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Abstract

In this thesis methods of symmetry reduction are applied to several physically relevant
partial differential equations.

The first chapter serves to acquaint the reader with the symmetry methods used in this
thesis. In particular the classical method of Lie, an extension of it by Bluman and Cole
[1969], known as the nonclassical method, and the direct method of Clarkson and Kruskal
[1989] are described. Other known extensions of these methods are outlined, including
potential symmetries, introduced by Bluman, Kumei and Reid [1988]. Also described are
the tools used in practice to perform the calculations. The remainder of the thesis is split
into two parts.

In Part One the classical and nonclassical methods are applied to three classes of scalar
equation: a generalised Boussinesq equation, a class of third order equations and a class
of fourth order equations. Many symmetry reductions and exact solutions are found.

In Part Two each of the classical, nonclassical and direct methods are applied to various
systems of partial differential equations. These include shallow water wave systems, six
representations of the Boussinesq equation and a reaction-diffusion equation written as
a system. In Chapters Five and Six both the actual application of these methods and
their results is compared and contrasted. In such applications, remarkable phenomena
can occur, in both the nonclassical and direct methods. In particular it is shown that
the application of the direct method to systems of equations is not as conceptually
straightforward as previously thought, and a way of completing the calculations of the
nonclassical method via hodograph transformations is introduced. In Chapter Seven it is
shown how more symmetry reductions may be found via nonclassical potential symmetries,
which are a new extension on the idea of potential symmetries.

In the final chapter the relationship between the nonclassical and direct methods is
investigated in the light of the previous chapters. The thesis is concluded with some

general remarks on its findings and on possible future work.
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Chapter One:

General Introduction

1.1 Introduction and Historical Perspective
The equations that govern physics are usually nonlinear partial differential equations
and consequently are difficult to solve explicitly. Approximate solutions may be found
by perturbation, asymptotics and numerical methods with much success; however there
is much current interest in finding ezact solutions to such nonlinear partial differential
equations. The methods of symmetry reduction provide a way of finding these solutions.
A symmetry reduction (also known as a similarity reduction) of a partial differential
equation is a transformation of its independent and dependent variables such that the
number of variables occurring in the transformed equation is (usually) at least one less

than in the original equation. As an example, consider the equation
— i 2
Ut = Ugy — u(l — u)*, (L.1)

where subscripts denote partial derivatives. If u(z,t) = w(z), where z = z — ct, then

substituting into (1.1) we find w(z) satisfies the following ordinary differential equation
—cw' =w" —w(l —w)?, (1.2)

where primes denote differentiation with respect to z. This is a symmetry reduction
(often called a travelling wave reduction) of equation (1.1) and we have moved from three
variables (z,t,u) to two (z,w).

Inherent in the philosophy behind symmetry analysis is the reasoning that the reduced
equation (cf. (1.2)) or system of equations is simpler to solve than the original. Hence
ultimately exact, special solutions may be found. This is not unreasonable: we move from
trying to solve partial differential equations for which finding the general solution is often

impossible, to ultimately trying to solve ordinary differential equations for which many
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different methods of solution exist. Also the reduced system may be recognised as a well
known system, or, as happens in Chapter Seven, the search for symmetry reductions of
one equation suggests a transformation onto another, well known equation.

It is known that some solutions of some partial differential equations asymptotically
tend to solutions of lower dimensional equations obtained by symmetry reduction (cf.
Barenblatt [1979]); it is not surprising then that many exact solutions found by symmetry
analysis have been interpreted physically. Further, Galaktionov [1990] has used symmetry
reductions to study “blow-up” of solutions of nonlinear heat equations.

The beauty of exact solutions is that one can see precisely the effect varying the
parameters of the equation has on the solution. Furthermore, explicit solutions (such as
those found by symmetry methods) can play an important role in the design and testing of
numerical integrators; the solutions provide an important practical check on the accuracy
and reliability of such integrators (cf. Ames, Postell and Adams [1992], Shokin [1983]).

The theory of symmetry reductions starts with Lie in the mid- to late nineteenth
century, and his desire to relate transformations of a differential equation (which form a
group) to information about the equation’s integration. (A history of Lie’s early work
can be found in Hawkins [1994], and references therein.) He succeeded, and found a
way of systematically integrating ordinary differential equations by using group-theoretic
techniques.

He then extended the theory to encompass partial differential equations, in the shape
of a systematic way of finding symmetry reductions. It is this that we shall refer to as
the classical method, which is described in §1.2. Although the classical method is entirely
algorithmic it involves fairly trivial but lengthy calculations. Perhaps it is for this reason
and the fact that Lie himself didn’t apply it to any physically relevant partial differential
equations that it faded into obscurity. The following brief history shows how it and other
symmetry methods (relevant to this thesis) have come to prominence today. (A more
thorough account is given in Olver [1993, chap. 3].)

It was some half a century later that Birkhoff [1950] resuscitated Lie’s work and
also Ovsiannikov and co-workers rederived much of it, successfully applying it to many
physically important equations.

The next significant landmark is when Bluman and Cole [1969] observed that Lie’s
method could be naturally generalised, and applied what we shall refer to as the

nonclassical method to the linear heat equation
U = Ugy. (1.3)

In fact they were unable to find any explicit solutions other than those that the classical
method gave when they applied their method to (1.3), but they remarked that “For other

equations the non-classical solutions have been shown to be more general”. Not only was
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it seemingly no more productive than the classical method, it was certainly more difficult
to apply: we shall see that irrespective of the candidate equation the classical method
entails solving linear partial differential equations, whilst for the nonclassical method these
equations become nonlinear. Thus the nonclassical method, which we describe in §1.3,
like the classical method before it, failed to immediately attract the attention it deserved.

Despite admitting “In practice, ..., the determining equations for [the nonclassical
method] may be too difficult to explicitly solve”, Olver and Rosenau [1986, 1987] generalised
the nonclassical method once to include the notion of weak symmetries, and then further
but along a different vein with the concept of a differential equation with side conditions or
differential constraints. As we shall see in §1.5.2, where it is described in more detail, the
latter generalisation embraced many (all?) known methods of symmetry reduction, but the
price it paid for generality was impracticability and certainly any sense of an algorithm
was lost. They concluded that “the unifying theme behind finding special solutions to
partial differential equations is not, as is commonly supposed, group theory, but rather the
more analytical subject of overdetermined systems of partial differential equations”.

A revival of interest in the nonclassical method came from the development of a
new and direct method for finding symmetry reductions by Clarkson and Kruskal [1989].

Motivated by the knowledge that there existed reductions of the Boussinesq equation
17 8 _
Ut + 5(“ ).1:'1: it Ugpee = ()7 (14)

that could not be found by the classical method (Olver and Rosenau [1987]) they developed
what is now known as the direct method. This method, unlike Lie’s or Bluman and Cole’s,
used no group theory, but instead an ansatz is made on the form of the reduction. More
specifically, applying the method to a scalar partial differential equation like (1.4), one

assumes the solution takes the form
ulw, ) = Flao,t,wizlz, 1)),

and requires that w(z) satisfies an ordinary differential equation. True to form to Olver
and Rosenau’s conclusions mentioned earlier the method necessitates solving (nonlinear)
overdetermined partial differential equations. This framework allowed them to find the
known reductions of the Boussinesq equation, and many more! Following the success of
the direct method it was applied to many physically interesting equations including those
with more independent variables (cf. Clarkson and Winternitz [1991], Lou and Ni [1991]
and Clarkson and Hood [1992]) and to systems, with more dependent (and independent)
variables (cf. Clarkson [1992], Clarkson and Hood [1993,1994], Hood [1993], Lou [1992]
and Lou and Ruan [1993]). A detailed description of the application of the direct method

to scalar equations (with two independent variables) is given in §1.4.
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We note that the direct method of Clarkson and Kruskal [1989] bears a resemblance to
the Free Parameter Method of Hansen [1964], except that in the latter boundary conditions
play an important role in finding a reduction. The attentive reader will have noticed that
no mention of boundary conditions (or initial conditions) has been made until now, and
this discourse will be brief. The symmetry methods that are used take no consideration
of them in this thesis, though it should be noted that it may be possible to incorporate
them (see, for instance Bluman and Kumei [1989)]).

With the development of the direct method came interest in the relationship between
it and other methods, indeed Clarkson and Kruskal raised the question of equivalence in
their original paper. The main results are discussed here, but a more detailed account is
given in §1.5.4. Levi and Winternitz [1989] showed the equivalence of the direct method
and the nonclassical method for the Boussinesq equation by applying the nonclassical
method and finding the same symmetry reductions. However for the Fitzhugh-Nagumo
equation

Ut = Ugy =I5 “(1 == u)(u = a),

Nucci and Clarkson [1992] showed that there existed nonclassical reductions which the
direct method could not find. Subsequently Olver [1994] (see also Arrigo, Broadbridge and
Hill [1993], Pucci [1992]) proved the precise nature of the relationship between the two
methods, basically that the nonclassical method is more general. More recently Ludlow
[1995] provided an example where the classical method gave more reductions than the
direct method, dispelling the common belief that the classical method was a special case
of the direct method.

Meanwhile, Galaktionov [1990] successfully extended the direct method by using a
generalisation of the separation of variables technique with his Nonlinear Separation
Method, from which Olver [1994] (theoretically) generalised it further and compared it with
the method of differential constraints (Olver and Rosenau [1986]). Further, extensions of
the direct method have also been given by Burdé [1994], Estévez [1992] and Hood [1995],
each of which differs slightly from it but remains an ansatz-based approach. Burdé [1996]
has also proposed another generalisation, which takes ideas from both the nonclassical and
direct methods. This is described in §1.5.2.

The classical method was generalised from a different perspective by Bluman, Kumei
and Reid [1988]. Following the success of Bluman and Kumei [1989], who found more

symmetry reductions of the wave equation
2 (&) g — U = 0,

they proposed an algorithm for finding such new reductions, based on rewriting the
equation as a potential system. Applying the classical method to the potential system

gives rise to potential symmetries, which we describe in §1.5.1. More recently Bluman and
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Shtelen [1995] proposed a natural generalisation of this idea, using the nonclassical rather
than the classical method, which is described in the same subsection.

Another area of mathematics relevant to this thesis that also has its roots in the late
nineteenth century, is Painlevé analysis. In order to answer a problem posed by Picard
[1887], that of classifying certain types of second order ordinary differential equations
whose solutions have desirable singularity structure, Painlevé found it necessary to create
a method to analyse these singularity structures. This method is known as Painlevé’s
a-method. Equations whose solutions have such singularity structures are now said to
be of Painlevé-type, and experience dating back to Kowalevski [1889a,b] tells us that
often only equations of Painlevé-type may be solved explicitly. The determination of
whether equations are of Painlevé-type, without first knowing their solutions, has gained
considerable interest recently since their link with inverse scattering was proposed, via
the Painlevé conjecture (Ablowitz, Ramani and Segur [1978, 1980] and Hastings and
McLeod [1980]). An algorithm based on Kowalevski’s work, known as the ARS algorithm
(Ablowitz, Ramani and Segur [1980a]) to test ordinary differential equations, and an
extension by Weiss, Tabor and Carnevale [1983] to test partial differential equations have
been determined more recently. These are described, along with Painlevé’s a-method, in
§1.6.

Since the determining equations of many of the methods of symmetry reduction form
overdetermined systems, in §1.7 we describe the theory of differential Grobner bases,
which is well suited to dealing with such systems. Whilst algorithms to solve linear
overdetermined systems have been known for some time (e.g. Janet [1929]), it is only
recently that Mansfield and Fackerell [1992] have developed algorithms to cope with fully
nonlinear overdetermined systems. These algorithms have been implemented in the MAPLE
package diffgrob2, which we use throughout this thesis to great effect.

Another application of symbolic manipulation systems (such as MAPLE) is in the
generation of the determining equations of the classical and nonclassical methods. Since
the calculations can be lengthy, unmanageably so for large systems, and yet are entirely
algorithmic, they are ideally suited to such computer calculation. Whilst there are
many examples of packages written to produce the determining equations of the classical
method, few are written that cope with the requirements of the nonclassical method; an
excellent review article is given by Hereman [1994]. In §1.8 we describe the MACSYMA
package symmgrp .max which satisfies our needs of generating both classical and nonclassical
determining equations, and which has been extensively tested.

The remaining sections of this chapter are devoted to a lengthier and more detailed
exposition of the introduction thus far, so as to acclimatise the reader to the other chapters
of this thesis.

This thesis is split into two parts. Part One deals with scalar equations only, which
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depend on arbitrary parameters (functions and constants). Since we know the nonclassical
method is more general than the direct method for scalar equations, it is preferred in this
Part. The classical method is also applied and the results compared with those of the
nonclassical method. In Part Two systems of equations are considered, for three reasons.
Firstly, since the relationship between the nonclassical and direct methods has only been
proven for scalar equations, we apply both these methods as well as the classical method
to our systems to try to establish some relations. Secondly, from a potential symmetries
point of view, to see if we obtain the same reductions from considering a system rather
than its scalar counterpart, and thirdly to compare and contrast the differences in the
actual application of the methods. All the details, including some remarkable results, can
be found in the chapters themselves.

The thesis is concluded with a discussion on the extension of Olver’s proof (Olver
[1994]), on the relationship between the direct and nonclassical methods, to systems of
equations, some general remarks concerning the work in this thesis and also on possible

future work.

1.2 Classical Lie Method
Previous to the discoveries of Lie there only existed ad hoc procedures for integrating

nonlinear ordinary differential equations. For instance, consider the so-called homogeneous

equation : ’
dy z° 41
=, (1.5)
dzx Ty

It is well known that the transformation y(xz) = zv(z) leads to a “separation” of the

variables, i.e. substituting for y yields

which may be integrated with respect to z, and hence we find the general solution
y(z) = z(lnz? + ¢)*/?,

where ¢ is an arbitrary constant. Now consider the transformation z* = oz, y* = ay for

some constant «. Substituting into equation (1.5) gives

dy* ¥ g2

* )

da* Ty
ie. y*(z*) satisfies the same equation as y(z). The transformation z* = az, y* = ay is

said to leave (1.5) invariant, and v = y/x is an invariant of the transformation since

v(z*,y*) = P P v(z,y). (1.6)

T* (0% T
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The theory that Lie proposed, which crucially uses transformations that leave the
differential equation invariant, embraced all such ad hoc techniques. Not only did it
explain why such transformations work, but also showed how to find them. (At higher
order the use of these invariants reduces the order of the ordinary differential equation by
one.)

However our concern is with the theory of partial differential equations, to which Lie
extended his theory, in the shape of a systematic way of finding symmetry reductions.

Recall (1.1) and its travelling wave reduction. The transformation u* = u, 2* = z + «c,
t* =t + « leaves (1.1) invariant since u*(z*,t*) satisfies

Upe = Ubepe — u* (1 —u*)2,
and the invariants of the transformation are w = «* = w and z = 2* — ¢t* = z — ¢t. By
writing w as a function of z, we find the travelling wave reduction of (1.1).

Lie’s method, the classical method of this thesis, is well known today and has lent itself
to many applications, not just finding symmetry reductions. As well as those mentioned
in §1.1, one is able to derive new solutions from old ones, to linearise partial differential
equations (see §1.5.1), to convert boundary value problems to initial value problems (see
Rogers and Ames [1989]), and the method provides a classification of differential equations
(see for instance Chapters Two through Four). For other applications and more references
see Clarkson [1995].

The aim of the remainder of this section is to provide the ideas behind the classical
method, the notation which is used today and the algorithm itself. This is then illustrated
in detail with an example, and we end with some remarks. We note that the classical
method has been described by many authors, for instance Bluman and Cole [1974], Bluman
and Kumei [1989], Hill [1992], Olver [1993], Ovsiannikov [1982], Stephani [1989], who all
give more detailed accounts. It is because of this that detail is kept to a minimum in this

explanation, however we make the following remark.

Remark 1.2(i). It is assumed that the equations under consideration are smooth functions
of all their arguments and that the system comprising of these equations is of maximal
rank, and is locally solvable. (For definitions of these properties and examples of their

importance see Olver [1993].)

1.2.1 Symmetry Groups and Prolongation.

The principle idea in the classical method is to find the symmetry group of a system of

partial differential equations, which we define as

Definition 1.2.1. A symmetry group, or symmetry of a system of partial differential
equations is a group of transformations which maps any solution to another solution of

the system.
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In this thesis we study a specific group of transformations, one parameter (local) Lie

groups of point transformations (and see Remark 1.2(iii) later).

Definition 1.2.2. A one-parameter (local) Lie group of point transformations is a trans-

formation of the form
2" = X{e. 4E), w* = Uz, w;e), (1.7)

where z = (z1,...,2,) € C” and v = (uy,...,uy) € C? are the independent and
dependent variables, and e is the (continuous) group parameter. The property of
associativity must hold, as well as
(i) the value € = 0 characterises the identity transformation,
(ii) the transformation is closed: if ** = X(x*,u*;d), u** = U(z*,u*;d) then
z** = X(z,u;0 +¢), u** =U(x,u;0 +¢) and in particular § = —¢ characterises

the inverse.

By expanding (1.7) in a Taylor series about ¢ = 0 we have

z* =x +eb(x,u) + O(e?), (1.81)

u* =u+ep(x,u) + 0(?), (1.8i1)

(because of property (i) above), where

_0Xx

oU
5(-’3,“) == _()? €:07

(l)((E,U) = g

7
e=0
are called the infinitesimals of the one-parameter Lie group of transformations. The
transformation (1.7) is said to be in global form, whereas (1.8) is said to be in infinitesimal
form. One of the fundamental theorems of Lie links these two forms: he proved that given

the infinitesimal form (1.8) one can reconstruct the global form (1.7) by integrating

dz* _ du” -
——= =g, ), — =¢(x",u’),
= —¢e ), =)
subject to the initial conditions * = x, uv* = w at ¢ = (0. This remarkable result

implies that all the information about the transformation (1.7) is embodied in (1.8) and
in particular in the infinitesimals (&, ¢).

We now introduce some notation which whilst lengthy will assist us in explaining the
classical method algorithm.

Associated with the group of transformations (1.8) is the operator

p 0 q ()
v=> gilmu)s— + > dilxu)5—, (1.9)
j=1 d-LJ ()llﬂ,‘

i=1

which is known as the infinitesimal generator or vector field of (1.8).
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The kth prolongation of this vector field is defined to be

q P 9
pr V_V+ZZ(/)J1]()UIH+Z Z J‘}]d—“r_

i=1 ;=1 i=1j1,j2=1 L2

q ‘
. +Z Z (leleJZ» Jk) _ , (110)

Ow; 54
=1 j1,g2, 0 dk =1 i
where we use the convention

0" u;
Uj 5, - sl = 2
WIpeede = By Oz, . .. Oy,

(1.11)

and the ¢7[J vizdr) e called the associated infinitesimals. These associated infinitesimals
arise from considering how the derivatives of w transform under (1.8). By repeated

application of the chain rule we find

J1,325-+20r r 2
Ui s Gy = Wisgrda-ede + eglitnind (g gy w4+ 0(?),

where qﬁj vizeendr) g defined recursively by

[JlaJ- vvvvvv )1—1] p ar
EISVERREV I (r)y — D¢; D¢ 0" u; 119
& (@,u,u™) = Dags;, [z: Dasg, / 005,085, « s« 08y, 08" (42

1

for r € {2,3,...,n} and

j1 D i 4 Df (’)’ll,i .
(bEJ ](m,u,u(l)) = (/) - Z <DT, ) (‘),I.]' (1'13)
= Ty,

The operator D, when applied to a function of the form F(x,u, u("), has the form

D 0 - ()u - ou o
D, =t 5 i N
= Dy duy i du Z Z 0z; Qg

.5':1 s=1j,=1

Olhis, ot oo 9
4 $,J1J2.--Jr 1.14
Z Z d%; s g .3 ( !

s=1 j1,j2seenrdr=1

(again invoking (1.11) for convenience) and is called the total derivative operator. We
should also mention that u(™ represents all the partial derivatives of the form (1.11) with

P ELL .nr @) t € {liasssPhl €41, ... r) a0d 7€ {1;:.. ;%)

1.2.2 Finding the infinitesimals.

Now we turn our attention to the system of equations we will be interested in, a system
of m equations

Az, u,u™) =0, (1.15)
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where A = (A1,As,...,A,,) of order n with p(> 2) independent and ¢ dependent
variables. If we apply the transformation (1.8) to system (1.15)* (i.e. to (1.15) with

our variables (z,u) replaced by (z*,u*)) we find by Taylor’s theorem
A ut,u'™) = Az, u,u™) + epr™v(A(z,u,u™)) + O(?),

and the need for the prolongation formula becomes apparent. We now appeal to the

following theorem (a proof of which may be found in e.g. Olver [1993])

Theorem 1.2.1. A one-parameter Lie group of transformations (1.8) with vector field

(1.9) is a symmetry group of the system (1.15) if and only if
pr™v(A(z, u,u™)) =0 whenever Az, u,ul™) = 0. (1.16)

Since the crux of the classical method is to find the symmetry group of a system of
equations, this theorem is precisely what we need. In fact (1.16) may be thought of as
the exact requirement of the classical method. We are now in a position to write down
the first part of the classical method as applied to (1.15) in an algorithmic form, which

we split into two main steps.

Step One: Generate the determining equations.

(a) Apply the nth prolongation to the system (1.15).

(b) Choose m derivatives of u from (1.15). These derivatives, which we denote v; for
1 =1,...,m, must be chosen so that no v; is a derivative of another. We must be able to
write (1.15) in the form

v; = Fj(x,w), 1= Lie s 5 T,

where w represents the remaining components of w("), and also be able to express any
derivative of a v; without having to reintroduce it, its derivatives or any of the other v; or
their derivatives. (It is often the case that choosing the highest derivative terms of (1.15)
by some compatible ordering (see §1.7) will result in an acceptable set of v;.)

(¢) Use the fact that u must satisfy (1.15) (by Theorem 1.2.1) to remove the v; and
their derivatives from the result of (a).

(d) Equate the coefficients of like derivatives of u to zero (since the expression must
hold for all solutions of w, the partial derivatives of u must be independent, except
for the conditions imposed by the given system). The equations thus found, which
will form a linear, overdetermined, homogeneous system of partial differential equations
with dependent variables (£, ¢) and independent variables (z,u), are what we call the
determining equations.

As one can imagine by the (slightly horrendous looking) formulae, the size of the
calculations increase as p, ¢ and particularly n increase. However, since this step is entirely

algorithmic it is ideally suited to symbolic manipulation programs, and indeed many have
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been developed. A survey of the packages available is given by Hereman [1994], and we
describe in some detail in §1.8 the package symmgrp.max, written by Champagne, Hereman

and Winternitz [1991].

Step Two: Solve the determining equations.

The determining equations may usually be solved using only elementary methods,
though their size, particularly for larger systems, can become an obstacle.

We describe in §1.7 the MAPLE package diffgrob2 which was written by Mansfield
[1993] to cope with such overdetermined systems, by reducing them to a simpler system
(see §1.7 for a more precise summary of diffgrob2’s capabilities). Whilst the determining
equations are linear in (€, @), if the original system contains arbitrary functions of (z,u)
then the determining equations are effectively nonlinear (see for instance Chapter Two).
This makes the solution of the determining equations more difficult, though diffgrob?2 is

still able to cope with such difficulties.

1.2.3 Classical symmetry reductions.

In order to find our symmetry reductions once we have found the symmetry group, we
want to know the invariants of our transformation and in particular solutions u = @ (x)
of (1.15) that are invariant (called invariant solutions). If we recall (1.6) we described
v as an nvariant of the transformation z* = oz, y* = ay since v(z*,y*) = v(z,y).
To generalise this we say a function F'(x,u) is invariant under the transformation (1.8)
if F(z*,u*) = F(x,u). A necessary and sufficient condition for F' to be an invariant
function of (1.8) is

v(F(xz,u)) =0.
where v is the operator (1.9). The following theorem holds

Theorem 1.2.2. Consider the set o of solutions of (1.15)
o= {(z,u) : O(z) —u = 0}.

A one-parameter Lie group of transformations (1.8), which is a symmetry group of (1.15),

with vector field (1.9) leaves o invariant if and only if
v(O(xz) —u) =0 whenever O(xr) —u=0.

From this we can construct the invariant surface conditions, ¢ = (1,2, ...,1,)

where

P
he =Y G ulue, — s(mu) =0, s=1,2...,4q, (1.17)
=1
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which as quasilinear first order partial differential equations may be solved via the method

of characteristics, i.e. we solve

dﬂ _dzy dz, duy  dup B duy,
&1 €2 €p ) ) bq ’

to give p + ¢ — 1 integral surfaces (or invariants) of the form

Aplm,w) = g, r=12,...,p+q—1,

for constants ¢,. (These are invariants of the symmetry group of (1.15) as v(A, (z,u)) = 0.)

We now choose ¢ of these invariants to be the new dependent symmetry variables

U= H(z,u), (1.18)
and the remaining p — 1 to be the new independent symmetry variables

z=2Z(xz,u). (1.19)

By design (1.18) may be solved for w using the implicit function theorem, to obtain the

general solution of (1.17) in the form

u=H(U(z),x). (1.20)
Substituting (1.20) into (1.15) one obtains the symmetry system

Az, U, U™) =0, (1.21)
which only depends on the new p + ¢ — 1 symmetry variables. We conclude that the final
step is

Step Three: Solve the invariant surface conditions to find the symmetry reduction.

We solve the invariant surface condition by the method of characteristics (though note
Remark 1.2(iv) at the end of this section) to find the new symmetry variables (z,U), and
hence the symmetry system (1.21) by the procedures outlined above. We say that u given
by (1.20), where z is given by (1.19), and U satisfies (1.21) is a symmetry reduction of
system (1.15).

Example 1.2.1. To see the classical method put into practice, consider equation (1.1),
A= up—ug +u(l—u)2=0.

Our variables are = (z,t) and w = u and we construct the one-parameter Lie group of
transformations given by
T* =z + eé(z,t,u) + O(e?), (1.221)
t* =t +er(z,t,u) + O(e?), (1.22ii)

u* =u+ep(z, t,u) + O(e?), (1.22iii)
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with vector field

v—§—+'r— (/)

Step One
(a) We apply the second prolongation

0 (9 d 0
(2)y = ma_Y 1,29 2,2 9
prov=v d) du. T ¢ + ¢ Olgy 3 Oy TP Ougy’
to A to yield
prAv(A) = (1 — 4u + 3u?) + ¢l — g+, (1.23)

Hence we need to know the associated infinitesimals ¢!? and ¢["1. From (1.13) we have

(/)[1] =D, — (Dp&)uy — (Dy7)uy,

= ¢r i (/)uua: - (5:1: + fuum)“m - (Tu: <t 7‘,“,11,;,7)111,5, (124)

and similarly

(/5[2] = (bt =t (/511,/“% - (51‘ Ex fu'll/t)um - (Tt = 7-11,’“'1‘,)1“‘1‘,- (125)

We then find ¢ using the recursion formula (1.12), and (1.24) which yields

PP =D, ol — (D, &) ugy — (DuT)tig,
:(/)'r:r + (2¢1u - {.'Ita:)ugz: — Tzt + (¢uu 26J u) 27—’ uUzUt — fuuui

= Tuuu Ut + (Pu — 285 ) Ugw — 2Tplyr — FEyUalsy — TuUtlpe — 2Ty UglUyg, (1.26)

after collecting terms, and hence we have pr®)v(A) from (1.23), (1.25) and (1.26).

(b) For this and most scalar equations the choice of derivative, v;, to substitute back
for is quite simple: either u,, or u; may be chosen here. We choose u,,, simply because
there are no differential consequences of it in (1.23) so no further differentiation is required;

hence we have

Uy = Up + u(l — '11,)2. (1.27)
(¢) Replacing occurrences of u,, in (1.23) with (1.27) yields
[p(1 — du + 3u®) + ¢ — buw + (285 — Pu)u(l — u)?]

+ [E.’I::l: - 2(15:1:'11, - ft e 35'11,“(1 - “’)2]“’1’ + [T:I:;lr =Ty =+ 25:1: =t Tu,“(l - ’“’)Q]Ut + [2£IE’U,

— Pyt + [2Tpn + 28, usus + Eaatl® + Taumiuy + PTate: + ATyUs g = 0. (1.28)

(d) By setting like derivatives of u to zero we obtain a system of nine linear,

overdetermined partial differential equations with (¢, 7,¢) as the dependent and (z,t,u)
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the independent variables:

(T T =05 (1.29i1)
U 7. =0, (1.29ii)
uuy : T = 0, (1.29iii)
ud En =10, (1.29iv)
Uy iy : Teuw +&u =0, (1.29v)
us 280 — Puu =0, (1.29vi)
Uy : Toz — Tt + 265 + Tuu(l —u)? = 0, (1.29vii)
Uy brz — 2000 — & + 36,u(l —u)? =0, (1.29viii)
1= H(1 — du + 3u?) + ¢y — s + (26, — du)u(l — w)> =0. (1.29ix)
Step Two

Equations (1.291) and (1.29ii) tell us that 7 = 2f(¢), an arbitrary function of ¢ only.
Equation (1.29vii) gives an expression for £, which we may integ;‘ate with respect to x,
and use the fact that (1.29v) now tells us &, = 0 to yield £ = %.’L‘ + g(t), where g(t) is
another arbitrary function of t. Since £, = 0, equation (1.29vi() ltells us ¢y, = 0 so we
write ¢ = h(z,t)u + k(x,t). The only equations that are not satisfied now are (1.29viii)
and (1.29ix). Equation (1.29viii) yields a single equation, whereas equation (1.29ix) is now
a polynomial in u of degree three, and thus gives four equations, since the coefficients of

powers of u must be zero. We have the system

d?f dg
2h, + — — =0 1.301
M TR T (1.301)
df
Bt d_: —0, (1.30i)
d
3k — 2h — 4d—f =0, (1.301ii)
df .
ht — hge — 4k +2— =0, (1.30iv)
dt
k =+ kt - k:n:l‘, = 0. (130V)
Equation (1.30ii) gives us h, = 0 (as well as an expression for h) and hence equating
12 d
powers of z to zero in (1.30i) yields (ITZ = Tg = 0. Equation (1.30iii) gives an expression
dt
for k, which when substituted into (1.30iv) together with our expression for h, simply
1f 1 1
leaves % = 0. Notice then that h = k& = 0, and since (—% — (d(: = 0, both £ and 7 are
dt dt

constant. In summary, the general solution of (1.29) is
& =cq, T = Cy, ¢ =0, (1.31)

where ¢, ¢o are arbitrary constants.
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Step Three
To find the symmetry reduction associated with (1.31) we must solve the invariant
surface condition
C1Uy + couy = 0, (1.92)

or equivalently
dz dt  du

C1 Co 0 '
Note that if ¢; = c; =0, i.e. £ =7 = ¢ = 0 the invariant surface condition gives us no

information. By solving (1.32) we have the following (classical) travelling wave reduction

Reduction 1.2.1.
wlx, i) =U(z), Z = cox — c1t,
where U|(z) satisfies

A= AU +qU -UQ-U)2=0.
We conclude this section with the following three remarks.

Remark 1.2(ii). It is possible to set ¢; = 0 (with ¢; # 0) and ¢; = 0 (with
co # 0) in Reduction 1.2.1 to give spatially independent and time independent reductions
respectively. However in this thesis, when we are faced with the infinitesimals (1.31), we
will assume ¢ # 0 (and then set ¢; = 1 without loss of generality since we can divide
(1.32) through by c2 and rename ¢; = ¢1¢2) to give the (strict) travelling wave reduction

(whilst implicitly assuming that both these special reductions are possible).

Remark 1.2(iii). We have seen how point transformations are characterised by vector
fields of the form (1.9). However point transformations are not the only types of local
transformations. For a local transformation in general (£, ¢) may depend on derivatives of
w. In particular for a contact transformation, ¢ = 1 and (€, ¢) depend on (z,u, u")), and
a local transformation which is neither a point transformation nor a contact transformation
is called a Lie-Backlund transformation (or generalised transformation). A mnonlocal
transformation is a continuous transformation which is not characterised by such vector

fields; for instance it might contain integrals of w.

Remark 1.2(iv). Whilst Step Three of the classical method advocates solving the
invariant surface conditions by the method of characteristics to give the new dependent
and independent symmetry variables, these may only be solved in principle. Also, if
the infinitesimals £ depend on w then it may be the case that the new independent
symmetry variables also depend on w and thus give implicit reductions, which are more
difficult to interpret. However to find symmetry reductions one is simply solving the
system comprising of the original system (1.15) and the invariant surface conditions

simultaneously. In particular (see Bluman and Kumei [1989]) one could use the invariant
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surface conditions to remove all derivatives of z; say (we can assume &; # 0 without loss of
generality), from (1.15) to create a system of m partial differential equations in only p — 1
independent variables (since z; only appears as a parameter). If this reduced system may
now be solved, the invariant surface conditions then give the functional dependence of z,.
This approach thus gives an alternative to the method of characteristics approach, so may
combat the difficulties described above. It is particularly useful for systems with p = 2
independent variables since this procedure then yields a system of ordinary differential

equations.

1.3 Nonclassical Method
Perhaps the easiest way to demonstrate the nonclassical methodT is to point out a slight
anomaly in the classical method. In Step One (d) of the classical method one equates the

coefficients of like derivatives of v in
pr(”)V(A((L‘,’U,,U(l”)))|A:0 = ()7 (133)

(cf. (1.28)) to zero (i.e. after removing the dependencies of u imposed by the given system)
since one assumes that the derivatives of u left are independent. Later, in Step Three,

one must solve the invariant surface conditions which are of the form

P
Py = Z{i(a),u)u&wi — gy(@,u) =0, =1, 2000 (1.17)
=1
Clearly the derivatives us,, for s = 1,2,...,q are related, by the invariant surface

conditions so our assumption that they are independent is naive. Bluman and Cole [1969]
realised that to find symmetry reductions one is only interested in solutions that satisfy
the invariant surface conditions. By including the relations that the invariant surface
conditions impose on the derivatives in (1.33), and only then setting the coefficients of like

derivatives of u to zero, one obtains the nonclassical determining equations.

