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Abstract 

We propose a novel approach for modelling capture-recapture (CR) data on open 

populations that exhibit temporary emigration, whilst also accounting for individual 

heterogeneity to allow for differences in visit patterns and capture probabilities 

between individuals. Our modelling approach combines changepoint processes – 

fitted using an adaptive approach – for inferring individual visits, with Bayesian 

mixture modelling – fitted using a nonparametric approach – for identifying clusters of 

individuals with similar visit patterns or capture probabilities. The proposed method is 

extremely flexible as it can be applied to any CR data set and is not reliant upon 

specialised sampling schemes, such as Pollock’s robust design. We fit the new 

model to motivating data on salmon anglers collected annually at the Gaula river in 

Norway. Our results when analysing data from the 2017, 2018 and 2019 seasons 

reveal two clusters of anglers – consistent across years – with substantially different 

visit patterns. Most anglers are allocated to the “occasional visitors” cluster, making 

infrequent and shorter visits with mean total length of stay at the river of around 

seven days, whereas there also exists a small cluster of “super visitors”, with regular 

and longer visits, with mean total length of stay of around 30 days in a season. Our 

estimate of the probability of catching salmon whilst at the river is more than three 

times higher than that obtained when using a model that does not account for 

temporary emigration, giving us a better understanding of the impact of fishing at the 

river. Finally, we discuss the effect of the COVID-19 pandemic on the angling 

population by modelling data from the 2020 season. Supplementary materials for this 

article are available online. 
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1 Introduction 

Capture-recapture (CR) data provide a method for monitoring wildlife populations, or 

more generally populations for which a census is infeasible because the probability 

of detecting individuals is lower than one. Appropriate means for capturing 

individuals are employed in a series of capture occasions. During these capture 

occasions, newly caught individuals are uniquely marked and all caught individuals 

are released back into the population. Repeating the process T times gives rise to a 

capture history, of length T, for each caught individual with entries equal to one 

(zero) indicating the capture occasions at which the particular individual was caught 

(not caught). At the end of the study, there remains an unknown number of 

individuals that were never caught and hence have capture histories with all entries 

equal to zero. 

There exists a rich literature dealing with models for CR data. This covers closed-

population models, which assume that the same individuals are present and 

available for capture at all T occasions (Darroch, 1958; Otis 

et al., 1978; Pledger, 2000), open-population models that allow for arrivals and 

departures during the study (Jolly, 1965; Seber, 1965; Schwarz and 

Arnason, 1996; Pledger et al., 2009; Lyons et al., 2016) and a recent body of work 

exploring Bayesian nonparametric methods for CR data (Manrique-

Vallier, 2016; Matechou and Caron, 2017, closed and open populations, 

respectively). 

Typically, one of the assumptions of open-population CR models is that emigration is 

permanent; once individuals depart they are assumed to never arrive again. 

However, the assumption of permanent emigration is not always satisfied. Existing 

approaches for modelling temporary emigration in population ecology (see for 

example Zhou et al., 2019) so far mostly use Pollock’s robust design (Pollock, 1982), 

which assumes that there are two types of sampling periods: primary periods, for 

example seasons, between which the population is open, and secondary periods, for 
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example sampling days within a season, between which the population is closed. 

Clearly, there exist cases where methods relying on Pollock’s robust design cannot 

be employed. 

In this paper we propose a novel solution for modelling temporary emigration for CR 

data by developing a flexible, general and mathematically tractable Bayesian mixture 

model that also accounts for individual heterogeneity in the visit pattern and capture 

probability. We treat the visit history of each individual as a changepoint process with 

visits, when an individual transitions from non-present to present, signifying a 

changepoint. We model the corresponding departure times as dependent on these 

changepoints and we extend recently developed adaptive MCMC methods (Benson 

and Friel, 2018) for updating the number and position of changepoints of each 

individual. These adaptive methods provide us with an elegant and computationally 

efficient way to infer individual visit histories, without requiring any tuning or 

complicated proposal distributions. 

Additionally, we model individual heterogeneity using a random finite measure as the 

intensity of a Poisson process that jointly models the number of individuals and their 

visit histories. Conditionally on the number of individuals, the visit histories are 

shown to be a sample from a mixture model, which, although technically is finite 

dimensional, we fit using Bayesian nonparametric techniques. Our approach builds 

upon recent work by Argiento and De Iorio (2022) that exploits the relationship 

between finite and infinite mixtures in a Bayesian framework. Argiento and 

De Iorio (2022) show that a mixture model with a random number of components is 

indeed a nonparametric model since its complexity is a-priori unbounded and 

inferred by the data. Moreover, while an infinite mixture model can lead to an a 

posteriori inconsistency on the estimation of the number of clusters (Miller and 

Harrison, 2018), this is not the case for finite mixture models with a random number 

of components. The use of a finite mixture model allows us to devise a blocked 

conditional Gibbs sampler, which is faster than the marginal algorithms that are 

usually adopted, as in Matechou and Caron (2017). Finally, we show that when the 

number of elements being clustered is itself random, the clustering can be expressed 

via a function, which we call N  exchangeable random probability function, that can 
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be used to derive the marginal distribution of N, and gives rise to an interpretation of 

the clustering in terms of the Chinese restaurant process. 

Our proposed modelling approach has several distinctive advantages. In contrast to 

methods relying on Pollock’s robust design, we do not need to assume population 

closure. From a computational point of view, we design an adaptive scheme for the 

changepoint process part of the model that is free from complicated tuning strategies 

and we tackle the mixture model from a Bayesian point of view via a conditional 

algorithm that is computationally efficient and allows for full Bayesian inference. 

We fit our model to CR data on salmon anglers in Norway. The anglers only report a 

visit to the river on a particular day if they catch at least one salmon. This gives rise 

to a standard CR data set indicating the days when each angler reported a catch. 

However, the number of anglers who visited the river, the number of days on which 

they were present each season and their probability of catching salmon whilst at the 

river are unknown. Our results in terms of types of visit patterns and fishing abilities 

are consistent across the 2017, 2018 and 2019 seasons. Specifically, we identify two 

clusters, with the largest cluster, consisting of around 95% of the angler population, 

making two to three visits on average each year, which last for around two days on 

average. The second cluster of anglers make around eight visits each year, each 

lasting on average two to three days. This leads to substantial differences in the total 

number of days spent at the river on average between the two clusters. Additionally, 

we estimate that the total number of anglers who visited the river each year is 

considerably higher than the number of anglers who caught at least one salmon, 

and, for the first time in the Gaula river, we estimate the total number of anglers who 

are present at the river on each day of the season. Finally, we quantify the effect of 

the COVID-19 pandemic on the angling population by analysing the 2020 season 

data. Our findings suggest that there was a considerable increase in the number of 

anglers who visited that year, with anglers spending longer on average per visit 

compared to previous seasons but having an overall lower ability to catch fish. Such 

information is invaluable for managing the river, and correctly and precisely setting 

fishing quotas and introducing further regulations, as required. 
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We present the model in Section 3 and discuss its clustering behaviour in Section 4. 

Our algorithm used for inference, including the adaptive MCMC changepoint sampler 

and the Bayesian nonparametric algorithm used for clustering, is presented in 

Section 5. The results from fitting the model to simulated data and to the angler data 

are presented in Section 6 while the paper concludes in Section 7. Additional 

technical details about our model and algorithm, as well as results of an extensive 

simulation study, are provided in the online Supplementary Material. 

