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A Bayesian Network Model for the 
Probabilistic Safety Assessment of 
Offshore Wind Decommissioning 

Abstract

With increasing the number of wind turbines approaching the end of their service life, it 
has become crucial for businesses to understand and assess safety and security issues 
related to the decommissioning phase of wind farm asset lifecycle. This paper aims to 
develop, for the first time, a Bayesian Network (BN) model for the safety assessment of 
offshore wind farm decommissioning operations. The most critical safety incidents are 
identified and their corresponding risk-influencing factors (RIF) are determined. The 
impacts of human errors as well as procedural and mechanical/electrical failures on the 
safety and efficiency of decommissioning operations are thoroughly analysed. The 
findings of the study revealed that the most critical RIFs during offshore wind 
decommissioning operations include: visibility, crew fatigue, number of personnel per 
operation, proper safety procedures, crane integrity, number of lifts available in the wind 
farm, inspection frequency, as well as equipment design.

Keywords: Bayesian Network (BN); Offshore wind; Decommissioning; Safety 
assessment; Lifting operations; Risk-influencing factors; Influence diagrams.

1 Introduction

The offshore wind energy industry is experiencing an increasing number of wind farm 
installations approaching the end of their service life. Asset management strategies for 
these end-of-life offshore wind farms (OWF) require an approach that rigorously 
incorporates ‘decommissioning’ in asset lifecycle planning. In offshore wind projects, the 
decommissioning stage is relatively immature compared to the construction stage and 
thus there is a need to pay closer attention to decommissioning (Invernizzi et al., 2020). 
Many project management scholars have concluded that there is a dearth of research 
related to the decommissioning stage of renewable energy projects and the offshore wind 
industry is not an exception (e.g., see Kaiser and Liu, 2018; Locatelli et al., 2020). 
Decommissioning is defined as the final stage of the wind farm asset lifecycle. Generally, 
offshore wind decommissioning operations involve four key stages: planning and 
consenting stage, transport and logistics stage, lifting and loading stage, and post-
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decommissioning stage (Shafiee and Adedipe, 2022). Some motivations for 
decommissioning include: expensive repair/repowering costs, high failure rate of old 
wind turbines, introduction of newer and more efficient wind turbine models, etc. As 
OWF structures have a weaker structural integrity at the end of their service life, the safety 
of operations during the decommissioning stage will become more critical than that 
during the commissioning stage.

To date, seven OWFs from five countries have been decommissioned. These 
projects include: Vindeby from Denmark, Hooksiel from Germany, Lely from the 
Netherlands, Utgrunden I and Yttre Stengrund from Sweden, and Blyth and Beatrice 
Demonstration from the UK (Adedipe and Shafiee, 2021). Figure 1 shows projected 
trends for the cumulative OWF decommissioning capacity in the coming years, calling 
for an increase in decommissioning activities throughout the world. As more and more 
wind turbines are coming close to the end of their useful life of 20-25 years, evaluation 
of the decommissioning costs and risks to make an informed investment decision is 
becoming highly relevant (Interreg North Sea Region Decom Tools, 2019; 4C Offshore, 
2020). 

**Figure 1**

Figure 1. The projected cumulative capacity of offshore wind farm decommissioning (Topham 

and McMillan, 2017).

Decommissioning of offshore wind turbines and their related infrastructure involves 
some hazards that have been scarcely addressed in the published literature. Risk 
management includes the identification, assessment, and evaluation of all relevant 
hazards in order to minimise, monitor, and control the likelihood and/or impacts of 
unpredictable events causing loss or damage (Shafiee, 2015). The risk assessment 
conducted for each lifecycle stage is distinct as there are many different hazards with a 
variety of risks that can be encountered in each stage/activity of the lifecycle. Although 
this study focuses mainly on technical risks associated with decommissioning activities, 
there are also some financial risks involved.

There are several unknowns in OWF decommissioning process and due to the 
limited research into decommissioning safety, this study aims to propose a probabilistic 
graphical Bayesian Network (BN) for the risk assessment of OWF decommissioning 
operations. BNs are used in this study to capture uncertainty in complex 
systems/operations, identify critical risk factors conditional on other factors, conduct both 
forward and backward analyses (i.e., bottom-up or top-down risk assessments), update 
decisions when new data/information becomes available (i.e., re-assessment of risks), and 
to include utility nodes in order to observe the effects of risks on costs and contingency 
planning. When applying BNs to OWF decommissioning risk assessment, attention will 
need to be paid to how to include the subjective parameters (such as organisational 
factors) in the model. BNs can help project managers, operators and regulators identify 
safety critical tasks during the decommissioning stage and specify some control measures 
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to lower the risk to an acceptable level. Identifying the potential decommissioning risks 
early on may also inform wind turbine design and manufacturing processes. To the best 
of our knowledge, this is the first study that applies the BNs to risk assessment of OWF 
decommissioning operations with the aim of identifying safety-critical factors to explore 
potential benefits in improving safety engineering practices throughout the asset lifecycle. 

The remainder of the paper is structured as follows. Section 2 provides an overview 
of Bayesian modelling for OWF asset lifecycle risk assessment. Section 3 presents the 
proposed BN methodology for application in OWF decommissioning safety assessment. 
Section 4 reports the results and discusses them in detail. Finally, the conclusion and 
further work are presented in Section 5.

