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a b s t r a c t

In this paper we develop a novel procedure of variable screening for a multivariate
additive random-effects model, based on B-spline function approximations. With these
approximations, the so-called signal-to-noise ratio (SNR) can be defined to inform
the importance of each covariate in the model. Then, SNR-based forward filtering is
conducted on covariates by using iterative projections of the multiple response data
into the space of covariates. The proposed procedure is easy to use and allows the
user to pool non-linear information across heterogeneous subjects through random-
effects variables. We establish an asymptotic theory on the selection consistency under
some regularity conditions. By simulations, we show that the procedure has a superior
performance over some existing methods in terms of sensitivity and specificity. We
also apply the procedure to anti-cancer drug data, revealing a set of biomarkers that
potentially influence concentrations of anti-cancer drugs in cancer cell lines.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is concerned with developing nonparametric variable screening for a multivariate additive random-effects
odel, where the response data, n-vectors of measurements on J subjects, yj ∈ Rn, 1 ≤ j ≤ J depend on the same set of
ovariates, xk ∈ Rn, 1 ≤ k ≤ p, via the equations

yj = µ + f1j(x1) + · · · + fpj(xp) + εj, j ∈ {1, . . . , J}. (1)

n the above model, µ is a vector of fixed-effects, component fkj(xk) = (fkj(x1k), ..., fkj(xnk))⊤ with xk = (x1k, . . . , xnk)⊤ is a
ector of random-effects of the kth covariate on the jth subject, εj = (ϵ1j, . . . , ϵnj)⊤ is a vector of error terms related to the
th subject, and given X, εj’s are conditionally independent of fkj(xk)’s. Here, random-effects fkj(xk) are random functions
sed to account for unobserved heterogeneity and dependence across the subjects. The ‘‘multivariate" is for the dimension
f yj. To make the model identifiable, for J > 1, we impose the constraint that conditional on X = (x1, . . . , xp), for all
k, j), E[fkj(xk)|X] = 0, E[εj|X] = 0, cov(εj|X) = σ 2In with 0 < σ 2 < ∞. We assume that random-effects are sparse in the
ense that only for a few k’s, where the random-effects matrix fk(xk) = (fk1(xk), . . . , fkJ (xk)) has an asymptotically positive
ariability, (nJ)−1∑n

i=1
∑J

j=1(fkj(xik)− f̄k(xik))2, across the subjects as n and J tend to infinity, where f̄k(xik) =
∑J

j=1 fkj(xik)/J .
ote that model (1) will reduce to a linear random-effects model if fkj(·), 1 ≤ k ≤ p, 1 ≤ j ≤ J are linear. See Laird and
are [8] and Lin and Zhang [10]. Unlike the conventional multivariate additive models in Lin and Zhang [11], Rigby and
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Fig. 1. Estimated nonparametric effects of selected genes on the anti-cancer drug KIN001-135, which were measured by median inhibition
concentration (IC50) in a cancer cell line. In each plot, x-axis shows the expression level of a selected gene while y-axis gives the corresponding
alue of IC50. From the left to the right and from the top to the bottom, the plots correspond to the selected genes PEXS, NRXN2, HS2ST1, EIF4G1,
UL4 A, PIPN22 and ACN9 respectively.

tasinopoulos [14], Yee [17] and Yee and Wild [18], the new model allows for subject-specific nonparametric random-
ffects as well as dependence in the response data, without any joint density assumptions on errors. In practice, the
umber of covariates can be larger than both n and J . For example, in cancer research, people aim to identify biomarkers
a set of genes or DNA variants) for cancer drug development. The response data considered in this paper consist of the
easurements of median inhibition concentrations, IC50s, of 131 drugs in 42 cancer cell lines while the covariate data
ontain expression levels of 13321 genes. See Garnett, et al. [4]. Note that in Section 4.2, we found that the concentration
f a drug depended nonlinearly on expression levels of genes as shown in Fig. 1. The purpose of this paper is to provide
general screening method to identify these sparse covariates when p is larger than both n and J .
Extensive research has been conducted on variable selection for univariate additive models (Fan et al. [3], Huang

t al. [6], Koltchinskii and Yuan [7], Lin and Zhang [11], Meier et al. [12], Ravikumar et al. [13], Stone [16], Zhang
t al. [22], and references therein). Despite of the above progress, the challenging problem of variable selection for the
ultivariate additive random-effects model remains open in the literature as for multivariate additive models, modeling
ach univariate additive model marginally and separately is not efficient in exploring dependence across the subjects. In
his paper, we propose a novel approach for addressing the above problem. We first approximate each nonparametric
omponent by a linear combination of spline basis functions. With these approximations, the above variable selection
roblem reduces to that of selecting significant block-matrices of regression coefficients in a multivariate random-effects
egression model. Then, we conduct a series of SNR-based filtering operations (Zhang, Liu and Green [20], Zhang and
iu [19]) through projections of yj, 1 ≤ j ≤ J into each covariate space; each is tailored to a particular covariate
nd resistant to interferences originating from other covariates and from noises. The filtering is further improved by
equentially nulling important covariates detected in the previous steps. The above filtering is based on the so-called
ovariate power (i.e., variability), which is estimated by minimizing the trace of the sample covariance matrix of the
rojected data points W⊤yj, 1 ≤ j ≤ J with respect to a weighting matrix W. For the kth covariate, the minimization is
ubject to the constraint that W⊤Ψ (xk) is equal to an identity matrix and subject to that important covariates identified
n the previous steps have been nulled, where Ψ (xk) is the n × κn ‘‘design matrix" derived from the values of the κn
-spline basis functions at the kth covariate. The higher the power, the more information about responses the covariate
ontains. Note that the projected data at each covariate may have covariate specific background noises. To adjust for
his, we consider the signal-to-noise ratio (SNR) for each covariate. The covariates can then be ranked and selected by
hresholding these SNR values. A list of highly ranked covariates called functional principal variables are produced along
ith the estimated random regression coefficient functions. Based on these selected covariates, a variance-component
ecomposition of the response covariance matrix can be made. We show that the proposed procedure is asymptotically
onsistent under some regularity conditions. We demonstrate that the proposed procedure can outperform some existing
creening methods in terms of sensitivity and specificity by simulation studies and a real data application.
2
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The rest of the article is organized as follows. In Section 2, we develop the SNR-based screening procedure for
ultivariate additive models. In Section 3, we establish theoretical properties of the proposed procedure. In Section 4, we
onduct simulation studies and a real data analysis. We conclude with a discussion in Section 5. The lemmas and technical
roofs are relegated to the Appendix and some numerical details are put in the Supplementary Material. Throughout the
aper, we denote by λmax(·) and λmin(·) the largest and smallest eigenvalues of a square matrix respectively. For any
atrix An, we define the spectral norm ∥An∥ as λ1/2max(A

⊤

n An). For a sequence of real numbers {un}, we say An = O(un)
f ∥An∥/|un| is bounded from above and An = o(un) if ∥An∥/|un| tends to zero as n tends to infinity. For two symmetric
atrix A and B, we mean by A ≤ B that B − A is non-negative definite. Let Iq be the q × q identity matrix and |T | the
ardinality of a set T .