2 Salmon angler data 

The Gaula is an unregulated river in Norway that is a very popular destination for 

salmon anglers. Any catches of salmon have to be reported by the anglers to the 

river management board. However, individual anglers only report that they were 

fishing on a particular day of the season, which lasts for T = 92 (1st of June to 31st of 

August) days, if they catch at least one salmon that day. This creates a capture 

history, which is a vector of length T, for each angler, with entry t equal to one if the 

angler caught salmon on day t, and zero otherwise, with 1, ,t T  . There also exists 

an unknown number of anglers who visited the river but did not catch salmon, and 

hence share the capture history with all T entries equal to 0. The population is open, 

with anglers entering and exiting the river throughout the season. Anglers need to 

purchase fishing licenses from land owners along the river in advance, but the 

information on the number of licenses that have been sold each year is considered 

sensitive and not shared. Licenses are often sold-out months in advance, and the 

only restriction placed on anglers is that they can only remove a maximum of four 

salmon a year for the period we are considering in this paper. However, they can 

catch as many salmon as they want and release them back in the river. 

Individual anglers can return to the river to fish an arbitrary number of times in the 

season, meaning that their emigration from the site needs to be treated as 

temporary. Clearly, we cannot employ methods relying on Pollock’s robust design in 

this case as the population cannot be assumed closed for any period in the season. 

Additionally, our inference needs to account for individual heterogeneity in the visit 

behaviour and fishing ability, the latter expressed through the probability of an angler 

catching salmon whilst at the river, and hence being themselves “caught”, henceforth 
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referred to as observed, while present at the river. For example, some anglers may 

visit often for shorter periods of time while others may visit less regularly for longer 

periods of time, with capture probability also linked to the visit behaviour, with, for 

example, frequent visitors being more skilled in fishing and vice versa. 

We are interested in inferring the size of the population of anglers, N, and the visit 

history of each angler, which consists of the number, timing and duration of their 

visits, as well as the probability of an angler catching salmon on any given day. We 

note here that if an open population model that does not allow for temporary 

emigration is fitted to the data, such as the “POPAN” model in the R package RMark 

(Laake, 2013), then the resulting estimates of capture probability, which are between 

0.06 and 0.07 for all years, are certainly under-estimates; since the model assumes 

that individuals are present between their first and last observation, it inevitably 

underestimates the probability of capture. 

The total number of anglers observed in the 2017, 2018, and 2019 seasons is equal 

to 2057, 1901, and 1687, respectively, but we cannot infer the total number of 

visitors to the river each season using the raw data alone. The median number of 

times that each angler has been observed is equal to one in 2017 and 2019 and to 

two in 2018 but it is not possible to decipher from the data alone the total number of 

days each angler has spent at the river. Similarly, the number of visits made by 

individual anglers each year is unknown. Clearly, we can safely assume that 

consecutive days on which an individual angler was observed belong to a single 

visit. However, observations of individual anglers are also separated by days on 

which the particular angler was not observed. If we assume that visits are separated 

by at least one day of non-observation, then we find that the proportion of anglers 

making a single visit would be set to around 60% with an average visit length of 

around 1.2 days for all seasons, while if we assume that visits are separated by at 

least two days of non-observation, then these figures change to around 70% and 

1.4-1.5 days on average. Finally, Figure 1 shows that the pattern in the number of 

anglers observed each day of the season varies greatly between years, but it is of 

interest to compare the arrival and departure patterns between years, which cannot 

be achieved using the raw capture histories. These questions motivate the 

development of the model presented in Section 3. 
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Inferring the number of anglers present at any one time within the season enables 

the river management to assess the fishing pressure and consequently decide on 

fishing quotas or additional regulations. Information on the probability of catching 

salmon is valuable to the river management board for the purposes of fisheries 

management, for ensuring the conservation of salmon in the river and the availability 

of resources, such as accommodation and food, for anglers. Knowledge about the 

number of anglers who visit the river each season and the number of visits they each 

make can help demonstrate to local politicians and stakeholders the importance and 

attractiveness of the river Gaula as a tourist destination and increase the 

appreciation of the value of salmon fishing to the local community, resulting in 

policies that ensure protection and conservation of the river and the salmon stock. 

Finally, by modelling the 2020 season and quantifying the differences compared to 

previous seasons in terms of numbers of visitors, visit patterns and capture 

probabilities can shed light on the effect of the COVID-19 pandemic and the 

corresponding global travel restrictions on the angling and hence salmon population 

at the Gaula river. 

3 Model 

We denote the number of individuals caught at least once by n and the number of 

sampling occasions by T. The population size is denoted by N. Let 1, ,i N  index 

individuals and 1, ,t T  , which we refer to as time, index equally-spaced sampling 

occasions. 

The data consist of n capture histories, each of length T. We denote the capture 

history of individual i by 
i

C H  with entry C H 1
it
  if individual i was caught at time t 

and 0 otherwise. Individuals with index 1, ,n N   have capture histories with all 

entries equal to 0. 

Individual i, 1, ,i N  , makes an unknown number of visits, ki, and has an unknown 

visit history summarised by the arrival times 
1 2

( , , , )
i

i i i ik
a a a a  and the 

corresponding departure times 
1 2

( , , , )
i

i i i ik
d d d d . The arrival times are an 

increasing sequence of length ki with 0
i

k i  , in {1, , }T  and the corresponding 

departure times are an increasing sequence in {1, , }T , such that 
1iv iv iv

a d a


   for 
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each 1, ,
i

v k  , with 
1

1
i

k
a T


   by definition. The visit history uniquely defines a 

corresponding presence history, with the presence history of individual i denoted by 

i
P H  and P H 1

it
  if individual i was present at time t and 0 otherwise. For example in 

Figure 2, the presence history 
i

P H  is coded as a sequence of 0s (absent) and 1s 

(present) and represented by a piecewise constant function. In this case we have ki 

= 2 visits, 
1

2 7
i

a   and 
2

5 7
i

a  , corresponding to the points where the piecewise 

constant function jumps from 0 to 1, represented by the two filled circles on the x-

axis, and ki = 2 departure times, 
1

5 6
i

d   and 
2

8 6
i

d  , corresponding to the points 

where the function jumps from 1 to 0, represented by the two filled triangles on the x-

axis. We observe that, as mentioned above, 
i

a  and 
i

d  uniquely define 
i

P H , but not 

vice versa. Nevertheless, to simplify notation, in the following we use ( , )
i i i
P H a d , 

since it is the latter that we infer. 

We refer to the set  ( , ) : { ( , ) , 1, , }
i i

i N  P H C H P H C H  as the augmented data 

because it includes both the 1, , n  caught individuals and the 1, ,n N   uncaught 

individuals. We note that each observation ( , )
i i

P H C H  is a pair of sequences such 

that its tth entry is (CHit,PH ) {0,1} {0,1}
it

  . We denote by  ,  the space of all 

these possible sequences, i.e. the sample space, and we model the augmented data 

as a marked Poisson process over ( , ), i.e. 

  1 1 2 2
( , ) { ( , ) , ( , ) , , ( , ) | ( ·,·))} ~ P P ( (·,·))

N N
  P H C H P H C H P H C H P H C H  

where ν is a random intensity function. The approach originally developed by Kottas 

and Sansó (2007), extended by Taddy et al. (2012) and adapted for CR models by 

Matechou and Caron (2017) employs an infinite mixture model for ν. Here, we 

employ a mixture model with {1, 2 , }M    components, where 1 ~ P o is s o n ( )M   , 

i.e., the number of components, M, is distributed according to a shifted Poisson. 