2 Research background

2.1 Risk analysis research in offshore wind energy 

There are a number of methodologies that have been applied to risk assessment research 
in the offshore wind energy sector. These risk assessment methodologies include some 
conventional techniques – such as hazard identification (HAZID), hazard and operability 
(HAZOP), fault tree analysis (FTA), event tree analysis (ETA), bow-tie diagrams, failure 
mode and effects analysis (FMEA), failure mode, effect and criticality analysis 
(FMECA), etc. – and some probabilistic risk assessment (PRA) techniques including 
Monte Carlo modelling and Bayesian Belief Networks (Mehdi et al., 2019). According 
to Aven and Renn (2009), risk management is best expressed in terms of uncertainty and 
outcomes, with the challenge of converting subjective knowledge to probability values. 
Modelling the uncertainty is important in risk assessment, but there may be some 
limitations in capturing unknown unknowns when predicting the risks (Aven and Zio, 
2014). We propose that this need offers an opportunity to adopt probabilistic methods 
such as BNs in risk assessment. In this study, we apply BNs to OWF decommissioning 
risk management because of their capability of identifying uncertain deviations/potential 
hazards and updating assessments when new information becomes available.

Very few studies have focused on BN applications in offshore wind risk 
management (see, Adedipe et al., 2020). BNs have been used more recently in risk 
management studies because of their near-real-time ability to update assessments based 
on information obtained from operations or inspections. BNs have the capability to 
include different parameters including environmental, human and organisational factors 
during risk assessments, and are able to quantify conditional probabilities based on the 
relationship between different parameters (Ashrafi et al., 2015). Friis-Hansen (2002) 
reported that the risk assessments using BNs produce more efficient and accurate results 
than using FTA and ETA methodologies. BNs can also be combined with other tools to 
improve the accuracy of assessments. For example, some derivatives of BNs including 
hierarchical Bayesian network (HBN) can be adopted to model the dynamic states of 
different parameters/variables represented by nodes (Adedipe et al., 2020). Mehdi et al. 
(2019)  developed a dynamic method for real-time risk assessment of vessel operations 
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(navigation) near an offshore renewable wind energy installation. The authors concluded 
that dynamic risk assessments still need to be used in conjunction with static risk 
assessment methods. Taflanidis et al. (2013) proposed an automated risk assessment tool 
to model the dynamic behaviour of offshore wind turbines operating in uncertain 
environments. 

As presented by other scholars, BNs offer a powerful visual and quantitative 
solution for integrating information gathered from different life cycle stages, which is 
often a concern for asset decommissioning managers within the energy sector (Locatelli 
et al., 2020). Because of their capability to update risk assessments with the use of both 
subjective and objective prior data, BNs show good promise to be adopted by offshore 
wind energy industries. Furthermore, BNs allow for more accurate modelling of 
technical, personnel, financial and environmental factors that may pose risks to OWF 
decommissioning projects (Adedipe et al., 2020). 

2.2 OWF asset lifecycle safety assessment

Safety is a very important factor to consider throughout the OWF asset lifecycle. As 
reported by G+ Global Offshore Wind Health and Safety Organisation (G+ Global 
Offshore Wind Health and Safety Organisation, 2020), the lifting operations have been 
identified to be the highest incident-prone activity in OWFs, followed by maritime 
operations and surveys. As the decommissioning phase involves extensive lifting, 
handling and moving of many heavy items, improving the safety of lifting operations 
would result in improved safety of the decommissioning processes. As the conventional 
deterministic techniques for quantitative risk analysis are limited, it is suggested to apply 
BNs to predict the risks associated with lifting operations. BNs can also show the 
relationships between different parameters connected within a network because of its 
conditional probability estimation capacity.

2.3 BN literature for OWF safety assessment

Advanced models like BNs have been applied in different stages of the OWF asset 
lifecycle, including the design, construction, commissioning, and operation and 
maintenance (O&M). Scheu et al. (2016) presented the challenges involved in OWF risk 
management including the trade-off between level of detail and accuracy, incorporating 
uncertainty due to environmental conditions, ease of understanding and communication 
of results at all levels within the asset management team, and high dependability of the 
risk assessment results on the quality of input data. All these concerns have been 
addressed in other OWF applications by using BNs, either as a stand-alone tool or in 
conjunction with other well-established risk assessment tools. Adedipe et al. (2020) 
presented a review of risk assessment studies that applied BNs in the offshore wind energy 
industry. The authors proposed BNs as a probabilistic tool to incorporate environmental, 
organisational and human related factors in risk assessment. They concluded that BNs 
have been applied the most to the O&M stage of OWF lifecycle.

For the design stage, Mendoza and Kohler (2019) proposed a BN decision 
framework to find an optimum design for an offshore wind turbine monopile based on 
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the evaluation of the expected consequences of failure. They use BNs to show the 
relationship between design parameters and add decision and utility nodes (influence 
diagrams). For the installation stage, Leontaris et al. (2018) proposed BNs with the use 
of Uninet software as a probabilistic decision-support tool to assess the risks associated 
with installation and logistics of OWFs. They showed that BNs can be used to model the 
activity interdependence during installation operations, generating more realistic and 
trustworthy estimates of activity durations. This may also be explored for the 
decommissioning phase. Cheng et al. (2019) developed a fuzzy BN and Monte Carlo 
simulation (MCS) model to calculate OWF installation schedule risks as well as total 
project duration. The authors presented the use of BNs to identify critical risk factor(s) 
influencing duration as well as understand the uncertainties posed by activity risks.

For the O&M stage, Li et al. (2020) performed a reliability analysis on floating 
offshore wind turbines (FOWT) using BNs, mapped from FTA. The authors proposed the 
use of BNs to improve the reliability of FOWTs during the operation stage. Another study 
conducted by Asgarpour and Sørensen (2018) applied a BN-based risk model as a 
decision-support tool to estimate the remaining useful life (RUL) of assets based on 
updated inspection results. Dinwoodie et al. (2013) proposed a decision support analysis 
based on Bayesian Belief Networks and decision trees to determine optimal operating 
strategies and associated risks of OWFs. For additional applications, readers can refer to 
Dai et al. (2013).

