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Depth-Invariant Beamforming for Functional
Connectivity with MEG data *

Jian Zhang

The conventional beamformers that reconstruct the cere-
bral origin of brain activity measured outside the head via
electro- and magnetoencephalography (EEG/MEG) suffer
from depth bias and smearing of nearby sources. Here, to
meet these methodological challenges, we propose a depth-
invariant and forward beamformer for magnetoencephalog-
raphy (MEG) data. Based on the new proposal, we further
develop a two-step approach for inferring functional connec-
tivity in the brain. The proposed methodology is invariant
with respect to source depths in the brain. It nulls smearing
of nearby sources and allows for time-varying source orien-
tations. We illustrate the new approach with MEG data de-
rived from a face-perception experiment, revealing patterns
of functional connectivity for face perception. We identify a
set of brain regions where their responses and connectivity
are significantly varying when stimuli alter between faces
and scrambled faces. By simulation studies, we show that
the proposed forward beamformer can outperform the for-
ward methods based on conventional beamformers in terms
of localization bias.

AMS 2000 subject classifications: Primary 62H35.
Keywords and phrases: MEG neuroimaging, depth-
invariant beamforming, functional network, source localiza-
tion, reconstruction.

1. INTRODUCTION

As cognitive functions arise from dynamic communica-
tion between brain regions, there is an increasing interest
in the detection of the underlying functional networks con-
stituted by these regions (Ishai, 2008; Brooks et al., 2011;
Friston, 2011). Functional connectivity, defined as tempo-
ral dependencies among neurophysiological events originat-
ing from different brain regions, can be inferred from dy-
namic signals which are measured by use of non-invasive de-
vices such as functional magnetic resonance imaging (fMRI)
and magnetoencephalography (MEG). fMRI measures brain
activity by detecting changes associated with blood flow
whereas MEG measures magnetic signals outside the brain,
which originate from neural firing. Note that the accuracy of
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estimated functional network strongly depends on the tem-
poral resolution of the measured events (e.g., Drakesmith
et. al, 2013). It is widely acknowledged that the haemody-
namic measurement-based fMRI can resolve detailed spa-
tial patterns of activity, but has notoriously poor temporal
resolution. As the magnitude of the measured fields is pro-
portional to that of the neural currents, using MEG, one is
able to perform a real-time tracking of brain activities with
an millisecond temporal resolution, the same time scale as
that of neural interactions. However, MEG has a relatively
low spatial precision. Therefore, MEG is a useful tool to
measure functional brain connectivity when one is able to
improve its spatial resolution.

The electrical currents derived from the neural firing are
often modeled by neural dipoles which are described by their
locations, orientations and amplitudes (called time-courses).
See Zhang and Su (2015) and Yao at al. (2018) for an intro-
duction. In light of this, a distributed model with thousands
of current dipoles is commonly proposed to infer the neu-
ronal generators of MEG data. Dipole locations (i.e., vox-
els) are created by discretizing the dipole space in the brain,
where the number of these grid points can be much larger
than the number of available sensors. Therefore, searching
for a small subset of dipole sources among a large number
of candidates poses a challenge to modern statistics.

In this paper we focus on the study of cognitive functions
related to face perception, a most developed visual skill in
human, by using MEG measurements. Face-perception is
many ways a microcosm of object recognition; and the so-
lution to face-perception will give insights into the general
problem of object recognition (Tsao and Livingstone, 2008).
The cognitive development of face perception is linked to
developing social interaction skills and language. For exam-
ple, infants prefer to imitate facial expressions at a very
early age. Adults perceive the gender, expression, age and
mood by looking at faces. Processing information gleaned
from faces requires the integration of activity across a net-
work of cortical regions. This suggests that face perception
is mediated by a specialized neural network system (Ishai,
2008). However, there have been few studies in which re-
searchers attempt to elucidate the features of such a sys-
tem. With fMRI data, Zhen et al. (2013) revealed a func-
tional network of various regions which showed differential
responses to facial stimuli over non-facial stimuli. The find-
ings from MEG data are also very limited although they
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have a better temporal resolution. For example, Henson et
al. (2011) designed a series of face-perception MEG exper-
iments, identifying only a region called fusiform face area
(FFA) which responded differently to face over scrambled
face. But they missed other regions which were found in
fMRI studies. It is unclear whether there are networks un-
derlying the observed MEG data, similar to the fMRI set-
ting. To fill the gap, Zhang et al. (2014) and Zhang and
Liu (2015) made some efforts by a covariance-thresholding
technique, revealing some more but weakly active regions.
Unfortunately, source smearing often jeopardized these anal-
yses in general (Sekihara et al., 2010). Here, we propose a
novel forward beamforming to tackle the problem of source
cross-talk and thus to improve the data analysis of the above
face-perception experiment. By cross-talk we mean that sig-
nals generated at one dipole location can leak into estimated
activity at spatially separate locations.

The choice of an appropriate beamforming method heav-
ily influences the reconstructed brain activity, as well as the
subsequent connectivity analysis as the above inverse prob-
lem is ill-posed. Distributed approaches such as minimum-
norm estimate (MNE) and adaptive beamformers are com-
monly employed to address the source reconstruction prob-
lem (Hämäläinen et al., 1993; Veen et al., 1997; Robinson
and Vrba, 1998; Sekihara et al., 2010; Zhang et al., 2014;
Zhang and Liu, 2015; Yao et al., 2020). In these methods,
one scans through dipole locations inside the brain by use of
spatial filters and assess their contributions to the observed
magnetic fields in terms of neuronal activity index. Conven-
tional beamforming approaches such as synthetic aperture
magnetometry (SAM) assume that the dipole orientations
keep fixed in time and henceforth can be obtained through
an extra optimization step. The constant orientation as-
sumption can be relaxed by designing separate beamform-
ers for each individual principal dipole orientation which
are called linearly constrained minimum variance (LCMV)
beamformers. Both SAM and LCMV have the advantage
over traditional multiple dipole fittings that they do not
require knowing the number of dipoles in the model in ad-
vance. Furthermore, the MNE has low spatial resolution for
focal point-like neuronal sources, while SAM and LCMV so-
lutions can model the point sources down to the size of the
mesh grid (Huang et al., 2004). The SAM and LCMV also
provide a convenient framework to suppress source cross-
talk by imposing certain constrains in optimization. So, we
opt for SAM and LCMV as building blocks in our study.
The SAM and LCMV procedures can be implemented in
two steps: In the first step, at each dipole point, one searches
for the optimal projections of the sensor data to the three
principal directions by minimizing the trace of the sample
covariance of the projected data subject to a unit matrix
gain constraint. Through the minimization, we reduce the
contributions of white noises and source cross-talks to pow-
ers and obtain an optimal power estimator at the grid point.
Similarly, using the baseline data, we obtain an optimal