Conditionally on M, 

 
1

, ( , | )

M

i i c i i c

c

S f 



 P H C H P H C H  

where 
1
, ,

M
S S  are (unnormalized) weights of the mixture and ( , | )

i i c
f P H C H  is the 

joint probability mass function of the presence history 
i

P H  and capture history 
i

C H , 
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conditional on individual i belonging to component c, and is a function of the 

component-specific parameter τc for 1, .. . ,c M . 

The overall intensity of the Poisson process is 

, ,
1 1

: ( , ) ( , | ) .

M M

i i i i c i i c i i c

c c

d d S f d d S 

 

     P H C H P H C H P H C H P H C H  

The model can be represented in the following hierarchical form 

i id

1 1 2 2

1

1

iid iid

1 1 0

| ~ P o is s o n ( )

( , ) , ( , ) , , ( , ) | ~ ( , | )

1 ~ P o is s o n ( ) , , . . . , | ~ G a m m a ( , ) a n d , .. . , | ~ ,

~ G a m m a ( , ) , ~ G a m m a ( , ) a n d ~ G a m m a ( , )

c

M

c

N N i i c

c

M

c

c

M M

N

S
P f

S
P

M S S M M P

a b a b a b



   







   

 





 









 







P H C H P H C H P H C H P H C H

 (1) 

where P0 is the prior distribution of the component specific parameters, described in 

Section 5.2. 

We let 
1 0

( , , )
c c c c

q q p  , where 

- 
1c

q  is the probability that an individual from component c arrives at a 

particular time, 

- 
0 c

q  is the probability that an individual from component c departs at a 

particular time, given presence at that time and, finally, 

- pc is the probability that an individual from component c is caught at a 

particular time given presence at that time. 

Given 
1c

q , the time between consecutive arrivals is modelled as a 
1

G eo m etric ( )
c

q  

random variable with support {1, 2 , }, probability mass function g1 and cumulative 

distribution function G1. In other words, the process of arrival times 
1

( , , )
i

i i ik
a a a  is 

a realization of a homogeneous Bernoulli process with parameter 
1c

q  observed at 
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times {1, , }T ; consequently, the joint probability mass function of the vector 
i

a  and 

its length ki, with 0
i

k  , is given by 

 1 1 1 1 1 1 1 1

2 1 1

1

1 1

( | ) ( | ) 1 ( | )
(1 )

( , | ) .
( ) 1 (1 )

i

i i i

k

i c iv iv c k c k T k

v c c

i i c T

c

g a q g a a q G T a q
q q

f k q
G T q

 



 
   

 
 

 


a  

Conditionally on 
i

a , ki and 
0 c

q , the probability mass function of departure times 
i

d  is 

given by 

0 0

0 1

1 0 1 0

( | )
( | , , ) ( ) ,

( 1 | )

i
k

iv iv c

i i i c iv iv iv

v iv iv c

g d a q
f k q a d a

G a a q


 


  

 
d a  

with g0 and G0, respectively, the probability mass function and cumulative distribution 

function of a geometric distribution with support on {0 ,1, }  and component-specific 

parameter 
0 c

q . 

The different support for g1 and g0 ensures that a departure can occur at the same 

time as an arrival, while no more than one arrival can occur at any one time. 

Following the CR stopover literature (Pledger et al., 2009; Matechou et al., 2016) 

individuals are assumed to be available for capture on both their arrival and 

departure times. Hence, the probability mass function of 
i

C H  conditionally on 
i

P H  

and pc is 

1 1

C H P H (1 C H )P H
P H

C H 1 C H

1

( | , ) (1 ) (1 ) .

T T

it i t i t i t
i t

i t i t t t

T

i i c c c c c

t

f p p p p p 







 
    
 C H P H  (2) 

Finally, the joint sampling model in component c of augmented data 

( , ) ( , , )
i i i i i

P H C H C Ha d  is 

   1 0 1 0
, | , , | , , ( | , ) ( , | ) ( | , , )

i i c i i i c c c i i c i i c i i i c
f f q q p f p f k q f k q  P H C H C H C H P Ha d a d a

 (3) 

4 Clustering behaviour of the model 
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In this section we examine the clustering structure that our mixture model induces on 

the data. 

In particular, we observe that the mixing measure P in model (1) belongs to the wide 

class of species sampling models, investigated in detail in Pitman (1996) and largely 

adopted in Bayesian nonparametric clustering (see Ishwaran and 

James, 2003; Argiento and De Iorio, 2022; Miller and Harrison, 2018). Building upon 

the latter literature, we derive quantities of interest for our model. 

Given the population size N, each of the N individuals belongs to one of the M 

components of the mixture in (1). We denote the component to which individual i 

belongs by ci. To study the clustering behaviour of the model, it is useful to represent 

the first two lines of model (1), conditionally on the parameters Λ, η and ζ, in terms of 

the cluster allocations 

in d

iid

1 1 1

( , ) | ~ ( , | ) , 1, ,

, , | , , ~ M u lt i (1, | , , )

/ 1, , .

i
i i i i i c

N M i M

c c

c f i N

c c w w c w w

w S c M

  

  

   

P H C H P H C H

 (4) 

With probability greater than zero we will obtain ties among the component 

allocations, 
1
, ,

N
c c  and we denote by 

1
, ,

C
c c  the unique values among these 

allocations. The vector of c ’s induces a random partition (i.e. clustering) among the 

augmented data that we denote by 
1

{ , ..., }
C

J J  , where the clusters are given by 

   1 1
: , , :

i C i C
J i c c J i c c     . Each cluster Jj, 1, .. .j C  corresponds to a 

component of the mixture, namely the component c such that 
j

c c . Note that there 

is a random number C of occupied components, namely the clusters, and 

( n o )
M M C   empty components. For ease of notation we refer to 

j
j c

   as the 

parameters of the clusters. 

When P0 is continuous, we can explicitly write (see Section 1 of the Supplementary 

Material for details) the prior distribution that model (4) induces on ,N   and 
1

, ,
C

 

: 
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1 1 1 0

1

( , , , , ) ( , ) ( , , | ) ep p f ( , , , ) ( ) ,

C

C C N C j

j

N d d N d d C N N C P d      



     

where Nj is the number of individuals in cluster j and 
1

C

j

j

N N



 . We call 

1
ep p f ( , , , )

N C
N N C  the N-exchangeable partition probability function given by 

1
(1 ) 1

1 1

1

( )1 1
e p p f ( , , | , ) ,

! ( 1) ( )

C

j

N C N

j

N C
N N N C e

N


 


 

  



    
   

   
  (5) 

with 
1

1








 

 
  

. We observe that N ranges in {0 ,1, }  and if N = 0 then ρ is not 

defined, otherwise ρ is a partition of the indices {1, , }N . Moreover, Nj = 0 for each j 

if N = 0, while 0
j

N   and 
1

C

j

j

N N



  if N > 0. Equation (5) is the prior probability of 

having N individuals (augmented observations) clustered in C exchangeable groups 

with frequencies 
1
, ,

C
N N . We would like to highlight that our model induces a joint 

distribution on the number of individuals N and the number of clusters C. This can be 

obtained by marginalizing out the cluster frequencies 
1
, ,

C
N N  from (5), as 

described in Section 1 of the Supplementary Material. The joint probability mass 

function of (N, C) at points 0 ,1,x    and k x  is 

1
(1 ) 1

, 1

1 1
( , ) ( ) ( , ; )

! ( 1)

k

N C x

k
x k e x k

x

 
 



    
 

 
 

where, for any non-negative integers 0 , 0x k n    and real numbers η, ( , ; )x k   

denotes the central generalized factorial coefficient (see Charalambides (2005) 

formula 2.67 for details). Here we mention that these indices can be easily computed 

using the recursive formula ( , ; ) ( 1, 1; ) ( 1) ( 1, ; )x k x k k x x k            with 

(1,1, )  . Furthermore, the marginal distribution of N can be computed by the 

hierarchical representation 

| ~ P o is s o n ( ) , | ~ G a m m a ( , ) , a n d 1 ~ P o is s o n ( ) ,N M M M       

so that for 0 ,1, ,x    the probability mass function of N at x is 
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1

1

1

( ) N e g B in ( | , ) P o is s o n ( 1 | )

1 1
e .

