k—1. If a move
down is proposed, the skeleton has to be adjusted by dropping the last point
sk, while the rest remain the same. If a move up is proposed, the skeleton is
augmented with a new proposed skeleton point Sg41 = (Tk+1, Th41), drawn from
a proposal distribution q(7/.,)q(T} 1|7 1151:k: 0, Y1:n). At this point any choice
would lead to a valid MCMC chain with the desired equilibrium distribution, as

long as the acceptance probability is given by

: (1 - p) f(k i 13 51:k+1|07y1:n) }
«a =min< 1, \ 2.35
{ P (1(5k+1|51:k-9- !/1:n)f(k~5’1:k|9,y1:n) ( )
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2.2 MCMC Simulation and Posterior Inference

when &' = k + 1; or, when ¥ =k — 1, by

. { P q(sk|s1k-1,0, Y1) f(k — 1,51 1|07y1:n)}
@& =min < 1, .
(1 - :“) f(L- Sl:kl()- !/1:71)

However, many expensive calculations can be avoided by a suitable choice of

(2.36)

proposal distribution, which we now present.
First, we let ¢(mx1) = U(+|0,T), so the new time is generated uniformly over
the complete time interval under consideration. Before we determine the proposal

distribution for the new skeleton point, a1, recall that

[ (0 k+1 k+1
[(k I 1-511k+1|0~y1:n) /1 +1 Hbl 7/1 e 0. gllx)

[‘,.(9)]“1 k+1

S ] | | 1 ¢9('l;l)]11(:I”([)l:l"(lf ) '(l) /([f])).

The product of normal terms in this expression corresponds to the k+1-dimensional
distribution of a Brownian motion path at times 7.1, conditioned to pass
through every observation y;, at time (;, and evaluated at 2;441. Recall that
7 and Tr4» denote the times immediately to the left and right of 741, respec-
tively, so that 7, < Tp11 < Tryo; while 7 and 7o denote their associated points.
The (k + 1)-dimensional distribution for the Brownian motion path can be fac-
torized as the product of the k-dimensional distribution at times 77,4 and the
conditional distribution for the state of the process at time 73, given all others.

Formally,

k+1

TINGEolEey, T — Fu-n) = N@k i 0741)
=1

—
Z,
=~

Tyl Ta-1)- Te) — Ta- 1)) (2.38)

where the subindex (I) represent the ordering of 7441 on the left hand side

expression, and the ordering of 714 on the right side product. The mean and
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2.2 MCMC Simulation and Posterior Inference

variance of the conditional normal distribution for 754, are given by

N Tha1l — Tk - Tl — Tk
Hk+1 = Tk (1 e M) + Tpyo ~k+1—.kl (2-39)
Tk4+2 — Tk Tk+2 — Tk
9 (Tk+1 — ) (Th42 — Tht1)
Okyi = N = . (2.40)
Tk+2 — Tk

We are now ready to define the proposal distribution

q(@r1| o1 S1:8- 0. Y1m) = N(@apa |prsr, 04 (2.41)

the use of which simplifies the calculation of the acceptance probability for the

Metropolis-Hastings step to

(1—p) Tr(0)

@ = min {1. TS [1- Po(Tit1)] } . when kK =k +1; (2.42)

: 14 k - /
p = . 1— . hen k' =k — 1, Az
a = min {1 A—p) Tr(0) [ wo(x)] } when k' =k — 1; (2.43)

2.2.2 Updating the Skeleton Times, 7.

For the skeleton times 7., the full conditional distribution is given by

k

Hria]Big, Bim) = H N(Z@|Za-1), Toy — Tu-n)1{0 < 7 < T}. (2.44)
=1

It is difficult, from this expression to derive an update scheme for the skeleton
times, since cach 7(;_1) may be a skeleton time or an observation time. Therefore,
we use again the properties of the multivariate normal distribution to rearrange
this product. For each I, we write the k-variate normal density represented by
this product, into the & — 1-variate normal and the univariate conditional for x;
given all the other variables, as we did in the previous section.

Thus, we update each 7; from the full conditional distribution

f(Tl'T—l-ml:k-"Jl:n) X N(.Tj‘/l,[.(f?)l {’7‘1_1 <L T < ’7‘1_,_1}, (245)
where
- T — Ti— . T — T
e = T (1 = N—l#) +-’171+1#; (2.46)
TiE1. — Ti=1 Ti+1 — TI-1
: 71— T1-1) (7141 — T
Ti+1 — Ti-1
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2.2 MCMC Simulation and Posterior Inference

Conditional on everything else, each 7, appears only in the normal distribution,
evaluated at x;, corresponding to a Brownian bridge connecting the closest points
to the right and left of 7.