baseline power estimator. In the second step, we calculate a
neuronal activity index (NAI) by contrasting the above two
power matrices at each grid point. Plotting these index val-
ues against the grid points, we can create an NAI map over
a given time window. The map presents the distribution of
dipolar currents which underlies the recorded sensor data.

Appropriately summarizing neuronal activity is funda-
mentally important in the above implementation. Veen et al.
(1997) proposed an output signal-to-noise-ratio based NAI
(i.e., the ratio between the traces of the signal and noise
power matrices) for this purpose. NAI takes the value of 1
when the above two power matrices are equal. The SAM
can be implemented in a similar way. The SAM and LCMV
beamformers have been shown to have good performance in
various scenarios (e.g., Sekihara et al., 2010). Despite this,
there are a few important issues remained to address. Firstly,
these beamformers can fail to detect dipole sources where
the signal and noise power matrices are not equal but NAI
takes the value of 1. This is because the NAI is not a bijec-
tive operator as it is based on the ratio between the traces
(or the the maximum relative eigenvalue) of the signal and
noise matrices. Secondly, these beamformers can be biased
as they are not dipole depth-invariant. If one principal ori-
entation generates a weaker lead field than the other two
principal orientations do, then both the traces of the signal
power matrix and the noise power matrix are dominated by
the above unreliable weak dipole orientation. This will in-
crease the false discovery rate of beamforming (Huang et al.,
2004). Finally, SAM beamformer relies on a potentially in-
valid assumption that dipole orientations is time-invariant.

Here, to address these issues, we first propose a novel
vector-beamformer based on the Bregman-divergence index
(Davis et al., 2007). We show that the proposed beamformer
is dipole-depth invariant and that it allows for time-varying
dipole orientations. Based on this new technique, we are able
to implement a forward beamforming by nulling the previ-
ous identified NAI peaks in each iteration. To define a ter-
mination rule, we divide dipole candidates into two groups,
one with high NAI values and the other with low NAI val-
ues, by minimizing the within-group variability. Using the
low NAI values, we decide whether the NAI map has been
whitened and when forward beamforming should be termi-
nated. Previous findings have suggested that temporal cor-
relation of neuronal time-courses may be an indication of
communication and information flow between cortical neu-
rons (Chan et. al, 2015). In light of this, we then develop a
method for constructing a functional network of contrast be-
tween stimuli based on correlations of dipole time-courses.
In particular, we apply the proposed method on an MEG
dataset derived from a face-perception experiment, reveal-
ing a novel functional network of contrast for face stimuli
against scrambled face stimuli. The network suggests that
the selected regions coordinate each other in response to the
change of face stimuli in a hierarchical way: Face-perception
at the top depends on the source clusters in the middle layer
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and each cluster depends on neuronal regions at the bot-
tom layer. This finding improves our understanding of the
neuronal mechanism underpinning face perception. Finally,
to assess the new procedure, we conduct simulation stud-
ies to compare the Bregman-divergence based procedure to
the LCMV and SAM based procedures, suggesting that the
former is most promising.

The remaining paper is organized as follows. The details
of the proposed methodology and its theory are provided in
Section 2. The applications of the proposed methods to the
face-perception dataset and synthetic data are presented in
Section 3. Conclusions are made in Section 4.

2. METHODOLOGY

To propose a new approach, we begin with a brief deriva-
tion of the classical LCMV beamformer followed by a dis-
cussion on its weakness. Then, we give the details of the new
approach.

2.1 Dipole-depth dependance of LCMV

Suppose that we observe a vector of time series Y(t) =
(Y1(t), ..., Yn(t))T ∈ Rn, t = tj , 1 ≤ j ≤ J from n sensors.
We also have the corresponding baseline data for the sen-
sors. We consider a list of candidate source locations in the
brain, rk, 1 ≤ k ≤ p, each with an n × 3 lead field matrix
Hk (i.e., the unit output derived from Maxwell’s equations).
Let mk(t) be an unknown 3 × 1 moment (time-course) at
time t and location rk with covariance matrix Σk (called
power matrix), ε(t) the white noises at the MEG sensors
with covariance matrix σ2

0In, and In the n× n identity ma-
trix. Then, the distributed model can be described by the
following equations

Y(t) =

p∑
k=1

Hkmk(t) + ε(t).(1)

See Sekihara et al. (2010) for the details. The classic LCMV
beamforming can be defined in two steps as follows.

Step 1. For each location rk in the source space, we
search for an optimal projection-matrix Ŵk and the corre-
sponding power matrix Σ̂k by minimizing the trace of the
sample covariance of the projected data WTY(tj), 1 ≤ j ≤
J with respect to the n × 3 projection matrix W , subject
to WTHk = I3. By use of the Lagrange multiplier, we solve
the above optimization problem, obtaining:

Ŵk = Ĉ−1Hk

[
HT
k Ĉ
−1Hk

]−1
,

Σ̂k = ŴT
k ĈŴk =

[
HT
k Ĉ
−1Hk

]−1
,

where Ĉ is a sensor covariance estimator. Similarly, based
on the baseline data, we obtain the noise power matrix es-

timator σ̂2
0

[
HT
k Hk

]−1
.