. Proposed methodology

Letting Y = (y1, . . . , yJ ), 1J be a J-vector of 1’s, fk(xk) = (fk1(xk), . . . , fkJ (xk)) as before and E = (ε1, . . . , εJ ), we write
he model (1) in the matrix equation

Y = µ1⊤

J + f1(x1) + · · · + fp(xp) + E. (2)

e assume the following condition for the additive components fkj(·):
C1: The additive component functions have a bounded support [a, b] and satisfy the Lipschitz inequality,

Pr
(

max
1≤k≤p,1≤j≤J

sup
z,z+δ∗∈[a,b]

|f (r)kj (z + δ∗) − f (r)kj (z)| ≤ c∗|δ∗|α
)

= 1

or some non-negative integer r is a non-negative integer and universal constants 0 < α ≤ 1 and c∗.
To introduce a normalized B-spline approximation to each component function, we let a = z0 < z1 < · · · < zN+1 = b

e a partition of the interval [a, b], where c1n−ν
≤ min0≤k≤N |zk − zk+1| ≤ max0≤k≤N |zk − zk+1| ≤ c2n−ν with 0 ≤ ν < 0.5,

1 and c2 are constants. We repeat both the lower and upper boundary knots z0 and zN+1, m−1 times and re-index them
s zk, k = 0, . . . , κn with κn = N + 2m − 1. Following de Boor [2], we define a normalized B-spline basis {ψk}

κn
k=1 for

he functions satisfying Condition C1. Then, for each (k, j), under Condition C1, we can find a linear combination of the
ormalized B-spline basis functions, f̃kj(x) =

∑κn
d=1 βkjdψd(x) such that

Pr
(

max
1≤k≤p,1≤j≤J

sup
a≤x≤b

|fkj(x) − f̃kj(x)| ≤ c3κ
−r0
n

)
= 1, (3)

or r0 = r + α and a universal constant c3. Using these approximations, we can reformulate Eq. (2) as follows:

Y = µ1⊤

J + Ψ (xk)Bk + E∗

k,

here E∗

k = E +∆k +
∑

t ̸=k ft (xt ), ∆k = fk(xk) − Ψ (xk)Bk with

Ψ (xk) =

⎛⎜⎝ ψ1(x1k) · · · ψκn (x1k)
...

. . .
...

ψ1(xnk) · · · ψκn (xnk)

⎞⎟⎠ , Bk =

⎛⎜⎝ βk11 · · · βkJ1
...

. . .
...

βk1κn · · · βkJκn

⎞⎟⎠ .
.1. SNR indices for covariates

Let Ȳ = (
∑J

j=1 yj/J)1
⊤

J and Ĉ = (Y − Ȳ)(Y − Ȳ)⊤/J . To define a power index for the kth covariate, we project
he data Y into the covariate space generated by xk with an n × κn direction matrix W, namely, W⊤Y, subject to

⊤Ψ (xk) = Iκn . The above constraint is a filter which allows the information related to Bk to pass through. To minimize
he interference from other covariates and noise, we choose W in which the trace of the sample covariance matrix of the
rojected data W⊤Y, tr(W⊤(Y − Ȳ)(Y − Ȳ)⊤W)/J , is minimized, subject to W⊤Ψ (xk) = Iκn . This gives an optimal solution
ˆ = Ĉ

−1
Ψ (xk)(Ψ (xk)⊤Ĉ

−1
Ψ (xk))−1 with the variability

tr(Ŵ
⊤

ĈŴ) = tr
((
Ψ (xk)⊤Ĉ

−1
Ψ (xk)

)−1
)
.

We define the above trace as the power of covariate xk denoted by γ̂k which gauges the amount of uncertainty in the data
set Y that can be explained by the kth covariate. If we project a white noise data set into the covariate space generated
by using the above weighting matrix Ŵ, the corresponding sample covariance matrix is approximately equal to ŴŴ

⊤

.
We therefore adopt the following signal-to-noise ratio (SNR) index for ranking covariate

SNRk=̂tr
(
Ŵ

⊤

ĈŴ
(
Ŵ

⊤

Ŵ
)−1

)
= tr

(
Ψ (xk)⊤Ĉ

−1
Ψ (xk)

(
Ψ (xk)⊤Ĉ

−2
Ψ (xk)

)−1
)
,

which shows the signal strength of the kth covariate relative to the white noise.
3
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Note that covariates can be correlated to each other. To reduce such an effect on covariate ranking, we adopt a
ulled SNR as follows. Let ω and ν be two non-overlapped subsets of covariates with sizes m1 and m respectively.
erging Ψ (xν) with Ψ (xω) defines matrix Ψ (xν∪ω) = (Ψ (xν),Ψ (xω)). Similarly, for ν = {k1, . . . , km}, we define
(xν) =

(
Ψ (xk1 ), . . . ,Ψ (xkm )

)
by merging Ψ (xk), k ∈ ν. To null the effects of covariates in ω, we choose W in which

he trace of the sample covariance matrix of the projected data W⊤Y, tr(W⊤(Y − Ȳ)(Y − Ȳ)⊤W)/J , is minimized, subject
to W⊤Ψ (xν) = 1⊤

m ⊗ Iκn and W⊤Ψ (xω) = 0⊤

m1
⊗ Iκn , where 1m is an m-vector of 1’s, 0m1 is an m1-vector of 0’s and ⊗ is

the Kronecker product. This gives rise to the following nulled power

γ̂ν|ω = tr
(
e⊤

ν|ω(Ψ (xν∪ω)⊤Ĉ
−1
Ψ (xν∪ω))−1eν|ω

)
and the SNR of ν after nulling ω,

SNRν|ω = tr
{(

e⊤

ν|ω

(
Ψ (xν∪ω)⊤Ĉ

−1
Ψ (xν∪ω)

)−1
eν|ω

)(
e⊤

ν|ω

(
Ψ (xν∪ω)⊤Ĉ

−1
Ψ (xν∪ω)

)−1

×

(
Ψ (xν∪ω)⊤Ĉ

−2
Ψ (xν∪ω)

)(
Ψ (xν∪ω)⊤Ĉ

−1
Ψ (xν∪ω)

)−1
eν|ω

)−1
}
, (4)

where eν|ω = (1⊤

m ⊗ Iκn , 0
⊤

m1
⊗ Iκn )

⊤ is a (m + m1)κn × κn block matrix.

2.2. Nulled-beamforming procedure

Based on the SNR indices, we define a nulled-beamforming procedure called functional Principal Variable Analysis
(fPVA) for identifying important covariates as follows.

Initialization: Find k1 at which the SNRk1 attains the maximum. Set ω1 = {k1} as the current selected covariate set.
We call the complement of ω1, ωc

1 the current remaining covariate set.
Sequentially screening: In the mth iteration with m ≥ 2, let ωm−1 denote the set of the identified covariates in the

first m − 1 iterations. For any covariate k not in ωm−1, using the formula (4), we calculate SNRk|ωm−1 . If these nulled
SNR values do not satisfy the stopping rule below, find km /∈ ωm−1 in which the nulled index SNRkm|ωm−1 attains the
maximum. We update the current selected covariate set ωm−1, ωc

m−1 and Ψ (xωm−1 ) by letting ωm = {km} ∪ ωm−1,
ωc

m = ωc
m−1 \ {km} and Ψ (xωm ) = (Ψ (xkm ),Ψ (xωm−1 )). Otherwise, we terminate the iteration and let ωm = ωm−1,

ωc
m = ωc

m−1 and Ψ (xωm ) = Ψ (xωm−1 ).
Stopping rule: After a number of iterations, the nulled SNR values will start leveling off, which indicates that the

remaining covariates have no predictive power for the response. This motivates us to set the following stopping rule in
each iteration: Make a scree plot of the nulled SNR values of the remaining covariates to identify an elbow point which
partitions the current remaining covariate set into two subsets, namely upper set and lower set. The lower set, containing
those covariates with SNR values lower than the elbow point, is uninformative about the responses. To test whether the
upper set is also uninformative, we calculate the mean µl and standard deviation σl for the lower subset. The upper set
is declared uninformative if the maximum nulled SNR value, SNRmax, in the upper set falls into the following confidence
interval, [µl−c0σl, µl+c0σl], where c0 is a tuning constant. If the upper subset is uninformative, then the current remaining
covariate set is also uninformative and the iteration will be terminated. We set the default value c0 = 3.5 for the above
tuning constant at the asymptotic confidence level of 99.95%. The sensitivity of this choice will be further investigated in
the simulation studies. See Section A in the Supplementary Material.

