
Ahmadinezhad, Hamid (2011) Del Pezzo fibrations and rank 3 Cox rings. 
 Doctor of Philosophy (PhD) thesis, University of Kent. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94155/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94155

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. 

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open 

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line 

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ... 

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/94155/
https://doi.org/10.22024/UniKent/01.02.94155
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Del Pezzo fibrations and rank 3 Cox rings

Hamid Alimadinezhad

A Thesis submitted for the degree of Doctor of Philosophy

School of Mathematics, Statistics and Actuarial Science

University of Kent

July 2010



F \

F 2x^3 5



Abstract

One possible output of the minimal model program is a Mori fibre space. These varieties in 3 
dimensions are Fano varieties, del Pezzo fibrations and conic bundles. Uniqueness of this output, 
the so-called rigidity of a Mori fibre space, is a question which arises naturally. In many cases, 
it has been proven for a general Fano 3-fold to be rigid. Del Pezzo fibrations over the rational 
curve have been studied in higher degrees and consequently it is known that if deg > 3 then the 
del Pezzo fibration is nonrigid.

The goal of this thesis is to study rigidity and nonrigidity of low degree del Pezzo fibrations. 
We give a construction of these objects and classify the nonrigid ones whose link to the other 
model is obtained by the ambient space. This, in particular, provides many examples of nonrigid 
degree 2 del Pezzo fibrations which are not necessarily smooth. It is known that the study of 
rigidity for degree 3 del Pezzo fibrations is subject to consideration of Corti-KoMr stability 
condition. A first attempt to generalise this stability notion for lower degree fibrations is given in 
this thesis. The relation between these stability conditions and Sarkisov program is also studied 
in an explicit way. This requires techniques of working with rank 3 Cox rings which we develop. 
In particular, the notion of well-formedness for Cox rings is introduced as a generalisation of well- 
formedness of weighted projective spaces. We also construct families of cubic surface fibration 
in dimension 4 and study their nonrigidity in a similar way.
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Chapter 1 

Introduction

1.1 In a nutshell

Throughout this thesis, we study the birational geometry of some classes of Mori fibre 

spaces in dimensions 3 and 4 whose generic fibre is a low degree del Pezzo surface. The aim 

is to detect conditions under which these varieties, as Mori fibre spaces, are birationally 

rigid or not. Theorem 1.1.1 below provides many examples of nonrigid varieties in a 

constructive way. The first impression coming from this result is that the Gorenstein 

property has nothing to do with the rigidity conditions for a Mori fibre space. This 

is because many of these examples are non-Gorenstein and they behave exactly as the 

Gorenstein ones.

T h eorem  1.1.1 (Main Theorem 1). Let X  be a degree 2 del Pezzo fibration over P1 

embedded in T , where J7 is a P (l, 1,1, 2) bundle over P1. Then the 2-ray game played on 

T / {pt} restricts to a type III or IV Sarkisov link on X  if X  belongs to one of the families 

in Table f . l .  Furthermore we calculate the link from a general member in each of these 

cases and identify the Mori fibre spaces that they link to.

Chapter 5 is a first attempt to set up a notion of stability for degree 2 del Pezzo 

fibrations, following Corti-Kollâr stability for cubic fibrations. Our approach enables us 

to construct an example of degree 2 del Pezzo fibration X  with a cE6 isolated singular
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Chapter 1. Introduction

point such that —K'x £ Int(M obpT)) but the type I Sarkisov link of X , started by blowing 

up this singular point, gives a square birational map to another model whose natural 2-ray 

game results in a link to a Fano 3-fold.

On the other hand, this example shows that Conjecture 5.1.1, which is stated mainly 

for smooth cases by Grinenko, does not hold in general, not even for Gorenstein varieties. 

Our approach to stability and the evidence coming from this example suggests that the 

conjecture can be rewritten as

C o n je c tu re  1.1.2. Let X  be a degree 1, 2 or 3 del Pezzo fibration over P1 and suppose 

X  is stable. Then X  is birationally rigid if and only if —K x £ In t(M ob(X )).

However, we believe that this approach to stability is not universal and a more sensible 

set up exists. We discuss this issue in more detail in §5.3.

In order to carry out our calculations with Type I and II Sarkisov links we develop 

some techniques of working with rank 3 Cox rings. In particular, this allows us to factorise 

explicitly Kollar’s stabilisation process for cubic fibrations through Sarkisov links. Our 

study of higher rank Cox rings also leads to the notion of well-formedness for Cox rings 

as a generalisation of well-formedness of weighted projective spaces.

The following theorem is an observation from a similar approach as in Theorem 1.1.1 

to cubic fibrations in dimension 4.

T h e o re m  1.1.3 (Main Theorem 2). Let X  be a degree 3 del Pezzo surface fibration over 

P2 embedded in P , where P  is a split P3 bundle over P2. Then the Type III or IV 2-ray 

game of X  is the restriction of that of the ambient space, and furthermore, a complete list 

of nonrigid families with links obtained in this way is given in Tables 6.1 and 6.2.

1.2 Overview

We begin by explaining where the problem of rigidity stands and why one should be 

interested in it. Then we outline briefly what has been done regarding this problem and 

how our approach tackles some yet missing pieces of the theory. After that, we summarise 

the structure of this thesis and explain the connections between different parts.
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Chapter 1. Introduction

1.2.1 Outline of the problem

We only consider complex projective algebraic varieties. A fundamental question in the 

theory of classification of algebraic varieties is:

Given a class of birational algebraic varieties, can we find a good representative 

in that class, which in some sense has the simplest structure among all of them ?

The answer to this question in dimension one is somehow simple as there is only one 

smooth curve birational to a given irreducible curve, and so we choose that.

M in im a l m odels

For surfaces, the same approach fails immediately as the blow up operation provides 

infinitely many smooth surfaces birational to a given one. Instead, the theory of mini­

mal models of surfaces, due to Italian algebraic geometers in the beginning of twentieth 

century, provides the answer. The idea is to find, where possible, a unique model among 

all smooth ones in a class. This is done by taking any smooth model, and contracting a 

rational curve with self intersection —1 in it; the key point is that the variety obtained by 

this contraction is smooth. In most cases the variety obtained at the end of this process 

is unique. The case where it is not unique are ruled surfaces and del Pezzo surfaces. The 

relations between these models is well understood.

One would like to run the same algorithm in higher dimensions, but it does not follow 

as simply as in the 2-dinrensional case. In fact contracting a -1 -curve could result in 

singular spaces. In the early 1980’s, the work of Mori and Reid suggested that this 

theory can possibly be generalised for three dimensions if one allows the 3-folds to have 

some mild singularities, the so-called terminal singularities. After contributions of many 

mathematicians, it was proved in 1988 by Mori that minimal models of 3-folds exist. 

Mori’s approach is called the Minimal Model Program; MMP for short. The idea is 

roughly this:

Let X  be a 3-fold with at worst terminal singularities.

3



Chapter 1. Introduction

S tep  1. Find a rational curve C  on the 3-fold X  whose intersection against K x , the 

canonical divisor of X , is negative and that is extremal in a precise sense. If 

there is no such curve, then X  is a minimal model. Otherwise there is a map 

ip: X  —> S to a normal projective variety S, which contracts only [C], the 

numerical class of C, that is the support of all curves C' with the property that

C  • D =  C' ■ D  for all divisors D .

Step  2. If dim [C] =  1, then there exists a map X  ---> X + which factorises as X  S <— 

X + and replaces C  by another curve C + with K x + ■ C + >  0; furthermore this 

map is an isomorphism everywhere else. This operation is called a flip.

If dim [C\ =  2, then replace X  by S and go back to Step 1.

If dim [C] =  3, then dim S <  d im X , the morphism ip is a fibration and X/S  is 

called a Mori fibre space.

After the work of Mori, the research focus of the subject has been divided into two 

directions:

1. Minimal model growing up: Generalising techniques and results of minimal model 

program for higher dimensions.

2. Minimal model growing down: Focusing on explicit geometry of minimal models of 

3-folds and relations among them.

The first problem has received more attention after it was proved that the canonical ring 

of an algebraic variety of general type in any dimension is finitely generated [BCHM10]. A 

different and simpler proof of this finite generation statement has been recently given by 

Lazic [Laz08], [Laz09], which implies existence of minimal models in any dimension [CLIO].

However, our concern in this thesis is with the second question. The main considera­

tion is the birational relations between Mori fibre spaces. The number of different minimal 

structures that a Mori fibre space can admit is called its pliability. A precise definition is 

given in 2.3.2. A Mori fibre space is called birationally rigid if it has pliability 1.
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Chapter 1. Introduction

W h a t is k n ow n  a b ou t rig id ity

A Mori fibre space X/S  belongs to one of the following classes, depending on the dimension 

of S.
(1) dim S =  0 and X  is a Fano variety.

(2) dim 5  =  1 and the generic fibre of tp is a del Pezzo surface; X  is called a del Pezzo 

fibration which we denote by d,Pn, where n is the degree of the del Pezzo surface that 

is the generic fibre.

(3) dim S =  2 and the generic fibre of ip is a rational curve; X  in this case is called a 

conic bundle.

It was proved in [CPROO] that a general Fano 3-fold in the famous list of 95 families has 

pliability one, in other words, a general index one Fano 3-fold hypersurface is birationally 

rigid. In [CM04], an example of a non-rigid Fano variety with pliability 2 is given.

It is known that a del Pezzo fibration of degree >  5 over P 1 is rational, hence is 

nonrigid as it is birational to P3 and it is known that there are infinitely many distinct 

Mori fibre spaces birational to P3.

A complete description of rationality for smooth degree 4 del Pezzo fibration can be 

derived from [Ale87] and [Shr06]. Therefore the question of rigidity only concerns low 

degree del Pezzo fibrations. Rigidity and non-rigidity of degree 3 del Pezzo fibrations over 

P1 have been studied in [BCZ04], In addition to the question of rigidity, the necessary 

conditions for these varieties to be rational was proved by Cheltsov in [Che08].

In a series of papers [Gria,Grib,Gric,Gri00a,Gri00b,Gri01a,Gri01b], Grinenko studies 

the rigidity properties of smooth del Pezzo fibrations of degree 1 and 2. The following 

statement is the main observation of his work.

Let X  be a del Pezzo fibration of degree 1, 2 or 3 over P1. Then for many classes

X  is birationally rigid if and only if —K x  ^ In t(M ob(X )).

The point for this thesis (and [BCZ04]) is that in many concrete situations this is a 

simple and natural condition to calculate and check. We do many of these in Chapters 4 

and 6.
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Chapter 1. Introduction

Grinenko proves this statement for the class of smooth degree 1 fibration and gives the 

only if proof for the two other cases in the smooth case; he leaves the rest as conjectures. 

He also constructs many examples of dP2 and dP\ fibrations, all of which are smooth. 

The Example 4.4.4 in [BCZ04], shows that this statement is not true if X  is not smooth 

for dP3 fibrations. We spell this out in Example 5.1.7 in details. The crucial point in this 

example is that X  is unstable in the sense of Corti-Kollâr. It suggests that one must have 

stability conditions in mind, when dealing with rigidity of dP3 fibrations. However, there 

is as yet no notion of stability for degree 1 or 2 del Pezzo fibrations. On the other hand, 

there has been no serious study of nonsmooth dP2 and dP\ fibrations, perhaps because 

they are very likely to be singular as they are naturally embedded in singular spaces.

1.2.2 Outline of the thesis

Our aim in this thesis is to study dP2 fibrations (not necessarily smooth) and their 

rigidity and nonrigidity. This requires construction of families of dP2 fibration, especially 

those which admit some singularities.

In Chapter 4 we give a construction of such families and analyse their type III or IV 

Sarkisov links in the framework of [BCZ04] to hunt nonrigid ones. As a consequence, a 

list of non-rigid families is given in Table 4.1.

Chapter 5 is a first attempt to define a suitable stability condition for degree 2 del 

Pezzo fibrations, which applies to study rigidity of these varieties following the approaches 

of [Cor96,Kol97,BCZ04]. As a consequence, it is shown that the statement of Grinenko for 

rigidity is not true in general, even for Gorenstein dP2 fibrations but requires semistability 

conditions.

In Chapter 5, we also provide machinery to give explicit factorisation of Corti-Kollâr 

stabiliser maps through Sarkisov links of type I or II. This requires a good understanding 

of rank 3 Cox rings. In Chapter 3 we study toric varieties with rank 3 Cox rings. These 

form the ambient space to work out the type I and II Sarkisov links in Chapter 5. In 

particular, the notion of well-formedness for toric varieties is introduced as a generalisation

6



Chapter 1. Introduction

of well-formedness of weighted projective spaces.

Finally in Chapter 6, we study nonrigidity of degree 3 del Pezzo fibrations over P2. 

These form a class of Mori fibre spaces in dimension 4. This is the first attempt of its 

kind in dimension 4, that we know of.

7



Chapter 2

Preliminaries

This chapter is aimed to provide background materials needed for the purpose of this 

thesis. Section 2.1 is about toric geometry and Cox rings. We use its ingredients in 

Chapter 3, where we treat a Cox ring as a generalisation of weighted projective spaces 

and study blow ups in special cases that we need later. Section 2.2 we briefly go through 

techniques of the theory of minimal models that we need for the rest of this thesis.

2.1 Toric Varieties

We give a brief outline of the toric geometry we need. This includes basic definitions and 

construction of toric varieties using fans. This is well-known material, and we have taken 

our presentation from the comprehensive texts [Ful93], [CLS] and the article by Danilov 

in [Dan78]. For a less technical but rather short and complete approach to toric geometry 

we refer to [Cox03]. In [Cox95], Cox introduces the homogeneous coordinate ring of a toric 

variety, an alternative language for toric geometry, in which construction of toric varieties 

is given in terms of geometric invariant theory. This notion has been a major subject 

of study in the past two decades and was well adapted and generalized to bigger classes 

of varieties, the so-called Mori dream spaces, in, for example, [BH03], [BH07], [HKOO], 

[LV09a], [STV07], [SX10] and the survey [LV09b] by Laface and Velasco on Cox rings. 

Later in this section, we discuss the GIT construction of a toric variety from its fan.



Chapter 2. Preliminaries

D efin ition  2 .1 .1 . A toric variety is a normal algebraic variety T with an open subvariety 

Tq C T isomorphic to the torus (C*)n, such that the action of the torus on itself can be 

extended to a regular action on T.

2.1.1 Fan of a toric variety

Let IV =  HI be a lattice and M  =  Hom(7V, Z ) =  U  be its dual lattice. Associate real 

vector spaces to N  and M  by Nr :=  TV 0>z R  and M r :=  M  ®z K. A rational polyhedral 

cone in N  is a set a :=  {Aii>i +  • ■ ■ +  A kVk E Ns. | A i,. . . ,  Afe € R -°  , Vi,. . .  ,Vk E N}.

A face of a is the intersection a fl l =  0, where l is a linear form which is nonnegative on 

a. It is denoted by r  =<; a if r  is a face of a. Note that if a € N  is a rational polyhedral 

cone, then crv E M  is also a rational polyhedral cone.

D efin ition  2.1 .2 . A fan A  in N is a collection of cones which is closed under =4 and 

satisfies the condition:

if <Ji , a2 E A , then ai (1 a2 =4 cri, cr2

Very briefly, one constructs a toric variety T (A ) from a fan A  as follows:

(1) For a E A  let Ua :=  Spec(C[crv fl M}).

(2) If a E A  and r  a, let (Ua)T be the spectrum of the localization C[crv fl M]v where 

v E crv fl M  is a supporting hyperplane for r.

Note that the inclusion C [rv Pi M] C[crv fl M]v induces a morphism (Ua)T —> UT.

(3) For <7l5 cr2 in A , define (Uai)a2 :=

(4) Define T (A ) to be the scheme obtained by glueing the schemes Ua, where the overlap 

is define by the isomorphisms (Uai)a2 —> t/CTlncr2 {Ua2)m-

This defines T (A ) as a scheme, which is separated, integral and normal. See [Ful93] §1.4 

and §2.1. .

9



Chapter 2. Preliminaries

The toric structure is easy to see:

T0 =  Spec(C[M ]) =  (C*)" is an open subvariety of T (A ) and the action of the torus T0

on itself extends to a regular action on T  given locally by:

ip: C[crv D M] — > C[av n M) ®c C [M]

m i—> m ®  m

D efin ition  2 .1 .3 . A ray is a 1-dimensional cone in A. We denote the set of all rays in

A  by A (l) .

R em a rk  2 .1 .4 . Throughout this thesis, we assume A ( l )  spans TV® for all toric varieties.

D efin ition  2 .1 .5 . Let X  be a normal, irreducible variety.

(a) A Weil divisor on A  is a finite formal sum

D  =  ^ 2  miDi >

where D, are distinct irreducible divisors of X  and £ Z. The set of all Weil divisors 

on X  is denoted by D iv(A ).

(b) Two Weil divisors Tfi and D2 are linearly equivalent, denoted by Tfi ~  D2, if there 

exists a /  G C (A )*  such that d iv ( /)  =  D i — D2. A  Weil divisor D  is called a principal 

divisor if D rsj 0.

(c) The group of Weil divisors on X  modulo principal divisors is called the divisor class 

group of X  and is denoted by C1(X).

(d) A Weil divisor D  on X  is Cartier if it is locally principal. The set of all Cartier 

divisors on X  is denoted by C D iv(X ).

(e) The group of Cartier divisors on X  modulo equivalence relation is called the Picard 

group and is denoted by P ic(A ).

10



Chapter 2. Preliminaries

For p G A ( l ) ,  let Dp be the irreducible, To invariant Weil divisor of T  correspond to p. 

If we denote the free abelian group of T0-invariant divisors of T  by Z AF), every D  G Z AF) 

is of the form

D =  J 2 m pDp

2.1.2 Cox construction of toric varieties

Let C1(T) be the divisor class group of T  and CD iv(T) C Z A(1  ̂ be the group of Cartier 

divisors on T. Define the map ip: M  — > Z A F̂ by m H* Dm :=  y ]  (m.,np) Dp, where np
p

is the unique generator of p D TV. We have the following commutative diagram:

0 ----------*■ M -------^  C D iv (T )--------- - P ic (T )----------- 0
r\

0 M <p Z AF) C 1(T )---------- - 0

( 2. 1)

In particular, for any divisor D  G Z AF), there is a [D] G C1(T).

Let Cox(T) :=  C[xp \ p G A (l) ] . We have the following correspondence between monomi­

als in Cox(T) and divisors in Z A^F:

x D = l [ x ^  —  D =  Y , mpDp
p p

The second short exact sequence in 2.1 defines a grading on Cox(T) by deg(xD) =  [D] G 

C1(A). Therefore we can write C ox(T) as

C ox(T) =  0
aeC l(T )

P ro p o s it io n  2 .1 .6  ( [Cox95], §1.1 ). (i) If a — [D] G C1(A"), then there is an isomor­

phism <pD :S a =  H°(T, Ot (D)).

(ii) If a =  [D} and ¡3 =  [E], then there is a commutative diagram:

11



Chapter 2. Preliminaries

Sa <S> S/3----------------------------------------------------- 3-  Sa+p

" y
H°(T, Ot {D )) <g> H°(T, Ot {E ) ) ------- - H°(T, Ot (D +  E))

It is known that the group G :=  Homz (C l(T ),C *) =  (C*)d~n x Homz (C l(T )tor,Q /Z ) ,  

where d =  |A(1)|. Applying Hom( — ,C*) to the second short exact sequence in 2.1 will 

lead to:

1 — > G — > (C*)A(1) — * T0 — > 1

The restriction of the action of (C*)A^  on C A Ĵ) to its subgroup G will define the following 

action:

G r x  CA«  : g.t =  (g[Dp\)tp

Note that this action induces an action of G on C ox(T) =  C[CA(̂ h] and the grading 

obtained by this action is the same grading as the grading defined by C1(T). This is 

somehow obvious, as C1(T) forms the character group of G.

D efin ition  2 .1 .7 . The irrelevant ideal of T , is defined to be It =  \xa | a € A ) ,  where

a =  Y .  Dp-
p£ct{1)

T h e o re m  2.1 .8  ( [Cox95], §2.1). Let T be a toric variety determined by the fan A, and 

Z =  V{IT) C C AW. Then:

(i) The set CA(1) — Z is G-invariant.

(ii) T is isomorphic to the categorical quotient (C A(1) — Z)/G.

(in) The quotient (C A(1) — Z)/G is geometric iff A  is simplicial.

R em a rk  2 .1 .9 . If A is simplicial, then the Picard group and the divisor class group 

coincide. This is because simpliciality of A  implies D iv(T ) =  Z A(1) and therefore applying 

this to the short exact sequence 2.1 shows P ic(T ) =  C1(T). This immediately implies C1(T) 

is torsion free and P ic(T ) =  Z r, where r =  d — n. The rank of the toric variety T  (or 

rank of G) is defined to be r.

12
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2.1.3 GIT and Cox ring

In Subsection 2.1.2, it was shown that a toric variety can be recovered from the action 

of G on Cd provided that the irrelevant ideal of T  is given. It was also explained how 

to construct the irrelevant ideal It when the top dimensional cones of A  are given. In 

other words, we have the following one to one correspondence between the two languages 

of toric geometry:

Fan A  Cox data

A ( l )  =  {Pu ■ ■ ■ ,Pn} ^  Cox(T) =  C[x1, . . . , x n]

Cones in A  The irrelevant ideal It

In what follows, we show how a toric variety can be obtained from geometric invariant 

theory (GIT) techniques using an ample divisor o f T  (see [Dol03], §6 and §7 for an 

introduction to the techniques used in this part). This idea leads to the generalisation of 

Cox rings for a bigger class of varieties.

A full characterisation of ample divisors on toric varieties is given in [CLS] §6.1.

Consider the action of G on Cd. By linearisation of this action we mean extending 

the action of G to the trivial line bundle L — C x Cd such that, the following diagram is 

commutative:

G x C x Cd -JL- +  G x Cd

Grx G

C x C d ----- £ Cd

Such an action is of the form

G x C x C d — > C x C d

13
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where g . ( h , . . .  , td) =  (g([DPl ])tu , . . ,  g([DPd\)td).

Note that g : C l(T) —> C*. Therefore the extension of the action depends on the definition 

of g. A and this is determined by a choice of a D e  C1(T) and defines g.X =  g{[D\) A.