Step 2. For location rk, calculate the neuronal activity
index

NAI1k = NAI1k(Ĉ, σ̂2
0 , Hk) = tr(Σ̂k)/(σ̂2

0tr([H
T
k Hk]−1)),

which is a contrast between the traces of the signal power
matrix and the noise power matrix. We then plot the index
values against the grid points, creating a neuronal activity
map over a given time window. Finally, one estimates the
true sources by thresholding the map.

However, the sensitivity of MEG sensors is not uniform
to sources across different cortical regions and different ori-
entations (Hillebrand and Barnes, 2002). In fact, it follows
generally from Maxwell’s equations that the lead fields of
MEG sensors have a maximum at the border of the source
space, closest to the sensors (Heller and van Hulsteyn, 1992).
The classic LCMV solution is biased to those locations and
orientations, preferring superficial source locations. This ob-
servation can be validated by the following numerical exam-
ple. We constructed a spherical volume conductor with 10cm
radius from the origin and with n = 91 sensors, created by
using the software FieldTrip (Oostenveld et al., 2011). We
then discretized the inside brain space into a 3D-grid of res-
olution 1 cm. This yielded a grid with p = 2222 grid points
rk, k = 1, ..., p inside the brain. We calculated the magnetic
fields emanating from unit inputs of electric dipole neuronal
activities at these locations respectively, obtaining an n× 3
lead field matrix for each grid point. Denote the lead field
matrix at the k-th location by Hk = (Hk1, Hk2, Hk3), where
Hkj is an n × 1 column vector. For principal orientation
j = 1, 2, 3, we calculated (||rk||, ||Hkj ||), k = 1, ..., p and
made a scatter plot in Figure 1. The plots show that in
general ||Hkj || is relatively smaller when location rk is close
to the origin than when rk is away from the origin. We also
made pairwise plots between principal orientations. These
plots demonstrate that ||Hkj || are varying across different
orientations. There were a number of grid points with weak
dipole orientations.

Then, the depth of a source at rk will be inversely pro-
portional to the total of squared unit outputs ||Hkj || which
the sensors receive from that source. To remove the depth
effects, we normalize the lead field vectors, obtaining the
normalized lead field vector

H̃kj = Hkj/||Hkj ||.

Under the normalized lead field, the sensitivities of the
dipoles inside the brain to the sensors are spatially homoge-
nous. Furthermore, the power matrix estimators admit the
following decompositions:

σ̂2
0

[
HT
k Hk

]−1
= σ̂2

0D
−1
k

[
H̃T
k H̃k

]−1
D−1k ,[

HT
k Ĉ
−1Hk

]−1
= D−1k

[
H̃T
k Ĉ
−1H̃k

]−1
D−1k
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Figure 1. The first row displays the scatter plots of the total
squared unit outputs at 2222 grid points along the principal
orientation j against the corresponding Euclidean distances
from dipole locations to the CTF origin. The plots from the
left to the right are corresponding to j = 1, 2, 3 (i.e., x, y, z

axes). In general, the closer to the origin, the smaller the unit
output will be. The second row shows the pairwise scatter

plots of the total squared unit outputs at 2222 grid points for
the principal orientations j, j = 1, 2, 3. These plots

demonstrate that the conditional number cjk can be close to
0. Color will not be used in print.

with Dk = diag(||H1k||, ||H2k||, ||H3k||). For any 1 ≤ j ≤ 3,
define the conditional number cjk = maxi 6=j{||Hjk||/||Hik||}
which is roughly equal to the maximum ratios of the jth
orientation to other orientations. The scatter plots in the
2nd row of Figure 1 indicate that for some ks, the conditional
number cjk is close to zero because rk is close to the origin.
For these ks, the unit output Hjk along the principal dipole
orientation j at rk are much smaller than those along other
principal orientations. In these cases, the sensors will not be
sensitive to signals generated along these orientations.

The following proposition indicates that the index NAI1k
is not scale-invariant with respect to the lead field matrix
Hk and that the index can be dominated by a weak dipole
orientation.

Proposition 2.1. There exists a diagonal matrix S =
diag(s1, s2, s3) such that

NAI1k(Ĉ, σ̂2
0 , SHk) 6= NAI1k(Ĉ, σ̂2

0 , Hk).

Moreover, for any 1 ≤ j ≤ 3, if [H̃T
k H̃k]−1 and

[H̃T
k Ĉ
−1H̃k]−1 are fixed but the condition number is close

to zero, then NAI1k is approximately determined by the jth

principal orientation in the form

NAI1k ≈
ujj
vjj

,

where ujj and vjj are the jth diagonal entries of matrices

[H̃T
k Ĉ
−1H̃k]−1 and [H̃T

k H̃k]−1 respectively.

Note that a property similar to Proposition 2.1 holds for
the SAM.

2.2 Bregman-divergence-based beamformer

The above proposition implies that the classical LCMV
can have the bias to deep dipoles in the brain. To reduce the
bias, we weight the estimated power matrix Σ̂k = ŴT

k ĈŴk

by the baseline power matrix estimator σ̂2
0Ŵ

T
k Ŵk, obtaining

a normalized power matrix estimator at rk:

Rk = ŴT
k ĈŴk(σ̂2

0Ŵ
T
k Ŵk)−1

= σ̂−20

[
HT
k Ĉ
−2Hk

]−1 [
HT
k Ĉ
−1Hk

]
.

Then, we define the normalized power at rk by using the
Bregman matrix divergence

NAIbk = NAIbk(Ĉ, σ̂2
0 , Hk) = tr(Rk)− log(det(Rk))− 3.

Note that two power matrix estimators [HT
k Ĉ
−1Hk] and

[HT
k Ĉ
−2Hk] are non-negative. So, there exist 3 × 3 matrix

U and diagonal matrix Λ = diag(λ1, λ2, λ3) satisfying

[HT
k Ĉ
−1Hk]U = [HT

k Ĉ
−2Hk]UΛ, UT [HT

k Ĉ
−2Hk]U = I3,

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are the relative eigenvalues of
[HT

k Ĉ
−1Hk] to [HT

k Ĉ
−2Hk]. Therefore, we have

NAIbk =

3∑
j=1

(
σ̂−20 λj − log(σ̂−20 λj)− 1

)
.