Example 1.3.1. Consider again equation (1.1). After Step One (c¢) of the classical

method, which has seen the removal of u,, using (1.27) we have

[H(1 — du + 3u?) + by — Pux + (262 — du)u(l — u)?]
I [f.’li.’l? - 2(/):1711, - gt ~+ 3571,“(1 - “‘)2]“1 + [T:I::I' — T + 251 - 'T“’U,(]. - U)Q]“’t 4 [2£Lu

= </)7,,“,]ui + (2700 + 2&, Jugus + f,,mu.i + Tu“'u,iut + 2T Ugp + 2Ty U Ugs = O. (1.28)

T The nonclassical method is sometimes referred to as the “method of partial symmetries
of the first type” (Vorob’ev [1991]) or the “method of conditional symmetries” (Levi and

Winternitz [1989])
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There are p cases to consider (see later) and when p = 2 these amount to 7 being zero or
non-zero. Firstly we assume 7 # 0, and set 7 = 1 without loss of generality (since we may
divide the invariant surface condition u, +7u; —¢ = 0 by 7 and rename &, ¢ accordingly).

Hence the invariant surface condition gives
Uy = (/) - E“’.’IH (1'54)
with which we replace occurrences of u; (and derivatives of u; if necessary) in (1.28) to
yield
[p(1 — 4u + 3u®) + ¢t — boa + (26 — Pu)u(l — u)* + 26,¢] + [Exr — 260000 — &
-+ 3§uu(1 e “‘)2 i 266:1: + 2£u¢]“’r =} [2£IITU. = (/)'u,'u. = 2&511,]’“43-, I £uuu_73; = 0 (135)

Now setting the coefficients of different powers of u, to zero gives us the nonclassical

determining equations in the generic (7 # 0) case

§uu = 0, (1.361)
28au — Puu — 268w =0, (1.36ii)
Eon — 2bou — & + 3Euul(l — u)? —28&, + 26,0 =0, (1.36iii)
G(1 — du + 3u®) + ¢t — oz + (262 — Pu)u(l — u)® + 26,9 = 0. (1.36iv)

Secondly, if 7 = 0, we may set £ = 1 without loss of generality so that the invariant surface
condition yields

Uy = . (1.37)

Replacing occurrences of u, in (1.28) with (1.37) yields a single equation for ¢(z, ¢, u)
P(1 — 3u)(1 — u) + ¢ — oo — puts(l — 1) — 20y, — P> Py, = 0. (1.38)

We leave the solution of these determining equations for later in the section.

A slightly different interpretation of the nonclassical method is given by Levi and
Winternitz [1989] and Olver and Rosenau [1986], who append the invariant surface
conditions to the system (1.15) under consideration and apply the classical method to
this enlarged system. Crucially it can be shown that (see for instance Clarkson and

Mansfield [1994c])
pr(l)v(zp(m,u,u(l))) =0 whenever P =0,

i.e. this condition is identically satisfied for all solutions of the invariant surface conditions.
(Further one can show that the relevant prolongation of any derivative of 4 also vanishes
on the solution set of 1.) Hence for the nonclassical method approached this way, one is
really requiring

I)I'(")V(A(w,U,U('”')))|A:0,r(/):() =(); (139)
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thus this approach is equivalent to that of Bluman and Cole [1969] outlined above. Indeed
(1.39) gives a more precise statement of the nonclassical method with regards to how one

generates the determining equations.

1.3.1 The Clarkson-Mansfield algorithm for finding nonclassical determining

equations I.

Since one must now not only choose derivatives of (1.15) to substitute back for (cf. Step
One (b) of the classical method), but also use the invariant surface conditions, care must

be taken in the process. As an example, consider the following due to Clarkson and

Mansfield [1994c].

Example 1.3.2. Consider the equation
AE Utt — Ugy = 07

in the generic (7 = 1) case of the nonclassical method. Applying the second prolongation

yields

(15[2’2] - (b[l’l] = (/):1':1', + (2¢:I:u - £.’I}.’L‘)U‘.’IJ + ((/)’u.u - 2£ru)u3 - fuuui
+ ((/)u - 25:1:)”171 - 361/“’:1:“:1::1: - [(/)tt + 2(/)tuut - fttuz 'Jf' (/)‘u,'u,'u'?

2
- 2£tuut“:n - gfu.u'”’t Uy + (/)’u.'“‘tt - 2£tu$t - fuu:r“tt - 25’11,“%“11‘,]- (140)

Now recall that the invariant surface condition is
Y= Eugt+u—¢p=0.

If one tries to remove ¢ derivatives using the invariant surface condition then use (1.40) to
remove u,, terms, uy terms are introduced back into the equation. Eliminating the
term (with the invariant surface condition) introduces a u,; term, whose removal again
introduces a u,, term. Clearly we have the beginnings of an infinite loop, and a slightly
different choice of derivatives for substitution is required. However the presence of this
phenomena does not bode well for symbolic manipulation packages. In fact it prompted
Clarkson and Mansfield [1994c] to adapt the way the nonclassical method could be applied
again, to make it more amenable to computer calculation.

For our system (1.15), with p independent variables there are p cases to consider: for
1 < k < p we successively set { = 1 and x4 = ... = &, = 0. The algorithm in the kth

case reads

Step One:
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Eliminate all the differential consequences of wu,j for s = 1,2,...,¢ from (1.15) using
the invariant surface conditions. Note that since &, = 1 the invariant surface conditions

may be written in the form

k—1
Ug o = 1Ps — g €y, for s=1,2,...,q.

i=1

Step Two:
Apply the classical method to this new system (in which there are really p — 1

independent variables since zj; appears only as a parameter).

Example 1.3.3. To see this alternative algorithm of Clarkson and Mansfield [1994¢| put

into practice, consider again our prototypic equation (1.1)
A=y — gy +u(l —u)2 =0,
together with the invariant surface condition given by
Y= Cuz+Tur— ¢ =0.

For the sake of comparison with equations (1.38) and (1.36) respectively, we only generate
the determining equations using this algorithm. After this all the different view points
coincide — we must solve the determining equations, then solve the invariant surface

conditions.
Case One: £ =1, 7 =0.
Step One:

Remove u,, from (1.1) using u, = ¢, i.e.

B = Ut — [d):n + (/)u,(/)] + “’(1 - ,U,)Z =0. (141)

Step Two:

Applying the classical method, one first takes the first prolongation of (1.41):

priv(A) =g — [$re + 20dun + Pathu + $B7 + ¢ hun] + P(1 — u)(1 — w),
=t + Puus — [(/):n:z: + 2¢¢u + Pppy + ¢¢72L + (ﬁ2¢uu] + (/)(1 - 3“‘)(1 - “')- (1-42)

The only derivative term we can possibly choose from (1.41) is u;, and solving (1.41)
accordingly yields
U = g + Pup — u(l —u)?. (1.43)

Removing the u; derivative from (1.42) using (1.43) then yields

bt — “’(1 - “)2(/51:, — P — B, — ¢2§/)““ T (/j)(l - 3’“’)(1 - “) =0,
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which is the same as (1.38).
Case Two: T = 1.

Step One:

Remove u; from (1.1) using u; = ¢ — Euy, i.e.
A= [p—Euy] — uge +u(l —u)? =0 (1.44)

Step Two:
Firstly we take the second prolongation of (1.44),

prOv(A) =[edy + by + pbu — E€atin — Epug — €, — EHM] — g 1 (1 — Bu)(1 — w),
=[Es + 1 + Pbu — Ebutin — Ertin — PEs — (P + Putls — Extiy — Eyud)]
— [Paz + 2ou — Eua)tie + (Bun — 2pu)ul — Euutsd + (P — 264)Uag
— 3 Uatas] + (1 — 3u)(1 — u). (1.45)

We again have only one acceptable choice of derivative term: from (1.44) we choose u,;
to give

Ugy = ¢ — Eug + u(l — u)?, (1.46)

and replacing occurrences of u,, in (1.45) using (1.46) yields

[(1 — 4u + 3u®) + ¢t — puo + (262 — u)u(l — w)* + 260] + [€ow — 2h0u — &
=+ 35'“,'11:(1 - 71:)2 - 2651 =t 251: (/)]U'm' -+ [2£z71, - (/)'11,71, - 26571,]“3; + fu,’u.uf; = Oa (147)

which is the same as (1.35) and hence the determining equations are the same as (1.36).

1.3.2 Nonclassical symmetry reductions.

Once the determining equations of the nonclassical method have been generated, as implied
in Step Two of the algorithm due to Clarkson and Mansfield above, we solve them and find
our nonclassical symmetry reductions in exactly the same way as in the classical method.
(The symmetry variables are still of the form (1.20), (1.19) and the symmetry system is
still of the form (1.21).) However the main difference between the methods is the fact that
the determining equations in the nonclassical method are now nonlinear. Another, less
significant observation is that there are fewer equations to solve.

Whilst they are nonlinear, they are in general overdetermined, which helps greatly in
their solution. (The main exception is the “7 = 0” case, which may only provide a single
equation (cf. (1.38)) which is often more complex than the original equation. However
one may be able to find simple e.g. polynomial solutions of this equation, which often

lead to more interesting reductions and exact solutions.) The MAPLE package diffgrob2
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of Mansfield [1993] is now particularly helpful, if not essential certainly when considering
large systems of determining equations. For nonlinear systems it is often more useful to
use diffgrob2 interactively, whilst following the algorithms given in its accompanying
manual (which are described in §1.7).

For our simple, second order equation (1.1) however the solution of the determining
equations can still be carried out manually. First we proceed with the solution of (1.36).
Equations (1.361) and (1.36ii) give

§= [z, t)u+g(z, 1),
¢ = =21+ (fo — fo)u® + h(z, t)u + k(z, 1),
where f, g, h and k are arbitrary functions of (z,). Substituting these expressions for

¢, ¢ into (1.36iii) gives a polynomial in u of degree three, whose coefficients must be zero.

This gives a further four equations

F0—2f%) =0, (1.48i)
3f +9f% =0, (1.48ii)
2fg:. +3f +2fh =0, (1.48iii)
9zz — 2hg — gy — 290 + 2fk = 0. (1.48iv)

The calculation must now be split into two, when f = 0 and when 9 — 22 = 0.
(¢) f = 0. Substituting & = g(z,t), ¢ = h(x,t)u + k(z,t) into (1.36iv) yields four

more equations after taking coefficients of powers of u to be zero,

h+g, =0, (1.491)
3k — 2h — 4g, =0, (1.49i1)
h — 4k + 29, + 2g.h = 0, (1.49iii)
k+ gt — goz + 29.k = 0. (1.49iv)

Equations (1.491) and (1.49ii) give h and then & as a multiple of g,, so (1.49iii) reads
g: (1 +3¢g;) =0. If g, = —%, equation (1.49iv) gives a contradiction, whilst if g, = 0 we

find g; = 0 and all the equations are satisfied. We have found the classical infinitesimals
E=e1, ¢p=0.

(e0)9 —2f2 = 0.  From (1.48ii) we have ¢ = —3/f, from (1.48iii) we then have
h = —2 and finally from (1.48iv) we find k = 0. We find that equation (1.36iv) is satisfied

without placing further conditions on &, ¢, so summarising we have
E= :t%\/i('du —2), ¢ =—3u(l —u)? (1.50)

We have already seen what the classical travelling wave reduction is like (cf. reduction

1.2.1), so we concentrate on the reduction that the infinitesimals (1.50) will give. Solving
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the invariant surface condition by the method of characteristics gives the new symmetry

variables as

1
U=2lnu—21n(u—1)+m:}2% 2z, z=Inu—1In(u—1) — = +%t,
from which we have
6+2U(z) £3vV2z+6t—4 1
w(z, ) = ek By O Z, z(z,t) =Inu—In(u — 1) — + 3¢
2U (z) + 3v2x + 6t — 4z u—1
(1.51i,i1)

We find wu; by differentiating (1.51i) with respect to ¢, and then solving the expression
found (algebraically) for u;. Similarly for u,, and wu,, is found by differentiating our
expression for u, by x and then eliminating new occurrences of u,. Having found the
necessary derivatives we substitute them into (1.1) and by replacing occurrences of ¢ using
(1.51i) we yield an ordinary differential equation. We have found the following (strictly

nonclassical) reduction,
Reduction 1.3.1.  wu(xz,t) is given by (1.51) where U(z) satisfies
9U" — (U +3U" +2 = 0. (1.52)

This has two simple solutions. If U’ = 2 then U(z) = 2z + a;, where a; is an arbitrary

constant. This leads to the special solution

u(z.) 6 +3v2x + 6t + 2a; (1.53)
u(r,t) = ) )
+3v2 2z + 6t + 2a,

which is in fact a special case of the travelling wave reduction 1.2.1. If U’ = —1 then
U(z) = —z + 3aq, where ay is an arbitrary constant. Then (1.51) may be solved to give

the following expression for w,
6ay — 3t £3v2z —6Inu+61ln(u—1) =0,

which upon exponentiating and rearranging yields

1

) e I VEa + O

(1.54)

where az = e~ 2. This is another special case of the travelling wave reduction 1.2.1. In

the general case we can easily integrate equation (1.52) once to give

In(U'—2) —In(U' +1) +

UI+1:Z+C()7

where ¢( is an arbitrary constant, but further integration is difficult. However even if it

were possible and an explicit expression for U(z) could be found, we would still only have
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an implicit expression from (1.51) for u(z,¢) which it may not be possible to solve for
an explicit expression. We therefore turn to Remark 1.2(iv) for an alternative procedure.

The invariant surface condition reads

:t%\/i (Bu — 2)uy +us + Su(l —u)* =0, (1.55)
which may be used to eliminate u; in (1.1) thus

Ugy %\/5(3'1/, —2u, + %u(l —u)? = 0.

This is a member of the Riccati-chain (cf. Ames [1968], Nucci [1992]) which may be

linearised by the transformation v = +v/2 (Inn), to yield
27/mzz + 2\/57]1:1‘ + Ny = 0.

This equation is easily solved, and requiring that (1.55) also holds yields the following

exact solution of (1.1)

co(z + 24 ﬂ) + c3

u(z,t) = )
(%) crexp{3(FV2z —t)} + co(£2 + V21t) + c3

(1.56)

where ¢y, ¢ and c¢3 are arbitrary constants. This exact solution cannot be found
from the classical travelling wave reduction 1.2.1 since it cannot be written in the form
u(z,t) = U(z) for a single independent variable z (we would require u(z,t) = U(z1, 22)

for z; = +2 4+ V2t and 2, :¢\/§:L'—t).

To justify the comments made above, that in the 7 = 0 case simple solutions of (1.38)

lead to more interesting solutions of (1.1), we look for solutions of (1.38) in the form
¢ = au® + bu +c, (1.57)

for a, b and ¢ arbitrary constants. Note that it is easy to show that no solutions that are
polynomial in u of degree three or above exist for (1.38), though it may well be the case
that other solutions to (1.38) do exist. Also we note that for an autonomous equation
like (1.1) we will always find the (rather trivial) spatially independent wave reduction,
i.e. u, = 0, by realising that ¢ = 0 is a solution of (1.38). Substituting (1.57) into (1.38)

yields, after equating coefficients of powers of u to zero, the following (algebraic) equations

a(2a® — 1) = 0, (1.581)
b(2a® —1Lj=0, (1.58ii)
4a’c — 3¢+ 2ab® +2b+a = 0, (1.58iii)
c(ab+1) =0, (1.58iv)
¢(2ac—1) =0. (1.58v)
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From (1.581) we see that either @ = 0 or 2a®> — 1 = 0. If a = 0 then (1.58ii) implies b = 0
and then ¢ = 0 also (which gives the spatially independent wave reduction mentioned
above). If 2a* —1 = 0 then from (1.58v) we have that either ¢ = 0 or 2ac—1 = 0. If ¢ = 0
then (1.58iii) gives b = —1/2a, whilst if 2ac — 1 = 0, then (1.58iv) gives b = —1/a and we

find (1.58iii) is identically satisfied. Thus we have two separate solutions for ¢.

(i) ¢ = j:%\/iu,(u —1). Solving the invariant surface condition (1.37) and
substituting into (1.1) gives the following reduction
Reduction 1.3.2.

1

,.’,',t = ’
wz,1) 1 —U(z)exp(£3v2z)

where U (z) satisfies 2U" — U = 0. This leads to the exact solution

1

ulz,t) = 1 —csexp{3(£v2z + 1)}’

where ¢4 is an arbitrary constant, which is equivalent to (1.54).

(i) ¢ = i%\/?(u — 1)2. For this solution of ¢ we have the following reduction

Reduction 1.3.3.
+v2z +U(z) — 2

u(z,t) = Z =1,
(%) +v2z + U(2)
where U(z) satisfies U' = —2. This gives the exact solution
+vV2x — 2t +c5 — 2
alm, 1) = ’

:f:\/i.’l:—?t"r-(;g,

where ¢ is an arbitrary constant, which is equivalent to (1.53).

Both of these exact solutions are special cases of both the 7 # 0 exact solution (1.56)
and the classical travelling wave reduction 1.2.1. However, as we will see in later chapters
of this thesis, in general the 7 = 0 reductions are distinct from both classical and 7 # 0
reductions. More generally, each of the p cases that one faces in the nonclassical method
are in general distinct from one another.

We conclude this section, which has seen a presentation of the nonclassical method

with examples, with three remarks.

Remark 1.3(i). That the nonclassical method is more general than the classical method is
plain to see in our example of (1.1). To see that this is always so recall that the classical

method may be described as finding solutions of (1.15) such that

priv(A(z, u, u™))| A, =0, (1.33)
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and the nonclassical method such that
prv(A(@, u,u™))| g oo = 0, (1.39)

for invariant surface conditions 4. If (1.39) holds then so does (1.33) so the nonclassical
method will always find the solutions that the classical method finds. However, if (1.33)
holds, (1.39) does not necessarily hold so there may be times when the classical method
will not find solutions that the nonclassical method finds. We use the word may, because
there are well known examples of when the classical and nonclassical methods yield the

same results. The celebrated Korteweg-de Vries (KdV) equation
U — 6UUy + Uggy = 07 (159)

is one such example.

Remark 1.3(ii). The transformation (1.8) with nonclassical infinitesimals no longer maps
solutions to solutions. In the notation of Olver and Rosenau [1987] such transformations

form weak symmetry groups (see §1.5.2).

Remark 1.3(iii). One of the conditions for the classical method to be applied successfully
to a system (1.15) (cf. Remark 1.2(i)) is that the system is locally solvable (see Olver
[1993] for a definition). We simply state here that a system may not be locally solvable
if it has compatibility conditions (see §1.7) and that by including the invariant surface
conditions in the system (as one does in the nonclassical method) in general the new system
will have compatibility conditions. This is another reason why Clarkson and Mansfield
[1994c] adapted the nonclassical method algorithm, and it deals with such difficulties.
In fact a truer statement of their algorithm (which we will discuss in §1.7.6 after some
theory is introduced) copes with systems that are not locally solvable, by incorporating

the compatibility conditions into the calculation.

1.4 Direct Method
The direct method of Clarkson and Kruskal [1989] evolved from their desire to systemati-

cally find known reductions of the Boussinesq equation
Ugt + %(uz)xz + Ugpoer = Ua (1()0)

that could not be found using the classical method of Lie. In particular many authors
(Nishitani and Tajiri [1982], Olver and Rosenau [1987], Quispel, Nijhoff and Capel [1982],
Rosenau and Schwarzmeier [1986]) noted that (1.60) possesses the accelerating wave
reduction

u(z,t) = U(z) — 4c3t2, z =+ c1t?,
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where U(z) satisfies

U" +UU' +2c,U = 8cfz+cz,

where c¢;, ¢y are arbitrary constants, but only by apparently ad hoc techniques. The
classical method finds two canonical reductions, whereas the direct method provided six,
including the classical reductions and the accelerating wave reduction above (see Chapter
Two).

The direct method for an equation like (1.60), in one dependent and two independent
variables, can be stated quite simply: seek a solution of such a partial differential equation

in the form

e, t) = Pl ., U(2)), (Fy #0), (1.61)

where z = z(z,t), and require that U(z) satisfies an ordinary differential equation.
This imposes conditions on F(z,t,U) and z(z,t) and their derivatives in the form of
an overdetermined system of equations, whose solution yields the desired reduction. In
practice there are a number of subtleties to the method which make it manageable, which

are demonstrated best with an example.

Example 1.4.1. Consider equation (1.1), and assume its solution has the form (1.61).

On substituting into (1.1) we have
FUZ.gU” +FUUZ§(UI)2 + [QFI‘UZT +FUZ1L'J.' - FUZf,]UI + [Frx - Ft +F(1 = F)z] — 0, (1()2)

which we require to be an ordinary differential equation. For (1.62) to be an ordinary
differential equation, the ratios of coefficients of different derivatives of U must be functions
of z,U. As with the nonclassical method there are two cases to consider, namely z, # 0
and z, = 0. Assume first that z, # 0, and by (1.61) we have Fiy # 0 (so that the ansatz
depends explicitly on U). The ratio of coefficients of U and (U’)? is

Fyv  Tyu(z,U)
— 1.
FU FU(Z,U) ’ ( 63)

where the right hand side simply denotes our intention for ratios to be functions of z, U;

['(z,U) is to be determined. Integrating (1.63) twice with respect to U yields
F(z,t,U(z)) = A(z,t)['(2,U) + B(z, 1),

for some arbitrary functions of integration A, B. In order to fix the ordinary differential
equation that we will generate, we set I'(z,U) = U(z) without loss of generality, since we
could transform back via U — ['"1(z,U). This is simply the most convenient form, but if
we so desired we could instead let I'(z,U) = U?(z) or any other function of U(z). With

F linear in U, (1.62) now has the form

AZ2U" + [Azgy + 24,2, — Az)U' + APU® + 3BA* — 2A%)U?
+ [Age — As + A—4AB + 3AB?|U + [Bye — B + B(1— B)?] =0.  (1.64)
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We use the coefficient of U”, which we know to be non-zero, to be the normalising
coefficient, so that all other coefficients should look like Az2T';(z) for I';(z) to be

determined. Hence the determining equations for the direct method in this case are

AZT1(2) = Azgg + 2452, — Az, (1.651)
AZ’Ty(2) = A3, (1.65ii)
Az T5(z) =3BA® — 242, (1.65iii)
AZ’Ty(2) = Ay — Ay + A — 4AB + 3AB?, (1.65iv)
Az°Ts(2) = Byy — By + B(1 — B)?, (1.65v)

where T'y1(z),...,I'5(2) are to be determined. Before we proceed further with the
calculation, we make the following remark, which describes the freedoms in the method,

which make it manageable.

Remark 1.4(i). If the ansatz (1.61) may be simplified to a linear one, namely
u(z,t) = A(z,t)U(z) + B(z,t), (1.66)

there are three freedoms which can and should be applied which assist greatly in keeping
the calculations manageable. These may each be applied once without loss of generality
during the calculation, though once the reduction has been finalised it may be possible to
apply them again a posterior: without loss of generality, which then constitutes a tidying
up process. The freedoms are

Freedom (a). If B(z,t) has the form B(z,t) = Bo(z,t) + A(z,t)Q(z), then we may set
Q(z) = 0 (by translating U(z) — U(z) — Q(z)).

Freedom (b). If A(x,t) has the form A(z,t) = Ag(x,t)Q(2), then we may set Q(z) =1
(by scaling U(z) — U(z)/Q(z))

Freedom (c). If z(z,t) is determined by an equation of the form Q(z) = zy(z,t), where
Q(2) is any invertible function, then we may take Q(z) = z (by substituting z — Q71(z)).

By rearranging (1.65ii) and taking square roots we have
A= 2T;%(2),

so by freedom (b) we may set F§/2(z) = 1 and therefore A(z,t) = z,. Now (1.65iii) yields,
after rearranging

B=1zT3(2) + 2,
and we may apply freedom (a) to set 's(z) = 0, hence B(z,t) = 2. Equation (1.65v)

yields
21/3
205 (2) = -,
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which we may integrate with respect to = to yield
Le(2) =z + o(t),

where I'g(z) = 3(T'5(2)/2)!/3. By freedom (c) we may set Ig(z) = z, hence z = z + o(t),
and ['5(z) = 2/27. Equation (1.651) now reads

do

Fl(z) = _Wﬁ

(1.67)

and since we know z is linear in z, I'; (2) must be constant: let I'y(z) = ¢;. Integrating
(1.67) yields o(t) = —c1t + 2. The only remaining equation, (1.65iv) now simply gives

I'4(z) = —3. To summarise we have the reduction
Reduction 1.4.1.
u(z,t) =U(z) + %, z(xz,t) = x — 1t + co,
where U(z) satisfies
U'+aU +U°-3U+ % =0.

If we so desired we could do some a posterior: tidying up, and we would realise this

reduction is really no different to the (classical) travelling wave reduction 1.2.1.

In the other canonical case, when 2z, = 0, we may set z = ¢ without loss of generality

(essentially by applying freedom (c)). Equation (1.62) now has the form
~FyU' +[Fpe — Fi + F(1 - F)?)] =0. (1.68)

As this equation gives only one (complicated) ratio, it is not possible to deduce the form of
F'. In such cases it is usual to assume F' has the linear form (1.66), where z = t. Freedoms
(a) and (b) still apply, and freedom (c) has already been used. Substituting the linear
ansatz into (1.68) yields the determining equations (taking the coefficient of U’ to be the

normalising coefficient)

AT (2) = A3, (1.69i)
ATy(z) = 3BA% — 242, (1.69ii)
AT3(z) = Apge — At + A — 4AB + 3AB?, (1.69iii)
ATy(z) = By, — B; + B(1 — B)?, (1.69iv)

where I'1(2),...,'4(z) are to be determined. Equation (1.69i) gives A = 1 after using
freedom (b), then from (1.69ii) we are able to find B = 0 after using freedom (a). Equations
(1.69ii1) and (1.69iv) now simply define I'3(z) = 1, I'4(z) = 0. We have found the (classical)

spatially independent wave reduction, which is a special case of reduction 1.2.1.
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The direct method was first applied to an equation with more than two independent
variables by Clarkson and Winternitz [1991] in their study of the Kadomtsev-Petviashvili

(KP) equation (Kadomtsev and Petviashvili [1970])
(s + Wiy + U)oy == By = D

They considered both reductions to partial differential equations (and then to ordinary
differential equations) and reductions directly to ordinary differential equations, though
commented that the two approaches were equivalent. Applying the direct method to a
partial differential equation with p independent variables may be summarised as looking

for solutions of the form

where @ = (@1,99,...,%p) and 2 = (z1{®),25(®), ..., % (@) for 1 < ¥ < p— 1, and
requiring that U satisfies a partial differential equation (or ordinary differential equation)
in 7 independent variables

Az, U,U™) =0.

The value of r is decided a priori, though of course one may apply the method p —1 times
to obtain all possible reductions.

The direct method has also been applied successtully to systems of equations (cf. (1.15)
for rn > 1) by many authors (e.g. Clarkson [1992], Clarkson and Hood [1993,1994], Hood

[1993], Lou [1992] and Lou and Ruan [1993]) who have considered ansitze of the form
ui(x) = Fy(x,U;(2)), AT T SR |

It may have been the case for the systems considered that these ansatze were sufficient,

but to be sure of finding all reductions one should use
(@) = Fi(x, U(2)), 1=1,2,....4,

for U = (U1,Us,...,U,). Examples of where this is necessary are given in Chapters Five
and Six. The investigations of these chapters suggest that the application of the direct
method to systems of equations is not as obvious as one might expect.

We note that, unlike for the classical and nonclassical methods, it is not clear how
to use the direct method on equations that contain arbitrary functions of the dependent

variables.
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1.5 Extensions and permutations of symmetry methods and their

comparison

1.5.1 Potential symmetries.

In §1.2 we considered only point transformations, i.e. those that depended on the
dependent and independent variables only, and hence found point symmetries of a system.
In Remark 1.2(iii) we suggested that other types of transformation exist, and in particular
we mentioned nonlocal transformations (which give rise to nonlocal symmetries).

Whilst there have been some heuristic approaches to finding nonlocal symmetries (cf.
Akhatov, Gazizov and Ibragimov [1991], Kapcov [1982], Konopelchenko and Mokhnachev
[1980], Pukhnachev [1987]), other algorithmic approaches have also been proposed.
Krasil’shchik and Vinogradov [1984] (see also Vinogradov and Krasil’shchik [1984],
Krasil’shchik and Vinogradov [1989]) provided a framework to find nonlocal symmetries,
but were unable to exhibit any non-trivial examples. However Bluman and Kumei [1987]

found nonlocal symmetries, and used them to find new solutions of the wave equation
A (Z) gy — Uy = 0.

Soon after this Bluman, Kumei and Reid [1988] gave an algorithmic method for finding
such nonlocal symmetries which had similarities with the work of Krasil’shchik and
Vinogradov. The nonlocal symmetries they found were later given the name potential
symmetries and a chapter of Bluman and Kumei [1989] is dedicated to them. Whilst
in this thesis we concentrate on finding more symmetry reductions through potential
symmetries, they may also be used to find mappings which linearise the original system
(cf. Bluman and Kumei [1989], Bluman [1993a,c]) or to derive conservation laws (cf. Anco
and Bluman [1996]).

The method to find potential symmetries for our system (1.15) with ¢ = m is as
follows:

Suppose that a partial differential equation of the system (1.15), without loss of

generality A,,, is a conservation law, so (1.15) is the system

Ai(z,u,u™)=0, i=12,...,m—1, (1.70a)
P

D Dy Aj(e, u, ") =0, (1.70b)

j=1

Through (1.70b) we can introduce p — 1 new potential (or auziliary) dependent variables

v = (v1,02,...,v,—1) and form a potential (or auziliary) system Apor of m+p—1 partial
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differential equations given by
0’01
0.’172 ’

(1)1 [,OUI 4 dvj_1
Oxjy1  Oxp_q

Al(:c,u,u(""l)) —

Al(wa u, u(n—l)) =

] , L=l <P
(1.71)

ov,_
Az, u,u® V) = (—1)p-1 2L
(@ =P,

A,;(m,u,u(”))zo, 1=1,2,...,m—1.

Apply the classical method to this potential system to find its point symmetries, by

considering the transformation

¥ =z +el(x,u,v) + O(e?), (1.721)
u* =u+edp(x,u,v) + O(e?), (1.72i1)
v* = v +en(z,u,v) + O(?). (1.72iii)

We note that if (u(x),v(xz)) solves Apor then u(z) solves A. If u(x) solves A then

there exists some v(x) such that (u(x),v(x)) solves Apor (but v(x) is not unique).

Definition 1.5.1. A potential symmetry of A is a point symmetry of Apor that does

not project onto a point symmetry of A.

In order to determine when Apor yields a potential symmetry we appeal to the

following theorem

Theorem 1.5.1. Suppose (&, ¢,n) give a point symmetry of Apor. Then this induces
a potential symmetry of A if and only if (€, ¢) depend essentially on v; otherwise they
project onto a point symmetry of A.

The beauty of the method of Bluman, Kumei and Reid [1988] to find nonlocal
symmetries is that it uses the classical method, which is not only well-known but entirely
algorithmic and consequently many symbolic manipulation packages exist that assist in
the calculations (for instance, see §1.8).

Whilst it may be possible to “gain” (potential) symmetries it is also possible to “lose”
them: a point symmetry of A could yield a nonlocal symmetry of Apor and hence
the classical method applied to Apor will not find it. However Bluman [1993b] tackles
this in the following way: rename v = v{1}, Apop = A}jl(})T, then if one of the partial
differential equations of A}%T is a conservation law a further p — 1 potential variables v {2}
may be introduced to form the auxiliary system A;ZO}T. This process may be continued,
provided sufficient conservation laws exist, to Ayo}:r- He then proposes the following two

conjectures, which he claims hold for many examples, including those given by Akhatov,

Gazizov and Ibragimov [1991] in the framework of potential symmetries:
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Conjecture 1.5.1. A process of obtaining a chain of auziliary systems A};%T, A};z(})T,
S Agg}T through use of equivalent conservation laws, terminates at some finite N when
either

(i) A};N(])}T has no equivalent conservation laws; or
{N}

(ii) A})O}T has an infinite number of equivalent conservation laws. In this case Apyh

15 likely to be linearisable.

Conjecture 1.5.2. If A};%}T has no equivalent conservation laws then the point
symmetries of A},/Z)}T yield, through projections, all point symmetries of any subsystem
of A%}:r (which includes A ).

(For a discussion of subsystems see Bluman [1993a], and for equivalent conservation
laws, which are essentially conservation laws that are worthwhile considering, see Bluman
[1993b].) The system A},%}T of Conjecture 1.5.2 is called a grand potential system, and

recovers all lost symmetries.

A natural extension of this theory is simply to apply the nonclassical method, rather
than the classical method, to our potential system Apop. This is suggested by Clarkson
[1995], Priestley and Clarkson [1995] and Bluman and Shtelen [1995], though as we discuss
in a moment Bluman and Shtelen [1995] extend this idea further. Nonclassical symmetries
of Apor that are not classical symmetries of A or Appr, nor nonclassical symmetries
of A are termed nonclassical potential symmetries. 1t should also be possible to find

nonclassical potential symmetries from higher order systems, A},O}T say, though it is an

open problem to determine whether it is possible for a higher order system, A}I(\)}T for
K > J, to admit these symmetries via the classical method (including J = 1). This is
discussed in Chapter Seven.

Whilst the extension is obvious, there appear to be no examples of nonclassical
potential symmetries in the literature. Examples are promised in a forthcoming paper
by Bluman and Levi [1996], and it is also the subject of investigation in Chapters Five
through Seven. Indeed in Chapter Seven we are able to exhibit nonclassical potential
symimetries.

Bluman and Shtelen [1995] extend the nonclassical method as applied to potential

systems further. They consider a scalar equation
Az, t,u,u™) =0, (1.73)

with potential system

Apor(z,t,u, u™ v, 1)(1)) =0, (1.74)
and note that if any of the sets of partial differential equations

wg + &1 (z, t,u,v)u, — Pz, t,u,v) =0,

vy + &z, t,u,v)v, —n(z, t,u,v) =0,
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with &; # &,

Ut + 6("57 t7 u, ’U)’U,m - (/)(:I‘.’ ta u, IU) = 07

Vg = Nz, t,u,v) =0,
with £ # 0, or

Uy — P(z,t,u,v) =0,

vy + €(z,t, u,v)v, —n(z, t,u,v) =0,

with £ # 0, is compatible with the potential system (1.74), then the solutions found will not
be of a form considered before. In fact they link this work with nonclassical Lie-Backlund

symmetries, but it is mentioned here only for completeness.

1.5.2 Generalisations of the Nonclassical Method.

We have already seen two ways in which the nonclassical method may be generalised,
via potential systems in the previous subsection. However the main generalisations of
the nonclassical method come from Olver and Rosenau in two papers that appeared in
relatively quick succession, but recently Burdé [1996] has proposed another generalisation.