Kim et al. (2020) developed a dynamic probabilistic method based on BN and 
clustering analysis to quantify the risks associated with offshore wind turbines. Babaleye 
and Kurt (2019) proposed a framework for the application of hierarchical Bayesian 
analysis (HBA) for data collection and the BNs to perform probabilistic risk assessment 
of offshore decommissioning projects. For logistics risk assessment, Rahman et al. (2020) 
proposed the application of advanced BNs to logistics operations of supply vessel 
emergency response in offshore marine locations because of the limited knowledge about 
the hazards and risks involved. This may be applied to consequence analysis in risk 
assessment. Friis-Hansen and Simonsen (2002) proposed a BN method to improve ship 
safety by obtaining causal event(s) occurrence probability in a ship-ship collision 
accident. This method can be useful in particular in cases where more than one lifting 
vessel is required for OWF decommissioning operations to model vessel collision risks 
on site. Ruud and Mikkelsen (2008) presented the steps involved in a generic offshore 
marine lifting operation using cranes, determined factors influencing the associated risks, 
and proposed some mitigation measures. For further reading about the applications of 
BNs in safety assessment, readers can refer to Hänninen (2014).  

Within the offshore wind energy industry, the review by Adedipe et al. (2020) 
showed that only few papers have applied BNs to risk analysis. Ashrafi et al. (2015) 
presented BN applications for making inferences to assess and improve wind energy 
system reliability as well as monitor the risk level in continuous time. In 
Kougioumtzoglou and Lazakis (2015), BNs were applied to rank critical wind energy 
system components on the basis of failure probability data. An analysis was also 
performed to compare the results obtained from BNs with those from FMECA results. 
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Luque and Straub (2019) presented optimal risk-based inspection strategies for structural 
systems based on BNs. Kim et al. (2020) conducted a study on collision risk assessment 
of OWF installation vessels during the installation stage. The authors studied passing, 
drifting and attendant vessel collisions as well as the factors that may influence them. 
BNs were applied to risk assessment in two ways: firstly, they were used to understand 
the impact of different failure causes on incidents. Secondly, they were applied in 
determining the risk profile of operations based on incident locations (area on a wind 
farm) and the anticipated consequences. 

The current paper studies the application of BNs in risk assessment of OWF 
decommissioning process, in particular lifting operations. A risk management plan is 
developed based on high-priority incidents to be mitigated, the related repair or 
contingency cost allocation, as well as the hazards that need to be deescalated. In order to 
manage these hazards and avoid schedule delays, or worse still, fatalities, there is a need 
to apply probabilistic methods such as BNs because of their higher robustness and 
flexibility. As the number of lifting tasks in OWF decommissioning increases so will the 
number of operational uncertainties. BNs can incorporate higher degree of uncertainty 
than conventional techniques. Thus, BNs are an ideal tool for risk assessment in highly 
uncertain operations or scenarios as they can update the probability of occurrence of the 
potential causal incidents during lifting and loading operations.

3 The proposed model

3.1 Introduction to BNs

BNs are probabilistic modelling tools which are directed acyclic graphs (DAGs) that 
represent problem space variables as nodes and their relationships to one another using 
arcs (links). They are otherwise known as belief networks as they are fundamentally based 
on Bayes’ theorem, which states that the belief about an entity is based on existing 
evidence but can be changed when new evidence becomes available (Jensen and Nielsen, 
2007; Pearl, 2014; Li et al., 2021). BNs are gaining a reputation for being representative 
of real scenarios and their causations, their robustness and reliability (Conrady and Jouffe, 
2015). It can be expressed mathematically by:

𝑃(𝐻│𝐷) = 𝑃(𝐻)  
𝑃(𝐷|𝐻)

𝑃(𝐷) (1)

where H is the hypothesis/incident, D is the observed data, P(H|D) is the posterior 
probability (probability of H given observed data, D), P(H) is the prior probability 
distribution or belief of a hypothesis/incident H, P(D|H) is the likelihood function of the 
observed data, D, and P(D) is the normalisation constant. Prior probability distributions 
are based on the collected data that can represent the uncertain system/operation variables 
to be observed.

Usually, the failure rates that are incorporated into risk analysis are not updated 
when there is new information. BNs bridge this gap in order to ensure that risk knowledge 
about operations is updated on a regular basis when necessary. BNs show the connection 
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and interdependencies among different nodes in a network and can be mapped from other 
models like fault tress, event trees, bow-tie diagrams, etc. (Bobbio et al., 2001; Khakzad 
et al., 2013; Taleb-Berrouane et al., 2020). Compared to conventional methods such as 
FTA, the BNs are more beneficial because of their flexibility and more realistic outputs 
(Rahman et al., 2020; Yazdi et al., 2022). The probability values of the root nodes are the 
prior probabilities, which may be deterministic or probabilistic within the network 
depending on the prior data source. The conditional probability table (CPT) is developed 
for each node when developing a BN model to take into account variable dependencies 
and interactions and incorporate the uncertainty inherent in nodal relationships. The CPT 
is set to represent chance nodes. BNs allow for explicit expression of different factors that 
can influence an unwanted outcome/incident. The nodes may have binary states (success 
or failure) or multiple states. A full description of BNs can be found in Adedipe et al. 
(2020).

3.2 BN Software

There are a number of BN software packages available on the market. Some of these 
packages include Netica, Microsoft MSBN, BayesiaLab, Hugin, WinBUGS, OpenBayes, 
AgenaRisk and Bayesfusion (Su and Fu, 2014; Ashrafi et al., 2015; Li et al., 2015; Ciobanu et 
al., 2017; Li and Shi, 2020). Adedipe et al. (2020) reviewed BN software and presented 
their applications in the wind energy sector. The current study uses Netica software from 
Norsys Software Corp (https://www.norsys.com/).