2.3. Estimation of response covariance matrix

The above defined power is based on the response covariance matrix which is often estimated by the sample covariance
matrix Ĉ. When n > J , Ĉ is degenerate, leading to an ill-posed definition of the power. To address this issue, we consider
a thresholded estimator introduced by Bickel and Levina [1]:

Ĉh = Ĉ(τnJ ) = (ĉijI(|ĉij| > hτnJ )),

where I(·) is the indicator and τnJ =
√
log(n)/J with h ≥ 0 being a constant (for example, h = 0.01|tr(Ĉ)/n|). The

thresholded covariance matrix estimators may not be positive definite when the dimension J is close to or smaller than n.
o remedy the problem, we shrink the above thresholded covariance estimator to a diagonal matrix by using the method
f Ledoit and Wolf [9] as follows:

Ĉhs =
b2n
2 µ̂nIn +

d2n − b2n
2 Ĉh,
dn dn

4
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where

µ̂n = < Ĉh, In >, d2n =< Ĉh − µ̂nIn, Ĉh − µ̂nIn >,

b̄2n =
1
J2

J∑
k=1

1
n

n∑
i=1

n∑
j=1

(yikykj − ĉij)2I(|ĉij| > hτnJ ), b2n = min{b̄2n, d
2
n}

ith, for any n × n matrices D1 and D2, < D1,D2 >= tr(D1D⊤

2 )/n.

. Asymptotic analysis

Our analysis follows a standard framework for high-dimensional asymptotics, where the dimension p grows at a rate
uch bigger than both n and J as n and J tend to infinity. We need the following assumption on the stationarity of the

response data and the sparsity of the model.
C2: There exists a permutation π on index j so that for each n, time series yπ (j), 1 ≤ j ≤ J is strictly stationary with

conditional marginal covariance matrix C given X. We assume that there are only qn non-zero components in the model
1).

Without loss of generality, we let the first qn components are non-zeros: fkj(x) ̸= 0, 1 ≤ k ≤ qn, but fkj(x) ≡ 0, qn +1 ≤

≤ p. Let ν0 = {1, 2, . . . , qn}, |ν0| = qn and f ⊕

ν0j
(xν0 ) = f1j(x1) + · · · + fqnj(xqn ). Under Condition C2, f ⊕

ν0j
(xν0 ), 1 ≤ j ≤ J

re strictly stationary. Let ∆ij =
∑qn

k=1

(
f (xik) −

∑κn
d=1 βkjdψd(xik)

)
, ∆j = (∆1j, . . . ,∆nj)⊤, bkj = (βkj1, . . . , βkjκn )

⊤, Bν0j =

b⊤

1j, . . . , b
⊤

qnj)
⊤ and Ψ (xν0 ) = (Ψ (x1), . . . ,Ψ (xqn )). Let Σ=̂cov(B(1:p)j) = (Σk1k2 )p×p be a (pκn × pκn) block matrix with

lock Σk1k2 = cov(bk1j, bk2j). Similarly, let cov(Bν0j) denote the (|ν0|κn × |ν0|κn) block matrix (Σk1k2 )k1,k2∈ν0 .

.1. With known C

When J = ∞, we can estimate C exactly. So, we first consider an ideal setting where C is known. Let γ and SNR denote
he corresponding power and signal-to-noise-ratio index respectively. Then, for the fixed X, we have

C = E
[
(Yj − µ)(Yj − µ)⊤|X

]
= E

[(
f ⊕

ν0j
(xν0 ) + εj

)(
f ⊕

ν0j
(xν0 ) + εj

)⊤

|X
]

= Ψ (xν0 )cov(Bν0j)Ψ (xν0 )
⊤

+ Ψ (xν0 )E[Bν0j|X]E[B⊤

ν0j|X]Ψ (xν0 )
⊤

+ E[∆j∆
⊤

j |X] + E[εjε
⊤

j ] + Ψ (xν0 )E[Bν0j∆
⊤

j |X] + E[∆jB⊤

ν0j|X]Ψ (xν0 )
⊤.

he last equality follows from the assumption that f⊕ν0j(xν0 ) (therefore Ψ (xν0 )Bν0j) is independent of εj.
It follows from the inequality (3) that |∆ij| ≤ c3qnκ

−r0
n . For any a ∈ Rn, ∥a∥2 = 1,

a⊤∆j∆
⊤

j a =

(
n∑

i=1

ai∆ij

)2

≤ ∥a∥2
2∥∆j∥

2
2 ≤ c23nq

2
nκ

−2r0
n .

a⊤Ψ (xν0 )E[Bν0j|X]E[B⊤

ν0j|X]Ψ (xν0 )
⊤a = a⊤E[∆j|X]E[∆j|X]

⊤a ≤ c23nq
2
nκ

−2r0
n .

t also follows from the inequality (3) that |
∑qn

k=1
∑κn

d=1 βkjdψd(xik)| ≤
∑qn

k=1(|fkj(xik)|+ c3κ
−r0
n ) = O(qn). Therefore, for any

∈ Rn, ∥a∥2 = 1,

|a⊤Ψ (xν0 )Bν0j∆
⊤

j a| ≤ ∥Ψ (xν0 )Bν0j∥2∥∆j∥2 ≤ O(qn)O(n1/2)c3n1/2qnκ
−r0
n = O(q2n)nκ

−r0
n .

onsequently, there exists a constant c4 such that

C ≤ Ψ (xν0 )cov(Bν0j|X)Ψ (xν0 )
⊤

+ (σ 2
+ c4nq2nκ

−r0
n )In. (5)

To regularize the coherence structure of the design matrices, we impose the following condition on the covariates.
C3: There exist some positive constants K1 and K2 such that the marginal density function of the jth covariate, gj(·),

atisfies 0 < K1 ≤ gj(x) ≤ K2 < ∞ for all 1 ≤ j ≤ p and x ∈ [a, b].
Let ν = {k1, . . . , kp1} denote an arbitrary subset of {1, . . . , p}. Let Eν be a selection matrix, made of p block matrices

itting next to each other, where for j ∈ {1, . . . , p1}, its kjth sub-block matrix takes the value of the κn × κn identity
atrix and the remaining sub-block matrices take the value of the κn × κn zero matrix. Then, the B-spline basis for the
ovariates indexed by ν can be written as Ψ (xν) = Ψ (X)E⊤

ν . Let Aν = C − Ψ (xν)E⊤

ν ΣEνΨ (xν)⊤, which is the residual
ariance–covariance after removing those belonging to covariate set ν. Note that if Ψ (xν0 )Bν0j can approximate f⊕ν0j(xν0 )
erfectly, then σ−2Aν0 is an identity matrix. In general, σ−2Aν0 is assumed to be asymptotically proportional to an identity
atrix as stated in the following condition:
C4: For some positive constant ζ0, σ−2Aν0 = ζ0I|ν0|κn (1 + o(1)) as n tends to infinity.
Let δ = (1−K1/K2)1/2 in the following proposition which states that under Conditions C1–C3, as n → ∞, the estimated

ower at covariate set ν0 converges to its underlying power, the trace of the covariance matrix of regression coefficients
f ν .
0

5
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Proposition 1. Under Conditions C1–C3, for any ν, if E⊤

ν ΣEν and Aν are invertible, then the power γν = tr{E⊤

ν ΣEν +

Ψ (xν)⊤A−1
ν Ψ (xν)

