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Abstract: 

The recent increase in the use of adhesively bonded joints (ABJs) made from dissimilar adherends 

demands the acquisition of a better understanding of the strength and behaviour of these joints, 

including their failure mechanisms. Several studies have reported on such joints individually, however 

few have compared the performances of dissimilar ABJs with varying configurations and design 

parameters, in order to determine the optimal design configuration for hybrid structures. In this work, a 

comparative study using experimental methods and finite element analysis was conducted, focusing on 

four joint configurations (scarf joints, stepped-lap joints, half-lap splice joints and single-lap joints), 

with the aim of evaluating the ways in which their performances differ. In addition, the effects of overlap 

length (𝐿0) and the mechanical properties of the adherends on the overall success of each joint were 

particularly closely analysed and compared. The results showed that the scarf joint provided the best 

performance of all the designs discussed, and it was found that increasing the overlap length was only 

beneficial for certain joint configurations and adherend combinations. In dissimilar joint, by enlarging 

overlap length from 12.5 mm to 25 mm, the failure load increase by 47.50% and 21.25% for the scarf 

and the stepped-lap joints, respectively, while the percentage increase for half-lap splice and single lap 

joints are less than 10%. Moreover, the mechanical properties of the adherends significantly affected 

the failure mechanisms of the dissimilar joints, and for all four joint configurations, the failure was 

initiated by a crack at the adherend-adhesive interface adjacent to the adherend with a lower modulus. 
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1. Introduction: 

As a result of the rapid development of new engineering products in recent decades, multi-material 

structures are now widely used, for which proper joining techniques are critical. Of the joining methods 

available, adhesive joints attract the most attention, due to their numerous advantages. The use of 

adhesive enables the development of lightweight parts, preserves surface aesthetics by avoiding 

galvanic corrosion, is cost-effective and offers a more uniform load distribution for highly integrated 

structures. Adhesively bonded joints also have several joint configuration possibilities, such as lap 

joints, butt joints and scarf joints. 

A lot of thorough research into the failure of joints made from identical adherends (for example 

aluminium [1][2][3][4][5][6] and composite [7][8][9][10]) has already been conducted, and the findings 

are rather well known. However, choosing the correct joint configuration is an extremely challenging 

task when designing a hybrid structure, due to the differences in the mechanical properties of the 

constituents, leading to unusual peel and shear stress concentrations at the bond-line edges [11]. In spite 

of this, very few works [12][13][14][15][16][17][18] focus on the case of dissimilar adherends. 

Therefore, examining the strength and stress distribution for each joint design when made from two 

different adherends is essential, as the stress distribution at the two adherend-adhesive interfaces will 

be different. 

In a previous study, Khashaba et al. [19] evaluated the effect of thickness and angle on composite 

adhesive scarf joints under tensile and fatigue loading. Here, the results showed that decreasing the scarf 

angle and increasing the thickness of the composite layer decreased the strength of the scarf joint. 

Additionally, Kumar et al. [20] investigated the tensile failure of scarf joints by putting adherends made 

of carbon fibre reinforced polymer (CFRP), which were joined with a structural adhesive, under a 

uniaxial tensile load. The results showed that a scarf angle of less than 2° resulted in composite failure, 

while larger angles led to cohesive failure. Later, during an investigation into shear and peel stresses of 

scarf joints, Silva et al. [21] introduced the direct method to determine parameters for the cohesive zone, 

which aided in the understanding of the influence of the aforementioned stresses on the failure load of 

the scarf joint. In this study, three different types of adhesive were tested in joints with aluminium 

adherends, and it was concluded that the epoxy adhesive was able to withstand the greatest failure load 

for all scarf angles, due to its higher strength in comparison to the ductile and flexible adhesives. 

Furthermore, many investigations have been carried out to evaluate the strength and stress distribution 

of single-lap joints under various loading conditions: tensile loads [5][22][23][24][25][26][27][28][29] 

and bending moment loads [30][31][32]. For example, Sawa et al. [14] used the two-dimensional theory 

of elasticity and the finite element method (FEM) to study the stress distribution of the traditional single-

lap joint made from dissimilar adherends, when subjected to tensile loads. Here, the analytical and finite 

element analysis (FEA) results showed good agreement, and it was found that singularities occur at the 
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edge of the bonding interface. Moreover, Pinto et al. [15] performed experimental and analytical studies 

to explore the tensile strength of single-lap joints using similar and dissimilar adherends bonded with 

acrylic adhesives. The indirectly-obtained cohesive parameters were validated with the experimental 

results before being employed in FEA, and the results showed that an increase in the adherends’ stiffness 

caused reduced joint bending, leading to an increase in joint strength. Finally, Stuparu et al. [33] 

simulated the behaviour and strength of dissimilar aluminium-CFRP single-lap joints by using a 

combination of Cohesive Zone Modelling (CZM) and eXtended Finite Element Modelling (XFEM). 

The conclusion drawn was that dissimilar AL-CFRP joints could successfully maintain the assembly 

stiffness (in contrast to the similar AL-AL joints), but that their strength was reduced by the 

delamination and pull-out of carbon fibres. 