3.3 BN model development methodology

Figure 2 represents the steps for developing and applying the BN model. These steps 
include: (i) identification and classification of the variables, (ii) obtaining prior data for 
each variable, (iii) determining the relationships between each variable, (iv) building a 
BN model in which each variable is presented as a node and the prior data distribution as 
an input for each node, and links/arcs are used to show the relationship between each arc, 
(v) running the simulations (compile) with prior data to obtain posterior probability, (vi) 
conducting an analysis for mitigation/control, (vii) collecting updated risk data after 
mitigation and using it as prior data, (viii) inputting updated prior data into the model to 
obtain more accurate posterior probability results that can support decision making. 

**Figure 2**

Figure 2. The proposed BN methodology for OWF decommissioning risk assessment.

To develop the BN model for OWF decommissioning risk assessment the following 
steps were taken: 

(i) The potential incidents that can lead to suspended decommissioning operations were 
identified and grouped by type.

(ii) The relationship between each incident and potential cause(s) was determined; this 
logic was used for linking the nodes in the BN.
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(iii) Prior failure probability data was obtained for each incident and reported in 
Appendix A. 

(iv) The BN model was built by presenting each variable as a node and the prior data 
distribution as the input for each node, and using links/arcs to input the relationship 
between each node.

(v) The nodal (incident) dependencies were defined by the CPT for each incident using 
leaky noisy-OR logic (similar to the Boolean OR operator used in other 
computational applications). The CPT was encoded in the BN based on the binary 
function of incident/no incident occurrence (where incident occurrence is denoted 
by one and no incident occurrence is denoted by zero) showing the nodal 
relationships among the linked child and parent nodes. Table 1, Table 2,  Table 3 
and Table 4 show the CPT for collision, vessel damage, crane failure and suspended 
decommissioning, respectively. 

(vi) After the prior data was inputted into the child nodes and CPT table was developed, 
the model was compiled to obtain the posterior probability.

**Table 1**

Table 1. CPT for collision incident occurrence.

**Table 2**

Table 2. CPT for vessel damage incident occurrence.

**Table 3**

Table 3. CPT for crane failure incident occurrence

**Table 4**

Table 4. CPT for suspended decommissioning occurrence.
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3.4 BN: Overall unwanted outcome

The overall unwanted outcome in this study is considered to be the suspended/halted 
decommissioning operations (SDO). The likelihood of occurrence of the SDO was 
determined after the first compilation of the model using the initial prior probability data. 
Because BNs can be used to understand the impact of more than one incident occurring 
at the same time during operations, the influence of each causal event can be observed. 
The effect of each causal event on the outcome was determined from diagnostic, 
prognostic, updating and influence diagram (cost/utility) modelling.

3.5 Diagnosis and prognosis

There are three intermediate incidents for which data was gathered. The nodes each have 
their associated safety factors/ risk-influencing factors (RIF) proposed in this study. All 
nodes are interdependent, meaning that a change in one node will cause a change in other 
nodes. For this analysis, we input discrete variables in each node and use binary nodal 
states. The prior distribution of the failure probabilities is the first set of data used for the 
first set of computations. The prior data are based on expert knowledge and literature 
sources in other marine operations, because of the limited available data to date regarding 
decommissioning operations. The posterior probability is the conditional probability 
output generated after the BN is compiled. For decommissioning operations, we propose 
that the BN should be updated for every set of lifts, based on the occurrence/non-
occurrence of incidents; on the premise that after every specified set of lifts, the 
operator/contractor conducts necessary inspections on cranes and other equipment.

Lifting and loading operations are the set of activities involving the lifting and 
loading and repositioning for another round of lifts. Lifts will be carried out for multiple 
wind turbines on a wind farm, so our hypothesis is that risk assessment results may not 
be conclusive for OWF operations until updates are carried out after each set of lifts. 
During lifting operations, failure may be caused by operational or equipment failures or 
faults. Suspended decommissioning operations may be caused by a vessel colliding with 
other vessels on site like a tugboat or support vessel during repositioning after every 
lift/set of lifts. Similar to collision incidents, vessel allision may also be caused by a vessel 
colliding with a wind turbine during lifting operations. Vessel damage during lifting and 
loading operations can be caused by incidents involving poor cutting operations, a serious 
collision/allision with another asset or by swinging loads that can lead to dropped objects 
on the vessel. These intermediate nodes are explained below with the potential incident 
causes.

3.5.1 Collision between vessel and wind turbine

Collision incidents are identified to be caused by different potential incidents between the 
lifting vessel and other assets (wind turbines, transportation or support vessels). The 
probability of occurrence of collision was estimated based on the following causal 
incidents: navigation, manoeuvring and detection failure. Appendix B shows the BN 
developed for a collision incident between lifting/loading vessels and a wind turbine. The 
probability of a collision incident is conditional on the probability values of all sixteen 
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child nodes and their corresponding RIFs. Manoeuvre failures have a higher likelihood 
of occurrence than the other potential incidents based on the prior data inputted.

3.5.2 Vessel damage 

Vessel damage can be caused by other incidents besides collision during 
decommissioning operations. The events illustrated in Figure 3 show the causal 
events/incidents related to decommissioning of monopile-mounted wind turbines. From 
the initial prior data, it is found out that incidents associated with stuck monopile have a 
higher likelihood of occurrence compared to loss of stability. Thus, incidents associated 
with stuck monopile can be investigated further, without ignoring the other incidents. 

**Figure 3**

Figure 3. The BN model for vessel damage.

3.5.3 Crane failure

Cranes are central to the lifting operations during decommissioning as their failures can 
hamper the success of the decommissioning project. All crane vessels and equipment 
must obtain a cetrificate indicating that they are fit for use in the offshore environment 
and under the anticipated conditions. The crane can fail for numerous reasons and 
Appendix C presents the causes related to hook failure and opeational faults. 