As a function of 7;, the above expression does not resemble any known density.
Therefore, we update each 7, using a Metropolis-Hastings step, with uniform

proposal distribution
q(nlm) = U(n|Tia. i) (2.48)

The calculation of the acceptance probability requires only the evaluation of a

ratio of normal density functions.

2.2.3 Updating the Skeleton Points, x;.

The full conditional distribution for the skeleton points zy.x, is given by

k
F(@ 16| Tk, 0, Y1:n) X H 1 — (7)) |N(Fy)|Fa-1). Tay — Ta-1))- (2.49)
=i

We can use the same factorization as in the above section to update each z; from

the full conditional distribution

f(@|T_1, Tok, Y1m) X [1 — Lpg(.’l,'l)]N(.’I?lill,l,(le). (2.50)

where yi; and o} are given by (2.46) and (2.47) respectively.
Since 0 < [1 — po(w1)] < 1, a simple rejection algorithm can be implemented
for this update, by generating the new z; from the normal distribution and ac-

cepting it with probability [1 — pe(z1)].

Note that, up to this point, the value of the parameter is fixed. Therefore,
without the need for a prior, I or for additional updating steps, this algorithm
can be used for exact simulation of a diffusion bridge on a time interval [0, 77,
with fixed end point yp. It is enough to consider a single observation at time
» = T in all of the update steps described above.

A diffusion path with free end point can also be simulated in this manner. by

adding an extra update step for the end point.
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2.2 MCMC Simulation and Posterior Inference

2.2.4 Updating the End Point, yr

If the algorithm is being used to simulate observations from a diffusion path on
[0.77] and the end point is now known, yr must also be part of the MCMC scheme.

In this case, it must be updated from the full conditional distribution
f(’!/]'lﬁ S1:k: 0, yO:n) X GXP{A()(ZUT)}N(’!/T|~’7’m- i = 7~—m)~ (251)

where 7, = max{7 € T} is the maximum of the observation and skeleton times,
and 7,, is the corresponding observation or skeleton point.

The method used to sample from this distribution depeuds on the specific
shape of the Ay function. However, the form of the density suggests that a
rejection algorithm or a MH step with normal proposal distribution might be a
good choice in many cases. In Section 2.3 we present two illustrations for which
we use a rejection sampler for the update of the end point yr.

When the algorithm is being used for posterior simulation, this step may still
be useful. If we make T > t,,, the time of the last observation, this provides
a sample from the predictive distribution at time 7". Furthermore, the sample
obtained for the skeleton would include the complete interval [0, T}, so that ob-
servations from the predictive distribution at any time ¢ € [{,, T] can be obtained
by Brownian Bridge interpolation between the observations, the skeleton points

and the final point yr.

We now proceed with the final update step required for MCMC posterior

simulation from the diffusion model.

2.2.5 Updating the Parameter 6.

Observe that, conditional on the latent variables, the parameter is independent

of the data, with full conditional density

fOlk, s1:00) = f(OlK, 1) < T1(0) CXP {/10 Y1) — Ao(yo) — t[[(O) + ”'(9)]}

kH 1—990 Iz
=1

(2.52)
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Clearly, no general method can be suggested to simulate from this density,
since it depends on the shapes of the functions A, 7, I and ¢. In the next Section,
we consider two examples, for which the parameter space © is a bounded interval
[a,b] € R. We therefore use a Metropolis-Hastings step with uniform proposal
distribution ¢ = U(+|a,b). Other proposal distributions may be explored, which
depend on the conditioning variables k,z;.x, but for the concrete examples we
study it is not clear what a better choice would be, and the uniform proposal

seems to work well.

2.3 Illustrations

In this Section we illustrate our methodology with two concrete examples of real
valued diffusion processes. In each case, we generate a sample from the true model
and use our algorithm to perform Bayesian inference. We compare our results
with those obtained using the original exact simulation algorithm of Beskos et al.
(2006b).

2.3.1 Example 1: Sine Diffusion
In this example we consider the diffusion process defined by the SDE
dY; = sin(Y; — 0)dt + dW,, (2.53)
so the drift coefficient is given by
ap(y) = sin(y — 0). (2.54)

When 6 € © = [0, 27), the SDE has a unique solution Y to which we refer as the
sine diffusion.