Regarding stepped-lap adhesive joints, Mori et al. [34] investigated joint strength, both experimentally 

and numerically, by using similar adherends which were subjected to a shear tensile load. The FEA 

results showed that tensile stress was considerably higher at the edges in both the butt and lap sections 

of the stepped-lap joint, due to the greater stress concentration at these edges. In another work, Mori et 

al. [35] studied the effects of geometric designs such as adherend thickness, lap length and step number 

on the performance of the stepped-lap adhesive joint. Further to this, factors like Young’s modulus and 

the yield strength of the material were examined in relation to joint strength. In addition, Ichikawa et 

al. used the three-dimensional FEM to analyse the strength and stress distribution of dissimilar stepped-

lap joints under tensile loading [13] and bending moment loading [36]. It was concluded that the 

maximum value of stress drops when the Young’s modulus of the adhesive or the number of joint steps 

is increased. 

Despite the fact that many studies have been conducted on the strengths and failure mechanisms of 

various adhesively bonded joints, there are a limited number of studies focusing on dissimilar joints and 

their performances when compared with bonded joints made from identical adherends. Hence, the main 

objectives of this work are to carry out a comparative study of four joint configurations, to understand 

their failure mechanisms and to investigate which is the optimal design for use in hybrid structures. In 

order to do this, samples of scarf joints, stepped-lap joints, half-lap splice joints and single-lap joints 

were manufactured with an epoxy adhesive (Loctite EA 9497) and two types of adherend: aluminium 

(AL) and Polyphthalamide (PPA), giving three different joint combinations: AL-AL, PPA-PPA and 

AL-PPA. A parametric study was then carried out to investigate the influence of overlap length (𝐿0) 

on the strength of the AL-PPA joints in comparison to the AL-AL and PPA-PPA joints. The 

experimental results were compared with numerical results obtained in Abaqus®, in which two layers 

of CZM elements were used to model the adherend-adhesive interfaces. For the AL-PPA joints, the 

numerical analysis also consisted of a comprehensive stress analysis for different 𝐿0 values through the 

middle of the adhesive layer, as well as a damage analysis which presented the failure process of the 

dissimilar joints. 
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2. Mechanical Testing 

2.1. Material Properties 

In this study, two types of adherend were used, one made from aluminium alloy (6082 T6) and the other 

from polyphthalamide (PPA). The aluminium was provided in bars with a width of 25 𝑚𝑚, length of 

5 𝑚 and thickness of 3 𝑚𝑚. The PPA (specifically Grivory HTV-5H1 black 9205) was provided in 

plate form with a size of 100 × 100 × 3 𝑚𝑚, and is a reinforced engineering thermoplastic made of 

50% glass fibre, based on a semi-crystalline, partially-aromatic polyamide. Furthermore, the epoxy 

adhesive used for this work was Loctite EA 9497, a two-component material of medium viscosity, 

which cures at room temperature. The properties for the above materials were obtained from previous 

research [37] through tensile tests, based on the ISO EN 485-2:2004 standard for the adherends and the 

ISO 527-2 standard for the epoxy adhesive (Table 1).  

Table 1: The bulk material properties of the adherends and adhesive [37]. 

Property  Aluminium 6082 T6 Polyphthalamide  Loctite EA 9497 

Young Modulus (GPa) 70.77 ± 0.38 17.61 ± 0.06 7.70 ± 0.46 

Yield Stress (MPa) 254.59 ± 3.20 241.33 ± 10.4 46.29 ± 3.13 

Elongation at fracture (%) 10.83 ± 0.95 1.76 ± 0.04 0.71 ± 0.09 

Poisson Ratio 0.30 ± 0.01 0.32 ± 0.04 0.29a 

Density (tonne/mm^3)  2.7 × 10−9a
 1.65 × 10−9a

 1.1 × 10−9a
 

aManufacturer’s data sheet 

2.2. Manufacturing and Testing 

In Figure 1, the geometry and dimensions of the (a) scarf joints, (b) stepped-lap joints, (c) half-lap splice 

joints (HLP) and (d) single-lap joints (SLJ) are shown. The two adherend types (aluminium and PPA) 

each had a thickness of 𝑡𝑝 = 3 𝑚𝑚, while the thickness of the adhesive was 𝑡𝐴 = 0.2 𝑚𝑚, and in the 

stepped-lap and half-lap splice joints, the thickness of the vertical adhesive was also 𝑡𝐴1 = 0.2 𝑚𝑚. To 

create steps for the stepped-lap joint, the overlap length was divided into three equal parts (𝐿𝑠 = 𝐿0 3⁄ ) 

where the vertical length of each step was 𝑡𝑠 = 0.78 𝑚𝑚. Contrastingly, the vertical length of each step 

in the half-lap splice joint was 𝑡𝑠 = 1.6 𝑚𝑚. Moreover, the angles of the scarf joints (𝛼) were 13.5°, 

6.89° , 4.59°  and    3.44° , and the lengths of the bond-lines (𝐿0) for the three other joint types were 

12.5𝑚𝑚 , 25𝑚𝑚 , 37.5𝑚𝑚  and 50 𝑚𝑚 . The parameters here (angle and length of bond-line) are 

correspondingly comparable, due to the fact that for example an angle of 𝛼 = 3.44° on the scarf joint 

results in the length of the overlap length being around 50 𝑚𝑚. 

