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Chapter 1
An Overview of Heuristics and Metaheuristics

Said Salhi and Jonathan Thompson

Abstract There are numerous optimisation problems for which heuristics are cur-
rently the only practical solution method. This chapter explains the need for heuristics
before providing a brief overview of heuristic search techniques including meta-
heuristics. These include traditional local search methods including simulated an-
nealing and tabu search, population methods including genetic algorithms and ant
colony optimisation and more recently proposed methods such as harmony search
and particle swarm optimisation. Examples are provided from successful applica-
tions and we will also discuss potential future research avenues.

1.1 Introduction

We live in a world of limited resources, including food, water and energy. As society
becomes more advanced, the need to make efficient use of these limited resources
becomes more pressing. The study of optimisation enables many real-life problems
to be solved and leads to many positive outcomes. For example scheduling the shift
patterns of nurses can lead to optimal use of resources and shift patterns that are
conducive to good staff wellbeing. The optimal routing of delivery trucks can lead
to reduced carbon dioxide emissions. Optimal scheduling of jobs leads to efficient
use of resources and increased profits for manufacturers.

There are many real-life applications that can be solved optimally by one of
the exact optimisation techniques known to the Operational Research community
such as linear programming, integer programming, non-linear programming and
dynamic programming among others. However, there are many applications where
the combinatorial effect of the problem makes the determination of the optimal
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solution intractable, and hence, these standard techniques become unsuitable. This
is because the computer time needed to find the optimal solution becomes too large to
be practical for real-life situations, or specialist software is required that is not easily
usable by many companies and organisations. To overcome this drawback, heuristic
methods were introduced with the aim of providing the user with reasonably good
solutions in a reasonable time. Heuristics can be likened to algorithms which are
step-by-step procedures for producing solutions to a class of problems. In many
practical situations they seem to be the only way to produce concrete results in a
reasonable time. To date, heuristic search methods have been widely used in a large
number of different areas including business, economics, sports, statistics, medicine
and engineering.

The word ’heuristic’ originates from the Greek word ‘heuriskein’ that means
discover and explore. Heuristics are also sometimes referred to as rules of thumb.
They have been used throughout history as humans are natural problem solvers and
can naturally construct heuristic methods. An example given by Sorenson [101] is
that when deciding the trajectory of a spear to throw at a wild animal, it is more
important that the trajectory is selected quickly rather than optimally. The time
spent to calculate the optimal trajectory will almost certainly mean the creature
has disappeared long before the spear is thrown. Therefore a quick but not precise
trajectory is superior. However the scientific study of heuristics began more recently
and still continues to this day, with numerous academic papers each year proposing
new heuristic methods for a wide variety of problems. Figure 1.1 shows the number
of publications listed in Scopus with ‘heuristic’ as a keyword over the last 10 years
and shows an increasing trend throughout the decade showing that advancements in
computer software and hardware have not removed the need for heuristic solution
methods.

Fig. 1.1 The number of mentions of "heuristics" on SCOPUS over the last 10 years
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The main goal in heuristic search is to construct a model that can be easily
understood and that provides good solutions in a reasonable amount of computing
time. A good insight into the problem that needs to be addressed is essential. Slight
changes to the problem description can lead to major changes to the model being
applied, for example a slight change to a problem that was easy to solve exactly may
change the complexity of the problem and necessitate the use of a heuristic.

In this chapter we will provide a short introduction to optimisation and state the
need for heuristics. Heuristics can be classified into various categories and we will
consider improvement-only heuristics in Section 1.2, heuristics that accept worsening
moves in Section 1.3, and population based heuristics in Section 1.4. Some examples
of applications will be provided in Section 1.5 and the chapter concludes with some
suggestions for future research.

1.1.1 Optimisation Problems

An optimisation problem for the case of minimisation can be defined in the following
form:
𝑃 = Minimise 𝐹 (𝑋)
s.t.
𝑋 ∈ 𝑆

Here, 𝐹 (𝑋) defines the cost or value of each solution 𝑋 . When the set 𝑆 is
discrete, (𝑃) falls into the category of discrete optimisation problems (also known
as combinatorial optimisation), whereas if it is a continuous set, (𝑃) is referred to
as a continuous optimisation problem (also known as global optimisation).

Local vs global optimality

Consider 𝑋 ∈ 𝑆 and let 𝑁 (𝑋) ⊂ 𝑆 be a given neighbourhood of 𝑋 . 𝑁 (𝑋) could
be defined as being a set of solutions that are similar to 𝑋 in some way. The decision
of which neighbourhood to use in different applications is a vital one when applying
an improvement heuristic.
𝑋 is a local minimum (maximum) with respect to neighbourhood 𝑁 (𝑋) if
𝐹 (𝑋) ≤ (≥)𝐹 (𝑋)∀𝑋 ∈ 𝑁 (𝑋). 𝑋∗ is a global minimum (maximum) if 𝐹 (𝑋∗) ≤
(≥)𝐹 (𝑋)∀𝑋 ∈ 𝑆. For instance, if Ω represents all the possible neighbourhoods
and Λ the set of all local minima (maxima), 𝑋∗ can also be defined as 𝑋∗ =Arg
Min{𝐹 (𝑋); 𝑋 ∈ Ω(𝑋)} or 𝑋∗ =Arg Min {𝐹 (𝑋); 𝑋 ∈ Λ}.

In brief, the global minimum (maximum) 𝑋∗ is the local minimum (maximum)
that yields the best solution value of the objective function 𝐹 with respect to all
neighbourhoods.

Local search is the mechanism (i.e., operator or transformation) by which 𝑋

is obtained from 𝑋 in a given neighbourhood 𝑁 (𝑋). In other words, 𝑋 =Arg
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Min{𝐹 (𝑋); 𝑋 ∈ 𝑁 (𝑋)} denotes choosing the best member of the neighbourhood.

Modelling Approach

When approaching complex real-life problems, a possible modelling approach
is to follow the following four steps. Note that this ordered list is not exhaustive as
other possibilities do exist.
The aim is to apply:
(1) an exact method to the exact (true) problem, if not possible go to (2)
(2) a heuristic method to the exact problem, if not possible go to (3)
(3) an exact method to a modified (approximated) problem, if not possible go to (4)
(4) a heuristic method to the approximated problem.

Though these rules are presented in the above ranking, the complexity in the
design of the heuristic in step (2) which aims to retain the true characteristics of
the problem, and the degree of modification of the problem in step (3) are both
crucial points when dealing with practical problems. It may be argued that steps (2)
and (3) could swap places. The idea is to keep the characteristics of the problem
as close as possible to the true problem and then try to implement (1) or (2).
Another related approach would be to start with a simplified or a relaxed version
of (𝑃), find a solution and check whether the solution satisfies the constraints to
the original problem. If it is the case, there is no need to worry about the original
problem as the solution is optimal. If some constraints are violated, which is likely to
happen especially at the beginning of the search, additional characteristics are then
introduced gradually. The process is repeated until the problem becomes impractical
to solve and hence, the feasible solution found at the previous stage can then be used
as the final solution of the problem. The choice of whether to use a heuristic method,
or to modify the problem into one that can be solved exactly is crucial. It appears
that applying a heuristic is a straightforward approach and this concept is highlighted
by the following observation that it is better to have a good and acceptable solution
to a true problem rather than an optimal solution to a problem that has very little
resemblance to the original problem.

1.1.2 The Need for Heuristics

Heuristics are usually used only when exact methods, which guarantee optimal
solutions, are impractical because the computational effort required is excessive.
They are often used to produce solutions to problems in the class NP-complete,
a set of problems for which there are no known efficient ways to find optimal
solutions to large problems. However solutions to problems in this category can
be verified efficiently. The most well-known example is the Travelling Salesman
Problem (TSP) which consists of finding the shortest route to visit a set of cities
and return to the starting point. The TSP is a computationally difficult problem
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and an optimal solution to even a relatively small problem can be difficult to find,
leading to the widespread use of heuristics. The decision of whether to use exact
or heuristic solution methods also depends on the context of the problem and how
much time is available to find a solution. Heuristics may also be used where the
problem is ill-defined, or a solution of reasonable quality is all that is required.
Salhi [87] [92] [93] provides further reasons for accepting and using heuristics.

1.1.3 Some Characteristics of Heuristics

The following characteristics are worth considering in the design of a given heuristic.
Some are by-products of the attributes that make heuristic necessary as mentioned
in the previous section, whereas others are added for generalisation purposes. For
simplicity these characteristics are only summarised below while more details can
be found in [63], [87], [92], [93], [48] among others.
Heuristics should be:
(i) Simple and coherent- the method should follow well defined steps which are not
ambiguous in any way.
(ii) Effective and robust- the method should be reliable enough to provide good or
near optimal solutions irrespective of the instances solved.
(iii) Efficient- the run time needs to be acceptable. The solution time will depend to
some extent on how the method is implemented.
(iv) Flexible- so they can be easily adjusted to solve variants of the problem with
minimum changes while retaining the strengths of the heuristic. This may include
the flexibility to allow interaction with the user so they can take some control over
the algorithm.

1.1.4 Performance of Heuristics

One difficulty with heuristics is measuring the quality of their performance, given
they are typically used on problems for which the exact solution is unknown. The
main criteria for evaluating the performance of a heuristic are the quality of the
solutions provided and the computational effort, measured in terms of CPU time,
the number of iterations or the number of function evaluations. Other criteria such
as simplicity, flexibility, ease of control, interaction and friendliness can also be of
interest, but are more difficult to measure precisely.

Solution Quality There are various ways in which the solution quality of a
heuristic may be measured. These include:
• Comparison with lower or upper bounds, which is most useful when bounds are



6 Said Salhi and Jonathan Thompson

tight
• Benchmarking against optimal results for smaller problems where the optimal
solutions are known
• A theoretical understanding of worst case behaviour
• Comparison with other heuristic techniques

Many papers merely use the latter method for evaluating solution quality and this
is fraught with danger, particularly where the authors of a particular heuristic have
also implemented the other heuristic methods for the comparison. One positive step
is that an increasing number of authors are making their code and results available
for evaluation by others.

Computational effort
Heuristics are also evaluated in terms of their computational effort. Compu-

tational effort is usually measured by how long a heuristic takes, and how much
memory it uses. The former describes the computing time the method requires for a
given instance whereas the latter measures the storage capacity needed when solving
a given instance. Unfortunately, the latter is seldom discussed in the literature. It
should be noted that the concept of large or small computer time should be relative
to both the nature of the problem (whether it is strategic, tactical or operational)
and the availability and quality of the computing resources. The time for interfaces
is usually ignored in research though it can constitute an important part of the total
computing time in practice. The importance of computing effort is directly related
to the importance of the problem. So if the problem relates to short term planning
and needs to be solved several times a day, it is essential that the algorithm is quick,
whereas if the problem is solved at a medium or at a strategic level (so once every
month or year), the cpu time is less important, and more consideration can be given
to the quality of the solution. So for example a supermarket routing delivery vehicles
need a quicker solution than a university scheduling its examinations twice per year.
It should be noted that for some strategic problems, users may require the need to
investigate different options and scenarios in which case the heuristic would need to
be run several times and therefore should not be too slow.