Let Cd denote the line bundle correspond to D. It is clear that there is a Injection 

between G-invariant sections of Cd and the D-graded component of C ox(T). If we denote
OO

Rd — ^ ^ C ox(T )i£ ), then the following isomorphism arises naturally:
¿=o

OO
( Q ) H 0( c d,/yD) f  =  RD

3=0

The scheme Proj(i?£>) denotes the GIT quotient of Cd by G.

D efin ition  2.1 .10. A point x 6 Cd is semistable if there is an s € H°(Cd, CJD) for some 

j , such that s(x) ^  0. The set of all semistable points in Cd correspond to D is denoted 

by (C

P ro p o s it io n  2 .1 .11. P roj(Rd ) — (C d)^ //G .

T h e o re m  2 .1 .12. Let D be an ample divisor of T and A  correspond to the fan obtained 

by D. Then (C d)p =  C d — Z , where Z is the subvariety determined by the irrelevant ideal 

It - In other words, Proj (Rd ) — (C d — Z)/G.

2.2 Minimal Model Program

In this section, we give a brief overview of materials and techniques of minimal model 

program that we need in order to pursue our calculations in the rest of this thesis. These 

materials are mainly taken from [CorOO, KM98, Mat02],

We begin by defining various cones which are central in MMP.

D efin ition  2 .2 .1 . Let X  be a normal, projective variety.

14
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(i) Two Cartier divisors D\ and D2 on X  are numerically equivalent, denoted by

D\ ~num D2, if

D\ ■ C  =  D 2 • C  for every irreducible curve C C X  .

(ii) A Cartier divisor D  is called numerically effective, nef for short, if D ■ C  >  0 for all 

curves C C X .

(iii) The Néron-Severi group of X , denoted by N1(X ), is the group

N1(X ) =  C D iv (X )/ ~ num

We denote by N1(X )K the vector space NJ(X ) ® R.

(iv) A 1 -cycle is a formal (finite) combination of irreducible, reduced and proper curves 

C  =  EaiCi. A 1-cycle is called effective if all ai >  0.

(v) Two 1-cycles C, C  are called numerically equivalent if D • C  =  D • C  for any Cartier 

divisor D. The set of 1-cycles with real coefficients modulo numerical equivalence 

form a M-vector space; denoted by N i(A ). The class of a 1-cycle is denoted by [C\. 

We have a perfect pairing

Nx(X)  x .N l ( X )  —► M .

(vi) Define N E (X ) =  [C] | 0 <  cq € R } C Ni(A"), where Ci are irreducible curves

on X . Denote the closure of N E (A ) in N1(X)  by N E (X ).

(vii) A 1-dimensional subspace R C  N E (A ) is called an extremal ray if u,v  € NE(A") 

with u +  v G R implies u,v E R.

R em a rk  2 .2 .2 . The group N1(A’) is a free abelian group of finite rank (See [Laz04] Propo­

sition 1.1.16). The rank of NX(A ) is the Picard number of X  and is denoted by p(X).

15
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D efin ition  2 .2 .3 . A normal projective variety X  is called Q-factorial if for any Weil 

divisor D, there is positive integer m such that mD  is Cartier.

T h e o re m  2.2.4 . Let X  be a normal, Q-factorial projective 3-fold. Suppose R C N E (X ) 

is an extremal ray such that R .K x <  0. Then there exists a morphism ip: X  —» Z , called 

an extremal morphism, to a normal projective variety Z with dim Z <  3 such that

(1) p*O x  =  Oz,

(2) p{Cf) is a point for all Ci £ R,

(3) p is an isomorphism from X  — (J Ci to Z  — < (̂U Ci).

D efin ition  2.2 .5 . The morphism p  in Theorem 2.2.4 is called the extrem.al morphism. 

We call (J Ci the exceptional locus of p  and denote it by Exc(</?). An extremal morphism 

p: X  —» Z  is called

(1) A divisorial contraction, or extremal morphism of divisorial type, if Exc(y?) is an 

irreducible divisor.

(2) An extremal morphism of fibre type if dim X  >  dim Z.

(3) A  small contraction if dim E xc(^) =  1.

2.2.1 Terminal singularities

Before we state the algorithm of minimal model program we introduce the type of singu­

larities that we consider.

D efin ition  2 .2 .6 . A normal variety X  of dimension n has only terminal singularities if

(i) the canonical divisor K x  is Q-Cartier, that is, there exists m £ N such that m K x  

is Cartier;

16
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(ii) there exists a projective birational morphism f : Y —¥ X  from a nonsingular variety 

Y  such that in the ramification formula

K y =  f * K x  +  J 2 aiEi

all the coefficients for the exceptional divisors are strictly positive, that is a* >  0 for 

all Ei exceptional.

A typical example of a terminal singularity is the following.

E xam ple  2 .2 .7 . Let Z 2 act on C3 by x, i-> —x*, where Xi, x2 and x3 are the coordinates 

on C3. The quotient C 3/ Z 2 is singular at the origin, we denote this type of singularity 

by  ̂(1 ,1 ,1 ) .This is a typical terminal quotient singularity. In fact if Z r acts on C 3 by 

x,: eaiXi, where e is a rth root of unity and a* E Z, then the quotient is terminal if and

only if (ai, a2, a3) =  (1, — 1, a), up to a change of basis in C3, for some integer a coprime 

to r.

Another example of terminal singularity is the origin in the hypersurface of C4 with 

polynomial x 2 +  y3 +  zA +  tk for some integer k >  4. We say that this singular point is 

a cEq singularity, because the hyperplane section (t =  0) is a 2-dimensional singularity 

which is one o f the famous Du Val singularities; in this case it is a Ee Du Val singularity. 

For a great discussion and classification of terminal singularities see [Rei87].

Now we are ready to run the MMP.

M M P . Let X  be a Q-factorial 3-fold with only terminal singularities. Put X  =  X 0 and 

run the following program.

Step  1. If Kxi is nef then X t is a minimal model and we stop. If K x t is not nef, then there 

exists a rational curve C  with C ■ K x l <  0. Consider the extremal morphism 

ip: Xi —>■ X i+i as in Theorem 2.2.4 with the extremal ray [C] and go to Step 2.

S tep  2. If p  is a divisorial contraction then go to Step 1. If it is of fibre type stop and 

call X l a Mori fibre space. If p  is a small contraction then go to Step 3.

17
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Step  3. Consider the flip f :  X,i ---> Yl as in Theorem 2.2.8 below. Put X i+l =  Yl and 

go back to Step 1.

Fact: This process works and terminates.

T h eorem  2 .2 .8 . Let X  be a norm,al, projective Q -factorial 3-fold with only terminal 

singularities. Suppose ip: X  —t Y  is a small contraction. Then there exists a commutative 

diagram

X ----------- -  -  * X +

Y

where <p+ : X + —> Y  contracts a 1-dimensional locus (J C f  with C ■ Kx+ >  0. The map 

f :  X  ---> X + is an isomorphism away from the contracted loci. The birational map f  is 

called a flip.

A typical example of a 3-fold flip, perhaps the easiest, is the Francia flip. The con­

struction of Francia flip by Cox rings is the following. Let C* act on C4 by coordinates

A • (x1, x 2, X3, xfl  1  ̂ {X2x 1, Xx2l A“ 1̂ ,  A-1 :^)

This action gives a Z-grading to

R =  C [x i,. . . ,£4] =  •
nGZ

Consider 3 graded algebras

Ro, R+ =  Rn, R =  Rn
n >  0 n<  0

From these one can construct Y  =  Speci?o, X  =  Proj5- R+ and X + =  P rojy R~ such 

that they fit into the diagram of the flip.

18
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2.3 Mori fibre spaces

One output of MMP is a Mori fibre space (Mfs for short); this is when the extremal 

contraction tp: X  —> Z  is of fibre type. These varieties are naturally one of the following 

depending on the dimension of Z.

(i) Fano 3-folds when dim Z — 0.

(ii) Del Pezzo fibrations when dim Z  =  1.

(iii) Conic bundles when dim Z  =  2.

We are interested in uniqueness of this output.

D efin ition  2 .3 .1 . [ [CorOO], Definition 1.2] The Sarkisov category is the category whose 

objects are Mori fibre spaces and morphisms are birational maps. Let X  —» S and X ' —» S' 

be Mori fibre spaces.

(1) A morphism in the Sarkisov category, that is, a birational map f  : X  — * X ' , is square 

if it fits into a commutative diagram

X -  J -  -  A '

where g is a birational map (hence C(S) =  C (S')) and if, in addition, the induced 

birational map of generic fibres / ¿ :  X l --■* X'L is biregular. In this case we say that 

X/S  and X ' / S' are square birational.

(2) A  Sarkisov isomorphism is a birational map / :  X  X ' which is biregular and 

square.

(3) A Mori fibre space X  —>■ S is birationally rigid if, given any birational map p: X  — -» 

X ' to another Mori fibre space X ' —>■ S', there exists a birational selfmap a: X  — •> X  

such that the composition p o a : X  ---» X ' is square.
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D efin ition  2 .3 .2 . ( [CROO] 4.6.) We define the pliability of a Mori fibre space X  —> S as 

the set

V{X/S) =  {M fs Y  —> T  | X  is birational to Y } /square equivalence.

We sometimes abuse the term pliability to mean the cardinality of this set.

2.4 Sarkisov Program

Sarkisov links are the decompositions of birational maps between Mori fibre spaces into 

elementary maps. We brief state the nature of these links. A complete description of 

these is stated in [CorOO], §2.

R em a rk  2 .4 .1 . In this section, by a flip we mean a flip, flop or antiflip, where flop 

is roughly a similar surgery as flip with only difference that the contracted curves have 

trivial intersections with the canonical divisor and an antiflip is the inverse of a flip.

A Sarkisov link between two Mori fibre spaces X  —> S and X'  —» S' is one of the 

following birational maps.

T y p e  I. Starts by an extremal blow up of a centre in X  then follows by a sequence 

of forced flips and then a divisorial contraction to X'.  This is the following 

commutative diagram

S ^ = S '

T y p e  II. Starts by an extremal blow up on X  then follows by a sequence of flips to X ' .

In this case S' has an extremal morphism to a variety T  which is birational 

to S.
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blow up

x

Y
S

flip

S'

extremal

T

T y p e  III. Starts by a sequence of flips from X  then follows by a divisorial contraction 

to X',  where S has an extremal morphism to T  which is birational to S'.

flip
X  ~ -  * Z

divisorial

5 X '

extrem al

T S'

T y p e  IV . Starts by a sequence of flips to X ' . The varieties S and S' have extremal 

morphisms to the same variety T.

Fact: Any birational map between two Mori fibre spaces factors through a chain of 

Sarkisov links.
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Rank 2 and rank 3 toric varieties

In this chapter, we construct some tools in toric geometry that we use in other chapters. 

This, in particular, includes a study of rank 3 Cox rings as a blow up of rank 2 ones. The 

irrelevant ideal of these varieties is our main concern. The notion of well-formedness is 

also introduced for higher rank Cox rings. This is a generalisation of well-known well- 

formedness of weighted projective spaces.

3.1 Well formed Cox rings

In Section 2.1 it was shown how a toric variety can be reconstructed from the GIT. In 

the rest of this thesis we consider only toric varieties with torsion free divisor class group. 

It immediately implies that for such a toric variety T  the action of G on C ox(T) has a 

representing matrix in _A/irxn(Z). We denote this toric variety by TV(I ,  A), where /  is 

the irrelevant ideal and the action is given by A E _Mrxn(Z).

D efin ition  3 .1 .1 . Let T =  T V (I ,A )  be a toric variety. The rank of T is defined to be 
rank A.

When looking at a toric variety in terms of the GIT specified by A  and I, one could 

ask the following question:
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Q u estion  3 .1 .2 . Given TV {I, A), can one obtain an isomorphic variety by changing A? 

If yes, what is the domain of variation and is there a good representative for this class of 

variation?

This question in particular has a well known answer for rank one toric varieties. Note 

that under our assumptions, a rank one toric variety is nothing but a weighted projective 

space, namely P(a0, . . . ,  an) for some positive integers a0>. . . ,  an. These varieties have 

been studied in [IFOO]. It is easy to see ( [IFOO] §5) that for positive integers a and ¡3

P(a0, . . .  ,an) =  P(aa0, . .. ,aan) =  F(a0,fia1}. . .,(3an)

The notion of well-formedness for weighted projective spaces plays the role of the good 

representative as an answer to the question above for rank one toric varieties.

D efin ition  3 .1 .3  ( [IFOO] Definition 5.11). The expression P(a0, • • •, an) is well formed if 

hcf (ao, . . . ,  di, . . . ,  an) =  1 for each i.

For more details and discussion on well-formedness we refer to [Dol81] and [IFOO]. In 

what follows, we generalise this to higher rank toric varieties.

The following lemma answers the first part of Question 3.1.2 by finding some freedom 

for A, the matrix of the action of the toric variety T V  {I, A).

L em m a 3 .1 .4 . Let T  =  T V ( I ,A ) and B  =  gA for some g G GL(r, Q) with integer 

entries and define V  to be the toric variety V  =  TV (I, B). Then T is isomorphic to T '.

Proof. The varieties T  and T' are defined by

T  =  (C " — V{I))/Ga , T' — (C n — V(I))/Gb ,

where Ga — Gb — (C*)r . If we denote A =  (a%j)  and B =  (hj), then for (Ax, . . . ,  Ar) G Ga 

and (71, . . . ,  7r) £ Gb , the actions are the following:

r r

Ga ■ (Ai , . . . ,  Xr) . (x i , . . .  , x n) ^  ( J j A ^ x i , . . . ,  Y [\ f inx n)
i= 1 i = 1

23



Chapter 3. Rank 2 and rank 3 toric varieties

Gb : ( 7i , . . . , 7r) . x n) i ? nXn)
t = l  i=1

Let (x) and (y) be two vectors in C n. Let us denote by (x) (y) if (x) and (y) are in

the same orbit of the action by Ga , and similarly for (x) (y). The aim is to show

(x) (y) if and only if (x) (y) .

If (x) (y ) ; then there exists (71, . . .  ,7 r) € (C*)r such that

r r

i=1 ¿=1

To prove (x) (y ) ; we must find (Ai , . . . ,  Ar) G (C*)r such that

r r

{yi,---,yn) =  ( J j A “ilx1, . . . , J ^ A “,:nxn) .
2—1 2=1

This follows from btj =  Y.k9ikakj, if we put \  . . . ^ ir.

Proof for the only if part is very similar and it is done by replacing g by g~l . □

C oro lla ry  3 .1 .5 . If T =  TV(I,  A) and rank(Al) =  r0 <  r, then there exists a matrix 

A ) G A lroxn(Z) such that T  =  TV (I, A ) -

R em a rk  3 .1 .6 . By Corollary 3.1.5, wit hout loss of generality, we can always assume that 

A  G A irxn(Z ), the defining matrix of T V ( I 7A ), has full rank and hence rank(T) =  r.

The result of Lemma 3.1.4, as a partial answer to Question 3.1.2 shows that the 

expression TV(I ,  A) is not uniquely determined from A  and it varies up to the action 

of a subset of GL(r, Q). In fact failure of this set to be a subgroup is the problem of 

well-formedness. In the rest of this section, we complete our answer to this question by 

finding a well formed model for TV (I, A) as the representative. Such a model will be 

unique up to SL(r, Q).

D efin ition  3 .1 .7 . Let M  G A4rxn(Z ) be a rank r matrix (r <  n). Suppose M i , . . .  ,M S
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are all the r x r minors of M  and let du  =  hc f (det (Mi ) , . . . ,  det(Mfc)). The matrix M  is 

called standard if =  1-

L em m a 3 .1 .8 . For any rank r matrix M  E A4rxn(Z) ; there exist matrices g E GL(r, Q )n  

A4rxr(Zj) and N  E M.rXn{Z) such that M  =  gN and N  is a standard matrix of rank r.

We try to remove every factor of d,M by multiplying M  with a matrix whose inverse is 

in GL(r, Q) fl M rxr(Z). Taking the resulting matrix at the end and applying the reverse 

process completes the proof.

Proof. If d,M =  1, then there is nothing to prove. Assume p is a prime factor of d,M and rn 

is the biggest integer for which pm | c?m . If pk (for some positive k) divides every entry of 

the first row of M  then multiply M  with an r x r diagonal matrix H =  (h,j) with htl =  1 

for i >  1 and hu =  It is obvious that M ^  =  H M  E A4rxn(Z) and d.u =  pkdMa) .

If k =  m we have managed to remove pm as it was promised. Now assume k < m and 

let M 1'1'1 =  (a,j). There is at least one non-zero entry in the first row of which is 

not divisible by p. Without loss of generality we can assume this entry is an. If a-2i is 

non-zero and hc f (an ,a2i) =  then there exist integers b and c such that ban +  ca21 =  a. 

Let Hi be the following matrix:

(  b c 0 ••• 0 \
__Q21 All . . .  Q

a a

0 0 1 ••• 0

\  0 0 0 ••• 1 )

The matrix AC2) =  H lM has the following shape

 ̂ a * • • • ^

0 * ■ ■ ■

* *
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Obviously det(H 1) =  1 and a is not divisible by p.

By repeating this process for all entries of the first column we can replace them by 

zero. Now let M-± be the (r — 1) x (n — 1) sub-matrix of M ^  obtained by removing 

the first row and column. Obviously d e t (M ^ ) =  a. d et(M ^ ). This forces pm~k to divide

det (m [2)).

We can repeat the algorithm above and remove all powers of p from the first row of 

M{ . If there is any factor of p left, we apply the process above to the second column of 

the new matrix to make its entries equal to zero.

By repeating this algorithm we find a matrix M' for which =  pm x c/M/. All these 

can be done again for a prime factor of dM'. After finitely many steps we will have a 

matrix N  with Rv =  1. Note that termination of this process is assured by the fact that 

r is finite and dM G N. □

C oro lla ry  3 .1 .9 . For any toric variety TV(I ,  A), there exists a standard matrix B such 

that T V  (I, A) =  T V  (I, B).

Proof. This follows from Lemma 3.1.4 and Lemma 3.1.8. □

C oro lla ry  3 .1 .10. For any toric variety, there exists an isomorphic model with no generic 

stabiliser.

P ro p o s it io n  3 .1 .11. Let A G A4rxn be a matrix of rank r and TV { I , A) the toric variety 

as before. The following are equivalent.

(i) A : TA —> 7Lr is surjective.

(ii) ArA : Ar Z n —> ArZ r =  Z  is surjective.

(Hi) A is standard.

Proof. (?') (ii) is easy to verify using elementary techniques of multi-linear algebra. 

The equivalence of (ii) and (Hi) follows from our definition of standard and the fact that

(ii) holds if and only if there are k integers o* such that ^ c ^ d e t ^ )  =  1. □

26



Chapter 3. Rank 2 and rank 3 toric varieties

Definition 3.1.12. Let A be an r x n matrix with integer entries. Suppose Ak is an 

r x (n — 1) matrix obtained by removing the A'-th column of A. The matrix A  is called 

well formed if every Ak (1 <  k <  n) is standard.

Lemma 3.1.13. Let T V  {A, I) be a toric variety defined by an irrelevant ideal I and an 

r x n matrix A =  (ay). Assume q 1 is a positive integer such that q \ a\j for j  >  1 

but q \ an . Define the matrix B =  ( )  by bn =  q.an and bij =  ay for j  >  1. Then 

T V  (A, I) =  T V (B ,I ) .

Proof. By Theorem 2.1.12, given the irrelevant ideal / ,  there exists an ample divisor D 

such that

T =  Proj Rd ,

where D  has degree D  =  ^  ctjCj, where a* G No and Ct are the columns of A. Note that 

we associate D  with its degree D  and use the same notation for both.

The ring Rqn consists of invariant sections of multiples o f qD , i.e.

(
CO

®  « y e t  4 D)

7=0

Let. x afi . . .  be a monomial in Rqo . Hence there is a positive integer m such that.

aiC\ +  • • • +  anCn =  mqD

In particular, o.ian =  q.a for some nonzero integer a as q divides all an for all j  >  1. 

This together with the assumption on q\ an implies q\ a .̂ Therefore x\ appears in Rqz> 

only with power q. Hence

CO
RqD =  0  /L°(Spec(C[;rf, x 2, . . . ,  x n]), CJD)G

7=0
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On the other hand, we have

OO
TV(B,  I)  =  Proj 0  //°(Spec(C [x?, s 2, . . . ,  x n] ) X ]D)G ■ 

j=o

The algebraic isomorphism between graded rings RD and RqD finishes the proof. □

Proposition 3.1.14. For any toric variety T V ( / , A) with standard matrix A there exists 

a well formed matrix B such that TV  (I, A) =  T V (I ,B ) .

Proof. Assume Ak is not standard for some k. W ithout loss of generality we can assume 

k =  1. One can run the proof of Lemma 3.1.8 on A\ to obtain the standard model. The 

process in the proof of Lemma 3.1.8 starts by factorising pk from the first row of A\. 

Lemma 3.1.13 allows one to multiply the first column of A by pk and remove this factor 

from the first row of the new matrix and still get isomorphic varieties. One could complete 

the process of finding a standard model for A 1 and obtain A' as a standard model with 

det(A) =  q.det(A'). Repeating our argument at each step of this process assures that 

replacing A  by the matrix
(  q.an \

A'

\ Q-O'rl /

will lead to isomorphism T V (A 7i) =  TV{A^q\l ) .  Repeating this recipe for all non­

standard Ak and their factors lead to the well formed matrix B  with T V  (A, I) =  T V  (B,I) .

□

Definition 3.1.15. A toric variety defined by T V ( / ,  A) is called well formed if its defining 

matrix A  is well formed.

Theorem 3.1.16. For any toric variety TV  {I, A) there exists a well formed model iso­

morphic to it.

Proof. This is an obvious consequence of Corollary 3.1.9 and Proposition 3.1.14. □
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R em a rk  3 .1 .17. The variety T V  (I, A), in general, is a toric Deligne-Mumford stack and 

if B  is the standard matrix for which TV (I, A) =  T V (I ,B ) ,  then T V ( I , B ) is the coarse 

moduli space of TV (I, A). See [FMN09] for a general theory on this. However, the way 

we treat well-formedness here is algorithmic and explicit.