In this case,
Yy
A(;(y) = / (,E()(.’lj)d.L' = — COS(y — 9), (255)
0

therefore [, Ag(y)dy is not defined, which means the process does not have a

stationary density.
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For each 6 € O, consider the function
Eo(y) = ad(y) + ap(y) = sin*(y — 0) + cos(y — 6) (2.56)

and notice that &(y) > —1 for all y € R and 6 € ©. Therefore, we define

_ G 1
I=[{f)= lerelnf;{ 5 [ ="5 (2.57)
Also, &, (y) = sin(y — 0) [2 cos(y — ) — 1] = 0 when sin(y — 0) = 0, in which case
|cos(y — 0)| = 1; or when cos(y — ¢) = 1/2, in which case |sin(y — 0)| = \/5/2

Furthermore,
& (y) = —2sin*(y — 6) + cos(y — 0) [2cos(y — 0) — 1]. (2.58)

So, when sin(y — ) = 0 and cos(y — 0) = 1, the function & (y) has an inflexion
point; when sin(y—60) = 0 and cos(y—0) = —1, the function has a local minimum;
and it has a local maximum when cos(y — #) = 1/2 and |sin(y — 0)| = V/3/2.

Therefore the maximum is reached at (7/3) = 5/4, and we define

r = r(0) = sup {# - } y (2.59)

yER 8

Finally, the bounded function used in the transition density expression is given
by

wa(y) = g + gcos(y —0)[1 — cos(y — 0)]. (2.60)

We first illustrate the use of our algorithn for the simulation of diffusion
paths. We fix the parameter at a known value #y = 2 and simulate a total of
N = 1,000,000 skeletons for the diffusion in the time interval [0,1]. We do the
same using the retrospective rejection sampler of Beskos et al. (2006b) (EA1) and
our MCMC alternative, with parameter p = 1/2 for the proposal distribution for
the MH step update for k& (Section 2.2.1). The choice of 7" = 1 is made to keep
the time interval for simulation close to the optimal value of 7' = 1/r(#) = 9/8
for the EA1. The large Monte Carlo sample is chosen to allow a comparison of
the skeleton times and points produced by each algorithm. If the sample is kept
smaller, the number of realizations with a large k value would not be large enough

for any interesting comparison.
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Figure 2.1 shows histograms of the size k of the skeletons produced by each
algorithm. As we can see, the skeleton size distributions are similar, with the one
corresponding to the EA1 algorithm showing a slightly heavier left tail and the one
corresponding to the MCMC algorithm showing a heavier right tail. However,
this can be attributed to the fact that the skeletons produced by the MCMC

scheme are correlated, unlike those generated by the EA1 algorithm.

| a
0.3r 1 0.3 |
0.2+ T 02r
0.1F —l 1 04
| | o ([ I - n 1 I | ] s n
0 1 2 3 : 5 6 7 8 0 1 2 3 t 5

(a) EA1 algorithm (b) MCMC algorithm

Figure 2.1: Histogram of the skeleton size k for the sine diffusion with fixed
parameter 0 = 2 and initial point y; = 0, on the time interval [0.1]. The
histogram on the left corresponds to the original exact simulation algorithm; the
plot on the right corresponds to the MCMC version we propose.

The ultimate goal of the algorithms, when the parameter is fixed and known, is
path simulation. We set (; € {0.2,0.4,0.6.0.8} and simulated the corresponding
diffusion points y, by Brownian Bridge interpolation between skeleton points,
for each of the skeletons obtained from the exact simulation algorithms. This
generates, for each 7, a sample of size N = 1,000, 000 for each of the the diffusion
points Y;,. Figure 2.2 shows estimated marginal densities for each one of those
points. Once again, we can see the plots are similar, with a smaller variance
displayed by the MCMC simulated data, attributable to the correlation in the
sample.

The large Monte Carlo sample size of N = 1,000, 000 allows us to visualize
some of the aspects of the skeletons produced by each algorithm. Figure 2.3
illustrates the behaviour of the ordered skeleton times 7y, for [ = 1,...,6 and
their associated points (). Once again, we can see the similarity between the

plots, with some differences observed for [ = 6. Notice that only skeleton samples
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fly,)
fly,)

(a) EA1 algorithm (b) MCMC algorithm

Figure 2.2: Marginal densities of the sine diffusion Y;, at various times. The plots
correspond to smoothed histograms of the data simulated using retrospective
rejection sampling (left) and the MCMC approach (right).

with & > 6 can be used in this case. As we can see from the histograms in Figure
2.1, this is not a common occurrence, so the differences are explained by the small
sample sizes.

While it seems reasonable to conclude that both algorithms produce equivalent
results, it is recommendable to use thinned samples from the MCMC algorithm, in
order to reduce the correlation between consecutive states visited by the Markov
Chain.