)−1
}. In particular, for the index set, ν0, of non-zero components, γν0 = tr(E⊤

ν0
ΣEν0 ) + O

(
δ−qn/2q2nκ

2−r0
n

)
.

f κn takes the optimal rate n1/(2r0+1) with r0 > 2, qn ≤ η0 log(n) and 0 < η0 < 2(r0 − 2)/{(2r0 + 1) log(δ−1)}, then
ν0 = tr(E⊤

ν0
ΣEν0 ) + O

(
n−δ0

)
, where δ0 = (r0 − 2)/(2r0 + 1) − 0.5η0 log(δ−1).

roof. For a general ν, invoking the Woodbury matrix identity, we have

C−1
=
(
Aν + Ψ (xν)E⊤

ν ΣEνΨ (xν)⊤
)−1

= A−1
ν − A−1

ν Ψ (xν)
{(

E⊤

ν ΣEν
)−1

+ Ψ (xν)⊤A−1
ν Ψ (xν)

}−1
Ψ (xν)⊤A−1

ν .

hen

Ψ (xν)⊤C−1Ψ (xν) = Ψ (xν)⊤A−1
ν Ψ (xν) − Ψ (xν)⊤A−1

ν Ψ (xν)
{(

E⊤

ν ΣEν
)−1

+ Ψ (xν)⊤A−1
ν Ψ (xν)

}−1
Ψ (xν)⊤A−1

ν Ψ (xν)

=

{
E⊤

ν ΣEν +
(
Ψ (xν)⊤A−1

ν Ψ (xν)
)−1
}−1

.

hus,

γν = tr
(
(Ψ (xν)⊤C−1Ψ (xν))−1)

= tr
{
E⊤

ν ΣEν +
(
Ψ (xν)⊤A−1

ν Ψ (xν)
)−1
}
. (6)

n particular, when ν = ν0, it follows from Eqs. (5) and (6) that

Aν0 = C − Ψ (xν0 )cov(Bν0j)Ψ (xν0 )
⊤

≤ (σ 2
+ c4nq2nκ

−r0
n )In.

|γν0 − tr
(
E⊤

ν0
ΣEν0

)
| ≤ κn

(
λmin(Ψ (xν0 )

⊤Ψ (xν0 ))/n
)−1

(σ 2/n + c4q2nκ
−r0
n ). (7)

nder Condition C3, combining Lemma 1 of Stone [16] with Lemma 3 of Huang et al. [6], we show that there exists a
onstant c5 > 0 such that

λmin
(
Ψ (xν0 )

⊤Ψ (xν0 )/n
)

≥ c5δ(qn−1)/2κ−1
n . (8)

his together with Eq. (7) yields that

|γν0 − tr(E⊤

ν0
ΣEν0 )| ≤ c−1

5 κnδ
−(qn−1)/2κn(σ 2/n + c4q2nκ

−r0
n ) = O(δ−qn/2q2nκ

2−r0
n ).

he remaining proof is straightforward. The proof is completed. □

To present Theorem 1, we first introduce some notations. For any subset of covariates, ν, we define the following
oherence matrices for Ψ (xν) and Ψ (xν0 ): Rνν = Ψ (xν)⊤A−1

ν0
Ψ (xν)/n, Rνν0 = Ψ (xν)⊤A−1

ν0
Ψ (xν0 )/n and Rν0ν0 =

(xν0 )
⊤A−1

ν0
Ψ (xν0 )/n. For any ν ⊆ ν0, we can find φ = {j1, . . . , jm} ⊆ {1, . . . , |ν0|} such that ν = {kj : j ∈ φ}. Let

ν|ν0 be a selection block matrix, made of |ν0| sub-blocks sitting next to each other, where for j ∈ φ, its kjth sub-block
atrix takes value of Iκn and the remaining sub-block matrices take value of the κn × κn zero matrix. We assume the

ollowing irrepresentability condition that ν0 is separable from its outside in terms of coherence and that the coherence
ithin ν0 and the cross-sectional coherence between ν0 and its outside are of the same scale order, that is,
C5: For any ν ⊆ {1, . . . , p} \ ν0, λmax(Rνν0R

−2
ν0ν0

Rν0ν) = 0(1), λmax(F−1/2
ν RννF−1/2

ν ) =0(1), nλmin(Fν) → ∞, where
ν = Rνν − Rνν0R

−1
ν0ν0

Rν0ν .
To verify Condition C5, we refer readers to Zhang and Oftadeh [21]. Under the assumptions that Ψ (xν) is a random

atrix satisfying some moment conditions and that the growth of the total number of covariates, p, is not too fast
ompared to the number of measurements per response, n. The details are as follows. Let κn = O(n1/(2r0+1)) and
n = {ν : ν ⊆ {1, . . . , p}, κn|ν| ≤ [rn]}, where [rn] stands for the integer part of rn. Assume that Ψ (xν) has a concentration
roperty, i.e., for some constant c1, any u > 0 and ν ⊆ {1, . . . , p}, |ν|κn ≤ rn, 0 < r < 1,

Pr
(
λmax(Rνν) > uor λmin(Rνν) < u−1)

≤ c1 exp(−nu/c1).

hen, it follows from Zhang and Oftadeh [21] that for a small positive constant α0,

Pr
(
max
ν∈Ωn

λmax(Rνν) > nα0or min
ν∈Ωn

λmin(Rνν) < n−α0

)
→ 0

s log(p) ≤ O(nα0 ), n and p tend to infinity. This implies that Condition C5 holds with probability tending to one when p
s not bigger than O( exp(nα0 ). Note that ∥Rνν0∥ ≤ ∥Rνν∥1/2

∥Rν0ν0∥
1/2. Choosing a small α0 such that log(δ)+ 1+ 1/(2r0 +

) − α0 ≥ 0 and invoking inequality (8) and qn = O(log(n)), we have

λmax(Rνν0R
−2
ν0ν0

Rν0ν) ≤ λmin(Rν0ν0 )
−2

∥Rνν0Rν0ν)∥ = O(n−2(log(δ)+1+1/(2r0+1)−α0))

hich holds with an overwhelming probability.
6
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In the following theorem, we show that the power index is consistent. This implies that the power index based
creening can have a sure screening property under the ideal scenario where the response covariance matrix is known.
ote that Condition δ−qn/2q2nκ

1−r0
n = o(1) is satisfied if let qn = O(log(n)) and κn the optimal rate n1/(2r0+1). A guideline

or the choice of κn is provided in the Section of Numerical Studies below.

heorem 1. Suppose that δ−qn/2q2nκ
1−r0
n = o(1) and that λ−1

mino = 0(1). Under Conditions C1–C3, as n tends to infinity, we
ave

(i) For any ν ⊆ ν0,

γν = tr(Σν|ν0 ) + n−1tr
(
Σν|ν0E

⊤

ν|ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
Eν|ν0Σν|ν0

)
+ λ2maxoλ

−3
mino(1 + λmaxoλ

−1
mino)O(δ

−qnq5nκ
3−2r0
n ),

where Σ−1
ν|ν0

= E⊤

ν|ν0

(
E⊤

ν0
ΣEν0

)−1 Eν|ν0 , λmaxo and λmino are the largest and the smallest eigenvalues of E⊤

ν0
ΣEν0

respectively.
(ii) For any ν ⊆ {1, . . . , p}\ν0, if nλmin(Fν) → ∞ as n → ∞,

γν = n−1tr(F−1
ν ) − n−2tr(Dνn),

where

Dνn = F−1
ν Rνν0R

−1/2
ν0ν0

{
R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

n−1
+ I|ν0|κn

}−1
R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

Rν0νF
−1
ν (1 + o(1))