So far we have introduced a constructive way for finding well formed models of a given 

toric variety. In practice it is sometimes easier to find such a model without going through 

all the steps of the process introduced above. The following is a typical example of such 

a case.

E xam p le  3 .1 .18. The matrix in the right hand side is the well formed model of the 

other matrix, which can be obtained by adding the second row to the first row, i.e. act 

from the left by the matrix

j  G SL(2,Z )

Then removing a factor of 2 from the first row.

/  - 1  - 1  - 1  0 2 N

i—1

ooo

1 1 1 1 2  0 , ^ 1 1 1 2  0 /

If we let the irrelevant ideal I be I =  {xi ,X2, x 3) fl (x4,x 5), then the variety obtained 

from this matrix is the weighted blow up of P(l ,  1,1,2) at the singularity | (1 ,1,1).

3.2 Rank 2 toric varieties

In this section, we consider a special class of rank 2 toric varieties. The goal is to under­

stand their singularities and various blow ups on them to prepare ourselves for studying 

some Mori fibre spaces, naturally embedded into such varieties. The study of birational 

geometry of these subvarieties will form the major parts in Chapters 4 and 6 of this thesis.
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D efin ition  3 .2 .1 . A weighted bundle over P" is a rank 2 toric variety T  =  TV(A, I) 

defined by

(i) Cox(J7) =  C[x0, . . . . , x n,y0, . . . , y m].

(ii) The irrelevant ideal of T  is /  =  (xo, ■ ■ ■, xn) fl (yo, ■ ■ ■, ym).

(iii) and the (C*)2 action on Cn+m+2 is given by

 ̂ j 1 . . .  1 -UJ0 - UJ1 . . . -CJm

l o . . .  0 1 ax . . .  am

where Ui are non-negative integers and P(l ,  a i , . . . ,  am) is a weighted projective 

space.

The following lemma is an easy consequence of our assumptions.

L em m a 3 .2 .2 . The weighted bundle T  defined in Definition 3.2.1 is well formed if and 

only if the weighted projective space P (l ,  a i , . . . ,  am) is well formed.

R em a rk  3 .2 .3 . Without loss of generality we assume that any weighted bundle T  that 

appears in this thesis is well formed unless otherwise stated.

The following lemma constructs the fan associated to the weighted bundle in Defini­

tion 3.2.1.

P ro p o s it io n  3 .2 .4 . Let fii , . . . ,  /3m, qu, . . . ,  an be the standard basis o fZ n+m. Suppose a 0 

and fio are the following vectors in Z n+m.

m n m
A ) ^   ̂ 5 ^   ̂dj “I“ ^   ̂ •)

i=l j= 1 ¿=0

where Ui are non-negative integers.

Let ars =  /̂3o, ■ • •, fir, • ■ ■ , fim, ao, ■ ■ ■, c?s, ■ ■ ■ , ocn ) be the cone in Z n+m generated by 

fio, ■ ■ ■, fir, ■ ■ ■, firm «o , ■ ■ •, <£s, •.., an, where a s and fir are omitted. If we denote E for the
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Chapter 3. Rank 2 and rank 3 toric varieties

fan in Z n+m generated by maximal cones crrs for all 0 <  r <  n and 0 <  s <  m, then 

T  =  T V (E) .

Proof. We compute the GIT construction of this fan following the recipe of Cox given 

in [Cox03] §10.

By assumption of the lemma, rays on, •.. , a n, (30, ■.. , /3m in N  =  Z m+" form A (l), 

the set of 1-dimensional cones in E. Let us associate the variables x 0, . . . ,  xn> y0, . . . ,  ym 

to these rays. For a given maximal cone a , define xa to be the product of all variables 

not coming from edges of a. But maximal cones in E are exactly ars, which immediately 

implies x CTrs =  xsyr. The irrelevant ideal is given by

/  =  (xa | a G E is a maximal cone) =  (.xsyr \ 0 <  s <  n and 0 < r < r)

It is clear that the primary decomposition of this ideal is I =  (.To, • • •, ^n)C(yo, • • •, Um)- 
In order to describe the GIT construction of T V (S ) we must find the group G such 

that

T V (E =  (Spec[T0, • • ■ ;Xn,y0, . .. ,ym] -  V(I))/G 

The group G C (C*)m+ra+2 is defined by

n m

G =  {(Ato,.. Ao,. . . ,  Am) e  (C*)m+n+2 I n ^ .  n  X<f kM  =  for a11 fc} »
i= 0 j = 0

where e\,. . . ,  em+n form the standard basis of Z m+". But the standard basis of Z m+n, by 

assumption, is { q i , . . . ,  an, /51; . . . ,  f3m}.

Computing this set implies that (/j,0, A0, . . . ,  Am) € G if and only if

A f° ’Qi) =  l and =  1

In other wrords, Aq and ¡jlq determine all other Aj and Therefore the group G is
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isomorphic to (C*)2 and the action on coordinate variables is defined by

(Ob X).x0) =  nx0 (Qu,,A).Xi) =  n (ao’a!>A {0o’ai)Xi

(Ob A).y0) =  Xy0 (Ob \).yj) =  n~{ao’0j)X_(/3o,/3%

In other words, (C*)2 acts on C[a:0, ■ • •, x n, y0, ■ ■ •, Vm] by the matrix

( 1 . . .  1 0 CJq&I — ^1 • • • ^0 Q"m — ^

0 . . . 0 1 CL i . . .  Q"m

We have shown so far that 7 V (E ) =  T V(A ,I ) .  Multiplying A on the left by the 

matrix

j e S L ( 2 , Z )  ,

together with Lemma 3.1.4 proves that T  =  T’V’(S ). □

In [Rei] Chapter 2, Reid gives a detailed analysis of rational scrolls, which, in our 

setting, are the weighted bundles over P1, with no weights! In fact they form the smooth 

cases of weighted bundles.

Let the rational scroll F (a i , . . . ,  an) be defined by the action

( 1 1 0 - a j  . . .  —an

0 0 1  1 . . .  1

on C [ii, t2, x0, . . . ,  x n] and irrelevant ideal I =  (ti, t2) n (x0, . . . ,  xn). Such scroll is smooth 

and is covered by 2(n +  1) affine patches. Each of these patches can be computed by

Uij =  S p e c C [ i i , ■ - , x n,£j 1,x j 1]c *xC* .

L em m a 3 .2 .5 . The rational scroll F ( a i , . . . ,  an) is smooth.

Proof. We only need to show that each of the affine patches covering F is smooth. Without
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loss of generality we can assume i =  1 and ax <  ■ ■ ■ < an. Computing the invariants shows 

that

Uij =  Spec C [ii, t2, x 0, ■ yXn,^ \ x j  1]c *xC* =  Spec C [~ ,
x0 Xl

/ .  ' r  r i  1 „  +ai ''i xr'i Xjtl

,CLn CLj
x nt2

X i

In the ring in the right hand side above, each xt appears only in one term and with 

power one, of course, except in the first term. The parameters % and t2, either in nomi­

nator or denominator, appear to fix the degree to be (0,0). It is clear that the right hand 

side above is isomorphic to Cn+1. □

P ro p o s it io n  3 .2 .6 . A well formed weighted bundle F , defined in Definition 3.2.1, is 

covered by (n +  1 )(m  +  1) patches, each of them isomorphic to a quotient of Cn+m by a 

cyclic group Xr, for some positive integer r.

Proof. Similar to Lemma 3.2.5, we construct the patches UtJ for 0 < i <  n and 0 <  j  <  m. 

Note that in the toric level, U,j =  {xpy  ̂ 0) corresponds to the maximal cone as in 

Proposition 3.2.4.

Uij =  Spec C[x0, . . . ,  x n, yo, . . . ,  ym, x i l ,yj 1\c *x 

Computing the invariants gives

Uij -- SpecC[ Xo
Xi

x n
Xi

Up wo aj-u>j ■Xj
Vi

Again powers of Xi appear to make each term invariant under the action of the first 

coordinate of (C*)2 and each yi comes with a power that is the first number which is 0 

modulo aj. In other words, these invariants are exactly the same as those for the action 

o f Z Q. on C[x0, . . .  , x h . . .  , x n,y0, . . .  , y j , . . .  ,ym] by ^ ( 0 , . . . ,  0,1, au . . . , an). □
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3.3 Blow ups of rank 2 toric varieties

In this section we construct special toric varieties with rank 3, obtained by blowing up 

some centres in a rank 2 toric variety. Then we try to understand the nature of the 

maps from these varieties to the rank 2 ones. Obviously such a map in the level of fans is 

obtained by only adding an extra ray, together with the appropriate cone subdivision. Our 

ideas will be illustrated with many examples, either in this chapter or later in Chapter 5, 

when we apply these methods to realise stable models of some Mori fibrations.

We start by an example, which shows how the second Hirzebruch surface is obtained 

as the blow up of the | (1 ,1) point on P(l ,  1,2) in our setting. Essentially everything is 

known and easy.

E xam p le  3.3.1 (M o tiv a t io n ). Consider the second Hirzebruch surface -F(2) defined 

by the quotient

T(2) =  (Spec Cox(Jr(2)) -  V(I))/(C*)2 ,

where

(i) Cox(or (2)) =  C [u,v,x,y],

(ii) the irrelevant ideal is I  =  (u, v ) fl (x, y ) and

(iii) the action of (C*)2 is

/  1 1 0 - 2

l o o t  1

Let the surface P =  P(l ,  1,2) be defined, in a rather unusual way, as a rank 1 toric 

variety with

(i) Cox(P) =  C[a, 6, c],

(ii) the irrelevant ideal J =  (a, 6, c) and

(iii) the action of C* by (1,1,2).
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The fan of P in N  =  Z 2 is:

The singularity at the | (1 ,1) corresponds to the lattice point (—1,0) in the fan above. 

This singularity can be removed by adding the ray through this point in the lattice and 

doing the subdivision. The new fan will be:

By Proposition 3.2.4, this fan is the fan of Jr(2).

In fact, one can consider this blow up map without going through the fans and just 

by looking at the algebras

ip: Cox(P) =  C[a, 6, c] —>- Cox(Jr(2)) =  C[u, v, x, y] ,

defined by
1

a i—>• uy2 b i-» v y2 c x
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This expression makes sense by Theorem 1.1 in [BB10]. This, of course, corresponds to 

the ray structure of the fan, but says nothing about the subdivision of the old cone into 

new ones. In other words, this map gives an expression between the Cox covers, which is 

compatible with the maps between the quotients and leaves no information on how the 

irrelevant ideal is changing. Another way of viewing this algebraic expression is by taking 

the Q-divisor D  to be \{x =  0) and computing the ring

Rd =  ©  H°(Spec(Cox(.F)), £ | - ) ( c *)2
m>  0

Computing this ring shows Rd — Cox(P).

The aim is to consider similar maps for blow ups of the weighted bundle T  over P1, 

and analyse the changes to the irrelevant ideal through the blow ups. We have shown in 

Proposition 3.2.6 that each germ prs £ Urs defined by coordinates x-i =  yj =  0, for all 

i ^  r and j  ^  s, has a cyclic quotient singularity of type ^ - (0 ,1 , . . . ,  am). O f course this 

singularity is not isolated and one would attempt to resolve this by blowing up the whole 

singular locus. But this is not our aim! Instead we blow up a c losed  poin t, which is 

exactly the point that corresponds to the origin at this germ. The reason for doing this 

blow up is that, later in Chapter 5, we want to consider the blow up of some subvarieties 

of T  only at this particular point. We do this by considering the blow up of the ambient 

space at this point and restrict our attention to the subvariety under this blow up. This 

will be illustrated by an example, but before that let us see some basic facts about the 

nature of these blow up maps. Once again, note that our point of view does not concern 

the maps between the Cox rings as [BB10] already takes care of that part. We are inter­

ested in seeing what happens to the irrelevant ideal after the blow up.

Fix k £ { 0 , . . . ,  m}  and let T  be a rank 3 toric variety defined by

(i) Cox(T) =  C[Ao, Xi, Y0, . . . ,  Ym, £],
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(ii) the irrelevant ideal

j  =  ( x 0, x 1) n (v0, . . . , r m) n  ( { , x x) n (£ ,Yk) n ( x 0, y0, . . . , Yk, . . . , Ym) and

(iii) the action of (C*)3 given by the matrix

( 1 1 -w o -W i .. • ^k—i —1Wfc+i .. 0 \
0 0 1 ax .. O'k-l a-k Qfc+i 0

\ bk 0 bo bi ■■ ■ &*-i 0 bk+i &m /

where bo,. . .  ,bm are strictly positive integers such that

bi =  at mod ak for i k and bk =  rak for some positive integer r

Proposition 3.3.2. The rank 3 toric variety T constructed above is the blow up of the 

weighted bundle X  over P1 in Definition 3.2.1 at the point (0 : 1; 0 : • • • : 0 : 1).

Proof. By Proposition 3.2.4, the fan associated to T  consists of 1-dimensional cones (3o, ¡5\ 

and a 0 . . . ,  ttmin N  =  Z m+1 with 2m +  2 maximal cones

a0i =  (Pi,a0 . . . , d i , . . . ,  am) and o Xj =  (/30, a0 . . . ,  d j , . . . ,  a m) for 0 < i , j  < m  .

The last row of the defining matrix of T  is clearly adding a new ray in the cone crofc. 

The fact that the generator of this ray is an integral vector in N  is guaranteed by the 

conditions imposed on bi. This implies that T  is the blow up of F  at a point if it has 

the correct irrelevant ideal. We complete the proof by showing the irrelevant ideal of the 

Cox ring of this toric blow up is precisely the ideal of T. This is done by taking the 

subdivision of cr0fc and computing the irrelevant ideal of the new fan using the method 

of [Cox03], as in the proof of Proposition 3.2.4. The fan of this blow up of E consists of
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rays /?o, /?i, ao> • • •, 0im, 7 and maximal cones

(/ ô i «0 • • • 5 7̂ ? • • • ; dl ,̂ • • • 7 ? 7 ) fca x -f- k and uk (07 • • • ? CR? • • • > 7 )

coming from the subdivision of cr0fc together with the remaining cones a^. If we associate 

the new variable £ to the ray 7 and À"0, X 1 to /50, Pi and Yt to cy, then the irrelevant ideal 

of this toric variety is the ideal generated by

X i ■Yi-Yk for all i ^  k, X Q ■ X\ -Yk, Xi ■Yl -E, for all i ^  k, X 0 • 1) • £ for all i . 

The primary decomposition of this ideal is the irrelevant ideal of T. □

3.3.1 Some invariants

In order to use the weighted bundles in the rest of this thesis, it is essential to compute 

the Picard number and the canonical class of these varieties. These are explored in this 

subsection and we do not claim to have done anything original on this matter.

Applying the following theorem of Goto and Watanabe computes the canonical class 

of a toric variety in terms of the degree of generators of its Cox ring.

T h eorem  3 .3 .3  ( [GW78] Corollary 2.2.6.). Suppose that R =  k[xi , . . . , x n] is a Z n- 

graded polynomial ring and assume that each ay is a homogeneous element of R. Then 

I\r =  R(—e), where e =  ^  degay.

C oro lla ry  3 .3 .4 . LetT  =  TV  (A, I) be a toric variety. Then the degree of the anticanon- 

ical class of T is the vector which is obtained by adding up the columns of the matrix 

A.

R em a rk  3 .3 .5 . Of course someone with a bit of experience in toric geometry can notice 

that this formula is exactly the same as the usual way of computing the anticanonical 

class of a toric divisor by summing up the torus invariant divisor. In fact, these divisors 

correspond to the columns of the matrix A, hence everything is obvious.
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The recipe to compute the Picard number of a toric variety in our case follows the 

following theorem.

T h e o re m  3 .3 .6  ( [Ful93] §3.4.). Let T be a toric variety obtaind by a simplicial fan 

S C Z ". If the number of 1-dimensional cones in a is d, then the Picard number o fT  is 

pr =  d — n.

C oro lla ry  3.3 .7 . The Picard number of a rank r toric variety is r.
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Degree 2 del Pezzo surface fibrations

In this chapter, we construct families of degree 2 del Pezzo surface fibrations over P1 

embedded in rank 2 toric varieties. Then we study their birational geometry in terms 

of Sarkisov links by looking at the geometry of the ambient toric variety. A complete

restriction of the 2-ray game of the ambient space.

4.1 Hypersurfaces in weighted bundles

Before starting our calculations, we recall the definition of weighted bundles from Chap­

ter 3.

D efin ition  4 .1 .1 . A weighted bundle over Pn is a rank 2 toric variety T  =  T V  {A, I) 

defined by

(i) C ox(J') =  C[.t0, • • ■, x n, 2/o, • • •, Vm}-

(ii) The irrelevant ideal of J7 is I  =  (xq, . . . ,  x n) fl (yo, • • •, ym).

over

list of nonrigid families is presented in Table 4.1 for those with a 2-ray link obtained by
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(iii) and the (C*)2 action on C ”+m+2 is given by

4 _  /  1 • • • 1 - w 0 -W i . . .  —ur

\ 0 . . .  0 1 cq . . .  am

where uji are non-negative integers and P(l, a i , . . . ,  am) is a weighted projective 

space.

Definition 4.1.2. (a) Let T  be a rank 2 toric variety. Suppose t is a generating variable 

in the Cox ring of T  and that the action of the (C*)2 on t is given by t i-> Aa/jbt, where 

(a, b) G Z 2\ { (0 ,0)}.  We say that the number | is the ratio weight of the variable t. 

Note that the ratio weight could be a rational number, oo =  -p or — oo =  p p .

(a) Let T  be a rank 2 toric variety with C ox(T) =  C [ t i , . . . ,  t*.]. Define a total order A 

on {¿q, . . . ,  tk} by ti Y tj if and only if the ratio weight of tj is less than or equal to 

the ratio weight of £*. Note that we allow — oo and oo in their own right. If the ratio 

weight of ti is strictly bigger than the one for tj, we write L -< tj.

Remark 4.1.3. Note that the order ■< above is induced by the usual order in the set of 

extended real numbers in the reverse direction.

Without loss of generality we can assume the variables o f the Cox(T)  in Definition 4.1.1 

are in order with respect to rS Let Yo,. . . ,  Yr be the partition of yo,. . . ,  ym such that 

variables contained in each Yt have the same ratio weight and that Y% is nonempty and 

contains all variables with that ratio weight. Furthermore we assume that they are in 

order with Yt -< Yl+ j, meaning the ratio weight of the variable in Yt is strictly bigger than 

the ratio weight of variables in Yi+\. Note that this last condition makes Y0, . . . , Y r a 

unique partition of yo, . . . ,  ym.

Consider the ideal Ij =  (Xo, . . . ,  xn, Y0, . . . ,  Yj_i) D (Yj, . . . ,  Yr) C Cox(Pr). Let Tj  be 

the rank two toric variety defined by TV{A,  I j ) ,  i.e.

T j  =  (c"+”«\e(/J))//(c-)2
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in particular To =  T . The following theorem can be derived directly from [BZ10], Theo­

rem 4.1.

Theorem 4.1.4 ( [BZ10], Theorem 4.1). Let T /P ” be a weighted bundle as before. Then 

the 2-ray link of T  is given by one of the following:

(1) If \Yr\ =  1, i.e. the set Yr has only one element, then

P1 T r

where To =  T , Tj are isomorphisms in codimension one and is a divisorial con­

traction.

(2) If\Yr\ > 1, then

p i  p

where To =  T , are isomorphisms in codimension one, 4>' is a fibration and P =

P(an , . . . ,  ark), where ari, . . . , a rk are the denominators of the ratio weights of the 

variables in Yr.

D efin ition  4 .1 .5 . Let T/Fn be a weighted bundle as in Definition 4.1.1. and T, be the 

varieties appearing in its 2-ray link of Theorem 4.1.4. Let X : ( /  =  0) C C n+m+2 be 

a hypersurface in C "+m+2, the Cox cover of T , defined by /  E C[x0, . . . ,  x n, yo, . . . ,  ym]. 

Assume /  is irreducible, reduced and homogeneous with respect to the action of (C*)2. 

Define X, C X  to be

X , =  (X \ V ( f ) )/ (C * f

and let rfi (respectively </?, ip1) be the restriction of vIg (respectively <L, $ ')  to Then

we say X 0 has an T-link if

42



Chapter 4. Degree 2 del Pezzo surface fibrations over P1

(i) ipi are isomorphisms in codimension one (possibly isomorphisms).

(ii) ip and ip' are extremal contractions (see Definition 2.2.5).

In other words, X {) has an .A-link if the 2-ray game of X 0 is obtained by the restriction 

of the 2-ray game of Xq (although some ipi may be isomorphisms and hence redundant 

from the game). If in addition, each is Q-factorial with terminal singularities, then we 

say X q has an X-Sarkisov link.

4.2 Sarkisov links from general GLP2/P 1 hypersurfaces

For the rest of this chapter, we consider weighted bundles over P 1 with fibre P(l ,  1,1,2); 

these are a natural place to embed 3-fold degree 2 del Pezzo fibrations.

Definition 4.2.1. A 3-fold X  is a degree 2 del Pezzo fibration over P1 (denoted by dPz 

fibration, or simply dP2/P>1) if X  has an extremal contraction of fibre type ip: X  —>■ P1 

such that

(a) X  has at worst terminal singularities and is Q-factorial.

(b) The nonsingular fibres of ip are del Pezzo surfaces of degree two.

Let X  be a rank two toric variety defined by X  =  T V ( / ,  A ), where /  C C[u, v, x , y , z, f] 

is the irrelevant ideal /  =  (u , v) D (x , y, z, t) and A  is the representing matrix of the action 

of C* x C* given by

Remark 4.2.2.

4 =  [  1 1V o o i i
Up to the action of SL(2,Z),

(4.1)

any matrix of type (4.1) can be written
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uniquely in one of the following forms:

A =
1 1 0  —a —b —c 

0 0 1 1  1 2

(Ü)

(in)

A =

A =

1 1

0 0

1 1

0 0

—a —6 —c 0

1 1 1 2  j

—a —b —c —1 

1 1 1 2

0 < c , 0 < a < f c

0 <  a < b < c

0 < a < b <  c

By Proposition 3.3.7, the Picard group of X  is isomorphic to Z 2. Let L and M  be Weil 

divisors of X  with weights (1,0) and (0,1). For example in the case (i) above, L has section 

u G H Q(Jr,L)  and M  has x G H ° ( J r, M ) .  A  simple toric singularity analysis, following 

Proposition 3.2.6, shows that T  is smooth away from the curve Ft =  (x =  y =  z =  0). 