Let k0 be the index value at which NAIbk attains the maxi-
mum. We denote by r0 the corresponding location estimate
and by Hk0 the lead field matrix at r0. We estimated the
time-course at location r0 along the orientation determined
by the eigenvector u01 associated with the maximum eigen-
value λ01 of ŴT

k0
ĈŴk0 relative to σ̂2

0Ŵ
T
k0
Ŵk0 , which is equal

to uT01Ŵ
T
k0
Y.

The next proposition says that the new index is scale-
invariant.

Proposition 2.2. For any scale transformation S̃k = HkS
on Hk with S = diag(s1, s2, s3), we have

NAIbk(Ĉ, σ̂2
0 , Hk) = NAIbk(Ĉ, σ̂2

0 , S̃k).

In particular, letting S = D−1k defined in Section 2.1 and

H̃k = HkD
−1
k , we have

NAIbk(Ĉ, σ̂2
0 , Hk) = NAIbk(Ĉ, σ̂2

0 , H̃k).
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2.3 Forward beamforming

We define an iterative Bregman forward beamformer
called BBFB below:

� Step 0: Run the Bregman beamformer on the sensor
data to initialize the procedure, finding r0 and k0 de-
fined in the previous subsection.

� Step 1: Define and run an updated beamformer on the
data by nulling the contribution of the signal at r0 as
follows. For each k 6= k0, we consider the optimization
problem

min
W

tr(WT ĈW ), subject to WTHk = 1,WTHk0 = 0,

which gives the optimal weight

Wk = Ĉ−1(Hk, Hk0)((Hk, Hk0)T Ĉ−1(Hk, Hk0))−1

×(I3, 03)T

and signal power matrix estimate

WT
k ĈWk = (I3, 03)((Hk, Hk0)T Ĉ−1(Hk, Hk0))−1(I3, 03)T .

Similarly, if the baseline noise covariance matrix is as-
sumed of the form σ2

0In, then the noise power matrix
estimate at the projection direction Wk can be esti-
mated by

σ̂2
0W

T
k Wk = (I3, 03)((Hk, Hk0)T Ĉ−1(Hk, Hk0))−1

×(Hk, Hk0)T Ĉ−2(Hk, Hk0)

×((Hk, Hk0)T Ĉ−1(Hk, Hk0))−1(I3, 03)T ,

where σ̂2
0 is a noise level estimate derived from the base-

line noise data. The Bregman index can be defined by

NAIbk|k0 = tr
(
σ̂−20 WT

k ĈWk(WT
k Wk)−1

)
− log det

(
σ̂−20 WT

k ĈWk(WT
k Wk)−1

)
− 3.

Let k1 be the value of k at which NAIbk|k0 attains
the maximum and let r1 be the corresponding loca-
tion. There exist relative eigenvector matrix U1 =
(u11, u12, u13) and relative eigenvalue diagonal matrix
Λ = diag(λ1, λ2, λ3), λ1 ≥ λ2 ≥ λ3, satisfying

UT1 W
T
k ĈWk = ΛUT1 W

T
k Wk, UT1 W

T
k WkU1 = I3.

We project the data Y along the orientation determined
by the eigenvector corresponding to the maximum rela-
tive eigenvalue at location r1, obtaining the associated
time-course Ŵk1Y.

� Step 2: Similarly, given location estimates rk, 1 ≤
k ≤ K − 1 found in the previous steps, define the
NAIbk|ks,0≤s≤K−1. We calculate the location estimate

rK and the associated time-course ŴKY.

� Stopping rule: Iteratively run Step 2 until the follow-
ing stopping criterion is meet as follows. Let φK =
{ks, 0 ≤ s ≤ K}. For 0 ≤ K ≤ n/3 , we first order
NAIbk|φK

, 1 ≤ k ≤ g decreasingly as NAIb(k)|φK
, 1 ≤

k ≤ g. Let k∗ be the value of k = k∗ at which NAIbk|φK

attains the maximum. For any v, we split NAI’s into
two parts and calculate the sample variances var1:v and
var(v+1):g respectively. Choose the smallest v, denoted
by vK , at which NAI’s have a best split in the sense
that var1:v + var(v+1):g attains the minimum. Let µ be
the mean of NAIb(k)|φK

, vK + 1 ≤ k ≤ g. Taking into
account of multiple testing adjustment, we stop the fur-
ther beamforming if

NAIbk∗|φK
< µ+ c×√var(vK+1):g,

where c is the quantitle of the standard normal distri-
bution at 0.05/g.

Similarly, we define the SAM-based and the LCMV-
based forward beamforming procedures called SAMFB and
LCMVFB.

2.4 Constructing a functional network of
contrast between two stimuli

We are interested in the problem of the functional con-
nectivity change when stimuli varies. Functional connectiv-
ity is commonly inferred on the basis of correlations between
source time-courses (Friston, 2011). Following this idea, we
construct an undirected contrast network of the inferred
sources with edges determined by their correlation contrast
statistics. The details are as follows.

Suppose that we run nf trials under face stimuli and ns
trials under scrambled face stimuli. We first calculated in-
dividual trial covariances, followed by an average over tri-
als in order to estimate the sensor covariance matrices for
face and scramble face respectively (Zhang and Su, 2015).
For each pair of the estimated sources and for each trial,
we projected the sensor data in the trial along the optimal
directions obtained in the procedure, estimating the corre-
sponding source-time series. The Fisher’s z-transformation
of the Pearson correlation coefficient between these two se-
ries in the pre-stimulus periods and in the post-stimulus
periods were calculated respectively. This gave pre-stimulus
z-values and post-stimulus z-values for nf face trials and for
ns scramble-face trials, denoted by zijk. Here, i = 1, 2 stand
for pre-stimulus and post-stimulus respectively, j = 1, 2 for
face and scramble face respectively, and k for the trial index.
Using these values, we calculated an observed t-value

tobs =
(z̄21 − z̄11)− (z̄22 − z̄12)√

(var(z21) + var(z11))/nf + (var(z22) + var(z12))/ns
.