We describe first the notion of a weak symmetry group introduced in Olver and
Rosenau [1987]. The symmetry groups obtained by the classical method are termed strong
symmetry groups and as we have seen map solutions of (1.15) to other solutions of (1.15).
By foregoing this criterion, and simply requiring that solutions of (1.15) invariant under the
group of transformations (1.7), or equivalently (1.8), are found from a reduced system of
differential equations involving a fewer number of independent variables than the original
system (1.15), a larger class of solutions may be found. They called groups that satisfied
this property weak symmetry groups, and by Remark 1.3(ii) we see that the nonclassical

symmetry groups fall into this category. Consider the following example

Example 1.5.1. Consider equation (1.1) and the group of transformations defined by

(1.8) with

Il

€= (&7) = (37— at’/?1), dp=¢=0, (1.75)

whose invariant surface condition is
(22 — e1t®?)uy + tug = 0. (1.76)

By solving the invariant surface condition we find invariant solutions of our group of
transformations are

u=Tz], z=xt"2 4 ¢t
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Substituting this into (1.1) yields
—32Ut™ + 3 U' =U"t™ U1 - U)% (1.77)

By equating powers of ¢ to zero we have a set of two compatible ordinary differential

equations for U(z),
U" + 32U' =0, 53U +U(1-U)? =0,

which has solution either U = 0, or U = 1. We note by comparison with earlier sections
that the infinitesimals (1.75) are not classical nor nonclassical, and the equation found
after substitution (1.77) is certainly not an ordinary differential equation. Despite this the
solutions we have found are invariant under our group given by (1.8) with (1.75). Whilst
the solutions we have found are somewhat trivial, and indeed may be found by both the
classical and nonclassical methods, Olver and Rosenau [1987] showed by example that this
need not be the case.

The main difficulty with the method is knowing which symmetry groups will give
us compatible ordinary differential equations to solve, and when these will give more
interesting solutions. Ome possible tactic described by Olver and Rosenau [1987] is to
specify the group by external symmetry considerations; for instance by considering the
physical problem that the system models or by considering groups that preserve any

boundary conditions in the problem.

The second generalisation of the nonclassical method, which is also more general
than the idea of weak symmetry groups, is the concept of a system of partial differential
equations having side conditions. One chooses these side conditions, which take the form
of partial differential equations, so that the new overdetermined system, consisting of the
original system and the side conditions, is compatible. In the above example our side
condition is the equation (1.76), and generally for the classical and nonclassical methods
the side condition takes the form of the invariant surface condition. Since the invariants
of any group of transformations are found by solving a quasi-linear partial differential
equation, this idea also incorporates Olver and Rosenau’s idea of weak symmetry groups.
However more general side conditions may be considered; for instance if we wanted to find

(multiplicative) separable solutions of (1.1), the side condition would be
Ulgs — Ugyty = 0. (1.78)

An application of differential Grobner bases (see Example 1.7.4 in §1.7) shows that only
solutions that are either time independent or spatially independent are compatible with
(1.1) and (1.78).

The difficulty is how to determine which side conditions will be compatible, however as

Olver and Rosenau [1986] now point out, “the key question becomes not which groups are
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relevant to a given system of partial differential equations, but rather which side conditions
are admissible, thereby providing genuine solutions of the system?”
Recently Galaktionov and Posashkov [1996] have used these ideas to find explicit

solutions of the one-dimensional quasilinear heat equation
up = p(u)uge + f(u),
which is a generalisation of (1.1). They used a side condition of the form
ug = ho(u)u? + hy(u)u, + ho(u).

The generalisation by Burdé [1996] actually takes ideas from both the nonclassical and
direct methods, and is outlined here for a scalar equation with two independent variables.
Initially one uses the method of Clarkson and Mansfield [1994¢] to remove, say, the t-
derivatives from the equation using the invariant surface condition. Then one takes the
nth prolongation of this equation, but the coefficients of different derivatives of u are not
set to zero to form the determining equations, as one does in the nonclassical method.
Instead, one now assumes the symmetry reduction has the form (1.66), the linear ansatz

of the direct method. In particular

2 = 2w, t). = {{etu) = A(;l i igi’:; (1.79)

By requiring that the symmetry variables (z,U) are invariant under the group trans-

formation imposes the conditions

€z, + 712 =0,

EC + 7¢ + ¢C, = 0.
These may be solved algebraically for (¢,¢) (set 7 = 1), in terms of (A, B, z) by using
(1.79). Now by removing u-derivatives from the prolonged equation derived earlier, using

(1.66) as one does in the direct method, and occurrences of (£, ¢) using our new expressions,

we obtain an expression of the form
Y Cj(x,t)E;[U] =0, (1.80)

where the E;[U] are monomials. Requiring that the C;(z,t) = 0 is equivalent to the direct
method. However by requiring (1.80) to be an ordinary differential equation, Burdé [1996]

gained new reductions.
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1.5.3 Generalisations of the Direct Method.

Soon after the appearance of the direct method, Galaktionov [1990] proposed a different
kind of ansatz based method in his method of nonlinear separation. In studying the
equation

Up = Ugy + ui + u?, (1.81)
he supposed that the solution takes the form
u(e,t) = pO)(E) +0(a)), (1.82)

and required that when this is substituted into (1.81) the equation “separates”, i.e.

substituting (1.82) into (1.81) yields

d 2,2 d¢ d26 o | /do 2 o
[Eww—rpw]%dt 2¢¢J9 b - () +0*| =0
We require
1?0 10\? .
— = +c ) = c30 + ¢y, (1.83)
Jg2 dz
and hence
d 2,2 9 d¢ )
&((/)'1/1) — P 2 —cap”| +0 a 2000 —c1p — c39”| =0, (1.84)

where c1, ¢z, c3 and ¢4 are arbitrary constants. We have an overdetermined system to
solve for f(z) in (1.83), and an exactly determined system of coupled ordinary differential
equations to solve for ¢(t), 1(t) from (1.84). Using this technique he was able to study
the “blow-up” of the solutions.

Whilst the ansatz of Galaktionov [1990] (1.82) is less general than the linear ansatz in

the z, = 0 case of the direct method
u(z,t) = A(z, t)U(t) + B(z,t),

because the condition that Galaktionov demands is different, namely that the equation
separates, rather than it satisfies an ordinary differential equation, the class of solutions
is different.

In general the method of Galaktionov [1990] as applied to a single equation (1.73)

could be thought of as assuming the solution has the form
’U,(Ili,t) :F(f,t,Ul(Z),UQ(Z)), Z:Z(.’Ii,t),

and requiring that U;(z) and Us(z) satisfy a system of two ordinary differential equations
on substitution into (1.73). Within this scenario the direct method is seen to be the special

case when Us(z) satisfies Uy = 0.
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Olver [1994] naturally generalised this further theoretically by allowing the solution of

(1.73) to have the form
u(z, t) = F(z,t,Ui(2),Us(2), ..., Ur(2)),

where on substitution into (1.73) the U;(z) for i = 1,2,..., k satisfy a system of k ordinary
differential equations. He calls this the higher order method of Galaktionov, though we
note that this generalisation was only written down in order to compare it with the method
of Olver and Rosenau [1986] of finding special solutions via side conditions, which we

discuss in the next subsection.

A different approach was proposed by Estévez [1992] for equations of the form (1.73):
rather than increase the number of new dependent symmetry variables she simply allowed
the single dependent symmetry variable to satisfy more than one ordinary differential
equation, i.e. a system of compatible ordinary differential equations. With this new
approach she was able to find more exact solutions than by simply using the direct method.
For instance (cf. Estévez [1992]), consider again equation (1.1). If we assume u(z,t) is

linear in the new dependent symmetry variables we have
u(z,t) = A(z,t)U(z) + B(z,t),

and substituting into (1.1) yields, as in the direct method calculation of Example 1.4.1,

equation (1.64). If we set A = 2z, (cf. Example 1.4.1.) and require

3200 — 2 = V2 (2 — 3B)z,, (1.851)
Zgzs — 2ot = (3B — 1)(B — 1)z, (1.85ii)
Bye — By — B(1 - B)? =0, (1.85iii)
then (1.64) reduces to
z(U" = U + (2 - 3B)(xV2U' + U?) = 0. (1.86)

Rather than require that (1.86) be an ordinary differential equation we require that U(2)

satisfies the overdetermined system of equations
U"-U*=0, £V/2U'+U%=0,
which have the common solution
U(z) = £V2/(z — 20),

for zp an arbitrary constant. By taking either of the constant solutions of (1.85iii), i.e.
B =0 or B =1, and solving (1.851,ii) we are able to reproduce the exact solution (1.56),

which could not be found via the direct method.
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A similar approach is given by Burdé [1994], and was used to find solutions of the

boundary layer equations

dU il
Uy +vuy, =U—+v | Upp + —u, |,
dz r
v
Uy + v, + — =0,
P

where U(z) is an arbitrary function and v an arbitrary constant. He found that the
fairly restrictive conditions that the direct method imposed could be relaxed, and found
genuinely new solutions. Once again one requires that rather than satisfy a single ordinary
differential equation, the new symmetry variable may satisfy an overdetermined system.
The extension of the direct method by Hood [1995] allows more dependent and more

independent symmetry variables. In studying Burgers’ equation
Up + Uy + Ugy = 0, (1.87)
he assumed that the solutions took the form
u(z,t) = A(z, t)p(€) + B(z,t)q(¢) + C(x, 1),

where & = &(z,t) and ( = ((z,t), and required that p(¢) and ¢(¢) satisfy ordinary
differential equations. In the case & = (¢ this method is the same as Galaktionov’s. If
& # (, since the independent symmetry variables are different, the ordinary differential
equations that p(¢) and ¢(¢) satisfy must not be coupled. In practice one of p and ¢ must
have a fairly simple form (e.g. rational) in order to cope with the inevitable presence of
coupled terms, however genuinely new solutions of (1.87) were found.

The main difficulty in each of the generalisations of the direct method mentioned here,
though less so for Galaktionov’s method, is the lack of an algorithm, particularly when
choosing how to split up the candidate symmetry equation into a system of ordinary
differential equations. Indeed there will be many ways to do this, though certainly they

will not all be compatible and there seems to be no way to determine how best to do this.

1.5.4 Relationships between symmetry methods.

After Clarkson and Kruskal [1989] found many new reductions of the Boussinesq equation
with their direct method, there was much interest in realising the connection with it and
other symmetry methods. Indeed Clarkson and Kruskal [1989] themselves hoped “that
a group theoretic explanation of the method will be possible in due course”. This came
quickly from Levi and Winternitz [1989], who used the nonclassical method of Bluman

and Cole [1969] on the Boussinesq equation and found precisely the same reductions.
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The first indication that the direct method and the nonclassical method gave different
reductions came from Nucci and Clarkson [1992] who studied the Fitzhugh-Nagumo

equation

Ut = Uzg + u(l —u)(u — a), (1.88)

for a constant such that 0 < a < 1. It is no coincidence that our prototype equation (1.1)
is (1.88) with a = 1, and we have already seen that the nonclassical method finds the exact
solution (1.56), which the direct method was unable to find. Crucially the infinitesimal of
the independent variable z, namely &, depended on u (cf. (1.50)).

Subsequently Olver [1994] (see also Arrigo, Broadbridge and Hill [1993], Pucci [1992])
gave the precise nature of the relationship between the nonclassical method and the direct
method in the form of two theorems. He considered the second order partial differential
equation

A(I) f, Uy Uy, Uty Uggy Ugt, '“'tt) = 0. (189)

Theorem 1.5.2. There is a one-to-one correspondence between the ansatz of the direct

method

iz, t) = Fle i, Ulz)), (1.90)

with Fiy # 0 and the quasi-linear first order differential constraint

viu) = &z, t)us + 7z, fu = é(z, t,u). (1.91)

Theorem 1.5.3. The ansatz (1.90) will reduce the partial differential equation (1.89) to
a single ordinary differential equation for U(z) if and only if the overdetermined system
of partial differential equations defined by (1.89) and (1.91) is compatible.

Whilst it is clear how the proofs of these theorems may be extended to an equation
of higher order, it is not so clear how to extend them to systems of partial differential
equations. This will be discussed in detail in §8.1.

In the same paper Olver went on to prove the nature of the relationship between
the higher order method of Galaktionov and the method of side conditions (also called
the method of differential constraints). In particular he proved that a partial differential
equation admits a reduction to a system of k ordinary differential equations for & dependent
symmetry variables in a single independent symmetry variable if and only if an associated
kth order side condition is compatible with the equation.

Another important result comes from Ludlow [1995], who dispelled a commonly held
belief, that the classical method is a special case of the direct method. He considered the
equation

Ugligy — (aUty — bug)(1 — tug) = 0, (1.92)
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and showed that in the case a = b = % it admits the (implicit) solution found by the

classical method
u(z,t) = cy exp{z — u(z,t)t} + co exp{—z + u(z,t)t},

where ¢; and ¢p are arbitrary constants. This solution cannot be obtained by the direct
method.

Whilst the direct method as it stands cannot find implicit reductions and thus fails
to find all the reductions that the nonclassical and sometimes even the classical method
finds, it is easily adapted to do so: simply assume the solution has the form (1.61) where
now z = z(z,t,u). The fundamental obstacle with this approach is the sheer difficulty in
solving the associated determining equations. Also as we saw in §1.3, when the reduction is
implicit the best way to find exact solutions may be to solve the equation and the invariant
surface condition simultaneously, which cannot be implemented in the direct method even
with this new implicit ansatz. For these reasons, though mainly due to its difficulty, the
direct method has not been applied with an implicit ansatz.

To end this subsection, we make a few comments on the direct, classical and
nonclassical methods, which dominate the work in this thesis. Whilst the nonclassical
method has been shown to be more general than the direct method for scalar equations,
the direct method should certainly not be discarded for a number of reasons:

e it allows the finding of reductions in a single step, whilst in both the classical and
nonclassical methods once the determining equations have been solved one must still carry
out the not always trivial task of solving the invariant surface conditions;

e one is able to reduce the number of independent variables by any number (< p) in
a single step, when at the moment this can only be done with the classical method;

e the occurrence of reductions that cannot be found by the direct method but can by
the nonclassical method are rare, and even more rare are those that the classical method
finds but not the direct method — indeed equation (1.92) was constructed specifically for
the purpose of finding such a reduction;

e the advent of symbolic manipulation packages has made the generation of the
determining equations in the classical and nonclassical methods relatively easy, and the
solution of the determining equations more tractable. However the direct method does
not need such sophisticated tools to be applied, indeed without them it is arguably even

more easy to apply than the classical method, particularly for higher order equations.

1.6 Painlevé Tests
Once a method of symmetry reduction has been applied we are often still left with a

symmetry system to solve if we are to find exact solutions. If this symmetry system is still
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a system of partial differential equations then further application of our methods may be
necessary, unless perhaps it is recognisable or it is now simple enough to solve by other
techniques. If the symmetry system is now a system of ordinary differential equations we
are often interested to know whether it is of so-called Painlevé-type, which as we discuss
below, tells us about the singularity structure of the solutions. Experience dating back
to Kowalevski [1889a,b] tells us that often only systems that are of Painlevé-type may be
solved explicitly. Also determining whether a symmetry system of ordinary differential
equations is of Painlevé-type gives us information on the original system through the

Painlevé conjecture, described in §1.6.2.

Definition 1.6.1. A system of ordinary differential equations is of Painlevé-type or
P-type if all solutions possess the so-called Painlevé property, that is, the only movable
singularities in any solution are poles. A mowable singularity is a singularity whose location
in the complex plane is determined by the constants of integration, as opposed to fized

singularities whose location is determined by the form of the equation.

Towards the end of the nineteenth century work was in progress determining which
nonlinear ordinary differential equations exhibited which kind of singularities. In

answering a question posed by Picard [1887] as to which equations of the form

d?w dw .
) = F <z w, 3 > (1.93)

where F' is rational in dw/dz, algebraic in w and analytic in z, are of Painlevé-type,
Painlevé and his colleagues not only classified such equations, but found six equations
whose solutions could not be expressed in terms of previously known functions. A review
of the classification is given in Ince [1956] (with corrections by Cosgrove [1991]), which
uses the a-method due to Painlevé, which we describe in the next subsection. The six
new equations, which are of Painlevé-type, are known as the Painlevé equations and their

solutions define new transcendental functions; they are

12
o g 6w? + z, PI
dz?
12
cw :2w3+zw+a, PII
dz?
I° 1 (d ldw 1 6
SV (52 ———w+ (aw2+ﬁ)+’yw?’+—, PIII
dz?2  w \ dz z dz w
dPw 1 (dw g 2 . g
—=— | — = 4 2(z° —)w + = PIV
dz?2 2w (dz) o Asw @t w’
d?w 1 1 dw\? 1 dw (w—1)*% 1 yw  dw(w + 1)
Sy (=) == TS py
dz? {2w+w—l]<dz> zdz <aw+ >+z+ w—1 "

1

d?w 11 L 1 . 1 dw B lJ{_ n 1 ﬂg
d22 2 |lw w—-1 w-—z dz z z—1 w-—2z| dz
5 w(w — 1)(w)— z) [ ,Bz v(z — 1) + 0z(z — 1)] 7
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where «, 3, v and ¢ are arbitrary constants.

In the remaining subsections we describe tests to determine whether ordinary
differential equations are of Painlevé-type, an extension to test partial differential
equations also, and further extensions. We also describe the link between Painlevé analysis

and complete integrability.

1.6.1 Painlevé’s a-method.

The method that Painlevé and his colleagues used to classify the equations of the form
(1.93) is known as the a-method. We describe it briefly here and it is used only as a
last resort. More expansive descriptions may be found in Golubov [1953] or Kruskal and
Clarkson [1992].

It consists of two parts, firstly building necessary conditions and then verifying, by
direct integration or otherwise, that these are also sufficient. To show that an ordinary
differential equation is of Painlevé-type using this method is more lengthy than otherwise,
since one must show, possibly in a number of cases, that the equations in each case may
be reducible to known equations of Painlevé-type.

The first part, however, is described here for a system a first order ordinary differential

equations
dw

dz = F(Z,'LU),
where w = (wy,ws,...,w,,) and F = (F1,F,,..., F,) not involving the parameter a.

Make the transformation
£ =’k + alz, u=caov+aoc’w,

for some p, q, r, s, k and v = (vy,va,...,v,,) suitably chosen. We obtain a system of the
form

du

— = LU

3 = f(Euia)
where u = (uy,ug,...,uy) and f = (f1, f2,..., fm). One then expands u(£) in powers of

«,

w() =) u;(6)dd,
4=0

and from a result due to Painlevé, the u;(§) are of Painlevé-type if and only if w(&) is
of Painlevé-type. Thus one creates systems of equations in the u;(£) from which one
determines conditions under which they are of Painlevé-type, which is easier to do than

by simply considering the original system.
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1.6.2 The ARS algorithm and the Painlevé conjecture.

Based on the work of Kowalevski [1889a,b], Ablowitz, Ramani and Segur [1980a] (ARS)
developed an algorithm for determining necessary conditions for whether an ordinary
differential equation is of Painlevé-type. We describe it here with the ordinary differential
equation (1.2)

w4+ cw' —w? + 2w —w =0, (l2)

associated with the travelling wave reduction 1.2.1 of our prototype equation (1.1) being
given as an example. For an nth order ordinary differential equation to be of Painlevé-type
we require that in some neighbourhood of a movable singularity at z = z, say, the general

solution of the ordinary differential equation can be expressed in terms of a Laurent series
o0

w(z) = (z = 20)° Y  a;(z — 20)’, (1.94)
j=0

where ag # 0 and n — 1 of the constants a; are arbitrary.

Step One: Find the dominant behaviour.
Firstly we must find the dominant behaviour of solutions of (1.2) in the neighbourhood

of a movable singularity at z = z;. We assume that
w(z) ~ag(z —20)? as z — 2z, (1.95)

where ag (# 0) and p are constants to be determined. This is substituted into (1.2) and
the method of dominant balance is used to find all values of p such that two or more terms
in the resulting expression are of equal order, and the remaining terms are negligible as
z — z9. Then requiring that the balanced terms cancel out usually determines ag for each

value of p, though ay may be arbitrary. Substituting (1.95) into (1.2) yields
, p—2 y _ p—1 _ 3¢, 3p 2 2p P _
app(p — 1)(z — 20)?™° + capp(z — 2p) ay(z — 20)°P 4+ 2a5(z — 20)** — ap(z — z9)? = 0.

The only way in which these terms will balance according to our needs is if p—2 = 3p, i.e.
p = —1. We find for ag # 0 that a% — 2 =0, so that there are two dominant behaviours,

1.e.

w(z) = +vV2(z—20) 1+ 0((z —2)7) as z— 2.

If any of the values of p turn out to be not integer, the dominant behaviour would have
been that of an algebraic branch point, so the equation would not have been of Painlevé-
type, and is said to fail the test. Note that in Ramani, Dorizzi and Grammaticos [1982]
and Ranada et al. [1985] the authors describe how rational values of p may be interpreted
and introduce the weak Painlevé property. An equation admitting an expansion of the

form

w(z) = (z — 20)P/* Zaj(z — )99,

J=0
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for p, q integers, is said to possess the weak Painlevé property.

Step Two: Determine the resonances.
Substituting (1.94) into (1.2) and equating powers of z — 2z to zero yields equations of
the form

(J(j)(llj —Gj(Z(),(I.()7(I,1,...,(LJ‘_1) = (), j € Z+, (19())

which will also depend on the parameters in the equation. The roots of the equation
Q(r) = 0 determine the resonances: where a, is not determined by (1.96). To find the

resonances we may substitute
w(z) = ao(z — 20)” + Bz — 20)P*",

into the dominant terms of (1.2) (w” and —w?®) and equate terms up to order 3 to zero.

Doing so, remembering that a2 = 2 and p = —1 yields

Bl(r —1)(r —2) — 6](z — 20)"° =0,

which factorises to give (r + 1)(r —4) = 0. The presence of the resonance at r = —1 is
to be expected, though it is not entirely clear what it represents. Ignoring this value of
r our only resonance is at r = 4. In general we require n — 1 distinct integer resonances
(not including » = —1) for our equation to pass the test since this allows the presence
of n arbitrary constants, zy and the n — 1 constants a, from (1.96). Then we know that
the general solution is being found. In this test only distinct positive integer resonances
are allowed but recently Conte, Fordy and Pickering [1993] introduced the perturbative

Painlevé test, which analyses negative resonances.

Step Three: Find the constants of integration.

We substitute

w(z) = (z— 20)" Y aj(z — 20)’ + O((z — 2) N T7+),
Jj=0
into (1.2), where N is the value of the largest resonance, in order to determine the constants
a;. There is no need to go beyond N since (1.96) determines the a; for j > N. In particular

we are interested in the solution of
GT(Z(],(L(),(I,l,...,(I,T_l) :0, (197)

at the resonance values r, where Q(r) = 0 (cf. (1.96)). If (1.97) is identically zero for each
r then (1.2) is said to have passed the test. However (1.97) may provide a contradiction,

in which case (1.2) does not pass the test, or may induce conditions, called compatibility
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conditions, on the parameters in the equation in which cases only the class of equations

under these conditions pass the test. For (1.2) we find (recall a3 = 2)

(2 —20)"2: a1 =4 — agc, (1.981)
o0(c? — 2
(z—20)71: ap = —(io((S()—.), (1.98ii)
3agc — 2agc3 — 2
(2 = 20)° : s = %(ug( , (1.98iii)
(z —20)t: 0 = c(apc — 1)%(agc + 2), (1.98iv)

since a4 is arbitrary (since the resonance is at r = 4). Equation (1.98iv) tells us that (1.2)
only passes the test if ¢ = 0, since no other values of ¢ satisfy (1.98iv) for both values of
ag simultaneously.

In fact since (1.2) is of the form (1.93) studied by Painlevé and his colleagues we
may consult the classification found in Ince [1956] to see if it “fits into” one of the 50
canonical equations. The equations listed in Ince [1956] are generalisable by a Mobius

transformation
A(z)w(z) + B(2)
C(z)w(z) + D(z)’

where A, B, C, D and ¢ are analytic functions, so they should not simply be consulted

W (Z) =

Z = ¢(2), (1.99)

at face value. (Also there are many mistakes, so one should consult Cosgrove [1991].) By
careful checking therefore, we find that (1.2) is only of Painlevé-type if ¢ = 0, showing
that the necessary condition above is also a sufficient one. If ¢ = 0 (1.2) may be solved in
terms of Jacobi elliptic functions (see Whittaker and Watson [1927])

We note that for first order ordinary differential equations there is often no need to use
the ARS algorithm to determine whether they are of Painlevé-type. Fuchs proved that

the only first order equation of the form

dw P(z,w)
— =G(z,w) = —/———=,
dz Q(z,w)
where P and () are polynomials in w whose coefficients are analytic in z, that is of Pain-

levé-type is the generalised Riccati equation

%‘g = pz(z)w2 + p1(2)w + po(2), (1.100)

with pa(2), p1(2) and py(z) analytic functions (see Ince [1956]). If pa(z) = 0 this equation
is linear, whilst if pa(2) # 0 it may be linearised via the transformation

1 dw

p) = ()W dz

This result is again generalisable by a Mobius transformation (1.99), so for first order
equations we need only check to see if they may be written in the form (1.100) via (1.99)

to see if they are of Painlevé-type.
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The determination of whether an ordinary differential equation was of Painlevé-type
gained renewed interest from its linkage to Inverse Scattering. Inverse scattering is the
technique introduced by Gardner et al. [1967] for solving the KdV equation (1.59). It
has since been used to solve the initial value problems for many nonlinear evolution
equations and such equations that are solvable by inverse scattering are considered to
be completely integrable. The method may be thought of as the nonlinear analogue of
the Fourier transform method for solving linear equations, and a description of it may be
found in e.g. Ablowitz and Clarkson [1991].

Inspired by the observations of Ablowitz and Segur [1977], Ablowitz, Ramani and
Segur [1978, 1980] and Hastings and McLeod [1980] formulated the Painlevé conjecture or
Painlevé ODFE test:

Every ordinary differential equation which arises as a symmetry reduction of a

completely integrable partial differential equation is of Painlevé-type, perhaps after

a transformation of variables.

This conjecture, if true, provides a useful necessary condition to test whether a partial
differential equation might be completely integrable. Weakened versions of this test have
been proved by Ablowitz, Ramani and Segur [1980b] and McLeod and Olver [1983]. Whilst
such ordinary differential equations needed only to be of Painlevé-type, it was often the
case that they were expressible in terms of the Painlevé equations PI-PVT (cf. Chapter
Two).

The converse of the Painlevé conjecture was shown not to be true by Clarkson [1989).
He showed that the travelling wave reduction of the modified Benjamin-Bona-Mahoney
equation,

Up + Up + Uy — Upgy = 0, (1.101)

is of Painlevé-type and is the only reduction obtainable by the classical and direct methods.
However numerical evidence suggests that (1.101) is not solvable by inverse scattering.
How the test may be applied is if an ordinary differential equation arising as a symmetry
reduction is not of Painlevé-type, the original partial differential equation may be taken as
not solvable by inverse scattering. Indeed we may conclude from the conjecture that (1.1)
is not solvable by inverse scattering. This illustrates one of the advantages of applying
symmetry methods, in that they can be applied to equations which are not integrable, in

any sense of the word.

1.6.3 The Painlevé PDE Test.

In order to test whether a partial differential equation might be completely integrable
directly, instead of via the Painlevé conjecture, Weiss, Tabor and Carnevale [1983] devised

the so-called Painlevé PDE test. With the advent of this test it was no longer necessary to
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first find a partial differential equation’s symmetry reductions, which might not exist, or
conversely might be numerous. Further Clarkson [1989] showed, in studying the Symmetric

Regularised Long Wave equation
Ut + QUgy + %b(uz)a:t + Clggtt = 07 (1102)

for a, b, ¢ constants, that to reach conclusive results via the Painlevé conjecture on an
equation’s inability to be solvable by inverse scattering, it may be necessary to use the
direct method for finding symmetry reductions, not just the classical method. However in
the same paper, Clarkson showed that neither (1.101) nor (1.102) were solvable by inverse
scattering directly using the Painlevé PDE test, gaining for equation (1.101) conclusive
results where the Painlevé ODE test gave none.

It should be noted that Weiss, Tabor and Carnevale [1983] gave no attempt to prove the
relationship between their test and completely integrability, though a partial proof may be
inferred from the partial proof of McLeod and Olver [1983]. Whilst it has been shown to
be by no means foolproof (cf. Clarkson [1989], Kruskal [1991], Kruskal and Clarkson [1992]
and Pogrebkov [1989]), the Painlevé PDE test often gives a good indication of whether a
partial differential equation might be completely integrable.

The test is analogous to the ARS algorithm, so is simply described here for our partial

differential equation (1.1). A solution of (1.1) is sought in the form
@, b)) = P&, 1) Zﬁj (z,t)¢ (1), (1.103)
j=0

where ¢ and a; are analytic functions and ¢(z,t) = 0 is a movable non-characteristic

singularity manifold. It has been noted by Kruskal [1983] that one can replace (1.103) by

o0

u(@,t) = [z =@ Y a;()lz — (1)),

=0
where 1 (t) and a;(t) (ag(t) # 0) are analytic function in the neighbourhood of the
singularity manifold z — 1(t) = 0.

At leading order we have

u(z,t) ~ ao(t)[z — (t)]?,

and similar to the analysis for (1.2) we find p = —1 and a? = 2. We find the resonances,

as previously, to be r = —1,4 so we substitute an expansion of the form

4
w(x,t) = -1 Z a;(t ()] + O([z — (8)]°),

7=0
into (1.1) in order to find the functions a;(t) for j = 1,2, 3, and the compatibility condition
associated with a4(t). We find, by equating powers of 2 — 1)(t) to zero

ug dep 2 Uy Ug (dw> as (1) = Uy <(1(/;>3 ugd®p wugdy 1

sty @O=5"35%g 54 \ dt

a1(t) = 24 di2 36 dt 54’




Chapter One : General Introduction 54

together with the compatibility condition

d 12 AN I
oy (moﬂ — 95 (%) 9 3u0% % 2) — . (1.104)

Since we require two arbitrary functions and have only one so far, i.e. a4(t), the existence
of compatibility condition (1.104) which imposes conditions on (), means that (1.1) does

not pass the Painlevé PDE test.

1.7 Differential Grobner Bases and the MAPLE package diffgrob2

In both the classical and nonclassical methods of symmetry reduction the determining
equations form an overdetermined system of partial differential equations. In order to
solve such systems we use the method of Differential Grobner Bases, which provides a
systematic framework for finding compatibility conditions of the system. It avoids the
problems of infinite loops and yields, as far as is currently possible, what may be thought
of as a “triangulation” of the system, from which the solution set may be derived more
easily (cf. Clarkson and Mansfield [1994a], Mansfield and Fackerell [1992], Reid [1990,
1991]).

It is only recently that Mansfield and Fackerell [1992] have derived algorithms to cope
with polynomially nonlinear systems, which are extensions of methods developed to study
linear and special classes of nonlinear partial differential equations (see for instance Reid
[1991]). These algorithms, which are necessary to calculate a differential Grobner basis for
systems that are in general nonlinear are implemented in the MAPLE package diffgrob2
(Mansfield [1993]). These include the Kolchin-Ritt algorithm which we describe in §1.7.4,
and in its manual (Mansfield [1993]) is described a Direct Search algorithm which we
outline in §1.7.5.

In this section we introduce the notation required to understand the theory of
differential Grobner bases and present some of the theory together with examples and the
diffgrob2 syntax necessary to carry out the procedure. A much more detailed account
is available in Mansfield [1993]. At the end of the section the method of Clarkson and
Mansfield [1994c] for generating the determining equations of the classical and nonclassical

methods is described, as promised, in §1.7.6.

The system of partial differential equations under consideration
A = (A (z,u,u™), Ay(z,u,u™), ... A (x,u,u™)) =0,

must be able to be regarded as polynomial in some unknown functions w = (w1, us, ..., u,),

their derivatives
oled uj

== s Pa “ ‘ I
8250 8z5° . .. Bug”

«,, .
D™ u;

(1.105)
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where |a| = a; + a2 + ... + a;, and the independent variables = (21, z2,...,2,). The
set of all such derivatives (1.105) is denoted by w(°®). When inputting partial differential
equations the “equals zero” is implicitly assumed. The operator D is in general defined

by
Dot D2 D

N3l O =R wop "
Dzi* Dz Dz,

Da

Whilst the theory of differential Grobner bases is not developed for arbitrary functions of
the variables, nevertheless diffgrob2 is still able to perform the calculations in a natural
way. See for instance Chapter Two, where the determining equations include an arbitrary

function of the independent variable w.

1.7.1 Orderings.

A fundamental concept, which all the theory presented here requires, is that of an
ordering of the derivative terms, which must be compatible. If 7, < zo < ... <
and u; < uy < ... < wu, defines an ordering on the dependent and independent variables,
then a compatible ordering of the derivative terms is such that
(i} D%yg < Dﬁuk implies that DYD%u; < D'VDBuk and
(i) DYu; < DYD%u; for |y| # 0.
There are many types of ordering (see Mansfield [1993]), but in this thesis we use only
one, a lexicographic ordering given by
D%qy > Dﬁuk
if wy > g, (ALEX)
else j = k and a; > [y,
else ay = B1,...,a; = i, aj41 > Pis1 for some i such that 2 < i < p.
In diffgrob2 the string variable termorder denotes which ordering is used, so for our
purposes termorder:=alex. We recreate the ordering z; < 22 < ... < z, and u; < uy <
. < uy via the list allvars where allvars:=[[x1,x2,...,xp],[ul,u2,...,uq]]. In the following
chapters we use the ordering ¢ < z < u on the independent variables, with the ordering
on the dependent variables and the variables u to be decided, though £ < ¢ always.
Orderings on the derivative terms induce in turn partial orderings on the partial
differential equations in the system, which we define after introducing some notation.
(i) The highest derivative term of a partial differential equation f, denoted HDT(f),
is such that HDT(f)>DT(f) for all other derivative terms DT(f) in f.
(ii) The highest power of the HDT(f) occurring in f is denoted Hp(f).
(iii) The highest coefficient of f, denoted Heoef(f), is the coefficient of HDT(f)HP(f) in
f.
(iv) The head of f is Head(f)=Hcoef(f)HDT(f)H>(/),
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(v) The highest monomial of f, denoted Hmon(f), is defined recursively as: if Head(f)
has one summand, then Hmon(f)=Head(f), else Hmon(f)=Hmon(Head(f)).
(vi) The separant of f, the highest coefficient of D®f for any non-zero |, is denoted
Sep(f)-
(vii) The highest unknown of f, denoted Hu(f), is the unknown function, u; say,
occurring in HDT(f).
To demonstrate each of these new ideas, consider the following partial differential equation

= yu’ U p p
f = “‘ug;g;yy I UyUzryy + Uy Uyy + Upgr + Ugy

under the lexicographic ordering (ALEX). If y < z then the derivative terms in f are

ordered 4 < U < Ugne < Uy < Yay < Ygy < Uigngy, Hul(f) = @ and

HDT(f) Hp(f) Hcoef(f) Head(f)  Hmon(f) Sep(f)
By 2 u 'u,'u,i.,,,m, 'u,ufh,,:yy Uy + 2wy

If < y the derivative terms in f are ordered u < 4y < Uy < Uy < Ugy < Upgyy < Yrs;
Hu(f) = u and
HDT(f) Hp(f) Hcoef(f) Head(f) Hmon(f) Sep(f)
Uppes 1 1 Ugga Ugqq 1
HDT(f), Hp(f), Hcoef(f) and Sep(f) are most significant when it comes to using
diffgrob?2 in practice (see later), and these may be found via the procedure diffparse with

the (:()mmand
diffparse( f, allvars, termorder, " HD'T", "Hp’, "Hcoet’, ’dt’, "Sep’);

This will return each of the terms in quotes, where ’dt’ is a list of all derivative terms and
their powers occurring in f. This procedure is particularly useful when the expressions
become large.