1.1.5 Heuristic Classification and Categorisation

There are several ways to classify heuristics. Heuristics can be greedy where so-
lutions are constructed from scratch or improvement where an existing solution is
improved over time. Other classifications take into account whether the heuristic is
deterministic or stochastic, uses memory or is memory-less, and whether it considers
one solution at a time or a population of solutions. Salhi [93] categorises heuristics
into four groups, namely, (a) improving solutions only, (b) not necessarily improv-
ing solutions, (c) population based and (d) hybridisation. The first two groups are
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completely disjoint, whereas the last two could interrelate with each other as well
as with the first two. We discuss the first three of these in the next three sections.
Hybridisation is discussed in the following chapter.

1.2 Improvement-Only Heuristics

In this section, we briefly discuss approaches that only allow improving moves. The
simplest such method is a descent or hill climbing method but more sophisticated
improvement only methods commonly used include GRASP (Greedy Randomised
Adaptive Search Procedure), multi-level, variable neighbourhood search, perturba-
tion schemes, adaptive large neighbourhood search, iterated local search and guided
local search. Some of these will be described below

1.2.1 Hill climbing methods

The basic hill climbing or descent method has two main components, the generation
of an initial solution and the means of improving this solution. The initial solution
is typically generated either randomly or using a simple constructive type heuristic
that builds the solution piece by piece until the final solution is constructed. For
example for the Travelling Salesperson Problem (TSP), the starting solution may be
constructed by selecting the nearest unvisited city at each step. Different heuristics
may be used instead, which may be more computationally expensive but could result
in better quality starting solutions. For example for the TSP, the heuristic could insert
an unvisited city into the partial tour in the position which causes the minimum
increase in the tour distance. Typically these rules are myopic (short-sighted) so can
lead to large increases in cost towards the end of the construction.

The initial solution is then subject to improvement. The process of improvement
requires a cost function 𝐹 (𝑠) which attributes a cost or value to each solution 𝑠,
and a neighbourhood 𝑁 (𝑠) that defines a set of solutions that can be reached from
the current solution via a small change. For the TSP, the cost is the total length of
the tour and the neighbourhood could be defined as the set of solutions constructed
by deleting 2 edges from the current solution and then forming a new tour, or
swapping the positions of two cities in the tour etc. A selection mechanism also
needs to be defined that determines which neighbouring solutions are sampled.
The neighbourhood structures and the selection mechanism adopted are crucial
elements that contribute considerably to the success of improving heuristics. The
most commonly used selection strategies are (i) the best improving move where
we evaluate all or a part of the neighbourhood and select the feasible move that
yields the best cost, or (ii) the first improving move where we select the first feasible
solution that is better than the current solution. Note that (i) may take longer as all



8 Said Salhi and Jonathan Thompson

moves have to be evaluated at each stage but does mean the heuristic ends in a locally
optimal solution and the search can terminate as soon as none of the neighbouring
solutions provides an improvement. In (ii) neighbouring solutions are sampled at
random so the selection is much quicker and at first, it is often straightforward to
find improving moves. However as the number of iterations increases, fewer moves
result in improvements and the search can only estimate that a locally optimal
solution has been reached. Such heuristics normally terminate when there have been
a certain number of iterations 𝑁𝑒𝑛𝑑 without improvement, and the value of this
parameter 𝑁𝑒𝑛𝑑 depends on the size of the problem/neighbourhood and is problem
and instance dependent. In this case, the search may need to be repeated several times
as different solutions may be produced depending on the random number stream used.

Algorithm 1 summarises the main features of (a) the best improving move and
(b) the first improving move.

Algorithm 1: The Basic Descent method

(a) Best Improvement

Select initial solution 𝑠 ∈ 𝑆

Repeat the following steps:
Find the best member 𝑠′ ∈ 𝑁 (𝑠)
If 𝑓 (𝑠′ ) < 𝑓 (𝑠) then

Let 𝑠 = 𝑠′

Else
Terminate run

(b) First Improvement

Select initial solution 𝑠 ∈ 𝑆

Set 𝑚𝑎𝑥𝑛 = max number of consecutive
moves without improvement
Set 𝑛 = 0
Repeat the following steps while 𝑛 < 𝑚𝑎𝑥𝑛

Choose 𝑠′, a random member of 𝑁 (𝑠)
If 𝑓 (𝑠′ ) < 𝑓 (𝑠) then

Let 𝑠 = 𝑠′

𝑛 = 0
Else

𝑛 = 𝑛 + 1

It is also possible to employ a compromise strategy that sits between the best
improvement and first improvement methods. This could be achieved in several
ways, for example by selecting the best improving move found after a certain time
has elapsed since the previous improvement.

These methods typically search a very small part of the solution space, and
solution quality depends on the starting solution. Therefore they are of limited use
but can provide quick improvements to solutions produced heuristically that may
not be local optima.
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1.2.2 Classical Multi-Start

The local search procedure is efficient when the objective function is unimodular
(i.e., has one local minimum only). However, when there are several minima, it is
impossible to get out of the neighbourhood of a local minimum using the same
neighbourhood as shown in Figure 1.2. In the second diagram representing a multi-
modular function, if the search begins at position A or B, it converges to a poor
quality local optimum whereas if it starts from position C or D, it converges to the
global optimum. In practice for many combinatorial optimisation problems there are
numerous local optima and the likelihood of finding a high-quality solution using a
descent only strategy is quite small.

Fig. 1.2 Local Optimality

One way of improving the likelihood of finding a high-quality local optimum
is to use a multi-start method where the search is repeated from different starting
solutions to ensure a broader section of the solution space is searched. An example
is Braysy et al. [8] who apply a multi-start local search method to the vehicle
routing problem with time windows. They use a randomised constructive heuristic
to generate a set of starting solutions and then apply local search to each. The
best solution found is then subject to a further improvement process. In practice
they construct 420 starting solutions but only apply the descent phase to solutions
consisting of the minimum number of routes.

The basic multi-start method is summarised in Algorithm 2.
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Algorithm 2: The multi-start method.
Step 1. Set 𝑏𝑒𝑠𝑡𝑠 = ∞
Step 2. Repeat the following 𝑚 times

(2a) Create an initial solution 𝑠

(2b) Perform a descent move to find a locally optimal solution 𝑠′′

(2c) If 𝑓 (𝑠′′ ) < 𝑏𝑒𝑠𝑡𝑠 then set 𝑏𝑒𝑠𝑡𝑠 = 𝑓 (𝑠′′ )

If starting solutions are created randomly, then multi-start methods are well
suited to parallelisation which can improve solution quality. However the search
can be considered to be blind as it may re-visit local optima that have already
been considered. Therefore methods that deliberately create starting solutions that
differ to previously visited solutions are more popular. For example for the TSP, a
list of the frequency of edges being included in solutions can be maintained, and
future starting solutions can be weighted towards selecting edges that have not been
frequently selected previously.

1.2.3 Greedy Randomised Adaptive Search Procedure (GRASP)

GRASP is an extension of multi-start methods and was introduced by Feo and
Resende [39]. A more formal description is given in Feo and Resende [40]. It is
a multi-start heuristic which consists of two phases, the construction phase that
constructs an initial solution and a local search phase that improves the initial
solution. This is repeated several times. GRASP can be considered as a memory-less
multi-start heuristic. GRASP differs from multi-start in the way the initial solution
is generated as it combines randomness with greediness. The idea is that at each
step of the construction phase a selection rule is used that is less rigid and allows
flexibility in choosing not necessarily the best option but to choose any options that
are close in some way to the best. Typically a restricted candidate list (RCL) is used
made up of either the top 𝑘 best options or those options that are within a certain
deviation from the best. For instance, for the case of minimisation: RCL= {set of
attributes 𝑒 such that 𝑔𝑚𝑖𝑛 ≤ 𝑔(𝑒) ≤ 𝑔𝑚𝑖𝑛 + 𝛼(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛)} where 0 ≤ 𝛼 ≤ 1
and 𝑔𝑒 is the cost of incorporating element 𝑒 into the solution. The element to be
added to the partial solution 𝑒∗ is then randomly chosen from the RCL. Note that
if 𝛼 = 0 this reduces to a greedy method whereas if 𝛼 = 1 the search becomes the
classical random multi-start approach. The basic GRASP is described in Algorithm 3.

There are several possible variations to GRASP. For instance the choice of 𝛼

does not need to be fixed beforehand but can be adjusted from one cycle to another
depending on the solution quality found in previous solutions (this is known as
reactive grasp). The definition of 𝛼 can also be defined as a function of the gain/loss
at a given iteration, or as a convex or a concave function dependent on the number
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Algorithm 3: The GRASP method.
Step 1. Set 𝑏𝑒𝑠𝑡𝑠 = ∞
Step 2. Repeat the following 𝑚 times

(2a) Create an initial solution 𝑠 using a greedy-randomised procedure and an RCL
(2b) Perform a descent move to find a locally optimal solution 𝑠′′

(2c) If 𝑓 (𝑠′′ ) < 𝑏𝑒𝑠𝑡𝑠 then set 𝑏𝑒𝑠𝑡𝑠 = 𝑓 (𝑠′′ )

of iterations. Path-relinking can be introduced which involves exploring the path
between different locally optimal solutions to search for better solutions. Learning
can also be introduced, either to guide the search towards new unexplored areas of the
solution space or to maintain in future solutions attributes that appear to commonly
occur in high quality solutions. For examples see [46], [70] and [94].

1.2.4 Variable Neighbourhood Search (VNS)

Variable Neighbourhood Search (VNS) requires the definition of several neighbour-
hoods for the given problem. VNS attempts to escape local optima by moving to
a new, usually larger, neighbourhood whenever there is no possible improvement
through a local search in a given neighbourhood, and then reverts back to the first
one, usually the smallest, if a better solution is found. VNS was originally developed
by Mladenović and Hansen [75] for solving combinatorial and global optimisation
problems. VNS contains mainly three phases, namely, a shaking phase (given a set
of neighbourhood structures, a neighbouring solution is generated), an improvement
phase (a local search or a local search engine is deployed to improve the currently
perturbed solution) and finally a neighborhood change phase (move or not move).
VNS takes advantage of the fact that a local minimum with respect to a given
neighbourhood may not be a local minimum for other neighbourhoods, but local
optima for several different neighbourhoods are often close to each other. However,
a global minimum is a local minimum for all neighbourhoods.

VNS starts from some starting solution 𝑥 and local search is applied using an
initial neighbourhood 𝑁1 (𝑥). The locally optimal solution found under the initial
neighbourhood is then used as the starting solution for a local search under neigh-
bourhood 𝑁2 (𝑥). If an improving move is identified, the search reverts to the first
neighbourhood; otherwise the search moves onto neighbourhood 𝑁3 (𝑥) and so on.
See Algorithm 4 for a description.