We then conducted a large number of say 105 random per-
mutations on the trial labels. For each permutation, we cal-
culated the corresponding permuted t-value. We counted the
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proportion of times that the absolute permuted t-values ex-
ceeded the observed t-value tobs, obtaining estimated P-
values for each pair of the estimated sources. We carried out
Hochberg’s step-up corrections for multiple testing of signif-
icance of these P-values (Hochberg, 1988). To construct a
correlation network for these selected sources, we took these
estimated sources as nodes and set a link between two nodes
if their P-value of correlation contrasts was less than or equal
to some pre-selected level, say 5% or 1%.

3. NUMERICAL RESULTS

In this section, we present the results of data analyses on
real and synthetic data by use of the proposed methodology.

3.1 Face-perception data

Henson et al. (2011) conducted a series of face-perception
experiments, where 96 face trials and 50 scrambled face
trials were performed on a healthy young adult subject.
Each trial started with a central fixation cross (presented
for a random duration of 400 to 600 ms), followed by
a face or scrambled face (presented for a random dura-
tion of 800 to 1000 ms), and followed by a central circle
for 1700 ms. The subject used either his/her left or right
index finger to report whether he/she thought the stim-
ulus was symmetrical or asymmetrical vertically through
its center. The data were collected with a Neuromag Vec-
torView system, containing a magnetometer and two or-
thogonal, planar gradiometers located at each of 102 posi-
tions within a hemispherical array situated in a light, mag-
netically shielded room. The sampling rate was 1100Hz.
See https://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/ for
the details. Based on the measurements of 102 planar gra-
diometers, we employed the proposed method to localize
brain regions where neuronal activities increase for the face
stimuli relative to the scrambled face stimuli, and to reveal
connectivity changes between the detected regions.

For this purpose, we first normalized the subject’s MRI
scan to a MRI template by using the software FieldTrip, on
which a grid CTF system of 1 cm resolution was created
with 1487 points. We then applied the neuroimaging soft-
ware SPM8 to read and preprocess the recorded data, and to
epoch the data generated from the face stimulus trials and
the scrambled face stimulus trials respectively. This gives
rise to a 102 × 771 data matrix for each trial: the first 220
columns for 200ms pre-stimuli and the later 551 columns for
the stimuli. Following Zhang and Su (2015), we adopted the
following strategy for estimating sensor covariance matrix.
For each trial, we calculated the sample covariance matrix
and noise covariance matrix by using the stimulus data and
the pre-stimulus data respectively. Under some stationary
assumption, we then averaged these sample covariance ma-
trices over face trials and over scrambled face trials respec-
tively, obtaining covariance estimators Ĉf and Ĉf0 for the

face dataset and Ĉs and Ĉs0 for the scrambled face dataset.

Here, the implicit assumption of stationarity on the source
time-courses is made when we averaged these sample co-
variance matrices. We estimated the baseline noise levels by
σ̂2
f0 and σ̂2

s0, the minimum diagonal elements in Ĉf0 and Ĉs0
respectively. Finally, we applied the proposed forward beam-
forming procedure on Ĉf and Ĉs. In each forward step, we
calculated log-contrasts of face over scrambled face at every
grid points. We interpolated and overlaid these contrasts on
the structural MRI of the subject, obtaining a contrast map
of neuronal activity. We took the peak location as an source
estimate. After applying the stopping rule, we acquired 31
dipole sources as listed in Table 1. The nulled NAI brain
source maps of these sources are displayed in Figures 3 to
5. The corresponding source time-courses under normal face
stimuli paired with those under scrambled face stimuli are
presented in Figure 6.

[Put Figure 3∼5 here.]
[Put Figure 6 here.]

To recover the functional regions they belonged to, we
performed a K-means clustering with a silhouette analysis
on their physical locations, resulting in following clusters:

� Cluster 1 consisted of sources v17, v18, v20, v24,
v25, v29, v30, v31.

� Cluster 2 consisted of sources v11, v14, v15, v16,
v19, v21, v22, v26, v27, v28.

� Cluster 3 consisted of sources v1, v3, v7, v8, v9, v10, v23.
� Cluster 4 consisted of sources v2, v4, v5, v6, v12, v13.

These clusters were located around the centers
(−3.4, 2.4, 7.5) cm, (−0.8,−4, 2.2) cm, (5.3,−3.1, 6.9)
cm and (4.5, 4.8, 5.8) cm respectively. Note that clusters
1, 2, 3, 4 are physically close to (or include) the superior
temporal sulcus (STS) in parietal lobe, to the fusiform face
area (FFA) and the occipital face area (OFA) in occipital
lobe, to the precuneus (PCu) and the amygdala (AMG) in
frontal lobe respectively. FFA and OFA analyze invariant
aspects of faces that underlies recognition of individuals,
whereas STS, PCu and AMG are responsible for retrieval
of personal knowledge (i.e., semantic) and analysis of facial
expression (e.g., Zhen et al., 2013; Kanwisher et al., 1997;
Davies-Thompson and Andrews, 2011). This supported
the hypothesis for the face-perception that the presence
of faces was likely detected, characterized and categorized
by clusters 1 and 2. The semantic information and facial
expression were then retrieved by clusters 1, 3 and 4.