With the notation in place we can define a partial ordering between partial differential
equations. Let f and g be partial differential equations, then g < f if either one of the
following conditions is satisfied

(i) HDT(g) < HDT(f);

(ii) HDT(g) = HDT(f) and Hp(g) < Hp(f);

(iii) HDT(g9) = HDT(f), Hp(9) = Hp(f) and Hcoef(g) < Hcoef(f);
(iv) HDT(g9) = HDT(f), Hp(g) = Hp(f), Heoef(g) = Hcoef(f) and [¢g — Hmon(g)] <
[f — Hmon(f)].
If the summands of f and g differ only by constant coefficients, then f and g are said to

be of equal rank.

1.7.2 Pseudo-Reduction.
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Definition 1.7.1. Let DT(f) occur in f to some power k with coefficient Coef(f,DT(f)*)
and suppose DT(f) = D*HDT(g), for some a, where if |a| = 0 the condition & >Hp(g)
is also required. A pseudo-reduction to f of f with respect to g (f > g), denoted f ~bg ]7
is defined by
Hcoef (D®g) f — Coef(f, DTF)DT*"1D%g
r ged[Heoef (D), Coef (f, DT*)]
P29 Heoet(g)f = Coef(f, DT*)HDT (g)]~Hot0)
ged[Heoef (g), Coef (f, DT)]

where gcd denotes the greatest common divisor. The pseudo-normal form of f with

if || # 0,

if |a| = 0,

respect to a set G = {g1,92,...9s}, denoted normal”(f, G) is obtained when no further

pseudo-reduction with respect to any member of G is possible.

Note that in this definition it is implicitly assumed that Hcoef(g) # 0 and
Hcoef(D%g) # 0 (and thus Sep(g) # 0) when evaluated on solutions of the system. Since
these may be differential (non-constant) coefficients they may however be zero. Such
incidences are called singular cases and the possibility of Hcoef(g) = 0 or Sep(g) = 0
occurring must be dealt with separately. Thus the usefulness of diffparse is now evident in
that it is necessary to check the Hcoef(g) and Sep(g) of any g being used to pseudo-reduce
any other partial differential equation f.

Note also that if Hcoef(g) and Sep(g) are simply functions of (z, ) with no differential
consequences of u then pseudo-reduction becomes strict reduction. Similarly normal” is

replaced by normal. Also we define algebraic reduction

Definition 1.7.2. If f and g are two partial differential equations, we say that ¢
algebraically reduces f to j?at the monomial M, where M is a summand of f, provided

Hmon(g)|M, where
M

F=]— mg

Now normal? is replaced by normal®. This type of reduction is useful when considering
the calculation of determining equations by the method of Clarkson and Mansfield [1994c¢]
(see §1.7.6.).
Example 1.7.1. Consider two partial differential equations

[ = uugs — uguy, g = tgs — e — u(l —u)?,

which are the side condition (1.78) and equation (1.1) respectively (cf. §1.5.2). With an
(ALEX) ordering ¢ < z, we can pseudo-reduce f with respect to g at both the u; and w.y

terms

[ = (—1)f —uD,g — (_“‘I)g
= —(Ultgs — UgUy) — UW(Uggr — Uty — Ug + dUU, — 3u2u,,,;) + g (Uge — us — u(l — u)?%)

= 2u3ug, — 2u2uz — Ulgpr + UgplUgg- (1.106)
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Since j~ cannot be pseudo-reduced further by g, f is the normal”(f, {g}). Also note that
normal” (f, {g, ]‘~}) = (. This pseudo-reduction is in fact strict reduction as f is multiplied
by (—1).

In diffgrob2 pseudo-reduction is implemented with the procedure reduce, such that

the pseudo-reduction of f with respect to G = {g1,92,...,9s} takes the form
reduce( f, [G], allvars, termorder, ’f’);

In the following chapters, since termorder will always be alex, and allvars is usually the same
throughout a calculation and is determined at the start, these are omitted from reduce in
the text. Thus we will simply use reduce(f,[G],f).

There is another procedure, reduceall, which will carry out pseudo-reduction on a
system A, such that each member of the result, Apr, is pseudo-reduced with respect
to every other member, i.e. normal’(f, Ar \ {f}) = f for any f € Agr. This is achieved
by successively using reduce on the system comprising of A and the results of pseudo-

reduction, f, with respect to every other member of this system. The command
reduceall( A, allvars, termorder,” Ap’, "Xset’);

achieves this, where the output 'Xset’ is the set of all coeflicients with which the elements
of A are multiplied in their pseudo-reduction. Thus the output is valid up to the elements
of Xset being non-zero, and the singular cases, when they are zero, need to be run through

again with these elements added to (or incorporated in) A.

Example 1.7.2. If we use reduceall on A = (f,g) of Example 1.7.1, then Ap = (f,g)

1.7.3 Cross-Differentiation.

Definition 1.7.3. Consider two partial differential equations f; and fo. If Hu(f,) =
Hu(f>) let a; and ay be the smallest multi-indices possible such that D*HDT(f;) =
D®HDT(f2), then the differential S polynomial (diffSpoly) of fi and fo is defined to be
(for |ai]|, |az2| not both zero)

Hcoef (D®! f1)D®2 f, — Heoef (D2 fo) D! f;
ged[Heoef (D@1 fy), Heoef (D@2 f5)]

for |ay||as| # 0,

diffSpoly(f1, f2) = : N
POWULT2) = Heget(f, ) HDT(11) () 1D% £, — Hooof (D% ), for Jey] = 0
ged[Heoef (f1), Heoef (D2 f5))] e
and similarly for the case |az| = 0, |ai| # 0. Else if |ai] = [az] = 0 so that

HDT(f;) = HDT(f2), or if f1, fo are nonlinear and Hu(f;) # Hu(f2), then

Head(f2) f1 — Head(f1) f2

diffSpoly(/1, f2) = = iTHead (1), Head (f2)]
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Otherwise if f1, f2 are linear and Hu(f;) # Hu(f2), then diffSpoly(f1, f2) = 0.
Example 1.7.3. Consider the two partial differential equations

f1 = Uy — te — u(l —u)?, fa = 2ulu, — 2utuy — Ugee + Ugliay,
which are g and ff'rom Example 1.7.1. Again with an (ALEX) ordering ¢ < z, we have

(llﬂSpOIy(fla.fQ) == (—1)ij2 - (_IU’)D.T.T.’E.fl
= Ulggrer — Ulgzr + 120Uz Uz, + 4“2uzn:rm - GUU;’;
— 182 ugugy — 3ulugys + UtUgre + dUUL U

0,2 2 3
+ 2Uu U — 6U UL U — 20 Uy — UgtUzy — UgUgppt- (1.107)

The procedure in diffgrob that finds the differential S polynomial is called diffSpoly.

1.7.4 Differential Grobner Bases and the Kolchin-Ritt algorithm.

Given a system of partial differential equations A, the differential ideal generated by A is

1(A) = {Zga,i(m,u,u“O))DaA,; ! A, €A o€ NP}_

(e

Definition 1.7.4. We define a Differential Grobner Basis of I(A) as a set of generators
G of I(A) such that normal”(f, G) = 0 for every element f of I(A).

Thus the ultimate aim is to find the differential Grobner basis for our system A, which
in general is simpler to solve than A, yet contains all the information in A. This is done
via pseudo-reduction and the finding of differential S polynomials, though as we shall
see in the following chapters, even if we are unable to go so far, a lot of information is
provided along the way. This information, in the form of the f of pseudo-reduction and the
differential S polynomials are called compatibility conditions. Often the reduceall procedure
provides enough information for the system to be solved, see for instance Chapters Three
and Four. However there is an algorithm which, for linear systems or in general for systems
in which the "Xset’ contains only non-zero terms, guarantees the output of a differential
Grobner basis. For all systems however it is very powerful, and is called the Kolchin-Ritt

algorithm, and is outlined here:

Given a system of partial differential equations A and an ordering termorder, the
Kolchin-Ritt algorithm outputs a set of equations Axp such that I[(Aggr) = I(A) and
normal? (diffSpoly(f;, f,), Axr) = 0 for each pair f;, f; € Agr.

This is achieved by taking the diffSpoly of each pair of equations in the system consisting

of A and any compatibility conditions obtained en route. The pseudo-normal form of the
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diffSpoly is found with respect to A and any compatibility conditions so far obtained.
If the resulting equation is non-zero it is called a compatibility condition. This process

continues until no new compatibility conditions are found.

The output, Agg, fails to be a differential Grobner basis if the so-called S-set, the set
generated by all factors of the Heoefs and Seps of the output set, contains an element that
is necessarily zero on all solutions of the system, in other words, is in the ideal generated
by the output set. Typically this occurs when, for some f € Agr, HDT(f) appears inside
a factor raised to some power > 1. An example of this can be seen in Mansfield [1996].
However, if one of the equations in Agpg factors, then Axp is not the most beneficial
output. When we systematically choose these factors to be zero in turn and append them
to the system A, more information will be gained from the Kolchin-Ritt algorithm; this
we will see in the following example.

The Kolchin-Ritt algorithm is implemented in diffgrob2 with the command
KolRitt (A, allvars, termorder,’ Ak r’, info={"Xset’} );

which also implements orthreduceall at the beginning and end of the algorithm to minimise
the calculations and to simplify the output. The procedure orthreduceall is simply reduceall

except that only strict reduction is allowed.

Example 1.7.4. Consider again equations f and ¢ from Example 1.7.1
f = utgs — ugpuy, g = Ugy — us — u(l —u)?,

with an (ALEX) ordering ¢ < x. The orthreduceall procedure will give the same output as
reduceall on A = (f,g), i.e. Apg = (j~, g) (cf. Example 1.7.2). Now rename g = f; and
f~ = f5 to be consistent with Example 1.7.3. The next procedure to be carried out in KolRitt
is that of taking the diffSpoly of f, and f5, as seen in Example 1.7.3, with result (1.107).
If we now reduce((1.107),[f1,f2].k1) in order to find k1 = normal”((1.107),{f1, f2}) the

result is, upon factoring
k1 : g (2u — 1) (u® — 2u® + v — uyy).

The set {f1, f2,kl} is the output of KolRitt in this instance, i.e. Agxp = {f1, fo, kl}
since diffSpoly(f1, f2), diffSpoly(f;, k1) and diffSpoly(f2, k1) all reduce to zero with respect
to f1, f2, k1. The output Agp is also a differential Grobner basis for the set { f, g}, though
as k1 factors we can gain more information by including these factors in turn in the original
system A = (f,g).

The first factor gives the trivial solution © = 0. The second factor, u,, when included
in the system A will give a differential Grobner basis after the orthreduceall step. We are
simply left with

{ug = 0,u; +u(l — u)? = 0},




Chapter One : General Introduction 61

as the differential Grobner basis. This describes spatially independent solutions. The
third factor, 2u — 1, gives a contradiction when reducing g with respect to it, so is not a
solution. Finally the fourth factor, u(1 — u)? — w,,, gives the time independent solution

from the differential Grobner basis
{us = 0,u(l —u)® — uze =0},

found once again by the strict reduction of g with respect to this factor.

1.7.5 A Direct Search strategy and the solution of overdetermined systems in

this thesis.

Whilst the termination of the Kolchin-Ritt algorithm has been proved (Mansfield and
Fackerell [1992]), the main problem that it encounters is that of “expression swell”, in
that the length of expressions obtained can become very large and so exceed the memory
limit of the available computer. More strategies are available (see Mansfield [1993]) to
overcome this, and here we consider the Direct Search strategy, which must be carried out
interactively in diffgrob2. It is perhaps best described by Figure 1.7.1, where a triangle

f1 fo

h

represents the differential S polynomial of f; and fo, pseudo-reduced with respect to all

the equations in the system, G, i.e. h = normal” (diffSpoly(f1, f2), G).

fi < f2 < f3

11,4

Figure 1.7.1: Schematic representation of a Direct Search strategy

This is really only a template strategy and whilst most of the interactive use of diffgrob2

in this thesis uses it, we find slight modifications are often more helpful. Indeed one could
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change the < to >, which is then more akin to a Sort strategy (cf. Mansfield [1993]), which
is also worthwhile bearing in mind. In fact combinations of the two may also be useful.
For instance equations that look long and daunting may pseudo-reduce with respect to
lower order equations to something quite simple though certainly not always: in Case
5.3.2 in Chapter Five, which requires the solution of the system of equations in Appendix
B, equation (B.1x) quickly gives useful information whilst equations (B.lix) and (B.1xi)
are often the last to be solved. The Direct Search strategy is now illustrated with the

following example.

Example 1.7.5. Consider the three equations which come from the nonclassical

determining equations in Chapter Two

fl : fua
f2 : kuu,d)u I 'Ii"uuu (,b I 25,:1: kuua (1108)
f3 : (/suuv

where k,, # 0, from which we wish to find conditions on k(u). As such, the derivatives
of k(u) can be thought of as the coefficients in what is essentially a differential version of
finding the echelon form of a matrix. The equations (1.108) fit into the template above
with an ordering x < t < v and £ < k < ¢ and note that (¢, ¢) depend on (z,#,u). In this
ordering HDT(f2) = ¢, and the other HDTs are obvious, as f; and f3 are single term

equations. To eliminate ¢, we first take the diffSpoly of f» and f3 to yield

Du,fZ - ku,ufB = Zkuuu (/S'u, + k;uuu’u,gZs Sty 2kuunu,£m aa Zkuugzua (1109)

where D is the total derivative operator. We reduce this with respect to fi, fo and fs.
Note that f3 is redundant in this pseudo-reduction as f3 > (1.109). Now fo will remove

occurrences of ¢, and f; the &, term to yield

hl : 2ku’u. kuuu fa: (2k iuu - u'u k UUWU )(/)a

which must be zero on analytic solutions of {f1, f2, f3}. In order to eliminate ¢, we take

the diffSpoly of h; and f5 to yield
kv Du (h'l) (quzmu - kuuuu)f2 :(41‘:uul‘:uuukuuuu I”qzm Eiowtine — 2k 1?21“4 )(/)

uu mm§r i 4]‘5“ wuuule + 2k‘ﬁ“ Auuuému'
(1.110)

We reduce this with respect to all of fi, fo, f3 and hy. Here fy and f3 are superfluous
in the pseudo-reduction as f3 > fo > (1.110), though this makes no difference to the
final result. However h; will remove occurrences of ¢, and again f; will remove the &,

derivative, to yield

2 . g 2
hZ : fr uu( 2kuuk“uuu ku’u I‘fuuuu,ukuuu =t l‘/’u.uu'ul‘uuu)
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which gives a condition on k(u) as required.

There are three observations that are noteworthy here. Firstly, whilst this follows the
Direct Search strategy the system (1.108) is only part of a larger set of equations, the
determining equations (2.11), so this is not a perfect Direct Search on the whole system.
Secondly, had we changed to a Sort strategy, in this case the steps and final result would
have been the same. Finally, Hcoef(h;) = 2k:§uu — Kyukyuunw which might be zero, and
since we have pseudo-reduced with respect to hj, the possibility of Hcoef(hy) = 0 needs
to be considered separately. It turns out, however, that this is a special case of the fifth
order equation in k(u) which is a factor of ho, so we may rejoin the general case.

Thus the Direct Search strategy is kept in mind when solving overdetermined systems
in this thesis, but we could not claim to hold to it to the letter, and a certain amount of
trial and error is inevitable.

Another strategy that is combined with the Direct Search strategy is that of explicitly
solving some of the equations, particularly linear ones, or perhaps integrating them
if finding the explicit solution is not possible. This is of particular use in solving
the determining equations for expressions in the ¢; which are often polynomial in the
“dependent” variables u. Consider a system of determining equations with dependent
variables (¢, ¢) and independent variables (z,t,u). It is often the case that &, = ¢, =0,
so in this instance rather than maintaining a general u-dependence for (¢, ¢) and constantly
having to pseudo-reduce with respect to {&,,¢y.}, which can take up considerable

computer time, we can reduce the system with respect to
fa=&(z,t,u) — F(z,t), fs =d(z,t,u) — Gz, t)u — H(z,t).

Now we may equate coefficients of powers of u to zero, and so possibly gain many equations
from a single equation. We now use our Direct Search strategy on this new system.
However even if we only knew f4, and ¢ still had a general u-dependence, so coefficients
of powers of u could not be equated to zero, the strategy still cuts down unnecessary
differentiation and pseudo-reduction, and so saves time.

Notice that using fy4 can only be advantageous: we have only reduced the number
of indeterminates, without increasing the number of determinates. However in general
one tries to balance the decrease in indeterminates with the increase in determinates,
such as in f5. Increasing the determinates without a notable decrease in the number
of indeterminates is not advantageous. Another balance one must consider is that of
increasing the number of determinates via integration generally, versus the decrease in
the order of the equation. By decreasing the order of the equation one tends to decrease
expression swell. Personally, the choice of increasing the number of determinates is usually
preferred. Although this way may take longer, as more determinates must be found, it

seems to give more information and therefore the complete solution set is more likely to
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be found.

An obvious drawback of this type of strategy comes from Example 1.7.5 above. If
we reduce our system (1.108) with respect to both fy and f5 we are left with only a
single equation. In fact we can get round this problem by creating two more equations
by differentiating the single equation with respect to u once, then twice, and removing
occurrences of H and G between the equations. This gives the same result but is perhaps
not as pleasing as Example 1.7.5. If we had only reduced the system with respect to fy
the working would have been essentially the same as Example 1.7.5, with a small decrease
in differentiation.

Finally we mention the problem of spurious cases, which result from equations that
factor, and when pseudo-reduction with respect to a partial differential equation f takes
place where Hcoef(f) or Sep(f) may be zero (which includes equations that factor).
Spurious cases are those that end up having no solution, i.e. they lead to contradictions.
Ideally we avoid having to split up the calculation at all, by choosing to pseudo-reduce with
respect to equations, f, with guaranteed non-zero Hcoef(f) and Sep(f), but in practice
this is often not possible. Indeed it seems that the pay off for being able to solve the
systems we encounter is that we must consider many cases to do so, particularly when
the equations whose symmetries we are seeking contain arbitrary functions or arbitrary
constants (as in Chapters Two through Five). Thus we don’t regret the build up of cases,

which careful accounting keeps track of, even if they turn out to be spurious.

1.7.6 The Clarkson-Mansfield algorithm for finding nonclassical determining

equations II.

Now we have introduced some theory and notation, a truer statement of the algorithm of
Clarkson and Mansfield [1994c] for determining the nonclassical determining equations of
a system can be given. Note that it uses only algebraic reduction, so rather than finding a
differential Grobner basis in the algorithm, a Grobner basis is sought, which has a similar
definition to its differential counterpart (cf. Definition 1.7.4) except that all calculations
are algebraic, so we require normal®(f,G) = 0, rather than normal”’(f,G) = 0. For
convenience we denote the Grobner basis of a system A, to be GB(A, termorder), which
depends on the ordering, termorder. For their algorithm the ordering may be a lexicographic
or a Bayer-Stillman ordering (Bayer and Stillman [1987]) which is not described here.

Given a system of m equations
Az, u,u™) =0,

where € = (21,22,...,2,) and w = (u, ug,...,u,), we assume without loss of generality

that A contains all the relevant differentiations of each equation up to order n (cf. ¥*
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below for the invariant surface conditions). Recall that there are p cases to consider: for
1 < k < p we successively set § = 1 and &1 = ... = §, = 0. In the kth case the

invariant surface conditions read
k—1
Vs = E Eqlls 5+ tha b = P for §=1,2;:5-5 9
j=1

Given also an ordering, termorder, the algorithm in the kth case reads

T = DY, |1 <5 < g0 € WP, |a| <n— 1}
K := {normal®(A;, ¥*) | A; € A}

Inf = {pr™v(f)|f € K}

GB := GB(K, termorder)

RInf := {normal*(f,GB) | f € Inf)
DetEqns := {Coef (f,u™) = 0| f € RInf}

where DetEgns are the nonclassical determining equations for A. The design of A allows
this algorithm to cope with compatibility conditions in the original system, so that the
true determining equations are calculated in such cases. This algorithm is easily adapted

to correspond to a classical method algorithm: simply let K := A.

1.8 The MACSYMA package symmgrp.max

The first step of the classical method, that of generating the determining equations, is
entirely algorithmic and as a result symbolic manipulation packages have been written
to aid the calculations. An excellent survey of the different packages available and a
description of their strengths and weaknesses is given by Hereman [1994]. Heuristic
procedures have been implemented in some of these programs to try to solve the
determining equations, the second step of the classical method, and are largely successful,
though not infallible: they are notoriously inadequate at finding special solutions, those
other than the general solution, when the determining equations depend on arbitrary
functions or arbitrary constants.

Since we prefer the method of differential Grobner bases to solve the determining
equations, which has proved effective in coping with such difficulties (cf. Chapters Two
through Five), we use a package that concentrates solely on the first step of the classical
method. Written by Champagne, Hereman and Winternitz [1991], it is a MACSYMA
package called symmgrp.max, and has been tested extensively by the authors and many
others. Crucial to our needs it may be adapted to generate the determining equations of
the nonclassical method by knowledge of the internal syntax, and both arbitrary constants

and arbitrary functions may be present in the system under consideration.
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Once again a small amount of notation is required: the translation of the original

variables into the symmgrp.max syntax is 2; — x[i], u; — u[j] and derivatives

01y ‘
e 8ms® ... (’):1:;'1 — wlilea, o)

The infinitesimals translate as ; — etas and ¢; — phij, and these in the input may be
recognised as symmgrp.max’s own notation for the infinitesimals. This is the phenomenon
that allows symmgrp.max, a package initially designed to find classical determining
equations, to find nonclassical determining equations also.

To plunge straight in, consider the two files needed to run symmgrp.max as a batch job

to find the classical determining equations for our prototype equation (1.1)

clfnaone.case: clfnaone.dat:
batchload(”symmgrp.max”)$ p:2$
writefile(” clfnaone.out”)$ q:1%
batch(” clfnaone.dat”)$ m:1$
symmetry(1,0,0)$ parameters:[]$
derivabbrev:true$ warnings:true$
printeqn(lode); sublisteqgs:[all]$
save(” clfnaone.lsp” lode)$ subst_deriv_of_vi:true$
for j thru p do (x[j]:=concat(x,j))$ info_given:true$
for j thru q do (u[j]:=concat(u,j))$ highest_derivatives:all$
ev(lode)$ depends([etal,eta2,phil],[x[1],x[2],u[1]])$
clfnaoneode:ev(%,x1=x,x2=t,ul=u)$ el:u[1,[0,1]]-u[1,[2,0]]4+u[1]*(1-u[1])**2;
grind:true$ v1:u[1,[2,0]];
stringout (" clfnaoneode” clfnaoneode)$
closefile()$

It should be noted that symmgrp.max was designed to cope with arbitrarily large
systems where some interactive use would be necessary. Thus this brief description of the
commands may give an indication of what it is capable of, however as each of the systems
that we consider is small enough to run as a batch job, we refer the reader to the authors’
detailed description, Champagne, Hereman and Winternitz [1991], to see symmgrp.max’s
full potential. Many of the commands are simply MACSYMA commands; for details of such
commands one can consult the MACSYMA Reference Manual [1988].

Starting with clfnaone.dat, which contains mostly symmgrp.max commands, we note

that the system under consideration in general is still
Az, u,u™) =0,

with m equations, p independent variables and q dependent variables, hence for (1.1) m=1,
p=2 and q=1. The parameters command allows the user to declare non-zero constants, so
they may be removed if they are factors of a determining equation (though note that since

the flag for warnings is true such factors will be listed). One includes arbitrary functions by



Chapter One : General Introduction 67

declaring the variables they depend on with the MACSYMA depends command, and then
simply putting them in the equations (the ei); their derivatives are represented in the
usual MACSYMA notation.

The next five commands in clfnaone.dat ensure the classical method is applied in full,
and must always be included. Slight modifications of their flags or variables allow the
calculations to be split into pieces, for instance by considering a subset of the system, or
by only taking the determining equations from the highest derivative terms, which are
smaller in general. For full details see Champagne, Hereman and Winternitz [1991].

The MACSYMA depends command allows us to declare that the infinitesimals depend
on all the new independent variables. The equations of the system are called e: for
¢ = 1,2,...,m, and the derivatives that are to be substituted back for (the v; of §1.2)
are denoted vz, and there must be m of them. These vi must be chosen in the same

manner as the v; (cf. Step One (b) of the classical method).

The majority of commands in clfnaone.case are MACSYMA commands, and include
details not central to the actual calculation of the determining equations but the controlling
of the output. The first three lines load the package symmgrp.max, create a file clfnaone.out
to send the output to, and read in clfnaone.dat respectively. The determining equations are
generated via the symmetry command which can have 0 or 1 for each of its three arguments
(see Champagne, Hereman and Winternitz [1991]). The remainder of the file prints the
determining equations via the command printeqn, first saves them in internal MACSYMA
notation, then saves them in the file clfnraoneode in a notation that can easily be translated
into diffgrob2 notation. In fact a tiny amount of editing on the file clfnaoneode allows
it to be read in by diffgrob2 and converted to its syntax via the diffgrob2 command
max2dg.

Thus entering MACSYMA and typing the command batch(” clfnaone.case”); yields

/] ek ke ok sk ok o ok ok o ok sk sk ok sk sk sk sk sk sk sk sk sk sk ok ok o o o kK ok sk ok ok sk sk sk sk ok ok ok ok sk ok o ok ok ok ok o o o o  k /

/ * WELCOME TO THE MACSYMA PROGRAM FOR THE */

/* CALCULATION OF THE SYMMETRY GROUP */

/* IN BATCH MODE */

/KK ok ok sk ok ok sk sk ok sk ok ok ok sk ok ok sk ok ok ok sk ok ok sk sk sk sk sk sk sk sk ok o ko ok ok ko ok ok ok ok k /

*%x*x Number of determining equations before simplifications: 9 . *x*x*
***% Number of determining equations after simplifications: 7 . k*x
**xx These determining equations are stored in LODE. **x*

Notice that symmgrp.max has made simplifications. These ensure that the determining
equations are free from redundant factors, repetition and trivial differential consequences.

The remainder of the screen output is then the determining equations which it displays as

deta2
Equation 1 : ----- =0
du
1
deta2
Equation 2 ¢ ~—---- =0
dx
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detal
Equation 3 : ----- =0
du
1
2
d phil
Equation 4 1 ==——== =0
2
du
1
Equation 5 :
deta?2 detal
————— = 2 ==—== =0
dx dx
2 1
Equation 6 :
2 2
d phil detal d etal
2 ——————- + ————— = =0
du dx dx 2
1 1 2 dx
1
Equation 7
dphil d phil 3 dphil 2 dphitl dphil 2
———————————— S, EssEs g Do S =g eEses sk 3w cphil
dx 2 1 du 1 du 1 du 1.
2 dx 1 1 1
1
3 detal 2 detal detal
- 4u phil + phil + 2 u ----- -4u ---—- # 2 AL m———— =0
1 1 dx 1 dx 1 dx
1 1 1,

To generate the nonclassical determining equations for (1.1) we use the method of
Clarkson and Mansfield [1994c], described in §1.3.1 and §1.7.6. We only consider the case
when 7 = 1 as the working when 7 = 0 is similar. As discussed in §1.3.1, we simply replace

the occurrence of u; by the invariant surface condition

up = ¢ — Euyg.

Hence we consider the file nclfnaone.dat

p:29$

q:1$

m:1$

parameters:[]$

warnings:true$

sublistegs:[all]$
subst_deriv_of_vi:true$
info_given:true$
highest_derivatives:all$
depends([etal,phil],[x[1],x[2],u[1]])$
eta2:1$
el:phil-etal*u[1,[1,0]]-u[1,[2,0]]+u[1]*(1-u[1])**2;
v1:u[1,[2,0]];
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As discussed before, symmgrp.max recognises the infinitesimals etal, eta2 and phil as its own
notation which is why the package may be adapted to generate nonclassical determining
equations. The other file nclfnaone.case is the same as clfnaone.case except with occurrences

of the string clfnaone replaced by the string nclfnaone. This yields

/*********************************************************/

/% WELCOME TO THE MACSYMA PROGRAM FOR THE */

/* CALCULATION OF THE SYMMETRY GROUP */

/* IN BATCH MODE */
/*********************************************************/

*x*x Number of determining equations before simplifications: 4 . **x
*xx Number of determining equations after simplifications: 4 . *x*x
**xx These determining equations are stored in LODE. *xx

2
d etal
Equation 1 : =———— =0
2
du
1
Equation 2 :
2 2
d phi1l d etal detal
—————— = 2. ======= 4 9 @gfal —=--~ =10
2 du dx du
du 1 1 1
1
Equation 3
2 2
d phil detal detal d etal detal 3 detal
D omim=m—— = D = phiiirlle——e N = + 2 etal -—-—-- - 38 -——-
du dx du dx 2 dx 1 du
1 1 1 2 dx 1 1
1
2 detal detal
+ 6n =o=== = 3 m === =0
1 du 1 du
1 1
Equation 4 :
2
dphil d phil 3 dphil 2 dphil dphil detal
———————————— =W === Gl soses e gL e o D) oo phily
dx 2 1 du 1 du 1 du dx
2 dx 1 1 1 1
1
2 3 detal 2 detal
+3u phil -4 u phil +phil + 2 u -—-———- = mem——
1 1 dx 1 dx
1 1
detal
+ 2 b e =0
1 dx
1

Whilst in this example the Clarkson-Mansfield approach to generating the determining
equations seems to be no more advantageous (see also §1.3.1), for equations which have
higher order and mixed ¢ derivatives it is certainly so. For instance the equations in
Chapters Three through Five would require a large number of differential consequences of
the mvariant surface condition to be included in the system. These would each have to be
back-substituted for in the correct order, and possibly more than once to get symmgrp.max

to generate the correct determining equations — it almost doesn’t bear thinking about!
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Scalar Equations



Chapter Two:

A Generalised Boussinesq Equation

2.1 Introduction

In this chapter we consider a generalised Boussinesq equation
Uty = [D(U)]zz + Uzgaz, (21)

where D(u) is an arbitrary sufficiently differentiable function, with the condition that
D, # 0 to ensure nonlinearity.

The Boussinesq equation which (2.1) generalises is
e = (Ll q
Ut = (5“ ).TII? -1 “‘.’EI.’I?IIT) (22)

which is a soliton equation solvable by inverse scattering (see Ablowitz and Haberman
[1975], Caudrey [1980,1982], Deift, Tomei and Trubowitz [1982], Zakharov [1974]),
originally used by Boussinesq [1871,1872] to describe the propagation of long waves in
shallow water. It has been used since to model many other physical phenomena, including
one-dimensional nonlinear lattice waves (Zabusky [1967], Toda [1975]), vibrations in a
nonlinear string (Zakharov [1974]), and ion sound waves in plasma (Scott [1975]).

The 7 # 0 nonclassical reductions of the Boussinesq equation (2.2), which we will
rederive here, were first found by Clarkson and Kruskal [1989] using the direct method
(for z, # 0). Later Levi and Winternitz [1989] used the nonclassical method with 7 # 0 on
(2.2) and found the results to be the same as Clarkson and Kruskal’s. The 7 = 0 results
were found by Clarkson [1990] and Lou [1990] by considering the equivalent case in the
direct method, namely z, = 0. A comparison of all the direct and nonclassical reductions
can be found in Clarkson [1995].

The equation (2.1) itself appears in Rosenau [1986] as a model for propagation of pulses

along a transmission line made of a large number of LC-circuits. It is also used as a model
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to describe vibrations of a single one-dimensional dense lattice (Rosenau [1987,1988]).
However Rosenau rejects equation (2.1) in these studies as it is ill-posed for his problems,
and assumptions must be made on the nonlinearity of D(u).

Flytzanis, Pnevmatikos and Peyrard [1989] derive the equation
Ut — C;Z)“'.rq: - ])(71'2)1'I - (1(“‘3).7:1: - h‘“‘.’lf.’L‘Il‘ == 07 (23)

from a consideration of a one-dimensional monatomic lattice with only nearest neighbour
interactions with a cubic-quartic potential. Equation (2.3) can be regenerated by
considering the simpler D(u) = w® + cu and an appropriate rescaling of z,t,u and
translating of u.

In this chapter we find conditions on D(u) such that it allows symmetries, in particular
those beyond the (obvious) translational symmetries of the independent variables. We use
the classical Lie method (§2.2), and the nonclassical method in both the generic (7 # 0)
and non-generic (7 = 0) cases (§§2.3,4), to find these symmetries. The MAPLE package
diffgrob2 plays an important role in both the classification of D(u) and the solution of
the determining equations (see §1.7 for details). Once the symmetries have been found we

find the associated reductions and test whether the ordinary differential equations thus

found are of Painlevé-type (see §1.6 for details). In §2.5 we discuss our results.