Compared to other powerful heuristics, VNS has the advantage of being simple
and easy to implement as it requires only the definition of the neighbourhoods and
the local search and there are no parameters to consider. A number of variants have
been applied to different combinatorial problems with success. These include:
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Algorithm 4: Variable Neighbourhhod Search (basic VNS).
Step 1.

(1a) Set 𝑏𝑒𝑠𝑡𝑠 = ∞
(1b) Generate an initial solution 𝑠 and define the neighbourhood structures

𝑁1, 𝑁2, ..., 𝑁𝑘𝑚𝑎𝑥

(1c) Set 𝑘 = 1
Step 2. Repeat until stopping criteria are satisfied

(2a) Choose a solution 𝑠′ in the neighbourhood 𝑁𝑘 (𝑠) (shaking procedure)
(2b) Perform a descent move (a local search or a series of local searches) to find a

locally optimal solution 𝑠′′

(2c) If 𝑓 (𝑠′′ ) < 𝑏𝑒𝑠𝑡𝑠 then set 𝑏𝑒𝑠𝑡𝑠 = 𝑓 (𝑠′′ )
(2d) If 𝑓 (𝑠′′ ) < 𝑓 (𝑠) then Move or not

Set 𝑠 = 𝑠′′ and 𝑘 = 1
Else

Set 𝑘 = 𝑘 + 1; If 𝑘 > 𝑘𝑚𝑎𝑥, set 𝑘 = 1

• Reduced VNS is useful for large problems where local search is too time-consuming
and hence omitted from the search. In other words, this is mainly a VNS without
the local search (i.e., the use of the shaking procedure and the move or not step) but
allows to be used either in a systematic manner (reverting to the first neighbourhood,
or to the next one, or a combination).
• VND, short for variable neighbourhood descent, is focused on the local search
phase and the move or not move phase. Here the way the local search phase is
implemented is critical. Usually there are a number of local searches used either in
series or in a VNS type format like the multi level heuristic described earlier.
• General VNS is a VNS where the local search phase is a VND.
• Skewed VNS explores areas of the solution space which can be far from the current
solution by accepting non improving solutions based on a certain threhsold. In other
words the move or not move phase is made slightly relaxed.
Note that in the improvement phase within the local search either a first improvement
or a best improvement is adopted which can lead to several other variants. The move
or not move step can also have several options such as sequential, cyclical or in a
pruning way as defined in [49]. For more description on these and other variants,
see [48], [49] and [93].

1.2.5 Iterated Local Search (ILS)

This consists of two main phases known as the construction/diversification phase
and the local search phase. At each iteration the current solution is diversified, and
then is subject to local search. These are performed repeatedly while an acceptance
step is embedded to retain the best solution found so far. The aim is to ideally keep
using the same local search as a black box while providing interesting solutions
to it through diversification. This approach is simple and efficient and shown to
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be powerful in obtaining interesting results in several combinatorial problems. One
possible implementation of a strong ILS could be the combination of LNS (diver-
sification/construction) with a VND or randomised VND (local search). For more
details and possible applications of this heuristic, see [67].

1.2.6 A Multi-Level Composite Heuristic

Multi-level composite heuristics are similar to variable neighbourhood descent and
involve improving the solution using a small number of local searches, known as
refinement procedures in sequence, with the method stopping when there is no further
improvement possible. The resulting solution should be a high quality solution as
it is a local minimum with respect to the selected procedures. The heuristic starts
by finding a locally optimal solution using the first refinement procedure, and then
this solution becomes a starting solution for a second refinement procedure etc. In
addition, once a new better solution is found, it can be used as an initial solution for
any of the other refinements, not necessarily the next one in the list. For simplicity,
we can restart the process using the first one which is the simplest refinement
in our list of available refinements. This is the backbone of multi-level heuristics
initially proposed in Salhi and Sari [90] for the multi-depot routing problem with
a heterogeneous vehicle fleet. This approach has now been successfully applied
to many other combinatorial and global optimisation problems. The choice of the
refinement procedures, the sequence in which these are used and the choice of the
refinement to go back to, once a new better solution is found, can be critical. Note
that once a solution is found at a given level, it is appropriate to go to any of the
other refinements of the earlier levels. A standard approach is to revert back to the
first level where computations are relatively fast. More details on this approach can
be found in [90], [96].

The way the levels are organised can have a significant effect on the solution
quality and this requires careful consideration. The choice of successive refinements
may be critical as one may wish to consider the next local search to be drastically
different in structure to the previous one so as to provide diversity. The search does
not necessarily have to return to the initial refinement once a solution is determined
and the choice of the refinement to return to does not need to remain constant
throughout the run. It may be that the obtained solution would be better suited to
another refinement chosen randomly or based on certain rules that consider the
structure of the current solution. It can be a challenging task to match the structure
of a given solution with the characteristics of the set of refinements used. The
integration of learning within the search could render this approach more adaptive
and hence more powerful as demonstrated in [103], [104].
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1.2.7 Problem Perturbation Heuristics

The idea of problem perturbation heuristics is to perturb the original problem to
obtain a series of gradually perturbed problems. Local search is applied to the
initial problem and a locally optimal solution is then obtained. The problem is then
perturbed in some way and local search applied again to this new problem leading
to a different solution. It can be considered whether this new solution is a better
solution to the original problem than the previously found local optimum.

The perturbed problem may be found by adding a violation that means the current
local optimum is infeasible. As there is a well-defined perturbation built up between
successive perturbed problems, the successive solutions may have the tendency of
retaining some of the important attributes in their respective configurations. After a
set of perturbed problems are found, the search may proceed by gradually relaxing
the problem by removing the violations again, one by one. This continues until the
problem returns to the initial problem again. At this stage a local search to improve
the solution can be used again and then either the process starts adding violations
again or making the original problem even less restricted by removing some of the
constraints. This process can be repeated several times.

For instance, consider the 𝑝-median problem where the objective is to identify the
optimal location of a fixed number of facilities (say 𝑝) with the aim of minimising
the total transportation cost. A local search can be performed and a local optimum
identified. Then, the solution is allowed purposely to become infeasible in terms of
the number of facilities by accepting solutions with more than or less than 𝑝 (say 𝑝±𝑞
where 𝑞 ∈ [𝑝/4, 𝑝/3]). By solving the modified problems, infeasible solutions can
be generated that when transformed into feasible ones may yield a cost improvement.
Initially a feasible solution with 𝑝 facilities is found, then one facility is added at a
time and after each, a simple local search is activated. Once we reach 𝑝 + 𝑞 facilities,
we then start removing one facility at a time till we get to a feasible solution with 𝑝

facilities where a more powerful local search is applied for intensification purposes
to try to obtain a better local minimum. At this stage we also allow the solution to be
infeasible by removing one facility at a time until we reach say 𝑝 − 𝑞, from where
we start adding facilities again until we reach a new feasible solution. This up and
down trajectory makes up one full cycle. The process is then repeated until there is
either no improvement after a certain number of cycles or the overall computing time
is met. When this process is repeated several times going through several cycles, it
acts as a filtering process where the most attractive depots will have the tendency to
remain in the best configuration, which is a form of survival of the fittest. Such an
approach was developed by Salhi [90] and it performed well when tested on a class
of large facility location problems with known and unknown values of 𝑝. Zainuddin
and Salhi [120] adapted this approach to solve the capacitated multisource Weber
problem and Elshaikh et al [38] modified it for the continuous p-centre problem.

A similar strategy is Strategic Oscillation where the search moves between the
feasible and infeasible regions. Consider Figure 1.3 which illustrates a solution
space with a disconnected solution space. A search is performed in a feasible region,
ending in say point A but the constraints are then relaxed, enabling the search to move



1 Heuristic Search 15

into the infeasible region (say point B). At this stage, the constraints are re-imposed
and the local search is used to guide the search back towards a feasible region, point
C in this case. In this way the search investigates a broader area of the solution
space and is able to navigate between different parts of a disconnected solution space.

Fig. 1.3 Strategic Oscillation to Search a Disconnected Solution Space

The amount of infeasibility allowed is dealt with by attaching penalties to broken
constraints. These penalties are dynamically updated. This concept is useful partic-
ularly when the solution space is disconnected or non convex as it is impossible to
cross the infeasible region using only feasible solutions. The only difference with
problem perturbation heuristics is that the latter is designed purposely to explore
these infeasible solutions in a guided manner without any penalty attached so that
some useful and promising attributes could then be identified.

1.2.8 Some other improving only methods

Large Neighbourhood Search (LNS)- The idea is to use not necessarily small neigh-
bourhoods but larger ones as well. The need for these large neighbourhoods is
sometimes crucial to get out of local optimality as pointed out by Ahuja et al. [1].
This was proposed by Shaw [100] and can be seen to be similar to the ‘ruin and
recreate’ procedure of Schrimpf et al. [98]. The idea is to perturb the solution
configuration in an intelligent way by deleting some of the attributes of the solution
using some removal strategies and then reintroducing them using some insertion
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strategies. This has similarities with perturbation methods described earlier except
here the removal of many attributes is performed at the same time. Some of the
considerations when implementing this method include the number of attributes to
remove, the removal strategies adopted and the insertion or repair strategies used.
The way these strategies are implemented and developed is critical to the success
of the search. As the method is repeated several times some form of learning is
worth exploring to efficiently guide the search. For instance, [103], [104] introduced
interesting new operators and successfully integrated LNS with VNS in an adaptive
way. LNS is now becoming a useful tool to solve many complex combinatorial
problems.

Random Noise- A related method that perturbs the problem space by introducing ran-
dom noises to the data is the noising method developed by Charon and Hudry [13].
The idea is to solve the problem with the perturbed objective function values via a
local search where at each iteration, or after a fixed number of iterations, the level of
perturbation is reduced until it reaches zero and the problem reverts to the original
one. The way the noise is introduced and how randomness is gradually reduced
as the search progresses are two key factors that are critical to the success of the
method. Relatively recent work by Charon and Hudry [14] explored the self-tuning
of the parameters of such a method.

Guided Local Search- This is an adaptive local search which attempts to avoid
local optimality and guide the search by using a modified objective function. This
objective function contains the original objective and a penalty term which relates to
the less attractive features of the configuration of a given local optimum. The local
search used can be a simple improvement procedure or a powerful heuristic. In other
words, at every locally optimal solution the feature which has a large utility value
receives an increase in its unit penalty. For instance, in the case of the TSP, the edges
can represent features of the tour and the largest edge of the obtained tour will have
its penalty increased. Note that this type of penalty is related to the so called ‘bad’
features and not to the amount of infeasibility as usually carried out in constrained
optimisation. The way the features are selected and penalised play an important part
in the success of this approach. [112] provide an interesting review with an emphasis
on how to implement this approach when addressing several combinatorial problems.

1.3 Not Necessarily Improving Heuristics

In this section, we discuss those popular heuristics that improve the solution by
not necessarily restricting the next move to be an improving move. This enables
the search to escape from local optima. However note that allowing such inferior
solutions to be chosen needs to be controlled as the search may diverge to even worse
solutions. Some of the well established techniques that are based on this concept are
covered here, and include simulated annealing, threshold accepting and tabu search.
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These methods have been around for many years and are still extremely popular,
being used to solve both real-life and academic problems.