The curve r f is a rational curve with singularity of transverse type | (1 ,1,1) along it.

Let D =  AM—eL G Div(Jr) be a divisor in T  and X  =  ( /  =  0) C  T  be the hypersurface 

of T  defined by a general /  G D). We say that X  C  T  has bi-degree (—e, 4 );  this

is denoted by

M |c(
l 4 } \

1 1 —a —¡3 —7 

0 0 1 1 1

The goal is to find conditions on X  and X  such that A" is a Mori fibre space, whose 

generic fibre is a del Pezzo surface of degree 2, that has an JF-Sarkisov link to another 

Mori fibre space.
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4.2.1 The main result

T h e o re m  4 .2 .3 . Consider a hypersurface X  C  T  with

1 1 —a

0 0 1
- P  - 7  

1 1
1

where the weights a,/3,7 are normalised with 7 >  f3 > a >  0 and 5 >  0. Suppose the 

Type III or IV 2-ray game of T  restricts to a Sarkisov link for X . Then the weights 

cr,/?,7 ,6,e are among those appearing in the left-hand column of Table f . l .

Moreover, if X  is a general hypersurface of type (a , ¡5,7 , <5; e) from table f . l ,  then X  

is nonrigid and a Sarkisov link to another Mori fibre space is described in the remaining 

columns of Table f . l ,  as explained in §f.3.1 below.

No. (a,/3,7,<5;e) Vh V>2 T1 new model
1 (0,0,0,0; —1) 11/a n/a contraction F(l, 1,1,2)
2 (0,0, 0,1; 0) n/a n/a contraction V4 C P(l, 1,1,2,2)
3 (0,0,1,0; 0) n/a n/a contraction to a line r4 c  p(i, 1, 1, 1, 2 )
4 (0,1,1,0; 0) flop of 2 x P1 n/a fibration dp> fibration
5 (0 , 0 , i ,i ;  0) flop of 4 

disjoint P1
n/a divisorial contraction 

to a point
14 c  P4

6 (1, 1, 1, 1; 2) n/a fibration conic bundle with 
discriminant As c  P2

7 (0,1,1,1; 1) flop flip fibration dPs fibration
8 (0,1,1,2; 2) flop n/a fibration conic bundle over 

P(l, 1,2) with 
disc. A 10 C P(l, 1, 2)

9 (0,1, 2,1; 2) flop contraction F6 CP(1,1,1,2,3)
10 (0,1,1,3; 3) flop n/a contraction Yq C P(l, 1,2,2,3)
11 (0,2,2,1; 2) anti-flip rs-/ fibration dPi fibration
12 (0,1,2,3; 3) anti-flip flop contraction T5 C P(l, 1,1,1, 2)
13 (0,1,2,4; 4) anti-flip fibration dP2 fibration over P(l,2)

Table 4.1: D a ta  o f  T y p e  III and IV  links from  general d egree 2 del P ezzo  h yp ersu rface  fib ra tion s
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4.3 General hypersurfaces

In this section, we prove the constructive part, the second part, of the Theorem 4.2.3 in 

one direction by explicitly describing the birational link for a general hypersurface in each 

family in Theorem 4.2.3 and then we show in subsection 4.3.3 that these hypersurfaces are 

indeed dP2/P 1. These links are provided from the restriction of the natural 2-ray game 

of the ambient toric variety F  to X .

4.3.1 Geometry of the links

In order to be consistent with the notation of Theorem 4.1.4, in each case we rewrite the 

defining numerical system, normalised by the order and give the numerical system of 

the rank 2 variety at the end of each link. However, the order of cases below does not 

follow the order in Table 4.1. We found it more convenient to analyse cases together, 

when they have similar structures at the end of their links.

Links to conic bundles 

Family 6. u =  v - <t - <x  =  y =  z

1 -■ - 1 - 1 - i W ( i W 1 1 1 0 0 ° )V 4 / \ 0 0 2 1 1 l J  \ °  J  V ~2 - 2 0 1 1 1 /

The 2-ray game of F  starts by Hi, which is a flip of type (2,2, —1, —1, —1) in the 

neighbourhood (t ^  1) of the flipping curve P*:t). The second and final step of 

the 2-ray game is a P2 fibration to P2 Considering X  of bi-degree (—2,4), the 

Newton polygon of X  is

deg o f u, v coefficient

0 t2

1 tx2 txy tyz tz2

2 4 3x x y yzz z4 .
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This means that / ,  the defining polynomial of X ,  includes terms of the form t2 

and l(u, v)tx2 and q(u, n)x4, where l(u, v ) is a general linear form in u, v and q(u, v ) 

is a general quadratic. It is also useful for us to describe /  as the product of the 

following matrices:

 ̂ u v

^ * 4 * 4 * 2 ( u \
* 4 * 4 * 2 V

\  * 2 * 2 1 ) \ t  /

(4.2)

where by *k we mean a general homogeneous polynomial of degree k in variables 

x , y , z .

Having the monomial t2 € /  ensures that X  does not intersect with the singular 

locus of T  as Sing(Pr) =  Tt. Having this key monomial also shows that the 

restriction of dq to X ,  is an isomorphism on X.  The restriction of $ ' to X  defines 

a fibration to F2.y:z with fibres being conic curves. The discriminant of this conic is 

the determinant of the 3 x 3  matrix in (4.2). The degree of the discriminant in this 

case is 8.

Family 8. u =  v ~ < x ^ y  =  z — t

M c f 11 “ _ 1 ~2 W 2Wy 4 J ^ 0 0 1 1  1 2 I \ 2 / \

Let us describe the birational geometry of the ambient space T . The 2-ray game of 

T  starts by mapping to P1 in one side (the given extremal contraction) and anti-flip 

(1,1, —1, —1, —2) in the other side. This anti-flip can be read by fixing the action of 

the second component of the (C *)2 in the neighbourhood (x ^  0) by putting x =  1. 

Then the game follows by an extremal contraction of fibre type to P(l ,  1,2). To 

restrict this toric 2-ray game to X , we need to know / ,  the defining polynomial of

1 0 0 0
0 1 1 2
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X , which can be seen from the Newton polygon of X ,

deg of u, v coefficient

0 x2t xy2 xyz xz2

1 xyt xzt xy3 xy2z xyz2 xz3

2 y2t yzt z2t t2

Here our essential terms in /  are x 2t and q(u,v)t2, where q{u,v) is a general 

quadratic in u,v. Having q(u,v)t2 £ /  means that the singular locus of (a gen­

eral quasismooth) X  is the intersection of X  with r i; which in this case is only two 

points (g =  0 ) n r f.

The .F-Sarkisov link of a general X  in this family, starts by an At.iyah flop and follows 

by a fibration to P(l ,  1, 2) with conic curve fibres. The flop is the restriction of the 

(1,1, —1, —1, —2) anti-flip on T.  The restriction is a flop because the monomial 

x2t £ f  allows us to eliminate the variable t in the neighbourhood (x 7  ̂ 0).

Similar to the previous case, considering the defining polynomial of X  in the form

 ̂ u v

( \*4 *4 *3

*4 *4 *3

V *3 *3 *2 )

f u \

w
(4.3)

tells us that the degree of the discriminant of the conic in this case is 10.

R em a rk  4 .3 .1 . In [MP08], a list of possible singularities that the base variety of 

a conic bundle can admit is provided. By Theorem 1.2.7. in [MP08], P(l ,  1,2) is a 

legal base since it has only a quotient singularity | (1 ,1), which is Du Val.

48
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Links to del Pezzo fibrations

Family 4. u =  v~<x =  t - < y  =  z

1 1 1 2  0 0
- 1 - 1 0  0 1 1

The 2-ray game of T  in this case is represented by

where the composition map T i =  (T ^) -1 o is a toric 4-fold flop. Both T f  

and T+ are isomorphism away from P1 x  P1. The first map, T j“ , contracts the 

surface P*.,, x Pæ;t( l ,2 )  to P*:t and contracts P*;, x P*:i to the same line. This 

composition defines as a toric 4-fold flop. The next step of the 2-ray game, «F 

provides a fibration to Ÿly.z with fibres isomorphic to P(l ,  1,1, 2).

The defining equation of X  has the form /  =  g +  h, where g =  g (x , t) is a quartic in 

variables x and t only. This ensures that the restriction of contracts two disjoint 

P1, defined by (g =  0) fl P^:w x Pæ:i( l ,  2) to two points in Pj,.i; namely the solutions 

of (g =  0) C P(l ,  2). This argument shows that -01 is formed of a flop '¿/y : X  —> X ] , 

which flops two disjoint copies of P1. At the end of the link, the restriction of 

to X i provides the extremal contraction of fibre type to P1 with degree 2 del Pezzo 

fibres.

Family 7. u =  v ~ < x - < t ^ y  =  z

-1
4

1 1 0 - 1 - 1 - 1
0 0 1 2 1 1

1 1
- 2  -2

1 1 0 0

1 O l 1

This case is similar to the previous one and the result was already found in [BCZ04], 

A full analysis is given in [BCZ04] Family 5, §4.4.2..
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Family 11. u =  v ■< x  < t  <  y =  z

-2
4

C
1 1 0 - 1 - 2 - 2  
0 0 1 2  1 1

<I<2

The diagram of the 2-ray game of T  is

\I/l
T -----

Dluw

where T j is the anti-flip (1,1, — 1, —2, —2) flipping a copy of P1 to P ( l ,2 ,2 ) .  In 

particular, the flipping locus of T\ has line of singularity of transverse type | (1, 1, 1). 

Note that T  contains a singular line T*, which is preserved by T j. The second anti­

flip T 2, is of type (2, 2,1, —3, —3), which flips a surface P(l ,  2,2) (including Tt) 

to a singular curve of transverse type | (1, 2, 2). <&': —>• P1 is a fibration, with

P(l ,  1 ,2,3) fibres.

Now we consider the restriction of this game to X .  The essential monomials of the 

defining polynomial of A" are t2 and x 3y. The first monomial, t2 shows that Tt fi X  

is empty for a general X . In fact, Bertini Theorem implies that X  is smooth as the 

base locus of the linear system D  includes only the curve T  ̂ =  (u0 : v0; 1 : 0 : 0 : 0), 

which is guaranteed to be smooth by x3y £ / .

The restriction of f  j to A  is a Francia anti-flip as we can eliminate the variable y 

in a neighbourhood of the flipping curve using x3y and implicit function theorem. 

Note that the variety X; has a |(1 ,1,1) singularity obtained by this anti-flip. The 

restriction of T 2 to ATi is an isomorphism as t2 £ / .  And finally, (p1: X 1 —>■ P1 is a 

Mori fibre space with generic fibre isomorphic to a del Pezzo surface of degree 1.

Family 13. u =  v - < x ~ < y - < z  =  t

-4
C

1 1 0 - 1 - 2 - 4  

0 0 1 1  1 2
1 1 2 1 0  0 

- 1 - 1 - 1 0  1 2
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A similar argument shows that the general X  in this case, after a Francia anti-flip 

has an extremal contraction of fibre type to P ( l ,2 ) ,  with generic fibre isomorphic 

to a degree 2 del Pezzo surface.

Links to Fano 3-folds 

Family 1. u =  v~<x =  y — z =  t

f  1 \ /  1 1 0 0 0 0
\  4  J  y 0 0 1 1 1 2

The defining polynomial of a general X  in this case is of the form uf4(x,y, z,t) =  

vg4(x,y, z,t), for general degree 4 polynomials /  and g in variables x,y,z,t.  The 

2-ray game o f T  is continued by a fibration «F to P(l ,  1,1,2) with P1 fibres. The 

restriction of this map to X  provides yj : X  -> P ( l , l , l , 2 ) ,  which contracts the 

divisor ( /  =  g =  0) C X  to a curve in P(l ,  1,1,2),  defined by the same set of 

equations.

Family 2. u =  v~<x =  y =  z~<t

0
4

C
1 1 0 0 O 1

0 0 1 1 1 2
4

0
C

2 2 1 1 1 0
-1 -1  0 0 0 1

The 2-ray game of the ambient toric variety is described by

P 1

T

P (1j 1) 1) 2,2)

where F  is the divisorial contraction defined by the basis of the Riemann-Roch 

space of the divisor Dx ~  (x =  0). More precisely, the equation of F  is

F :  P (l ,  1,1,2,2 )
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(u : v, x  : y : z : t) i->- (x : y : z : u t : vt)

It is clear from this equation that the divisor (t =  0) is contracted to the surface 

P2x:y:Z- Note that this map has no base point, as the locus where all these monomials 

vanish is precisely the Cox irrelevant ideal of T , i.e. (u, v) D (x, y, z, t).

The equation of a general X  in this family is of the form t2q(u, v) =  f ( x ,  y, z) +  . . . ,  

where q is a quadratic polynomial in u, v and /  is a quartic with variables x, y, z. 

Such X  has two singular points of type | (1 ,1,1), which are located at the inter­

section of X  with r t> that is the solutions of (q =  0) (1 r t. Then X  follows the 

2-ray game of the ambient space by contracting the divisor (t =  0) to the curve 

( /  =  0) C  P\ . y .z  on an index 3 Fano 3-fold defined by X 4 C P(l ,  1,1,2,2).

The equation of the Fano 3-fold, the image of X  under this map, can be derived 

explicitly using this coordinate map. For example if the coordinate variables on 

P(l, 1,1, 2, 2) are x. y, z, u', v', then this Fano variety is the hypersurface defined by

q(u',v') =  f ( x , y , z )  +  . . .

This shows that this Fano variety is general in its family.

Corollary 4 .3 .2 . A general Fano 3-fold hypersurface Y4 c  P(l ,  1,1, 2, 2) is bira- 

tional to a degree 2 del Pezzo fibration over P1.

Family 3. u =  v~<x =  y =  t - < z

( ° ) c  ( l 1 ° ° ° -1 W  ( A ) c  (  1 1 1 1 2y 4 J  ^ 0 0 1 1 2 1  J  \ °  J  \ -1 -1 0 0 0 1 /

Analysis of the link is similar to the previous case with the final divisorial contraction 

<F' with equation

(u; v; x : y : t : z) (->■ (uz : vz : x : y : t)
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The image of X  under this map is an index 2 Fano hypersurface defined by a quartic 

in P(l ,  1,1,1,2) . It is easy to check that this Fano variety is general in the family.

C oro lla ry  4 .3 .3 . A general Fano 3-fold hypersurface Y4 C  P ( l , l , l , l , 2 )  is bira- 

tional to a degree 2 del Pezzo fibration over P 1.

Fam ily 5. u =  v - < x  =  y - < t~ < z

( o W 1 1 o o - i  - A  i i i i *
V 4 J  \0 0 1 1 2 1 J  J  1 - 2 - 2 - 1 - 1 0 1 /

The 2-ray game of T  starts by a flop and continues by a divisorial contraction to 

P4. The toric flop contracts a copy of P1 x P1 to P1 and extracts another P1 x P 1. 

The restriction of this birational map to X  flops 4 analytically disjoint copies of P1, 

since the defining polynomial of X  includes a quartic in the x, y variables.

A general X  in this family is singular at two points of type | (1 ,1,1). As usual, these 

points are the locus where X  meets Tj. In fact we can assume that the defining 

polynomial of X  is of the form (u2 +  v2)t2 +  f (x ,  y) +  . . . ,  where /  is a general 

quartic in x, y. The divisorial contraction has the coordinate description

(u : v, x : y : t : z) r-> (uz2 : vz2 : xz : yz : t) ,

which shows that the divisor (z =  0) gets contracted to the point pt £ P4. The 

equation near this point has a local type u2 +  v2 +  x4 +  y4. In other words this point 

is terminal. In fact this example was already known to be nonrigid. See [CPR00], 

Example 7.5.1.

Family 9. u — v ^ x ^ t ^ y ^ z

(  - 2 c  (  1 1 0 - 1 - 1 - 2 (  6 ) c  (  1 1 2 3 1 0
V 4 / V 0 0 1 2 1 1 / V - 2  / V —1 —1 —1 —1 0 1

The 2-ray game on the ambient space is
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where 'f>1 is the anti-flip (1,1, — 1, — 1, - 2 )  and 4/2 is the flip (2, 2,1, —1, —3). The 

final contraction is

: (u : v; x : t : y : z) H> (n0 : v0 : y : x0 : z0) — (uz : vz : y : xz  : tz) ,

which is the ordinary blow up of the smooth point py G P(l ,  1,1,2, 3). The Newton 

polygon of X  in this family is described by

deg of u, v coefficient

0 t2 x 3z x 2y2 xty

1 xy3 x2yz xtz ty2

2 y4 xy2z tyz x2z2

3 xyz2 tz2 y3z

4 xz° y z

5 yz3

6 z4

Having the term t2 G / ,  the defining polynomial of X , guarantees smoothness of X. 

The map ipi, the restriction of to X ,  is an Atiyah flop as the variable z can be 

eliminated in a neighbourhood of the flopping curve using the monomial x 3z and 

the implicit function theorem. Similarly, we can observe that ip2 is an isomorphism 

as t2 G / .  The image of X\ under ip' is an index 2 Fano hypersurface Y  defined 

by a degree 6 polynomial in P(l ,  1,1,2,3).  One can see that under this map, the 

divisor (z =  0) goes to the point py G Y. This point is a cA\ point as the defining 

polynomial of Y  is

¿5 +  X0 +  V4U0V0 +  "Uq +  Uq +  . . .
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Conversely, a general Fano hypersurface Y(i c  P ( l , l , l , 2 , 3) with a cA , point is 

birational to a degree 2 del Pezzo fibration over P 1.

Family 10. u = v ^ x ^ y  = z - < t

(  - 3 ) c  (  1 1 ° - 1 - 1 " 3 (  6 1 c  (  2 2 3 1 1 0 1\  4  J  y  0 0 1 1 1 2 J  \  ~ l  J  \ -1 -1 -1 0 0 1 J

The 2-ray game on T  is

P1 P (1,1, 2, 2,3)

where is the anti-flip (1,1, —1, —1, —3). And the final contraction is T\ —> 

P(l ,  1 ,2, 2,3) defined by

(u; v; x  : y : z : t) i-> (y : z : u0 : v0 : x0) =  (y : z : ut : vt : xt)

This map contracts the divisor (t =  0) on T\ to the line P ly . z  c  P(l ,  1, 2, 2,3). 

The Newton polygon of a general X  in this family is

deg Sk(a, v, w)

0 x2t xy3 xy2z xyz2 xz3

1 y4 . . .  z4 xyt xzt

2 y2t yzt z2t

CO t2

The coefficient of t2 in the equation indicates that

Sing(X) =  r t n X  =  3 x ^ ( 1, 1, 1) .

The map ^ i, obtained by restricting T j to X  is a flop (1,1, —1, —1), as we are able
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to eliminate the variable t near the flopping curve using the monomial x2t. The map 

if' contracts the divisor (t =  0) C X 4 to the line P*.z on an index 3 Fano variety Y 

defined by a degree 6 polynomial in P(l ,  1,2, 2,3). The defining polynomial of Y  is

Â  +  03(«o, Vo) +  uq4(y, z) +  vq4{y, z) +  .. .

where <73 is a general cubic in the variables Uo,Vo; q and q' are general quartics in 

y , Hence Y  is smooth along P .̂2 and has only 3 singular points of type |(1 ,1,1),

namely at the solutions of (<73 =  0).

Family 12. u =  v ~ < x ^ y ~ < t ~ < z

(  ~ 3 ) c  (  1 1 0 - 1 - 3 ~2 (  5 ) c  (  1 1 2 1 10
l 4 J V 0 0 1 1 2 1 J \ ~ 6 J V —2 —2 3 —1 0  1

The 2-ray game of T  is represented in the diagram:

P (1) 1)1)1) 2)

where 'Iq is the anti-flip (1,1, —1, —3, —2) and T 2 is the smooth flip (1 ,1 ,1 , — 1, — 1). 

The singular locus of X  is characterised by the coefficient of t2 E / ;  this is a cubic 

in u, v, so for X  general S ing(X) =  3 x 4(1,1,1).  The map ?/q, the restriction of iq  

to X,  is the Francia anti-flip as the variable t can be eliminated in a neighbourhood 

of r x =  (u0 : t>o; 1 : 0 : 0 : 0) using the monomial x2t. Similarly, using the 

monomial xy3, we can eliminate the variable x in a neighbourhood of the flipping 

locus of 4/2 and observe that q 2 is an Atiyali flop. The final map (/?', contracts the 

divisor (z =  0) to a point on an index 1 Fano hypersurface defined by a degree 5 

polynomial in P(l ,  1,1,1,2) . Note that this Fano hypersurface is quasi-smooth away 

from the image of contraction, which is a cD4 singularity as it is locally defined by 

x2 +  u3 +  v3 +  y4. It was shown in [CPR00] that a general quasi-smooth Fano
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hypersurface of this type is birationally rigid.

4.3.2 Mobile cones

The aim is to prove that all varieties listed in Table 4.1 satisfy the conditions of Defini­

tion 4.2.1. In fact the only remaining part to check is the Picard number. This is done 

in 4.3.3. On the other hand, we must prove that this is the complete list; meaning any 

dP2/F1 which does not appear in this list cannot have a link to another Mori fibre space 

following the 2-ray game o f T . In order to pursue these goals, some computations re­

garding the mobile divisors on X  and T  need to be introduced. We show later that these 

divisors play a key role in the geometry of X . We begin this by recalling some standard 

definitions and then compute various cones associated with T  and X .

Definition 4.3.4. Let X  be a normal, projective variety.

(1) A divisor D =  Y2aiDi on X  is called effective a« >  0 are integers for all i, where Di 

are prime divisors on X  and only finitely many a, yf 0.

(2) The cone generated by effective Cartier divisors in N ^X )®  is called the effective cone 

and is denoted by N E ^ X ) .  The closure of this cone is called the pseudo-effective cone 

and is denoted by NE1(X).