2.2 Classical symmetries
To apply the classical method we consider the one-parameter Lie group of infinitesimal

transformations in (z,¢,u) given by

T* =z + eé(z,t,u) + O(e?), (2.4i)
t* =t + er(z, t,u) + O(e?), (2.4i1)
u* =u+ep(z,t,u) + O(e?), (2.4iii)

where ¢ is the group parameter. This procedure, which is implemented in symmgrp .max,
yields a system of linear determining equations in &, 7, ¢, though the presence of our

arbitrary function D(u) makes them essentially nonlinear.

7w =0, (2.51)
7 = 0, (2.5ii)
€y =0, (2.5iii)
buu = 0, (2.5iv)
§& =0, (2.5v)

2(/)3:71. - 351:17 = 07 (25V1)
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20t — 11t = 0, (2.5vii)
Ty — 26 = 0, (2.5viii)
Dyutu + Dy + 262 Doy, = 0, (2.5ix)
st — Przzz — Dudee =0, (2.5x)
6Prou + Duutd + 262Dy — 4400 = 0, (2.5xi)
2Dy s + 4paen + 2Dy brn — Exa Dy — Evger = 0. (2.5xii)

Applying the Kolchin-Ritt algorithm to system (2.5) with a lexicographic ordering with
¢ <7< D < ¢yields (amongst others) the equation

fz (D'uDuuDuuuu - 2D11D12Luu I D121,11,D1L’U.u) = Oa (26)

from which we can classify which D(u) are suitable candidates for classical reductions.
Clearly D,,,, = 0 is one solution, then assuming D, # 0 we divide (2.6) by Dy, Dy Dyyu
to give a logarithmic differential. Solving this equation for D(u) we find there are four

canonical cases to consider,

(i) & =0,

(i) Diuw)=u" forn#0;l,
(i) D(u) = e,
(v) D(u) =y,

where we have used the invariance of (2.1) under (constant) translations of D(u), and we

have scaled and translated u (by constants) as convenient.

Case 2.2.1 &, = 0. It is easy to see from (2.5vi,xi) that when &, = 0, requiring D,,, # 0

we have ¢ = 0. Both & and 7 are then constant, but D(u) remains arbitrary. We have

found the travelling wave reduction
Reduction 2.2.1. We choose ¢ = ¢, 7 = 1 without loss of generality to yield
(2, t) —w(z), 2 =g —ct,

where w(z) satisfies

wW"" + Dy (w')? + Dyw” + Pw” =0,
where D = D(w). This may be integrated twice to yield
w" 4+ D(w) + *w = Az + B, (2.7)

where A and B are arbitrary constants. This equation falls into the classification of Pain-

levé and his colleagues who look for equations that are of Painlevé-type, for algebraic
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D(w) (cf. §1.6). From Ince [1956] we see that either D(w) is quadratic in w, then (2.7)
may be solved in terms of the first Painlevé equation, PI (A # 0) or Weierstrass elliptic
functions (A = 0), or D(w) is cubic in w, in which case we require A = 0 and (2.7) may
be solved in terms of Jacobi elliptic functions. For non-algebraic D(w) we consider here
the two special cases which are non-algebraic above, namely D(w) = e¢* and D(w) = Inw.

If D(w) = e" we differentiate (2.7) and make the transformation w(z) = In W (z) so
that (2.7) becomes rational. However applying the ARS algorithm to this equation we
find it is not of Painlevé-type as its resonances are not distinct.

If D(w) = Inw we again differentiate (2.7), to get a rational equation. There is
a difficulty in applying the ARS algorithm as it is not possible to balance the dominant
terms. Instead we use Painlevé’s a-method, keeping w fixed and transforming z — zg+a€.
It is routine to show that we introduce logarithmic branch points into the expansion

w = Y w;a’, so that in this instance (2.7) is not of Painlevé-type.

Case 2.2.2 D(u) = u"™, for n # 0,1. We apply the Kolchin-Ritt algorithm to system (2.5)

with D = u", which yields

Eu =0} & =10, oz =0, T = 0 Tz = 0,

T — 26, =0, (n—2)(¢(n —1) 4+ 2&,u) =0.
We find by reapplying the Kolchin-Ritt algorithm with n = 2 that the factor (n — 2) is
just an artefact of the equations. We have the infinitesimals

2c1u
n—1

¢ =T+ co, T = 2¢c1t + c3, ¢ =

As well as the travelling wave reduction 2.2.1 above which we are bound to get (setting

¢1 = 0), we also have the scaling reduction

Reduction 2.2.2. If ¢; # 0 we set ¢; = 1 and ¢ = ¢3 = 0 without loss of generality,
to yield

u(z,t) = w(z)t~Y =1, z =gt /2
where w(z) satisfies

3n+1 n ,
1B i n + / w=w"+nn-Dw"?(w)?+nw" tw'.  (2.8)

Tl 4(n — 1)zw + (n—1)2

In the ARS algorithm, looking for the dominant behaviour of (2.8), we assume that
w(z) ~ ag(z — 20)P as z = zp, and find p = —2/(n — 1). Thus requiring p to be integer
(though clearly p # 0) we find n = (p — 2)/p. If n is to be integer (remembering n # 0, 1)
we see that n = —1, 2 or 3. If n = 2 this is a reduction of the Boussinesq equation, and is

of Painlevé-type. If n = 3 or n = —1, equation (2.8) can be integrated with respect to z

to yield
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(i) f n=3

1220 + 3w = 0" + 3w’ + ¢y (2.91)

Equation (2.9i) has both acceptable leading order behaviour and distinct integer res-
onances. However the compatibility conditions at the resonance equations require an
arbitrary constant to be zero, thus (2.91) is not of Painlevé-type.

(i) If n=-1

12w’ — 2w = wPw" — W'+ cu?. (2.9ii)

We again have difficulties with the ARS algorithm in balancing dominant terms. Pain-
levé’s a-method, with w fixed and z — 2y + @, however quickly shows that the solution
of (2.9ii) has logarithmic branch points.

If n is not integer, continuing with the ARS algorithm we are able to show that (2.8) has
distinct integer resonances, however with a general n it is difficult to finish the algorithm.
This is due to the resonances being dependent on n, and also they may be negative which
would require perturbative Painlevé analysis (cf. §1.6.2). Therefore we again turn to
Painlevé’s a-method, using the same transformation as above. We find algebraic branch

points thus (2.8) is not of Painlevé-type in this instance.

Case 2.2.3 D(u) = e". The KolRitt procedure simplifies the determining equations (2.5)

to the simple system
gu = 03 £t = Oa 517:1: = 0, Ty = (), P — 0’
w—2 =0, ¢$+2, =0

These give the following infinitesimals
E=ciz+ co, T = 2¢1t + ¢z, ¢ = —2cq,

which give, as well as the travelling wave reduction 2.2.1, a scaling reduction

Reduction 2.2.3. If ¢c; # 0 we set ¢; = 1 and ¢y = ¢3 = 0 without loss of generality,
to yield

u(z,t) = w(z) — Int, z =t 2
where w(z) satisfies

120" + 320 + 1 = 0" + e“[(w')? +w"].

By making the transformation w(z) = In W (z) we can obtain an equation which is rational
in W(z), to which we can apply the ARS algorithm to test if the equation is of Painlevé-
type. We find an acceptable leading order behaviour but, whilst the resonances are all

integer, they are not distinct. Thus we conclude that the equation is not of Painlevé-type.
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Case 2.2.4 D(u) = Inu. Once again we use the KolRitt procedure to dramatically simplify

the determining equations (2.5),

gu == 07 Et = 07 f:r:r = 01 Tu = 07 T

0,
Tt — 25'1: =0, (/) + 26:1:“ = Oa

which give the following infinitesimals
& =cix + co, T = 2¢1t + c3, ¢ = —2c1u.

Not only do these infinitesimals give the travelling wave reduction 2.2.1, but once again

we also have a scaling reduction

Reduction 2.2.4. If¢; # 0 we set ¢; = 1 and ¢, = ¢3 = 0 without loss of generality,
to yield

wim, t) = tuwiz), z=gzt"/2,

where w(z) satisfies

12w*w’ + 222wt = v + ww” — (w')?. (2.10)

The ARS algorithm again falls down so we use the a-method with the same transformation
as previously. Logarithmic branch points are introduced thus (2.10) is not of Painlevé-

type.

2.3 Nonclassical symmetries (7 #0)

In this section we may set 7 = 1 without loss of generality. We use the algorithm in
Clarkson and Mansfield [1994c], which in this case demands the removal of uy using
the invariant surface condition. The classical Lie method is then applied to this new
equation which yields an overdetermined system of nonlinear equations. These determining

equations are

€. =0, (2.11i)
buu = 0, (2.11ii)
20— 3pp = 0, (2.11ii1)
Dot 4 Do + 28, Dy, =10, (2.11iv)
6¢rzu + Duutd + 26, Dy, — 4y — 4626, — 26&, = 0, (2.11v)

¢:lr:l:'1:1? I Du.¢1‘z + 46’52?(1)1 + 251.(1).’17 - 4513(//)(/)u - (/)N - 2(/)(/)“1. - 451(1% = 07 (211V1)
2Dy + 4¢za::1:u + 2Dy
== 85514)11 <+ 261‘(/)11, = 2E¢tu — f:l::::Du . f.’l?(l?(l::t o 4553 - 2£f£1 I ftt = 0. (211V11)
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Using the Direct Search strategy in the MAPLE package diffgrob2 on equations
(2.111,i1,iv) gained the following condition (cf. Example 1.7.5)

f(I)D'i“(_2DuuDiuuu, = D’u,'u,Du'u,uuuDuuu =+ l)uuuuD2 ) =0. (212)

uuu

The factor inside the brackets, only involving D(u), can be solved by dividing through
by Dy DyyuDywun giving a logarithmic differential (assuming D0 # 0; it is clear from
(2.12) that Dy = 0 is one solution). Solving this leads to six separate cases to consider:
@
(ii

u) = au’ + bu® + cu + d,

)
) D(u)
(iii) D(u) = (au+b)" +cu+d, n#0,1,2,3,
(iv) D(u)
) D(u)

1
(v u) = —In(au + b) + cu + d,
a

1
(vi) D(u) = =[(au +b) In(au + b) — (au + b)] + cu + d,

a?

where a, b, ¢ and d are arbitrary constants.

Case 2.3.1 £, =0. In this case we append &, = 0 to the determining equations (2.11)

and use the Kolchin-Ritt algorithm to simplify this enlarged system. This yields

§u =0, (2.13i)
i (Da D yign, — 2DZ ) =10, (2.13ii)
Dyup — 266 = 0, (2.13iii)
Puu =0, (2.13iv)
28ty + 28ty + &1t = 0, (2.13v)
$au =0, (2.13vi

)
(/).'nxzzt I Du¢zz =+ 2Ef§br - (/)tt - (/)(/St’u, - 0 (213V11)

In (2.13ii), if Doy Dyyuu —2D2,,, = 0 then (2.12) is identically satisfied, thus the solutions
of DyyDuyyuu — 2D?2,,,, = 0 are a subset of the solutions (ii)—(vi) above and therefore this
scenario will be considered in the subsequent Cases. With D, Dyuuu — 2D12m,“‘ # 0 we see

from (2.13ii) that £ = 0, and we have the infinitesimals £ = ¢y, ¢ = 0 for arbitrary D(u).

This gives the classical reduction 2.2.1.

Case 2.3.2 D(u) = au® + bu® + cu + d. There are essentially two subcases to consider,

when (i) @ = 0 and when (ii) @ # 0. Other subcases arise but these make our original

equation (2.1) linear which we choose not to consider here.
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Subcase 2.3.2(i) D(u) = bu® + cu + d. We can choose b = % and ¢ = d = 0 without loss

of generality, then (2.1) becomes the Boussinesq equation
Utt = “'3-, + UlUgy + Uzzza, (214)

which is a soliton equation solvable by inverse scattering. The symmetries of the
Boussinesq equation are well known (see Clarkson and Kruskal [1989], Levi and Winternitz
[1989] and Clarkson [1995]), but the calculation is included here for completeness. The
determining equations, system (2.11), is simplified enormously using the Kolchin-Ritt

algorithm in diffgrob2 to yield

§u =0, (2.151)
ALE2 — 2oty — 1 = 0, (2.15ii)
ox =0, (2.15iii)
28,u+ ¢ — 4626, — 266, = 0. (2.15iv)

We can therefore write ¢ in the form & = f(t)z + g(¢) and substituting this information

into (2.15i1) gives us conditions on f and ¢ by equating powers of z to zero

dzj (lf -3 ok
dt2 f —4f° =0, (2.161)
d? d*g (l] 9 .
pro) + f —4gf°=0. (2.16ii)
d
By making the Cole-Hopf transformation f(t) = 58—[111 (t)], we find 1) satisfies
d\ 2
(i) — (;1'(/)3 + Cois (217)
dt
after integrating twice, which is equivalent to the Weierstrass elliptic function equation
do\ 2
<d—f> :4g)a(t+t0;0,_(]3) — gs3. (218)

If f =0 then g = c5t + cg is the general solution of (2.16), then ¢ = 2c5(cst + ¢g). When
f # 0 we note that g = f is a solution of (2.16ii) so we can write g = fr(t) which gives a
first order ordinary differential equation in %, which is solvable and hence we find ¢ in
terms of quadratures. Equation (2.15iv) gives us ¢ directly. This yields

§=f(t)x +g(t),
df

(/):—2j'u+2f<2f2 f)z+2<4f2(1+2q5+2f >:1r+2g<2jf+(11“')

where

FO =33 mmu), o) = < Inp(o) <+/w<>/ (%) 1)
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where () satisfies (2.17) and ¢, ¢, ¢3 and ¢4 are arbitrary constants. There are six

canonical reductions

Reduction 2.3.1-6.

L. wlzt) =wi(2), 2= —ert,
2. u(z,t) = wy(z) + c3t?, z =1 — 5012,
3. u(z,t) = ws(2)t? + z2/t2, g =ut,
4. u(z,t) = wa(2)t71 + (z + 3cqt?)?/(442), 2= gl W2 g ST2,
5. u(z,t) = ws(2)t? + (z + cst®)2 /12, z =zt + c5t%/6,
2
6. u(z,t) = p {wg(z) #* [%z% + %ws/z] } , z=p 1?2 |:.’L' + %C(T)} ,

where p(t; 0, g3) is the Weierstrass elliptic function and {(z) is the Weierstrass zeta function

defined by the ordinary differential equation

d¢

dz

= —p(2), (2.191)
together with the condition

z2—0

lim (Q(z) — 1) = () (2.19ii)

Each of the w;(z) satisfy the equation

" 1 N2 &
w, +ww,; + (w;)* = Fi(z,w;), (2.20.1)
where the F;(z,w;) are
F = cuf, Fy = 3zw) + 3wy + £22,
Fy = 2(,3 — Ccowh, Fs = 5esw + 50c2,
= 922 3 3 /
F3 =0, Fs = 3952° — 593we — 3932w,

and (2.20.1,3) are equivalent to the first Painlevé equation, PI, (2.20.2,5) are equivalent
to the second Painlevé equation, PII, and (2.20.4,6) are equivalent to the fourth Painlevé

equation, PIV.
Subcase 2.3.2(ii) D(u) = au® + bu? + cu + d, and assume a # 0. We can set a = 1, and
b = d = 0 without loss of generality. The equation we are now considering is

Ut = Uggay T (“'3 + CU):I::I:7 (221)

which is sometimes called the cubic Boussinesq equation. The Kolchin-Ritt algorithm

simplifies the updated system (2.11), to give the following relevant equations

&u =0, (2.22i)
ctél(c—€%) =0, (2.22i)
126€2 — &yt + 26&4 =0, (2.22iii)
{ru+ ¢ =0. (2.22iv)




Chapter Two : A Generalised Boussinesq Equation 80

If we insist ¢ # 0 then from (2.22ii) we have & = 0, then ¢, = 0 from (2.22iii) and we have
the infinitesimals £ = ¢;, ¢ = 0, where ¢; is an arbitrary constant, which is consistent
with the rest of the system. These infinitesimals give us the (classical) travelling wave

reduction. In the case when ¢ = 0, the determining equations now have the form

&u =0, (2.231)
Puu = 0, (2.23ii)
2000 — 38ee = 0, (2.23iii)
Puu + 28u+ ¢ =0, (2.23iv)
380”4+ 3u + 3dpeu — oo — 2628 — E€ =0, (2.23v)
A, by — 3ot — Puzs — 4€uby — 261y + bre + 201, + 40y = 0, (2.23vi)

6pguu® — 3€,u’ + 12¢,u

+ 4(!)1r:v$u + 8££1¢u + 2§t(/)’ll, St 2£¢tu - éwwwz - 4665 = ZEfEr =+ ftt — 0 (223V11)
With an ordering ¢t < z < u and £ < ¢ we can reduce((2.23ii),[(2.23iv)], k1), which gives
k1: ¢+ &u=0.

We then reduce((2.23iii),[k1,(2.231)], k2) which leaves k2: ¢, = 0. Finally we
reduce((2.23v),[k1,k2,(2.231)], k3) which yields

k3 : e + 266, = 0.

Equations (2.23vi) and (2.23vii) both now reduce to zero, so we have found the differential

Grobner basis, i.e. the system
{u = 07 E.’L’.’C = 07 £t + 266:1: = 0’ (/) + f;,;’lt = ),

These infinitesimals only give rise to classical reductions.

Case 2.3.3 D(u) = (au+b)" + cu+d for n #0,1,2,3. Without loss of generality we

consider D(u) = u™ 4 cu. Substituting this into the determining equations and using the
Kolchin-Ritt algorithm in diffgrob2 gives a (rather large) system of nine equations. The

interesting ones are the first, second, seventh, and ninth equations

€. =0, (2.24i)
neu?€€2(n —2)(3n +1)(n — 1)3(€% — ¢) =0, (2.24ii)
nu?(n —1)(n — 2)(3n + 1) (nas + 4nplps — 86> — Eppr — 884&as) = 0, (2.24vii)

)

n(n—1)(n — 2)(ng — ¢ + 2&,u) = 0. (2.24ix
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If (14 3n)c # 0 it is easy to see first that £ = 0, then &, = 0 so that £ = ¢1, ¢ = 0 and we
have the travelling wave infinitesimals. If ¢ = 0 we append the equation ¢p(n—1)+2&,u =0

to our determining equations and use reduceall on this new system. This yields
§u =0, (1 +3n)ee =0, E(n—1)(1+3n)(& +28&,) =0, dp(n—1)+2&u = 0.

With a little more effort, using the Direct Search strategy, we can show that the (1 + 3n)
factor is an artefact of the equations whatever value c takes. These infinitesimals give the

classical reductions of Case 2.2.2 (for n # 0, 1,2, 3).

Case 2.3.4 D(u) = ae® + cu+d. We may consider D(u) = e* + cu without loss of

generality. Substituting this into the determining equations and using the Kolchin-Ritt

algorithm gives the following system of seven equations,

§u =0, (2.251)
Ectl(—c+ %) (—c+ 66%) =0, (2.25ii)
Py — 482k + 48464 — BE3E2 + 20882 = 0, (2.25iii)
2%, — by + E6 =0, (2.25iv)
4862 — 2648, — Eu = 0, (2.25v)
att + 4828t = 0, (2.25vi)
e =0, (2.25vii)
¢+ 28, =0. (2.25viii)

For the general case ¢ # 0 this again gives us only the travelling wave infinitesimals. For

the case ¢ = 0 we use the Direct Search strategy to find the simpler system of equations
fu = 07 grr = 0, ft o 2E£z =0, (/) = 2{:1,' = 0.

On solving these equations we find the classical results of Case 2.2.3.

Case 2.3.5 D(u) = +In(au + b) + cu+ d. We consider D(u) = Inu + cu without loss of

generality. Substituting this into the determining equations and using the Kolchin-Ritt
algorithm gives a system of nine equations. The interesting ones are again the first, second,

seventh, and ninth equations

§u =0, (2.261)
u€2E(c — €7) = 0, (2.26ii)
U2 (Epge + 8EE4s + 8E3) = 0, (2.26vii)
b — 26,u = 0. (2.26ix)
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If ¢ # 0 equation (2.26ii) implies that £ = 0, then we see that £, = 0 from (2.26vii).
These infinitesimals give the classical travelling wave reduction. In the special case when

¢ = 0 the Direct Search strategy yields the system
fu = 0, fa:a: = 0, ft + 2{51 = 0, (/I) — 26_,;71, - 0,

which yield the classical results of Case 2.2.4.

Case 2.3.6 D(u) = %[(au+ b)In(au + b) — (au + b)] + cu + d. We consider without loss

of generality D(u) = ulnu + cu. Our determining equations, simplified by KolRitt, can be
solved by looking at only four of them

&u =0, (2.27i)
E3¢u(7 — 16€% + 16¢*) = 0, (2.27ii)
& =0, (2.27iii)
¢ — 26&u = 0. (2.27iv)

The solution of these equations is £ = ¢1, ¢ = 0 which leads to the travelling wave reduction

only.

2.4 Nonclassical symmetries (7 =0)

We may set & = 1 without loss of generality so that the invariant surface condition reads
tuy = ¢(z,t,u). We remove Uy, Uy, and Ugzy,, using the invariant surface condition (as
[D(u))se = Dyuwt? + Dyug,), and apply the classical Lie method to this new equation.

The determining equations are

Puu =0, (2.28i)
e = 0, (2.28ii)
Prave + 4bouPer + Dudbzs + 6¢rude + 40Prazu + 60y Pozu + 8092, + 4bP% Pru

+ 2Dy dbuy + 2Duud® by + 4bydrube + 3Duu e — Pt + Dyuud® = 0. (2.28iii)

We use the Direct Search strategy to get some conditions to simplify our problem. We

find an equation of the form

2 2
(/)tDuu(Duu DuuuuuDuuu 2Du uD“um, DuuuuD

uuUU

)A(ua D) =0,

where A(u, D) is an ordinary differential equation in D(u), consisting of approximately
150 terms. If ¢; = 0 we are not much better off than before; (2.28iii) is still a linear

equation for D(u) but is just as intractable to solve. Also, assuming A(u,D) = 0 is of
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little help as an equation of this size is somewhat meaningless. We proceed by using the
other condition on D(u) we have found, which is in fact the equation we used to classify

D(u) in the previous section, equation (2.12). This gives us six canonical cases to consider,

(i U =

b

D

u) = u + cu,

D

) D(
) D(
) D(u)=u"+cu,  forn#0,1,2,3,
(iv) D(u
) D(
) D(

G

) =
u) = Inu + cu,
D(u)

u) = ulnu + cu.

In each case (2.28i,ii) gives us that
¢ = A(z)u + B(z,1), (2.29)

which we substitute into (2.28iii) and equate independent functions of u to zero. (These
independent functions are often powers of u, but may also involve terms like Inu or e*.)
In the remainder of this section for convenience we will denote the derivatives of A with
respect to x with subscripts despite the fact that they are not strictly partial derivatives.

Note that if ¢ = 0 we are left with the equations
g = 0 uz = 0,

to solve, which give the trivial solution u(z,t) = ¢1t + ca.

Case 2.4.1 D(u) =

%11,2. We have a system of three equations to solve for A and B,

Agz +5AA, +243 =0, (2.30)
Az + 108es A 5 By 4 Al A

+6A4%2A4,, + 12AA2 + 4A3A, + 5BA, + 4A’B + 3AB, = 0, (2.30ii)
Brozw +4A,Byy +4BAps + 6BAA,, +8BA?

+4BA%A, + 6A,. B, +2B%A — By + 4AA, B, + 3BB, = 0. (2.30iii)
1

We can simplify equation (2.30i) by making the transformation A = —;—l [ (z)] then
dz

the new equation in 1) can be integrated twice to yield

U
(—) = p*? +c,. (2.31)
dz

If ¢c; # 0, c; = 0 we can integrate again to give A = 2/(z + ¢3). Substituting this

information into (2.30ii) we get an Euler equation

(z + &)2Bye + 6(z + @) B, + 6B = 0,
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which has solution

(1) p(t)
Bla,1) = (4 ¢3)3 i (@ +¢cs5)?

Substituting this into (2.30iii) gives p(t) = 0 and 7(¢) may take the values 0 or 48. Thus
we have the infinitesimals
2u 48

= (z + c3) g (z + ¢3)3’

where = 0 or 1. This gives us the following reduction

Reduction 2.4.1. D(u) = tu?

-]
124
ulz,t) = wit)lz+c 2 5
(@.0) = w()fe + er)* — o
where w(t) satisfies
d2w
— — 6w® = 0.
dt? v

This equation is equivalent to the Weierstrass elliptic function equation.

If ¢; = ¢ = 0 we have the trivial solution of (2.30i), namely A = 0. In this case (2.30ii)
gives B,, = 0 so we write B(z,t) in the form B(z,t) = 2f(t)x 4+ g(t) and substitute this
into (2.30iii) giving, on equating powers of = to zero, a system of equations to solve for f

and g

?f d?g o
a2 6f°=0, - 6gf = 0. (?..521,11)

If f =0 then g(t) = cat + ¢5, which leads us to the nonclassical reduction

Reduction 2.4.2. D(u) = 3u?

u(z,t) = w(t) + (cat + c5)z,

where w(t) satisfies
d?w

F = (C4t 4= (;5)2,

which is easily solved to yield the exact solution

cyt? cycstd cgt2
4 3 2

iz L) = + cot + c7 + (cat + c5)x.

If f # 0 then equation (2.32i) has solution f(t) = p(t + to;0, g3), and because (2.32ii)

has one solution g = f, we find the general solution as

o010 (o0 [ 725)

We then have the nonclassical reduction
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Reduction 2.4.3. D(u) = tu?
u(z,t) = w(t) + f(t)a? + g(t)z,

where w(t) satisfies the inhomogeneous Lamé equation

d?w ) (
Tz~ 20t + 100, g3)w = g°(8), (2.33)

and f(t), g(t) are as described above. The homogeneous part of (2.33) has solution (see
Ince [1956], p. 379)
’U)(t) = Cl()’wl(t + f()) + (:11'w2(t + t()),

where wy (t), ws(t) are the independent functions

o(t+a) o(t—a)
o(t) ’ o(t)

where ((z) is the Weierstrass zeta function defined by (2.19), o(z) is the Weierstrass sigma

wy (t) = exp{—t(a)} ws(t) = exp{tC(a)}

function defined by the ordinary differential equation

d
— lno(z) = ((2), (2.341)
dz
together with the condition
. (o(2) N
lim =1, (2.34ii)
z—0 Z

and a is a zero of the Weierstrass elliptic function i.e. p(a) = 0. We find the particular

integral of (2.33) using the method of variation of parameters, to give the general solution

t+to
’ll)(t) = (:10u)1(t+t0)+(;11wg(t—|—t0)+ W / [’11)1(.9)“)2(t+t0)—’11)1(t+t0)w2(.5‘)] 92(8) dS,
where W (a) is the non-zero Wronskian
Wi(a) = wj—— — %'(1)2 = —o?(a)——(a),
which can be verified using the following addition theorems
1
(s 1) = ((s) £ (1) +3

o(s+t)o(s —t) = —a(s)o?(t)[p(s

(see Whittaker and Watson [1927], p. 451).
We now have to show what happens if ¢o # 0 in (2.29). First notice that by making

the transformation A = 2;— In[+)(z)] we can simplify (2.301) and integrate it twice to yield
ar

2
(%> = a9~ % + ay, (2.35)
dz
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where a1, ay are arbitrary constants. If a; = 0 we get A = 1/(2z + ¢12), which on
substituting into (2.30ii) gives an inhomogeneous Euler type equation to solve for B(z,t).
The result is substituted into (2.30iii) and found to be inconsistent with this last equation.
If we make two further transformations, ) = P?(z) in (2.31), and v = P}/?(z) in (2.35),

then

Alz) = a4 In[P(z)], (2.36)

dzx

in both cases and both equations become of the form

1P\?
P? (‘d—I> = 4a3P? — a4, (2.37)

which has solution (for which we have set a3 = 1 without loss of generality)

a1

P(z) = p(£; 0, a4q), Az m»

where p(&; g2,93) is the Weierstrass elliptic function satisfying

dp\ 2
(é) = 4" — gapp — gs. (2.38)

The difference between the two transformations is that from (2.31) a3, a4 are a rescaling
of ¢1, ¢y respectively, whereas from (2.35) they are a rescaling of ag, a; respectively. This
means that unless A is of this form for agzas # 0 then either it is not a solution of the
system or it has been discussed previously. To show that there are no solutions of this
form, we firstly simplify the calculations by showing that if A is given by (2.36) then B is
a function of z only.

result with respect to (2.30iii) which leaves the result as an ordinary differential equation
for B with ¢ a parameter. Successive applications of reduce to this ordinary differential
equation and equation (2.30ii) leaves a polynomial in B of degree four whose coefficients
are expressions in A and its derivatives i.e. strictly functions of z. Then unless each of
these coefficients is zero, B is necessarily also a function of z only. If we look at the

coefficient of x4,
as A + oz A% A, + (1,7A6A3, + a8A4Af, -+ (1,9A2A;1, -+ aloAi,

where as, ..., a9 are known constants, and only the first derivatives of A are present because
second derivatives and higher can be removed using (2.30i). Using the transformation

(2.36) together with (2.37) yields

dP
(1,31—(1)1(1ng + b2a§a4PG + bsazaZP3 4 byad), (2.39)
dz
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where the by, ..., by are known constants and ag, a4 are as seen in (2.37). Since (ngdg #0
to ensure we are not repeating previous work, and because P does not satisfy an algebraic
relation, expression (2.39) is non-zero; hence by arguments above By = 0.

With B; = 0 both (2.30ii) and (2.30iii) are ordinary differential equations for B which,
as previously, we may successively reduce to a polynomial for B. In fact we can go further
than this and reduce our expressions to a single equation involving A only (being careful to
check that setting the highest coefficient and separant of each expression to zero doesn’t
yield any solutions). We may remove second and higher order derivatives of A using
(2.301), then transform this using (2.36) and (2.37) into

N
g Y New o
‘1— Enalal P = @, (2.40)
azxz

n=0
where the ¢, are known integers (not all zero). This is similar to (2.39) and indeed by
the same arguments, namely the fact that P doesn’t satisfy an algebraic relation and we
have no desire to repeat earlier solutions, equation (2.40) represents a contradiction, and

we are done.

Case 2.4.2 D(u) = u® + cu. The system we must solve in this Case is

Age +8AA, +643 =0, (2.411)
8BA, + 6AB, + 14A’B + B,, = 0, (2.41ii)
18 BB, + 30B*A + Apper + cAye + 104, A, +4AA, 4,

+6A% Ay, + 12AA2% +4A%A, + 2cAA, =0, (2.41iii)
6B° + Byyoe + 4A5Byg + ¢Byy +6A,. B, +4AA, B,

+4BAyuy + 6BAA,, + 8BA2 + 4BA%A, + 2cBA, — By =0.  (2.41iv)

1
It makes sense to try to solve (2.41i) for A(z) first. Writing A(z) = R;— In[¢)(z)] and
ar

substituting into (2.41i) we get

3
o d31p odyd®yy dap
8R-3)Y——-—+3RBR-1)(R-1){— | =0.
R dx? = )lpdfc dz? b ) ) dz
Choosing R = % or R = 1 eliminates the last term leaving an equation that we can

integrate to a first order equation, i.e. if R =1,

2
(2~ gt

dz

and if R = %,

2
(j%) = csp'/? + 4.
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If co =0 wefind A=1/(3z +¢s5), and if ¢4 =0 we find A = 1/(z + ¢5). We now consider

four special cases

(i) A=0,
(i) A= —
1 —
T +cg
1
————
(111) 3z +c5’

(iv) A none of the above.

condition on B(t) from (2.41iv),

d?B
—— —6B*=0.
dt?

We may integrate this with respect to ¢ to yield

dB\* . i O
(E) = BB ], (2.42)

If ¢c; = 0, we have B = 1/(cg — V/31), else B(t) is solvable in terms of Jacobi elliptic

functions. Solving the invariant surface condition gives the following nonclassical reduction
Reduction 2.4.4. D(u) =u®+cu
u(z,t) = w(t) + zB(t),

where B(t) satisfies (2.42) and w(t) satisfies

d2,
T;U — 6B2(t)yw = 0. (2.43)

If B=1/(cg —/3t), solving (2.43) yields the exact (canonical) solution

@T

V3t

which is not a special case of any classical reduction.

u(z,t) = cot® —

If c7 # 0 then we set ¢; = 1 without loss of generality, and then B = isn(¢; 1)/\/3 where
sn(t; k) is the Jacobi elliptic function with modulus &, and (2.43) takes the Jacobian form
of the Lamé equation oy

T 2sn(t;i)w = 0. (2.44)
The Jacobi and Weierstrass elliptic functions are related by (see Whittaker and Watson
[1927])

©(y; 92, 93) = e3 + (e2 — e3)sn’(t; k),

where t = y/e; — e3 + 1K', where 21K’ is the imaginary period of sn(t), the ey, ex and e3

are roots of the cubic 4t3 — got — g3 = 0, and (e; — e3)k? = ex — e3. Equation (2.44) may
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thus be transformed to the better known Lamé equation written in terms of Weierstrass

elliptic functions

d?w
where h = —2e3 is constant. Equation (2.45) has solutions

() = exp-w@)} 25 () = expluc(an L,

where p(a) = h = —2e3, and ((z) and o(z) are the Weierstrass zeta and sigma

functions respectively, defined by (2.19) and (2.34) respectively. Since h # e1, €2, e3 then

w1 (y), w2(y) are in general distinct so the general solution is their linear combination.
Alternatively we can note that w = B is one solution of (2.43) so we can find the

general solution in terms of quadratures. This yields the exact (canonical) solution

ds

u(z,t) = B(t) <1,- + ¢ /t 132_(3)) , (2.46)

where B(t) satisfies (2.42).

Subcase 2.4.2(ii) If A = 1/(x + cg) it is easy to show using the Direct Search strategy
that for system (2.30) to be satisfied it is necessary for B = 0. We note that if B = 0, then
if A # 0, we again use a Direct Search on system (2.30) and can show that necessarily

A =1/(z + ¢g). Thus we have infinitesimal

which gives the nonclassical reduction
Reduction 2.4.5. D(u) =u®+ cu
u(z,t) = w(t)(z + cg),

where w(t) satisfies
d2
o — 6w’ =0. (2.47)

This is in fact a special case of the exact solution (2.46), when ¢g = 0.