We now proceed to illustrate the use of the MCMC algorithm presented in the
previous section, for the purpose of parameter estimation. We produce a sample
of what is commonly known as high density data. That is, a high number of
observations per time unit. In order to avoid the argument of correlation in the
sample induced by the MCMC approach, we produce the data using retrospective
rejection sampler. Once again, we fix the true value of the parameter at 0 = 2.
This time, we generate a single skeleton for the sine diffusion in the time interval
[0.100] and use Brownian bridge interpolation to simulate 10,000 equally spaced

data points, i.e. 100 observations per time unit. Figure 2.4 shows the data and
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Figure 2.3: Marginal densities of the first six ordered skeleton times 7y (left)
and points z() (right), for the sine diffusion. The plots correspond to smoothed

histograms of the data simulated using retrospective rejection sampling (above)

and the MCMC approach (below).
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the skeleton used to produce it.

10F

—Data
= Skeleton

0 10 20 30 40 5(0 60 70 80 90 100

Figure 2.4: 10,000 data points from the sine diffusion in the time interval [0, 100],
with parameter ¢ = 2 and initial point yo = 0.

We define a uniform prior TI(#) = U(0|0,27) on the parameter space and use
the MCMC algorithm to produce a sample from the posterior distribution II*(6),
for increasing sample sizes. Specifically. we consider the data set consisting of the
first n = 2,000 data points, in the time interval [0,20] and produce a posterior
sample of size N = 10,000 from the MCMC algorithm, with a burning period
of 10,000 iterations and a thinning of 1 every 10 iterations for the sample. We
repeat the analysis for the time intervals [0. T, T" = 40. 60, 80, 100, in other words,
we increase the sample size by 2,000 points every time.

The estimated posterior densities for the parameter are shown on the left
hand side of Figure 2.5. We can see that the posterior mass seems to accumulate
around the true value 6, = 2 as the sample size n and the limit 7" of the time
interval of observation grow.

The right panel of Figure 2.5 shows the estimated predictive densities for
the process yr at time T = 101, for each of the samples. The sine diffusion
does not have a stationary density, therefore we don't expect to recover a fixed
marginal behaviour. However, as the interval of observations approaches the
time of prediction, we can observe the evolution of the predictive distribution.
As expected from a regular diffusion process, the variance decreases towards the

end, as the point y,0; is highly correlated to yi09, the last data point.
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Figure 2.5: Estimated posterior density for the parameter of the sine diffusion
(left) and predictive density for the observation at time 7" = 101.

2.3.2 Example 2: Hyperbolic Diffusion

Now, we consider the diffusion process defined by the SDE

Yy

V14 Y3

dy, =0 dt + dw;, (2.61)

so the drift coefficient is given by
Y
ap(y) = 0——.
V1+y?

We refer to the process Y defined as the weak solution to this SDE, as the

(2.62)

Hyperbolic diffusion (see Bibby & Sorensen, 1995). When 6 < 0, Y is an ergodic

stationary process with invariant density

Jo(y) < exp{2A44(y)}, (2.63)

where

Ag = /y ap(z)dr = 04/1 + y2. (2.64)
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Observe that of(y) = 8/(1+42)*? and o3(y) = 6?y*/(1+?), so we can define

(22 0 0 1

1+y? Vit
Therefore
1+¢%)? V1+y?

For 0 < 0, we have 20 — 3/+/1 + y? < 0, so &(y) = 0 only when y = 0. Further-
more, &(y) < 0 when y < 0 and &)(y) > 0 when y > 0, so &(y) has a unique

Eo(y) = (H—y (20 - L) (2.66)

minimum at £ (0) = 0. Consequently, we may define
: €o(y) 4

[(f) = inf ¢ —= 5 = —. 2.67

(®) ;21@{ 2 g ( )

It is equally straightforward to realize that

lim &(y) = lim &(y) = 07, (2.68)

y—00 y——o¢

so we can take

i) = ?/lelg {% - I(H)} = —g(l —6). (2.69)

990('!/) - 1 (”0(?/) _;_ ”;)(',1/) o l(())) (270)

1 201 v L ;
T <1+y (1-0) \/1_+_y2> (2.71)

Thercfore, the Hyperbolic diffusion with parameter space © C (—o00,0) satis-
fies all the necessary conditions for the application of the latent variable extension
and MCMC method described above.

We fix the true value of the parameter at y = —2 and generate a single
skeleton for the hyperbolic diffusion in the time interval [0.24]. We then generate
a sample of 2,400 equally spaced data points via Brownian bridge interpolation
between skeleton points. Once again, we have 100 observations per time unit.

Figure 2.6 shows the data and corresponding skeleton.
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Figure 2.6: 2,400 data points from the hyperbolic diffusion in the time interval
[0.100], with parameter ) = —2 and initial point yo = 0.