1 1 ( 1) !

N

M

M x
M

M

x x M M

x M

x M



 

 

 







 



  

       
      

        





 

Hence, we can easily calculate ( ) ( 1) /N      and 
2

2

( 1) ( 1)
V a r ( )N

  



    
 . 

The N  eppf in Equation (5) jointly regulates the size of the augmented data and the 

clustering behaviour of the process. We use a slightly modified version of the 

Chinese restaurant metaphor (Aldous, 1985) to describe this behaviour. This 

modification is required because the number of customers, N, arriving in this case is 

random. 

The probability that the first customer arrives is equal to 1 (0 )
N

 . The first customer 

sits with probability one at the first table and the second customer arrives with 

conditional probability 1 (1) / (1 (0 ))
N N

   and selects a table according to Equations 

(6) and (7) where in this case C = 1 and 
1

1N  . In general, given that x customers 

have arrived and are sitting on C tables with frequencies 
1
, ,

C
N N , the probability 

that customer x + 1 arrives is 
1

0

1 ( ) / 1 ( )

x

N N

y

x y





 
 

 
 

  and selects a table again 

according to Equations (6) and (7). After x customers have arrived, the process 

stops with probability 
1

0

( ) / 1 ( )

x

N N

y

x y





 


 
 

  and no more customers arrive. 

We refer to the C groups 
1
, ,

C
J J  as the occupied tables with 

1
, ,

C
N N  customers 

each, and to 
1C

J


 as the new empty table: 

(s its  a t tab le ) , 1, ,
l

l N l C     (6) 

1 1

1

1
(s i ts  a t  ta b le ) 1 .

C
J

C
 




 
  

 
  

 (7) 

We observe that, if : /    for some 0   and let Λ go to  , so that the mixing 

measure P in (4) approaches in law the Dirichlet process with mass parameter α, 

then (6) reduces to Nl and (7) reduces to α, so that we obtain, a-priori, the clustering 
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behaviour of the Chinese restaurant process (i.e. the clustering induced by the 

Dirichlet process with mass parameter α). 

As a final note, we mention that the Chinese restaurant metaphor is quite popular in 

the machine learning and Bayesian nonparametric literature. It is widely adopted and 

it is customary to describe any related extensions, such as Favaro and Teh (2013) 

for normalised completely random measures and Teh et al. (2006) for Hierarchical 

Dirichlet processes, using this metaphor, and this is the approach we employ here. 

5 Inference 

Our MCMC algorithm iterates between the following steps: (a) conditionally on N, 

1
, ,

N
c c  and 

1
, ,

M
  , we update the individual visit histories using an adaptive 

changepoint sampler, as described in Section 5.1, (b) conditionally on N and the 

individual visit histories, we update 
1 1
, , , , ,

N M
c c S S   and 

1
, ,

M
  , using a 

conditional algorithm for mixture models, as described in Section 5.2. We note that 

as a result of this update, we also achieve an update for Ω, and, (c), conditionally on 

Ω and 
1
, ,

M
  , we update N using a rejection algorithm, as described in Section 

5.3. 

5.1 Adaptive MCMC changepoint sampler 

The adaptive MCMC algorithm proposed by Benson and Friel (2018) gives rise to 

the posterior distribution of the latent vector indicating the presence (or not) of a 

changepoint, which in our case indicates an arrival time for an individual at each time 

point. We denote the iteration number, say j, for objects that are iteration specific 

using a superscript (j). The design of the algorithm ensures that time points that are 

unlikely to be changepoints are not proposed as frequently as time points that have 

been accepted as changepoints in earlier iterations of the algorithm. This is ensured 

by introducing individual- and time-specific weights where for individual i, each time 

point t has a specific weight, ( )j

i t
 , of being proposed as a changepoint i.e. an arrival 

time and a specific weight, ( )j

i t
 , of being proposed to be deleted from a changepoint 

if it already is one. These weights are unnormalised selection weights and are 

updated if time t is accepted as or deleted from a changepoint, respectively as 

explained below. 
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For the current visit history described by ( ) ( )
( , )

j j

i i
a d  and corresponding presence 

history ( )j

i
P H , we define the set of all changepoints (arrivals) of individual i by 

 
( ) ( )

:
j j

i i
t t  a , the set of all departures by  

( ) ( )
:

j j

i i
t t  d , the set of points 

exterior to the visits, that is all t at which individual i is absent, by  
( ) ( )

: P H 0
j j

i i t
t  , 

and the remaining t, which are interior to the visits, by ( )j

i
; see Figure 2 for an 

illustration. Additionally, we define 

 
( )

( ) ( )

j

i

j j

i i t

t

 




   and 

 
( )

( ) ( )

j

i

j j

i i t

t

 




  . At iteration j 

of the algorithm we can propose to increase ki by one, as long as 
i

k T , or to 

decrease ki by one, as long as 1
i

k  . That is, we can propose to add a changepoint, 

with probability ( )j

i
 , at any ( )j

i
t   and a departure time while we can propose to 

delete any changepoint ( )j

i
t   (and a departure time), with probability ( )

1
j

i
 . This 

leads to a proposed visit history described by ( , )
i i

a d . 

We describe the two cases in detail below. 

Increasing 
i

k : We select time ( )j

i
a   as a proposed new changepoint 

with probability ( ) ( )
/

j j

iia
 


. 

We note that there is a non-zero probability of selecting any interior point 

( )j

i
a  . The next step of the update, which is the proposal of the 

corresponding departure time, is conditional on whether ( )j

i
a  , which we 

refer to as a split move, or ( )j

i
a  , which we refer to as an add move. 

Split move If ( )j

i
a  , then we denote the arrival time just before a  by aim, 

with ( )
m a x &( )\

j

im i
a t t a    with corresponding departure time dim, and we 

propose a departure time, d  from 
0 0

( | )
im c

g d a q , that is d  is generated 

conditional on aim, which forms a visit with this newly proposed departure 

time, while the newly proposed arrival time a  forms a visit with the existing 

departure time that is the first to occur after a  (see Figure 3 (a) for an 

illustration). 

We accept this update with probability 
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 

 

* * ( ) ( ) ( ) ( ) ( ) ( )( )

1 0

1 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

0 01 0

, , , , | / ( )1 1 / 2
m in 1,

/ ( ) ( | ), , , , |

j j j j j jj

i i c c c i ii ia ia

j j jj j j j j

i i im ci i c c c i ia

f q q p

g d a qf q q p

  


  





 
  

 

C H

C H

a d

a d

 

Note that the 1/2 in the numerator of the last fraction is only needed if the visit 

to be deleted is not the first one as if that were the case then we cannot delete 

it by merging it with the previous visit. 