Subcase 2.4.2(iii)) If A = 1/(3z + ¢5), equation (2.30ii) becomes an Euler-type ordinary

differential equation for B with solution
B(z,t) = (t)(3z + ¢5)™>® + p(t) 3z + ¢5)*/3,

where 7)(t) and p(t) are arbitrary functions. However for no values of 7(t), p(t) or ¢ can we
make this combination of A, B consistent with the remaining equations (2.30iii,iv); there

are no solutions in this Subcase.
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Subcase 2.4.2(iv) We can differentiate (2.41iii) with respect to ¢ to give, on simplifying
- : : . . d
For A # 0, A must satisfy (2.41i) so we again write A in the form A(z) = Rl_ In[y)(x)]
dz
(forB=1lorR= %) If B; # 0 we can write

10R d B,
T o
3 qp @)= g+

B:Et
B’

which we can integrate with respect to x, to yield

10R
—OTlnl/) =InB + InB; — In f(t),

where f(t) is an arbitrary function of integration. We can exponentiate and integrate with

respect to

B it
/ .s'dszz/z_wR/s(:L')/ f(s)ds,

ie. B? = g(t)yp~1OR3 () + h(z), (2.49)

where g(t) = 2 [ f(s)ds and h(z) is an arbitrary function of integration. However this is
only a solution of (2.48), not of (2.41iii). We substitute this solution into (2.41iii) together
with our other information, and find a linear first order ordinary differential equation to

solve for h(z). This has solution

hiE) = 80cyca 1/)_8 &q/)_ﬁ 16()(’1 L _12
T 2
for R=1, and for R = 3,
C(,4 _ 8()(’3(4 ~8/3 16()(,;21 4
h = — il :
v() l/ 567 P + 10531/}

Note that the arbitrary function of integration is consumed by g(¢). Substituting our
expressions for A and B into (2.41ii), for each value of R, along with our relations on
¢ (z) and h(z), gives an equation in ¢(z) and g(¢) which is a quadratic in g(¢). For the
coefficients of this quadratic to be zero we find ¢; = ¢s = ¢3 = ¢4 = 0 which means A = 0,
in contradiction to our assumption otherwise. If they are not zero, solving the quadratic
for g(t) gives g(t) = k(z) for some function k(z), so g(t) is at best a constant. From (2.49)
this implies that B; = 0, yielding another contradiction. Hence we have shown that if we
require AB; # 0 then there are no solutions.

Thus we are left with solving (2.41) where A and B are functions of z only (and
not one of the Subcases already considered). Firstly we reduce((2.41iii),[(2.411)], k1),
then reduce((2.41ii),[(2.411),k1], k2) and k2 is a quartic in B. We obtain another quartic
in B by reduce((2.41iiii),[(2.41i)], k3), reduce(k3,[(2.41ii)], k4), reduce(k4,[(2.41i)], k5),
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reduce(k5,[k1], k6), k6 being the required quartic. We can now use reduce to remove
the B’s from k6 and k2 to get an expression of the form

N
E aiAz’LASY"" — O,

=0

which we can factor as

N
ay [J(4 +b,4.) =0,
n=0
for some b, € C and ay is a (known) non-zero constant. For a candidate equation
A% +b;A, = 0, to be consistent with (2.30i) it is necessary for b; to take the values 1 or
% (or A = 0) which are precisely the Subcases 2.4.2(ii) and (iii) above. Thus there are no

more solutions.

Case 2.4.3 D(u) = u™ + cu for n #0,1,2,3. We initially split this in two, when n = 4

and when n # 4. Firstly we will consider the case when n = 4. The determining equations,

once we write ¢ = A(z)u + B(z,t), yield

Agp +11AA, +124% =0, (2.50i)
11BA, +9AB, + 304%B + B, =0, (2.50ii)
3BB, +8B*A =0, (2.50iii)

24B° + Agouo + CAso

+ 1040 Ay + 4AA gy + 6A% Ay, +12AA2% +4A3A, + 2cAA, =0, (2.50iv)
Brree + 443 Byy + ¢Bey + 644, B, + 4AA, B,

+4BAgyy +6BAA,, +8BA2 + 4BA%A, + 2cBA, — By, = 0. (2.50v)

We reduce((2.50ii),[(2.50iii)], k1) to yield
B3(T54, — 11842) = 0.

The equation 754, — 11842 = 0 is not consistent with (2.50i), unless A = 0 which implies
(from (2.50iv)) that B = 0. Thus we take B = 0, then the n = 4 case fits into the pattern
for general n, namely B = 0 and A(z) satisfies the overdetermined system of ordinary

differential equations
Age +(3n —1)AA, +n(n-1)A43 =0, (2.51i)
A.’IT.?:ILI? + CA.’I?Z[? + IOAIE.’ITA.’I:
+ 4AA . +6A%A,, +12AA2 + 4A3A, + 2cAA, = 0. (2.51ii)

We use successive reduction of these two equations to reduce the order and the degree of

the highest derivative term until we get a polynomial in A alone (noting along the way
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the special cases when the highest coefficient and/or the separant are zero). Since we do
not want A = 0, each coeflicient of our polynomial in A must be zero. There are three
scenarios in which the system (2.51) is compatible (not including values of n which we

have considered previously (n = 0,1,2,3)):

(i) if n = 5, ¢ = 0, we have A = 2/(z + ¢;) which leads to the nonclassical reduction
Reduction 2.4.6. D(u) = u!/?

u(z, t) = w(t)(z + c1)?,

2

where w(t) satisfies = 0, which gives the (canonical) exact solution

de?
u(z,t) = coz’t.

This solution is a special solution of the classical scaling reduction 2.2.2.

(ii) if n = 1, ¢ =0, then A = 3/(z + c3) which gives the nonclassical reduction
Reduction 2.4.7. D(u) = u'/?

u(z,t) = wt)(z + c3)?,

d?w

el 0. This gives the exact (canonical) solution

where w(t) satisfies

u(z,t) = caz’t.

This is not a special solution of the classical scaling reduction 2.2.2 (though u(z,t) = csz®

is in this case).

=

(iii) if n = 5, ¢ = 0, then our infinitesimal ¢ is ¢ = 3u/(z + ¢) which on solving the

invariant surface condition gives the following nonclassical reduction
Reduction 2.4.8. D(u) = u®/3. We set ¢g = 0 without loss of generality to yield
u(z,t) = w(t)z®,

where w(t) satisfies

d?w 5/3
Making the transformation w = W? yields the rational equation
2w W\ 2
3w ¢ 6 () — 20w =0, (2.53)
dt? dt

to which we apply the ARS algorithm. There is a dominant behaviour like W(z) ~

1/2 i s ; soq s : ;
£ (%) f (z — 2p) ' with 2 arbitrary, which in fact continues to give the correct number
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of arbitrary constants without any branch points. However, balancing the first two terms
in (2.53) yields behaviour like W (2) ~ ao(z — z0)'/?, so we conclude that (2.53) is not of
Painlevé-type.

We can integrate (2.52) once with respect to ¢ to yield

dw\* o
) = 15w + 2¢7. (2.54)

If ¢; = 0 we find the exact (canonical) solution

3v15 23

(L, 1) = T

which is a special solution of reduction 2.2.2, whilst if ¢; # 0 the reduction is genuinely

nonclassical, and (2.54) is solvable by quadratures.

Case 2.4.4 D(u) = €" + cu. The determining equations give us that A(z) = 0 and we

have a system of two equations to solve for B(z,t),

3BB:I: + B::::z: =+ B3 - 07 (2551)

Bz:z::c:v + CB.’L'IL‘ - Btt = 0 (25511)

To solve this system we first solve (2.55i) by making the Cole-Hopf transformation

1
B= ;—[ln ()] which helps find the solution as
dz

2F (t)z + G(t)
F(t)z2 + G(t)z + H(t)’

B(a.t) =

where F(t), G(t) and H(t) are arbitrary functions. Substituting this into (2.55ii) we
get an eighth order polynomial in z to solve, whose coefficients are nonlinear differential

equations in F', G and H,

Order z8
2F?F%G — Fu F*G — 2F,GF® + G F*,
Order z”
— AF,H,F3 + 4cF® — 2G?F? 4+ 2F*H,; + 3G F*G
—3FF?G? — 2F,GF*G — 2F4F*H + 4F?FG? + 4F?F*H,
Order z°

2F,G4F?H + 2F,G;FG*? + 2G+F*H
— 8F,H,F%G + 12F?FGH — 4G?F?G + 3G F*G? - 9F,,F’GH
— 3F,FG® — 6G¢H F® + TF*Hy,G + 14cF*G + 2F?G?,
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Order z°
48F° — F,G* — 4F,H,F’H
—4AFH,FG? + GuFG® + 6F3HyH — 6F,. F?>H? + 3G F*GH
+ 8F/FH? — 14G H,F*G — 12F,FG?H + 9F*H,G? — 2G?F*H — 2G?FG?
—4F*H} + 22¢F*G? + 12F,G1FGH — 4cF*H + 8F?G?H + 2F,G,G®,

Order z*
10F?GH? + 5FHuG® — 10G H F*H — 15F FGH? + 120F*G — 5F,G°H

— 10cF*GH — 10F?H}G + 10F;G,G*H + 15F?H,GH
— 106G, H, FG? + 20cF?G® + 10F, G, FH?,

Order 23
4F,H,FH? + 240F3G? + 10cFG*
+G*Hy + 6F?Hy H? — 2G H,G® + 4F,H;G?H — 6F,FH® — 3G FGH?
+ 12FHyG*H — 20cF*H? + 14F,G,GH? — 12G,H,FGH + 4FH® + 2G2G*H
—480F*H + 2G?FH? - 8F*H?H — G4wG®H — 9F,G?H? — 8FH2G?,
Order z?
— 7TFGH? + 8F,H,GH? + 10cFG*H — 720F*GH — 3G++«G*H?
+9FH;,,GH? — 2G H,FH? — 2GFH® + 4G°GH? + 2¢G® + 3G HyuH
— 2G:H;G?H + 240F%G® - 30cF?’GH? + 6F,G,H® — 12FH2GH - 2G°H?,
Order z!
240F*H? — 6¢FG*H? — 3GwGH? — 480F?G?H — 2F,,H* — 12¢cF*H*
+ 4cG*H + 120FG* + 4F;H,H® — AG*H?H + 2FH, H® — AFH2H?
+3G%HH? + 2G?H?® + 2G H,GH?,

Order z°
—120FG*H + 2G.H,H? + 120F2G H?
+ 2¢G3H? — 6¢GFH?® — GuH* + GHyH? + 24G® — 2GHXH?,
We can reduce the equations of coefficients of zt, ...,27 with respect to that of z8 then

2% to get seven first order equations in F'; G and H (kl,....,k7). We reduce k2,....k7 with
respect to k1l to give I1,...,16. These are of the form

I1: H3FG:-GF,)(FGGy—2H,F? 4+ 2FHF, — F,G?) =0,

li: Hf(F,G,H F,Gy,H;) =0 fori=2,..,6.
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We now reduce 13,...,I6 with respect to 12 to give ml,...,m4
ml: F*GQ2HF —5G*(4HF — G*(HF — G?) =0,
m2: —F*GUHF -G? =0,
m3: —F)G(6HF —7G*)(4HF — G*)(F?H? + G* + TFG*H) =0,
m4: GF*(HF +2G?)(4HF — G?)(4F?H? + 7G* — 20FG?*H) = 0.
Thus we have five cases to consider

(
(i

) H=0,
)

(iii) H#0,G =0,
)
)

—

H#0,F =0,

—

F.G,H #0,G? =4FH,FG; — GF, = 0,

(iv
(v) F,G,H+#0,G?=4FH,FGG; —2H,F? + 2FHF, — F,.G? = 0.

In each case we get the trivial solution F = G =0, i.e. B(z,t) = 0.

Case 2.4.5 D(u) = Inu + cu. Our equations for A(z) and B(z,t) imply that B(z,t) =0

which leaves two equations in A(z):

2cAA; + 6A%Ayy +4AA ey +4A3 A, + 12AA2 + 104, Agy + CAgy + Aggas =0, (2.56i)

We reduce (2.561) with respect to (2.56ii) which yields
AAg(c+ 542 +104,) = 0. (2.56iii)

This equation and equation (2.56ii) are only compatible if A, = 0, i.e. A = ¢;. This is
consistent with all three equations, and gives the infinitesimal ¢ = ¢;u. This leads to the

nonclassical reduction
Reduction 2.4.9. D(u) =Inu+ cu
u(z,t) = w(t) exp(c1z),

where w(t) satisfies the linear equation

2w,

qaE c(c+ 3w =0.

If ¢ + ¢2 = 0 then w(t) is linear in ¢, whilst if ¢ + ¢ # 0 this gives the exact solution

u(z,t) = exp(ciz) [(22 exp (cm/c + 2 t) + c3exp (——(:1\/0 +c2 1‘)] .




Chapter Two : A Generalised Boussinesq Equation 96

Case 2.4.6 D(u) = ulnu + cu. Again our equations for A(z) and B(z,t) imply that

B(z,t) = 0 which leaves two equations in A(x):

2(5AA$ + 614214;,;;,: + 4AA1‘3‘7‘
+4A%A, + 124A2 + 104, Ayy + cApy + Appow + A3 +5AA, + A, =0, (2.57)
Are +2AA, =0. (2.57ii)

We reduce (2.571) with respect to (2.57ii) which yields
A(A®? +34,) =0. (2.57iii)

Equation (2.57iii) is only compatible with (2.57ii) if A = 0, which gives the trivial solution

outlined in the preamble to this section.

2.5 Discussion

In this chapter we have classified equation (2.1) by the types of classical and nonclassical
symmetry reductions it possesses. What is perhaps slightly unusual is the lack of
nonclassical reductions in the 7 # 0 case, unless (2.1) reduces to the Boussinesq equation
which by contrast has a wide range of reductions. It is clear that in this respect the
Boussinesq equation is special.

We have tested the ordinary differential equations arising from our symmetry
reductions to see whether they are of Painlevé-type, and have found that only the
reductions of the Boussinesq equation are. By virtue of the Painlevé conjecture (cf. §1.6.2),
we can conclude that only the Boussinesq equation in the class of equations we have studied
may be solvable by inverse scattering, and from previous studies (see §2.1) we know that

it is.
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Chapter Three:

A class of Nonlinear Third Order Partial
Differential Equations

3.1 Introduction
In this chapter we are concerned with symmetry reductions of the nonlinear third order

partial differential equation given by
A = Ut — EUgqt I 2""’“.’1,‘ — UlUgge — QUUy — ﬁufnuzz = Oa (31)

where €, k, a and 3 are arbitrary constants. The majority of the work in this chapter is
to appear in Clarkson, Mansfield and Priestley [1996]. Three special cases of (3.1) have
appeared recently in the literature. Up to some rescalings, these are: (i), the Fornberg-
Whitham equation (Fornberg and Whitham [1978] and Whitham [1967,1974]), for the
parameters e =1, a = —1, f =3 and k = %, (ii), the Rosenau-Hyman equation (Rosenau
and Hyman [1993]) for the parameters ¢ = 0, @ = 1, # = 3 and x = 0, and (iii),
the Fuchssteiner-Fokas-Camassa-Holm equation (Camassa and Holm [1993], Camassa,
Holm and Hyman [1994], Fuchssteiner [1981] and Fuchssteiner and Fokas [1981]) for the
parameters e = 1, « = —3 and [ = 2.

The Fornberg-Whitham (FW) equation
Up — Uggt + Uy = Ulggy — Ul + SUgylgy, (3.2)

was used to look at qualitative behaviours of wave-breaking (see Whitham [1967]). It

admits a wave of greatest height, as a peaked limiting form of the travelling wave solution

(Fornberg and Whitham [1978]),

(3.3)
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The Rosenau-Hyman (RH) equation
Up = Ullgry + Ully + 3Uylyy, (3.4)

models the effect of nonlinear dispersion in the formation of patterns in liquid drops
(Rosenau and Hyman [1993]). It also has an unusual solitary wave solution, known as a

“compacton”,
B T P
u(z,t) = sccos®{z(z — et)}, ¥f |z — ct| < 2m,
% if | — ct| > 2=,

These waves interact producing a ripple of low amplitude compacton-anticompacton pairs.

The Fuchssteiner-Fokas-Camassa-Holm (FFCH) equation
Ut — Uggt =+ ZH,LL]Z = Ulgpy — 3““1‘ + 2“’:1:“':1::1:1 (35)

first arose in the work of Fuchssteiner and Fokas (see Fuchssteiner [1981], Fuchssteiner
and Fokas [1981]) using a bi-Hamiltonian approach; we remark that it is only implicitly
written in Fuchssteiner and Fokas [1981] — see equations (26e) and (30) in this paper -
though is explicitly written down in Fuchssteiner [1981]. It has recently been rederived by
Camassa and Holm [1993] from physical considerations as a model for dispersive shallow

water waves. In the case k = 0, it admits an unusual solitary wave solution
u(z,t) = cexp (—|z — ct]), (3.6)

where ¢ is an arbitrary constant, which is called a “peakon”. A Lax-pair has been
found by Camassa and Holm [1993] and a bi-Hamiltonian structure by Fuchssteiner and
Fokas [1981] for the FFCH equation (3.5) and so it appears to be completely integrable.
Recently the FEFCH equation (3.5) has attracted considerable attention. In addition to the
aforementioned, other studies include those by Camassa, Holm and Hyman [1994], Cooper
and Shepard [1994], Fokas [1994a,b], Fokas and Santini [1994], Fuchssteiner [1993], Gilson
and Pickering [1995], Marinakis and Bountis [1995] and Olver and Rosenau [1996].

The FFCH equation (3.5) may be thought of as an integrable modification of the
regularized long wave (RLW) equation (Peregrine [1966])

Ugppt + Uy — Up — Uy = 0, (3.7)

sometimes known as the Benjamin-Bona-Mahoney equation (cf. Benjamin, Bona and
Mahoney [1972]). However, in contrast to (3.5), the RLW equation (3.7) is thought not
to be solvable by inverse scattering (cf. McLeod and Olver [1983]); its solitary wave
solutions interact inelastically (cf. Makhankov [1978]) and only has finitely many local
conservation laws (Olver [1994]). However physically it has more desirable properties than

the celebrated Korteweg-de Vries (KdV) equation

Ut + Ugzy + Ouu, =0, (3.8)
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which was the first equation to be solved by inverse scattering by Gardner et al. [1967].

We remark that two other integrable variants of the RLW equation (3.7) are
Uggt + 20U — Ua:(l)gtlut — U — Uy =0, (3.9)
where (9;1f) (z) = [ f(y) dy, which was introduced by Ablowitz et al. [1974], and
Uppt + Ul — um(');lut — Uy — Uy =0, (3.10)

which was discussed by Hirota and Satsuma [1976] and are both special cases of the
shallow water wave systems we study in Chapter Five. Also Fuchssteiner [1993] has
shown that the FFCH equation is related by a hodograph transformation, then a Backlund
transformation to equation (3.9). We also note that (3.5), with x = 3, (3.7), (3.9) and
(3.10) all have the same linear dispersion relation w(k) = —k/(1 + k?) for the complex
exponential u(z,t) ~ exp{i[kz + w(k)t]}.

Recently, Gilson and Pickering [1995] have shown that no equation in the entire class
of equations (3.1) will satisfy the necessary conditions of either the Painlevé PDE test or
the Painlevé ODE test (see §1.6 for details) to be solvable by inverse scattering. However,
the integrable FFCH equation (3.5) does possess the “weak Painlevé” property (cf. §1.6),
as does the FW equation (3.2).

All these special travelling wave solutions are essentially exponential solutions, or sums
of exponential solutions, and thus would suggest some sort of linearity in the differential
equation. This is discussed by Gilson and Pickering [1995], who show that (3.1), with
a # 0 and (1 + ) # 0, can be written as

(Bug + u0; + €0;) (uge — p?u — 26/6) = 0, (3.11)

where 0, = 0/0x, 9y = 0/0t and p? = —a/(1 + 3), provided that ea + 8 + 1 = 0, which

includes the FFCH equation (3.5). For the travelling wave reduction,
u(z,t) = w(z), z=ux —ct,
the resulting ordinary differential equation is
(25 — c)w' + ecw" — ww"" — cww' — pw'w” =0, (3.12)
where ’ = d/dz, which also may be factorised as

d
Bw’ + (w — EC)E (w" — pPw +v) =0, (3.13),

provided that

= B(l+8)y—26(1+8) +c(1 + B+ ae) =0.
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This includes all three special cases (3.2)-(3.5); since (1 + ) is strictly non-zero in these
three cases then a suitable vy can always be found.

Furthermore, if 1+ 3+ ae = 0 and € # 0, then (3.1) with k = 0 possesses the “peakon”
solution

u(z,t) = ecexp (—6_1/2|.'L‘ - ct|) ,

where ¢ is an arbitrary constant. More generally, if a/(1 + ) < 0, 1 + 8 + «e # 0 and

k # 0, then (3.1) possesses the solution

1/2
u(z,t) = ecexp {“ ( “ ) |z — (:tl} ) &= M

1+ 1+ B+ae

An alternative justification of these solutions is given in §3.2. If «/(1 + ) > 0, 8 # —1

and af # 0, then (3.1) possesses the “compacton” solution

K — «e)c . a \?
ulm, t) = AL+ ) (y;; + A +ae)l cos? {% <T/j) (z — (:t)} ,

where c is an arbitrary constant.

In the following sections we shall consider the cases ¢ = 0 and € # 0, when we set € = 1
without loss of generality, separately because the presence or lack of the corresponding
third order term is significant. In §3.2 we find the classical Lie group of symmetries
and associated reductions of (3.1). In §3.3 we discuss the nonclassical symmetries and
reductions of (3.1) in the generic case. In §3.4 we consider special cases of the the
nonclassical method in the so-called 7 = 0; in full generality this case generates a single
equation which is considerably more complex than our original equation! In §3.5 we discuss

our results.

3.2 Classical symmetries
To apply the classical method we consider the one-parameter Lie group of infinitesimal

transformations in (z,t,u) given by

z* =z + ez, t,u) + O(e?), (3.141)
t* =t + e7(z, t,u) + O(e?), (3.14ii)
u* =u+egp(z,t,u) + O(e?), (3.14iii)

where ¢ is the group parameter. This procedure yields a system of linear determining

equations. There are two cases to consider.

Case 3.2.1 ¢ =0. In this case using the MACSYMA package symmgrp.max we obtain the

following system of ten determining equations

Tu =0, (3.151)
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T =0, (3.15ii1)
§u =0, (3.15iii)
Uuuu + Bpuu =0, (3.15iv)
3u®puu + Budy — B =0, (3.15v)
3udgy — 3uzz + Bde =0, (3.15vi)
3uruu + 28¢zu — Bex = 0, (3.15vii)

u—3&u+¢=0, (3.15viii)
Przztt + (au — 26)py — ¢y = 0, (3.15ix)
3U° bran + Budre + 266 — U6err + (200° — dru)éy +ub =0, (3.15%)

Next applying the reduceall algorithm in the MAPLE package diffgrob2 to this system
yields

(2 + ﬂ){.’l?(l,’ = 0, (2 + B)[a“’f:’:t + ftt - 2h7£mt] = ()7 Eu - 0~
7. =0, 20ué, + 2k€, + & — 2k = 0, T, = 0,

(2 + B)[2k¢ + (2au® — dru)é, + u&) =0

This is simple enough to solve; there is no need to do the full Kochin-Ritt algorithm in this
case. The factors which are listed by diffgrob2 as having multiplied the system (3.15)
during the application of reduceall are 3+ 2 and . Thus initially we have special cases
when 8 = —2 and x = 0, and combinations thereof. It transpires that the special case
B = —2 is purely an artefact, but when considering the special case when x = 0, we find
another special case, when o = 0. For the two special cases (a) kK = 0, a # 0, and (b)

r = a = 0, applying the reduceall algorithm of diffgrob2 to (3.15) yields

(a) £=0,a#0 20ul, +& =0, & =0, §u =0,
T = 10} T = Ty =10,
2a¢ + 2auTy + 3&;.
b) k=a=0 S =10, & =0, Eui= 10,
T == 0, Tee = 0, T =0,
¢ —3ul, +ur =0

Hence we obtain the infinitesimals listed in table 3.2.1.
Table 3.2.1

Parameters & T ¢
« 75 0 2/ﬂ763t + (th + Co —C3U (31())
a=0 caT + 2k(c3 —eq)t+c1 et +co (3ca —c3)u  (3.17)

WENJ
where ¢y, co, c3, ¢4 are arbitrary constants. y
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Solving the invariant surface condition yields four different canonical reductions

Reduction 3.2.1. « and & arbitrary. If ¢3 = ¢4 = 0 in (3.16-3.17) we may set ¢; = ¢

and ¢ = 1 and we obtain the travelling wave reduction
u(z,t) = w(z), 2=l
where w(z) satisfies
ww"” 4+ cww’ + pw'w” + (¢ — 2k)w’ = 0.

This can be integrated to yield

ww" + (B - 1)(w')? + 2aw® + (c — 2k)w = A,

where A is an arbitrary constant. Multiplying this by w”~2w’ and integrating again yields
«@ 2(26 —¢) 2A
w')? + w? + o = + Bw!'™P, 3.18

where B is an arbitrary constant, for g # —1,0,1. Generally if 3 # —1,0, 1, then (3.18)
is solvable using quadratures, though for certain special values of the parameters there
are explicit solutions. For example (i), if # = —2 or # = —3, then (3.18) is solvable in
terms of Weierstrass or Jacobi elliptic functions, respectively, (ii), if B = 0, then (3.18) is
solvable in term of trigonometric functions, and (iii), if ¢ = 2k and = 3, then w(z) can
be expressed in terms of trigonometric functions via the transformation w(z) = v'/2.

In the special cases § = —1,0,1 we obtain the equations
(w')? + aw? Inw + 2(26 — ¢)w = Bw? — A,
(w')? + aw? + 2(26 — ¢)wlnw = Bw — 2A,
(w')? + aw? +2(26 — c)w = B — Alnw,
respectively, with A and B arbitrary constants. If the coefficient of Inw in these equations

is zero, then w(z) is expressible in terms of elementary functions, otherwise in terms of

quadratures.

Reduction 3.2.2. « and & arbitrary. If ¢4 = 0 in (3.17) and if ¢3 # 0 in (3.16-3.17),
then we may set c3 = 1, ¢; = ¢ and ¢, = 0, without loss of generality, and obtain the
reduction

u(z,t) =t w(z), z=1x —clnt — 2kt, (3.19)

where w(z) satisfies

ww'" + pw'w” + cww’ + cw’ +w = 0.
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Reduction 3.2.3. « = 0, s arbitrary. If ¢3 # 0 and ¢4 # 0 in (3.17), we may set

cy =m+ %, c3 =1 and ¢; = ¢ = 0, without loss of generality, and obtain the reduction
u(z,t) = w(z)t>™, z = (2— t)t—™"13,
where w(z) satisfies
ww'" + Bw'w" + (m + %)zw/ — 3mw = 0.

Reduction 3.2.4. «a =0, s arbitrary. If ¢3 = 0 and ¢4 # 0 in (3.17), we may set ¢4 = m,

¢1 = 2k and ¢ = 1, without loss of generality, and obtain the reduction

eB'rnt —mt

u(z,t) = w(z) , z = (z — 2Kt)e™ ™,

where w(z) satisfies

n Y / ‘
ww' + pw'w” + mzw' — 3mw = 0.

Case 3.2.2 ¢ = 1. In this case we obtain the following system of eleven determining

equations:
Ty =0, (3.201)
7 =0, (3.20ii)
§u =0, (3.20iii)
$uu =0, (3.20iv)
Dy — Ege = 0, (3.20v)
Blugpy — ¢+ &) =0, (3.20vi)
¢+ur —uls —& =0, (3.20vii

3udru + tu + Bdr — 3upr — 28zt =0, (3.20viii
Uzey + @+ Uty — 3Epu — & =0, (3.20ix
Uzzz + oot — Pt + (Qu — 2K) P = 0, (3.20x
3u Prpu + 2udgty + Budes

+ 260 — uprr — usnt + (20u® — 4K)E, + [(a + L)u — 2k]&, =0,  (3.20xi)

SCIRCT BT A o S amb

As in the previous case, we apply the reduceall algorithm in the MAPLE package diffgrob2,

to this system, which yields
{1: = 0, (a + l)ff,f, g 07 gu = ()1

Tz =0, 267 — (@ +1)& =0, Tu = 0,

2kp = 2k — (a + 1)ulé;.
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This shows that there are two special values of the parameters, namely « = —1 and s = 0.
For the three special cases (a) a = -1,k #0, (b) a# -1,k =0and (c) a = -1, k =0,
applying the reduceall algorithm of diffgrob2 to (3.20) yields

(a) a=-1,k#0 & =0, & =0, &y =10,

T =10 Tyi=0, Ty = 0,
¢ = &t.

(b) @ 7é _1, k=10 £:L' = 05 ft = 01 fu = ()7
Ty = O, Tt = 0, Tu = (),
¢ = —ur;.

(C) a = _19 k=0 6.’1: == 07 fft = Oa f'u‘ = 0*
Tp = O, Tt = Oa Tu = 0,
Qb = ét + Uty = 0

Hence we obtain the infinitesimals as recorded in table 3.2.2.
Table 3.2.2

Parameters ¢ T ¢
1 23l 1 1
K # 0 cst + 1 w + co C3 1— m (321)
2K 2k
a#—-1,k=0 c1 cat + ¢y —C4ll (3.22)
a=-1,k=0 c3t+ ¢ cat + ¢ C3 — C4U (3:23)

where 1, ¢co, c3, ¢4 are arbitrary constants.

There are four canonical reductions.

Reduction 3.2.5. « and k arbitrary. If in (3.21-3.23) ¢3 = ¢4 = 0, we may set ¢; = ¢

and ¢y = 1 without loss of generality. Thus we obtain the reduction
gz, t) = w(z), z =1 — ct,

where w(z) satisfies

n

! / " ! !/
ww"" — cw" + pw'w” + aww’ = (25 — c)w'.

This can be integrated with the help of the transformation w — W + ¢ to yield
WW" +1(B-1)(W')? + 3aW? = [26 — (1 + a)]W + A,

where A is an arbitrary constant. Then multiplying through by W#=2W’ and integrating

again yields

aW? 202k — (1 + @)W 24 1-3 .
+/3+1_ 3 +[j’—1+BW . (3.24)
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provided that 8 # —1,0,—1. Generally if § # —1,0,1, then (3.24) is solvable using
quadratures, though for certain special values of the parameters, there are explicit
solutions. For example (i), if # = —2 or = —3, then (3.24) is solvable in terms of
Weierstrass or Jacobi elliptic functions, respectively, (ii) if B = 0, then (3.24) is solvable
in term of trigonometric functions, and (iii) (1 + «)c = 2k and § = 3, then W (z) can be
expressed in terms of trigonometric functions via the transformation W(z) = v!/2,

In the special cases § = —1,0,1 we obtain the following equations,
(W2 +aW?InW = —2]2k — (1 + a)c]W — A+ BW?,
(W2 +aW? =22k — (1 + @)W InW — 24 + BW,
2(W')? +aW? =42k — (1 4+ a)c]W +4AIn W + B,
respectively, where A and B are arbitrary constants. If the coefficient of In W in these
equations is zero, then W (z) is expressible in terms of elementary functions, otherwise in

terms of quadratures.

We note that equation (3.24) may be written in the form

— (w—ec)’ (') = —ﬁ? 1('w —e? 1 - D (3.25)
' 42
« = 9 ' (_Ec)ﬂ-n—Q ,B —9 .
+ ——ﬂ — 1w2 (w—ec)® 1 + a[c(ﬁ-i- 1+ ea) — 2(8 + 1)]§)T( " )w } ,
where
D=B+ 2(—ec)Plc(B+ 1 + ea) — 26(3 + 1)]

BB-1)(B+1) ’
for B > 2 an integer, and € has been reintroduced into the equation. The constant B is as
found in (3.24) and A in (3.24) is related to C by C' = 24 + ec(eca — 4k + 2¢). Requiring
that w and its derivatives tend to zero as z — 4oo forces us to set D = C' = 0. In the
work of Camassa and Holm [1993] the condition that ¢(8 + 1 + ea) — 26(8 + 1) — 0
is equivalent to their k — 0 which induces the peakon solution, and certainly when

c¢(f+ 14 ex) —26(8 + 1) = 0 equation (3.25) becomes

(w — 6(:)/3"1 ((w')2 + B(—Y 1'11)2> =),

We obtain the peakon solution of §3.1 as the composition of two exponential solutions
with a discontinuity at the peak. At this discontinuity we assume the peak has amplitude

w = ec. This argument is consistent with the peaked solutions (3.3) and (3.6) (see Gilson

and Pickering [1995]).

Reduction 3.2.6. « # —1, k arbitrary. If ¢3 # 0 in (3.21), we may set c3 = 1, co =0

and ¢; = 2rc/(1 + «), without loss of generality. Thus we obtain the reduction

w(z) + ¢ 2K 2Kt
s, t) = - , g =g —
13 1+« 1+o

—clnt, (3.26)
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where w(z) satisfies
ww" + pw'w" —w" + cww' + (@ + 1)cw’ +w + ¢ = 0. (3.27)

If ¢4 # 0 in (3.22) we may set ¢4 = 1, ¢ = ¢ and ¢; = 0 to obtain the reduction (3.26)

with k = 0.

Reduction 3.2.7. « = —1, s arbitrary. If ¢4 = 0 in (3.23) and if ¢3 # 0 in (3.21) and
(3.23), then we set ¢ = m, ¢; = 0 and ¢y = 1, without loss of generality. Thus we obtain
the reduction

u(z,t) = w(z) + mt, z=x— %th, (3.28)

where w(z) satisfies

ww" + pw'w" —ww' - 2kw’ —m =0,
which may be integrated to yield
ww” + (8- 1)(w')? — 2w — 25w — mz = A, (3.29)

where A is an arbitrary constant.

Reduction 3.2.8. a=—-1,x=0. Ifcy #0in (3.23) we may set c3 =m, cs =1, ¢c; = ¢

and co = 0, without loss of generality. Thus we obtain the reduction

w2, 1) = % +m, z=x—mt—clnt, (3.30)
where w(z) satisfies
ww"" + pw'w" —w" —ww' +w+c=0. (3.31)

3.3 Nonclassical symmetries (7 # 0)
To apply the nonclassical method we advocate the algorithm described in Clarkson and
Mansfield [1994¢] for calculating the determining equations, which avoids difficulties arising
from using differential consequences of the invariant surface condition.