We define a uniform prior II(#) = U(0| — 11,0) on the parameter space. Once
again, we produce a sample from the posterior distribution IT"(¢), for increasing
sample sizes. For this, we use the MCMC algorithm with a Monte Carlo sample
size of N = 10,000, with a burning period of 10.000 iterations and a thinning
of 1 every 10 iterations of the Chain. We consider the data set consisting of the
first n data points, in the time interval [0, T], for T' = 3.6, 12,24, and n = 1007

Figure 2.7 shows the estimated posterior densities for the parameter.

—Post: T=3
0.8F —Post: T=6

—Post: T=12

— Post: T=24
0.6 — Prior

0.4
0.2k )
=0 9 . - % -5 -4 -3 2 - 0

6

Figure 2.7: Estimated posterior density for the parameter of the hyperbolic dif-
fusion.

As with the sine diffusion, the estimated posterior density seems to accumulate

around the true value #; = —2 as the sample size n and the limit 7" of the time

interval of observation grow. This occurs at a faster rate than with the sine
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diffusion, a phenomenon that may be related to the stationarity of the hyperbolic
diffusion. Such stationarity also raises the question of accurate estimation of the
stationary density. On the left hand side of Figure 2.8 we show Monte Carlo
estimates of the stationary density for the different sample sizes, as well as the
true stationary density. The normalizing constant for the latter is calculated

via numerical integration. It can be seen that the estimated density accurately

1.5¢ 1.41
—True —Stat. dens.
—Est.: T=3 1.2 —Data: T=3
—Est.: T=6 —Data: T=6
—Est.: T=12 1t —Data: T=12
1t —Est.: T=24| — Data: T=24
0.8
S S
0.6t
0.5t
0.4t
0.2
R 0 1 2 o 0 1 2
y y
(a) Stationary density (b) Data histogram

Figure 2.8: True and estimated stationary density for the hyperbolic diffusion
with parameter 0y = —2 (left panel). Smoothed histograms for the data at
increasing sample sizes on the right panel.

recovers the true stationary density of the process. Notice that the initial point
1o = 0 was not chosen arbitrarily, but as the mode of the stationary density. On
the right hand side of Figure 2.8 we present smoothed histograms of the samples
with increasing size used for inference throughout. This shows that the sample,
produced by the MCMC version of the exact simulation algorithm, adequately
reproduces the stationary density of the process, as would be expected.
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2.4 Discussion

The retrospective rejection sampler of Beskos et al. (2006b) was originally meant
for the simulation of diffusion paths at arbitrary points in time. It was then shown
to be well suited for maximum likelihood estimation of the model parameters,
appearing in the diffusion and drift coefficients. The discussion of its use for
Bayesian inference has so far been limited. One of the main advantages of the
method, from the simulation point of view, is its exactness, derived from the
rejection technique rather than a Markov Chain construction. When using the
algorithm for maximum likelihood based inference, a Monte Carlo error must be
introduced and, when the focus is on Bayesian inference, the MCMC approach
is inevitable for posterior simulation of the parameter. It can be argued that the
model still provides advantages with respect to other approximation methods,
deriving from the well known properties of MCMC estimation.

The exact simulation algorithm relies on the introduction of a set of latent
variables, the skeleton, conditional on which, the parameter is independent of the
observations. More importantly, latent variables and parameter are conditionally
independent, given the discrete observations, from the unobserved diffusion path
between observation points. In this Chapter, we have shown that the latent vari-
able construction is consistent with a more general auxiliary variable method for
dealing with intractable likelihoods. We have shown how an MCMC approach for
posterior simulation can be implemented, which does not depend on the length of
the time interval in which the process is observed. The Markov chain alternative
to the original algorithm seems more naturally suited for Bayesian inference with
no additional source of error being introduced. Furthermore, the posterior simu-
lation method we propose, allows us to generate posterior samples of the diffusion
skeleton beyond the time interval defined by the data. This is an advantage when
the emphasis of the analysis is on prediction.

As with the original rejection sampler, the MCMC approach can be used both
for path simulation and posterior parameter simulation. The acceptance rate for
the rejection sample decays with an increasing time interval size. Therefore, it
is recommended that the simulation is carried out by dividing the interval into

smaller sets of optimal length and performing the simulation sequentially in each
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of this sets, with a dependence structure based on the Markov property. For
a large time interval, this may become costly, since the gain in acceptance rate
may not compensate the growth of the number of times that this step must be
repeated. The MCMC approach, on the other hand, requires a certain amount of
iterations before convergence, but it can be performed once over the entire time
interval regardless of its size. Future work could include a careful analysis of the
convergence properties of the MCMC algorithm and a performance comparison
with the rejection sampler. We believe it may be possible to find conditions on
the diffusion and time interval for simulation. under which each of the algorithms
is more efficient. At this poiut we can ouly provide ewmpirical evideuce, based
on the two examples presented above. For the sine diffusion. a sample size of
10,000 data points in the time interval [0,100] made posterior inference using
the retrospective sampler too time restrictive to present any results here. For
the hyperbolic diffusion, a sample of 2.500 points within the time interval [0, 25
made even the MCMC approach slow.