Table 2: The material combinations used for all four configurations of the joints. 

ID  Adherend-1  Adherend-2  Adhesive  

AL-AL Aluminium  Aluminium Loctite EA 9497 

AL-PPA Aluminium PPA Loctite EA 9497 

PPA-PPA PPA PPA Loctite EA 9497 
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For all four joint configurations, the adherends were bonded together using an epoxy adhesive, giving 

three possible material combinations: AL-AL, PPA-PPA, and AL-PPA (Table 2). A total of 192 

specimens were made to study the effects of adherend stiffness and overlap length on the performance 

the adhesively bonded joints, depending on their configuration. 

 

Figure 1: The joint configurations of (a) scarf joint, (b) stepped-lap joint, (c) half-lap splice joint and (d) single-lap joint.   

The manufacture of the specimens began with the cutting of the adherends into their final dimensions 

(𝐿 = 100 𝑚𝑚), and the CNC XYZ 750 HD machine was used to make the final shape of the scarf 

joints, stepped-lap joints and half-lap splice joints. For all joint designs, the same surface preparation 

method was implemented in order to increase bonding strength. This involved three steps: firstly, the 

bonding surfaces were grit blasted with a Grade 12 Guyson Metallic Blast Medium (corresponding 

particle size of 150-250 microns), before being cleaned with compressed air in order to remove any 

extra dust created during the blasting process. Then, the bonding surfaces were cleaned once again with 

acetone and Loctite SF 706. For the single-lap joints, fixtures were used to guarantee proper alignment, 

as well as to control the adhesive thickness and overlap length. End tabs were also used for this joint 

type, to improve alignment in the tensile test machine. On the other hand, no fixtures were required for 

the scarf joints, stepped-lap joints and half-lap splice joints due to the design of these adherends 

resulting in natural alignment. For all joints, a wire spacer with a thickness of 0.2 𝑚𝑚 was used to 

control the thickness of the bond-line, and the curing process of the adhesive was done at room 

temperature for seven days. 
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Figure 2: (a) The tensile test setup for an SLJ with a non-contact measurement system and (b) joint samples with an overlap 

length of  𝐿0 = 12.5 𝑚𝑚. 

The tension test was conducted at room temperature, using an Instron 3380 series machine with a 

100 𝑘𝑁 load cell, where the specimen was under a displacement control of 0.5 mm/min (Figure 2a). 

To measure the displacement, a non-contact video method using the Imetrum System was adopted, for 

which all specimens were covered with black and white dots of diameter 0.3 𝑚𝑚, to create a speckled 

pattern on the specimens’ surface. The dots were then tracked by the camera, and the original pattern 

was used as a reference image, to which the other images were compared. When calibrating the camera, 

the paper rule was used (Figure 2b). 

3. Finite Element Analysis 

3.1. FEA Modelling 

Numerical models for the four different joint configurations were built in Abaqus®, which provided 

both the stress distribution and the damage variable along the bond-line for various values of overlap 

length (𝐿0), while also predicting the joint strength. The explicit two-dimensional non-linear solver was 

utilised to compensate for the rapid crack growth along the bond-line of the epoxy adhesive. 

Two different cases were analysed. In Case 1, joint strength was predicted using CZM. In Case 2, the 

stress distribution along the bond-line was analysed (without the use of CZM). For the first case, the 

adherends (AL and PPA) were treated as elastic isotropic materials (Table 1), modelled by CPE4R 

plane strain elements. In the special case of the tapered bonded edges of the scarf joint, CPE3 plane 

strain elements were used. The adherend sections in the bonded area were meshed with elements of 

size 0.05 𝑚𝑚 × 0.05 𝑚𝑚, and for the outer sections, the bias effect was used with a minimum size of 

0.05 𝑚𝑚 and a maximum size of 1 𝑚𝑚, to reduce the computational time (Figure 3-5). Furthermore, 

the adhesive section was divided into three layers. Two of these (namely Path 1 and Path 2, located 

adjacent to each adherend) were meshed using cohesive elements (COH2D4) of thickness 0.05 𝑚𝑚, to 

model the interactions between the adhesive and Adherends 1 and 2 respectively (Table 3). In between 
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those layers was a third layer, meshed by CPE4R plane strain elements of thickness 0.05mm, as 

illustrated in Figure 3-5.   