(3) An effective divisor D  is called mobile if the base locus of the linear system corre­

sponding to D  has codimension strictly bigger than 1. In other words, if the support 

of this linear system does not contain a divisor.

(4) The closed subcone of N ^ X )«  generated by all mobile divisors of X  is called the 

mobile cone of X  and is denoted by M ob (X ). The reader might find this cone with 

the name movable cone in some articles.

(5) A Cartier divisor d on X  is called semiample if the linear system \mD\ is base point 

free for some m € N.

Proposition 4.3.5. Let T  be the toric variety described in 4-4- Then
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(i) the pseudo-effective cone of F  is generated by Du and D4, and

(ii) the mobile cone M ob(Jr) is generated by Du and Do,, where DU,D V and Di are 

divisors defined by (u =  0), (v =  0) and (Xi =  0).

Proof. By Theorem 3.3.6 we know that the Picard number of F  is p(F ) =  2. Therefore 

N1 (F)s, =  M2 and hence we can draw all these cones in the plane:

D4 D o, D 2 D i

The rays are labelled by divisors that lie on them away from the origin. Note that the 

rays correspond to some D.t and Dj might coincide. This is exactly when x.t =  Xj .

Obviously (.Du, . . . ,  D4) C NE1 (F ). We show that any prime divisor corresponding to 

a lattice point in the plane outside of this cone is not numerically equivalent to an effective 

divisor. Any divisor given by a lattice point in Hf2 — NE1 (F )  is numerically equivalent to 

a divisor A, A ' or A", where

A =  —pD u +  AD4 for p >  0, A >  0,

A' =  —pD u — XD4 for n >  0, A >  0,

A" =  pD u — \D4 for p >  0, A >  0.

We show that A cannot be effective. Define a curve l =  (x 4 =  x 2 =  £3 =  0) C F , 

where without loss of generality b4 =  1. We have

A • l — —pD u • l +  XD4 • l =  —p <  0

Since A is prime, we must have l C A. Now consider the family of curves defined by the 

ideal

Ic  =  {xi, x 2 +  V5-p{u, v )x4,x 3fis-1 {u, v)x4) .
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For any curve C  in this family and any divisor D  on T , there exists a positive rational 

number r such that r(l ■ D) =  C ■ D. Hence The support of this family lies in A. On the 

other hand, it is easy to see that for any point in D 1 there is a curve C  in this family 

which contains that point. In other words, D 4 is contained in the support of this family 

and hence D 4 C  A. But A is prime and this is a contradiction.

Proofs for the other two cases, A' and A" are similar and we do not write them here.

In order to prove (ii), we must show that the cone generated by Du and D 3 is the 

Mob (A"). The divisor Du is mobile as Dv G | Du | and hence this linear system is base 

point free. Any effective divisor Q-linearly equivalent to D3 is of the form XD4 +  ¡iD  ̂ or 

AD4 +  pD u for some positive integers A and ¡1. Therefore Bs(D 3) C  (x3 =  x 4 =  0), and 

hence \D3\ has no fixed component; the fixed part has codimension at least two. This 

shows that (Du, D3) C  M ob(Jr). To complete the proof we must show that any effective 

divisor in NE (J7) — M ob(J7) is not mobile. But any such divisor is numerically equivalent 

to a divisor of the form pD 3 +  AD4 for some non-negative integers n and A. The fixed 

part of the linear system of such divisor includes D4 and hence this divisor cannot be 

mobile. □

Definition 4.3.6. ( [HKOO], Definition 1.10) A normal projective variety X  is called a 

Mori dream space if

(i) X  is Q-factorial and Pic(A") =  AP(A') is finitely generated.

(ii) there are finitely many birational maps : X  —+ X t for 1 <  i <  k, which are 

isomorphisms in codimension one, such that if B is a mobile divisor then there is an 

index 1 <  i <  k and a semiample divisor on X t such that B =  f*Bi .

The key point of this definition is that it allows one to run MMP on X  in a very 

easy and clear way. If A" is a Mori dream space then the pseudo-effective cone NE^AT) is 

divided into finitely many rational polyhedra, R4, . . . ,  Rm,

m
NE] (A ) =  (J  Rj

j=i
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The mobile cone is a union of M i, .... , Mk, some subset of the rational polyhedra R i , . . . ,  Rm,

and the birational maps fi , - ■ ■ ,fk  defined in 4.3.6 are precisely the maps ipBi associated 

to a big mobile divisor Bi belonging to the interior of each polytope Mt. For details 

see [HKOO] Proposition 1.11.

It was proved in [BCHM10] Corollary 1.3.1. that any log Fano variety is a Mori dream 

space. In particular, a dP2 hbration is a Mori dream space. The whole idea of defining 

techniques in this chapter is that we are trying to find dP2 fibrations X  C T  whose 

decomposition of M ob (X ) into M i , . . . ,  Mk coincides with the decomposition of M ob(J ') 

into such polytopes. In other words, X  is embedded into T  and

Cox(AT) =  C ox(P )/ (f  =  0)

Lemma 4.3.7. Let X  C T  be a hypersurface of the rank two toric variety in 4-4 defined by 

a homogeneous polynomial of bi-degree (ui, 4). If X  is a dP2 fibration then a =  (L, X  ft Df) 

is a subcone of Mob(AT).

Proof. Similar to the proof of Proposition 4.3.5 (ii) one can check that Bs \L\ is empty and 

Bs |Z?3| has no fixed component. Note that Bs \ D3\ is included in the locus (x3 — x 4 =  0). 

And this locus must have codimension strictly bigger than 1. Otherwise, if (x3 =  x\ =  0) 

defines a divisor on X  then Proposition 4.4.7 implies that X  is not a dP2 fibration. □

4.3.3 The Picard group

The aim in this section is to prove P ic(A ) =  Z 2 for a general A" in Table 4.1.

Let us first recall some technical tools that we use in the proof. This includes a version 

of the Lefschetz hyperplane theorem and a generalised Kodaira vanishing theorem.

Theorem 4.3.8. [Generalised Kodaira vanishing, [KM98] Theorem 2.70.] Let (X , A ) be 

a proper kit pair. Let N  be a Q -Cartier Weil divisor on X  such that N  =  M  +  A , where 

M  is a nef and big Q-Cartier Q-divisor. Then -ff*(AT, O x {—N )) =  0 for i <  dim A .

Remark 4.3.9. Let V  and W  be algebraic varieties. Recall that any algebraic map
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7r: V  —> W  can be decomposed into finitely many varieties V* C V  of varying dimension, 

on each of which ix restricts to a map with constant fibre dimension.

Definition 4.3.10. Define D (tt), the measure of deviation of tt : V  —> W , to be 

D (tt) =  sup{(the fibre dimension of tt in Vf) — (the codimension of V, in T ) }
i

Theorem 4.3.11. [Lefschetz hyperplane theorem, [GM88] §2.2] Let it\ V CN be a 

pivper map of a purely n-dimensional (possibly singular) algebraic variety into complex 

affine space. Then HfiV) =  0 for i >  n +  D{tt).

Lemma 4.3.12. Let X  C. T  be a hypersurface defined by

M M
( 1 1 —Oil — Ot2 — «3 - 04  \

l 4 )1 1 00

ßz ßA )

where the variables are in order u =  v -< X\ -< z 2 13 ^  X4 and {ßi, /32, ßs, ß i}  =  

{1, 1, 1, 2 }. Suppose Ti and X , are birational models of T  and X  obtained by small mod­

ifications as in Theorem. 4-1-4 and Definition 4-1-5. Let Hi =  Jrl — X t be the complement 

of each Xi in Ti. Consider the point x =  ( —e, 4) 6 Z 2 and recall from Proposition 4-3.5 

that M ob(Jr) is a cone in M2 =  Z 2 ® M with the same copy of Z 2. If X  G Int(M ob(J7)), 

then HfiUi) =  HfiUi) =  0 for some i.

Proof. Consider the map $|£j| : T  —> P^ defined by the linear system of the divisor 

D =  4M  — eL  and assume D  G Mob(Pr). By Proposition 4.3.5, NE1(Jr) has the 

following decomposition:

where the rays are labelled by divisors that lie on them away from the origin.
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From geometric invariant theory we have the following characterisation (possibly after 

taking a positive multiple of D):

(i) <f>|£>| is an embedding of Ti if D  G Int (D ,,D ,+i), where D, and 1Di+1 do not lie on 

the same ray.

(ii) 4>|z)| is a small contraction from Tx if D  =  aDt for some positive integer a and 

Di G Int(M ob(J7)).

(iii) is an extremal contraction of divisorial or fibre type otherwise.

Suppose D  G Int(M ob(J7)); in particular it is in one of the cases (i ) or (ii) above.

Let U-i — Ti — X i , where i is the integer for which (i) or (ii) above is satisfied. Suppose 

p : Ui —> be the restriction of <E>|o| to Ul. The map p  is proper because T p j is a 

projective morphism and X x is the complete preimage of a hyperplane section of the 

target variety. Since this map contracts at most a 2-dimensional subspace of T% and is 

isomorphism everywhere else, the codimension of every Vj in Definition 4.3.10 is at least 

2, while the fibre dimension is at most 2. Hence D (p) <  0 so by Theorem 4.3.11 we 

conclude that H5(Ut) =  H6(Wj) =  0. Note that dimc(W;) =  4 and d in iR ^ ) =  8. □

Corollary 4.3.13. H2 c(Ut) =  =  0.

Proof. This proof follows from Lemma 4.3.12 and Poincare duality . □

Lemma 4.3.14. Let T  be the ambient toric variety of any family in Table 4-1 except 1,2 

and 3. Then i /2(Jri) =  Z 2 for all models Ti obtained by flips, flops or antiflips from T .

Proof. From the short exact sequence 

one constructs the long exact sequence

-------► H1 (T , Z ) —>• H1 (T , Or ) —> H1 (T , 0*T) -> H2(J-, Z ) -> H2(J ,̂ O r)  -> • • • .
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On the other hand, for any T  in Families 4 ,... ,12 in Table 4.1 there exists a birational 

model Jy, obtained by some flips (flops or antiflips) for which —Kjr. is nef and big. 

Applying Theorem 4.3.8 for the pair (Jy, 0) and divisor —K j i gives LP(Jy, Ojrfi—Kjr.)) =  0 

for all j  <  4. This vanishing together with Serre duality implies

Ojrfi =  H2(Jy, O jf) =  0 .

The fact that Jy have rational singularities ensures that the vanishing above holds for all 

models Jy.

By Lemma 3.3.6 Pic(Jy) =  Z 2 for all models Jy obtained by flips, flops or antiflips 

from T. Using the fact that Ofp.) =  P ic(Jri), the exact sequence above, together

with the vanishing statements that we proved imply H2(Jy) =  Z 2. □

Proposition 4.3.15. Let X  C  T  be a hypersurface defined by f  G pP(IF,D), where 

D  =  AM — eL and (—e,4) G Int(M ob(Jr)). If T  is the abient space of one of the families 

in Table 4.1 except families 1,2 and 3, then H2(X i) =  Z 2 for  Ay C Jy, where Jy is the 

model specified in Lemma 4.3.12.

Proof. Consider the following exact sequence:

• • • - t  H2( ^ )  -> H2(Jy) -> H2(A t) ->  HKufi -> • • •

By Corollary 4.3.13, this exact sequence implies H2(Jy) =  H2(A ,). The proof follows from 

Lemma 4.3.14. □

Lemma 4.3.16. For a general X  in Table 4-1 Hl (X ,O x )  =  H2(X , O x)  =  0.

Proof. For any such A" there exists a model A , obtained by some flips, flops or antiflips 

from A' such that —K Xi is nef and big on Af .  Considering the pair (A^,0), which is a 

kit pair as X t is terminal, and applying Theorem 4.3.8 gives tlj (Xi, O x (—K Xi)) =  0 for 

all j  <  3. This together with Serre duality implies H1 (A y  Ox f) — H2(X ,, 0 Xi) =  0. The 

rationality of singularities of X, allows one to lift this vanishing to all Ay,. In particular, 

U \ X ,O x ) =  B.2(X ,O x ) =  0. □
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Theorem 4.3.17. Let X  C T  be a general dP2/Fl in one of the families in Table f . l  

then P ic (X ) “  Z 2.

1, 2 and 3. By Proposition 4.3.15, H2(X i) =  Z 2 for some model X , obtained by some 

flips, flops or antiflips from X . On the other hand, Lemma 4.3.16 implies H ^ X j, O xJ  =  

H2(X ,, Oxi) =  0. Applying this to the exact sequence

enables one to see H 1(X i,O x i) — H2(X j,Z ) ; hence P ic(X i) =  Z 2. The fact that X t is 

isomorphic to X  in codimension 1 shows that P ic(X ) =  Z 2.

1, 2 and 3. But we know that any such X  is obtained by a blow up of a Fano 3-fold, 

where the Picard rank is 1 as in each case the hypersurface is general, or P (l, 1 ,1 ,2),

4.4 Linear systems on T

In this section, we show that any hypersurface X  C X  under the hypothesis of Theo­

rem 6.4.5, which does not appear in the Table 4.1 either is not a dP2 fibration (Defini­

tion 4.2.1) or does not provide an X-Sarkisov link.

Let us fix a general setting for JF and X . Let T  be the rank two toric variety with 

Cox ring Cox(Jr) =  C[u, v, X i,x2, x 3, xf\ and irrelevant ideal I =  (u, v) fl (aq ,. . . ,  x 4) with 

the action of (C*)2 defined by

where aj are non-negative integers and {& i,. . . ,  64} — {1 ,1 ,1 ,2 }  such that the coordinate

Proof. Let X  be a general dP2/Fl in one of the families of Table 4.1 except families

In order to finish the proof, we must show that Pic,(X) =  Z 2 for a general X  in families

which completes the proof. □

(4.4)
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variables of Cox(Jr) are in order u =  v ~< x\ V x% V X3 P X4. Let X  be a hypersurface 

of X  defined by a homogeneous polynomial of bi-degree (cu, 4) with respect to the action 

above. We sometimes switch these variable names to our favourite u, v, x, y, z, t when we 

need to write explicit equations. Otherwise, we keep this notation, as it enables us to 

consider the order of variables without confusion about the position of the variable t and 

having to divide into three types described at the beginning of Section 4.2. .

4.4.1 Elimination process

In this subsection, we provide the key tools to eliminate cases which do not occur in 

Table 4.1.

In the following lemma, we consider the coordinate variables of T  to be u ,v ,x ,y , z ,t  

and the variable t corresponds to the coordinate, which has been acted by (A_7,/r2) G 

(C*)2.

Lemma 4.4.1. If X  is taken as a hypersurface in T , it fails to be terminal if any of the 

following holds:

1 . T  is of type (i), and e >  2c.

2. T  is of type (ii), and e >  0.

3. T  is of type (in), and e >  2.

Proof. In any of these cases, whenever t appears in a term of / ,  it is multiplied by a 

nonconstant polynomial in x ,y ,z ,  which implies r t C X . We recall that the curve r t is 

defined as r 4 =  (x =  y =  z =  0) C X . Therefore X  has a line of singularity, but 3-fold 

terminal singularities are isolated by [Rei80]. □

We are interested in cases that a =  M ob(X ). In particular, these are the cases when 

the type III and IV 2-ray game of X  follows the one from T . The following lemma helps 

us to eliminate cases when X  fails to follow such link at the beginning of the game.
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T h eorem  4 .4 .2 . Let X  C F  be defined as in 4-4- If X  is not obtained by one of the 

following, then either it is not a dP2 fibration or the first step of its 2-ray game cannot be 

obtained by the restriction of the one from T .

(i) « i =  a2 =  «3 =  a4 =  0 and u — 1.

(ii) £¿1 =  a2 =  a3 =  0 , a4 =  1 and uj =  0.

(in) o-i =  a2 =  0. <2304 0 and uj — 0.

(iv) X\ -< x2,X3,x$ and there is a monomial with only variables aq, £2, £3, £4 in the 

defining equation of X .

Proof. Assume Xi, x 2, x3, X4 have equal ratio weight, i.e. x\ =  x2 =  x3 =  x 4. Then there 

is no 'h, and the 2-ray game of T  is followed by a fibration to P (l, 1 ,1 ,2 ). Without loss 

of generality we can assume this common weight is zero. In other words, by adding a 

multiple of the second row of the matrix A to the first row we can assume A" C T  is 

defined by

If oj — 0, then X  =  P1 x dP2. If we denote the generic fibre by S , then H1(S', Os) =  0 

together with Exercise 12.6 in Chapter III [Har] implies that P ic(A ) =  Pic(S') x P ic(P1). 

And hence px >  2 and therefore X  is not a Mori fibre space. If u  =  1, then the equation 

of X  has the form u f =  vg for f ,g  degree 4 homogeneous polynomials in P (l, 1,1, 2). It 

shows that X  is the blow up of P (l, 1 ,1 ,2) along a curve defined by ( /  =  g =  0). This 

was done by restricting to X ,  which shows the 2-ray game of X  comes from P . This 

case was given as Family 1 in Table 4.1.

If uj >  1, then X  is generically an cc-cover of P (l, 1,1, 2), which fails to be a dP2 fibration.

To move onto the next case, suppose the ratio weight of x\,x2,xs  is equal and nor­

malised to zero and different from that of x4. In other words, X\ =  x 2 =  £3 -< :r4 and

0 0 1 1 1 2

1 1 0 0 0 0
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X  C T  is defined by

Ici f l 1 0 0 &1o

V 4 J1 1( 0 0 h h h  b4 1

for a positive integer a. In this case, the 2-ray game of X  is followed by a divisorial 

contraction to P =  Proj Cox(P7)(0i/c), with exceptional divisor (x4 =  0). If a; <  0, then
k

X  is reducible and hence not a dP2 fibration.

If io =  0 and a — 1, then p' is a divisorial contraction from X , which is case (ii). This 

forms Family 2 and Family 3 in Table 4.1. The failure of case u  =  0 and a >  1 is proved 

in Lemma 4.4.6 below.

The interesting case is when u  >  0. In this situation the image of restriction of the 

contraction on X  to X  is a surface, hence this map does not define the 2-ray game of X. 

This means that X  does not have an X-Sarkisov link. But when b4 =  uj — a =  1, we show 

in Example 4.4.3 that X  is non-rigid. Note that this case does not appear in Table 4.1 as 

the 2-ray game is given by a different ambient space. Apart from this special case, if X  

forms a dP2 fibration, we expect it to be non-rigid. For a discussion (no proofs) on the 

rigidity of this type of fibrations we refer to the next chapter.

For part (in), assume ai =  a2 =  0 and x 4,x 2 -< x 3,x 4. In this case, the 2-ray game 

of X  is continued by an anti-flip (or flop), which contracts P 1 x P1 to P1 and extracts a 

copy of P 1 x P(a3, a4). If uj =  0, then the restriction of this operation to X  will be a finite 

number (2 or 4) of disjoint anti-flips (or flops) of type (1,1, —a3, —a4). This is the case 

mentioned in (in).

If uj <  0, then the Picard number of X  is bigger than two, which is proved in Proposi­

tion 4.4.7. This shows that X  is not a d.P2 fibration.

If u j >  0, then the restriction of the ambient anti-flip (flop) defines an small contraction 

in one side and an isomorphism in the other side, which clearly does not read the 2-ray 

game of X .
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Assume x x -< x 2,x s,X4. In this case the 2-ray game of F  at the level of T i can be 

read as a flip (flop or anti-flip) of type {a, a, —/3i, — f32, —ft )-  It is obvious that this will 

restrict to a 3-fold flip (flop or anti-flip) on X  if the extracted surface, P(/5i, /52, /?3) with 

coordinate variables x2,x^,X4, intersected with X  defines a curve. This will be valid 

only if this surface is not a subvariety o f X . This means the defining polynomial of X  

must have at least one monomial with only ay variables. Note that if a term of the form 

x\ appears in the equation, X  will pass this step of the 2-ray game isomorphically and 

nothing contradicts our statements. □

Example 4.4.3. Let X  C F  be defined in the usual way by

i ( 1 i 0 0 0 —a
c

V 4 ) l 0 0 1 1 2 1

where a >  0 is an integer. It was shown in the proof of Theorem 4.4.2 that such X  does 

not have an F-\mk. Here we show that X  can be embedded into another scroll F ' such 

that X  has an P'-Sarkisov link to another Mori fibre space.

Let us fix the variables of F  in order by u , v, x, y, t, z as usual. The defining polynomial 

of X  is of the form u f  =  vg for some bi-degree (0 ,4) polynomials f ,g .  Now we apply 

unprojection operations of [PR04], Let s be a rational function defined by

5 =
/
v

9
u

with bi-degree ( — 1,4). Then treat it as a variable in equations us — g and vs =  f . This 

enables us to embed X  into the scroll F'\

/  1 1 0 0 0 —1 - a

l 0 0 1 1 2 4 1

where the variables in order are u =  v ^ x  =  y =  t ^ s ~ < z .  The variety X  is embedded 

into T' as the complete intersection of two hypersurfaces us =  g and vs =  f .
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X' is a 5-fold toric variety of rank 2 whose 2-ray game starts by an anti-flip (or flop) of 

type (1,1, —1, —a) over a surface P (l, 1, 2). Meaning, it contracts a copy of P1 x P(a, a, 2) 

to P (l, 1,1) in one side and extracts a copy of P (l, a) x P( 1 ,1 ,2) in the other side. The 

restriction of this map to X  defines an anti-flip (or flop), consisting 2 disjoint anti-flip (or 

flop) of type (1,1, —1, —a). Then it has a divisorial contraction to a codimension 2 Fano 

3-fold of index one defined by Kjj4 C P (l, 1 ,1 ,1 , 2,3).

The key point in this example is that the a C Mob(vY) but they are not equal. How­

ever, as —K x  is still in the pseudo-effective cone, we managed to find another embedding 

of X  for which M ob (X ) is the restriction of that of the ambient space. This allowed us 

to read —K x  £ Int(M ob(X )).

However, it is a fair point to mention here that the tie between the anticanonical class 

of X  and the mobile cone of X  plays a major role in rigidity of X . This will shape the 

idea of the next chapter. Lemma 4.4.4 below is a key eliminating tool for us, which is 

entirely based on this idea.

Before stating the lemma, we say a few words about the anticanonical classes of T  

and X . By Theorem 3.3.3 the anticanonical divisor of T  has bi-degree (2 — )P a ,, bt).