1.3.1 Simulated Annealing

The concept of simulated annealing (SA) is derived from statistical mechanics which
investigates the behaviour of very large systems of interacting components such
as atoms in a fluid in thermal equilibrium, at a finite temperature. Metropolis et
al. [74] studied the simulation of the annealing of solids. This work was built on
by Kirkpatrick et al. [59] and later by Cerny [12] who considered how to apply a
method based on simulated annealing to large combinatorial optimisation problems.
In the context of an optimisation problem, the process of a body cooling is an
analogy for a search algorithm seeking a good solution with the aim of approaching
the global optimum. The energy function in our case will represent the objective
function of the problem. The configuration of the system’s particles becomes the
solution configuration of the problem. The temperature acts as the control parameter.
Cooling too fast resulting in defective crystal is analogous to a neighbourhood search
that yields a poor local optimum. Kirkpatrick et al., adopted these analogies for the
context of combinatorial optimisation, to explicitly formulate the algorithm that is
now widely known as Simulated Annealing (SA). The way in which the temperature
decreases is called the cooling schedule and the probability function used is that of
Boltzmann’s Law (see [74]) which is a negative exponential function. The reasoning
behind this choice is that it has the tendency to choose more non-improving solutions
initially but as the search progresses this random-based technique will have a smaller
probability of selecting inferior solutions meaning the search converges to a high-
quality local optimum. For more details see [37], [78], [34] and [33]. A simple
implementation of SA is shown in Algorithm 5.

Algorithm 5: Basic Simulated Annealing Algorithm
Step 1. Choose an initial temperature 𝑇 which is sufficiently high that many worsening

moves are likely to be accepted.
Step 2. Create an initial solution 𝑠 and evaluate its cost value 𝑓 (𝑠) . Set 𝑏𝑒𝑠𝑡 = 𝑠

Step 3. Repeat the following 𝑛 times.
(3a) Choose a neighbouring solution 𝑠′ and evaluate its cost function.

If 𝑓 (𝑠′ ) ≤ 𝑓 (𝑠) , then set 𝑠 = 𝑠′ as it is an improving or equivalent move.
If 𝑓 (𝑠′ ) < 𝑓 (𝑏𝑒𝑠𝑡 ) set 𝑏𝑒𝑠𝑡 = 𝑠′

(3b) If 𝑓 (𝑠′ ) > 𝑓 (𝑠) then calculate 𝑑 = 𝑒𝑥𝑝 (−( 𝑓 (𝑠′ ) − 𝑓 (𝑠) )/𝑇 ) and if a random
number 𝑟 (0, 1) < 𝑑, then accept the move and set 𝑠 = 𝑠′. Otherwise reject.

Step 4. Reduce the temperature according to some cooling schedule.
Step 5. If the stopping criteria are not met, return to step 3,

Otherwise, stop the search and return 𝑏𝑒𝑠𝑡 .
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A disadvantage of simulated annealing is that it is heavily dependent on parame-
ters. These relate to the start and end value of the temperature, the means for reducing
the temperature and the number of iterations at each temperature.

There are various methods for reducing the temperature (cooling). The most
common is 𝑇𝑘+1 = 𝛽𝑇𝑘 , 0 < 𝛽 < 1 where the closer 𝛽 is to 1, the better the solution
quality will normally be but the run time will increase also. Other possible cooling
methods include:
𝑇𝑘+1 = 𝑇𝑘 − 𝑡 (𝑡 = constant) or 𝑇𝑘+1 = 𝑇𝑘 − 𝑡𝑘 where 𝑡𝑘 is randomly chosen at each
iteration 𝑘 or 𝑇𝑘+1 = 1/𝑡 (1+ 𝛽𝑡) ( [69]) etc. Typical stopping criteria are a maximum
number of iterations is reached, a time limit is attained or the temperature becomes
sufficiently small that the likelihood of accepting any worsening moves is likely to
be extremely small, so at this stage it is likely that a local optimum has been reached.

The value of the initial temperature (𝑇0 ) should be large enough to accept a large
number of moves. Therefore an initial phase may be used where random moves are
sampled and an appropriate value of the temperature parameter can be calculated to
ensure that a given percentage of these moves would be accepted. However, if the
value of𝑇0 is too large, most solutions will be initially accepted which can be a waste
of time as the search is in effect performing a random walk. On the other hand, if
the value is too small, too many non-improving solutions will be rejected and the
method becomes a simple local search method. See [62] for details of some possible
implementations, and see [93] for more details. The temperature 𝑇𝑘 theoretically
needs to be a non-increasing function of iteration 𝑘 (e.g. 𝑇𝑘+1 = 𝑔(𝑇𝑘) ≤ 𝑇𝑘).
However it is possible to allow the temperature to remain constant or to increase
marginally at a given iteration. One idea is to reset the temperature at higher values
after getting stuck in a flat region, say if no improvement is found after a certain
number of iterations (i.e., consecutive uphill rejections). The current solution is
locally optimal and since the temperature is low, the SA algorithm becomes self-
destructive as it restricts the acceptance of less attractive solutions. These non-
improving moves are rejected with a probability of almost one. The following resets
are commonly used based on the temperature when the best solution was found,
say 𝑇𝑏𝑒𝑠𝑡 and the last temperature reset 𝑇𝑅: 𝑇𝑘+1 = 𝑇𝑏𝑒𝑠𝑡 , or 𝛼𝑇𝑏𝑒𝑠𝑡 + (1 − 𝛼)𝑇𝑘
or 𝛽𝑇𝑏𝑒𝑠𝑡 + (1 − 𝛽)𝑇𝑅 (initially 𝑇𝑅 = 𝑇𝑏𝑒𝑠𝑡 ), with 𝛼, 𝛽 ∈ [0, 1] representing the
corresponding weight factors. Some of these resetting schemes are initially given by
Connolly [16], [17] and successfully applied by Osman and Christofide [76] to solve
the VRP.

One may argue that the update function using such a reset scheme violates the
property of 𝑔(𝑇𝑘) as it should be theoretically a non-increasing function of 𝑘 . This
is true if 𝑔(𝑇𝑘) was optimally defined but not heuristically as derived here. Such a
statement needs therefore to be relaxed and allowing such flexibility is appropriate.
Another way of relaxing such an update would be to incorporate flexibility by
allowing the temperature to increase relatively according to the change in the cost
function, see [30] and [31]. If a number of worsening moves are accepted the
temperature should be reduced whereas if few worsening moves are being accepted
and it appears the search has become trapped in a specific part of the solution space,
the temperature should be increased. For more information on SA, see [33].
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1.3.2 Threshold-Accepting Heuristics

This heuristic is a simplified version of simulated annealing. It generally involves
accepting all moves that fall below some threshold value which varies as the search
progresses. This avoids the probabilistic effect of simulated annealing when selecting
a non-improving move, as the acceptance decision is entirely deterministic. When
implementing threshold acceptance, one again needs to define a starting solution,
cost function and neighbourhood. Additionally, the value of the threshold needs to
be selected as well as the method for updating it. If the threshold is too high, almost
all moves will be accepted and the search will just perform a random walk. If the
threshold is too low, no moves will be accepted. Dueck and Scheurer [35] were
the first to propose the Threshold Acceptance heuristic formally and they presented
empirical studies comparing the results against simulated annealing when solving
the TSP. The results were encouraging and Threshold Acceptance has the advantage
of requiring fewer parameters and being a simpler method. The method is shown in
Algorithm 6.

Algorithm 6: Basic Threshold Accepting Algorithm.
Step 1. Choose an initial threshold value 𝑇
Step 2. Create an initial solution 𝑠 and evaluate its cost value 𝑓 (𝑠) . Set 𝑏𝑒𝑠𝑡 = 𝑠

Step 3. Repeat the following 𝑛 times.
(3a) Choose a neighbouring solution 𝑠′ and evaluate its cost function.
(3b) If 𝑓 (𝑠′ ) ≤ 𝑓 (𝑠) or 𝑓 (𝑠′ ) ≤ 𝑇 , then set 𝑠 = 𝑠′

(3c) If 𝑓 (𝑠′ ) < 𝑓 (𝑏𝑒𝑠𝑡 ) set 𝑏𝑒𝑠𝑡 = 𝑠′

Step 4. Reduce the threshold value according to 𝑇 = 𝑇 ∗ 𝛼 where 𝛼 < 1.
Step 5. If the stopping criteria are not met, return to Step 3,

Otherwise stop the search and return 𝑏𝑒𝑠𝑡 .

An alternative is to record a list of the top non-improving solutions which can then
be used to guide the threshold target (the size of such a list can be made constant
or dynamically changing). This is similar to SA except that there is flexibility in
accepting a non-improving solution deterministically through thresholding instead.

Threshold Acceptance has proved to be computationally efficient when tackling
hard combinatorial problems especially routing based problems (see [107] and [66]).
For further references on TA and its implementation, see [52] and [64].

The following two simple but successful variants of TA have proved to be promis-
ing and hence are worth mentioning.
Record to record heuristic- This is developed by Dueck [36] where the threshold is
based on the relative deviation from the best solution instead of the absolute deviation
from the current solution. Therefore moves are accepted if they improve the current
move or if the difference between the two costs is below some threshold value. This
takes into account the fact that different problems may have very different magni-
tudes of costs which can be misleading if the classical TA is blindly implemented.
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Li et al. [66] adopted this approach for solving the heterogeneous vehicle routing
problem.
List-based threshold accepting- This approach is developed by Tarantilis et al. [107]
where instead of having a threshold value based on the objective function only, a
list containing a number of the top solutions is used with its cardinality being the
only parameter (𝑀) that needs to be controlled which makes the search easier to
implement. During the search, the list is reduced gradually by decreasing the value
of 𝑀 . The authors produced competitive results when testing this scheme on a class
of routing problem with a heterogeneous vehicle fleet.

1.3.3 Tabu Search

This approach was proposed by Glover [43] and independently discussed by
Hansen [47] as a metaheuristic optimisation method. Tabu Search (TS) concepts
are derived from artificial intelligence where the intelligent use of memory helps
to exploit useful historical information. Tabu Search is a best acceptance method
that escapes from local optima by accepting non improving moves. However merely
accepting worsening moves will lead to the search cycling between a small number
of solutions. To avoid this, a tabu status is allocated to those attributes involved in
recent moves. The search is not permitted to return to solutions with these attributes
for a certain number of moves. Tabu Search (TS) shares with SA and TA the ability
to accept non-improving moves and to escape from local optima.

An attribute of a solution is recorded rather than the entire solution as it is more
efficient, but it can lead to solutions being classed as tabu even if they have not been
visited before. Therefore an aspiration criteria is normally used which means that a
tabu solution can still be accepted if its cost is better than the best solution found so
far.