Table 3: The cohesive layer interface properties for the FE models of the adhesively bonded joints depending on the 

adherend combination 

ID  Path 1 (Interface Property) Path 2 (Interface Property) 

AL-AL AL/adhesive  AL/adhesive   

AL-PPA AL/adhesive   PPA/adhesive  

PPA-PPA PPA/adhesive   PPA/adhesive  

For the AL-AL and PPA-PPA joints, the same CZM properties were defined in both Paths 1 and 2, as 

the top and bottom adherends were made of identical materials. However, in the AL-PPA joint, Path 1 

had the properties of the AL-adhesive interface, while Path 2 had those of the PPA-adhesive interface. 

These properties include elasticity, plasticity and susceptibility to damage. 

Table 4: The CZM parameters for Loctite EA 9497 at each interface [37].  

Property  Loctite EA 9497 

AL-Adhesive Interface 

Loctite EA 9497 

PPA-Adhesive interface  

 Gn (N/mm) 0.26 ± 0.06 0.22 ± 0.04 

Gs (N/mm) 0.90 ± 0.38 0.46 ± 0.09 

tn (MPa) 25.35 ± 10.26 20.94 ± 7.27 

ts (MPa) 16 ± 5 10 ± 3.75 

Table 4 shows the CZM parameters obtained in previous research [37] for Loctite EA 9497 from the 

AL-AL and PPA-PPA single-mode coupon tests. The nominal traction stress consists of two 

components, namely: tn  in the normal direction and ts  in the shear direction, and these allow the 

simulation of damage initiation along the bond-line. The Gn and Gs values represent the areas under the 

traction separation law graphs in the normal and shear directions, respectively [38]. 

 

Figure 3: The boundary conditions and mesh details for the FE model of  (a) the half-splice joint and (b) the stepped-lap joint 

with 𝐿0 = 12.5 in Case 1. 
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In Case 2, a higher mesh refinement was used for the stress distribution analysis along the bond-line. 

The adherend and adhesive were meshed with elements of size 0.02 𝑚𝑚 × 0.02 𝑚𝑚 in the bonding 

area, and a single bias was used for other parts of the adherend, with a maximum element size of 0.2 𝑚𝑚 

and a minimum element size of 0.02 𝑚𝑚. Here, both the adhesive and the adherend sections were 

meshed using plane strain elements (CPE4R). 

 

Figure 4: The boundary conditions and mesh details for the FE model of the single-lap joint with 𝐿0 = 12.5 𝑚𝑚 in Case 1. 

For both Case 1 and Case 2, the models were fixed at the left end (Adherend 1), and a tensile 

displacement was applied at the right end (Adherend 2). Figure 4 and 5 show the boundary conditions 

for a single-lap joint and a scarf joint, respectively. 

 

Figure 5: The boundary conditions and mesh details for the FE model of the scarf joint in Case 1. 

4. Results and Discussion: 

4.1. Stress Distribution of Dissimilar Joints  

This section presents a comparison of the peel and shear stress distributions through the middle of the 

adhesive layer of the four different dissimilar joint configurations, for the overlap lengths 𝐿0 

= 12.5 𝑚𝑚 and 𝐿0 = 50 𝑚𝑚 (Figure 6 and 7). Of the four overlap lengths used during testing, these 

two magnitudes were selected as the representative values for the discussion of the stress distribution. 

For the scarf joints, the stress distributions were obtained at 𝛼 = 13.5 ° and 𝛼 = 3.44° , meaning the 

corresponding overlap lengths were also approximately 12.5 𝑚𝑚 and 50 𝑚𝑚, respectively. All plots 

illustrate the stress under elastic deformation, normalised by the average shear stress (𝜏𝑎𝑣𝑔) along the 

bond-line of each design (as shown in Figure 6 and 7). The position along the bond-line (𝑥) has also 

been normalised using the overall overlap length (𝐿0). Based on the trend of the distribution, the overlap 
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length has been divided into three sections: 0 < x < 0.2 (Section I, on the left), 0.2 < x < 0.8 (Section 

II, the overlapping inner region), and 0.8 < x < 1 (Section III, on the right). 

 

Figure 6: A comparison of σ τavg⁄  for the four dissimilar adhesively bonded joint types with two different overlap lengths: 

(a) 12.5 mm and (b) 50 mm. 

For 𝐿0 = 12.5 𝑚𝑚, the peak normalised peel stress value (σ τavg⁄ ) in Section I (AL side), was 0.31 for 

the scarf joint, 3.02 for the stepped-lap joint, 11.32 for the half-lap splice joint and -7.07 for the single-

lap joint (Figure 6a). In comparison, the σ τavg⁄  values for the former three joints in Section III (PPA 

side), were higher by 87.5%, 37.47% and 8.26%, respectively. This was a result of the difference in 

stiffness of the adherends, which resulted in an asymmetric peel stress distribution. Despite the fact that 

the scarf joint experienced the largest percentage difference in peak σ τavg⁄ , it still had the lowest 

absolute peak σ τavg⁄  value in Section III, measured at 2.48. The other joints reached 4.83 (stepped-lap 

joint), 12.34 (half-lap splice joint) and -4.64 (single-lap joint). Here, the stepped-lap joint had a lower 

peak σ τavg⁄  value when compared to the single-lap joint and the half-lap splice joint, due to its step-

wise design allowing a more even spread of the load between each step. 