≤ F−1
ν Rνν0R

−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

Rν0νF
−1
ν (1 + o(1)).

roof. Note that Q = A−1/2
ν0

Ψ (xν0 )(Ψ (xν0 )
⊤A−1

ν0
Ψ (xν0 ))

−1Ψ (xν0 )
⊤A−1/2

ν0
is idempotent, i.e., Q2

= Q. Its eigenvalues are
ither 1 and 0. This implies Q ≤ In. Therefore,

Rνν − Rνν0R
−1
ν0ν0

Rν0ν = Ψ (xν)⊤A−1/2
ν0

(In − Q)A−1/2
ν0

Ψ (xν)/n ≥ 0,

.e., Rνν0R
−1
ν0ν0

Rν0ν ≤ Rνν . Moreover, using (5), Lemma 1 of Stone [16] and Lemma 3 of Huang et al. [6], we have that

R−1
ν0ν0

≤
(
Ψ (xν0 )

⊤Ψ (xν0 )/n
)−1

(σ 2
+ c4nq2nκ

−r0
n ) ≤ c−1

5 δ−(qn−1)/2κn(σ 2
+ c4nq2nκ

−r0
n )I|ν0|κn . (9)

herefore,

n−1R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

≤ 0(1)λ−1
minoδ

−qn/2q2nκ
1−r0
n I|ν0|κn = o(1). (10)

(i) For any ν ⊆ ν0, it follows from Lemma 1 and the inequality (9) that

Ψ (xν)⊤C−1Ψ (xν) = E⊤

ν|ν0

(
E⊤

ν0
ΣEν0

)−1
Eν|ν0 − (T1 − T2),

here

T1 = E⊤

ν|ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
Eν|ν0n

−1
≤ λ−2

minoI|ν|κnδ
−qn/2q2nκ

1−r0
n O(1),

T2 = E⊤

ν|ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
Eν|ν0n

−2

× (1 + 0(1)λ−1
minoδ

−qn/2q2nκ
1−r0
n ) ≤ λ−3

minoI|ν|κnδ
−qnq4nκ

2(1−r0)
n O(1). (11)

ote that Σ−1
ν|ν0

≥ λ−1
maxoI|ν|κn . This together with the equations in (10) and (11) implies that

Σν|ν0T1Σν|ν0T1Σν|ν0 ≤ λmaxoΣν|ν0T
2
1Σν|ν0 ≤ λmaxoλ

−4
minoδ

−qnq4nκ
2(1−r0)
n O(1)Σ2

ν|ν0

Σν|ν0T2Σν|ν0 ≤ λ2maxoλ
−3
minoδ

−qnq4nκ
2(1−r0)
n O(1).

sing the Woodbury matrix identity and the above inequalities, we obtain(
Ψ (xν)⊤C−1Ψ (xν)

)−1
= Σ

1/2
ν|ν0

(
I|ν|κn −Σ

1/2
ν|ν0

(T1 − T2)Σ
1/2
ν|ν0

)−1
Σ

1/2
ν|ν0

= Σν|ν0 +Σν|ν0T1Σν|ν0 + λ2maxoλ
−3
mino(1 + λmaxoλ

−1
mino)δ

−qnq4nκ
2(1−r0)
n O(1)I|ν|κn .

his implies that

γ = tr(Σ ) + tr(Σ T Σ ) + λ2 λ−3 (1 + λ λ−1 )δ−qnq5κ2(1−r0)+1O(1).
ν ν|ν0 ν|ν0 1 ν|ν0 maxo mino maxo mino n n

7
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(ii) For any ν ⊆ {1, . . . , p}\ν0, it follows from Lemma 1 that

Ψ (xν)⊤C−1Ψ (xν) = nFν + Rνν0R
−1/2
ν0ν0

{
R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

n−1
+ I|ν0|κn

}−1
R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

Rν0ν .

he desired result then follows from the Woodbury matrix identity and the Taylor expansion. The proof is completed. □

We now state the following theorem about the discriminability of the nulled-SNR index, i.e., the extent to which active
nd non-active covariates can be distinguished by this index.

heorem 2. Suppose that δ−qn/2q2nκ
1−r0
n = o(1) and that λ−1

mino = 0(1). Then, under Conditions C1–C5, as n tends to infinity,
e have

(i) For a ∈ {1, . . . , p} \ ν0, a ̸∈ ν2, ν1 ⊆ ν0 and ν2 ⊆ {1, . . . , p} \ ν0, SNRa|ν1∪ν2 =
κn
ζ0σ2 (1 + o(1)).

(ii) For a ∈ ν0, a ̸∈ ν1, ν1 ⊆ ν0 and ν2 ⊆ {1, . . . , p} \ ν0,

SNRa|ν1∪ν2 =
n(1 + o(1))
σ 2ζ0

tr
{(

E⊤

{a}|ν0Σ
−1
ν0\ν1

Φ0Σ
−1
ν0\ν1

E{a}|ν0

)−1
E⊤

{a}|ν0Σ
−1
ν0\ν1

E{a}|ν0

}
+

1 + o(1)
σ 2ζ0

tr (Φ2) ,

where

Σν1|ν0 =

(
E⊤

ν1|ν0

(
E⊤

ν0
ΣEν0

)−1
Eν1|ν0

)−1
, Σ−1

ν0\ν1
=
(
E⊤

ν0
ΣEν0

)−1/2
Pν0\ν1

(
E⊤

ν0
ΣEν0

)−1/2
,

Pν0\ν1 = I|ν0|κn −
(
E⊤

ν0
ΣEν0

)−1/2
Eν1|ν0Σν1|ν0E

⊤

ν1|ν0

(
E⊤

ν0
ΣEν0

)−1/2
,

Fν2 = Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2 , Φ0 = R−1
ν0ν0

+ R−1
ν0ν0

Rν0ν2F
−1
ν2

Rν2ν0R
−1
ν0ν0

,

Φ1 =

(
I|ν0|κn − Eν1|ν0Σν1|ν0E

⊤

ν1|ν0

(
E⊤

ν0
ΣEν0

)−1
)
Φ0

(
I|ν0|κn − Eν1|ν0Σν1|ν0E

⊤

ν1|ν0

(
E⊤

ν0
ΣEν0

)−1
)⊤

.

Φ2 = E⊤

{a}|ν0

(
E⊤

ν0
ΣEν0

)−1
Φ1
(
E⊤

ν0
ΣEν0

)−1
E{a}|ν0

(
E⊤

{a}|ν0Σ
−1
ν0\ν1

Φ0Σ
−1
ν0\ν1

E{a}|ν0

)−1 (
E⊤

{a}|ν0Σ
−1
ν0\ν1

E{a}|ν0

)2
.