Tabu search can be considered as an aggressive method as it selects the next
best move in a deterministic manner. It will converge quickly to a local optimum
before starting to accept worsening moves unlike simulated annealing and threshold
methods that may only find locally optimal solutions towards the end of the run.
TS also takes into account past information of already found solutions to construct
short and/or long-term memories. These memories are useful in guiding the search
via diversification to explore other regions of the solution space, and intensification
to intensify the search within the same vicinity of the current solution. TS, as other
metaheuristics, has also the power of searching over non feasible regions which,
in some situations, can provide an efficient way for crossing the boundaries of
feasibility. The general method is shown in Algorithm 7.

A key question is how to define the right restriction or tabu status For instance in
routing, if the best move was to exchange customer 𝑖 from route 𝑅𝑘 with customer 𝑗

from route 𝑅𝑠 , a very restrictive approach would be to say that both customers cannot
be allowed to go back to their original routes respectively for a certain number of
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Algorithm 7: Basic Tabu Search Algorithm.
Step 1. Create an initial solution 𝑠 and evaluate its cost value 𝑓 (𝑠) . Set 𝑏𝑒𝑠𝑡 = 𝑠

Step 2. Repeat the following 𝑛 times.
(3a) If there exists a tabu solution 𝑠′ in 𝑁 (𝑠) for which 𝑓 (𝑠′ ) < 𝑓 (𝑏𝑒𝑠𝑡 ) then

Set 𝑠 = 𝑠′ and update Tabu list.
(3b) Else

Choose the best non-tabu solution 𝑠′ in 𝑁 (𝑠)
Set 𝑠 = 𝑠′ and update Tabu list

(3c) If 𝑓 (𝑠) < 𝑓 (𝑏𝑒𝑠𝑡 ) then 𝑏𝑒𝑠𝑡 = 𝑠.

iterations, a tight restriction would be that either customer 𝑖 or 𝑗 is not allowed to go
back to its original route but one could return, and a less tight restriction would be
that both customers are able to go back to their original routes but cannot be allowed
to be inserted between their original predecessors and successors.

The time that a solution remains tabu must also be selected. Small values may
increase the risk of cycling whereas large values on the other hand, may overconstrain
the search. Additionally a larger tabu list (size |𝑇𝑠 |) can be more computationally
demanding. The ideal value may be difficult to decide, and will vary from problem
to problem and even instance to instance. It can be defined dynamically so that it
updates according to observations made as the search progresses. It can periodically
change between a set of values generated randomly within a fixed range at each
iteration. This is known as robust tabu as it provides a more flexible approach.
Another scheme is to have a rule that the size of the tabu list switches between the
two extreme values. This implementation was found to be successful when adopted
by Drezner and Salhi [34] for the one way network design problem. Finally |𝑇𝑠 |
can be dependent on the change in the cost function for that selected move. For
instance for the 𝑝 -median problem, a functional setting was successfully adopted
by Salhi [88].

The construction of such functions is seldom attempted in the literature as it is
challenging but it is an interesting idea as it incorporates both learning and problem
characteristics in an integrated way.
The size of the tabu list can also be updated dynamically by increasing or decreasing
its value as the search progresses. For example, |𝑇𝑠 | could be increased according
to ( |𝑇𝑠 | = (1 + 𝛽 |𝑇𝑠 |) with 𝛽 = 0.1 or decreased by setting 𝛽 = −0.1 depending on
the number of repetitions, their risk of collision, etc. Collision is usually identified
through hashing functions or other forms of identification. This is originally proposed
by Battiti and Tecchiolli [4] who named this variant as reactive TS (RTS). This
approach is adopted by several researchers including Wassan [115] who successfully
addressed a class of routing problems, namely, the vehicle routing with backhauls
problem.

The level for which the aspiration level overrides the tabu status is crucial in
the search as it defines the degree of flexibility of the method. The most common
method, as mentioned above is to relax the tabu restriction if a solution produces
a better result than the currently best-known solution. This is obviously correct as
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the search would be missing out on the opportunity to identify a new best solution.
Another consideration that arises in some circumstances is what will happen if all
of the solutions are either tabu or non-improving solutions. Is it appropriate to look
for the first non-tabu solution down the list or to choose one from those tabu top
solutions? The elements which will constitute the decision need to include the tabu
status of the attribute for that solution, the objective function value (or the change
in the objective function), and other factors such as frequency of occurrence during
a certain number of iterations and so on. One possible attempt is to use the scheme
developed by Salhi [88] who introduced a softer aspiration level which is based on
the concept of criticality in the tabu status.

Most tabu search implementations include a Diversification step with the aim
of guiding the search to new, different parts of the solution space. Diversification
moves use some form of perturbation (jumps) to explore new regions. It uses long
term memory to guide the search out of regions which appears to be either less
promising according to the results provided from the short term memory, or have
not been explored previously. The use of diversification is nowadays embedded into
most metaheuristics either as a post optimisation step or as a perturbation step as in
large neighbourhood search.

Alternatively intensification can be used which stimulates moves to go to a nearby
state (neighbourhood) that looks myopically good. This uses short term memory as
it observes the attributes of all performed moves. This is usually achieved by a local
search or a series of local searches where the focus of the search is on promising
regions of the solution space. In brief, intensification is aimed at detecting good
solutions and performing a deeper exploration.

An important question is how to decide when it is better to carry out an inten-
sification and when it is time to perturb the solution and activate diversification.
What is the right balance between intensification and diversification? None of these
questions are straightforward as these are related to the problem characteristics, the
power of the local search used and the type of perturbation the overall search is
adopting.

1.4 Population Based Heuristics

In this section, we present those methods that generate a set of solutions from one
iteration to the next instead of only one solution at a time. We give an overview of
the most commonly used approaches in this class which include genetic algorithms,
ant systems, bees algorithm and particle swarm. For completeness, we also briefly
mention other ones such as path relinking, scatter search, harmony search, heuristic
cross-entropy, artificial immune systems, and the psycho-clonal algorithm.
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1.4.1 Genetic Algorithms

Genetic algorithms (GAs) were initiated to mimic some of the processes observed
in natural and biological evolution. This approach was initially developed by John
Holland and his associates at the University of Michigan in the 1970’s. The method
was formally introduced for the context of solving general optimisation problems by
Holland [50] and Goldberg [45].

In brief, GA is an adaptive heuristic search method based on population genetics.
A GA consists of a population of chromosomes (set of solutions) that evolve over
a number of generations (iterations) and are subject to genetic operators (transfor-
mations) at each generation. The initial population is typically generated at random
and a fitness function is defined to measure the quality of each solution. Parent so-
lutions are chosen from the population, typically with a bias towards selecting high
quality solutions. A crossover operator is defined to combine attributes of the parent
solutions to create offspring, and then mutations are used to add random variation to
the child solutions. The population is updated according to some rule which usually
ensures that better solutions have more chance of surviving into the next generation.
The process continues for many generations.

A key decision is the chromosome representation of a solution which may involve
a binary, permutation, integer, or continuous encoding depending on the nature of
the problem. For example for the 𝑝-median problem where there are 𝑛 possible sites
for 𝑝 facilities, a binary representation of length 𝑛 can be used where position 𝑖 = 1
means the site is used and 𝑖 = 0 means it is not. A permutation representation is more
suitable for the TSP where the chromosome can consist of a string of integers listing
the cities in the order in which they should be visited. An integer representation may
be suited to scheduling problems where the value in position 𝑖 represents the time
job 𝑖 should start. Thought needs to be given to select the right representation as this
can either facilitate or hinder the chromosomes transformation that will be generated
via the crossover and mutation operators.

Crossover operators should ensure that children inherit characteristics of the
parent solutions. For binary and integer representations possible crossover operators
include 1-point, 2-point and uniform which are illustrated in Figure 1.4. For 1-point
crossover, a random cut point is chosen and the child solutions are made up of
the elements before the cut point from one parent, and the elements after the cut
point from the other parent. For 2-point crossover, 2 random cut points are selected.
The child solutions are made up of the elements before the first cut point and
after the second cut point from one parent and the elements between the two cut
points from the other parent. Uniform crossover selects each element of the child
solutions randomly from either parent. For permutation representations, 1-point
crossover is not appropriate as it causes infeasible children due to repeated and miss-
ing values. Alternatives for permutation representations include partially mapped
crossover and order crossover, which are illustrated in Figure 1.5. For partially
mapped crossover, two random cut points are chosen and mapping systems relate
the elements between the cut points. In the example shown the mapping systems are
[3, 1], [4, 2], [5, 5]. These values are swapped and the remaining values are added
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if they do not cause any conflict. So for Child 1 for example, 6 and 7 can be added
in their positions in Parent 1 but 2 and 1 cannot as they are already present in the
child solution. Therefore 2 and 1 are replaced according to the mapping systems by
4 and 3 respectively. For the order crossover, two random cut points are chosen. The
child solution is made up of the values between the two cut points in the first par-
ent, and the remaining values are added in the order they appear in the second parent.

Fig. 1.4 Crossover for Binary and Integer Representations

Mutation operators may flip a binary value (0− > 1 or 1− > 0), replace the
value in an integer representation or swap values in a permutation representation.
A mutation rate 𝜆 is typically defined, normally in the range [0.01, 0.1] and then a
value is subject to mutation if a random value between 0 and 1 is less than 𝜆.

Other decisions that must be made when using a genetic algorithm include which
solutions should be chosen as parents. A commonly used selection scheme is the
tournament selection where a subset of the population is chosen randomly and the
best of these are selected as parents based on their fitness values (i.e, 𝑓 (.) ). There
are several other ways to select a chromosome 𝑘 from population 𝑃. Roulette wheel
selection is commonly used, where the probability of selecting chromosome 𝑘 is
Prob(𝑘)= 𝑓 (𝑘)/∑𝑟∈𝑃 𝑓 (𝑟). This simple rule seems to suffer where the population
contains some outstanding individuals as these tend to be chosen with a high prob-
ability and can lead to premature convergence. However if the population contains
solutions that are equally fit, then there is insufficient selection pressure. Other selec-
tion rules are based on linear ranking, power and exponential ranking, among others.
One interesting approach would be to sort the chromosomes according to their fit-
ness, then construct in addition to the top chromosome, three groups consisting of
good, not so good and mediocre or bad chromosomes with respective sizes 𝑛1, 𝑛2
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Fig. 1.5 Crossover for Permutation Representations

and 𝑛3 respectively. The weights of the three respective groups at generation 𝑡 say
𝛼1 (𝑡) > 𝛼2 (𝑡) > 𝛼3 (𝑡) > 0 with

∑3
𝑗=1 𝛼 𝑗 (𝑡) = 1 can be defined. We can also assume

that the first weight 𝛼1 (𝑡) is a non decreasing function of 𝑡 with lim𝑡→∞ 𝛼(𝑡) → 1
while the other weights converge toward zero. Using the roulette wheel, the group
will be selected based on these weights and then a chromosome within that group is
chosen randomly for crossover or mutation etc.