As the overlap length increased (from 𝐿0 = 12.5 𝑚𝑚 to 𝐿0 = 50 𝑚𝑚), higher σ τavg⁄  values were 

developed in Sections I and III (i.e. the ends of the bond-line) because of a greater transmitted load and 

bending moment, as shown in Figure 6. In addition, the peak stresses obtained at both ends of the scarf 

joint were lower than those at the ends of the single-lap joint ( 

Table 5). This was due to the improved alignment of the adhesive layer with the applied load [4], which 

reduced the bending moment. The stepped-lap joint experienced the most significant increase in peak 

σ τavg⁄  at the ends of the bond-line, specifically from 3.02 to 6.77 in Section I (AL side) and 4.83 to 

17.20 in Section III (PPA side), corresponding to 124.17% and 256.10% increases, respectively. The 

same trend was followed by the half-lap splice joint, only with slightly lower increases (50.61% and 

114.32% for Sections I and III, respectively). This suggests that the strength of stepped-lap joint and 

half-lap splice joint cannot be improved significantly by increasing 𝐿0. 
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Table 5: The absolute peak 𝜎 𝜏𝑎𝑣𝑔⁄  at the ends of the bond-line for the four types of dissimilar joints. 

Overlap Length  12.5 mm 25 mm 37.5 mm 50 mm 

Section  I III I III I III I III 

Scarf Joint 0.31 2.48 0.33 3.28 0.38 4.13 0.44 4.64 

Stepped-Lap Joint 3.02 4.83 4.60 9.06 6.03 13.59 6.77 17.20 

Half-Lap Splice Joint 11.32 12.34 15.68 19.36 16.98 23.54 17.05 26.49 

Single-Lap Joint 7.07 4.64 10.81 7.75 11.22 8.93 11.42 9.29 

As shown in Figure 7a, the shear stresses for all joints were significantly concentrated in Section III, on 

account of the higher longitudinal straining of PPA in comparison to AL, due to its lower stiffness 

[39][40]. Of all the designs, the scarf joint had the lowest stress levels at both ends of the bond-line, 

with peak 𝜏 𝜏𝑎𝑣𝑔⁄  values of 0.52 and 2.95 in Sections I and III, respectively. The uniform shear stress 

distribution was due to the tapering of the scarf joint edges, resulting in an almost cancelling effect on 

the shear lag [3]. Conversely, the peak 𝜏 𝜏𝑎𝑣𝑔⁄  value is significantly higher in the other three joints, with 

the half-lap splice joint reaching a maximum of -3.73 in Section I and 12.1 in Section III (the two 

greatest magnitudes of 𝜏 𝜏𝑎𝑣𝑔⁄  across the board). This higher peak 𝜏 𝜏𝑎𝑣𝑔⁄  value at the PPA side 

(Section III) can be justified by the gradual decrease in the local stiffness along the bond-line, which 

increases the longitudinal deformation of the joint. 

 

Figure 7: A comparison of 𝜏 𝜏𝑎𝑣𝑔⁄  for the four dissimilar adhesively bonded joints with two different overlap lengths: (a) 

12.5 𝑚𝑚 and (b) 50 𝑚𝑚. 

When comparing the effects of overlap length, as depicted in Figure 7a and 7b, the change in peak 

 𝜏 𝜏𝑎𝑣𝑔⁄  of the scarf joint in Section I is rather insignificant (from 0.54 at 𝐿0 = 12.5 𝑚𝑚 to 0.72 at 𝐿0 =

50 𝑚𝑚). However, a bigger difference is obtained at the PPA side (from 2.88 at 𝐿0 = 12.5 𝑚𝑚 to 7.2 

at 𝐿0 = 50 𝑚𝑚). The stepped-lap joint experienced a higher increase in its peak 𝜏 𝜏𝑎𝑣𝑔⁄  value at the 

ends of the overlap length (PPA side) when compared to the single-lap and half-lap splice joints, with 

the 𝜏 𝜏𝑎𝑣𝑔⁄  value peaking at 15.40 at 𝐿0 = 50 𝑚𝑚, corresponding to a 256.10% increase. This can be 

justified by the increased axial deformation within each step of the adherend for larger 𝐿0 values [41].  
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In the mid-section of the bond-line (Section II), the single-lap joint benefitted from an increased overlap 

length, which resulted in the cancellation of the asymmetric stress distribution caused by the dissimilar 

adherends. On the other hand, larger overlap lengths increased the peak  τ τavg⁄  values at both edges of 

the single-lap joint, particularly at the PPA side (Section III), where a maximum of 17.86 was reached 

for the joint with L0 = 50 mm, in comparison to 6.1 for the joint with L0 = 12.5 mm. At the AL side 

(Section I), the τ τavg⁄  value had a maximum of 5.09 for the joint with L0 = 50 mm, in comparison to 

just 3.2 for the joint with L0 = 12.5 mm . In both cases, this can be justified by the increased 

longitudinal straining of each adherend along the bond-line, as a result of a higher transmitted load for 

the larger overlap length. The half-lap splice joint followed the same trend, but with a considerably 

smaller improvement in the concentration of τ τavg⁄  in Section II. Here, the peak τ τavg⁄  values at the 

ends of the bond-line (i.e. in Section I and III) were -3.73 for L0 = 12.5 mm and -5.92 for L0 = 50 mm 

in Section I (AL side), and 11.91 for L0 = 12.5 mm and 22.92 for L0 = 50 mm in Section III (PPA 

side). 