At this point all algorithms have been implemented in Matlab (R2012a). Fu-
ture work would also include the use of more eflicient computer languages and a
more careful handling of variables to improve computer speed. Then, a sensitivity
study of the algorithm to the hyperparameters would be advisable.

Finally, we may consider the extension of the method to a wider family of
diffusion processes. First, by replacing the constant diffusion coefficient with a
general parametric function, then by removing some of the conditions on both the
drift and diffusion coefficients. We believe this could be done through the intro-
duction of further latent variables which would not greatly affect the simulation

methods presented here.
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Chapter 3

Stationary Time Series Model

In this Chapter we construct a flexible stationary model with nonparametric in-
variant and transition densities. We believe such construction is a straightforward
way to apply the nonparametric mixture idea in the time series context.

The likelihood for the nonparametric model has an intractable component
generated by an infinite mixture of parametric functions for which none of the
available methods for posterior simulation can be applied. We show that this
likelihood is an example of the general case studied in this thesis. Consequently,
we provide a latent model extension for which posterior inference is possible using
existing techniques for MCMC based inference.

We provide some illustrations, involving transition density estimation for dif-
ferent sets of simulated data. Interestingly, the stationary model can recover the
transition density of time homogeneous processes which are not stationary. The
complete analysis of this behaviour is beyond the scope of the current work, there-
fore we only briefly discuss the ability of the model to recover a non stationary
transition in terms of the flexibility of the transition densities described by the

model.

3.1 The Model

In order to illustrate the main idea behind the construction we propose, we start
by considering a very simple parametric first order stationary time series modcl,
the normal AR(1) (1.50) of Section 1.1.2.2.
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3.1 The Model

For fixed 3y, /1 € R and w > 0, the transition density for this model is
N(yi|Bo + Biyiz1. w?), (3.1)
where 0 = (8o, 1. w). If |B1] < 1, the stationary density is given by
N(ylp, o®). (3.2)

where u = Bo/(1 — £1) and o? = w?/(1 — B}).
A common idea in the context of regression is to define a more flexible condi-

tional density as a mixture of parametric densities

Hlz) = /O Ko(yl2)AP, (0). (3.3)

We discuss this type of models in the next chapter. Here, we focus on the conse-
quences of this type of structure for an autoregressive model, with nonparametric
transition density given by f(y;|y;_1) defined above, where the normal autore-
gressive transition density is a common choice for the parametric kernel.

As mentioned in Section 1.1.2.2, the problem with this type of models is to find
conditions on the parametric kernels and mixing distributions which guarantee
stationarity, while allowing inference. To resolve this problem, we return to the

basic normal AR(1) model. The transition and stationary densities define a joint

density
No((y. 2)|(1 1), %), (3.4)
where X
ZZH?(;O /1)> for p= 8. (3.5)

Note that both of the marginals for this bivariate normal density are identical
and equal to the stationary density.
In general, consider a parametric bivariate density Ky(y,z) for which the

marginals are identical; i.e
Ko(y) = / Ko(y,z)drv(z) and Ky(x) :/ Ko(y.z) dv(y). (3.6)

Clearly, a Markov process with transition density K,(y.|yn—1), has a stationary

density given by the marginal Ky(y), since

A/()(','/n) = / h'()(?/'n,.yn~1) KO(L’/n—l) dl/(:’/nfl)- (37)




3.1 The Model

As with all simple parametric models, the dynamics of this process is easily
overwhelmed by real data. We propose a nonparametric version of this model, ap-
plying the nonparametric mixture construction directly over the bivariate density
Ko(y. z), thus ensuring that the overall stationarity of the model is preserved.

We begin with the stick breaking representation for nonparametric mixture
models presented in Section 1.1.1.2, where each component Ky is a parametric
density over the product space Y x Y. In other words, for every y and « in Y, we

construct a joint density,
Jp(y.a) = ij Ko, (y. ). :8)
=1

The prior TI(P) is given by a stick-breaking process with base measure /% and
parameters (a;.(;) for the Beta distribution defining prior for the weights. In

other words,

P|W1.00, O1:00 = ij 8, (3.9)
j=1
and conditional on ..,
wy=v; and w;=v; H(l —vjr), (3.10)

§'<y

so the prior is defined for the vy, and the ;.. independently as

I1(01.00) = ﬁPO(dej); (3.11)
I(v1:00) = HBe(wj|aj.gj). (3.12)

Following the same principle observed in the parametric case, we define a transi-
tion density as the conditional distribution for this joint, i.e.