The first fraction in χ1 is the ratio of the joint posterior probabilities of the 

parameters and visit histories while the product of the three following fractions 

gives the ratio of the proposal probabilities when considering a delete move 

(numerator and also described below) and when considering an add move 

(denominator). 

Add move If ( )j

i
a  , we propose a departure time, d , for this proposed visit 

from 
0 0

( | )
c

g d a q  (see Figure 3 (b) for an illustration). 

We accept this update with probability 

 

 

* * ( ) ( ) ( ) ( ) ( ) ( )( )

1 0

1 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

0 01 0

, , , , | / ( )1 1 / 2
m in 1,

/ ( ) ( | ), , , , |

j j j j j jj

i i c c c i ii ia ia

j j jj j j j j

i i ci i c c c i ia

f q q p

g d a qf q q p

  


  





 
  

 

C H

C H

a d

a d

 

We note here that the 1/2 in the numerator of the last fraction in χ1 is needed 

only if the visit to be added is not going to be the first one as if that were the 

case then we could not delete it in the reverse move by merging it with the 

previous visit. 

Increasing 
i

k : We select time ( )j

i
a   as a proposed changepoint to be 

deleted with probability ( ) ( )
/

j j

iia
 


. This arrival time to be considered for 

deletion forms a visit with departure time d . Again we denote the arrival time 

just before a  by aim, with ( )
m a x &( )

j

im i
a t t a    with corresponding 

departure time dim. 
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At this stage, we propose, with probability 1/2, to delete the visit by merging it 

with the previous visit, which we refer to as a merge move, or not, which we 

refer to as a delete move. We describe the two cases below. 

Merge move We note here that this is the inverse of the split move defined 

above (see Figure 3 (c) for an illustration). We accept this update with 

probability 

 

 

* * ( ) ( ) ( ) ( ) ( ) ( )( )

1 0 0 0

0 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 0

, , , , | / ( ) ( | )
m in 1,

1 / 1 / 2, , , , |

j j j j j jj

i i c c c i ii ia ia im im c

j j jj j j j j

i ii i c c c i ia

f q q p g d a q

f q q p

  


  





  
  

 

C H

C H

a d

a d

 

Delete move Alternatively, if we do not propose the merge move, then we 

propose to delete this visit and we accept this update with probability 

 

 

* * ( ) ( ) ( ) ( ) ( ) ( )( )

1 0 0 0

0 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 0

, , , , | / ( ) ( | )
m in 1,

1 / 1 / 2, , , , |

j j j j j jj

i i c c c i ii ia ia c

j j jj j j j j

i ii i c c c i ia

f q q p g d a q

f q q p

  


  





  
  

 

C H

C H

a d

a d

 

We note here that if a  is the first change point then aim does not exist and 

the visit cannot be merged but only be deleted and the probability that a  is 

an interior point is zero. 

Finally, at each iteration we propose to shift all arrival and departure times of all 

individuals using a Metropolis-Hastings move. We propose to shift each ( )j

i
a   by 

adding to it a discrete Unif
1 1

{ , }e e , while we propose to shift ( )j

i
d   by adding to it a 

discrete Unif
2 2

{ , }e e . We accept this update with probability 

 

 

* * ( ) ( ) ( )

1 0

( ) ( ) ( ) ( ) ( )

1 0

, , , , |
m in 1,

, , , , |

j j j

i i c c c i

j j j j j

i i c c c i

f q q p

f q q p

 

 

 

C H

C H

a d

a d
 

If the proposal to increase ki, either via an add or a split move, is accepted, and 

hence a new visit at time t is introduced, then we update the corresponding weight 

according to the adaptation scheme proposed by Benson and Friel (2018), 
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( 1 ) ( )

1 ta rg e t
lo g ( ) lo g ( ) ( ) ,

/

j j

i t i t

h

j T
   


    where h > 0 is the initial adaptation parameter, 

j is the iteration number and 
ta rg e t

  is the target acceptance rate of the move. 

Consequently, if the proposal to decrease ki, either via a delete or a merge move, is 

accepted, and hence the visit that started at time t no longer exists, then we update 

the corresponding weight using ( 1 ) ( )

0 ta rg e t
lo g ( ) lo g ( ) ( ) .

/

j j

i t i t

h

j T
   


    

5.2 Sampling the posterior distribution of ν and the partition 

Borrowing notation from the Bayesian nonparametric literature (Ishwaran and 

James, 2003), we develop a blocked Gibbs sampler for finite mixture models with a 

random number of components, as suggested by Argiento and De Iorio (2022), 

based on the posterior characterisation given in Section 4. As opposed to the 

marginal samplers considered in Taddy et al. (2012) and Matechou and 

Caron (2017), our approach does not require updating of the cluster-specific 

parameters every time an individual is removed from or added to a cluster. As a 

result, it is computationally more efficient. 

Let 
1

: { , ..., }
M

S S  be the unnormalized weights and 
1

{ , , }
M

    be the random 

locations of the model in (4). Drawing inference on ( , , )M  is equivalent to drawing 

inference on ν. Consequently, conditionally on ρ and 
1

{ , , }
C

c c , our algorithm to 

update ν is based on the following characterization of ( , , )M  given the 

augmented data. 

We refer to 
1

, ,
C

c c  as the occupied components of the mixture and to the 

remaining M – C components as the unoccupied. An important observation in order 

to implement our algorithm is that we can always assume that the vector of unique 

values 
1

, ,
C

c c  corresponds to the first C components of the mixture, i.e. 

1
1, ,

C
c c C   . This statement as well as everything that follows in this Section are 

proven in Sections 1 and 2 of the Supplementary Material. 

Under model (4), the intensity ν given the augmented data { ( , ), 1, , }
i i

i N P H C H  

and a sample 
1
, ,

M
c c  of cluster allocation indices, such that 

1
1, ,

C
c c C   , 

satisfies the following distributional equation 
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1 1

( , ) ( , | ) ( , | )

C Md

i i j i i j c i i c

j c C

S f S f  

  

  P H C H P H C H P H C H  

In particular: 

1. The number of unoccupied components, ( n o )
M M C  , is distributed 

according to the mixture model 

( n o ) ( n o )1

1 1 1

1 1

( | ) P o is so n ( | ) .
C

P M M
C C


 

 


  

   
 

2. Conditionally on ( n o )
M , the weights of unoccupied components, Sj for 

C j M  , are iid with distribution Gamma ( , 1)   . 

3. The locations of the unoccupied components τj, for C j M   are iid from the 

prior distribution P0. 

4. The weights of occupied components, Sj for 1 j C  , are independent each 

with distribution Gamma ( , 1)
l

N   . 