It is also important to provide diversity and hence an opportunity for improvement
is possible through some form of migration. In a GA, a small number of completely
new chromosomes which are generated either randomly or constructed can be in-
jected into the population to provide diversity from time to time. The number of
injected chromosomes and when the injection takes place are issues that deserve
careful investigation. Usually the injection starts being active once the GA shows
some form of stagnation and then from that point onward injection is activated
periodically or adaptively depending on the behaviour of the overall results.

Figure 1.6 illustrates the new combined generation scheme which includes both
the flexible reproduction and the effect of immigration which was successfully
explored by Salhi and Gama [91], and Salhi and Petch [86] for a class of location
and routing problems respectively. More details can also be found in the recent book
on heuristic search in [93].

GAs are powerful at exploring the wider space by identifying promising regions,
but lack the fine mechanisms to pinpoint the exact local minima (maxima) that may
be required. Therefore many Genetic Algorithms in literature are actually Memetic
Algorithms, which are hybrids of GAs and local search. The initial population is
produced but is then subject to local search so the population consists of a set of
local optima. The algorithm continues as normal but each child that is produced is
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Fig. 1.6 Injection of Chromosomes and new Generation Composition (adapted from [93])

also subject to descent. In this way, better solutions may be produced but at a cost of
additional computational time.

1.4.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a meta-heuristic inspired by the observation of
the behaviour of real-life ant colonies, in particular the way in which real ants find
the shortest path between food sources and their nest. Ants create paths from the nest
to their food and leave pheromone trails which influence the decisions of other ants
as to which path to take. The effect of this is the pheromone trail will build up at a
faster rate on the shorter paths. This will influence more ants to follow the shorter
paths due to the fact that the ants prefer to follow a path with a higher pheromone
concentration. As a greater number of ants choose the shorter path, this in turn causes
a greater level of pheromone and hence encourages more ants to follow the shorter
path. In time, all ants will have the tendency to choose the shorter path. In other
words, the greater the concentration of the pheromone on the ground, the higher the
probability that an ant will choose that path. Good quality solutions are developed
as a result of this collective behaviour of the ants. For more information see [21].

This real-life behaviour of ants has been adapted to solve combinatorial optimiza-
tion problems, as initially proposed by Dorigo et al [29]. Ant system algorithms
employ a set of agents, known as ants, who search in parallel for good solutions us-
ing a form of indirect communication. The artificial ants co-operate via the artificial
pheromone level deposited on arcs which is calculated as a function of the quality of
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the solution found. The amount of pheromone an ant deposits is proportional to the
quality of the solution generated by that ant helping direct the search towards good
solutions. The artificial ants construct solutions iteratively by adding a new node to
a partial solution exploiting information gained from past performance using both
pheromone levels and a greedy heuristic. A local search could also be introduced to
improve the solutions. Once that is completed, a global updating of the pheromone
trail levels is activated to reinforce the best solutions by adding an extra amount
of pheromone to those arcs of the best solutions. This amount can be based on the
length of the best tour as well as the number of ants that produced that best tour.

A variant of ACO named Ant System (AS) was initially proposed by Colorni
et al. [15] to solve the travelling salesman problem. The algorithm is illustrated in
Algorithm 8. Assume the TSP contains 𝑛 cities and distance matrix 𝑑 (𝑖, 𝑗) defines
the distance between each pair of cities (𝑖, 𝑗).

Algorithm 8: Basic Ant System Algorithm.
Step 1. Initialise the placement of 𝑀 ants and their respective pheromone trail matrix

𝜏 (𝑖, 𝑗 ) to a constant value 𝑐 where 𝑐 > 0.
Step 2. While none of the stopping criteria witin the inner loop is met, for each ant

(𝑘 = 1, . . . , 𝑀) perform the following steps:
(2a) Form the complete solution configuration by keep selecting the next customer to

visit probabilitistically using the formula:
𝜏 (𝑖, 𝑗 )𝛼 ∗ 𝜂 (𝑖, 𝑗 )𝛽/∑𝑘 𝜏 (𝑖, 𝑘 )𝛼 ∗ 𝜂 (𝑖, 𝑘 )𝛽 where 𝜂𝑖 𝑗 is known as the visibility and
is the greedy cost of going to unvisited city 𝑗 from current city 𝑖 to the tour and
equals 1/𝑑 (𝑖, 𝑗 ) . 𝛼 and 𝛽 are the respective weights on the trail and the visibility.

(2b) Apply a local search if needed (this can be optional, applied once in a while or
adaptively using a learning scheme)

(2c) Record the objective function value for each ant (𝐿𝑘 , 𝑘 = 1, . . . , 𝑀).
(2d) Use the local update of the trail matrix according to the formula

𝜏 (𝑖, 𝑘 ) = (1 − 𝜌)𝜏 (𝑖, 𝑘 ) +∑𝑛
𝑘=1 Δ𝜏

𝑘 (𝑖, 𝑘 ) where the amount of trail added by ant
𝑘, Δ𝜏𝑘 (𝑖, 𝑗 ) = 𝑄/𝐿𝑘 for each path (𝑖, 𝑗 ) included in solution 𝑘 with 𝑄 and 𝜌

being the correction and the evaporation factors respectively.
Step 3. If the stopping criteria for the outer loop is met then stop, otherwise

(3a) Apply the global updating of the pheromone trail by adding a constant 𝛾 > 0 to
those arcs that belong to the best solution configurations. For example,
𝛾 = 𝑁𝑏𝑒𝑠𝑡 n 𝐿𝑏𝑒𝑠𝑡 where 𝑁𝑏𝑒𝑠𝑡 represents the number of ants that produced the best
objective function value 𝐿𝑏𝑒𝑠𝑡 .

(3b) Return to Step 2.

Colorni et al. also evaluated a trail update rule which add d a constant value to the
trail which is independent of the total distance of the tour. This made little difference
to solution quality. They also showed that it was better to update the trail matrix after
the entire tours had been produced rather than after each construction step.

In addition, an elitism strategy that provides a strong reinforcement to the tour
corresponding to the global best solution may be used. Arcs belonging to the global
best tour have their pheromone increased by a quantity that favour the number of ants
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that produce the best tour and the length of the global best tour. The consequence
of the global updating rule is that arcs belonging to short tours and arcs which have
been used frequently are favoured by receiving a greater amount of pheromone.
Dorigo and Gambardella [27] proposed updating the pheromone based only on the
global best-found solution. Stutzle and Hoos [102] introduced other variants such as
the Max-Min ant system, known as MMAS. Their method is similar to AS using the
same state transition rule in the selection process with some modifications, the main
one is to restrict the pheromone trail values to be in a certain interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥].
The aim is to reduce the risk of stagnation and make sure that certain choices do
not become either dominant with high trail values, or have such small trail values
that the probability of them being selected is approximately zero. It should be noted
that although the idea of introducing restrictions on the trail values is interesting
as it avoids stagnation and provides a chance for less visited solutions to exist, the
choice of these additional parameters 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 need to be made appropriately.
ACO already has many parameters including the parameters 𝛼 and 𝛽 that balance
the emphasis on trail and visibility, the number of ants, the number of cycles and the
evaporation rate.

Bullnheimer et al. [9] introduced another modification to AS by ranking the
ants according to their tour length, and using the ranking to weight the amount
of pheromone each ant contributes. Wade and Salhi [113] investigated the use of
ACO in a class of VRP by incorporating a visibility factor based on the remain-
ing load in the selection rule, the frequency of occurrence of a given arc in the
local updating rule and both elitism and ranking are combined to yield a compro-
mise global updating rule. For more information, references and applications on ant
systems in general, the review paper [28]) and the book [93] can be useful references.

1.4.3 The Bee Algorithm

This optimisation algorithm is inspired by the behaviour of swarms of honey bees
when searching for their food. It shares some similarities with the way the ants behave.
The best example of individual insects to resolve complex tasks is by the collection
and processing of nectar. Each bee finds sources of the nectar by following another
bee which has already discovered a patch of flowers. Once the bee returns to the hive
with some food, the bee can either abandon the food source and then becomes again
an uncommitted follower, continue to forage at the food source without recruiting
new bees, or recruit more bees and return to the food source.

The basic bee algorithm, originally developed for continuous optimization prob-
lems, can be found in [81]. In brief, the bees are first assigned to some chosen sites
with the idea that those sites that attract more bees are considered more promising.
This is repeated several times till a certain stopping criterion is met. The way a site
is considered attractive is the most important point. This is measured by the fitness
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function of each bee at that site where the top sites will receive more bees either in
an equal number or proportionally to their fitness.

Another popular and related bee algorithm is the Artificial Bee Colony (ABC)
algorithm proposed by Karaboga [56]. The ABC algorithm is inspired by the intel-
ligent foraging behavior of a swarm of honeybees. The foraging bees are classified
into three categories: employed, onlookers and scouts. All bees that are currently
exploiting a food source are classified as employed and they provide information
to the waiting bees (onlooker bees) in the hive about the quality of the food source
sites which they are exploiting. Onlooker bees wait in the hive and decide on a
food source to further exploit based on the information shared by the employed
bees. Scouts search the neighbouring areas to find a new food source. Scout bees
can be visualized as performing the job of exploration or diversification, whereas
employed and onlooker bees can be considered as performing the job of exploitation
or intensification.

The ABC algorithm is an iterative algorithm that starts by assigning all em-
ployed bees to randomly generated food sources (solutions). At each iteration,
every employed bee determines a food source in the neighbourhood of its currently
associated food source and evaluates its nectar amount (fitness). If the new fitness
value is better than the previous one then that employed bee moves to this new
food source, otherwise it retains its old food source. When all employed bees have
finished this process, the bees share the nectar information of the food sources
with the onlookers, each of whom selects a food source according to the food
quality. This scheme means that good food sources will attract more onlookers
than those of poorer quality. After all onlookers have selected their food sources,
each of them determines a food source in its neighborhood and computes its fit-
ness. If an onlooker finds a better fitness value, it changed the employed food
source with this new information. However, if a solution represented by a partic-
ular food source does not improve for a predetermined number of iterations then
that food source is abandoned by its associated employed bee which becomes a
scout (i.e., it will search for a new food source randomly). The whole process is
repeated untll the termination condition is met. The method is shown in Algorithm 9.

The main steps of the ABC algorithm can be found in Szeto et al. [105] where
efficient implementations are presented for solving the vehicle routing problem.

1.4.4 Particle Swarm Optimisation (PSO)

This is a further meta-heuristic method based on the social behaviour of animals,
in this case birds or fish. This evolutionary stochastic heuristic is introduced by
Kennedy and Eberhat [58] where a population of individuals which searches a region
of solutions that is recognised as promising is called a swarm and individual solutions
are referred to as particles. It is interesting to stress the similarities which exist in the
classical non-linear numerical optimisation techniques where the next point is based
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Algorithm 9: Basic Bee Colony Algorithm.
Step 1. Perform the following

(1a) Initialise the number of bees 𝐵 and construct 𝐵 solutions at random. These are
the initial food sources (𝑋𝑖 , 𝑖 = 1, . . . , 𝐵) . Evaluate the fitness of each, say 𝐹 (𝑋𝑖 ) .