./-P('y Iy ) _ Zjoil wj K9j (yn: yn—l)
n|Yn—-1) — %)
Zj:l w; ng (yn—l)

(3.13)

As before. this transition then defines a stationary Markov process with invariant

density given by the marginal

Je(y) = Z’wj Ko, (y)- (3.14)

96




3.1 The Model

Observe that the transition mechanism can be re-expressed as

o0
TP(Yn|yn-1) Zm] Yn—-1) Ko, (Ynl¥n-1)- (3.15)

J=1

where ,
w; Ko, (y)

Z_cj)?:l wy ng/ (y) .

Therefore we have constructed a model for which both the transition and the

w;(y) = (3.16)

stationary densities are defined as nonparametric mixtures.

Looking at equation (3.15) it is tempting to think of this model as a transition
density mixture, in the spirit of (1.60). However, we do not propose a mixture
of conditional distributions, but a mixture of bivariate ones; the nonparametric
nature of the transition density is just a desirable consequence. In doing so, no
additional conditions need to be verified to guarantee the existence of the station-
ary density. Any choice of a stationary parametric kernel, when combined with
its corresponding stationary density to produce a joint over which the mixture is
defined. results in a nonparametric stationary model.

The dependent weights (3.16) have an interpretation in terms of the region
of applicability of each parametric model K, within the state space Y. We dis-
cuss this interpretation in Chapter 4, in the context of nonparametric regression
models.

So far, we have only defined what Martinez-Ovando & Walker (2011) refer
to as a benchmark model. The construction is simple and the stationarity and
flexibility are given by it, so no additional conditions need to be verified. This
model, however, has not been used in the previous literature, as it has been
considered to be practically intractable, due to the infinite mixture appearing in
the denominator. Only a finite version of this model has been studied by Miiller
et al. (1997), who define a finite mixture of autoregressive AR(1) models, dircctly
for the transition density and do not discuss conditions for stationarity of the
process.

In the next Section, we apply the general methodology developed in the in-
troduction to this thesis, for a particular choice of joint kernels. We construct
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3.2 The Latent Model

a tractable latent model, therefore enabling posterior inference for the nonpara-

metric time series model, with normalized weights and a normal density kernel.

3.2 The Latent Model

The likelihood function for the nonparametric autoregressive model with normal-

ized weights, given a sample yo., = (Yo, - - - ,Yn) is the product

n

K )
- - _7 1 Wi R, yu Yi1
.IP(ylzn) = H J1|Jz 1 H Z > w0y K, ,(y, 1) (317)

i=1

and a stick-breaking prior IT is placed on the probability measure
oo
j=1

We are assuming the first observation yo is fixed, but this is only in order to
simplify notation, and is not an important assumption. We could equally assume
that the first observation arises from the stationary density of the time series

model, by including an additional factor
Z w; Ko, (o) (3.19)
j=1

in the likelihood expression.

Due to the nature of the denominator of the likelihood expression (3.17) we
have an intractable component. Our aim is to show how to undertake Bayesian
inference for this model using well designed latent variables which result in a
viable latent model, as anticipated in the Introduction.

To make this concrete, we adopt a particular parametric model based on the

normal distribution. That is,

Ko(y, ) = Na((y. 2)| (12, 12). £).

where
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3.2 The Latent Model

for some —1 < p < 1. Hence, 0 = (1,02, p). In this case, the transition mecha-
f / /

nism, modelled as the conditional density, is given by

Ko(ylw) = N(ylp + p(x — p). (1 = p*)a?).

And the stationary density is simply Kp(y) = N(y|p,c?). Therefore, we are
considering a nonparametric mixture of normal AR(1) models, but the joint mix-
ture construction together with the choice of parametrization for the parametric
kernels guarantee, as explained in the previous Section, the stationarity of the
resulting time series model.

In order to illustrate the ideas while keeping the notation simple, we consider

2

mixtures over means, i.e. the ¢° and p arc fixed across mixture components.