5. Conditionally on everything else, 

1 1

1 1

1

1

( | re s t ) ( 1)G a m m a ( | ,1 )

(1 )G a m m a ( | 1,1 )

( | re s t ) e p p f ( , , , )G a m m a ( | , )

( | re s t ) e p p f ( , , , )G a m m a ( | , )

N C

N C

C a C a b

C b C a b

N N C a b

N N C a b

 

 

  

 

  

  

 

 

       

       

 

 

 

6. The locations of occupied components 
j j

  , for 1 j C   are independent 

and distributed as 

  0
( ) , | ( )

j

j i i j j

i J

d f P d   



  P H C H  (8) 

The latter is the posterior density of a parametric Bayesian model where the 

sampling model is ( , | )
i i

f P H C H , the prior distribution is P0 and the data 

are the augmented observations in cluster Jj, namely 

{ , } : { , , }
j i i j

i J C H P H C H P H . The sampling model of the posterior 

distribution in (8) is given in Equation (3) with 
1 0

( , , )
c c c

q q p  , and a prior 

distribution, P0, with independent components is specified on  . In particular, 

assuming an independent Beta(
c

p
 , 

c
p

 ) on pc gives as full conditional a 
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Beta(
{ } 1 { } 1

C H P H , (1 C H )P H
c c

T T

p it it p it it

i c t i c t

 

   

      ). On the other hand, a 

conjugate prior cannot be identified for 
0 c

q  or 
1c

q . Hence, we specify a Beta(

0 0

,
q q

  ) and a Beta(
1 1

,
q q

  ), respectively, and resort to an MH update where 

the target is derived by Equation (8). 

Conditionally on ν and N, we update ρ and 
1

{ , , }
C

c c  by, first, reparameterising ρ 

and 
1

{ , , }
C

c c  in terms of the individual cluster allocation indices 
1
, ...,

N
c c  and, then, 

by sampling the new allocation ci for individual i from 

( ) ( , | ), 1, ..., ,
i c i i c

P c c S f C H P H c M    1, ,i N  . 

5.3 Sampling N 

We update N using a rejection algorithm, as introduced by Matechou and 

Caron (2017) and also employed by Diana et al. (2020). We outline the algorithm 

below and provide more details in Section 2.3 of the Supplementary Material. 

First, we propose a value for the number of individuals in N that were never caught 

from a Poisson(Ω) distribution. Consecutively, we thin this number as follows: we first 

allocate each of the proposed individuals to a cluster according to our process 

outlined in Section 4, then we simulate a presence history for each individual using 

the cluster-specific q1 and q0 parameters and finally, given the presence history, we 

simulate a capture history for individuals using the cluster-specific capture 

probability, pc. Individuals with simulated capture histories with at least one non-zero 

entry are discarded, as any caught individuals are already part of the sample. Finally, 

the obtained sample from the posterior distribution of N at the particular iteration 

consists of the remainder of simulated individuals with capture histories with all 

entries equal to zero, together with the n individuals caught at least once in the 

original sample. 

5.4 Summarising the clustering 

Inference on clustering and cluster-specific parameters is made marginally with 

respect to the (latent) uncaught individuals, so that all of the summary statistics 

presented in this section are obtained using the n caught individuals. 
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Our iterative algorithm results in G draws from the posterior distribution of the 

random partition, ρ. In Bayesian model-based clustering, the choice of a single 

partition based on this posterior sample is a critical point. Here we employ the 

approach of Wade and Ghahramani (2018) because it also explores partitions that 

are not visited by the MCMC chain. This approach is essentially a greedy search 

algorithm informed by the posterior similarity matrix, which is obtained by calculating 

the average number of times each pair of individuals has been allocated to the same 

cluster. 

Estimation of cluster-specific parameters is a well-known and open problem in 

Bayesian nonparametric model-based clustering, mainly due to the label-switching 

problem. Here we employ the simple and intuitive approach proposed by Molitor 

et al. (2010). Once we obtain an estimation of the data clustering, i.e. 
1
ˆ ˆ, ,

n
c c  that 

define the partition of {1, , }n  called 
ˆ1

ˆ ˆ, ,
C

J J , as explained above, we average each 

of the cluster specific parameters across all G iterations to obtain 

( )

ˆ ˆ

1

1
ˆ ˆm e a n , 1, ..., .

ij

G

g

j ci J

g

j C
G

 




   

6 Results 

6.1 Simulation 

We simulated data on populations exhibiting temporary emigration and heterogeneity 

to assess the performance of our model and algorithm in identifying the number of 

clusters and in estimating the associated parameters as well as the size of the 

population. 

We set T = 100, N = 500, C = 2, 
1 1 1 2

0 .0 1, 0 .1q q  , 
0 1 0 2 1

0 .1, 0 .3, 0 .2q q p    and 

2
0 .5p  . We fit the model of Equation (1) using different scenarios for parameters Λ, 

η and ζ and to five different simulated data for each scenario. In all cases, we let P0 

be the product of three independent uniform distributions for p, q0 and q1 to represent 

absence of information for these parameters. Then, we investigate three different 

scenarios regarding parameters Λ, η and ζ. In the first two scenarios, the three 

parameters are fixed: in the first case ( ) 5 0 0N  , and in the second ( ) 1 0 0 0N  . 

Finally, in the third scenario, the three parameters are assumed random with 
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independent Gamma prior distributions (see Model 1). Details on the 

hyperparameter choices are given in Tables 1, 2 and 19 of the Supplementary 

Material. 

For each simulation, we run our algorithm using initial adaptive weights equal to 1, h 

= 0.001 and 
ta rg e t ta rg e t

0 .2   . The choice of h was made after running several 

chains for the same data set using the same starting values for the parameters but 

different values for h ( 0 , 0 .0 0 1, 0 .0 0 5 , 0 .0 1)h   and comparing effective sample sizes 

and mean squared errors for all model parameters. Our choice for the target 

acceptance rates was based on the general recommendation of a 0.234 acceptance 

rate in MCMC algorithms (Roberts et al., 1997) and the comment by Benson and 

Friel (2018) that values in the [ 0 .0 1, 0 .2 ]  range work well in practice. We note here 

that Benson and Friel (2018) suggest that the algorithm is insensitive to the choice of 

h and of the acceptance rates, provided that the first is set to a small value, such as 

the reciprocal of the length of the time-series. 

Our results in all scenarios suggest that clustering estimation is quite robust with 

respect to choices on parameters Λ, η and ζ, thanks to the method of Wade and 

Ghahramani (2018). In fact, in most cases we obtain an a posteriori estimate of two 

clusters with high rand index (i.e. >0.76) between the true partition and the estimated 

partition (see Tables 5, 6 and 21 of the Supplementary Material). Estimation of N and 

of cluster specific parameters is also good in terms of coverage of the posterior 

credible intervals (PCIs). 

We note that some issues in posterior inference can arise in the extreme case where 

the prior induced on N, C by the parameter choice is such that these two quantities 

are very strongly correlated (see for instance case a of Table 2 of the Supplementary 

material). We also mention that if a cluster consists of individuals with very low 

capture probabilities, the model can slightly overestimate this parameter. Finally, we 

highlight that the best performance in terms of estimation is obtained when all three 

parameters are assumed random with vague priors, such as independent 

Gamma(0.1,0.1) priors (this is denoted as case g in Table 19 of the Supplementary 

material), and this is indeed the approach we take for the angler data set. 
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Under this third hyperparameter scenario, clustering estimation is satisfying, since 

for all five replications we obtain a posterior mean of two clusters, with average width 

of the 95% PCI equal to 1.80, and Rand index of 0.76. 

We present the average, over the five data sets, of the posterior mean Â  and the 

average width L̂  of the 95% PCI as well as the coverage for N and all cluster-

specific parameters in Table 1. Posterior summaries for the visit, arrival and 

departure patterns obtained for one of the simulated data sets are presented in 

Figure 4. In all cases, Â  is close to the true value used to simulate the data, while 

the coverage is satisfactory, and always higher than 0.8. 