[Put Table 1 here.]
We further hypothesized that the information flow among

these source clusters was mediated by a brain network. To
validate this assumption, taking the dipole sources as nodes,
we constructed a functional network which showed an in-
creasing response to face stimuli over scrambled face stimuli.
We assigned an edge to two nodes if there was a correlation
change between them for face over scrambled face at the 5%
significant level. Note that multiple testing was involved in
these edge assignments. So we performed Hochberg’s adjust-
ment on the related p-values to remove false assignments.
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There were still many assignments which survived from the
adjustment using the threshold level of 5%. There were 10
edges between clusters 1 and 2, 1 edge between clusters 1
and 3, 2 edges for each of cluster pairs (1,4), (2,3), (2,4)
and (3,4). We also made Hochberg’s adjustment on these p-
values by using a stringent threshold level, say 1%, obtaining
the edge links for the following six pairs of nodes (v31, v15),
(v17, v21), (v27, v30), (v2, v25), (v6, v18) and (v23, v24). Among
them, the first three showed the links between clusters 1 and
2, followed by two links between clusters 1 and 4 and one
link between clusters 1 and 3. These results suggested that
the above four clusters worked dependently with a varying
functional connectivity in response to the change of stim-
uli. In particular, clusters 1 and 2 were more active than
the other clusters as there were more connectivity changes
between them when stimuli were switched from scrambled
faces to normal faces. This implied that face processing net-
work dynamically adjusted its weight in connectivity among
key face-selective regions such as STS, FFA and OFA in or-
der to adapt to varying stimuli.

[Put Figure 7 here.]

3.2 Synthetic data

We begin with defining some notations. For any estima-
tor r̂ of an source location r, we define the localization bias
by |r̂−r|, the L1 distance between r̂ and r. We define the L1

bias between two location sets B1 and B2 by D(B1, B2) =
maxb1∈B1

minb2∈B2
|b1− b2|. Let mr be the underlying 3×n

source-course matrix at the location r and m̂r̂ be its es-
timator, where the three rows stand for source-courses in
the x, y and z orientations respectively. We calculate the
cross-correlation coefficients between the rows in mr and
the rows in m̂r̂, forming Corr(m̂r̂,mr), a 3 × 3 correlation
coefficient matrix. The association index between m̂r̂ and
mr is defined as the Frobenius norm of the above correla-
tion matrix, namely ||Corr(m̂r̂,mr)||F . The larger the in-
dex, the stronger the association will be. For an experiment
with multiple trials, an association index is define by averag-
ing these trial-based indices. Note that the above association
index attains the maximum value of 3 under the constraint
that m̂r̂ = mr and the true source-courses in the x, y and z
orientations are equal; it attains the maximum value of

√
3

under the constraint that the true source-courses in the x,
y and z orientations are orthogonal to each other.

To evaluate the performances of BBFB, SAMFB and
LCMVFB, we first created a 102-sensor MEG system
(CTF/VSM) by use of the same head model as in the above
face-perception data. We constructed 1487 regular 3-D grid
points of resolution 1 cm within the head. These candidate
source positions were aligned with the axes of the head co-
ordinate system. A lead field matrix H (with dimension
102 × 4461) between the sensors and the grid points was
then calculated by using the open software FieldTrip. The
sampling rate is 1100 Hz. We considered two scenarios with
time-invariant and time-variant orientations respectively.

Scenario 1 (Sources with time-invariant orientations).

We assumed that there were non-zero neuronal sources
θfk(t), t = 0, 1, ..., 771 (for face stimuli) and θsk(t), t =
0, 1, ..., 771 (for scramble face stimuli) at the locations
rk, 1 ≤ k ≤ 31 derived from the previous real data anal-
ysis, where

θfk(t) =

{
0 0 ≤ t ≤ 221√

102ηfβfk(t) 221 < t ≤ 771

θsk(t) =

{
0 0 ≤ t ≤ 221√

3ηsβsk(t) 221 < t ≤ 771.

were time-courses along time-invariant orientations ηf =(
10√
102

, 1√
102

, 1√
102

)T
, ηs = (1/

√
3, 1/
√

3, 1/
√

3)T . The for-

mer orientation was dominated by x axis while the
later one was weighted equally in x, y, z axes. Here,
(βfk(t), βsk(t)), 1 ≤ k ≤ 31 were pairs of estimated time-
courses obtained in the previous real data analysis. We de-
fined the signal strengths by SNRf =

∑771
t=221 θfk(t)2/500

and SNRs =
∑771
t=221 θsk(t)2/500. To define sensor noise

levels, we independently sampled Nfni and Nsnj from an
n-dimensional standard Normal. We simulated 50 multi-
ple trials datasets. Each contained two independent sets
of observations: nf = 96 sensor measurements, Yfi(t), t =
0, 1, ..., 771, i = 1, 2, ..., 96 for face stimuli and ns = 50 sen-
sor measurements, Ysj(t), t = 0, 1, ..., 771, j = 1, 2, ..., 50
for scrambled face stimuli. These observations followed the
models:

Yfi(t) =

31∑
k=1

H(r1)θfk(t) + εfi(t),

Ysj(t) =

31∑
k=1

H(r1)θsk(t) + εsj(t),(2)

where εfi(t) = Nfni
√

SNRf is the sensor noise vector for the
ith trial under face stimuli and εsj(t) = Nsnj

√
SNRs is the

sensor noise vector for the jth trial under scrambled face
stimuli.

We took time instances 0, 1, ..., 221 as the pre-stimulus
time points and the remaining time instances as stimulus
time points. We considered the following tasks in presence
that we don’t know these sources:

Task (i): Recover the source locations based on simulated
sensor data Yfi(t), t = 0, 1, ..., 771, i = 1, ..., 96.

Task (ii): Recover the source locations based on simulated
sensor data Ysi(t), s = 0, 1, ..., 771, i = 1, ..., 50.

Task (iii): Reveal the source locations where the neuronal
activities increase for the face stimuli relative to the scram-
bled face stimuli.

Scenario 2 (Sources with time-varying orientations). We
adopted the same setting as Scenario 1 except re-defining
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(βfk(t), βsk(t)), 1 ≤ k ≤ 31 as

θfk(t) =

{
0 0 ≤ t ≤ 221

ufk(t) 221 < t ≤ 771
,

θsk(t) =

{
0 0 ≤ t ≤ 221

vsk(t) 221 < t ≤ 771

where ufk(t) = βfk(t)(10| sin(πt/221)|, | sin(2πt/221)|,
| sin(3πt/221)|)T and usk(t) = βsk(t)(| sin(4πt/221)|,
| sin(5πt/221)|, | sin(6πt/221)|)T . We consider the same
tasks as in scenario 1.