Table 6: The absolute peak 𝜏 𝜏𝑎𝑣𝑔⁄  at the ends of the bond-line for the four types of dissimilar joints. 

Overlap Length  12.5 mm 25 mm 37.5 mm 50 mm 

Section  I III I III I III I III 

Scarf Joint 0.51 2.92 0.53 4.71 0.61 6.01 0.72 6.92 

Stepped-Lap Joint 1.52 4.32 2.47 8.32 3.20 11.86 3.73 15.40 

Half-lap Splice Joint 3.54 12.33 5.47 19.64 5.72 23.2 6.05 23.32 

Single-Lap Joint 3.71 6.32 4.93 11.22 5.10 15.04 5.51 17.60 

Table 6 shows the absolute peak 𝜏 𝜏𝑎𝑣𝑔⁄  values for the four different configurations of dissimilar joints 

at the ends of the bond-line (Section I and III) with various overlap lengths. As the overlap length is 

increased, these values change only slightly in Section I (AL side), while every joint type experiences 

a significant increase in their peak 𝜏 𝜏𝑎𝑣𝑔⁄  values in Section III (PPA side). The reasoning for this is the 

difference in bending and longitudinal deformation at the AL side (Section I) compared to the PPA side 

(Section III). In Section III, the largest increase in peak 𝜏 𝜏𝑎𝑣𝑔⁄  occurs when the overlap length was 

increased from L0 = 12.5 𝑚𝑚 to L0 = 25 𝑚𝑚, and the percentage increases of the peak 𝜏 𝜏𝑎𝑣𝑔⁄  values 

are 63 %, 96%, 58% and 77% for the scarf joint, stepped-lap joint, half-lap splice joint and single-lap 

joint, respectively. Contrastingly, the peak 𝜏 𝜏𝑎𝑣𝑔⁄  value for all joints rose by less than 40% when the 

overlap length was increased from L0 = 37.5 𝑚𝑚 to L0 = 50 𝑚𝑚. 

4.2. Joint Strength Analysis  

This section presents the analysis of the experimental failure loads (Pm) for all four adhesively bonded 

joints. In Figure 8, the Pm for all combinations of adherends (AL-AL, AL-PPA and PPA-PPA) are 

depicted. It is clear that the failure load of all joints increases as the overlap length (L0) increases. 
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Among the joints with identical adherends (AL-AL and PPA-PPA), the scarf joint outperforms all other 

joints, since the higher L0 in the scarf joint can be achieved with a smaller scarf angle (α) which cancels 

the peak stress effect and leads to a higher Pm [21].  

For the AL-AL joints (Figure 8a), the failure load of the stepped-lap configuration was only 13% lower 

than that of the scarf configuration with L0 = 12.5 𝑚𝑚, due to the lower peak stresses at the edges of 

the stepped-lap joint. However, the 𝑃𝑚 of the scarf joint experienced a 102% growth as the overlap 

length was increased from 12.5 𝑚𝑚 to 50 𝑚𝑚, while this increase is only 24% for the stepped-lap 

joint. The same tendency was observed for the PPA-PPA joints (Figure 8b).  

 

Figure 8: The failure loads of four different adhesively bonded joints with three combinations of adherends: (a) AL-AL, (b) 
PPA-PPA, and (c) AL-PPA. 

For the AL-PPA joints (Figure 8c), the 𝑃𝑚 values for the scarf and stepped-lap joints were similar to 

each other when the overlap length  L0 is 25 𝑚𝑚, due to the lower peak stresses at the edges of the 

stepped-lap joints. As the overlap length was increased from 12.5 𝑚𝑚  to25 𝑚𝑚 , the 𝑃𝑚  values 

increase by 47.50% and 21.25% for the scarf and the stepped-lap joints, respectively. When the overlap 

length was increased to L0 = 37.5 𝑚𝑚, the 𝑃𝑚 values increased noticeably by 23% for the scarf joint 

and only by 5% for the stepped-lap joint. This can be justified by the stress analysis results as the higher 

peak stresses are obtained for higher values of  L0. The marginally better performance of the scarf joint 

could be accounted for by its smaller bending moment. 
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4.3. Failure Load Analysis 

This section is a numerical and experimental study into the effects of adherend stiffness on the different 

configurations of adhesive joints with various overlap lengths. Figure 9 shows the average failure load 

(𝑃𝑚) for all configurations and adherend combinations at four L0  values, each obtained from four 

experimental tests. The estimated numerical failure loads (𝑃0) are also shown, and these were obtained 

using the cohesive zone model (CZM). 