(1b) Initialise 𝑇𝑚𝑎𝑥 as the maximum number of iterations and 𝐿𝑚𝑎𝑥 as the
maximum number of successive iterations without improvement.

(1c) Set the number of successive iterations without improvement = 0 for all bees
i.e. 𝐿𝑖 = 0∀𝑖 = 1, ..𝐵 and set the neighbours of 𝑋𝑖 , say 𝑆𝑖 = 𝑁 (𝑋𝑖 ) = ∅.

Step 2. Repeat the following until the stopping conditions are met
(2a) For each food source, 𝑋𝑖 , find 𝑋′

𝑖
∈ 𝑁 (𝑋𝑖 ) .

If 𝐹 (𝑋′
𝑖
) < 𝐹 (𝑋𝑖 ) set 𝑋𝑖 = 𝑋′

𝑖
and 𝐿𝑖 = 0. Otherwise let 𝐿𝑖 = 𝐿𝑖 + 1

(2b) For each onlooker, choose a food source 𝑋𝑖 randomly; find 𝑋′
𝑖
∈ 𝑁 (𝑋𝑖 )

and set 𝑆𝑖 = 𝑆𝑖 ∪ 𝑋′
𝑖

(2c) For each food source 𝑋𝑖 and 𝑆𝑖 ≠ ∅, find the member of 𝑆𝑖 with
the lowest cost = 𝑋′

𝑖
.

If 𝐹 (𝑋′
𝑖
) < 𝐹 (𝑋𝑖 ) then set 𝑋𝑖 = 𝑋′

𝑖
and 𝐿𝑖 = 0, else set 𝐿𝑖 = 𝐿𝑖 + 1

(2d) For each food source 𝑖, if 𝐿𝑖 = 𝐿𝑚𝑎𝑥 , then select a random move
i.e., select 𝑋′

𝑖
∈ 𝑁 (𝑋𝑖 ) and set 𝑋𝑖 = 𝑋′

𝑖
. Set 𝐿𝑖 = 0.

on the previous point and the displacement. In other words, the new point at iteration
(𝑘 + 1) lies along the direction 𝑆𝑘 from the previous point 𝑋 𝑘 with an optimal step
size 𝜆𝑘 (i.e., 𝑋 𝑘+1 = 𝑋 𝑘 +𝜆𝑘𝑆𝑘). In these numerical optimisation methods the aim is
to design a suitable direction and then to derive optimally or numerically the value
of the step size. See for instance the classical textbook in numerical optimisation
by Fletcher [41] for further information. Here, a particle 𝑖 (at position 𝑝𝑖) is flown
with a velocity 𝑉𝑖 through the search space, but retains in memory its best position
(−→𝑝𝑖 ). In the global PSO each particle, through communication, is aware of the best
position of the particles of the swarm (−→𝑝𝑔 ). At a given iteration 𝑘 , the position of the
𝑖th particle (𝑖 = 1, . . . , 𝑛) is updated as follows 𝑋𝑖𝑘 = 𝑋

(
𝑖
𝑘 − 1) + 𝑉 𝑘

𝑖
. The velocity

(or displacement) is defined as a linear combination of three velocities, namely, (i)
the velocity at the previous iteration, (ii) the velocity with respect to the best position
of this particle up to this iteration and (iii) the velocity with respect to the global best
position of all particles up to this iteration.

PSO has been found to be suitable for solving combinatorial optimisation and
especially unconstrained global optimisation problems. As the swarm may become
stagnated (early convergence) after a certain number of iterations, a form of diver-
sification or perturbation is often recommended. One way would be to introduce a
simple chaotic perturbation that adds diversity to the system and avoids the search
from getting stuck.

1.4.5 A brief summary of other population-based approaches

In this subsection, other population based metaheuristics are briefly described in
turn.
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Cross-entropy based algorithms (CE)- This is an iterative population-based method
made up of two steps that are applied in sequence until a stopping criterion is met.
These steps are (i) the generation of feasible solutions pseudo-randomly based on a
probability distribution representing the frequency of the occurrence of the attributes
of a given solution, and (ii) the distribution is then updated. The idea is that this
adaptive technique will have the tendency to estimate and learn better probabilities
and hence generate better solutions. CE was initially presented by Rubinstein [84]
for estimating rare events (financial risk, false alarms, etc) and then Rubinstein and
Kroese [85] gave a formal description of this approach and presented its uses in
solving combinatorial optimisation problems.
Scatter Search (SS)- This is proposed by Glover et al. [44] with the aim of construct-
ing new solutions by combining parts of existing solutions. This method can be
considered as one the earliest steps towards deep learning which is discussed in the
next chapter. The idea is to generate a large number of diverse trial solutions which
are then improved. The set of these solutions needs to be of high quality while being
diverse. A subset of these solutions are classed as the reference solutions; these are
typically the best ones but some additional solutions may be included to increase
the diversity of the reference set. It could for example consist of 10% of the entire
solution set. New solutions are constructed from the solutions in the reference set
and these are then improved. Any new solutions that outperform solutions in the
reference set are added to it. The process continues until the reference set no longer
improves.The main steps of the SS can be found in Marti et al. [72].
Harmony Search (HS)- This was originally proposed by Geem et al. [42] to imitate
the success of music players in their improvisation when searching for a music har-
mony that is pleasing to the ear. Such a harmony is made up of a combination of
sounds at certain pitches played by different instruments. The aim for the musician
is to identify the best pitch for each sound so when combined they make an excellent
harmonious noise. The analogy with optimisation can be seen as follows: A given
harmony relates to a given solution configuration, the sounds of the instruments
represent the decision variables, their respective pitches are the values of the deci-
sion variables, and the quality of the harmony is the objective function value. Each
practice by the musician(s) represents the iteration or the generation number. At
each practice the musician tries to identify new pitches based on the ones he/she
remembers to be of good quality, known as the HS memory, while introducing
some extra changes to create a new harmony. This process is repeated until the best
harmony already discovered can no longer be improved. HS is a population based
approach where the memory contains the pool of harmonies, similar to the popula-
tion of chromosomes in GA. However the way the attributes of a new harmony (new
solution) are constructed does not depend on two parents only as in GA but on all
previously found harmonies. The obtained solution (harmony) is then adjusted for
possible improvement with a certain probability. HS relies on its parameter values
that are set at the outset. The first attempt to enhance HS was made by Mahdavi et
al. [71] followed by a further enhancement by Pan et al. [80].
Artificial Immune Systems (AIS)- The immune system’s aim is to defend us against
diseases and infections. It recognises antigens using immune cells which are known
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as B-cells whose jobs are to circulate through the blood continuously watching and
waiting to encounter antigens (foreign molecules of the pathogens). Each antigen
has a particular shape that can be recognised by the receptor of the B cell. AIS
is a fast emerging method in some applied areas of computer science such as data
analysis and data mining, pattern recognition and has now been adapted to the area of
optimisation. In other words, when a pathogen invades the organism it was observed
that a number of immune cells which recognise the pathogen will reproduce in large
numbers, known as clones. This process is known as reinforcement learning. The
clones are then diversified using two methods: (i) a high mutation rate (known as
hyper-mutation) which is performed by introducing random changes, and (ii) recep-
tor editing which aims to remove the less attractive antibodies (poor solutions) and
replaced them with new ones. In this way, those cells that bind with their antigens are
multiplied whereas the others are eliminated following the survival of the fittest. In
addition, some of the successful ones are also kept in memory to face future similar
invaders. This concept is similar to the intensification of the search in promising
regions whereas the hyper-mutation acts as a diversification strategy. In brief, AIS
shares some similarities with GA with the exception that there is no crossover but
just a hyper-mutation.
Psycho-clonal algorithm- This meta-heuristic was initially developed by Tiwari et
al. [110] and it is based on the artificial immune system (AIS) as discussed earlier
(mainly based on the clonal selection) and the theory of the hierarchy of social needs
as proposed by Maslow [73]. This hierarchy is composed of five levels where the
lowest level A refers to the physiological needs (each antibody represents a solution),
level B refers to safety needs (the evaluation of the objective function), level C refers
to the social needs (the best solutions are selected and cloned proportionally to their
objective function value), level D refers to the growth needs (diversification used
to generate new solutions via hyper-mutation) and finally the highest level E refers
to the self actualization needs (the best solutions are chosen to be part of the new
population including the injection of new ones). This approach can be considered
as a mixture of AIS and guided GA where the management of the population is
maintained in a guided way based on the quality of cloning whereas diversity is
controlled through the hyper-mutation.

There are numerous examples of heuristics being hybridised with other heuristics.
Researchers are only limited by their imaginations as to what is possible. These are
discussed in detail in the following chapter. Some hybrids have become extremely
common. For example memetic algorithms combine a genetic algorithm with a
hill climber meaning all members of the population are local optima according to
the neighbourhood definition used. This helps the genetic algorithm identify high
quality solutions but adds considerably to the run time. Similarly a hill climber is
often added to Ant Colony Optimisation.



1 Heuristic Search 33

1.5 Some Applications

In this section we present some reallife applications that are addressed by metaheuris-
tic approaches. There are numerous applications of heuristic and metaheuristic so
we can only provide a small overview of a few problems. However we hope this
gives an idea of the wide range and variety of problems that are solved in practice.

1.5.1 Radio-Therapy

One of the techniques adopted in treating cancerous tumours is the intensity mod-
ulated radiotherapy treatment (short for IMRT). This consists of sending a dose of
radiation to the cancerous region with the aim to sterilise the tumour while avoiding
damage to the surrounding healthy organs and tissues. This is performing by defin-
ing the number of angles, their respective angles and the intensity chosen for the
radiation beams at each of these angles. For instance, Bertsimas et al. [5] present a
hybridisation of a gradient descent and an adaptive Simulated Annealing method.
The initial solution is generated by solving an LP based on using equi-spaced angle
beams. Their approach is tested on real life pancreatic cases (kidneys, liver, stomach,
skin and pancreas) at the Massachusetts general hospital of Boston, USA. A case
study dealing with patients of head-and-neck tumours at the Portuguese Institute of
Oncology in Coimbra is conducted by Dias et al. [24] who adopted a hybrid Genetic
Algorithm with a Neural Network. Here, each chromosome is binary and represented
by 360 genes, one for each possible angle, with the angles selected represented by 1.
Also, Dias et al. [25] proposed Simulated Annealing, with a dynamically adjusted
neighbourhood (in terms of angles), and successfully tested it on the same case study
in Coimbra. Their results suggest that a reduced number of angles (and hence less
technical adjustment) is required and an improvement in organ sparing and coverage
of the tumours is observed.