By adjunction we have

- K x  =  ( - K x - X ) \ x

and hence the anticanonical divisor of X  has bi-degree (2 — J2at ~~ !)•

L em m a 4 .4 .4 . Let X  be a hypersurface of IF, as in the assumption of Theorem 4-4-®> 

satisfying conditions of Theorem f .f .2  and Lemma 4-4-1, which has an T-link. If —K x  ~  

mD3 — nDu for a positive integer m and a non-negative integer n, then the last morphism 

of the 2-ray game of X  is not an extremal contraction.

Proof. The proof is given case by case, depending on the ratio weights of the variables. In 

each case we find a curve inside the exceptional locus of ip', which has positive intersection 

against the anticanonical class. This shows that the last morphism of the 2-ray game is 

not an extremal contraction.
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Case I 12 ^  £3 <  X4

Let C  =  (#i =  £4 =  /  =  0) C Exc (</>'), where /  is the defining polynomial 

of X . Note that the irrelevant ideal of the domain variety of ip' is defined by 

(u ,v ,x 1,x 2) fl (:t'3, x4). Therefore D 3 ■ C =  0, which implies

—K  ■ C =  0 — nDu • [x\ =  X4 =  /  =  0) <  0

Case II X\ -4 x2 — x3 ^  X4

Let C = (x2 =  x4 =  f  — 0). As the irrelevant ideal in this case is (u ,v ,x  1) fl 

(x2,x 3,X4), similar argument shows

—K  ■ C =  0 — nDu ■ (x2 =  X4 =  f  =  0) <  0

Case III X\ =  x2 =  x 3 -< X4

The irrelevant ideal in this case is (u,v) fl (xi, x 2, x3, X4). Without loss of gen­

erality we can assume that X  is defined by

r M
( 1 1 0 0 0 - a  \

l 4 1 1{ 0 0 h b2 63 b4 I

where a is a positive integer. Theorem 4.4.2 together with Lemma 4.4.6 implies 

u> =  0 and a =  1. As we consider general X , in this case there is nothing to 

prove, in fact m and n in the assumption cannot be found.

□

R em a rk  4 .4 .5 . Note that Lemma 4.4.4 implies that in order to have an W-link from X , 
it is necessary for the ratio weight of —K x  to be strictly less than that of the coordinate 

variable x3. This is simply saying that —K x  € Int(M ob(X )).
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L em m a 4 .4 .6 . Let X  C T  be defined by

0 0 0 

1 1 2

with variables in order u =  v ~ < x  =  y =  t - < z  with a G Z , a >  1. If the integer a is 

strictly bigger than 1, then the image of the last morphism of the 2-ray game of X  is not 

terminal.

Proof. If a >  1, then the image of IF under the last morphism of its 2-ray game is defined 

by the quotient of P (l, 1 ,1 ,1 ,2 ) by the action of 4 (1 ,1 ,0 ,0 ,0 ). In particular, this variety 

has a singular locus of dimension 2. Hence the image of X  under this map has non-isolated 

singularities (along a crve) and therefore is not terminal. □

P ro p o s it io n  4 .4 .7 . Let X  C F  be defined as before. If D =  (x3 =  £4 =  0) C X  forms a 

divisor on X , i.e. if the defining polynomial of X  is of the form x 3f  =  x^g, then px, the 

Picard number of X , is at least 3.

Proof. As in the assumption, let the defining polynomial of X  be £3/  =  £4g for non­

constant polynomials / ,  g. Let M  ~  (£1 =  0) and L ~  (u =  0) be two other divisors on 

X . We show that D, M  and L are linearly independent and hence P ic(X ) has at least 

three generators. To do so, we find three curves inside X  and compute their intersections 

with these divisors. These number form a 3 x 3 matrix. If the rank of this matrix is bigger 

than 3, we have shown that these divisors are linearly independent.

Consider three curves C\, C2, C3 C X  defined by

Ci =  (u =  £3 =  £4 =  0) C2 =  (£1 =  £3 =  £ +  4 =  0) C3 =  ({v =  £2 =  0 ) i l l )  

Computing intersection numbers gives:

f  L -C i L -C 2 L ■ C i ^ (  °  1 °  \

M -C i  M ■('■> M -C 3 = 1 * 0

V D -C i D -C 2 D Cs )  ̂ * 1 J
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where * denotes some numbers that we have no interest in computing them. Which shows 

that this matrix has full rank and hence px >  2. □

A typical example of a variety concerned in Proposition 4.4.7 has following shape:

X  E
1 1 0 0 - 1  

0 0 1 1 1

-2
2

Before we start the next section let us recall that T  is said to be of type (i), (ii) or 

(Hi) if the corresponding action of (C *)2 has the following representations. Note that an 

easy argument shows that any T  considered in this chapter has a unique representation 

in one of these types.

(0

(ii)

(in)

A

A

A

1 1

0 0

1 1 

0 0

1 1

0 0

C31o

- b
- c

1 1 1
■ > )

—a —b —c

1 1 1

—a —b —c - 1

1 1 1 2

0 < c , 0 < a < 6

0 < a < b < c

0 <  a <  b < c

where a, b and c are non-negative integers and the variables are it, v, x , y , t. The condi­

tions on the order of a, 6, c imply that in all cases above the variables x, y, z are ordered 

with x ■< y ^  z. And if T  is of type (ii) or (in), then t <  x.

Table 4.2 below gathers some computations of the anti-canonical class of T  and X , 

which we use later.

In the next two subsection, we explicitly analyse cases which do not occur in Ta­

ble 4.1 and give arguments why each of them fails. Our arguments are based on the 

materials provided in this part, namely Lemma 4.4.1, Theorem 4.4.2, Lemma 4.4.4 and 

Proposition 4.4.7.
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Type (i) Type (ii) Type (in)
- A > (2 -  a -  b -  c)L + 4M (2 -  a -  b -  c)L +  4M (1 -- a -  b — c)L +  4M
—K x (2 + e -  a — b — c)L + M (2 + e — a — b — c)L + M (1 + e -  a — b -  c)L + M

Table 4.2: Anticanonical classes of E  and X

4 .4 .2  H y p e r s u r fa c e s  in  s c r o lls  o f  T y p e  (ii)  o r  ( in)

Proposition 4.4.8. If E  is of type (in), then X  does not have a link to any other Mori 

fibre space except for e =  2, a =  b =  c =  1.

Proof. If e =  2, then Lemma 4.4.4 implies a +  c <  3, and that means a =  b =  c =  1. 

Under these numerical conditions a general X  passes the first step of the 2-ra.y game 

isomorphically and then maps to P2 with conic fibres. This forms Family 6 in Table 4.1. 

The case e >  2 is not concerned, due to Lemma 4.4.1. For e <  2, Lemma 4.4.4 does the 

elimination. □

Proposition 4.4.9. Suppose E  is of type (ii), and consider its 2-ray game of Type III or 

IV. Exactly one of the following cases occurs:

1. X  does not have an E-link, or

2. X  does have an E-link but it does not lead to an E-Sarkisov link on X , or

3. X  follows the 2-ray game of E  to a Sarkisov link, and we are in one of the cases

(A) e =  a =  0 ,b  =  c = l ,

(B) e — a =  b — 0, c =  1,

(C) e — —1, a =  b =  c =  0.

Proof. Suppose the given 2-ray game on E  does restrict to a Sarkisov link on X . In 

particular, X  has terminal singularities, so e <  0 by Lemma 4.4.1. If e <  0, Lemma 4.4.1 

requires Sk(u, v)t2 € / ,  where Sk is a general polynomial with variables u , v of degree — e =  

k >  0. The numerology presented in Table 4.2, shows that — K x  ~  (2 — k — a — b—c )L + M .
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This, together with Lemma 4.4.4, gives the inequality k +  a +  c <  2. But this can be 

satisfied only if k =  1 and a =  b =  c =  0, which is the case (3C).

In the case e =  0, a similar argument using the result of Lemma 4.4.4 forces a +  c <  2, 

and this leads immediately to cases (3A,3B) o r e  =  a =  6 =  c =  0. but this case gets 

eliminated by Theorem 4.4.2. □

In fact, all solutions (3A -3C ) provide Sarkisov links when X  is general; these are re­

spectively families No. 5, 2 and 1 in Table 4.1.

4 .4 .3  F a m ilie s  e m b e d d e d  in  T y p e  (i) s c r o lls

Let us recall that the variable with ratio weight zero is fixed to be x  throughout this part. 

The following lemma forces strong restrictions on / ,  the defining polynomial of X . It uses 

the condition on the singularities of X .

Lemma 4.4.10. Let X  C T  be a hypersurface of T  of a Type (i), defined by the polyno­

mial f  as

r
| c (

v 4 l
1 1 0  —a —b —c 

0 0 1 1  1 2

where a,b ,c >  0. If there is no term of the form Sd(u, v )xkl(y, z, t) in the equation of f ,  

then X  is not terminal, where l is either a linear form on y, z, t or is a constant.

Proof. By Theorem 4.4.2, /  must include at least a monomial with no u or v in it. This 

already means e >  0. Let T be the curve defined by (y =  2 =  t =  0). If e =  0, then x 4 6 /  

and there is nothing to prove. If e >  0, then T e l  and in fact by easy computations one 

could see that T C Bs|L>|. If there is no term of the form Sd(u,v)xkl(y, z ,t)  in / ,  then 

X  is singular along T. In particular, the singular locus of X  is not isolated and hence X  

cannot be terminal. □

If a,b,c  are all nonzero, then by Theorem 4.4.2 /  must include at least one pure 

monomial in the x ,y ,z ,t  variables. But this monomial cannot be x 4, as if otherwise
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holds, then Lemma 4.4.4 implies a +  c <  2 which cannot be satisfied for any pair of 

positive integers a and c. Hence abc ^  0 implies e ^  0.

On the other hand, if one of a,b,c  is zero, then Proposition 4.4.7 implies e =  0. If 

only two of a, b, c is zero, then irreducibility o f X  forces e =  0. The case a — b — c =  0 

has been considered in Theorem 4.2.3.

The following families have already been studied in Theorem 4.2.3.

, 0 \ / 1 1 0 0 - 1  - 1
X  G I C

4 / \ 0 0 1 2 1 1

x  e
0

4
c

1 1 0 0 0 - 1  

0 0 1 1 2  1

x  e
o

4
C

1 1 0  0 - 1 - 1  

0 0 1 1 2  1

Now we consider the families with e >  0. We will specify each family by a sequence 

of positive integers correspond to (a, b, c; e) which represent the following:

, —e l  / 1 1 0 —a — b  — c
X  e  I c

4 1 \ 0 0 1 1 1 2

Note that the columns of the action matrix of T  are not necessarily in order. But the 

2-ray game is played each time after considering the appropriate order.

We also introduce two numbers n and k, which will simplify our notation, by

n =  a +  b +  c, k, =  2 +  e — a — b — c

Note that the number k is associated to the degree of the anticanonical class of X  and 

determines it uniquely as — K x  ~  k L  +  M . Let us recall that L  is the divisor linearly
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equivalent to (u =  0) and M  is the one equivalent to (x =  0).

We will be considering every X  defined by (a, 6, c; e) by varying n € N and spot families 

which link to a different Mori fibre space. The cases n =  0 ,1 ,2  have already been analysed.

• n =  3

The only option for n =  3 is when a — b =  c =  1. By Lemma 4.4.1 e <  c, which can only 

be satisfied by e =  1,2. The analysis of the case (1 ,1 ,1 ; 1) is the Family 7 in Table 4.1.

A  general X  defined by (1 ,1 ,1 ; 2) is not terminal as it does not not satisfy conditions 

of Lemma 4.4.10.

• n =  4

This case has only two possibilities: (1 ,1 ,2 ; e) and (1,2, l ;e ) .  By Lemma 4.4.10 we 

must have e <  2. If e <  2, for both cases X  fails to satisfy Lemma 4.4.4. Remaining 

cases provide 7r-Sarkisov links to other Mori fibre spaces. These are Families 8 and 9 in 

Tables 4.1.

• n =  5

Different partitions of 5 allow us to have (1 ,1 ,3 ; e), (1 ,3 ,1 ; e), (1,2, 2; e) or (2 ,2 ,1 ; e). 

For the first two cases, e cannot be less than 3 as otherwise it fails to fulfil the criteria 

of Lemma 4.4.4. It also cannot be more than 3 because of the condition imposed by 

Lemma 4.4.10. A similar argument for the other two cases bounds e to be equal to 2. 

However, (1 ,3 ,1 ; 3) does not have Picard number two by Proposition 4.4.7. (1,2, 2; 2) 

also fails to satisfy Lemma 4.4.4 condition. The only remaining cases win to provide 

.F-Sarkisov links form Families 10 and 11 in Table 4.1. •

• n =  6

Possible partitions of 6 give three candidates (1 ,1 ,4 ; e) , (1, 2,3; e) , (2 ,2 ,2 ; e). Apply­

ing numerical conditions imposed by Lemma 4.4.4, Lemma 4.4.10 and Proposition 4.4.7, 

and running the elimination process, we are left with the (1 ,1,4 ; 4) and (1 ,2 ,3 ; 3). In
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Lemma 4.4.11, a reason for failure of (1 ,1 ,4 ; 4) is given. The case (1 ,2 ,3 ; 3) is precisely 

the Family 12 in Table 4.1.

L em m a 4 .4 .11. Let X  C T  be defined by

1 1 0 

0 0 1

- 1

1

with variables u, v , x, y , z, t and equation f . Then a general X  has Picard number strictly 

bigger than 2.

Proof. The proof here is the standard method used in Proposition 4.4.7. The only differ­

ence here is that instead of working with X  we consider X\, obtained by flopping a curve 

in X . Considering the 2-ray game of X  restricted from that of J7, there is an Atiyah flop 

on X  because we have a term r 2tG  / ,  which allows one to eliminate t in a neighbourhood 

of r x. As X i is obtained by flopping a curve in X ,  they have isomorphic Picard groups. 

Hence px, >  2 implies px >  2.

In order to finish the proof, we need to show that there are at least three divisors on 

X lt which are linearly independent. We specify three divisors below and then conclude by 

proving they have non-linearly dependent intersections with three specific curves inside 

X i. After a suitable change of coordinates we can assume /  =  yz(y — z) (y — Az) +  t(x2 +  g ) 

(for some fixed cross ratio A), where g is a polynomial o f bi-degree (0,2). Setting t =  0 

in X i leaves 4 divisors above the four roots 0,1, A, oc of the quartic in y, z, each of them 

a divisor in X i isomorphic to P,2.v:x . Let D  be the divisor defined by (y =  1, z =  t =  0) 

and suppose L ~  (u =  0) and M  ~  (x =  0) are two other divisors of X 1. We show that 

these divisors are linearly independent.

Define three curves on X 1 by

Ci =  (v =  x  *= /  =  0), C2 =  (v =  z =  f  =  0), C3 =  (x =  y =  t =  0)
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Computing the intersections leads to

/  C\.L C\.M C\.D \ ( 0 2 l \

c 2.l c 2.m c 2.d = 1 2 0

\ c 3.l c 3.m c 3.d  ) l 1 1 o j

This matrix has full rank and this completes the proof. □

• n =  7

Considering different partitions of 7 and applying the numerical elimination process 

as before, it turns out that there is only one family o f three-folds for which a general 

member is not birationally rigid, which is (1 ,2 ,4 ; 4). This forms Family 13 in Table 4.1. 

The following lemma shows that we only need to consider cases where n <  7.

L em m a 4 .4 .12 . Any X  with n > 7 does not link to any other Mori fibre space by an 

T  -link.

Proof. Let X  be defined by

( ~e \ (  1 1 0 - a x - a 2 - a 3

4 )  y  0 0 1 f t  f t  f t

where { f t ,  f t ,  f t }  =  {1, 1, 2 } and variables are in order u =  v -< x ■< X\ ■< x 2 ^  x3. 

Lemma 4.4.10 implies e € {a* — m. \ 1 <  * <  3 , m =  0 ,1 }. By the adjunction formula 

—K x  ~  (2 — m +  oti — Eatj)L +  M . To fulfil —K x  € Int(M ob(A ’)), the requirement of 

Lemma 4.4.4, we must have

m -{- ol\ T  cx2 T  cx3 Oi{ <  2 +  —
f t

Proposition 4.4.7, together with Lemma 4.4.4 and Theorem 4.4.2, shows that this inequal­

ity has no solution for any choice o f m and i. □
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Chapter 5

Stability and rank 3 toric varieties

We begin this chapter by discussing previous works regarding the behaviour of some bad  

models of low degree del Pezzo hbrations. In the examples we know, this occurs when 

the 3-fold X  has a critical locus in some sense; for example an unexpected singular point. 

The main idea concerns a stability condition for degree 3 del Pezzo hbrations due to 

Corti and Kollar. We summarise these notions in Section 5.1. In Section 5.2, we show 

how our methods of working with rank 3 toric varieties, explained in Chapter 3, allow 

one to analyse Ivollar’s maps explicitly. The remainder of this chapter is a first attempt 

to generalise the notion of stability to degree 2 del Pezzo hbrations which coincides with 

Corti’s notion o f standard model [Cor96].

5.1 Historical notes

Many examples of nonrigid dP2 hbrations were produced in Chapter 4. It would be 

interesting to see under what conditions a dP2 hbration is birationally rigid. Section 5.1.1 

presents the work of Grinenko, which seems to provide the most suitable conditions for a 

low degree del Pezzo hbration to be birationally rigid.
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5.1.1 Grinenko’s results

C on stru ctio n  o f  dP2 fibration s.

Grinenko in [GriOOa] §3.1, [Gria] §3.3 proposes the following construction for degree 2 del 

Pezzo fibrations over P 1.

Consider a rank 3 vector bundle £ over P1 defined as

£ — Opi ©  Opi(n i) ©  Opi (n2)

where 0 <  n\ <  n2, and let V  =  Projpi £  that is, the fibrewise projectivisation of £. There 

is, of course, a natural projection ir: V  —>■ P1. Let M  denote the class of the tautological

for some integer a.

The 3-fold X  constructed this way, defines a smooth dP2 fibration for suitable (ni, n2, a). 

After this construction, Grinenko considers the 2-ray game of these varieties as a way to 

study their rigidity. In contrast with our construction in Chapter 4, Grinenko’s varieties 

form the smooth cases of our studies, i.e. when X  is defined by

R ig id ity

After studying birational geometry of these varieties, Grinenko proposes the following 

statement.

C o n je c tu re  5 .1 .1 . [ [Gric], Conjecture 1.5] [ [GriOOa], Conjecture 1.6] [ [Gria], Conjec­

bundle which satisfies 7r*(9 (M ) =  £, and L the class of a fibre of 7r. Let X  be a 2-to-l 

cover of V  branched over the divisor

R =  4M  +  2 aL

1 0 —ni

0 1 1

ture 2.5] Let X  be a (smooth) del Pezzo fibration of degree 1,2 or 3. Then X  is birationally
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rigid if and only if —I\x ^ Int(M ob(X )).

In fact, this conjecture was proposed for smooth cases only in [Gric] and [GriOOa], 

while it is stated without the smooth condition in [Gria].

R em a rk  5 .1 .2 . This conjecture is proved for smooth hbrations with degree 1 in [GriOOa] The­

orem 2.6, and it is proved for smooth degree 2 del Pezzo fibrations which satisfy some 

extra conditions in [GriOOa] Theorem 3.1.

An interesting question, arising naturally, is the following:

Q u estion  5.1 .3 . Up to what extent of generality does the conjecture above make sense?

Example 4.4.4 in [BCZ04] shows that this conjecture does not hold in general for degree 

3 del Pezzo hbrations. In that example, they consider a 3-fold X , which is a degree 3 

del Pezzo hbration over P1 with an isolated cD4 singularity. They show that — K x  £ 

Int(M ob(X )), but X  is birational to another dP3 hbration X ' with —K x' £ In t(M ob(X ')) 

and X ' is birational to a conic bundle over P2. In other words, X  is not birationally rigid. 

This example is explained in Example 5.1.7 below. This example suggests that the notion 

of stability (for cubic surface hbrations) may be the solution to Question 5.1.3.

We construct an analogous example of dP2/F1 in Example 5.3.2 which demonstrates 

that the conjecture does not hold with weakened conditions. In fact it shows that the 

conjecture is not true even if we consider Gorenstein varieties.

5.1.2 Kollar’s stability and rigidity of cubic fibrations

In [Ivol97], Kollar introduced the notion of stability for hypersurfaces inside projective 

space defined over a principal ideal domain. After a brief review of his work, we discuss 

the relation of stability to rigidity of cubic hbrations. Everything in this section is taken 

from [Cor96], [Kol97] and [BCZ04],
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D efin ition  5.1 .4 . ( [Kol97] 2.1) Let O be a principal ideal domain with field of fractions

K. A weight system (x , u) on O[y0, . . . ,  yn\ is a choice of coordinates

(x0, . . . ,  xny  =  M  (y0, . . . ,  yn)\ where M  £ SL(n +  1, O )

and weight of each x l is cj* G R. The weight system (x, ui) is called integral (respectively 

rational), if u>i £ Z  (respectively w; G Q). The weight system is called trivial if Ui are 

equal.

D efin ition  5.1 .5 . ( [Kol97] 3.2) Let f x  £ K[yo, . . .  ,y n] be a polynomial and p £ O be 

a prime element. There exist s £ 7L and p' £ O prime to p such that /  =  p~s.p'.fx £ 

O[yo, • • •, yn]- Such /  is called the 0 -m odel of Jk  and the largest s with this property is 

called the multiplicity of f x  at p; we denote this by multp fx -

D efin ition  5 .1 .6 . ( [Kol97] 3.3) Let the notation be the same as in Definition 5.1.5. 

Suppose /  G 0 [ y o , . . . ,  y„]  is a homogeneous polynomial and X q  C  the hypersurface 

defined by the equation ( /  =  0).

(5.1.6.1) An integral weight system (x ,u )  over O is called

stable (resp. semistable) at p over O  for every prime p £ O. f  (or X q ) is called

properly stable

semi-stable

unstable

(5.1.6.2) /  (or X q ) is called properly stable (resp. semistable) at p over O  if every weight 

system is properly stable (resp. semistable) on /  at p.