As seen in Figure 9, increasing adherend stiffness increases the maximum failure load for all four joint 

configurations. The highest failure load was achieved with AL-AL joints (rather than PPA-PPA or AL-

PPA joints), due to the decreased bending and lessened longitudinal deformation in the AL-AL joint, 

leading to a more uniform stress distribution along the bond-line. The 𝑃𝑚 values for the AL-PPA and 

PPA-PPA joints are noticeably similar, with the dissimilar AL-PPA joints performing only slightly 

better when the two types are compared. This is due to the presence of the higher-stiffness adherend 

(AL) in the AL-PPA joints, which leads to reduced bending, providing a smaller shear stress 

concentration at the AL side (shown in Figure 7). Although the AL-PPA joints outperform the PPA-

PPA joints, they cannot reach the success of the AL-AL joints. This is due to the asymmetric stress 

distribution in the dissimilar joints (AL-PPA), which leads to a significantly higher stress concentration 

in the interface between the lower-stiffness adherend (PPA) and the adhesive. 

For the largest overlap length (𝐿0 = 50 𝑚𝑚), the load-carrying capacity of the AL-AL joints increased 

significantly for all four configurations. However, the AL-PPA and PPA-PPA joints did not follow the 

same tendency – for these adherend combinations, considerably smaller 𝑃𝑚  improvements were 

recorded with increasing 𝐿0. This poor performance can be explained by higher peel and shear stress 

concentrations at the overlap length edge, caused by the lower-stiffness adherend (PPA). By changing 

the adherend combination from AL-AL to AL-PPA at 𝐿0 = 50 𝑚𝑚, the 𝑃𝑚 value decreased by 55% 

for the scarf joint, 40% for the stepped-lap joint, 37% for the half-lap splice joint and 36% for the single-

lap joint, respectively. Here, the reduction percentage is higher for the scarf and stepped-lap joints as 

the PPA failed due to the higher tensile loads reached, meaning the joints could not perform to their full 

capacity (Figure 11-12). 
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Figure 9: An experimental and numerical comparison of the 𝑃𝑚  values for (a) scarf joints, (b) stepped-lap joints, 

(c) half-lap splice joints and (d) single-lap joints with various overlap lengths. 

There is good agreement between the experimental and numerical failure loads for all adhesive joint 

configurations. As seen in Figure 9, the difference between the 𝑃𝑚 and 𝑃0 values for each 𝐿0 is notably 

small (around 5%) up to 𝐿0  = 25 𝑚𝑚, while the differences gradually rise to 20% as 𝐿0  increases 

further. The larger differences here are due to the greater transmitted load and therefore higher stress 

concentrations at the joint edges for larger 𝐿0 , causing either plasticisation or total failure of the 

adherend in the experiment, which the failure criteria or plastic behaviour in the numerical simulations 

did not account for. The failure criteria were only used for the epoxy adhesive and not the adherends. 

For the scarf and stepped-lap joints specifically, at  𝐿0 = 50𝑚𝑚,  the failure spread to the PPA 

adherend as opposed to occurring solely within the epoxy adhesive (Figure 10 and Error! Reference 

source not found.). This can be explained by the greater load-carrying capacity of the scarf and 

stepped-lap joints resulting in a higher stress concentration along the bond-line of the adherend section, 

causing the adherend to fail. 
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Figure 10: The failure process of a dissimilar scarf joint at 𝐿0 = 50 𝑚𝑚. 

 

Figure 11: The failure process of a dissimilar stepped-lap joint at 𝐿0 = 50 𝑚𝑚. 

4.4. Damage Variable of Dissimilar Joints 

In this section, the focus lies on the stiffness degradation (SDEG variable in Abaqus) of the CZM 

elements across the different overlap lengths (0 ≤  𝑥/𝐿0  ≤  1). As in Section 4.1, of the four overlap 

lengths used, 𝐿0 = 12.5 𝑚𝑚 and 𝐿0 = 50 𝑚𝑚 were selected as the representative overlap lengths for 

the discussion here. The SDEG value varies between 0 (undamaged) and 1 (fully damaged). 

For all four dissimilar joint configurations (Figure 12), the numerical and experimental results show 

that the failure is always initiated at the PPA-adhesive interface, and the stiffness difference between 

the two adherends causes the SDEG to behave asymmetrically, leading to a higher stress concentration 

along the bond-line edge of Adherend 2 (Section III in Figure 6 and 7). It can therefore be concluded 

that the adherend with the lower stiffness affects the strength of the whole joint significantly. 
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Figure 12: The failure process in (a) scarf joints, (b) stepped-lap joints, (c) half-lap splice joints and (d) single-lap joints for 𝐿0 = 12.5mm. 