1.5.2 Sport Management

A variety of metaheuristics have been used to schedule fixtures across many different
sporting activities. Wright [117] uses Tabu Search to schedule the English county
cricket fixtures, Willis and Terrill [116] opt for Simulated Annealing to schedule
Australian state cricket, Costa [19] adopts an evolutionary Tabu Search to schedule
National Hockey League matches in North America while Thompson [109] also
uses Tabu Search to schedule the 1999 Rugby World Cup. Wright [119] produces
schedules for New Zealand cricket matches using Simulated Annealing whereas
Kendall [57] uses a form of local search to schedule English football fixtures over
the Christmas period.
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1.5.3 Educational Timetabling

Constructing timetables including examination timetables at schools, colleges and
universities can be a hugely time consuming and difficult task if performed man-
ually. Computer systems that incorporate some form of heuristics are nowadays
used frequently and reduce the time required to produce solutions considerably. For
instance, Wright [118] constructs a tool that incorporates Tabu Search for a large
comprehensive school of over 1400 pupils and 80 teachers in Lancashire, England.
Dowsland and Thompson [31] construct an examination timetable for the University
of Swansea using Simulated Annealing. The examination timetabling problem is
also solved by Di Gaspero and Schaerf [26] using Tabu Search and by Pillay et al.
[82] using a Genetic Algorithm. The problem of optimising lecture timetables is
considered by, amongst others Borchani et al. [6] using Variable Neighbourhood
Descent, Corne et al. [18] using evolutionary algorithms and Basir et al. [3] using
Simulated Annealing. For more information and references therein on educational
timetabling, see [65].

1.5.4 Nurse Rostering

This problem plays an important part in efficiently managing the personnel at a
hospital. The aim is to balance the workforce workload while providing flexibility
and satisfying preferences whenever possible leading to a reduction in stress, an
increase in staff satisfaction and a happier working environment. Dowsland and
Thompson [32] integrate ideas from knapsack problems, network flow models and
Tabu Search to construct an efficient computer software tool to solve the nurse
rostering problem in a large UK hospital in Wales. Aickelin and Dowsland [2] use an
indirect Genetic Algorithm to produce nurse rosters. Burke et al. [11] used Variable
Neighbourhood Search to solve the same problem. For more information on this area
see the review papers by [10] and [111].

1.5.5 Distribution Management (Routing)

Planning routes by efficiently scheduling the sequence of the customers as they are
served and in some cases determining strategically the right vehicle fleet constitutes a
huge component of logistic costs (in the range of 30%) and therefore any improvement
gained will provide the company with a competitive edge over its competitors. For
instance, Semet and Taillard [99] used Tabu Search to solve a real life distribution
problem in Switzerland leading to a 15% reduction in cost. Rochat and Semet [83]
developed a Tabu Search approach for a pet food company having 100 farms and
stores leading to about 16% a cost saving. Brandao and Mercier [7] also used
Tabu Search for the multi-trip problem at a British biscuit company in the UK.
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Threshold Acceptance was adopted by Tarantilis and Kiranoudis [107] to schedule
the fresh meat distribution with heterogeneous fleet in a densely populated area of
Athens. Tarantilis and Kiranoudis [108] used a two phase approach based on Large
Neighbourhood Search for both a dairy and a construction company in Greece. The
delivery of blood products to Austrian hospitals for the blood bank of the Austrian
Red Cross for Eastern Austria was conducted by Hemmelmayr et al. [51] using a
combination of integer programming and Variable Neighbourhood Search.

1.5.6 Location Problems

There is always a challenge in deciding where to locate something which may require
a massive investment such as plants and warehouses, consolidation points and in some
cases less expensive equipment that are required in large numbers. For instance, when
it comes to locating emergency facilities such as police stations, fire stations etc, the
aim is to locate the facilities in such a way that the longest time to reach the customer
is minimised. This type of problem is known as the 𝑝-centre problem where the
parameter can be changed for scenario analysis purposes. Pacheto and Casado [79]
adopted Scatter Search to locate a number of geriatric and diabetic health care clinics
in the rural area of Burgos in Spain. Lu [68] implemented Simulated Annealing to
locate urgent relief centres in Taiwan to respond to a major earthquake. Cunha and
Silva [20] presented an efficient configuration of such a hub and spoke network for
one of the top ten trucking companies in Brazil using a Genetic Algorithm. Also,
electricity providers seek to locate their large number of protection devices (costing
approximately £10K each) on their tree network to protect the users from having
an electricity cut in the case of big storms etc. James and Salhi [53], [54] explored
this unusual network location problem for the UK Midland Electricity Board using
a constructive heuristic and Tabu Search.

1.5.7 Chemical Engineering

In several industries such as pharmaceutical, wastewater treatment, biotechnology,
the control and the regulation of the pH value, which needs to be around 7, is
critical. The modelling of pH control is an important issue which turns out to be an
operational decision problem that fits into the class of global optimisation. There is a
good amount of research into advanceed nonlinear control techniques but in practice
linear control techniques are usually adopted due to their simplicity and robustness.
Research on how to monitor some of the parameters that control the pH is carried out
for instance by Mwenbeshi et al [77] who adopted a powerful GA implementation
to intelligently control and model pH in reactors using a lab-scale pH reactor. In
this study, a strong base, namely sodium hydroxide is used to neutralise the process
made up of four acids whose levels need to be determined in real time as the change
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in the pH in the reservoir keeps changing all the time. Interesting studies along this
area can also be found in their references there in.

1.5.8 Civil Engineering applications

The design of water distribution networks is very important and costly in the area
of civil engineering. This can be seen as a hydraulic infrastructure composed of
several pipes of different diameters, hydraulic devices with various powers and
different reservoirs. The aim of the problem is to determine the minimal diameter
for each pipe in such a way that the total cost is minimised and appropriate water
pressure is reached at each of the nodes of the network. HS was tested on this
complex non linear problem based on the water distribution network of Hanoi in
Vietnam by Geem et al. [42]. A real coding GA that incorporates neighbourhood
reduction with several crossover and mutation operators was proposed Kadu et
al. [55] for the same case study. Reservoir management is also one of the key aspects
in water resource planning. Each reservoir has several conflicting objectives as well
as different operation rules and operating policies due to the land or the cities around
it. The aim is to determine the right policy among a large set of possible ones at a
given period. For instance two basic conflicting objectives is the minimisation of
the lack of irrigation against the maximisation of the generation of electricity (eg.,
hydropower generation). The problem is transformed into a weighted multi-objective
approach and solved efficiently using an adaptation of Particle Swarm Optimisation
by Kumar and Reddy [61]. The same authors a year earlier in 2006 [60] put forward
an approach based on Ant Colony Optimisation to solve the multi-purpose reservoir
problem.

There are many applications in other areas of engineering such as electrical,
chemical. mechanical, environmental and civil engineering where evolutionary
methods including GA are commonly used. See for instance the edited book by
Dasgupta [22] which can be a useful and informative addition to the reader.

1.6 Conclusion and Research Issues

In this final section we summarise our findings and provide some research avenues
that could be worth pursuing.
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1.6.1 Conclusion

In this chapter several heuristic-based techniques that are used in solving difficult
combinatorial and global optimisation are described and their pros and cons high-
lighted. The methods range from those that only accept improving solutions such
as hill climbing, Variable Neighbourhood Search and GRASP, to those that ac-
cept non-improving ones while incorporating some form of guidance to avoid the
risk of diverging and cycling like Simulated Annealing, Threshold Acceptance and
Tabu Search. Those techniques that use simultaneously more than one solution at a
time, also known as population or evolutionary methods, are also discussed include
Genetic Algorithms, Ant Colony Optimisation and Bee Colony Optimisation. As
strengths and weaknesses can be found in any heuristic, many modern implemen-
tations hybridise a number of these methods, leading to better results overall. Of
particular interest is matheuristics, where exact and heuristic methods are combined.

The efficiency of heuristics depends on several aspects and one key element is the
quality of the implementation. Each meta-heuristic can be applied in different ways
and reviewing the academic literature to understand which sorts of methods have
worked well on particular problems is crucial. Also key is parameter optimisation
and here methods that require fewer parameters e.g. tabu search, threshold accep-
tance may be considered superior to methods that require many parameters such
as simulated annealing and ant colony optimisation. Methods that automatically set
parameters or dynamically adjust them as the search proceeds may remove this ad-
vantage. The coding is crucial also – much time can be saved by using efficient data
structures, reducing neighbourhoods etc.

Heuristic search has made huge advances in the last 25 years and this is likely
to continue as problem complexity and size also increase. Advances in computer
technology and commercial optimisation software are enabling larger problems to
be solved exactly than previous, however there is still a huge need for high quality
heuristic solution methods.

Heuristics have arisen from a variety of applications, from different people’s ex-
pertise and sometimes just as a by-product of curiosity of some researchers whose
original aim was to disprove their usefulness. We believe this less structured area,
known by some as a grey research area, will remain for many years to come and
will become even greyer and open to more challenges. Heuristics remain the most
appropriate and attractive optimisation approaches for tackling many complex com-
binatorial and global optimisation problems.

1.6.2 Potential research issues

An exciting future topic is hybridisation, be it between purely heuristic methods or
heuristic and exact methods. This suggestion will be discussed in another chapter in
this book [97].



38 Said Salhi and Jonathan Thompson

The understanding of how a given method works and then the design of a data
structure that incorporates interesting information found during the search so to avoid
re-computing unnecessary calculations is vital. This process though may increase
some level of memory and may require an initial fixed cost in terms of development
and computation time, but it does often lead to a massive time saving without
affecting the solution quality at all. This aspect can also be enhanced further by the
construction of effective neighbourhood reduction schemes that helps the search to
avoid checking combinations and operations that are unlikely to result in improving
the solution. A note of caution here is that the latter schemes will have a considerable
saving in computational time and are usually simple to construct, but could affect the
solution quality if they happen to be too restrictive. The compromise in the design
between a neighbourhood reduction method which is powerful enough (removing as
many as possible irrelevant checks) while not excluding promising moves is exciting
and hence worth exploring

Evolutionary heuristics are relatively easy to be parallelised and hence can be
used for larger instances and in a practical setting if the computing facilities are
available.

The design of adaptive search that dynamically learns and makes use of the
obtained information is crucial. This learning mechanism which ought to be con-
tinuously or at least periodically updated is then used to pseudo-randomly select
at regular intervals the decision rules to be used. These can include a subset of
neighbourhoods to choose from, a number of local searches to be used for intensi-
fication purposes, or even the powerful heuristics or exact methods to select from.
This kind of search is self-adaptive and also efficient as it uses only what it needs
with the expectation that a good solution may be found. This research issue though
challenging and practically useful will probably be one of the most popular research
areas in the near future as it has the additional benefits of being applicable in several
areas ranging from engineering to medicine.

In a related but different aspect, it is well known that most exciting powerful
heuristics seem to suffer from parameter tuning. It is therefore worthwhile concen-
trating on schemes that incorporate ways of reducing the number of parameters or
adjusting the parameters values dynamically and adaptively. This is very welcome
and in our view is also one of the ways forward. Results from such studies will
provide us with tools that avoid requiring excessive time for fine tuning of the pa-
rameters, besides making the heuristic less sensitive to parameter values and hence
reliable to use.
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