For each dataset generated above, we first applied BBFB
to sub-datasets {Yfi(t) : t = 0, 1, ..., 771, i = 1, 2, ..., 96}
and {Ysj(t) : t = 0, 1, ..., 771, j = 1, 2, ..., 50} separately.
Carrying out tasks (i) and (ii) resulted in two estimated
sets of source locations, say B̂f and B̂s, where neural ac-
tivity was predicted to increase against background noises.
We calculated the L1 biases D(B̂f , B) and D(B̂s, B),
where B is the underlying source location set. We then
carried out task (iii) by applying BBFB to the above
subsets simultaneously to identify a set of source locations,
namely B̂fs, where neural activity differed for faces and

scrambled faces. We calculated the L1 bias D(B̂fs, B).
To sum up, in each scenario, we obtained three sequences
of simulated bias values, respectively, for the face stimuli
against background noises, for the scrambled face stimuli
against background noises, and for the face stimuli against
the scrambled stimuli. Similarly, we performed LCMVFB
and SAMFB on the above datasets. In each scenario, we
also obtained three sequences of simulated bias values for
each method. In scenario 1, for task (i), the mean biases
(standard errors) of BBFB, LCMVFB and SAMFB were:
2.5987(0.0308), 3.1881(0.0349) and 2.6275(0.0353) for task
(i); 2.7887(0.0330), 3.2356(0.0315) and 2.7206(0.0342)
for task (ii); 2.7425(0.0424), 3.1231(0.0335) and
2.7763(0.0341) for task (iii). In scenario 2, these values were:
2.5956(0.0314), 3.1394(0.0324) and 2.5831(0.0315) for task
(i); 2.7394(0.0352), 3.2981(0.0365) and 2.8213(0.0333) for
task (ii); 2.7556(0.0396), 3.1975(0.0331) and 2.7513(0.0410)
for task (iii). We displayed these localization bias values
by multiple box-and-whisker plots in Figure 8. The results
demonstrate that both BBFB and SAMFB can offer supe-
rior source localization results than LCMVFB due to their
depth-invariant features. BBFB and SAMFB performed
similarly in both scenarios.

[Put Figure 8 here.]

To compare these procedures when both localization
bias and association were considered, we repeated the
above experiment in scenario 2 for 50 times. We calcu-
lated the values of both L1 bias and association index
for each method in each experiment. These values were
presented in Figure 9 by use of multiple box-and-whisker
plots. In task (i), BBFB, LCMVFB and SAMFB respec-
tively had the average localization biases (standard errors)

2.6963(0.0207), 3.0888(0.0306) and 2.5550(0.0190); the av-
erage association indices (standard errors) 0.7786(0.0044),
0.8153(0.0040) and 0.7663(0.0051). In task (ii), these val-
ues were 2.6831(0.0323), 3.3400(0.0499) and 2.8900(0.0364);
0.7264(0.0158), 0.7947(0.0040) and 0.5399(0.0168). In task
(iii), these values were 2.7894(0.0255), 3.1675(0.0247)
and 2.7969(0.0470); 0.7426(0.0036), 0.8303(0.0044) and
0.4834(0.0033) under face stimuli, and 0.7513(0.0053),
0.7568(0.0042) and 0.4217(0.0020) under scramble-face
stimuli. These results suggest that although BBFB and
SAMFB performed similarly in localization, the former out-
performed the latter in association with the true source-
courses. LCMVFB was the winner in terms of association
index.

[Put Figure 9 here.]

4. DISCUSSION AND CONCLUSION

There are two major tasks for MEG neuroimaging: the
determination of stimulus-specific cortical regions and the
determination of their functional connectivity. In order to
conduct a reliable source connectivity analysis, there is a
need for spatial filters which can reduce the source depth
bias and the source smearing in source reconstruction. For
this purpose, we have proposed a family of forward beam-
formers for inverting electromagnetic models and detect-
ing temporally correlated sources with MEG data: the
Bregman-divergence-based, the SAM-based and the LCMV-
based. All these methods are able to cope with the source
smearing by the forward nulling the sources. In addition,
the Bregman-divergence-based is scale-invariant and allows
for time-varying source orientations. The SAM-based is only
partially scale-invariant when orientations with evenly dis-
tributed weights in x, y and z axes and is restricted to fixed
source orientation settings. Although the LCMV-based al-
lows for time-varying source orientations, it is not scale-
invariant. So, intuitively the Bregman-divergence-based pro-
cedure is expected to perform better than the other two.
By the simulations, we have demonstrated that there is
a remarkable improvement of localization bias if using
the Bregman-divergence-based or the SAM-based procedure
rather than the LCMV-based procedure. We have further
developed a method for constructing a functional network
of contrast between two stimuli. We have evaluated the per-
formance of the proposed procedure by an analysis of MEG
data derived from the face-perception experiment, revealing
a novel functional connectivity network. Finally, following
Zhang and Liu (2015) and Zhang and Su (2015), under cer-
tain regularity conditions, we can prove a consistency for the
Bregman-divergence-based forward beamforming and use
the autocovariance function to study time-varying sources.
The details are beyond the scope of this paper.

APPENDIX: PROOFS

Proof of Proposition 1: It is straightforward and thus
omitted.
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Proof of Proposition 2: For any scale transformation
S̃k = HkS on Hk with S = diag(s1, s2, s3), we have

σ̂−20

[
S̃Tk Ĉ

−2S̃k

]−1 [
S̃Tk Ĉ

−1S̃k

]
= σ̂−20

[
SHT

k Ĉ
−2HkS

]−1 [
SHT

k Ĉ
−1HkS

]
= σ̂−20 S−1

[
HT
k Ĉ
−2Hk

]−1 [
HT
k Ĉ
−1HkS

]
.