3.6 Risk driving factors in OWF decommissioning 

Risk-driving factors in OWF decommissioning are identified for different incidents based 
on surveys from experts, sample risk registers, and the factors reported in literature. The 
risk-driving factors are different from an operation to another one; thus, the risk-driving 
factors of the installation stage will be different from those of the O&M stage. We 
identified the risk-driving factors using a BN to update the belief for improved risk 
analysis. This study identifies several risk factors related to critical incidents that were 
identified for lifting and loading operations during the decommissioning stage. 

3.7 Bayesian updating

In order to re-assess the decommissioning operation outcome (i.e., updated posterior 
probability with new belief), operational data were incorporated into the model. The 
Bayesian updating was conducted for jack-up/barge vessel, tug and crew transfer vessel 
incident data which was collected from G+ Global Offshore Wind Health and Safety 
Organisation (2020) (see Appendix D). An update during the decommissioning stage 
might be required for two main reasons: (i) when new data becomes available, and (ii) 
when operational safety is improved. The incident frequency was converted to probability 
of occurrence data using Equation (2) (Uğurlu et al., 2015). The probability estimates 
were calculated on an annual basis, independent of past years. 
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𝑃𝑂 =
𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 (𝑎𝑛𝑛𝑢𝑎𝑙) (2)

3.8 Influence diagrams

Influence diagrams are an extension of the BNs, which include decision nodes and utility 
nodes like the cost of intervention when the risk reaches a certain level (Luque and Straub, 
2019). The impact of different interventions (such as repair, replacement, additional 
inspections, etc.) on the operational outcomes were assessed by including a decision and 
utility node within the network. A binary state (repair or no-repair) was used in decision 
nodes to assess the impact that interventions may have on intermediate nodes in the 
network (collision, vessel damage and crane failure) as given in Appendix E. The ratio of 
repair costs to cost of no-repair (when no intervention is conducted) was assumed to be 
100:1000 (1:10) (Yang and Frangopol, 2018).

4 Results and discussion

4.1 Output: unwanted outcome

As shown in Figure 4, the posterior probability (likelihood of occurrence) of suspended 
decommissioning operation with neglecting the environmental factors was estimated to 
be 0.0688. Sixteen critical factors were identified to have the greatest impact on the 
outcome among which the crane failure was found to contribute the most to suspended 
lifting and loading operations, followed by collision and vessel damage, respectively. 

**Figure 4**
Figure 4. A BN model showing the conditional probability of suspended decommissioning 

operations.

The most critical factors for each incident are presented below, where a breakdown 
of the unwanted outcome probability of failure is given.

4.1.1 Intermediate incident: collision 

The initial likelihood of occurrence of a collision incident was 0.00085. Among the 
incidents, the collision was found as the least contributor to suspended operations. The 
incidents that contributed the most to a collision incident include: inefficient use of 
navigation equipment (E3), faulty manoeuvre master (E5) and error of watchkeeping 
officer (E6). 

4.1.2 Intermediate incident: Vessel damage 

The likelihood of occurrence of a vessel damage incident was estimated to be 0.0039. 
This incident was found to be the second largest contributor to suspended operations. The 
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incidents that contributed the most to a vessel damage incident include: jammed cutter 
(E18), inaccurate payload estimation (E22) and vessel flooding (E24).

4.1.3 Intermediate incident: crane failure

The likelihood of occurrence of a crane failure was estimated to be 0.0643. This estimate 
is significantly higher than probability of the collision and vessel damage incidents. In a 
crane failure incident, the three most influencing factors are identified as: structural 
failure (E25), control system fault (E26) and obstructed vision (E32). These findings can 
be likened to the fact that cranes are sensitive to degradation during their operations. 
Regular inspections and other interventions, however, can reduce the likelihood of 
occurrence of a crane failure incident.

4.1.4 Diagnosis of child node incidents 

An advantage of the BN application beyond the capacity of other techniques is its capacity 
for both forward and backward analyses (diagnosis and prognosis). Thus, in order to 
determine the impact of each causal incident on the operation success/suspension, 
additional forward analysis (diagnosis) was conducted. The BN was used to conduct a 
diagnosis analysis on incidents affecting the lifting operations and what impacts they will 
have on successful/unsuccessful operations. The impact was observed by setting the “yes” 
state of each node in the BN model to zero, one at a time, whilst the other nodes 
maintaining their states. This meant a certainty that no incident occurred for the observed 
node. Figure 5 shows that the highest impact on the posterior probability outcome was 
observed in nodes E31, E30, E29, E32, E20, E26 and E17, respectively. The values of the 
other nodes were negligible and not presented.

**Figure 5**
Figure 5. Diagnosis of each node (difference between initial posterior probability and the 

updated posterior probability values).

The most critical risk influencing factors (RIFs) were determined by identifying 
potential causes of the incidents that have the highest impact on lifting operation safety. 
Each node has its associated RIFs. The high posterior probabilities are associated with 
the most critical RIFs. The descriptors of each critical incident were determined and are 
presented in Table 5. The relationships are presented in terms of direct or inverse 
proportionality. Reducing any of the RIFs will have positive implications on the safety of 
operations. The most critical RIFs were identified to be: visibility (V), crew fatigue 
(Fcrew), number of personnel per operation (Ncrew), proper procedures (P), crane integrity 
(CI), number of WTs on the WF (NWT), number of lifts (NL), inspection frequency (Ifreq.) 
and good equipment design (DEqt.).