Analysis for the SDEG was conducted for Path 2 (PPA side) at the maximum failure load. As shown in 

Figure 13a, the scarf joint was able to spread damage most evenly, followed by the single-lap joint, with 

91% and 77% of their overlap lengths under damage, respectively. The scarf joint’s success was due to 

the influence of the tapered adherend near the scarfed tip, decreasing the bending caused by the 

dissimilar adherends [3]. On the other hand, the total amount of overlap length under damage is 

considerably lower for the stepped-lap (55%) and half-lap splice (33%) joints. This is because of the 

stepwise construction of these joints resulting in a higher intensity of damage at the bond-line edges, 

due to the greater stress concentration in these areas. Moreover, the stepped-lap joint performs slightly 

better than the half-lap splice joint, as it spreads damage between steps with a higher preponderance in 

the outer ones. 

For larger overlap lengths (Figure 13b), the damage is less spread-out due to the increase in the 

magnitude of the shear stress in Section III (PPA side), adversely affecting the epoxy adhesive which 

is sensitive to peak stresses at the edges of the bond-line. In other words, the epoxy adhesive fails 

immediately after reaching the stress softening phase in the damage law [42] after tolerating limited 

damage. Despite the fact that increasing the overlap length reduces the total length under damage for 

all dissimilar joints, the stepped-lap joint experienced a less noticeable drop compared to the other 

joints. The reduction for the stepped-lap joint was 39%, in comparison to 69% and 63% for the scarf 

joint and the single-lap joint, respectively. This is because the stepped-lap joint spreads load more 

evenly between its steps due to the tp reduction effect [41]. However, the scarf joint still has the best 
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performance here with 28% of its overlap length under damage compared to only 26 %, 23% and 5 % 

for the single-lap, stepped-lap and half-lap splice joints, respectively. 

 

Figure 13: The damage variable (SDEG) of the dissimilar joints in Path 2 (PPA side), under the maximum load points at (a) 

L0 = 12.5 𝑚𝑚 and (b) L0 = 50 𝑚𝑚. 

5. Conclusion 

In this work, a comparative study involving four joint configurations (scarf joints, stepped-lap joints, 

half-lap splice joints and single-lap joints) and three different adherend combinations was carried out, 

with the aim of determining the most suitable dissimilar bonded joint design. In addition, the effects of 

the overlap length (𝐿0) and the mechanical properties of the adherends on the overall performances of 

the joints were also explored. The conclusions are summarised as follows: 

• The scarf joint provides the best performance, followed by the stepped-lap joint, both with 

lower peak τxy τavg⁄  and σy τavg⁄  values than the other joints. Scarf joints spread damage more 

evenly due to the tapering of the adherend near the scarfed tip. This leads to lower stress along 

the bond-line and decreased bending, counteracting the influence of the dissimilar adherends. 

The lower stress concentrations in the stepped-lap joint can be justified by the fact that the 

stepped-lap joint divides the load much more efficiently due to its stepwise nature.  

• By increasing the overlap length (𝐿0), the peak stresses at the ends of the bond-line also increase 

for all joints, due to a higher transmitted load and bending moment. However, smaller peak 

stresses are obtained for the scarf joint at both ends of the bond-line in comparison to the other 

three joints, irrespective of 𝐿0. The stepped-lap and half-lap splice joints experienced the most 

significant increase in peak stresses at the edges of the bond-line. This suggests that increasing 

the overlap length could increase the strength of the dissimilar scarf joint, but this would not be 

the case for the stepped-lap and half-lap splice joints.  

• For all four joint configurations, the load-carrying capacity of the AL-AL joints increased 

significantly as the overlap length (𝐿0) got larger. However, the AL-PPA and PPA-PPA joints 
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did not follow the same tendency – for these adherend combinations, considerably smaller Pm 

improvements were recorded with increasing L0. In joints with identical adherends (AL-AL 

and PPA-PPA), the scarf joint outperformed all other joints. On the other hand, for the AL-PPA 

joints, the Pm values for the scarf joints and stepped-lap joints were notably close to one another 

for the overlap lengths up to L0 = 25 mm. Despite the high performance of the stepped-lap 

joint for lower L0, the rate of increase in its performance quality is significantly lower than the 

scarf joint for higher L0 values, as the stress concentration rises considerably at the PPA side, 

which results in the failure of the PPA or the adhesive. 

• The numerical and experimental failure analysis shows that the failure is always initiated at the 

PPA-adhesive interface in multi-material joints (AL-PPA), regardless of the joint configuration. 

The asymmetric behaviour of SDEG is due to the stiffness difference between the two 

adherends, leading to a higher stress concentration at the edge of the bond-line adjacent to the 

lower stiffness adherend, and it can therefore be concluded that the adherend with lower-

stiffness affects the strength of the whole joint significantly. In addition, the SDEG plots 

demonstrate that the scarf joint was able to spread damage most evenly, followed by the single-

lap joint, both of which had large proportions of the overlap length under damage. On the other 

hand, the total overlap length under damage is considerably lower for the stepped-lap and half-

lap splice joints. This is because of the stepwise construction of these joints, which results in a 

higher intensity of damage at the bond-line edges due to the greater stress concentrations in 

these areas. 
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