The above theorem indicates that the nulled-SNR index contrast between active and non-active covariates tends to
infinity if

n
κn

tr
{(

E⊤

{a}|ν0Σ
−1
ν0\ν1

Φ0Σ
−1
ν0\ν1

E{a}|ν0

)−1
E⊤

{a}|ν0Σ
−1
ν0\ν1

E{a}|ν0

}
→ ∞ (12)

olds uniformly for any a ∈ ν0, a ̸∈ ν1, ν1 ⊆ ν0 and ν2 ⊆ {1, . . . , p} \ ν0, as n tends to infinity. Therefore, under the above
ondition, the covariate set selected by the nulled-SNR is consistent with the true one when n tends to infinity.

roof. To prove the part (i), let ν = ν1 ∪ {a} ∪ ν2 and abusing the notation, let e⊤

a|ν1∪ν2
= (1⊤

|ν1|
⊗ 0

¯ κn
, 1⊤

|ν2|
⊗ 0

¯ κn
, Iκn ) and

⊤

a|ν2
= (1⊤

|ν2|
⊗ 0

¯
⊤

κn
, Iκn ). Let αn be an arbitrary constant of order 0(1)δ−qn/2q2nκ

1−r0
n . Then, we have

w⊤

a|ν1∪ν2
wa|ν1∪ν2 = e⊤

a|ν1∪ν2
γνΨ (xν)⊤C−2Ψ (xν)γνea|ν1∪ν2 . (13)

ote that Ψ (xν)⊤C−1Ψ (xν) can be naturally partitioned as follows:

Ψ (xν)⊤C−1Ψ (xν) =

(
Ψ (xν1 )

⊤C−1Ψ (xν1 ) Ψ (xν1 )
⊤C−1Ψ (xν2∪{a})

Ψ (xν2∪{a})⊤C−1Ψ (xν1 ) Ψ (xν2∪{a})⊤C−1Ψ (xν2∪{a})

)
,

ollowing the same block dimensions as above, we partition γν and x⊤
ν C

−2xν , namely

γν =

(
A11 A12

A21 A22

)
, Ψ (xν)⊤C−2Ψ (xν) =

(
B11 B12
B21 B22

)
.

ubstituting them into Eq. (13), we have

w⊤

a|ν1∪ν2
wa|ν1∪ν2 = e⊤

a|ν2

(
A21B11A12

+ A22B21A12
+ A21B12A22

+ A22B22A22) ea|ν2 .
ombining this with Lemmas 2 and 3 and after some algebraic manipulation, we have that under Condition C3,

w⊤

a|ν1∪ν2
wa|ν1∪ν2 = ζ0n−1 (Raa − Raν0R

−1
ν0ν0

Rν0a − (Raν2 − Raν0R
−1
ν0ν0

Rν0ν2 )

×(Rν2ν2 − Rν2ν0R
−1
ν0ν0

Rν0ν2 )
−1(Rν2a − Rν2ν0R

−1
ν0ν0

Rν0a)
)−1

(1 + o(1)).

his together with Lemma 2 completes the proof of the part (i).
To prove the part (ii), let ν = {a}∪ν1∪ν2. Define e⊤

a|ν1∪ν2
= (Iκn , 1

⊤

|ν1|
⊗0κn , 1

⊤

|ν2|
⊗0κn ) and e⊤

a|ν1
= (Iκn , 1

⊤

|ν1|
⊗0κn ). Then,

e have w⊤

a|ν1∪ν2
wa|ν1∪ν2 = e⊤

a|ν1∪ν2
γνΨ (xν)⊤C−2Ψ (xν)γνea|ν1∪ν2 . Under Conditions C3 and C4, the part (ii) is obtained by

ollowing the steps similar to those in the part (i). □
8
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3.2. With estimated C

To state a consistency property when C is estimated, we need the following two conditions used by Fan et al. [3],
here we treat X as a fixed design matrix. In the first one, we regularize the tail behavior of yj. C6: There exist positive

constants κ1 and τ1 such that for any u > 0, 1 ≤ j ≤ J ,

max
1≤i≤n

P(|yij| > u) ≤ exp(1 − τ1uκ1 )

and max1≤i≤n E|yi1|4η0 < +∞, where η0 > 1 is a constant.
In the second condition, we assume that there exists a permutation π on {1, . . . , J} so that yπ (j), 1 ≤ j ≤ J are strong

mixing. Let Fk0
0 and F∞

k denote the σ -algebras generated by {yπ (j) : 0 ≤ j ≤ k0} and {yπ (j) : j ≥ k} respectively. Define the
mixing coefficient

α(k0, k) = sup
A∈F

k0
0 ,B∈F∞

k

|P(A)P(B) − P(AB)|.

The mixing coefficient α(k) quantifies the degree of the dependence of the process {yπ (j)} at lag k. We assume that
α(k0, k) is decreasing exponentially fast as lag k is increasing, i.e., C7: There exist positive constants κ2 and τ2 such that
α(k0, k) ≤ exp(−τ2(k−k0)κ2 ). Note that C6 holds if yij’s are Gaussian. And C7 holds if there exist 1 = j0 < j1 < · · · < jm = J
such that {yj}1≤j≤J can be divided into mutually independent segments {yj}jk−1≤j<jk , 1 ≤ k ≤ m.

Note that under Conditions C1–C7, we show that the optimal shrinkage covariance estimator Ĉhs is consistent with the
true covariance C in Appendix A. This allows us to extend Theorems 1 and 2 to the case where unknown C is estimated
by Ĉhs. Let mn = max1≤i≤n

∑
1≤j≤n I(cij ̸= 0). Let sn = nmn describe the worst-case sparsity of C.

Theorem 3. Suppose that δ−qn/2q2nκ
1−r0
n = o(1), λ−1

mino = 0(1) and τnJ sn = o(1) as both n and J tend to infinity. Then, under
Conditions C1–C7, we have:

(i) For any ν ⊆ ν0,

γ̂ν = tr(Σν|ν0 ) + n−1tr
(
Σν|ν0E

⊤

ν|ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
Eν|ν0Σν|ν0

)
+ λ2maxoλ

−3
mino(1 + λmaxoλ

−1
mino)δ

−qnq5nκ
3−2r0
n O(1) + Op(snτnJ ).

where Σ−1
ν|ν0

, λmaxo and λmino are defined in Theorem 1.
(ii) For any ν ⊆ {1, . . . , p} \ ν0,

γ̂ν = n−1tr(F−1
ν ) + O(n−2λ−1

min(Fν)) + Op(snτnJ ).

The above theorem implies that γ̂a converges to zero in probability when a ̸∈ ν0 and to a non-zero limit when a ∈ ν0.
This make it possible to use γ̂a to screen for the covariates with a pre-specified threshold. The selected active set will
have a sure screening property.

We further present the following asymptotic analysis on active and non-active covariates for the fPVA.

Theorem 4. Suppose that δ−qn/2q2nκ
1−r0
n = o(1), λ−1

mino = 0(1) and τnJ sn = o(1) as both n and J tend to infinity. Then, under
Conditions C1–C7, we have:

(i) For a ∈ [1 : p] \ ν0, a ̸∈ ν2 ⊆ {1, . . . , p} \ ν0, ν1 ⊆ ν0, SNRa|ν1∪ν2 =
κn
ζ0σ2 (1 + o(1)) + Op(snτnJ ).

(ii) For a ∈ ν0, a ̸∈ ν1, ν1 ⊆ ν0 and ν2 ⊆ {1, . . . , p} \ ν0, SNRa|ν1∪ν2 is equal to

n(1 + o(1))
σ 2ζ0

tr
{(

E⊤

{a}|ν0Σ
−1
ν0\ν1

Φ0Σ
−1
ν0\ν1

E{a}|ν0

)−1
E⊤

{a}|ν0Σ
−1
ν0\ν1

E{a}|ν0

}
+

1 + o(1)
σ 2ζ0

tr (Φ2)+ Op(snτnJ ),

where Σ−1
ν0\ν1

, Φ0 and Φ2 are defined in Theorem 2.