Hence, our results demonstrate that we can estimate parameters of interest, such as 

N, and retrieve the latent clustering of the population as well as estimate the 

corresponding cluster-specific parameters. More details about the simulation study 

are presented in Section 2.2 of the Supplementary Material. 

6.2 Angler data 

We fit model of Equation (1) to three data sets collected in 2017, 2018 and 2019. We 

set p = 0 on days when the river was closed for fishing in each season. We adopt an 

informative approach in the choice of the hyperparmameters of P0, that is the choice 

of 
1 1

,
q q

  , 
0 0

,
q q

   and αp, βp. Our information can be summarized as follows: 

(a) an a priori 95% credible interval for the number of visits equal to [1,1 2 ] , with the 

lower bound representing individuals who only visit the river once and the upper 

bound representing individuals who visit on a weekly basis during the season. Since 

T = 92 here, this gives a (1/92, 12/92) corresponding interval for q1. Using a set of 

non-linear equations, we translated this into a Beta(2.8, 48.7) prior distribution for q1. 

(b) an a-priori mean length of stay for an angler equal to 6 days, with a 50% credible 

interval of roughly [3,7] days. This gives a, roughly, (0.12, 0.26) corresponding 

interval for q0, which translates into a Beta(3, 12) prior distribution. 

(c) a 95% prior credible interval for p equal to (0.1,0.5); 
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Finally, we assigned vague prior distributions on the parameters Λ, η and ζ, as 

described in Section 6.1. 

Similarly to the simulation study, we run our algorithm for each data set using initial 

adaptive weights equal to 1, h = 0.001 and target acceptance rates equal to 0.2. 

Convergence was assessed by visual inspection of trace plots and using the 

Geweke diagnostic in package coda (Plummer et al., 2006), shown in Section 3 of 

the Supplementary Material. 

Posterior summaries for N for each year are presented in Table 2. The posterior 

medians for N are all greater than 3000 and considerably greater than the number of 

anglers observed each year. There is substantial overlap between all 95% PCIs, 

suggesting that the population of anglers that visited the river each year between 

2017 and 2019 is fairly stable, which is not surprising, as at least 70% of anglers are 

expected to be returning year after year. 

As explained in Section 4, our model induces a clustering amongst anglers, 

described by our extension of the Chinese restaurant process. We clarify that in this 

case, the clients are the anglers and the tables are groups of anglers sharing the 

same characteristics (dishes), with characteristics being the cluster-specific 

parameters 
0 1

( , , )q q p , which describe the visit behaviour and fishing ability of 

anglers. We summarise the clustering as described in Section 5.4 and obtain two 

clusters. Contour plots of the posterior distributions for q0 and q1 for each cluster and 

posterior summaries of the cluster-specific probabilities of capture are shown in 

Figure 5. The largest cluster each year (labelled cluster 1, consisting of 95% of the 

individuals) is found to consist of the “occasional visitors”, with the lowest q1 and 

highest q0. This group of anglers tend to perform between two and three visits per 

year, with posterior mean visit duration equal to around two days. The smallest 

cluster corresponds to the “super-visitors” who make on average around eight visits 

per year, with posterior mean visit duration between two and three days. We 

highlight that the estimated capture probability for both clusters, which, although 

higher for the second cluster is not found to differ significantly between clusters 

within each season, is considerably greater than what is obtained when a model that 
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does not account for temporary emigration is fitted to the data, as mentioned in 

Section 2. 

The estimated arrival, departure and presence patterns, presented in Figure 6, vary 

substantially between years, although a common feature is a larger proportion of 

individuals estimated to arrive on the first day of the season and similarly to depart 

on the last day of the season. A peak in the estimated number of individuals present 

(third column in Figure 6) is observed towards the end of June in all years. This is 

possibly due to anglers tending to avoid planning a trip to Gaula early in the season 

as some parts of the river may still be inaccessible due to snow, which is much less 

likely after the end of June. In 2018 and 2019, there is another peak in the number of 

anglers present, following river closure at the end of July in both years. We note that, 

as mentioned above, anglers book their trips typically months in advance, so they 

tend to remain at the river even when it is closed, waiting for it to reopen once there 

is sufficient rainfall. 

The cluster-specific visit pattern can also be summarised by looking at the posterior 

probability of presence at any given time point for each individual. In Figure 7 we 

present these for the most representative individual in each of the two clusters for 

each year. Individuals representative for each cluster are identified by calculating the 

distance between each individual and the centroid of each cluster in terms of the 

number and length of visits and capture probability. The posterior probability of 

presence is equal to 1 at times when the individual has been observed. This 

probability decreases as we move away from times of observation. The rate of 

decrease depends on the cluster and on the number of days between observations. 

Specifically, the posterior probability of presence reduces slightly more sharply as we 

move away from the time of observation for individuals in cluster 1 compared to 

cluster 2. However, even for cluster 1, individuals observed only a few days apart 

have a high posterior probability of presence between these two observations. As 

expected, the number of peaks, i.e. visits, for each individual corresponds to what we 

have already identified as typical for each cluster, with individuals in cluster 1 having 

one or two peaks and individuals in cluster 2 multiple peaks. We focused our 

interpretation of the clustering results on the individuals observed at least once, 

since no information, other than the fact that they never caught salmon, is available 
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on the remainder of the individuals. Since our inference on N is performed using a 

rejection algorithm, the number of individuals that were never observed as well as 

their corresponding presence histories and hence cluster membership change at 

every iteration of the algorithm. Therefore, no meaningful posterior summaries exist 

for particular individuals with index greater than n. 

6.3 The effect of the COVID-19 pandemic 

In this section, we discuss the results of our model when fitted to the 2020 data set, 

presented in Section 3 of the Supplementary Material, and compare them to those 

obtained for the 2017-19 seasons. In Norway, there were no national travel 

restrictions in the summer of 2020, so local anglers could still travel to Gaula, but the 

international travel restrictions meant that the number of anglers travelling from 

abroad to Norway was dramatically lower. As a result, both the visiting patterns of 

anglers and their probability of catching salmon whilst at the river were considerably 

different to pre-pandemic seasons, since the foreign visiting anglers are among the 

most dedicated and skilled. 

We find that we again identify two clusters of anglers, with substantially different visit 

patterns. The largest cluster, consisting of almost 90% of anglers in the sample, visit 

one to two times on average in the season. However, the smallest cluster of what we 

termed “super-visitors” only visit on average around three times in the season, which 

is considerably lower than in the pre-pandemic seasons. On the other hand, both 

clusters spent longer at the river per visit on average compared to previous seasons 

(around six days), which results in average total lengths of stay at the river that are 

greater than in other seasons (around 15 and 37 days, respectively). Additionally, we 

estimate that the total number of anglers that visited the river in 2020 was greater 

than in pre-pandemic seasons (posterior median = 4034, 95% PCI = (3550, 4583)). 

We note here that once travel restrictions were imposed, the pre-sold fishing 

licenses where made available to locals in Norway and, given the global travel 

restrictions, also preventing Norwegians from going on their normal summer 

vacations, more locals took up the new opportunity to try fishing in Gaula. Finally, our 

estimated capture probabilities for both clusters are slightly lower than in pre-

pandemic seasons (posterior means equal to 0.18 and 0.25, respectively), which is 
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again not surprising as less experienced anglers took the opportunity to visit the river 

in 2020 compared to the regular and more experienced anglers who usually buy the 

fishing licenses months in advance. 