Consequently, in what follows, we use
Ko, (ylz) = N(ylp; + p(z = p15), (1 = p)o®),

Ko, (y) = N(ylp;. 0%).
As we have done in the Introduction and Chapter 2, we focus, for each con-

ditional density J(yi|y1.i-1) = [(yilyi—1) individually, and observe that it can be

factorized as the product of a tractable and an intractable function

Flanltna) = 9500 Bi-1s Wisoss Pizee VP {Ui—1; Wipes Pizea s (3.20)

where -
9i(Yis Vi1, Wiioos Oric0) = @ Z w; Ko, (Vi vi-1) (3.21)

et

is tractable in the sense that it is a standard nonparametric mixture model for
which MCMC methods are available (see Section 1.2.2.2). On the other hand,

for a given v;_1,
1
D ieq Wy €Xp {—3(ic1 — 1)/}

can be seen as an intractable normalizing constant for the density on y; defined

hi(Yi1, Wioo: O1:00) = (3.22)

by gi.
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3.2 The Latent Model

The denominator in this expression is bounded by 1, and hence it is possible
to use the identity

oC

Z (1-bF=b"1 forany0<b<1 (3.23)
k=0
to write -
hi(Yio1, W0, O1:00) = Z [1 — bi(%i—1: W10, 91:00)}&-, (3.24)
k;=0
where

(e ]
1
()i(yi—l' W00+ 9]:00) = Z wj €Xp {_5 (!/i—] — /,Lj)2/0'2} 5 (325)
=1
Then k; is introduced as a latent variable, arriving at the expression

S Wi kilyio1) = 9i(Yi: i1, Wiioo, 01:50) [1 = bi(yi—lau’lzoo»olzoo)]ki- (3.26)

The original transition density (3.20) can be recovered by marginalization with
respect to k, but in the latent expression, the intractable component has been
moved from the denominator to the numerator. At this point, posterior inference
via MCMC methods would still require the sampling of the infinite dimensional
parameters wi.o, and 6., so further manipulation is required.

As we mentioned before, the tractable function g; can be dealt with using
standard techniques for nonparametric mixture models with a stick-breaking rep-
resentation. We use the slice sampling ideas of Kalli et al. (2011) presented in
Section 1.2.2.2. Concretely, we introduce a latent variable d; which acts as an
index for the specific component from which y; is generated, conditional on y;_1,
thus, we write

9i(Yi> Yi-1. d, wq, 0g) = owg Ko, (Yi, Yi—1)- (3.27)
We deal with the intractable component in a similar manner, by first realizing
that

ki
i, = [1 bi(yi—lywl'oovelzoo)]

z: (g " [1 CXp{ 5 s =1 Jz}D (3.28)

1  Djp,=1l=1

(3

o0

D;,
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3.3 Posterior Inference via MCMC

Then, we introduce the indices 1); 1.k, as latent variables, defining the latent

expression

1 ——
bi,l(yi—l, ’l”Di,l' ()Di.l‘ I)i,l) &= ’LUD“ [1 — exp {—5 (yi—l — /I,D“)z/(fz}:l (329)

Notice that equation (3.28) coincides with the general latent expression (13)
in the Introduction. The latent variables s;; = D;; for each i = 1....,n and
l = 1,...,k;, take values on S = N, with reference measure v given by the
counting measure.

Finally, the full latent expression for the likelihood of the time series model is

given by
n ke
fP(!/l:m dl:n: k1:n- Dl:n,l:ki) = H gi(yie Yi, d, wq, ()d) H bi,l(yi 1, Wp; ;5 ()Di,n Di,l)
b=l =1
' n
= 0" [ [ wa, No (- t51)|(1ta, - p1a,)- )
t=1

k.

- 1
HwD,‘i [1 — exp {—5 (v — MDU)2/U2H ,
=1

from which the original likelihood is recovered by adding over the dy.,, k1., and
Di.n1:k,- The introduction of this latent variables makes posterior simulation for
the (u;), (w;),0? and p possible via MCMC, through the usual slice sampling
method. In order to deal with the variable size of the sampling space induced by
the dependence of each D; 1., on k;, we extend the model further by adding an
infinite sequence D; sk, of latent variables which interact with the latent model
through fully known densities, in the manner of Godsill’s 2001 general algorithm
presented in Section 1.2.2.3.

3.3 Posterior Inference via MCMC

The Bayesian model is completed by defining a prior on the mixing measure £;
effectively, on the 02, p and the w).o0, J11.00. We use a stick—breaking process prior,
so for independently distributed Be(w;. ;) variables, (v;)32,, for some «;, (; > 0,
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3.3 Posterior Inference via MCMC

we let
wy =v. andforj>1, w;=uv; H(l — ) (3.30)
¥'<d
Concretely, we illustrate the methods using a Dirichlet Process prior, making
«; = 1 and (; = ¢. Alternatively, to show that the same method can be applied
for other stick-breaking constructions, we use the Geometric stick-breaking prior

presented in Section 1.1.1. Recall that. in this case, the weights are defined as
w; =v(1—v)™! v~ Be(a(). (3.31)

In both 