The above theorem implies that under some regularity conditions the nulled-SNR contrast between active and non-
ctive covariates will tend to infinity if the limit in (12) holds. Using the same arguments as Zhang and Oftadeh [21], we
btain the selection consistency of covariates selected by the nulled-SNR in the sense that P(ν0 = ν̂0) → 1 as n and J
end to infinity, where ν̂0 is the set of selected covariates.

roofs of Theorems 3 and 4. They follow from Theorems 1–2 and Lemmas 4–8, which are similar to the proof of Theorem
in Zhang and Liu [19]. □
9
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4. Numerical studies

In this section, we evaluate the performance of the proposed procedure fPVA on simulated and real data. In our
imulations, we compare the fPVA to the linear PVA and the Multiple Independence Screening (MIS), a multivariate
xtension of the nonparametric variable screening procedure (Fan et al. [3]), in terms of sensitivity and specificity. See
he definitions of the linear PVA and the MIS in Appendix A. Here, sensitivity and specificity are referred to the survival
ates of true active covariates and of true non-active covariates in a screening procedure, namely

SEN =
|T̂
⋂

T |

|T |
, SPE =

|T̂ c ⋂ T c
|

|T c |
,

where T and T c are the sets of true active covariates and of true non-active covariates respectively with estimators T̂
nd T̂ c . Under some sparsity conditions, SPE can be shown quite high when p is much larger than qn, the number of
rue active covariates. To fairly compare the sensitivities of these procedures, we adjust the corresponding thresholds in
he fPVA, the linear PVA and the MIS so that their specificities are all around the same level. Note by Theorem 4 that
he SNR values for non-active covariates are proportional to the value of κn. So, a too large κn will reduce the contrast
etween the active covariates and non-covariates. On the other hand, the approximation f̃kj(x) used in the fPVA can attain
he optimal convergence rate if we let κn = ⌊n0.2

⌋ and set κn equally spaced interior knots for normalized B-splines
Huang et al. [6], Stone [16]). To test robustness of the above choice, we consider κn = c⌊nα0⌋ with tuning constants
∈ {0.5, 1, 1.5};α0 ∈ {0.1, 0.2, 0.3}. In the same spirit, we let h = h0|tr(Ĉ)/n| with h0 ∈ {0.005, 0.01, 0.02} in the

ovariance estimator Ĉhs and c0 ∈ {3, 3.5, 4} in the stopping rule. For the kth component in a multivariate additive model,
e define its oracle signal-to-noise ratio (OSNR) as follows:

OSNR = tr
(
(Ψ (xk)⊤cov(fkj(xk))−1Ψ (xk))−1) /tr ((Ψ (xk)⊤cov(εj)−1Ψ (xk))−1)

nder the oracle assumption that {fij(xk)}i̸=k are known. The higher the OSNR of a component, the higher chance it will
e selected.

.1. Simulated data

We considered the following multivariate additive model:

yij =

p∑
k=1

fkj(xik) + ϵij, 1 ≤ i ≤ n, 1 ≤ j ≤ J, (14)

ith

f1j(xi1) = r1(xi1 − r2) sin j, f2j(xi2) = r3
(
r4 (xi2 − r5)2

)
cos j − E

[
r3
(
r4 (xi2 − r5)2

)
cos j

]
,

f3j(xi3) = r6
sin
(
2πxi3

√
j
)

r7 − sin
(
2πxi3

√
j
) − E

[
r6

sin
(
2πxi3

√
j
)

r7 − sin
(
2πxi3

√
j
)] ,

f4j(xi4) = r8
[
r9 sin (2πxi4)+ r10 cos (2πxi4)+ r11 sin2 (2πxi4)+ r12 cos3 (2πxi4)+ r13 sin3 (2πxi4)

]
− E

{
r8
[
r9 sin (2πxi4)+ r10 cos (2πxi4)+ r11 sin2 (2πxi4)+ r12 cos3 (2πxi4)+ r13 sin3 (2πxi4)

]}
,

fkj(xik) = 0, 5 ≤ k ≤ p,

where given (Y,X), ri, 1 ≤ i ≤ 13 were independent Normal random variables. Model (14) involved J subjects with
heterogeneous and nonlinear random-effects functions for each covariate.

We sampled 100 data sets from the above model for each of the combinations of (t, n, J, p) with t ∈ {0, 1}, n ∈

{50, 100, 200}, J ∈ {30, 70, 140}, and p ∈ {500, 1000}. Each data set was generated as follows. First, for i ∈ {1, . . . , n},
to generate covariates xik, 1 ≤ k ≤ p, we sampled ui, wik, 1 ≤ k ≤ p independently from N(0, 1) and truncated
them into the interval [0, 1]. We set xik = (wik + tui)/(1 + t), 1 ≤ k ≤ p. The simple calculation can show that
the pairwise correlations between covariates are equal to t2/(1 + t2). In particular, the covariates are independent of
each other if t = 0. Then, we independently drew the error row-vectors (ϵij)1≤j≤J , 1 ≤ i ≤ n from the multivariate
normal with mean zeros and covariance matrix (0.9|j1−j2|)J×J , stacking them together to form an n × J error matrix. We
sampled r1, r3, r4, r7 independently from N(2, 0.12), and r2, r5, r6, r8, r9, r10, r11, r12, r13 independently from N(0.46, 0.12),
N(1, 0.12), N(2.5, 0.12), N(3, 0.12), N(0.1, 0.012), N(0.2, 0.012), N(0.3, 0.012), N(0.4, 0.012), N(0.5, 0.012), respectively.
Finally, we generated yj, 1 ≤ j ≤ J by using the equation in model (14). In our simulated data, we can see from Table 1
that the OSNR values vary significantly across the 4 non-vanishing components and increase in the number of subjects J .

We applied the fPVA, the linear PVA and the MIS to each data set respectively, obtaining a list of the SEN and SPE
values for each procedure. We then calculated their averages and standard deviations over 100 replicates respectively,
expressing them in percentage. The results for various combinations of (t, n, J, p) with the tuning constants c = 1, α0 =

0.2, h = 0.01, are presented in Tables 2 and 3 and in Figures in Section A, the Supplementary Material.
0

10



H. Ding, J. Zhang and R. Zhang Journal of Multivariate Analysis 192 (2022) 105069
Table 1
Oracle signal-to-noise ratio (OSNR) values of non-vanishing component k
for different J in model (14).

k

1 2 3 4

30 0.026 0.035 0.093 1.211
J 70 0.159 0.213 0.175 1.551

140 1.022 1.308 0.562 2.443

Table 2
Comparison of methods PVA, fPVA and MIS by their average sensitivity (SEN) and specificity (SPE) for p = 500. The bigger the average SEN (SPE),
the better the corresponding method is. The SEN (SPE) in percentage was averaged over 100 replicates with standard deviations (in parentheses).
PVA: (Linear) Principal Variable Analysis. fPVA: Functional PVA. MIS: Multiple Independence Screening.
t = 0 t = 1

n J Method SEN SPE n J Method SEN SPE

50 30 fPVA 91.8(12.34) 99.5(0.28) 50 30 fPVA 63.3(14.85) 99.6(0.38)
PVA 32.8(16.55) 99.2(0.48) PVA 12.8(15.69) 99.2(0.52)
MIS 55.8(19.10) 98.8(0.15) MIS 50.3(9.06) 98.8(0.07)

70 fPVA 90.3(14.61) 99.6(0.31) 70 fPVA 77.8(14.61) 99.6(0.35)
PVA 28.0(15.19) 99.3(0.47) PVA 17.5(19.94) 99.2(0.44)
MIS 44.8(21.70) 98.7(0.18) MIS 45.8(12.33) 98.8(0.10)

140 fPVA 67.3(15.77) 99.7(0.34) 140 fPVA 66.8(15.91) 99.6(0.39)
PVA 21.3(16.43) 99.2(0.47) PVA 8.5(15.17) 99.2(0.49)
MIS 34.8(22.16) 98.7(0.18) MIS 36.3(15.23) 98.7(0.12)

100 30 fPVA 100(0.00) 99.9(0.20) 100 30 fPVA 93.8(11.98) 99.8(0.23)
PVA 46.5(16.67) 99.4(0.39) PVA 26.8(23.10) 99.4(0.39)
MIS 82.5(17.23) 99.1(0.14) MIS 55.0(10.66) 98.8(0.09)