7 Conclusions 

We proposed a novel modelling approach that enables us to estimate parameters of 

interest, such as the size of a population, from CR data whilst allowing for temporary 

emigration and accounting for individual heterogeneity. To our knowledge, this is the 

only such model for open-populations that does not require the use of methods that 

rely on Pollock’s robust design, which cannot always be employed, as is the case for 

the data set considered in this paper. 

Our approach brings together CR models, changepoint process and Bayesian 

nonparametric methodology for the first time and gives rise to a flexible modelling 

technique for time-series that could be extended to other types of ecological data, 

such as those collected in occupancy studies (MacKenzie et al., 2002) when the 

assumption of population closure is not satisfied. 

The model is fitted by combining and extending recently-developed algorithms in the 

area of changepoint processes (Benson and Friel, 2018) and a blocked Gibbs 

sampler for finite mixture models built upon a Bayesian nonparametric approach 

(Argiento and De Iorio, 2022; Argiento et al., 2016; Ishwaran and James, 2003). The 

first learn from past states of the MCMC and hence yield proposal distributions that 

quickly discover the position of changepoints while the latter updates the cluster-

specific parameters conditioning on the mixing process P, which yields an 

independent update (for these parameters) that is more efficient than competing 

approaches. 

We presented a simulation study that demonstrated the reliability of the results 

obtained by our model and the ability of our method to uncover the underlying 

clusters in the population as well as to estimate the corresponding cluster-specific 

parameters. Our analysis of CR data sets on anglers in Norway identified two 

clusters, each with fairly consistent visit patterns each year, except in 2020, when 

the effect of the COVID-19 pandemic led to a different angling population. Our 
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results can be used to inform the decisions made by the river management board in 

terms of number and pricing of fishing licenses issued, based on the quality of fishing 

in terms of probability to catch a fish on a given day. Reliable estimates of the 

probability of anglers catching salmon whilst at the river are crucial for effective 

management of the river and can also be used as a marketing tool by the river 

management board, as success rates are used as indicators for the quality of fishing 

experience at rivers. On the other hand, estimates that are biased low, obtained from 

existing models that do not account for temporary emigration, risk underestimating 

the effect of angling on the salmon population and cannot guide actions for 

sustainable fishing at the river. 

A natural extension of our model is the inclusion of covariates, for example the effect 

of rainfall on capture probability throughout the season, to inform estimation about 

clustering and cluster specific parameters. The use of covariates in mixture models 

is part of a lively stream of research in the Bayesian nonparametric community (see 

for instance Foti and Williamson, 2013), under the name of (non-exchangeable) 

dependent processes for mixtures. One of the main advantages of the framework of 

finite mixture models introduced in Argiento and De Iorio (2022), which we employ in 

this paper, is exactly the possibility of incorporating covariate dependence in the 

model, and this is a matter of current research. Another interesting extension could 

consider following the same individuals over different seasons to study the level of 

consistency in their visiting pattern and the potential improvement of their fishing 

ability over the years. In 2018, the river closed for the first time in its history because 

of low levels of rainfall, and since then river closure towards the middle of the season 

is a recurring phenomenon. As a result, it is expected that anglers will change their 

behaviour about when to book their fishing trip in the future, and our model, or 

extensions of it described above, could be used to model this behavioural shift. 

SUPPLEMENTARY MATERIAL 

Title: Supplementary Material Document with three sections: 1. Bayesian mixture 

model, 2: Posterior characterisation, 3: Angler data. The first two give details on the 

mathematical results of the Bayesian mixture model presented in the paper and the 

algorithm used for inference, with an additional extensive simulation study on prior 
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sensitivity in section 2.2 and the third includes trace plots and diagnostics for all 

model parameters for the analysis of the data presented in the paper. 

R code and data: The angler data analysed in Section 6.2 and the R code used to 

perform the simulation study and the angler data analysis and to elicit the prior 

distributions for a number of model parameters in the simulation study presented in 

the supplementary material. 
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Fig. 1 Number of anglers observed each day of the season in 2017, (a), 2018, (b), 

and 2019, (c). The river may be closed occasionally for fishing, which results in days 

when no fish are caught, such as the days around day 60 in 2018 and in 2019. 

 

 

Fig. 2 Example presence history for individual i. Gray ticks indicate external 

points, 
i
, black ticks indicate internal points, 

i
, solid circles indicate changepoints, 

i.e. arrivals times, 
i
, and solid triangles indicate their corresponding departure 

times, 
i
. The arrival and departure times are indicated on the x-axis. 
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Fig. 3 Four examples of presence histories that can lead to the presence history 

shown in Figure 2: (a) Split move; we propose an internal point as a new 

changepoint ( 5 6a  ), which forms a visit with the next available departure point (dim 

= 86), while the existing previous arrival time aim = 27 forms a visit with the newly 

proposed departure time ( 3 7d  ), (b) Add move; we propose an external point as a 

new changepoint ( 5 6a  ), which forms a visit with the newly proposed departure 

time ( 8 6d  ), (c) Merge move; we propose to delete an existing changepoint (

7 0a  ) and the departure time of the previous visit ( 5 6d  ), so the two visits are 

merged, and (d): Delete move: we propose to delete an existing changepoint (

1 1a  ) and its corresponding departure time ( 1 9d  ). 
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Fig. 4 Posterior medians, indicated by the empty circles, and 95% PCI, indicated 

by the vertical bars, of the visit, (a), arrival, (b), and departure, (c), patterns. The true 

values are indicated by the gray dots. The plots refer to one (among five) of the 

simulated data, results for other data sets are quite similar. 

 

 

Fig. 5 Contour plots of cluster-specific q0 and q1 for the 2017, (a), 2018, (b) and 

2019, (c), season for cluster 1, solid lines, and cluster 2, dashed lines. Summaries of 

posterior samples of cluster-specific capture probabilities for the 2017, (d), 2018, (e) 

and 2019, (f), season. 
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Fig. 6 Posterior medians, indicated by the empty circles, and 95% PCI, indicated 

by the vertical bars, of the number of individuals arriving (first column), departing 

(second column), and being present (third column), each day of the season in 2017 

(first row), 2018 (second row) and 2019 (third row). The gray dots in the third column 

indicate the number of anglers who caught at least one salmon that day. 

 

 

 

 

 

 

 

Acc
ep

te
d 

M
an

us
cr

ipt



Fig. 7 Posterior probabilities of presence for the most representative individuals in 

each of the two identified clusters (rows 1 and 2) for 2017 (first column), 2018 

(second column) and 2019 (third column). 
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Table 1 Simulation results. Average over five replications of the posterior mean (

Â ), average width ( L̂ ) of the 95% PCI and coverage of population size and all 

cluster-specific parameters. 

Parameter  N  q11 q12 q01 q02 p1 p2 

Â  505.28 0.02  0.09  0.11  0.29  0.22  0.50  

L̂  45.20  0.01  0.01  0.05  0.08  0.06  0.08  

cover.  1.00  1.00  1.00  0.80  0.80  0.80  0.80  

Table 2 Posterior summaries of the population size, N, of anglers for each 

season. The number of anglers observed each season, n, is given in the second 

column of the table. 

Year n  Posterior Median 95% PCI  

2017 2057 3499  (3208, 3871) 

2018 1901 3142  (2857, 3472) 

2019 1687 3495  (3036, 3988) 
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