(5.1.6.3) /  (or X 0 ) is called unstable at p over O if there is an unstable weight system on 

/  at p.

(5.1.6.4) /  (or X q ) is called properly stable (resp. semistable) over O if it is properly
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unstable over O  if it is unstable at p over O for some p.

W ith (pux) we mean the obvious set of coordinates (pP°x0, . . .  ,pWnx n).

A  p ro ce d u re  to  find  sem istab le  m o d e ls .( [Kol97] 4.3) We start with a homogeneous

polynomial f K <E K[y0, . . . , y n\.

S tep  1 : Find any (9-model / i  of fx -

S tep  2 : Assume that we already have fj. If f j  is semi-stable at every prime p , then we 

are done.

S tep  3: Otherwise there is a prime p and an integral weight system (x,u>) which is 

unstable on fj. Set

f j + i =  P~s-fj(puoxo, • • •,Punxn), where s =  multp ffp ^ x )  , 

and go back to Step 2.

E xam p le  5 .1 .7 . [ [Cor96] Example 5.8., [Kol97] Example 6.4.3., [BCZ04] 4.4.4.] Let J7

be a rank 2 toric 4-fold defined by

(1) Cox(Jr) =  C [u ,v ,x ,y ,z ,t],

(2) the irrelevant ideal I  =  (u, v) fl (x, y, z, t) and

(3) the action of (C *)2 by

/  1 1 0 - 2  - 2  - 4

y  0 0 1 1 1 1

Consider the hypersurface X  C T  defined by polynomial /  of bi-degree (—4,3). For a

general X , this polynomial is a combination of polynomials from the Newton polygon of
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X :
deg of u, v coefficient

0 xy2 xyz x z2 x 2t

2 y3 y2z yz2 z3 xyt xzt

4 y2t yzt z2t xt2

6 yt2 zt2

8 t3

Let X  be defined by a special /  with the property that ul divide the coefficient poly­

nomials according to the table
i monomial

1 xyt xzt

2 y2t yzt z2t

3 xt2

4 yt2 zt2

6 t3

and general coefficients otherwise. The base locus of this system is the point pvt =  (0 : 

1; 0 : 0 : 0 : 1) G X . By Bertini’s theorem, X  is nonsingular away from this point. The 

germ (pvt G X )  =  (0 G ( C 4, x2+ y 3 +  z3 +  u6), in particular this point has a cD4 singularity. 

The fact that x 2t G /  implies —K x  £ Int(M ob(X )).

Let us consider X  as a cubic surface in P^, where K  =  C (u,v). By Definition 5.1.6, 

X  is unstable with respect to the weight system (3,2, 2,0) as

3
multM /^ (u 3x, u2y , u2z, t) =  6 <  - ( 3  +  2 +  2)

Running the stabilisation process on X , explained below, gives a square birational 3-fold 

X ' to X. This A" is defined by a polynomial g in the ambient variety of the weight system

l  1 1 0 - 1 - 1 - 1

l 0 0 1 1 1 1
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where the variables are u ,v ,x ',y ', z',t' for

x' =  u3x y' =  u2y z! =  u2z t' =  t .

The polynomial g is obtained by replacing x, y, z, t in /  with x', y\ z', t! and cancelling 

the factor u6. The variety X ' is smooth with an Eckardt point. It is easy to see that 

—Kx> G In t(M obpC )) and the JP'-link of X ' shows that X ' (and hence X )  is birational to a 

conic bundle. In particular, X  is not birationally rigid even though —K x  £ In t(M ob(X )).

P ro p o s it io n  5.1 .8  ( [Kol97] Proposition 6.4.2). In order to check semi-stability of a 

family of cubic surfaces over a one dimensional regular scheme, it is sufficient to use 

weight systems with the following five weight systems:

(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (0, 1, 2, 2), (0, 2, 2,3) .

5.2 Factorisation of Kollâr maps by rank 3 Cox rings

In this section we show how the stabilising maps of Kollâr for cubic surface fibrations, 

with Q-factorial terminal singularity and px  =  2, factor through Sarkisov links. In order 

to give our explicit links, we use our results on rank 3 toric varieties from Chapter 3.

L em m a 5 .2 .1 . Let X  be a dP3 fibration, in particular X  is Q-factorial with terminal 

singularity and P ic (X ) =  Iff. If X  is unstable, then it is unstable with respect to one of 

the weight systems

(2, 2,1,0) or (3,2, 2,0) .

Proof. W ithout loss of generality we can assume that À" is unstable at (u =  0) G 

Let the variables of P3 be x ,y ,z ,t .  If X  is unstable with respect to (1,0, 0,0), then the 

defining polynomial of X  is of the form u f =  xg and hence the central fibre (u =  0) splits 

into a conic (g =  0) and a plane (x =  0) =  P2. Therefore px  >  3.

If X  is unstable with respect to (1,1,0,0) ,  then collecting terms by increasing powers
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of x ,y  up to quadratic gives the defining polynomial of X  as

F  =  u2f  +  uxgi +  uyg2 +  x 2h\ +  xyhi +  y2h% ,

for some polynomials f ,g i ,g 2, hi, h2, /13 such that F  has the right degree. It is clear that 

X  is singular along the line (u =  x =  y =  0) as each point of this line has multiplicity at 

least 2. Therefore X  is not terminal.

If X  is unstable with respect to (1,1,1,0) ,  a similar argument shows that the point 

pvt has a canonical singularity x 3 +  y3 +  z3 +  vk +  . . . .  □

R em a rk  5 .2 .2 . Lemma 5.2.1 can be compared to [Cor96] §3, where Corti defined stan­

dard models of cubic fibrations and proves any non-standard model can be mapped to a 

standard one using one of the 3 weights (1,1,1,0) ,  (1 ,1,0 ,0)  or (1,0, 0,0).

T h e o re m  5.2.3 . Let X  be a dP% fibration, in particular X  is Q -factorial with termi­

nal singularities and P ic (X ) =  Z 2. If X/P 1 is unstable then the stabilising map has a 

factorisation through a Sarkisov link in one of the following ways:

(i) If it is unstable with respect to (3, 2, 2,0), then it can be stabilised by a weighted blow 

up at a point, followed by 3 Francia flips and a divisorial contraction to a point.

(ii) If it is unstable with respect to (2,1,1 ,0) ,  then it can be stabilised by a weighted blow 

up at a point, followed by 3 Atiyah flops and a divisorial contraction to a point.

Proof. Let X  C F  be a dP3 fibration, where T  is defined by

(a) C ox(J ') =  C[ii0, v0, xq, y0, z0, ¿o],

(b) the irrelevant ideal is Ij- =  (uq,Vo) fl (x0,y0, z0,to) and

(c) the action of (C *)2 is

/  1 1 —a —¡3 —7 —5

l 0 0 1 1 1 1
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for a, (3,7 , 6 >  0 integers. Suppose X  is defined by the polynomial /  of bi-degree (—e, 3).

Let O be the coordinate ring of P*o:t)o with field of fractions K  and consider the cubic 

surface X q : ( /  =  0) C P^. Assume X q is unstable with respect to (3,2, 2, 0).

In other words multUo f ( x 0ul, you^, zoUq, t0) >  6. We do the stabilising map for X a in a 

slightly different way. This is done in 4 steps.

S tep  1. Toric decomposition

Consider the rank 3 toric variety T  defined by

(a) Cox(Jr) =  C [u ,v ,x ,y , z,t,w\,

(b) the irrelevant ideal is Ip  =  (u, v) PI (x, y, z, t) D (v, w) fl (t, w) fl (u, x, y, z) and

(c) the action of (C *)3 is

/ 1 i —a —7 —5 0

0 0 1 1 1 1 0

Vi 0 3 2 2 0 - 1 /

By Proposition 3.3.2, f  is a (1,3,2, 2) blow up of T  at the point p =  (0 : 1; 0 : 

0 : 0 : 1 ) .  The blow up map is

p : Cox(.F) - »  Cox(X)

(Uo, Vo,  x 0, y0, ZQ,t0) (uw, v, xw3, yw2, zw2, t) .

Under this map the divisor E  : (w =  0) C T  gets contracted to the point p G T . 

Using the two components (w, v ) and (w, t ) of the irrelevant ideal of T  one can 

stabilise the actions of (C *)3 on E  by fixing v and t to be nonzero. This shows 

that E  ^  P(l ,  2,2,3).

Now consider the toric variety T ', where Cox{JF') is the same as that of T  but
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the irrelevant ideal is

Ip  =  (« , v) n (u, x ) n (w, y, z, t ) n (u, w) n (x, y, z, t ) 

and the action

/  1 1 —a  1 — /? 1 — 7 3 — 5 1 \

0 0 1 1  1 1 0
\ 1 0 0 - 1  - 1  —3 —1 y

which is obtained by an action of SL(3, Z ) on the action matrix of T .

Let T' be the rank two toric variety with

(a) CoxiJ7') =  C[wu v1,x 1,y 1,z 1, t1],

(b) the irrelevant ideal is I j  =  (tuj, v\) fl (xx, yl5 Z\,t\) and

(c) the action of (C *)2 is

/  1 1 - a  1 - / 3  1 - 7  3 - d

l 0 0 1 1 1 1

Similar to T the variety F ' is the blow up of T' at the point q =  (0 : 1 : 1 : 0 : 

0 : 0), with the map

ip: Cox/J7') —>• C ox (^ ')

(wl ,v1, x l l yu z1, t1) (uw, v, x, uy, uz, u3t) .

Similarly, the exceptional locus is the divisor E' =  P(l ,  1,1,3).

S tep  2. Flipping map r :  T  —>■ T '.

Let t : Cox(T') —> Cox(J7) be the identity map. We show that the induced map 

r : T  —» T 1 is an anti-flip.
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Let us recall the irrelevant ideals of these varieties:

h  =  K  v) n Oc V>z > n K w) n  (*>w) n  (« , x, y, z )

Ip  =  (it, v) n (it, x) n (w, y, z, t ) n (u, iu) n (x, y, z, t) .

Our proof here is set theoretic. Consider the set (v =  0), we show that r  

restricted to this set is an isomorphism. It is easy to see from the ideals above 

that (v =  0) implies uw ^  0 on both T' and T . Applying these conditions to the 

two ideals makes them identical; hence restriction of r  to (v =  0) is the identity.

Now let (v 7  ̂ 0). Hence we can use the first component of the (C *)3 action to 

stabilise v; we are left with

/ o i l  1 1 0

l 1 0 - 1  - 1  - 3  - 1

and ideals

h  =  ( x ,y , z , t )  n  (t,w)  n  (u,x,y,z ) ,  / 2 =  {x, y, z, t) n  (i, w, y, z) n  (u, x) .

An elementary set-theoretic argument shows that r  is an isomorphism away from 

(u =  x =  0) C Jr. But the locus (it =  x  =  0) C T  is isomorphic to the surface

1 1 1 0

0 0 2 1

with irrelevant ideal (y,z)  fl (t,w).  Similarly, the inverse of r  is an isomorphism 

away from (t =  w =  0) C J7', which is the Hirzebruch surface F( l) .  One can 

check this by restricting the ideal I\ and the action of (C *)2 to this set. In fact 

r  can be factorised as
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f  P

Q

where t ~  contracts the surface ( u  =  x =  0) to the line P*;z and r + contracts 

the surface (t =  w =  0) to the same line. In other words, r  is a transverse flip 

(2,1, —1, —1) along the line P^:z.

Step 3. Everything restricts to X .

The restriction of ip to X  is the blow up of the point p E X . O f course p E X , 

as otherwise we must have vkt3 E / ;  but this contradicts the assumption of X  

being unstable.

We claim that /  has at least one monomial containing only the variables y, z. If, 

on the contrary, this condition does not hold, it is easy to see that X  is unstable 

with respect to one of the weight systems (1 ,0 ,0 ,0 ), (1 ,1 ,0 ,0 ) or (1 ,1 ,1 ,0 ). This 

can be checked by drawing the Newton polygon of a cubic in P3 and arguing on 

the multiplicity. Therefore the exceptional locus of the blow up of p E X  is the 

weak Fano surface S3 C P (l, 2 ,2 ,3 ). The multiplicity is 6 by the assumption on 

the stability of X . It has become obvious that the restriction of the flip from 

the toric variety consists of 3 Francia flips.

Now consider the restriction of xjj to the image of this flip. We claim that the 

exceptional divisor in this case is isomorphic to P2. Note that /  must include 

the monomial x 2t, as otherwise the multiplicity condition on X  implies that X  

is unstable with respect to (1 ,1 ,1 ,0 ) and hence not terminal. On the other 

hand, E' is the set (u =  0). Using this and the irrelevant ideal of T ' , we can 

eliminate the variable i in a neighbourhood of this set using x2t E f .  Hence the 

exceptional divisor is isomorphic to P2.

Step 4. 2-ray game on X.

So far we have constructed a decomposition of maps from X  to X\  another

90



Chapter 5. Stability and rank 3 toric varieties

dP3/P 1. In fact the two copies of P1 that are considered in these two fibrations 

have coordinates (u0,v0) and (iui,Ui). But the construction of our maps show 

that (uo,vo) =  (tci,Ui) =  (uw,v); hence this P 1 is preserved by this decomposi­

tion. The following picture show this sequence of maps, which is nothing but a 

type I Sarkisov link.

The proof for the case where X  is a dP^/F1 fibration and is unstable with respect to 

(2, 2 ,1 ,0 ) is similar to this case. □

5.3 Stability of hypersurfaces in WPS

In this section, we give a stability condition for hypersurfaces of weighted projective space. 

This is the simplest generalisation of Kollar’s stability. A procedure to find semistable 

models of an unstable model could be lifted from Kollar’s procedure to this case, al­

though termination is a different issue. We rewrite this in our case and then compare the 

differences in examples in the next section.

W hat is missing? We do not claim that this definition of stability is the universal one 

as it is not constructed by means of any geometric invariant theory. However, it should 

become clear at the end of this section that if there is such a universal stability, then it 

should include ours as a part of it. This is because

(1) It does coincide with the notion of standard models of Corti for dP2 surfaces and 

his method of finding the standard models when restricted to P (l, 1 ,1 ,2 ) in all cases 

except for the special case [Cor96] 4.10.3.
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(2) It works well in the cases we study.

In fact, there is no GIT theory behind our definition as the automorphism group of 

weighted projective space is not reductive. A better attempt could perhaps be a similar 

consideration to the work of Ross and Thomas in [RT] where they study similar stability 

conditions of orbifolds.

On the other hand, a disadvantage of this definition is that we do not have a Sarkisov 

decomposition as in Theorem 5.2.3. This is shown in Example 5.3.2. However, we show in 

Proposition 5.3.5 that there is a way of stabilising that variety for which the stabilisation 

process is a Sarkisov link.

Stability. Let O  be a principal ideal domain with field of fractions K  as before. An 

integral weight system (x,ca) is called trivial if =  kcii for all i and some integer k.

Definition 5.3.1. Let /  G O[yo, . . . ,  yn] be a homogeneous polynomial with respect to 

the weights of the variables in the weighted projective space P =  P o (a 0, . . .  ,a n) and let 

X o  C P be the hypersurface defined by the equation ( f  — 0).

(5.3.1.1) An integral weight system (x , oj) over O  is called

(5.3.1.3) /  (or X o )  is called unstable at p over O  if there is an unstable weight system on 

/  at p.

properly stable

semi-stable

unstable >

(5.3.1.2) /  (or X o )  is called properly stable (resp. semistable) at p over O  if every weight 

system is properly stable (resp. semistable) on /  at p.

(5.3.1.4) /  (or X o )  is called properly stable (resp. semistable) over O  if it is properly

stable (resp. semistable) at p over O  for every prime p G O. f  (or X q ) is called 
unstable over O  if it is unstable at p over O  for some p.
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A procedure to find semistable models. We start with a polynomial f x  E K[yo, . . .  ,yn], 

which is homogeneous with respect to P.

Step 1: Find any O-model /i  of fx-

Step 2 : Assume that we already have fj. If f j  is semi-stable at every prime p , then we 

are done.

Step 3 : Otherwise there is a prime p and an integral weight system which is

unstable on fj. Set

f j+1 =  P~s-fj(puox o , . . .  ,U n£ „), where s =  multp f f p ux) , 

and go back to Step 2.

5.3.1 Unstable models of dP2 fibrations

Definition 5.3.1 gives a stability condition for dPz/F1. The following example shows that 

Conjecture 5.1.1 does not hold in general. In fact, it shows that this conjecture is not even 

true for Gorenstein case. As a matter of fact, if our definition of stability proves to be 

sensible then it might be reasonable to ask for the conjecture to be true for (semi-)stable 

dP2/P 1. Otherwise, there must be a better stability condition which suits the following 

example.

Example 5.3 .2 . Let P  be a rank 2 toric variety defined by

(i) C ox(P ) =  C [u ,v ,x ,t ,y ,z\ ,

(ii) irrelevant ideal I =  (u, v ) D (x, t, y, z) and

(iii) the action of (C*)2 by

/  1 1 0 - 2  - 2  - 4

l 0 0 1 2 1 1
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Let X  C  JF be a hypersurface defined by ( /  =  0), where /  is homogeneous of bi-degree 

(—4,4). A general such polynomial has the following Newton polygon:

deg of u, v coefficient

0 x3z t2

2 xy3 ty2 x2yz xzt

4 yzt xy2z y4 x2z2

6 xyz2 tz2 y3z

8 xz° yzz

10 yz3

12 z4

Let X  be defined by a special /  with the property that ul should divide the coefficient 

polynomials according to the table

i monomial

1 x2yz

2 xzt xy2z

3

coS*-+o

4 2 2 X Z

5 xyz2

6 tz2 y2z2

8 XZ

9 yz3

12 z4

and general coefficients otherwise. A simple computation using the Bertini theorem shows 

that A" is smooth away from the point p =  ( 0 : l : 0 : 0 : 0 : l ) .  The germ at this point 

is isomorphic to 0 £ (C 4, i 2 +  x3 +  y4 +  u12); in particular p is a cE§ singularity. Let 

O =  Opi Pu. Following our notation, X q is unstable at u with respect to (2 ,3 ,2 ,0 ). Let
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X q be the model obtained after one loop through the algorithm above that finds the 

semistable model. One can see that X q is unstable with respect to (1 ,1 ,0 ,0 ). One could 

compare this with [Cor96] 4.7.1 to see that X 1 is singular along a line and is not standard. 

Let us denote by X q  the model obtained by running the procedure one round for X q . It 

is again easy to check that X q is unstable with respect to (1 ,2 ,1 ,0 ). The model obtained 

by stabilising X q is stable; we denote it by X '. This 3-fold is defined by

/ 0 \ / 1 1 0 0 0 —1

l 4 y  l 0 0 1 1 2 - 1

and is general; in particular X ' is smooth and has an Jr-link by Table 4.1 to a Fano 3-fold.

Remark 5.3.3. Example 5.3.2 shows that Conjecture 5.1.1 does not necessarily hold for 

Gorenstein d i^ /P 1 with terminal singularities.

Remark 5.3 .4 . In comparison with stability of dP3/P1, the example above shows that 

the stabilisation with respect to a weight system for dP2/'P1 does not necessarily factor 

through Sarkisov links. However, in the next proposition we show that there is another 

weight system such that X  is unstable with respect to it and its stabilising process is a 

Sarkisov link.

Proposition 5.3.5. Let X  C T  be the dP2/P'i in Example 5.3.2 and X 1 be its stable model 

obtained by running the procedure as in the example. X  is also unstable with respect to 

the weight system (4 ,6 ,3 ,0 ), and the procedure to stabilise X  with respect to this weight 

system is a Sarkisov link.

Proof. One checks easily that X q is also unstable with respect to (4,6, 3,0) with mul­

tiplicity 12. Running the procedure for this weight system can be factorised in a blow 

up of the point p E X , followed by 2 flips (3,1, —1, —1) and a divisorial contraction to a 

point with exceptional divisor isomorphic to P (l, 1,2). These can all be done in exactly 

the same way as in the proof of Theorem 5.2.3 using the rank 3 toric variety T  defined by

(i) C ox(T) =  C [u ,v ,x ,t,y ,z ,w ],
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(ii) irrelevant ideal I =  (u, v ) n (x, y, z, t) fl (u, x, t, y) fl (w, v) PI (w, z) and

(iii) the action of (C*)3 on Cox(T) by

t 1 1 0 - 2 - 2  - 4  0 \

0 0 1 2 1 1 0

\ 1 0 4 6 3 0 - 1  )

Note that the essential monomials for this computation are t2, ty2 and x3z, which 

allow one to restrict all maps of the 2-ray game of T  of Type I to X .

5.3.2 Other stability conditions

It has become clear that our definition of stability for dP2 surfaces over O is sensible but 

not quite universal. There are few options that one could think of as the better stability 

set up. But studying each of these in a appropriate way requires much more work; perhaps 

as a project. We just outline the ideas of each.

(1) Take S : ( / j  =  0) C P (l, 1,1, 2) and consider the embedding of P (l, 1,1, 2) in P6 by 

0(2). Then consider the hypersurface defined by the image of ( /  =  0) in P6; define 

some stability on it in the sense of Corti-Kollar which restricts suitably to the image 

of S. This is inspired by [Cor96] 4.11.

(2) Consider the Kodaira embedding of P (l, 1 ,1 ,2 ) in P =  P (l, 1 ,1,2, 2, 2, 2, 2, 2,2). Con­

sider the reductive part of the automorphism group of P, that is GL(3, Z ) x GL(7, Z), 

and look at the image of ( /  =  0) in P. Again, define a stability which is compatible 

in components and restrict it to the image of S. The advantage of this construction 

is that the restriction of this reductive part is exactly the automorphism group of 

P (l, 1 ,1,2). This idea is inspired by the work of Ross and Thomas on stability of 

orbifolds [RT],
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(3) Instead of working with integral weight systems, consider rational weights.

In fact, we do not know if these lead to different theories or not, or which of them is 

the most suitable and the correct one! However, we know that the good candidate must 

match with the set Tip that we worked with throughout this section. On the other hand 

the following theorem shows that at each step of the semi-stabilisaion process, introduced 

in this chapter, the singularities of the variety improve.