**Table 5**

Table 5. Incident descriptors and their mathematical relationship.
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4.1.5 Diagnosis of grouped class of causal events

Another key benefit of using the BN tool during risk assessments is that the diagnosis of 
causal event groups is also possible. These grouped potential incidents can be collectively 
assessed to inform safety improvement actions for asset managers, operators and 
regulators. In this way, if a classified group of events have higher occurrences and 
impacts, tailored approaches can be developed to improve that incident group. This 
capability can provide better understanding of the impacts that certain categories of 
failures/faults can have on operations. For the decommissioning operations, the sixteen 
critical incident child nodes were grouped into three categories of human error related 
incidents (H), mechanical/electrical incidents (M) and procedural incidents (P) and they 
were used for multiple-event diagnosis. Human error related incidents can be addressed 
on a case-by-case basis by training/re-training, improved research into human-mechanical 
systems, etc. 

As shown in Figure 6, child nodes (incidents) can be eliminated in order to observe 
the effect of a grouped class of incident probabilities relevant to specific analyses. In the 
example presented, it is assumed that if human error related incidents (E6, E7, E8, E31 
and E32) are mitigated/controlled to ALARP, the probability of occurrence of the 
suspended operations decreases to 0.0337. Secondly, assuming that critical 
mechanical/electrical related events (E5, E18, E19, E25, E26, E27 and E29) were 
mitigated/controlled to as low as reasonably practicable (ALARP), the probability of 
occurrence of the suspended operations was observed to decrease to 0.0597. Thirdly, 
assuming that critical procedural variables (E9, E17, E20 and E30) were reduced to 
ALARP, the probability of occurrence of suspended operations was observed to decrease 
to 0.0457.

**Figure 6**

Figure 6. Top event (suspended decommissioning) when mechanical/electrical related incidents 
are mitigated/controlled.

Table 6 shows the most critical incidents identified in each group. Assuming that 
only one group/class of incidents is treated (mitigated/controlled), the nodes representing 
the variables (incidents) within each group was set to “no” state in order to model the 
posterior probability obtainable after treatment. Mechanical/electrical incidents can be 
prevented by evaluating and improving the system reliability. Procedural incidents can 
be reduced by understanding the factors related to each group in operational procedures. 
After modelling the risk treatment of different groups, it was found out that the human 
error had the highest probability, followed by procedural and mechanical/electrical, 
respectively. This shows that if human errors are eliminated, the highest safety 
improvement can be achieved.

**Table 6**
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Table 6. Incident groups and posterior probability of suspended decommissioning operations 
when controlled.

As Figure 7 shows, mitigating the procedural related risks to ALARP reduced the 
most the likelihood of crane failure incidents. Mitigating the human error related risks to 
ALARP reduced the most the likelihood of vessel damage incidents. Lastly, mitigating 
the mechanical/electrical related risks to ALARP reduced the most the likelihood of 
collision incidents. Overall, based on rankings, the human error contributed the most to 
each incident type which shows where the efforts of the asset management team are better 
to be directed. The human error related risks can be reduced to ALARP, even though 
difficult to eliminate all together, because they are dependent on subjective judgement of 
the personnel. The main mitigation approach for reducing the human error related risks is 
to improve automation in decommissioning equipment and systems.

**Figure 7**

Figure 7. Impact of risk mitigation on OWF decommissioning operation safety.

4.1.6 Prognosis of the causes for suspended decommissioning operations 

Prognosis can support safety planning when not all factors are known or well understood 
for a specific site. BNs can be used to estimate the possible future conditional probability 
of occurrence of the suspended decommissioning operations and evaluate its effect on the 
connected nodes, especially if not all incident probabilities are known. Nodes can be 
eliminated or included during prognosis, particularly if they do not apply to the 
operation/site being assessed. This is another method in which critical incidents can be 
observed if all potential mitigation/control efforts have been applied. In Figure 8, a 
prognosis of the overall outcome and the effects on RIFs were observed. The impact of a 
likelihood of occurrence of 0.252 for the unwanted event on RIFs is presented.

**Figure 8**

Figure 8. The impact of increasing expected probability of occurrence on the top event 
(suspended decommissioning)

Figure 9 shows the incident impacts when the posterior probability of the 
occurrence of suspended decommissioning operations increases to 0.252. The BNs 
showed the same trend of increase for every quartile increase (0.252, 0.496 and 0.754) 
except when input parameters are updated. New prognostic data can be obtained after 
every lifting and loading operation on a wind farm in order to use the updating feature of 
BNs for safety assessment improvement. 

**Figure 9**

Figure 9. Prognosis of suspended decommissioning operations.
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Figure 10 shows the difference between the prior probability and the observed 
probability of occurrence for each critical incident when the posterior probability is 
increased to 0.252. With this capability, BNs can be used to observe the effect of potential 
critical events on suspended decommissioning operations by assessing the impact that 
each critical event has on the other events. This prognostic capability of BNs can be 
maximised when there is more operational data available.

**Figure 10**

Figure 10. The impact of likelihood of occurrence of failed operations on suspended 
decommissioning operations (blue: prior likelihood, red: top event increases to 0.252).

4.1.7 Updating BNs

The first round of simulations yielded similar results to what obtained using fault tree 
analysis (FTA). New data for each potential incident may be obtained from operators, 
regulators or independent service providers. We present a case where the BN results are 
updates with new operational incident data. Tug failure, human error and navigation 
failure nodes alone were updated with new data from G+ Global Offshore Wind Health 
and Safety Organisation (2020). These data reported incidents only for installation and 
operation and maintenance (O&M), as seen in Figure 11. 

**Figure 11**

Figure 11. Update with 2015 data (G+ Global Offshore Wind Health and Safety Organisation, 
2020).