In the canonical case when 7 # 0 we set 7 = 1 without loss of generality. We proceed

by eliminating u; and u,.; in (3.1) using the invariant surface condition which yields

9 f P 3 Gl
Ef“’a:xm — Ulgga il 3E£uum Ugpy — ﬁ”’a:’“la:a: - 6¢u“:1::1: S 266:11 Ugq + 66’11,11,’“’,7; - 6¢uu U,

=+ 265111“3; — QUU, — 26(25:171:,“'1’ + 2“‘“.’17 T 6£:1::1:U'.ur, - fd)TT + qs - fum = 0. (332)

We note that this equation now involves the infinitesimals & and ¢ that are to be
determined. Then we apply the classical Lie algorithm to (3.32) using the third

prolongation pr®v and eliminating .., using (3.32). It should be noted that the
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coefficient of g4, is (€§ — u). Therefore, if this is zero the removal of ., using (3.32)
is invalid and so the next highest derivative term, u,,, should be used instead. We note
again that this has a coefficient that may be zero, so that in the subcase €€ = u one again
must calculate the determining equations in each scenario separately. Continuing in this
fashion, there is a cascade of subcases to be considered. In the remainder of this section,

we consider these subcases in turn. First, however, we discuss the case given by € = 0.

Case 3.3.1 e =0. The first determining equation gives £, = 0, and substituting this into

the other seven determining equations yields

Puuuts + BPuu = 0, (3.33ii)
3¢zuuts + 26¢py — Plux =0, (3.33iii)
3¢puut’ + Bdyu — B =0, (3.33iv)
3prutt — 3zt + By = 0, (3.33v)
Pt — Ppzati® — adyu? + 2k u + 3 du — ¢ =0, (3.33vi)
3¢reuts® — Erpotl® + 20€,u° + Bprts — 4Epku + 3E€,u + Exu + 26¢ — £ = 0. (3.33vii)

It is quite straightforward to solve these equations and so we obtain the following

infinitesimals: (a), if & # 0

. 1 —u
= 2 < =
() (=Bt PTiim
(11) € = (1, (/) = 05
and (b), if =0
) ¢ = (c1 + 1)z +2k(2¢; — Dt + o b= u
N 3(ert + ¢3) ’ Ceattes’
. T+ 4kt + ¢
= =0
M 0 e=tEEEIa 4o

These are all equivalent to classical infinitesimals. Hence in this case there are no new

nonclassical symmetries.

Case 3.3.2 e = 1. As discussed in the preamble to this section, we must consider, in

addition to the general case, each of the singular cases of the determining equations.

Subcase 3.3.2(i) & # u. We can remove factors of (¢ —u) from the determining equations,

and we find that the second determining equation reads &, = 0. Reducing the remaining
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eight determining equations with respect to this, only the last six are non-zero:

3huutt® — 6EPuuts + Byt + 32 Puy — BEDy — B + BEEL + BE, = 0, (3.34iv)
Puuutt = EPuvu + Bbuu = 0, (3.34v)
Exur — By + PPuutt + Bzt — Epduu — SEprutt + 46&uau + Prou

— $pu + Espu — €t — 26wz + 3ruu® — 3ppu® — 265u — 2650u

+ 2%y + 2P — 2sby + 268 =0, (3.34vi)
2 kipz — Prt + Ay’ — 25Ppu — Abpru + 2¢pupau

+ Pbrzutt — 26 Pruds — Eaxbott — EPProu — e pu + 268 d + E€zade + Expazu

— Ebuvats — £4d + I° — Pdor + Prart’ + Poatth — Eduat + Edow +Ebr =0, (3.34vii)
2800t — Expuntt — BEratt + 20uPunts + P&y — SEPrunt — EPbuun + PPuuutt

+ Bruntt — Oy + ExPun — Edrun + 30zuats® + 26%Ppun — 26y dun

+ 2685 puu — 288 ¢zu = 0, (3.34viii)
4 ku — 20uu Pzt — Bhratt — Eaabu — 260 — 2¢0¢suutt — 2d5tut + € + Epaiu

+Eauati® +Eian — Buautt® + 20¢um — Ebant + 26 Es — £ Pnon, — Wtho, — bt

+ afd + Eorduts — 2£€uK — E€ppot — 3EE:U + U buuts + E€uus

+ 4 boouts + Bdus + 2 pbouu + 26 udau — 26Eatru — abau?

+ €&pu + 26 hrtu + 28¢5 — Eet — Eoad — 2dudruu = 0. (3.34ix)

Reducing (3.34v) with respect to (3.34iv) yields

(IB - 3) [(u - g)d)u = d) - {Ez: ois ft] =0.

If 8 = 3, then one finds via another route that the expression in the second bracket is

necessarily zero. The equation for ¢ can be solved to give

¢ = F(z,t)(u— &) + &€ + &

When this is substituted into the remaining equations we can then take coefficients of

powers of u to be zero, and our problem is then solved. The complete solution set is

(a), if a # —1

Y e T (3.35)
- o 2K _ Cc1 4= 2/‘5—_(1"‘—()’)“ ‘
(ii) C(1+a@) t+e’ p = A1) ta) (3.36)

(b), ifa=-1
€ = Clt + Co, (/) =C, (337)
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(c),ifa=—-1and k=0

Cs Ci —Uu

E:Cl_t—i-cf = t+cy’ 358
and (d), if # = —1 and a = 0,
¢ =cix — 2c1kt 4+ co, ¢ = 3ciu — 20%37 + 4c§/<.:t — 2c1¢9 — 201K, (3.39)

The infinitesimals (3.35)-(3.38) give rise to classical reductions, but (3.39) gives the

following new nonclassical reduction.

Reduction 3.3.1.  If in (3.39), we require ¢; # 0 we may set ¢y = 0, without loss of

generality, then we obtain
u(z,t) = w(z)exp (3c1t) + c1z exp (c1t) + 2k, z = (z — 2kt — 2K/c1) exp (—c1t),

where w(z) satisfies

ww" — w'w” + erzw’ — 3c;w = 0.

Subcase 3.3.2(ii) & = w, not both § = 3 and ¢, = 0. We generate five determining
equations, the first of which is (8 —3)(8 — 1)y, = 0. If 8 = 3 we find, in contradiction to
our assumptions, that ¢, = 0. If ¢,, = 0, we write ¢ as a linear function of u, substitute
this into the remaining four determining equations and take coefficients of powers of u to
be zero. The only solution to these equations is when ¢ = 0, provided that x = 0 and
a = —1;  remains arbitrary (though § # 3). The invariant surface condition and (3.1)
are then solved to give the simple exact solution
T+er
t+cy’

u(z,t) = (3.40)

where ¢; and ¢y are arbitrary constants.
The only remaining case to be considered is when # = 1, and we may assume that
¢Puu # 0, since taking ¢, = 0 yields the exact solution (3.40) above. In this instance the

remaining four determining equations are

125 — 2¢puntt — 60t — 6U — 200Dy — 3Py Pun — 4ban — 2¢4uy = 0,
bruPrats — Pubzzath — APupzt — PPgut — 2¢a¢oe + PPuubaz + Ptuboe — 20uPruda
+ 26¢u s + 20¢s — ¢ buu — PPuduru — Prarbu + Pru — dbr = 0,
Pudbruuts + 4adutt — $ny, — Grubuu + $bubuun + 66 — ddus + Pruudu — 4zru
+ 4yt — 2¢unbr — 4PPruu + 207 Puu — 8Ky — 20 — PruPuuts — 4ty = 0,
PPunts + Aot — 20uPuube — 20Pubrun — 20uPrzutt + APt + 20y Pun
— 26PPuu + 20w Pru + PPyt + 2¢pazth — 2050 + 202 U — 3Py D
+ 20baeu — 200 Pru — 20utuPu + 49y — 2601 — PPy — 2KPryu

+ rutt + Pputs® + 2hgar — 26 = 0.
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Using the procedures in the package diffgrob2 with an ordering designed to eliminate
first derivatives with respect to t, then derivatives with respect to z, one can obtain
several equations for derivatives of ¢ with respect to v only. One can then continue to
produce lower order and lower degree equations in the u-derivatives of ¢, using repeated
cross-differentiation and reductions. For example, the Direct Search strategy described in
§1.7.5 may be used. This process suffers from expression swell. No termination of this
process was observed by us within the computer memory available, and the expressions
obtained contained thousands of summands! One of three results appear likely. Firstly,
the process terminates with the highest derivative term being ¢ itself, yielding ¢ to be a
function of u alone (note that = and ¢ do not appear explicitly in any of the determining
equations). Inserting this into the determining equations, one must have that ¢ is constant,
a contradiction to our standing assumption in this subcase. Secondly, the process may
terminate with an inconsistency, and thirdly, the process may terminate but with such a

large expression that the result is useless.

Subcase 3.3.2(iii) € = u, B = 3, ¢, = 0 and not both x and a+1 are zero. One determining
equation was obtained which was a polynomial in u of degree two whose coefficients are
functions of z, ¢ only, so the coefficients of powers of u must be zero. These equations were
easily simplified using the procedures in diffgrob2 to yield,

k#0, a=-1, ¢$ =0, (3.41)
—2K
t+c’

k¥ 0, a=-1, b= (3.42)

2Kt
1+«

k arbitrary, a # —1, ¢ = c1exp(C) + ez exp(—(), ¢ =iva (:1: - ) . (3.43)

In (3.41) if we solve (3.1) and the invariant surface condition as a system of equations
we find that the only solution is u(z,t) = ¢, a constant.

In (3.42) we can solve (3.1) and the invariant surface condition to give the exact
(canonical) solution

u(z,t) = =2k + z/t,

which cannot be realised by any of the previously found reductions, though it would not
appear to be a particularly interesting solution. It is interesting to note that performing
the KolRitt algorithm of diffgrob2 on the system comprising the original equation with
the invariant surface condition led to a simple calculation for w. By contrast, the usual
procedure of solving the invariant surface condition using the method of characteristics
and inserting the result into the original equation to obtain the reduction was considerably
more difficult due to the implicit nature of the reduction.

In (3.43) we can again solve our problem to yield the exact (canonical) solution

—2K . 2Kt
n + (co + c16¢ + cpe™ )2, ¢ =iva <:17— " ) ,
/ 1A+

wlm, ) = Ta
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which is a special case of the travelling wave reduction 3.2.5.

Subcase 3.3.2(iv) £ = u, f =3, ¢ =0, Kk =0, « = —1. We are left simply with the
determining equation ¢,, — ¢ = 0, which produces the following infinitesimal,

¢ =g(t)e® + h(t)e ™™, (3.44)
where g and h are arbitrary functions. Hence we have to solve the invariant surface
condition

uly + up = g(t)e” + h(t)e . (3.45)

It is straightforward to show that every solution of this equation is also a solution of (3.1).

3.4 Nonclassical symmetries (7 =0)
In the canonical case of the nonclassical method when 7 = 0 we set £ = 1 without loss of
generality. We proceed by eliminating u,, Uz, Uzer and ugqe in (3.1) using the invariant
surface condition which yields
Ut — EQPuntis — EQputis — €QLUL — Prath — Puptt — P>yt — 2¢peuu — Pdu

— au — Bdds — eprpu — B’ Pu — €hur — ebpru + 26 =0, (3.46)
which involves the infinitesimal ¢ that is to be determined. As in the 7 # 0 case we
apply the classical Lie algorithm to this equation using the first prolongation pr{!)v and
eliminate u; using (3.46). Also similar to the 7 # 0 case is the possible existence of singular
solutions if € # 0. In fact if € = 1, there is a singular solution if and only if

Obu + P —u — 25 /0.

The nonclassical method generates a single equation of 138 terms when ¢ = 1, which
reduces to 25 terms when € = (. Since it is not possible to solve these equations explicitly
(they are more complex than equation (3.1)!) we seek polynomial solutions in u. Whilst
we tackle the cases € = 0 and € = 1 separately in practice, it is convenient to express our
results for a general e.

Ansatz 1. ¢ = F(z,t). We obtain the following exact solutions for (3.1);
(a) f a =0,
u(z,t) = Hy(t)z® + Hy(t)z? + Hs(t)z + w(t),
where the H;(t) are determined by the determining equations and w(t) by substitution
into (3.1); they satisfy
Hj —6(1+38)H} =0,
H) —6(1+38)H Hy = —6KkHy,
H —6(1 + B)H, Hs = 4BH3 — 4xHjy + 6eHj,
w' — 6Hyw = 2BHyH; — 2kH3 + 2¢H)),
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where primes denote differentiation with respect to ¢. This system of equations is solvable,

though has many special cases to be considered, so this is not pursued here.

(b) If =0, @ # 0 and ae + 1 # 0, we have the (canonical) exact solution

T — 2Kt
u(z,t) = — il
at
2Kt it
= Yleet) e exp |V—a [z — = +egexp |—v/—ar { — 2nit ;
ae+ 1 ae + 1

If ¢; = ¢o = 0 then we may drop the restriction on f since the solution then holds for 3
arbitrary.

(c) If B =ae+ 1=k =0, then we have
u(z,t) = Hi(t)ef® + Ho(t)e 2% 4 ¢,

where eR? = 1, H;(t) and Hy(t) are arbitrary functions and ¢; is an arbitrary constant.
Ansatz 2. ¢ = F(z,t)u® + G(z,t)u + H(z,t).  With this ansatz we find the following
exact solutions of (3.1) for various parameter values.

(a) fB=1, k=0, then

az?
u(z,t) = c1 exp (——) :
4
(b) If g = -3,
u(x,t) = e tan {3/ (z — 2Kt) } + eco,
where 2k — (ae + 1)c2 = 0.
(¢) If R?(1 4 B) + « = 0, then providing eR? # 1 we have the exact solution
2K + c3BR?)t 2k + c3 BR?)t

u(z,t) = ¢, exp {R I:.'I,‘ — (—1—_2’2#)} } + ¢ exp {-—R [:1; - (TZ%T)] } + c3,
for 8 arbitrary.
(d)Ifg= —%, 2+ ae # 0 and 1+ 2ace # 0, then

o ) == 1 (4K — acy)t i @2kt ac)t
u(z,t) = c1 exp { s R [I " Doime }} + co exp {R [.I, Tt 2ac

2 .
c1(2 + ae) (4k — aes)t
> R L= .
8(c3 + ez — 2ke) ha { I:I 2+ ae e

where R? = —2a and we require c3 + aecs — 2ke # 0.

(e) If B = —3 and 2 + ae = 0 then we have
it
u(z,t) = 2eH; (t) exp [£R(z + 2xt)] + ((:1 = 2\/2/ H?(s) (ls> exp [£2R(z + 2kt)] — 2ke,

where eR? = 1 and H{(t) is an arbitrary function.
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3.5 Discussion

In this chapter we have classified symmetry reductions of the nonlinear third order
partial differential equation (3.1), which contains three special cases that have attracted
considerable interest recently, using the classical Lie method and the nonclassical method
due to Bluman and Cole [1969]. The use of the MAPLE package diffgrob2 was crucial
in this classification procedure. In the classical case it identified the special cases of the
parameters for which additional symmetries might occur whilst in the nonclassical case,
the use of diffgrob2 rendered a daunting calculation tractable and thus solvable.

In their recent paper, Gilson and Pickering [1995] discuss the application of the
Painlevé tests for integrability due to Ablowitz, Ramani and Segur [1978,1980] and
Weiss, Tabor and Carnevale [1983] to equation (3.1). In particular, they investigate
the integrability of the ordinary differential equations arising from the travelling-wave
reductions 3.2.1 and 3.2.5 above, and particular values of the parameters in special cases
of reductions 3.2.2, 3.2.6-3.2.8. It would be interesting to investigate the integrability
of some of the ordinary differential equations arising from the other reductions derived
in this chapter using the various methods of Painlevé analysis available (see §1.6 for
details), though we shall not pursue this further here. Marinakis and Bountis [1995]
have also applied Painlevé analysis to the FFCH equation (3.5); an interesting aspect of
their analysis is the use of a hodograph transformation. To conclude we remark that the
RH equation (3.4) is a quasilinear partial differential equation of the form discussed by
Clarkson, Fokas and Ablowitz [1989]. It is routine to apply their algorithm, which involves
a hodograph transformation, for applying the Painlevé PDE test to such quasilinear partial
differential equations and show that (3.4) does not satisfy the necessary conditions to be

solvable by inverse scattering.
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A class of Nonlinear Fourth Order Partial
Differential Equations

4.1 Introduction
Following the work of the previous chapter, in this chapter we are concerned with symmetry

reductions of the nonlinear fourth order partial differential equation given by
A= uy — (ku+7u?)gr — Weper — Plleptt — QUgligge — Pu’, =0, (4.1)

where «, (3, v, k and p are arbitrary constants. Indeed, this equation may be thought of

as an alternative to the class of third order equations we studied in the previous chapter
Up — EUggt + 26Uy = Ullggy + QUUL + BUgtyy. (4.2)

This is analogous to the Boussinesq equation (Boussinesq [1871,1872])
Upt = Uggpge + %(uz)“,, (4.3)

which is a soliton equation solvable by inverse scattering (see Ablowitz and Haberman
[1975], Caudrey [1980,1982], Deift, Tomei and Trubowitz [1982], Zakharov [1974]) being

an alternative to the Korteweg—de Vries (KdV) equation
Up = Ugpe + OULL, (4.4)

another soliton equation, the first to be solved by inverse scattering, by Gardner et al.
[1967].

Two special cases of (4.1) have appeared recently in the literature both of which model
the motion of a dense chain (Rosenau [1994]). The first is obtainable via the transformation

(u,z,t) — (2eazu + eag, z,t) with the appropriate change of parameters, to yield

2 2 .
Ut = (ot + Q3U ) g + EQUzzer + 2603[UUgzer + 2Us, + 3UgpUspgs], (4.5)
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with € > 0. This equation can be thought of as the Boussinesq equation (4.3) appended
with a nonlinear dispersion. It admits both conventional solitons and compact solitons
which are often called compactons. Compactons are solitary waves with a compact support

(Rosenau [1994], Rosenau and Hyman [1993]). The compact structures take the form

9.2 _ s —~1/2p f e — p
sgla, £ = { (3¢® — 2az) cos*{(12¢) (z — ct)}/2as, }f |z — ct| < 2m, (4.61)
; if |z — ct| > 2.
or
Acos{(3e)"Y?[z — (2a3)Y/?t]}, if |z —ct| < 2m o
1) = 3 ’ =S &, j
u(, ) { 0, if |z — ct| > 2. (=t

These are “weak” solutions as they do not possess the necessary smoothness at the edges,
however this would appear not to affect the robustness of a compacton (Rosenau [1994]).
Numerical experiments by Rosenau and Hyman [1993] seem to show that compactons
interact elastically, reemerging with exactly the same coherent shape.

The second special case of equation (4.1) is obtained from the scaling transformation

(u,z,t) = (2a3u/e, /e z,t), again with appropriate parameterisation,

uy = (ou + (r3u2)m + €Ugpit + 2603[Ulggze + 2uim + B Mg | (4.7)

with ¢ > 0. This equation, unlike (4.5) is well posed. It also admits conventional solitons

and allows compactons like

23 . ~1f2(m _ o T4
i, ] = (4¢* — 3az) cos*{(12¢) (x — ct)}/2as, }f_ |z — ct| < 2, (4.81)
0, if |z — ct| > 2m,
or
Acos{(3e)"1/?[z — (3ay)'/?t]}, if |z — ct| < 2m, ..
z,t) = 2 ’ — i :
aak { 0, if |z — ct| > 2. il

These again are weak solutions, and are very similar to the previous solutions: both (4.6ii)
and (4.8ii) are solutions with a variable speed linked to the amplitude of the wave, whereas
both (4.61) and (4.81) are solutions with arbitrary amplitudes, whilst the wave speed is
fixed by the parameters of the equation.

The classical method for finding symmetry reductions of partial differential equations
is the Lie group method of infinitesimal transformations, which in practice is a three—step
procedure (see §1.2 for details). Particular importance has been placed on the second step
in this study. It involves heuristic integration procedures which have been implemented
in some SM programs and are largely successful, though not infallible. Commonly, the
overdetermined systems to be solved are simple, and heuristic integration is both fast and
effective. However, there are occasions where heuristics can break down (cf. Mansfield
and Clarkson [1996] for further details and examples). If the classical method is applied
to a partial differential equation which contains arbitrary parameters, such as (4.1) or
more generally, arbitrary functions, heuristics usually yield the general solution yet miss

those special cases of the parameters and arbitrary functions where additional symmetries
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lie. In contrast the method of differential Grobner bases, which is described in §1.7, has
proved effective in coping with such difficulties (cf. Clarkson and Mansfield [1994a], and
the two previous chapters).

We use the MAPLE package diffgrob2 which has implemented in it the Kolchin-Ritt
algorithm using pseudo-reduction instead of reduction, and extra algorithms needed to
calculate a differential Grobner basis (as far as possible using the current theory), for
those cases where the Kolchin-Ritt algorithm is not sufficient (see Mansfield and Fackerell
[1992]). The package was designed to be used interactively as well as algorithmically, and
much use is made of this fact here. It has proved useful for solving many fully nonlinear
systems (cf. Clarkson and Mansfield [1994a,b,c,1995]).

In the following sections we shall consider the cases u = 0 and p # 0, when we set = 1
without loss of generality, separately because the presence or lack of the corresponding
fourth order term is significant. In §4.2 we find the classical Lie group of symmetries
and associated reductions of (4.1). In §4.3 we discuss the nonclassical symmetries and
reductions of (4.1) in the generic case. In §4.4 we consider special cases of the the
nonclassical method in the so-called 7 = 0 case; in full generality this case is somewhat

intractable. In §4.5 we discuss our results.

4.2 Classical symmetries
To apply the classical method as described in §1.2 we consider the one-parameter Lie

group of infinitesimal transformations in (z,¢,u) given by

z* =z + e(z, t,u) + O(e?), (4.91)
t* =t +e7(z,t,u) + O(e?), (4.9ii)
u* = u+ed(z,t,u) + O(e?), (4.9ii1)

where € is the group parameter. This procedure yields an overdetermined system of linear

determining equations. There are two cases to consider, when p = 0 and when p # 0.

Case 4.2.1 p = 0. In this case we generate 15 determining equations, using the MACSYMA

package symmgrp.max.

7w =0, =0, &=0, =0, &§&=0, (4.10i)
alpu—P) =0,  Blpyu—¢) =0,  2psm — Tt =0, (4.10ii)
dpguth — 6840u + py,  2Tiu —4&u+ ¢ =0, (4.10iii)
4B¢pu + 3pgy — 208us — 30€ee =0, (4.10iv)
D1t — Prazath — 2YPaatt — Ke = 0, (4.10v)




Chapter Four : A class of Nonlinear Fourth Order Partial Differential Equations 117
3ad et + 2ypyu + 4y — alppet — 270 = 0, (4.10vi)
6prruti® + 4€,yu? — dprpt® + 2Bhert + 26 ku — K = 0, (4.10vii)
4rpauts + WY Prut — 2600VU — Erpupth + Wrry + 4Ybye + 260y — Epak = 0,  (4.10viii)

and then use reduceall in diffgrob2 to simplify them to the following system
£, =10, & =0, v(148 + 9a)é, = 0, T =0, (4.111)
vk(140 + 9a) 1 = 0, o 5= 1, vk(148 + 9a)¢ = 0. (4.11i1)
Thus we have special cases when v = 0, K = 0 and/or 143 + 9a = 0. The latter

condition provides nothing different unless we specialise further and consider the special

5

case when a = —3 and 8 = %. We continue to use reduceall in diffgrob2 for the various

combinations and it transpires that there are only four combinations which yield different

infinitesimals. Where a parameter is not included it is presumed to be arbitrary.

(a) B = O, fu = 07 ft = 0, fzn = (), Ty = 0,
T = 0, 7% = 0, 2riu+ ¢ = 0.

(b) v=0, §u =0, & =0, §za = 0, Tu = 0,
Er— 1 =0, T =105 26, u+ ¢ =0.

(C) ’)/ = H = 07 5114 = ()? ft - ()7 fl".’l: = ()7 T'll, - ()7
Tt = 07 Te = 07 274U — 46:1:“’ - (/) =0.

(d) a = _%7 6 = %7 Yy=£=0, &u =0, & =0, €:1:$1: =0, Tu =0,
T =10, T =0, 21w — 4é,u — p = 0.

Hence we obtain the infinitesimals, as listed in table 4.2.1.
Table 4.2.1

Parameters & T ¢
e e 0 (4.12)
K= c cat + co —2c31 (4.13)
v=10 3T + ¢1 c3t + ¢ 2c3u (4.14)
y=k=0 cax + 1 c3t + ¢ (4eqg — 2¢3)u (4.15)
a=-36=8,
y=k=0 sttt +ce cat+en [4(2e51 +cq) — 2c3]u (4.16)

where ¢y, ..., c5 are arbitrary constants.

Solving the invariant surface condition yields the following seven different canonical

reductions:

Reduction 4.2.1.

«, 3,7, k arbitrary. If in (4.12-4.16) ¢3 = ¢4 = ¢5 = 0, then we may

set co = 1 without loss of generality. Thus we obtain the reduction

w(z, 1) = w(z),

2 =i — €1t
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where w(z) satisfies
(k = )w" + 2y[ww” + (w')?] + ww"" + aw'w" + (w")? = 0.

Reduction 4.2.2.  «,f,v arbitrary, k = 0. If in (4.13),(4.15) and (4.16) ¢4 = c5 = 0,
c3 # 0, then we may set ¢c; = 0, ¢3 = 1 without loss of generality. Thus we obtain the

reduction

u(z,t) = t~%w(2), z=x—cInt,

where w(z) satisfies
ww"" + aw'w” + Bw")? + 2y[ww” + (w')?] = Ew” - Seyw’ — 6w = 0.

Reduction 4.2.3. «, B,k arbitrary, v = 0. If in (4.14) ¢3 # 0, then we may set

¢1 = ¢ =0, c3 = 1 without loss of generality. Thus we obtain the reduction
u(z,t) = tw(z), Z =t
where w(z) satisfies
ww" + aw'w" + Bw")? + kw" — 22w + 220w’ — 2w = 0.

Reduction 4.2.4. «, f arbitrary, xk =y = 0. If in (4.15) and (4.16) ¢3 = ¢5 =0, ¢4 # 0,

then we may set ¢; = 0, co = 1 without loss of generality. Thus we obtain the reduction
u(z,t) = w(z) exp(4eqt), z = zexp(—est),

where w(z) satisfies

ww"" + aw'w” + Bw")? — 222w" + Tcizw' — 16c3w = 0.
Reduction 4.2.5. «,( arbitrary, kK =y = 0. If in (4.15) and (4.16) ¢5 = 0, c3cq4 # 0,
then we may set ¢; = ¢ = 0, ¢c3 = 1 without loss of generality. Thus we obtain the
reduction

ule, ) = wl2)t*e ™, g=mxt %,
where w(z) satisfies

ww" + oaw'w"” + B(w")? — A22w" + (T3 — 5eq)zw’ — (16¢5 — 20cs + 6)w = 0.

Reduction 4.2.6. « = —%, B8 = %, vy=k=0. If in (4.16) c3 = 0, c5 # 0, then we
may set ¢; = —me, ¢ = 1, ¢4 = 0, ¢5 = m/c, without loss of generality. Thus we obtain

the reduction

u(z, 1) = w(z) exp(—8mt) _ (.1: —c

[z — exp(—2m¢t)]8’ z+c

) exp(—2mt),
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where w(z) satisfies

28ww"" — T0w'w" + 45(w")? — *m?(179222w" — 12544zw' + 28672w) = 0.

Reduction 4.2.7.  «a = _%’ = g_ga v=+r=0. If in (4.16) c3c5 # 0, then we may set
c1=—me, cg =cq4 =0, c3 =1, c5 = m/c, without loss of generality. Thus we obtain the
reduction -

ulz, 1) = w((j—)_t;:(—;;)—zl), p (:Z ; E) {=2m

where w(z) satisfies
28ww™" — T0w'w" + 45(w")? — 1792¢*m?2%w"

+ (12544m? — 4480m)c* zw' — (28672m? — 17920m + 2688)c*w = 0.

Case 4.2.2 1 # 0. In this case we set u = 1 without loss of generality and generate 18

determining equations,

Tu =0, Ty = 0, §u =0, & =0, by = 0, (4.174)
Potu =0, aPyu—¢) =0,  2¢p, —Tie =0,  B(duu—¢) =0, (4.17ii)
20505 — Exs =10, 4prut — 6€0u + ag, =0, (4.171ii)
2ryu — 26, u + ¢ = 0, (4.17iv)
4wy + 3aPeu — 208 — 30ee =0, (4.17v)
brauts + 210 — 4&u + ¢ = 0, (4.17vi)
3aPrputt + 27Puu + 4Epyu — A pprtt — 2v¢ = 0, (4.17vii)
btt — Prozath — 2YPuatl — Kyy — Puute = 0, (4.17viii)
60seut® + 4€pyu? — 4 ppau® + 2804t + Pt + 26 gku — kp = 0, (4.17ix)
4drrutt + 4YPanth — 264278 — Epawat + Agay +47¢s + 2605y — Exur =0, (4.17x)

and then use reduceall in diffgrob2 to simplify them to the following system,
&y = 0; & =0, Ep =10, Tu =04 kT =0, T =0, kg = 0.
Here x = 0 is the only special case, yielding the slightly different system
& =10, Lo =10, =0, T = 0, Tep = 0, i = 0, ¢+ 21u = 0.

Thus we have two different sets of infinitesimals, and in both cases «, 3 and 7 remain

arbitrary. This is summarised in table 4.2.2.
Table 4.2.2

Parameters ¢ T ¢

c1 Co 0 (4.18)
3 c3t + ¢ —2c3u (4.19)
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From these we have the following two canonical reductions:

Reduction 4.2.8. «,f3,v,~ arbitrary. If in (4.18) and (4.19) ¢3 = 0, then we may set

c1 = c¢ and ¢z = 1 without loss of generality. Thus we obtain the following reduction
u(z,t) = w(z), z =z —ct,
where w(z) satisfies
(k — ) w" + 2y[ww” + (w')?] + ww"" + aw'w" + pw")? + Ew"" = 0.

Reduction 4.2.9. «,f,v arbitrary, k = 0. If in (4.19) ¢3 # 0, then we may set ¢y = 0,

c3 = 1 and ¢; = ¢ without loss of generality. Thus we obtain the following reduction
u(z,t) =t %w(z), &= =¢lni,
where w(z) satisfies

ww"" + aw'w” + B(w")? + Fw"" + 5cw” + 2y[ww” + (w')?]+ (6 — 2w — sew' — 6w = 0.

4.2.3 Travelling wave reductions. As was seen in §4.1, special cases of (4.1) admit

interesting travelling wave solutions, namely compactons. In this subsection we look for
such solitary waves and others, in the framework of (4.1). Starting with compacton—type

solutions, we seek solutions of the form
u(z,t) = agcos™{az(z — ait)} + aq, (4.20)

where ay,as,a3,a4 are constants to be determined. We include the (possibly non-zero)
constant a4 since u is open to translation. The specific form of the translation will put
conditions on a4, which may or may not put further conditions on the other parameters
in (4.20) and those in (4.1) (see below). If n = 1 we have the solutions, where the absence
of a parameter implies it is arbitrary,

SO S
K —af — ajasji

() a=0=-1y=0, ay=-—TptPr (4.21i)
2
(i) a=1,68=0,v>0, al(l+2yp) — k=0, a3 = 2. (4.21ii)
2 (k — a?) — 2a2
i) B=a-1,2r>0a#l, a=2L,  a= als —a1) = 26398 o155
« «@ 29(1 — «)

These become n = 2 solutions via the trigonometric identity cos20 = 2cos?6 — 1. By
earlier reasoning the associated compactons are weak solutions of (4.1). When considering
more general n we restrict n to be either 3 or > 4 else the fourth derivatives of u(z,t) that

we require in (4.1) would have singularities at the edges of the humps; we find

2 2
o= —, g = ,La v >0, (1.%(]. + 27:“) -k =0, G,g = ;_YI_’ a4 = —/1,0,%. (422)
mn n n
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When n = 3 or n = 4 our compacton would be a weak solution since not all the derivatives
of u(x,t) in (4.1) in these instances are continuous at the edges. For n > 4 the solutions
are strong.

For more usual solitary waves we seek solutions of the form
u(z,t) = ay sech"{asz(z — a1t)} + aq, (4.23)

where a1, as, a3, aq are constants to be determined. If n = 2 then « = —1, § = —2 and we

have solutions

(i) < 1, a2(1 4+ 2yp) — & =0, e = —%, ay = —3(2a2 + 3aiu), (4.24i)

3a3(k — a? — 2a2vp) Kk —a? +4a2a3p
(i) 42 # 4a3, az = , , ay = — . (4.24i0)
’ (203 —7)(203 +7) 2(2a3 + )
and for general n, including n = 2 (y > 0)
2 4+ 2 .
a=-—, [=- s a?(l +2yp) — k=0, a2 = %, ay = —pas. (4.25)

Now consider the general travelling wave reduction, u(z,t) = w(z), where z = x — ct.

The new dependent variable, w(z), satisfies
(k = )w" + 2y[ww” + (w')?] + pw™"” + ww"" + cw'w” + B(w")? = 0. (4.26)

In the special case # = a — 1, we can integrate this twice with respect to z to give

(k — A)w + yw? + pc’w” + 3(a— 2)(w')? + Az+ B =0, (4.27)
with A, B the constants of integration. If we assume A = 0, then we make the

transformation W (z) = w(z)+puc?, multiply (4.27) by W*=3W' and integrate with respect
to z to yield

A A
zwry e 1 W{y—l + 2 Wa—Z by W(y—2(WI)2 i C = 0’ (428)
« a—1 a—2
for a # 0,1,2, where A; = k — ¢ — 2yuc? and Ay = B — puc?(k — ¢ —yuc?). In the special
cases o = 0, 1,2 we obtain respectively

Ay 24,  (W')?

’}’lIlW = W = W W2 +C = 0, (4291)
A W/ 2

YW + Ay InW — W2+ ( W) +C =0, (4.29ii)

%W2 + AW + Ay InW + (W')2 4+ C =0, (4.29i)

where C' in the above is a constant of integration. For « an integer > 3, (4.28) may be

written (back in terms of w(z)) as

B
— (w+ pc?)* 2 (w')? = 2(,“) +uct)* 24D

a=3 2\a—3—n ‘
YV o 2ya—2 oD 5 (puc”) a—3Y
+ P (w + pc?) + —(a(k — ¢*) = 2uyc®) E _W( . >u) } , (4.30)

22| =

=0
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where .
(ue®)*Halk = ) = 2u7e?)