Theorem 5.3.6. Let X  C X  be a GÌP2/IP1 fibration as before. Suppose X  is unstable with 

respect to (u0,. ■ ■ ,uj3) at p =  (u =  0) and let D  =  (u =  0) C X  be the fibre above p, 

considered as a divisor in X . Let X ' E X' be the model obtained after running the process 

of stabilisation one time. Then

a(v, I\ j’ +  X'') P a(y, K.jr X  +  ('fi ' ay — ,

where a(v,A ) denotes the discrepancy of the divisor A with valuation u.

Proof. By Lemma 2.21 in [Cor96], it is sufficient to show that a(zyg,AV +  X  +  —

m )D ) <  0, where Ue is the valuation correspond to the ^^-exceptional divisor E  for 

0 : X  ---> X ’. A  simple calculation (c.f. [Cor96] Lemma 2.21) together with the conditions 

on unstability of X  at p implies that a =  — m < 0. □

5.4 A nonrational variety with big pliability

In this section, we give an example of a nonrational Mori fibre space with pliability strictly 

bigger than 2. This example is interesting only because of its exciting nature that allows 

us to run many explicit calculations on it.

Let X  be a rank 2 toric variety with

(i) Cox(Jr) =  C [u ,v ,x ,t,s ,y ,z\ ,

(ii) irrelevant ideal I =  (■u, v) fi (x, y, z, t),
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(iii) and the action o f (C*)2 given by

/  1 1 0 - 1  - 2  - 1  - 1

l 0 0 1 2 3 1 1

Let Di ~  3(x  =  0) — (u — 0) and D 2 ~  4(x =  0) — 2(u =  0) be two divisors on T  and 

let /  and g be general polynomials with /  G H°(.F, D\) and g G H°(Jr, D 2). Suppose X  

is the 3-fold complete intersection defined by ( f  =  g =  0) C  T. We have

/  =  us +  x y +  xt +  v2yv +  . . .  and g = xs  +  t2 +  x 2y2 +  . . .

It is easy to check, using the methods in Chapter 4, that X  has at worst terminal singu­

larities, P ic (A ) =  Z 2 and generic fibre of X  —>■ P1 is a dP2 surface; Hence X  is a dP2/P1 

model.

One can run the 2-ray game of P  and restrict it to X  as in Chapter 4 to check that 

X  has an W link starting with a flop, followed by a flip (3 ,1, —1, —1) to a dP,4 fibration 

over P1. Note that X  is singular away from the point p =  (0 : 1; 0 : 0 : 1 : 0 : 0), 

which is terminal quotient of type ^(1,1,2) and the flip in the 2-ra.y game of X  gets rid 

of this singularity. The (¿F4/P1 at the end of the link is smooth and general in the family. 

Following [Shr06], by [Ful98] Example 3.2.11 one can see that the Euler characteristic of 

this dP\f P1 is x  — —28. Using the following result of Alexeev we conclude that X  is not 

rational.

Theorem 5.4.1 ( [Ale87] Theorem 2). Let V  be a standard fibration by del Pezzo surfaces 

of degree 4 over P1. If the topological Euler characteristic x(U ) 7̂  0, —4, —8, then V  is 

not rational.

So far we have shown that X  is not rational but it is nonrigid with a dPA/P1 model. 

The aim is to find another model for X . We do this by blowing up the singular point on 

X .

Let T  be a rank 3 toric variety defined by
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(i) Cox(T) =  C[u', v', x ', t', s', y', z\ w],

(ii) irrelevant ideal I =  (■u',v') PI (x ',y ',z ',t ') fl (u ',x ',t',y ',z ')  fl (v',w) fl (s',w ),

(iii) and the action of (C*)3 given by

/ 1 1 0 —1 —2 —1 —1 0 \
0 0 1 2 3 1 1 0

\ 3 0 4 2 0 1 1 - 3  /

By Proposition 3.3.2, T  is the blow up of T  at the point p. The blow up map T  —> T  

in coordinates is

4 2 1 1
(V , v', x', t ,s  ,y  , z1, w) (u'w, v', x'w z , t'w5, s', y'w^, z'w* )

One can see that this map restricts to X  as the Kawamata blow up of the point | (2 ,1,1). 

It is also easy to see that T  is not well formed. Using our methods in Chapter 3, one can 

get the well formed matrix

/  1 1 0 —1 —2 —1 —1 0 \

0 0 1 2 3 1 1 0

\ 1 0 1 0  0 0 0 - 1  /

Now define T' to be a rank 3 toric variety with

(i) Cox(T ') =  C ox(T),

(ii) irrelevant ideal /  =  (« ',  v') Cl (x1, y ', z', t') Cl (u1, x') H (tr, y', z', s', w)) Cl (v', w),

(iii) and the action of (C*)3 given by

/  1 1 0 —1 —2 —1 — 1 0 \

0 0 1 2 3 1 1 0

\ 1 0 0 —2 —4 —1 —1 —1 /
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A similar computation to the one in the proof of Theorem 5.2.3 shows that there is 

a flop T  - -a  T', which restricts to the blow up of X  as the flop of 4 disjoint lines. In 

particular T' has a divisorial contraction to to the rank 2 variety T' with

(i) Cox(Jr) =  C [w ,v ,x ,t ,s ,y ,z ],

(ii) irrelevant ideal I =  (re, v) fl (x , y, z, i),

(iii) and the action of (C*)2 given by

/  1 1 - 1  - 1  - 1  - 1  - 1

i 0 0 1 2 3 1 1

Note that we abuse the notation for coordinate systems on T  and T'\ But this must 

not cause any problem! This map restricts to the birational transform of A" as a divisorial 

contraction to X 1, contracting a copy of P (l, 1,2) to a nonsingular point. Considering all 

these maps, the defining polynomials of X ' are

/ '  =  s +  w2 +  x2y +  wxt +  v2y3 +  . . .  and g' =  xs  +  ¿2 +  w2x2y2 +  . . .

The key point is that we are left with a linear term in s. This allows us to eliminate the 

variable s globally on X . In other words, X  defined by

- 1

2
- 1

1

- 1

1

It was shown in Theorem 4.2.3 that X ' is birational to a conic bundle.
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Chapter 6

Cubic surface fibrations over P2

Cubic surface fibrations over the projective 2-space form a class of Mori fibre spaces 

in dimension four. In this chapter we construct some families of varieties in this class, 

constructed as hypersurfaces inside rank two toric varieties, by methods similar to the 

dPo fibrations in Chapter 4. The aim is to study their birational geometry and compare 

with the situation in 3 dimensions.

6.1 Construction

Definition 6.1.1. A 4-fold cubic fibration over P2 is a normal, irreducible, projective, 

complex variety X  such that

(a) X  is Q-factorial with at worst terminal singularities,

(b) P ic X  =  Z2,

(c) there exists an extremal morphism of fibre type tp: X  —> P2, and

(d) the generic fibre of ip is a degree 3 del Pezzo surface.

We denote this by dP3/P 2.

Let T  be a weighted bundle over P2 defined by
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(i) Cox(J7) =  C[it, v, w, x , y, z, f],

(ii) Ijr =  (u ,v ,w ) C (x ,y ,z , t ),

(iii) (C*)2 action defined by

i l l l a / 3 ' y  6

I 0 0 0 1 1 1 1

for a , P , j ,ô  G Z.

(6.1)

6 .1 .1  C o n s t r u c t io n  a s  h y p e r s u r fa c e s

Without loss of generality we can assume that matrix above is of the form

/  1 1 1 0 —a —b —c

l 0 0 0 1 1 1 1
(6.2)

where a < b < c are non-negative integers. In particular, the variables are in the order 

u =  v ^ x ^ y < z < t .

Lemma 3.3.6 in Chapter 3 shows that P icT  =  Z2. We denote the basis of Pic(F) by 

L , M , with sections u E L) and x G H0^ ,  M ).

Let D  G |4M  + dL\ be a divisor in T  for d G Z and suppose X  C J7 is a hypersurface 

defined by X  =  ( /  =  0) C T  for a general /  G Ojr(D). The aim is to study the birational 

geometry of those X  specified by (a, b, c; d), which satisfy the conditions of Definition 6.1.1.

6.2 d P z / F 2 models

In this section, we find those (a, b, c; d) for which the 3-fold X  forms a degree 3 del Pezzo 

surface fibration over P2, as in Definition 6.1.1.

Lemma 6.2.1. Let X  C T  be a general hypersurface defined as in 6.1.1 by sequence of 

integers (a, b, c; d), where 0 < a <  b <  c and d >  0. Then a general X  is a d,P3/P2.
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Proof. If d >  0, then the defining polynomial of X  is of the form /  =  uf\ +  vfo +  w f3 

for some polynomials / ,  with bidegree (d — 1,3). It implies that the base locus of the 

linear system |3M  +  dL| is empty and hence by the Bertini theorem X  is smooth. By 

Theorem 6.4.4 below, Pic(Jsi )  =  Z 2 and hence X  is a d.P3/F2. □

Lemma 6.2.2. Let X  C T  be defined by (a, b, c;0 ) as before. Then X  forms a dP3/F2 

for any triple (a, b, c) except for a  — b =  0, c >  1.

Proof. It is easy to check that for any (a, 6, c), the base locus of |3M| is empty and 

therefore X  is smooth. If a =  b =  0 and c >  1, then a typical argument shows that the 

Picard number of X  is at least 3. By Theorem 6.4.4 P ic(X ) =  Z 2 for all other cases. □

Lemma 6.2.3. Let X  C IF be a hypersurface defined by (a^b^c^d) as in 6.1.1, where 

0 < a < b < c and d <  0. Then X  is a dP3/F2 if

(i) the defining polynomial of X  includes a monomial of the form gk(u, v, w)x2L (y , z, t), 

where gk is a homogeneous polynomial in variables u, v , w of degree k >  0 and L is 

a linear form in y, z , t, and

(ii) one of the following holds

d <2>a <2>b or d <  3a <  36

Proof. If a =  b =  c =  0, then |3M  +  dL\ has no sections. If a =  b =  0 and c >  0, then 

/  =  t.g, hence X  is reducible. If only a =  0 and be 0, then a similar argument to the 

one in Proposition 4.4.7 shows that px >  2.

Let 0 < a < b < c and suppose one of the d < 3a <  36 or d <  3a <  3b holds. Then 

Theorem 6.4.4 implies that P ic(X ) =  Z 2. If d =  3a =  36, then by a similar argument to 

Lemma 4.4.11, px >  2 and hence X  is not a dP3/F2.

Now suppose X  is defined such that 0 < a < b < c. If the polynomial /  has no term of 

type gk(u, v, w)x2L {y , z, t), then a generic point on the surface S =  (y =  z =  t =  0) C X  

has multiplicity at least 2. Therefore X  is singular along a 2-dimensional space. Therefore
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X  is not terminal. If /  has such a term, then it is either smooth or it is singular only at 

finitely many points or along a line. □

Combining Lemma 6.2.1, Lemma 6.2.2 and Lemma 6.2.3 enables us to give the fol­

lowing characteristic theorem.

T h e o re m  6 .2 .4 . Let X  C. X  be a general hypersurface defined by (a,6, c; g?). Then one 

of the following holds:

(1) If d >  0, then X  is non-singular and satisfies conditions stated in Definition 6.1.1 .

(2) If d =  0, then X  is a dP3 fibration by Definition 6.1.1 for any triple (a, 6, c) except 

for a — b =  0, c >  1.

(3) d <  0 and

(a) 3c <  —d, |4M  +  dL\ has no sections.

(b) 3a <  36 <  — d <  3c and X  is reducible, hence not a dPs fibration.

(c) 3a <  —d <  36 <  3c and X  has Picard number px >  2, hence does not satisfy 

conditions of a dP3 fibration.

(d) —d <  3a. In this case, X  is a dP% fibration over P2 only if the equation of f  

has a term of the form gk(u,v,w )x2L(y, z ,t) in it, where g& is a homogeneous 

polynomial in variables u , v, w of degree k >  0 and L is linear.

6.3 d P z / F 2 as Mori dream spaces

In this section we show that unlike dimension 3, all d,Ps fibrations constructed above have 

a 2-ray game which is the restriction of that of the ambient space we consider. The idea 

is based on the following lemma of Kawamata, Matsuda and Matsuki.

L em m a 6 .3 .1 . ( [KMM87] Lemma 5.1.17) If if: X~  —> X + is a flip (flop or antiflip) 

with exceptional loci E~ C X~ and E + C X +, then the pair (dim E ~, dim E +) is exactly
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one of the pairs

(2, 1) (2,2) (1,2) .

Theorem 6.3.2. Let X  C T  be a cubic fibration over P2 obtained from one of the cases 

in Theorem 6.2.4■ Then the Type III or IV 2-ray game of J7 induces the game on X .

Proof. We prove the theorem case by case on the sign of d and we show that in each case 

the conditions on the dimension of contracted loci by Lemma 6.3.1 are satisfied.

Let d >  0. If a >  0, then the 2-ray game of J7 is continued be a flip which restricts 

to X  with dimension pair (1,2). For a =  0 and b >  0, the situation is (2,1) and for 

a =  b =  0 the game finishes by a divisorial contraction or a fibration; Which is fine as far 

as the 2-ray game of X  is concerned.

For d =  0, If a >  0 then the first step of the game of J7 induces an isomorphism on 

X  and the second step is of type (2 ,1), divisorial contraction or fibration, respectively in 

cases a,b, a =  b < c and a =  b =  c.

If a =  0, then the game continues with a (2,1) or divisorial contraction or a fibration 

exactly as the previous case.

Let d <  0. If a >  0 then the 2-ray game of J7 restricts to X  by a (2,1) or (2, 2). □

Corollary 6.3.3. X  is a Mori dream space with C ox (X ) =  Cox(J7)/ (f =  0). In particular 

M ob(X ) is generated by L and Dz =  (z =  0).

6.4 Nonrigid families

In this section we give some arguments which eliminate many cases that are not going to 

have an Jr-link to another Mori fibre space. As a result a list of nonrigid families through 

their Type III or IV Sarkisov links is given.

Theorem 6.4.1. If —K x  £ In t(M ob(X )), then the last map of the 2-ray game of X  is 

not extremal.

Proof. This proof is similar to that of Lemma 4.4.4. □
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L em m a 6 .4 .2 . If d <  0, then a +  k <  2.

Proof. Using the adjunction formula, one can compute the anticanonical divisor of X  as 

—K x  ~ ( 3  +  n — a — b — c)L  +  M . Theorem 6.4.1 results in —K x  G In t(M ob(X )), which 

holds if and only if a +  b +  c — 3 — d < b. This implies a +  c <  3 +  d.

On the other hand, from Theorem 6.2.4 we have d <  c — k. These two inequalities 

show that a +  k <  2. □

C oro lla ry  6 .4 .3 . c <  7.

Proof. Theorem 6.4.1 implies a +  c <  3 — d. On the other hand, Theorem 6.3.2 requires 

—d < c. One can easily check the inequality using these together with Lemma 6.4.2. □

The inequalities above provide upper limits for (a,b,c). Using these and other infor­

mation provided in this chapter one can prove that Theorem 6.4.5 below has the complete 

list.

T h eorem  6 .4 .4 . Let X  C IF be a general dP^/F2 as before. If X  G Int(M ob(Jr) ) ; then 

P ic p f)  £* Z 2.

Proof. One can apply same method as in proof of Theorem 4.3.17 to obtain this result. 

Note that the proof in this case is much easier as T  and X  are smooth. □

T h eorem  6 .4 .5 . Consider a general hypersurface X  C T  with

1 1 0 - a

0 0 1 1

—a

1

where 0 < a <  b <  c. If the the Type III or IV 2-ray game of X  leads to another Mori 

fibre space, then the weights (a, b, c; d) are among those appearing in the left-hand column 

of Table 6.1 and Table 6.2.

The Sarkisov links generated in this way are described in the remaining columns of 

Tables 6.1 and 6.2.
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No. (a,b,c,d ) fpi ■02 <p' new model
1 (0 ,1 ,1 ; 1) flip n /a fibration (y4 C P4) /P 4
2 (0 ,0 ,1 ; 1) n /a n /a contraction Fano Y4 C P5
3 (0 ,0 ,0 ; 1) n /a n /a fibration conic bundle over P3
4 (1 ,1 ,1;0) n /a fibration dP3/P2
5 (0 ,1 ,1;0) 3 x (1 ,1 ,1 , —1, —1) flips n /a fibration {Y3 C P4) /P 1
6 (0,1, 2; 0) 3 x (1 ,1 ,1 , —1, —2) flops n /a contraction F6 C P (1 ,1 ,1 ,1 ,2 ,2 )
7 (0 ,0 ,1;0) n /a n /a contraction Fano Y3 C P5
8 (0 ,2 ,2 ; 0) 3 x (1 ,1 ,1 , —2, —2) antiflip n /a fibration ( r 6 c  p ( i 3, 22) ) /p 1
9 (1 ,1 ,1 ,-1 ) ( 1 ,1 ,1 , - 1 , - 1 )  flip n /a fibration dPg/F2
10 (1,1, 2; —1) ( 1 ,1 ,1 , - 1 , - 2 )  flop n /a contraction Ys C P (1 5,2)
11 (1,1, 2; -2 ) ( 1 ,1 ,1 , - 1 , - 1 )  flip n /a contraction y4 c  p ( i 5, 2)
12 (1 ,1 ,3 ; -2 ) ( 1 , 1 , 1 , - 1 , - 1 , - 3 ; - 2 )  flop n /a contraction Y7 C P ( l3, 22, 3)
13 (1 ,1 ,3 ;-3 ) ( 1 ,1 ,1 , - 1 , - 1 )  flip n /a contraction T5 C P (1 3,22,3)
14 (1 ,2 ,2 ;-1 ) (1 ,1 ,1 , —2, —2) antiflip ( 1 ,1 ,1 ,1 , - 2 , - 2 ;  2) flop fibration (V5 C P (1 4,2 ) ) /P 4
15 (1 ,2 ,2 ;-2 ) ( 1 ,1 ,1 . - 2 , - 2 )  flop ( 1 ,1 ,1 , - 1 , - 1 )  flip fibration (y4 c  ip( i 4, 2 ) ) /f)1
16 (1 ,1 ,4 ;-3 ) ( 1 , 1 , 1 , - 1 , - 1 , - 4 ; - 3 )  flop n /a contraction Yio C P (1 3,32,4)
17 (1 ,2 ,3 ; - 3 ) (1 ,1 ,1 , —1, —3) antiflip ( 1 ,1 ,1 , - 1 , - 2 )  flop contraction F7 C P ( l4, 2, 3)
18 (1,2, 3 ; - 3 ) ( 1 ,1 ,1 , - 1 , - 2 )  flop contraction y6 C P ( l 4,2 ,3 )

Table 6.1: Part. 1 d a ta  o f  T y p e  III and IV  links from  general degree 3 del P ezzo  h ypersu rface  fib ra tion s over P2

C
hapter 6. 
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No. (a, b, c; d) Vh 02 <p' new model
19 (2, 2, 2 ; - 2 ) (1 ,1 ,1 , —2, —2) antiflip n /a fibration dP2/¥2
20 (1 ,2 ,4 ;-3 ) (1 ,1 ,1 , —1, —3) antiflip nsj contraction Yg C P ( l3, 2 ,3 ,4 )
21 (1 ,3 ,3 ;-3 ) (1 ,1 ,1 , —1, —3) antiflip QU fibration (F6 C P (1 3,2 ,3 ) ) /P 1
22 (2, 2,3; -3 ) (1 ,1 ,1 , —2, —2) antiflip n /a contraction Y6 c  P ( l5, 3)
23 (1 ,3 ,4 ;-3 ) (1 ,1 ,1 , —2, —2) antiflip contraction V9 C P (1 4,3 ,4 )
24 (2, 2 ,4 ; -4 ) (1 ,1 ,1 , —2, —2) antiflip n /a contraction V8 C P ( l3, 22, 4)
25 (2 ,3 ,3 ;-3 ) (1 ,1 ,1 , —2, —3) antiflip (1 ,1 ,1 ,2 , - 1 , - 1 ;  3) flop fibration (F6 C P (1 4,3 ) ) /P 1
26 (1 ,4 ,4 ;-3 ) (1 ,1 ,1 , —1, —4, —4; —3) antiflip fibration (Yg C P ( l3, 3 ,4 )) /p !
27 (2 ,2 ,5 ;-5 ) (1 ,1 ,1 , —2, —5) ntiflip n /a contraction V10C P (1 3,3 2,5)
28 (2, 3 ,4 ; -4 ) (1 ,1 ,1 , —2, —3) antiflip ( 1 ,1 ,1 , - 1 , - 2 )  flop contraction V8 C P (1 4,2 ,4 )
29 (2 ,3 ,5 ,-5 ) (1 ,1 ,1 , —2, —3) antiflip (1,1, 2 , - 1 , - 3 )  flop contraction Vio C P ( l3,2 ,3 ,5 )
30 (2 ,4 ,4 ; -4 ) (1 ,1 ,1 , —2, —4) antiflip (1 .1 ,1 ,1 , —2, —2; 2) antiflip fibration (Yg C P ( l3, 2 ,4 )) /P x
31 (2 ,3 ,6 ;-6 ) (1 ,1 ,1 , —2, —3) antiflip contraction Yi2 C P (1 3,3 ,4 ,6 )
32 (2 ,4 ,5 ;-5 ) (1 ,1 ,1 , —2, —4) antiflip (1,1, 2, —2, —3) antiflip contraction V10c P(14,3 ,5 )
33 (2 ,4 ,6 ;-6 ) (1 ,1 ,1 , —2, —4) antiflip contraction V12 c P(13,2 ,4 ,6 )
34 (2 ,5 ,5 ;-5 ) (1 ,1 ,1 , —2, —5) antiflip (1 ,1 ,2 , —3, —3) antiflip fibration ( V i o  C P ( l3, 3 ,5 )) /P 1
35 (2, 5 ,6 ; -6 ) (1 ,1 ,1 , —2, —5) antiflip contraction Vi2 C P (1 4,4 ,6 )
36 (2, 6 ,6 ; -6 ) (1 ,1 ,1 , —2, —6) antiflip fibration (Vi2 C P ( l3, 4 ,6 )) /P 1

to

Table 6.2: Part 2 data of Type III and IV links from general degree 3 del Pezzo hypersurface fibrations over >2

C
hapter 6. 

C
ubic surface fibrations over P
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