From Figure 12, it is observed that BNs can be used to model and compare the 
annual likelihoods of suspended decommissioning operations with a potential to observe 
trends over time. Based on the recorded navigation, tug and human error related incidents 
data inputted in the BN model, it was found out that probability of suspended operations 
decreased in year 2 (update 2), increased with update 3 and marginally decreased in the 
following year. G+ Global Offshore Wind Health and Safety Organisation (2020) reported no 
tug, navigational failures or human-error related incidents for 2017. This increase was 
commensurate with a rise in the OWF operations as reported. Thus, the likelihood of the 
events leading to higher risks during the decommissioning stage can be deduced using 
BNs. Unless targeted safety efforts become paramount, an increase in the number of 
decommissioning projects can imply higher safety concerns (incidents).

**Figure 12**

Figure 12. Annual probability of occurrence of suspended decommissioning operations using 
G+ OWF data.
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4.1.8 Extension to an influence diagram (decision and utility nodes)

Project risks have associated costs; thus, the BN model was used to assess the utility of 
reducing the likelihood of occurrence of the incident, i.e., how beneficial it will be to 
address intermediate incidents. Influence diagrams were developed with the addition of 
decision nodes in the BN as seen in Figure 13, Appendix F and Appendix G. The utility 
of addressing collision, vessel damage and crane failure were each investigated.

**Figure 13**

Figure 13. Influence diagram.

As seen in Figure 14, crane failure improved the likelihood of occurrence of 
suspended decommissioning operations the most when some repair activities on the crane 
were conducted, or failure causes were eliminated. The likelihood of occurrence of 
suspended decommissioning operations decreased the most from 0.0643 to 0.005. This 
conclusion is limited because depending on the severity of each related incident, the 
consequence would direct risk treatment also. Thus, we propose that estimating the utility 
of interventions is important; however, a full risk picture with consequence assessment 
will produce more robust results.

**Figure 14**

Figure 14. The impact of repair activities on likelihood of occurrence of incidents.

4.1.9 Expansion of BN: introducing additional variables

Additional variables (nodes) may also be included in a BN analysis that was not included 
in the network initially when new data is collected. The conditional posterior probability 
of occurrence of suspended operations can be re-estimated based on the additional nodes. 
Also, if other operations in addition to lifting and loading operations are to be assessed, 
the BN model can be expanded to accommodate the additional nodes and model the 
relationship among all interdependent variables.

4.2 Risk management strategy

In order to mitigate the risks associated with OWF decommissioning, two solutions can 
be considered. One solution is to reduce the likelihood of occurrence of the undesirable 
events or hazards, and another option is to reduce consequences. This study focused on 
reducing the likelihood of occurrence of critical factors (incidents) that can lead to 
suspended decommissioning operations. These estimates will vary on a case-by-case 
basis because of the uncertainty involved in predicting the likelihood of occurrence of 
suspended operations. More so, the consequence of each incident will need to be 
considered on a case-by-case basis.
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5 Conclusion and future works

Due to limited research that has been conducted on the risk management of offshore wind 
farm (OWF) decommissioning, there is a crcual need to better understand the associated 
safety hazards. To this aim, this paper presented for the first time a Bayesian Network 
(BN) model to identify the risks of potential critical incidents as well as the corresponding 
safety factors associated with OWF decommissioning. The BN model was applied to 
lifting and loading operations of the decommissioning process. The study identified the 
most critical hazards and analysed the relationship between them and critical risk-
influencing factors in the decommissioning stage. The model was then used to determine 
how the potential critical risks may occur and what the impact of mitigation/control on 
the overall probability of occurrence of suspended decommissioning operations would 
be. The analysis results showed that BNs are more robust than conventional risk analysis 
techniques as they have the capacity to perform both diagnosis and prognosis assessments 
and help decision-makers update their knowledge when new information becomes 
available. With the BNs, the model becomes “smarter” as the network system can be 
updated on a regular basis when necessary. The prior probabilities of each node are 
inputted into the conditional probability table (CPT) and then updated when new 
information is received. Thus, the risk assessment results can become more and more 
accurate over time.

The proposed BN model was applied to determine what in decommissioning lifting 
and loading operations can go wrong, how likely they are to occur, and what the most 
critical incidents and risk-influencing factors (RIFs) are. The most critical safety incidents 
were found to be related to inaccurate signalling, improper hooking, and vibrational 
impact. The corresponding critical risk-influencing factors were identified as visibility 
(V), crew fatigue (Fcrew), number of personnel per operation (Ncrew), proper procedures 
(P), crane integrity (CI), number of WTs on the WF (NWT), number of lifts (NL) and 
equipment design (DEqt.). This proposes how asset managers and asset owners can benefit 
from adopting a more adaptive BN-based risk assessment method in OWF 
decommissioning projects. Beyond this, future works can explore the risks associated 
with other technical, environmental and regulatory aspects of OWF decommissioning. 
Additionally, BNs may be used to assess the reliability of safety barriers in OWF 
decommissioning operations.
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APPENDICES

Appendix A. Prior probability input data (Rahman et al., 2020; Uğurlu et al., 2015; 
Babaleye et al., 2018)