B =G= ala—1)(a—2)

If we require that w and its derivatives tend to zero as z — oo, then B =D =0. If « = 3
this equation induces so-called peakons (Camassa and Holm [1993]) as «(k—c?) —2puyc? —
0 (see Camassa, Holm and Hyman [1994], Gilson and Pickering [1995], Kovalev [1995]
and Rosenau [1994]). Similarly if &« = 4 this equation is of the form found in Gilson
and Pickering [1995] which induces the ‘wave of greatest height’ found in Fornberg and
Whitham [1978]. Both solutions, in their limit, have a discontinuity in their first derivative
at its peak. Note that if a(k — ¢?) — 2uyc? = 0, equation (4.30) becomes

(w + pc?)*=? [(11)’)2 + —Z—wz] = [ (4.31)

Since a > 0 then we require v < 0 to give a peakon of the form

u(z,t) = ”"(‘3;7_”‘)@@ {— (1)1/2 |z — ct|} . (4.32)

¥ «@

The height of the wave, because of the form of (4.1), is dependent upon the square of the
speed, whereas the peakons in the papers by Camassa and Holm [1993] and Fornberg and

Whitham [1978] are proportional to the wave speed.

4.3 Nonclassical symmetries (7 # 0)
We apply the nonclassical method using the algorithm described by Clarkson and
Mansfield [1994c]| for calculating the determining equations, which avoids difficulties arising
from using differential consequences of the invariant surface condition, which is necessary
in the application to (4.1).

In the canonical case when 7 # 0 we set 7 = 1 without loss of generality. We proceed

by eliminating us and e in (4.1) using the invariant surface condition which yields

oty + 2u2EEy — 20ubts + 2y — Gl — Etug + Py — Phuts + P
— KUgy — 27(Ulgy + U2) — Ulggrs — QUzUges — PU, + U[20ses — 200t — 4€2Ugy
— Prulize — Pubze — Poat + Eantlic — Pruntis + Palor + Etunttd + Ettizar — E Uszre
+ Praal — Patlor — PPoou — Eaatis + Punutly + Prautic + $éulizar — Pbuntize
— Pbuuntil + 2ttizs + 2ttty — 2atutic — 3abastic — uastiy — 4€€sattas
+ 20ubantic — Suubatty — 8Erubatiy — 15€ulatintiny — 5€atars + Aulatins
+ dpunbrti + 6huuEotty — 26€0uutty — 5E€puntd + 20 puuul — 66, €y
- 125@,,,“,1&.1@,,,1; + 3P€uutztizy + 4(/),“,§uu'u,i - 3d)z£1,,uui — 4££_,,,,w'u,,2,, — 10@53,“11,2

- lsfg:nuuxun:a: o} Z(ﬁfzuuzms + G(buf:l:uui + 4¢’:1:£1‘u“m —12 Eufurr - 86{1:,“:1:“‘:1::::a:
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- 6€£u(1i£ + 9¢u§uumumz + 3(l)w£uuzz + 5¢uu£uui I S(brufu“f + 3(/)a;:n£uuz
- 3£tuuzuz‘$ - 2(/)u€ummz + 6¢’ltu§”$“’l‘17 + 5(bmu£“zm + 2¢uuu£“i + 5(/);1;“,“5’(13:
+ 4¢xmu£“1 3¢1L§buu U, 2¢uu ¢zur 2¢¢muu“x - 4(/)11,¢zu“w] = 0. (433)

We note that this equation now involves the infinitesimals ¢ and ¢ that are to be
determined. Then we apply the classical Lie algorithm to (4.33) using the fourth
prolongation pl'(4)v and eliminate ;... using (4.33). It should be noted that the
coefficient of 1,400 is (€2 + u). Therefore, if this is zero the removal of ug,,, using
(4.33) is invalid and so the next highest derivative term, wu,.,, should be used instead.
We note again that this has a coefficient that may be zero so that in the case p 7# 0 and
(€2 +u = 0 one needs to calculate the determining equations for the subcases when this is
zero and non-zero separately. Continuing in this fashion, there is a cascade of subcases to
be considered. In the remainder of this section, we consider these subcases in turn. First,

however, we discuss the case given by pu = 0.

Case 4.3.1 = 0. In this case we generate the following 12 determining equations.

§u =0, (4.34i)
Pununtt + APuyy =0, (4.34ii)
dbruuutt + 30hgyu = 0, (4.34iii)
6duunt + 280y + 3agu, =0, (4.34iv)
4yt + agpuu — ap =0, (4.34v)
4yt — 685U + gy = 0, (4.34vi)
3puut® + Bpuu — B =0, (4.34vii)
120400t + 4BPry + 30bgy — 28€ps — 30€ze =0, (4.34viii)

6przunts® + 2YPuut’

+ KPuutt — E2Puutt + 30zt + 2YPuu + 4o yu — A ppau — 27¢ = 0, (4.34ix)
6zouti® + 46evu? — 4oaoti® + 2B¢epu + 26pku — 4260 — 266u — K + E2¢ = 0,(4.34x)
Petth — Proaat’® — 2YPret® — Krat — 4, pru

— 21 pt + P2 Punt + 4y dbut + 20Prut + 4o it + Edpy — B Py — pdr = 0, (4.34xi)
Aproouts® + 4YPouti® — 2beaY® — Eopoott® + Oazett + ydsu

+ 26PPyuth + 26¢ppu + 8EEL Pyt + 28y U + 2Eppt — Epp kU

— 4E€0u + 26460u + Euts — 2P + Ebap — Erdp = 0. (4.34xii)
As guaranteed by the nonclassical method, we get all the classical reductions, but we also

have some infinitesimals that lead to nonclassical reductions, namely those described in

table 4.3.1 (where primes denote differentiation with respect to t).
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Table 4.3.1

A class of Nonlinear Fourth Order Partial Differential Equations

Parameters

§

¢

k=0 0 g(t)u where ¢" + gg' — g =0 4.35)
a=f=y=0 +k c3y’ + oy’ +ay+c (y=z+/kt) (4.36)
a=p= 0 —g'(thu/g(t) + g(t)(caz® + car® + c22® + c1 + ¢o)

op= g =0 where ¢2¢"" — 4gg'g" + 2(g')® + 24c49* =0 (4.37)

From these we obtain three canonical reductions.

Reduction 4.3.1.
d
[ln ()] then 1p(t) satisfies

dy
(5

where ¢; and ¢y are arbitrary constants; ¢; = ¢o = 0 is not allowed since g(¢) Z 0 to obtain

a, 3,7 arbitrary, k = 0. In (4.35) we solve the equation for g(¢) by
writing g(t) =

2
> = 4(;11p3 + o, (438)

more than classical reductions. Hence we obtain the following reduction

u(z,t)

42w ® dw
- 9 |1 d
TP <(1:1r;2 ) T2y [w T < dz

There are three cases to consider in the solution of (4.38).

= w(z) (1),
where w(z) satisfies

d?w
dz?

dz dz3

d4w
wW—7m"r +

dz

2
> ] — 6w = 0.

(1) If ¢; = 0, we may assume that 1 (t) = ¢ without loss of generality.
(i) If co = 0, then 1 = [ca(t + ¢3)?]7! and we may set c; = 1,¢3 = 0 without loss of
generality.

(iii) If cyco # 0 we may set ¢; = 1, ¢ = —g3 without loss of generality so that (t) is

any solution of the Weierstrass elliptic function equation

(

k arbitrary, « = # = v = 0. From (4.36) we get the following

dgp

4.3¢
dt ()

2
) = 4p*(t;0,93) — g3.

Reduction 4.3.2.

reduction

gy =t ~/rt, #=mF Rt

y? + cot,

o o
4K

u(z,t) = w(z) 8(:;;7/4 + Gi;f;y?’
where w(z) satisfies

View"' £ 3c3 = 0.

This gives us the exact solution

C2

ﬁf

:1/2 + cot.

2 +(:423 +(:522 + cez + c7 £ J +

ulxz, t) = F 83%

8\/— \/E
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Reduction 4.3.3. a=f=+v=kx=0. In (4.37) we integrate our equation for g(¢) up

to an expression with quadratures

d?g dg

2 ot
932 ~ 2 (E) + 24cqg / g%(s) ds + 24c59 = 0. (4.40)

We get the following reduction
t
u(z,t) = g7 (1) ['w(:l:) + (caz* + caz® + co2® + 12 + ) / g% (s) ds] ,

where w(z) satisfies

d*w
m = 2405 —J0)

This is easily solved to give the solution

~3

ot
u(z,t) = g7 (t)[csz* + c6x3 + c72? + csx + co + (caz® + 323 + c2z® + 12+ ¢) / g%(s)ds],

where g(t) satisfies (4.40).

Case 4.3.2  # 0. As discussed earlier in this section, we must consider, in addition to

the general case, each of the singular cases of the determining equations. Without loss of
b

generality we set p = 1.

Subcase 4.3.2(i) £€%2+wu # 0. In this the generic case we generate 12 determining equations,
far larger than system (4.34) — see appendix A for details. The reason for the increase
in size of this system is obvious when one looks at equation (4.33) and the coefficient of
i therein. As expected we have all the classical reductions, however we also have many
infinitesimals that lead to nonclassical reductions. These are presented in table 4.3.2,

where primes denote differentiation with respect to t.

Table 4.3.2

Parameters ¢ ¢

k=10 0 g(t)u  where ¢" +gg' —¢> =0 (4.41)
1+2y=0 cit + co —2¢q(c1t + ¢o) (4.42)
k=1+2y=0 ca(t +¢1)? u(t+c1)™t =33 (t +¢1)? (4.43)
a=Ff=v=10 = sy’ + ey’ +ayt+c (y=zxrt) (4.44)
a=-2=2,y=0 *iVk(z+c1) +2VEu £ 163/2(z + ¢1)? (4.45)
a=F=v=K=10 0 c3x® + caz? + 1z + ¢ (4.46)
g=fB=g=r=10 0 (u+ c323 + 2z + 1z + ¢o) (t +cqg) ™ (4.47)

From these we obtain six reductions.
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Reduction 4.3.4.  «, 3, arbitrary, kK = 0. In (4.41) we solve the equation for g(t) by
1

writing g(t) = %[ln P (t)] then 1(t) satisfies
at

¥ 2
<%> =419 + ¢, (4.48)

though ¢; = ¢o = 0 is not allowed to preserve g(¢) Z 0 and our desire for a nonclassical

reduction. We obtain the following reduction

u(z,t) = w(z)p(t),

where w(z) satisfies

d*w B dw d3w + 8 2w’ +9 d?w 4 dw\” 46 d?w 0
W—rs + a—— —-— W—s — |l ——-w]| =0.
dat dz dz® dz2 TV dz \dzz "
There are three cases to consider in the solution of (4.48). These are identical to cases

(i)—(iii) in reduction 4.3.1.
2

Note that in the special case —w = 0, we are able to lift the restrictions on (t)

du?
so that it is arbitrary, if 8+ 1 + 2y = a + 2y = 0. This yields the exact solution

u(z,t) = p(t)(cze” + cae™®)
where 1)(t) is arbitrary, k =0, « = -2y and § = —1 — 2.

Reduction 4.3.5. «, 3,k arbitrary, 1 + 2y = 0. In (4.42) we assume ¢; # 0 otherwise
we get a classical reduction, and then may set co = 0 without loss of generality. Thus we

obtain the following accelerating wave reduction
u(z,t) = w(z) — c2t?, z=x— %clt'z,
where w(z) satisfies
ww"" + aw'w" + Bw")? — cyw’”’ — ww" + kw"” — (W')? + cqw’ + 2¢; = 0.

Reduction 4.3.6. «, 3 arbitrary, 1 + 2y = x = 0. From (4.43) the following holds
for arbitrary cs, and we may set ¢; = 0 without loss of generality. Thus we obtain the
reduction

u(z,t) = w(z)t — cat?, =1 — et

where w(z) satisfies

ww" + aw'w"” + Bw")? — deyw” — ww" — (W) + deyw’ + 12¢5 = 0.
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Reduction 4.3.7. t arbitrary, « = # = v = 0. From (4.44) we get the following

reduction

c c 1.
wle, t) = w(z) £ 8\;5314 + 6;#13 + | 1 .;1/2 + cot, y =1z ++kt, 2 =g Tk,

N
where w(z) satisfies
d*w

Vi 5 £33 = 0.
ar

This gives us the exact solution

ulzt) = gt L aus® + 6s2” g2 +or

4 Co Ci 2
Y-+ cot.
K

C3 C3
= +——ytt
?8\/; s/nY To/mY V7

Reduction 4.3.8. k arbitrary, a = —%, B=2,v=0. In (4.45) we may set ¢c; =0

34+
4

without loss of generality. Thus we obtain the following reduction
u(z,t) = w(z)zt — %I‘{,.’IIQ, z=1Inz F /kt,

where w(z) satisfies
4ww"" — 6w'w" + 8(w')?

+ 16ww" + 58w'w” + 116ww” — kw" + 236(w’)? + T76ww’ + 672w? = 0.
Reduction 4.3.9. «a ==~ =k =0. From (4.46) and from (4.47) (¢4 = 0 without
loss of generality) we get the following reductions

u(z,t) = w(z) + (c3z® + co2? + 12 + o)t
and u(z,t) = w(z)t — (c3z® + cox? + c12 + ¢o)
respectively. In both cases w(z) satisfies

d*w

dx?
These reductions have a common exact solution, namely

u(z,t) = P3(x)t + Qs(z),

where P3 and (03 are any third order polynomials in x with constant coefficients.

Subcase 4.3.2(ii) €2 + u = 0, not both @ = 4 and 2¢¢, + £,¢ = 0. The determining
equations quickly lead us to require that both @ = 4 and 2¢¢, + &,¢ = 0, which is a

contradiction.

Subcase 4.3.2(iii) €2 +u = 0, a = 4, ¢ = H(z,t)u=* B # 3. Equation (4.33) is

now quadratic in u,,, so when symmgrp.max solves for an explicit expression in u,, (in
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order to perform the part (c) of Step One of the classical Lie algorithm — see §1.2.2),
it introduces square roots. In such cases, and whenever irrational or transcendental
functions appear, through computation or because of their presence in the original partial
differential equation, the output is not necessarily the determining equations i.e. it may
contain derivatives of the dependent variables in an irrational or transcendental way
(see Champagne, Hereman and Winternitz [1991], §3.5). The user then has the task
of composing the final list of determining equations. In this subcase four equations are

generated by symmgrp.max. The first is of the form
12
(P,,,(z, t,u, 'u,:,:)) = Py(z, t,u) (4.49)

where P, is quadratic in u, and polynomial in fractional powers of u. P} is polynomial in
fractional powers of u. Since our infinitesimal ¢ is known and ¢ is known up to an arbitrary
function of (z,t), by squaring both sides of (4.49) to leave a polynomial expression in u,
and fractional powers of u, the coefficients of different powers of u and wu, in this new
equation must be zero. We find that v = —%, k = 0 and ¢ = 0. The remaining three
equations generated by symmgrp.max are then also zero and we are done. The invariant
surface condition becomes

+ivuug, +ug =0,
which may be solved implicitly to yield the solution
wlz, t) =w(z), z =1z FiVut.

However, substituting into our original equation gives w’ = 0, i.e. u(z,t) is a constant.

Subcase 4.3.2(iv) €2 +u =0, ¢ = H(z,t)u"*, a =4, # =3, not all of H,k,1 + 2y = 0.
For the determining equations to be satisfied, each of H,x,1 + 27 must be zero, in

contradiction to our assumption.

Subcase 4.3.2(v) €2 +u=0,¢6=0,a=4,=3,7= —%, t = 0. Under these conditions
equation (4.33) which we apply the classical method to is identically zero. Therefore any
solution of the invariant surface condition is also a solution of (4.1). Hence we get the

following reduction

Reduction 4.3.10. «a=4,[3=3,v= —%, x = 0. The invariant surface condition is
+ivuug +up =0,

which may be solved implicitly to yield

ule, 1) = w(z), z =2 % hiui
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where w(z) is arbitrary.

4.4 Nonclassical symmetries (7 = 0)
In the canonical case of the nonclassical method when 7 = 0 we set & = 1 without loss
of generality. We proceed by eliminating u,, Uy, Upze, Urprr and Ugeys in (4.1) using the

invariant surface condition which yields

gy — K(pz + dpu) — 2v(udhs + uddy + ¢°) — u(Poas
+ Gutor + P e + Dy + 4bud’ buu + 5buPdeu + 3dPundbs + 8° buuu + 30> brua
+ 3¢Preu + 3eude) — (PPuntise + dPuuutiy + 2¢Pruntis + e + P2us + 3y Puuti}
+ 4y Prutis + Pudrt + Pouits + Pruntly + 2Purutis + 201 Puntis + 201ty + Pue)
— a(Poz + Pude + PPh + 8 uu + 20¢bzu) — Blde + Pu)® =0, (4.50)

which involves the infinitesimal ¢ that is to be determined. As in the 7 # 0 case we
apply the classical Lie algorithm to this equation using the second prolongation pr(®v
and eliminate wu; using (4.50). Similar to the nonclassical method in the generic case
7 # 0, when g # 0 the coefficient of the highest derivative term, w4 is not necessarily
zero, thus singular cases are induced. As in the previous section we consider the cases
i =0 and p # 0 separately, though we collate these separate workings when considering

the exact solutions of 4.4.3.

Case 4.4.1 4 =0. Generating the determining equations, again using symmgrp.max,

yields three equations, the first two being ¢, = 0 and ¢y, = 0. Hence we look for
solutions like ¢ = A(z)u + B(z,t) in the third. Taking coefficients of powers of u to be
zero yields a system of three equations in A, B. (Note that since A is a function of = only,

subscripts of A are not strictly partial derivatives.)

QAAer + 2842 Agy + Appne + @Az Agy + BBAA2 + 60 AA2 4+ 104,, A,

+ 2vApy + 5AALe + @A® + 10A%A,, + 10A% A, + A® + BA® + 154 A2

+ 4yA® + 28A, Apy + 107AA, + 4aA%A,, + 68A3A, + TaA®A, =0, (4.511)
5aBA? +2BA?B,, + aBA... + 28BA*

+ 13BAA,, +20A%B, + 10yBA, + TAA B, + 28A,Byg + @Ay By + 2kAA,

+ @A’By, + 15BA% A, + aBy Ay, + 6yAB, + 8yBA? +28A3B, + 268B, Ay

+ e BA* 4 el B 1+ Biogs + 685585 + 29Bss - BB An + AR .

+ KAge +2BA* + A?B,, + A®B, + 4A,B,, + 11BA2 + 43BA? + 63AB, A,

+ T7TaAB A, + TaBAA,, + 26BAA,, + 108BA%*A, + 12aBA%A, =0, (4.51ii)
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BAB2 + 4yB?A + 23B,; By, + 5B?AA, + aAB? 4+ 6yBB, + 2kBA, + BAB,,
+ aB?A® + BB?A® + aB, B,y + 3aB?Ay, + aBBy,, + BA’B, + 3BA,B,
— Byt + BByyy + 6By + BA® + 3B%A,, + 26BAB,, + aBAB,, + 43BA,B,
+5aBA,B, + 28BA?B, + 2aBA?B, + 43B%AA, + 5aB*AA, = 0. (4.51iii)

We try to solve this system using the diffgrob2 package interactively, however the
expression swell is too great to obtain meaningful output. Thus we proceed by making
ansitze on the form of A(z), solve (4.51ii) (a linear equation in B(z,t)) then finally
(4.51iii) gives the full picture. Many solutions have been found as (4.51i) lends itself to

many ansatze through choices of parameter values. We present some in 4.4.3.

Case 4.4.2 1 # 0. The nonclassical method, when the coefficient of wus is non-zero,

generates a system of three determining equations. However, far from being single-term
equations like those in the above Case, the first two contain 41 and 57 terms respectively,
and the third 329. The intractability of finding all solutions is obvious. To find some,
we allude to our previous Case and look for ¢ = A(z)u + B(z,t), and note we set u = 1
without loss of generality. Three equations then remain, similar to (4.51) which we tackle
in the same vein as previously. Some solutions are presented in 4.4.3.

As mentioned in the start of this section, singular solutions may exist, when the

coefficient of uy; equals zero, i.e. when

1 — $duy — 9% — dux = 0. (4.52)
This may be integrated with respect to u to give

U — ¢y — ¢ = H(z,t). (4.53)

If ¢ satisfies (4.52) then the coefficients of u? and wu; in (4.50) are both zero. Since no

u-derivatives now exist in (4.50) what is left must also be zero, i.e.
(2v+a)p? —aHyp+(2v+B+1)u?+[5— (2y+26+1)H— HypJu+BH? —kH—Hy = 0. (4.54)

Thus we need to solve (4.53) and (4.54). The obvious way to proceed is to substitute our
expression for ¢ in (4.54) into (4.53). Singular cases present themselves when o = —2v
and also when aH, = 0. Once we have found ¢(z,t,u), the related exact solution is given
by solving the invariant surface condition, with no further restrictions on the solution.

The following are distinct from each other and from the exact solutions in 4.4.3.

(a) y=—3, a=1, 8=k =0and ¢(z,t,u) is given by the relation

U — Py — ¢z = 1t + co.
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For instance, if ¢(x,t,u) is linear in u we have the exact solution
u(z,t) = w(t) coshz + A(t)] + 1t + co + B(t) sinh[z + A(t)],

where w(t), A(t) and B(t) are arbitrary functions.
b)a=-2vy,8=—-1—-2vy,7# —% and ¢(z,t,u) is given by the relation

K
142y

U — Py — Py =

For instance, if ¢(z,t,u) is linear in u we have the exact solution

K

u(z,t) = w(t) coshz + A(t)] — T+ 2y

+ B(t) sinh[z + A(t)],

where w(t), A(t) and B(t) are arbitrary functions.

(c)a=-2y,=—-1—-2y,and ¢ = tu— KT F (—%m‘? + c1t + ¢3) £ k. Then
u(z,t) = w(t) exp(Lz) £ Kz + (—%h’)tz + c1t + c2),

where w(t) is an arbitrary function.
(d)'y:—%—,azl,ﬂz(), and

1
(/)—H

(ku — Hypu — KH — Hyy),

where H,(z,t) # 0 and also H(z,t) satisfies the system
26H,, + H2 — k% =0,
(k? — H2)Hy, — 26H2, + %(k* — H?) = 0.
We have assumed that £ — H2 # 0, for a different solution to (c). This yields
u(z,t) = [w(t) — 2kz] sinh[3(z + 1t + c2)] cosh[ (z + 1t + ¢2)] — ¢
+ (:oshz[%(w + 1t + ¢2)][4k In(cosh[3 (z + 1t + ¢2)]) — K°° + 2c3t + 2¢4 — 2k + 23]
where w(t) is an arbitrary function.

(e) /1’:—1—(1—4’)',’)'7&%,a+2'y7é(),q5:i<u+ 1:2’Y>. Then

u(z,t) = w(t) exp(+z) — 1 +12
~

where w(t) is an arbitrary function.

() y=0,a=-2,8=1, ¢(z,t,u) satisfies
—2¢% 4+ 2¢H, + 2u® + 2ku — 2Hu + k? + H? = 0,
and H(z,t) satisfies

Hy. +k+H=0, Hy + 62+ kH = 0.
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Then
u(z,t) = $(A4% + B?)Y2sinh[+z + w(t)] — k& + $(Asinz + Bcos 1)

)

where A(t), B(t) satisty

and w(t) is an arbitrary function.

(g)7=0,8=-1—a,=0,a=(c; —1)%/c; where ¢; # 0,1 and

ot + ¢
p=u+ e exp(—c1z).
Gl — 1
Then
(2.1) wi (t)e* — %(CQt + c3)ze” ife; = —1,
u(z;t) = } o
wo(t)e® + (1 — ) Y(cat + c3)e™ % if ¢ # —1,

where wy (t), wa(t) are arbitrary functions.

(h) v =0, 8=—1—aand ¢? + &®c; + 2¢; + dac; + 1 = 0. Also we insist that o # 0, —2
and ¢; # 0,1, then ¢(x,t,u) satisfies

a¢? — aHy¢ — au® + uls + H(1 4 2a) — Hyy) — 6H — (@ + 1)H? — Hy, = 0,

where H (z,t) satisfies the system of equations
Htt + CIHH = 0,
(a+2)H, + (1 —¢1)(H + r) =0.

Then
1 +2a+c; (1 — Dz
w(z,t) = |/ #) + gl t) | exp d 2T L g
u(z,t) . w(t) + g(a )] exp{ e K
. dPw
where w(t) satisfies 1z + c1kw = 0 and g(z,t) satisfies
dt
2c(c; — 1
ag; + —((y—iT)ggI —afe; +1)g% + (aey + ¢ + Dw(t)gy

ci(er —1)(a+2)
dav

—a(l+a+a)w(t)g+ w(t) = 0.

which is effectively an autonomous ordinary differential equation with ¢ a parameter, so

the first integral may be written down.

4.4.3 Exact solutions. We present some exact solutions which Cases 4.4.1 and 4.4.2

have unearthed, though we describe them here for general 1. The infinitesimal ¢(xz, ¢, u) is
given, possibly up to satisfying some equations, followed by the solution, found by solving
the invariant surface condition. All of the unknown functions in the sequel are functions

of ¢ only, hence we use primes to denote differentiation with respect to t.
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Subcase 4.4.3(1) vy =0 and ¢ = —+H1( Vo + 3Ho ()2 H3(7‘)

invariant surface condition gives

+ Hy(t)z*>~*. Solving the

zw(t) + Hy(t)z? + Hy(t)z —Hg(t)+%3(Y if a # 2,

w(t) + Hy(t)z? + Ho(t)z* — H3(t) + Hy(t)zInz if o = 2.

wlz, t) =

Various types of solution are found, as seen in table 4.4.1. The H;(t) are determined by

the determining equations, w(t) by substituting back into (4.1).

Table 4.4.1

Parameters H;(t),w(t) satisfy

(y:%’ﬁ:—% H1:4H,, H2:H3:H!1’:0 (455)
32vw" = —5H}

w=z n=0 Hy=pHy =H;=0 (4.56)
HY —72(1+2B)H2 =0

16H} — 3(4808 + 303)HoHy = 0
8w" — 288How = (508 + 5)HZ

B=(a?-a)/3—a), | HH=pHy;=H3=0 (4.57)
=0, 3 (@ —3)HY +24(2a + 3)(a+ 1)HZ2 =0

HY +3(a+2)(a + 1)(a® — @ — 4)HyHy = 0

w' —24(a + 1)Haw =0

(0" — T2Hypw = 90Ho Hy)

H; = pHy = HI =0 (4.58)

2
Il
|
4[\3
=
Il
[Sall=>}

BHY — 24H2 = 0
5HY — 120H,H3 = —25k2
w"” + 24How = —30H3Hy

Subcase 4.4.3(ii) We assume ¢ = B(z,t) and find the following
(a) vy =0, and B(z,t) = 4H,(t)z* + 3Ha(t)2? + 2H3(t)x + Hy(t), where
HY —24(68 + 4o+ 1)H? =0, (4.591)
HY —24(68 + 4a+ 1)H Hy = 0, (4.5911)
HY — 2428 + 2a+ 1)H Hy = 18(28 + a)H3 + 126H; + 12uHy,  (4.59iii)
HY —24(a+ 1)H Hy = 12(28 + a)HyH3 + 6kHy + 6 HY . (4.59iv)
Then
u(z,t) = w(t) + Hy(t)z* + Ho(t)z® + Hs(t)z® + Hy(t)z,
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where w(t) satisfies
w' — 24Hyw = 25H3 + 6aHyHy + 48H2 + 2uH]Y .

(b) B(z,t) = Hy(t) + 2H5(t)x

H} —12¢yH2 =0,
HY — 12yH,H, = 0.

Then
u(z,t) = w(t) + Hy(t)z + Ho(t)z?,

where w(t) satisfies

w" — dyHow = 26 Hy + 4(6yp + B)HZ + 2yH?.

HY =10,
(14 2yu)HY — 2v¢(2 — a)HyHy + 2ysHy = 0,
(1 + 2yp)HY + 27y¢(2 — a)HyHy + 2y Hy = 0.

Then
u(z,t) = w(t) + Hi(t)e™ — Ho(t)e™ " + Hy(t)z,

where w(t) satisfies

,(U// = Z’YHE — 1()’}/2(1 — (Y)HlHZ-

c? = -2.
HY —12vH2 =0,
HZ — 12’)’H3H4 = 0,
(1 +2yu)H, — 12yH3Hy + 2kyH, = 0,
(1 +2yu)HY — 12yH3Hy + 26vHy = 0.
Then

u(z,t) = w(t) + Hy(t)e® — Ho(t)e™*® + H(t)x* + Hy(t),

where w(t) satisfies

w' — dyHsw = 26Hs + 2yH? + 4(6yp — 1)HZ + 167> Hy H,.

() B=1-aq, B(z,t) = cHy(t)e® + cHa(t)e™ " + Hy(t), where ¢® = —27.
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(4.59v)

(4.60i)

(4.60ii)

(4.60iii)

(4.61i)
(4.61ii)
(4.61iii)

(4.61iv)

(d) @« = 2, = =1, and B(z,t) = cH1(t)e® + cHy(t)e " + 2H;3(t)x + Hy(t), where

(4.62i)
(4.62ii)
(4.62iii)
(4.62iv)

(4.62v)
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Subcase 4.4.3(iii)) y =+ a+1 =0 and
¢ = R(u+ Hy(t) + Ha(t)ef™ + Ha(t)e™* + Hy(t)e™-*),
where R is a non-zero constant (pR?> # 1), and my = —%R(Z + o = n) where

n = y/a(a +4). Solving the invariant surface condition yields

u(z,t) =w(t)e®* — Hy(t) + RH,(t)ef®

_4+a+71,

2H;(t) Hy(t)

exp {—%R:I:(Z + a+ n)} ~Tro-n
 —n

The solutions are represented in table 4.4.2

Table 4.4.2

exp {—%R.’Iﬁ(? +a—n)}.

Parameters H;(t), w(t) satisfy
a=—4 |Hs=H;=H=0 (4.63)
=3 |(1-pR?)H)+ R*(R?H, —x)Hy, =0
(1 — puR*»)w"” + R*(R?*H; — k)w = 26R?Hy — AR*H, H + 2uR?H!
a arbitrary |Hs = H; = H{ =0 (4.64)
j=1+3 |(4—p2+atn)®R*)H] + R*H;x
i=1F3 |[RPHi((e®+4a+2)2+a£n)>—4) —k(2+a£n)?] =0
(1 - pR?)w" + R?*(R?H, — k)w =0
a=-3, |Hy=H"=0 (4.65)
=2 |2+ pR3(1+iV3))HY — H H3R*(1 —iv3) + kH3R?(1 +iv3) =0
(2+ pR%(1 —iv3))HY — HiH,R* (1 +iv3) + sH4R?(1 —iv3) =0
(1 — uR*)w" + R?*(R*H; — k)w = 6 H3 H4R*
a=-1, |[Hg=Hi=10 (4.66)
B=0 24+ uR%(1 —iv3))HY — HiH3R*(1 +iv3) + sH3R?(1 —iv/3) =0

(

(2 + pR?(1 +iV3))HY — HiH,R*(1 —iv3) + kH4R*(1+iV3) =0
1 — pR>)w" + R?*(R?*H, — k)w =0

(L=

The equations that the various H;(t) satisfy in this subsection are all solvable, and

the order in which a list of equations should be solved is from the top down. The only

nonlinear equations all have either polynomial solutions (sometimes only in special cases

of the parameters) or are equivalent to the Weierstrass elliptic function equation (4.39).

The homogeneous part of any linear equation is either of Euler-type, is equivalent to the

Airy equation (see Abramowitz and Stegun [1965]),

H'"(t)+tH(t) =0,
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or is equivalent to the Lamé equation (see Ince [1956]),
H'(t) —{k+n(n+ pt)H(t) =0, (4.67)

where (t) satisfies the Weierstrass elliptic function equation (4.39) and k, n are constants.
The particular integral of any non-homogeneous linear equation may always be found, up
to quadratures, using the method of variation of parameters.

For instance consider the solution of Subcase 4.4.3(ii) part (b) above. There are
essentially two separate cases to consider, either (o) v =0 or (ee) v # (.

(¢) v = 0. The functions H;(t) and Ha(t) are trivially found from (4.60i,ii) to be
H,(t) = c1t + ¢o and Hs(t) = st + ¢4, then (4.60iii) becomes

w” = 26(cat + cq) + 4B8(cst + ¢4)?,
which may be integrated twice to yield the exact solution

K I}
—(cat +ca)® + = (cat + ca)?
3(:§(C3 ) 303((3 2

+est + cg + (cit + o)z + (c3t + cq)z? if ¢3 # 0,
(keq + 2Bc3)t? + cst + ¢ + (c1t + )1 + cqz?  if c3 = 0.

wlz, 1) =

(ee) v # 0. Equation (4.60i) may be transformed into the Weierstrass elliptic function
equation (4.39), hence Hy(t) has solution Hy(t) = p(t + to;0,93)/2y. Now Hy(t) satisfies
the Lamé equation

HY' = 6p(t +t0;0,93)Hy = 0,
which has general solution

et
& ds
Hi(t) = c1p(t + 1050, 93) + cap(t + t0; 0, g3) / —pr——Ty
©*(s;0,93)

where ¢; and ¢y are arbitrary constants. Now w(t) satisfies the inhomogeneous Lamé
equation

w” = 2p(t + 103 0, g3)w = Q(1), (4.68)
where Q(t) = 2k Hy + 4(6yu + B)H2 + 2yH?, with H;(t) and Hy(t) as above. The general

solution of the homogeneous part of this Lamé equation is given by
wer(t) = cawy (t+ to) + cawa(t + to),

where ¢3 and ¢4 are arbitrary constants,

o(t+a) o(t—a)
a(t) ’ ao(t) ’

in which ((z), o(z) are the Weierstrass zeta and sigma functions defined by the differential

w1 (t) = exp{—t((a)} wo(t) = exp{t((a)}

equations
d¢ d B
T —p(2), e Ino(z) = ((2),
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together with the conditions

1
lim (Q(z) - —) =, lim (U(Z)) = 1
z—0 z z—0 4
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