Consequently,

NAIbk = tr

(
σ̂−20 S−1

[
HT
k Ĉ
−2Hk

]−1
HT
k Ĉ
−1HkS

)
− log det

(
σ̂−20 S−1

[
HT
k Ĉ
−2Hk

]−1
HT
k Ĉ
−1HkS

)
−3

= tr

(
σ̂−20

[
S̃Tk Ĉ

−2S̃k

]−1
S̃Tk Ĉ

−1S̃k

)
− log det

(
σ̂−20

[
S̃Tk Ĉ

−2S̃k

]−1
S̃Tk Ĉ

−1S̃k

)
− 3.

This implies that the new index is scale-invariant. In partic-
ular, letting S = D−1k , we have

NAIbk = tr

(
σ̂−20

[
H̃T
k Ĉ
−2H̃k

]−1
H̃T
k Ĉ
−1H̃k

)
− log det

(
σ̂−20

[
H̃T
k Ĉ
−2H̃k

]−1
H̃T
k Ĉ
−1H̃k

)
− 3.

This complete the proof.

Received 17 August 2020

REFERENCES
[1] Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale,

J.R., Stephenson, M. C., Barnes, G. R., Smith, S. M., Morris,
P. (2011). Investigating the electrophysiological basis of resting
state networks using magnetoencephalography. Proc. Natl. Acad.
Sci. USA, 98, 694-699.

[2] Chan, H., Chen, L., Chen, I., Chen, Y.S. (2011). Beamformer-
based spatiotemporal imaging of linearly-related source compo-
nents using electromagnetic neural signals. NeuroImage, 114,
1-17.

[3] Davis, J.V., Kulis, B., Jain, P., Sra, S. and Dhillon, I.S.
(2007). Information-theoretic metric learning. In Proc. IEEE In-
tern. Conf. on Machine Learning.

[4] Davies-Thompson, J. & Andrews, T.J. (2011). The localization
and functional connectivity of face-selective regions in the human
brain. Jour. Vision, 11, 647.

[5] Drakesmith, M., El-Deredy, W., Welbourne, S. (2013). Re-
constructing coherent networks from electroencephalography and
magnetoencephalography with reduced contamination from vol-
ume conduction or magnetic field spread. PLoS ONE, 8, e81553.

[6] Friston, K. (2011). Functional and effective connectivity: A re-
view. Brain Connectivity, 1, 13-36.
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Table 1. The peak locations in the order which they been
revealed and the clusters which they belong to.

Ind. Loc.(cm) Cl. Ind. Loc.(cm) Cl.

v1 (7,-3, 6) 3 v17 (-5, 3, 8) 1
v2 (8,3,5) 4 v18 (-5,-1,9) 1
v3 (7,0,8) 3 v19 (-2,-2,-1) 2
v4 (6,4,7) 4 v20 (-4,2,6) 1
v5 (4,5,8) 4 v21 (3,-3,0) 2
v6 (4,6,5) 4 v22 (-1,-6,3) 2
v7 (5,-5,7) 3 v23 (3,-3,4) 3
v8 (4,-5,7) 3 v24 (-3,5,6) 1
v9 (4,-3,9) 3 v25 (-4,4,9) 1
v10 (7,-3,7) 3 v26 (2,-2,4) 2
v11 (0,-7,4) 2 v27 (3,-5,1) 2
v12 (2,6,7) 4 v28 (-3,-1,1) 2
v13 (3,5,3) 4 v29 (-1,5,6) 1
v14 (1,-5,1) 2 v30 (-1,1,9) 1
v15 (-5,-5,4) 2 v31 (-4,0,7) 1
v16 (-6,-4,5) 2

Jian Zhang
School of Mathematics, Statistics and Actuarial Science,
University of Kent, Canterbury, Kent CT2 7NF, UK.
E-mail address: jz79@kent.ac.uk

Figure 2. Nulled NAI maps for sources
v17, v18, v20, v24, v25, v29, v30 and v31 (in orders from the left to

the right and from the upper to the bottom) in Cluster 1 derived
from the face-perception data. Cluster 1 is around STS. Color will

not be used in print.
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Figure 3. Nulled NAI maps for sources
v11, v14, v15, v16, v19, v21, v22, v26.v27 and v28 (in orders from the
left to the right and from the upper to the bottom) in Cluster 2
derived from the face-perception data. Cluster 2 is around OFA

and FFA. Color will not be used in print.

Figure 4. Nulled NAI maps for sources v1, v3, v7, v8, v9, v10 and
v23 (in orders from the left to the right and from the upper to the

bottom) in Cluster 3 derived from the face-perception data.
Cluster 3 is around PCu. Color will not be used in print.
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Figure 5. Nulled NAI maps for sources v2, v4, v5, v6, v12 and v13
(in orders from the left to the right and from the upper to the

bottom) in Cluster 4 derived from the face-perception data.
Cluster 4 is around AMG and PCu. Color will not be used in print.
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Figure 6. Estimated source time-course plots (average over the
corresponding multiple trials) plots along the orientations with

maximum eigenvalues for sources v1 ∼ v31 in orders from left to
right and from top to bottom. Blue colored curves are for face

stimuli while red colored are for scrambled face stimuli. Color will
not be used in print.

12 Zhang



v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13
v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

v26

v27

v28

v29

v30
v31

v1

v2

v3

v4

v5

v6

v7

v8

v9
v10v11

v12

v13

v14

v15

v16

v17
v18

v19

v20

v21

v22

v23

v24

v25

v26

v27

v28

v29

v30

v31
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with Hochberg’s multiple testing adjustment at the 5% significance
level while the plot in the bottom is one with Hochberg’s multiple

testing adjustment at the 1% significance level.
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Figure 8. Localization bias over 50 replicates: Left column of
plots for scenario 1 with tasks (i)-(iii). Right column of plots for

scenario 2 with tasks (i)-(iii). Color will not be used in print.
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Figure 9. Plots of localization-biases and association indices over
50 replicates in scenario 2: The left column shows the box-plots of

localisation biases for tasks (i)-(iii) respectively. In the right
column, the top two plots in the right column show the box-plots
of the association indices for tasks (i)-(ii) respectively while the

bottom three are source association plots in task (iii) for the face
stimuli and the scramble face stimuli respectively. Color will not be

used in print.
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