Nodes Symbol Probability

Faulty procedure E1 2.17 × 10-4

Violation of procedure E2 4.88 × 10-5

Inefficient use of navigation equipment E3 6.09 × 10-4Navigation failure

Poor route selection E4 1.62 × 10-4

Faulty manoeuvre master E5 5.02 × 10-4

Error of watchkeeping officer E6 2.34 × 10-4

Wrong tug manoeuvre E7 6.71 ×10-5

Improper tugboat use E8 2.09 × 10-5

Manoeuvring 
failure

Piloting failure E9 2.23 ×10-5

Fatigue E10 2.07 ×10-4

Alcohol abuse E11 6.7 × 10-5

Risk assessment error E12 1.33 × 10-3

COLREG violation E13 2.34 × 10-3

Ship information failure E14 1.03 × 10-4

Lack of coordination E15 2.17 × 10-4

Detection failure

Poor communication between vessels E16 1.03 × 10-3

Structural failure E25 4.17 × 10-8

Rigging fault E26 1.5 × 10-3

Decoupling prevention device failure E27 2.0 × 10-6Hook failure

Failure of manual control E28 1.0 × 10-2

Vibrational impact E29 7.0 × 10-3

Improper hooking E30 2.11 × 10-2

Inaccurate signal E31 3.3 ×10-2Operational fault

Obstructed vision E32 3.1 × 10-3

Improper cut E17 1.2 × 10-3

Jammed cutter E18 6.4 × 10-4

Drill cutting debris E19 1.0 × 10-4Stuck monopile

Incorrect cutting time E20 2.0 × 10-3

Loss of structural/hull integrity E21 1.33 × 10-4

Inaccurate payload estimation E22 5.0 × 10-4

Excessive marine growth E23 1.2 ×10-4Loss of stability

Flooding E24 3.6 × 10-4

Page 21 of 39

https://mc.manuscriptcentral.com/wie

Wind Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

22

Appendix B. The BN model for collision event. 

Appendix C. The BN model for crane failures.

Appendix D. Updated prior probability and posterior probability (G+ Global Offshore 
Wind Health and Safety Organisation, 2020)

Update Input Probabilities 
Year 2015 2016 2018 2019
Tug failure 0 0 0 0.0602

Navigation failure 0.75 0.1111 0.4 0.355

Human error 0.25 0.4444 0.2 0.3871

Posterior probability (TE) 0.767 0.175 0.448 0.436
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Appendix E. Influence diagram for crane failure intervention

Appendix F. Influence diagram for collision intervention

Page 23 of 39

https://mc.manuscriptcentral.com/wie

Wind Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

24

Appendix G. Influence diagram for vessel damage intervention
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Table 1. CPT for collision incident occurrence.

Manoeuvre 
failure

Navigation 
failure 

Detection 
failure

P (Collision = 1)

1 1 1 1

1 1 0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

Table 2. CPT for vessel damage incident occurrence.

Stuck monopile Loss of stability P (Vessel damage = 1)

1 1 1

1 0 1

0 1 1

0 0 0

Table 3. CPT for crane failure incident occurrence.

Operational 
fault

Hook failure P (Crane failure = 1)

1 1 1

1 0 1

0 1 1

0 0 0
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Table 4. CPT for suspended decommissioning occurrence.

Collision Vessel 
damage 

Crane 
failure

P (Suspended 
decommissioning = 1)

1 1 1 1

1 1 0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

Table 5. Incident descriptors and their mathematical relationship.

Code Incident Descriptors (Risk-influencing 
factors – RIFS)

Mathematical 
relationship

E31 Inaccurate signal (S) Visibility (V), Fatigue (Fcrew), No of 
personnel per operation (Ncrew) 𝑆 ∝

𝑉,𝐹𝑐𝑟𝑒𝑤

𝑁𝑐𝑟𝑒𝑤
E30 Improper hooking (H) Proper procedure (P), Crane integrity 

(CI) 𝐻 ∝  
1

𝑃, 𝐶𝐼
E29 Vibrational impact (VI) Number of WTs on the WF (NWT), 

Number of lifts (NL), good equipment 
design (DEqt.), Ifreq.

𝑉𝐼 ∝  
𝑁𝑊𝑇, 𝑁𝐿

𝐷𝐸𝑞𝑡., 𝐼𝑓𝑟𝑒𝑞

E32 Obstructed vision (VO) Visibility (V), Good Weather (WG)
𝑉𝑂 ∝  

𝑉
𝑊𝐺

E20 Incorrect cutting time 
(CutT)

Thickness of WT (WTthick), 𝐶𝑢𝑡𝑇 ∝  𝑊𝑇𝑡ℎ𝑖𝑐𝑘

E26 Control system failure 
(CSF)

Certification (Cert), Inspection 
frequency (Ifreq) 𝐶𝑆𝐹 ∝  

𝐶𝑒𝑟𝑡
𝐼𝑓𝑟𝑒𝑞

E17 Jammed cutter (J) Inspection frequency (Ifreq), 
Mechanical failure (MF) 𝐽 ∝

𝑀𝐹

𝐼𝑓𝑟𝑒𝑞

Table 6. Incident groups and posterior probability of suspended decommissioning operations 

when controlled

Incident groups Variables Updated Posterior 
probability Rank

Mechanical/electrical E5, E18, E19, E25, E26, 
E27, E29 0.0597 3rd

Human error related E6, E7, E8, E31, E32 0.0337 1st
Procedural E9, E17, E20, E31 0.0457 2nd
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Figure 1. The projected cumulative capacity of offshore wind farm decommissioning (Topham 

and McMillan, 2017).
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Figure 3. The BN model for vessel damage.
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Figure 4. A BN model showing the conditional probability of suspended decommissioning operations.
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Figure 5. Diagnosis of each node (difference between initial posterior probability and the 

updated posterior probability values)
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Figure 6. Top event (suspended decommissioning) when mechanical/electrical related incidents are mitigated/controlled.
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Figure 7. Impact of risk mitigation on OWF decommissioning operation safety.

Page 33 of 39

https://mc.manuscriptcentral.com/wie

Wind Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 8. The impact of increasing expected probability of occurrence on the top event (suspended decommissioning).
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Figure 9. Prognosis of suspended decommissioning operations
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Figure 10. The impact of likelihood of occurrence of failed operations on suspended 

decommissioning operations (blue: prior likelihood, red: top event increases to 0.252)
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Figure 11. Update with 2015 data (G+ Global Offshore Wind Health and Safety Organisation, 2020).
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Figure 12. Annual probability of occurrence of suspended decommissioning operations using 

G+ OWF data.
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Figure 13. Influence diagram
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Figure 14. The impact of repair activities on likelihood of occurrence of incidents.
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