70 fPVA 100(0.00) 99.9(0.15) 70 fPVA 100(0.00) 99.8(0.23)
PVA 46.5(23.58) 99.5(0.30) PVA 31.8(26.30) 99.5(0.32)
MIS 89.0(13.91) 99.1(0.11) MIS 56.8(12.23) 98.8(0.10)

140 fPVA 100(0.00) 99.9(0.19) 140 fPVA 100(0.00) 99.9(0.18)
PVA 32.8(25.30) 99.5(0.29) PVA 23.5(28.40) 99.6(0.23)
MIS 77.5(18.97) 99.0(0.15) MIS 55.0(15.08) 98.8(0.12)

200 30 fPVA 100(0.00) 99.9(0.15) 200 30 fPVA 99.5(3.52) 99.8(0.20)
PVA 60.8(16.76) 99.6(0.33) PVA 42.0(20.68) 99.4(0.36)
MIS 99.5(3.52) 98.8(0.03) MIS 72.5(17.59) 99.0(0.14)

70 fPVA 100(0.00) 99.9(0.13) 70 fPVA 100(0.00) 99.9(0.12)
PVA 63.0(22.89) 99.7(0.21) PVA 41.8(27.07) 99.6(0.24)
MIS 100(0.00) 98.8(0.00) MIS 73.8(15.64) 99.0(0.13)

140 fPVA 100(0.00) 99.9(0.12) 140 fPVA 100(0.00) 99.9(0.15)
PVA 48.5(33.30) 99.7(0.22) PVA 24.5(31.18) 99.7(0.17)
MIS 96.5(8.72) 99.2(0.07) MIS 80.3(15.61) 98.6(0.13)

We see from these tables and figures that the fPVA had a superior sensitivity over the PVA and the MIS when their
specificities were fixed around the same level. The performance was also robust to the choices of c ∈ {0.5, 1, 1.5},
α0 ∈ {0.1, 0.2, 0.3} and h0 ∈ {0.005, 0.01, 0.02}. For uncorrelated covariates (i.e., t = 0), the fPVA had a superior
performance over both the MIS and the linear PVA in the terms of sensitivity and specificity for combinations of (n, J, p).
For example, for (n, J, p) = (50, 70, 500), the sensitivity value of the fPVA increased by 46% and 62% over the MIS and
the linear PVA respectively. For correlated covariates (i.e., t = 1), the improvements were also striking. For example, for
(n, J, p) = (50, 70, 500), the sensitivity value of the fPVA increased by 32% over the MIS and by 60% over the linear PVA.
This demonstrates that the fPVA was more effective in exploring both correlated and uncorrelated nonlinear structures in
covariates. We also compared the average CPU times used to run these procedures on the simulated data in a PC. To save
space, we only plot the log-CPU-times for the combinations (n, p) = (100, 500) and t = 0, 1 in Figures in Section A, the
Supplementary Material. It demonstrates that the fPVA computationally costs less than the MIS but more than the linear
PVA. The results show that on average sensitivity and specificity values were increasing in n when J , p and t were fixed.
The sensitivity was decreasing on average in the size of pairwise correlations between covariates. This reflects that the
increasing correlations between covariates could make it difficult to identify true active covariates. The sensitivity was
also decreasing on average in the number of covariates p. This is again not surprising because the larger the number of
irrelevant covariates in the model, the harder the selection of true covariates will be.

4.2. Anti-cancer drug data

We evaluated the performance of our approach on a data set, which was discussed in details by Garnett et al. [4].
The data contain p = 13321 gene expressions and fifty percent inhibitory concentration (IC50) values of J = 131 drugs
across n = 42 cell lines. According to cancer encyclopaedia, IC50 is a concentration of drug that reduces a biochemical
11
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Table 3
Comparison of methods PVA, fPVA and MIS by their average sensitivity (SEN) and average specificity (SPE) for p = 1000. The bigger the average
EN (SPE), the better the corresponding method is. The SEN (SPE) in percentage was averaged over 100 replicates with standard deviations (in
arentheses). PVA: (Linear) Principal Variable Analysis. fPVA: Functional PVA. MIS: Multiple Independence Screening.
t = 0 t = 1

n J Method SEN SPE n J Method SEN SPE

50 30 fPVA 93.3(11.71) 99.7(0.10) 100 30 fPVA 63.3(14.85) 99.6(0.31)
PVA 36.0(16.79) 98.9(0.45) PVA 14.8(15.93) 98.8(0.45)
MIS 59.5(15.40) 98.7(0.06) MIS 54.5(10.29) 98.7(0.04)

70 fPVA 87.8(13.53) 99.7(0.10) 70 fPVA 72.3(15.28) 99.6(0.19)
PVA 34.5(14.12) 99.0(0.42) PVA 17.3(19.69) 98.8(0.45)
MIS 48.8(21.13) 98.7(0.08) MIS 51.0(12.77) 98.7(0.08)

140 fPVA 66.8(15.10) 99.6(0.19) 140 fPVA 64.0(17.16) 99.6(0.22)
PVA 27.5(13.53) 99.0(0.43) PVA 8.75(15.23) 98.9(0.48)
MIS 35.5(22.80) 98.6(0.09) MIS 46.3(14.81) 98.7(0.06)

100 30 fPVA 100(0.00) 99.8(0.25) 100 30 fPVA 94.5(10.41) 99.7(0.30)
PVA 49.8(18.29) 99.4(0.36) PVA 28.3(20.92) 99.3(0.39)
MIS 86.8(16.07) 98.8(0.06) MIS 60.8(15.99) 98.7(0.06)

70 fPVA 100(0.00) 99.9(0.21) 70 fPVA 100(0) 99.8(0.30)
PVA 48.3(18.55) 99.5(0.26) PVA 35.8(23.37) 99.6(0.27)
MIS 87.3(15.28) 98.3(0.06) MIS 58.3(13.32) 98.7(0.05)

140 fPVA 100(0.00) 99.8(0.31) 140 fPVA 99.8(2.50) 99.7(0.32)
PVA 41.3(23.13) 99.5(0.26) PVA 26.8(25.44) 99.6(0.27)
MIS 88.0(15.68) 98.8(0.06) MIS 57.5(13.99) 98.7(0.06)

200 30 fPVA 100(0.00) 99.9(0.14) 200 30 fPVA 98.5(5.97) 99.8(0.17)
PVA 61.0(13.45) 99.5(0.29) PVA 43.3(19.74) 99.4(0.31)
MIS 99.8(2.50) 98.4(0.01) MIS 78.0(17.51) 98.8(0.07)

70 fPVA 100(0.00) 99.9(0.10) 70 fPVA 100(0.00) 99.9(0.13)
PVA 66.3(18.93) 99.7(0.18) PVA 51.0(22.73) 99.7(0.20)
MIS 100(0.00) 98.9(0.00) MIS 75.5(18.11) 98.3(0.07)

140 fPVA 100(0.00) 99.9(0.08) 140 fPVA 100(0.00) 99.9(0.12)
PVA 58.3(28.22) 99.7(0.17) PVA 39.0(29.37) 99.7(0.16)
MIS 100(0.00) 98.9(0.00) MIS 77.0(16.55) 98.3(0.07)

activity such as cell multiplication to 50 percent of its normal value in the absence of the inhibitor. We considered a
sparse multivariate additive model in (1) for the data, where we took genes as covariates and IC50 values of multiple
drugs as the responses. The expression values of these genes form a design matrix X. We began with standardizing the
xpression values for each gene and centralizing the response values across the drugs. We then applied the fPVA to the
ata, obtaining 7 active covariates (i.e., genes): PEX5, NRXN2, HS2ST1, EIF4GH1, CUL4 A, PIPN22 and ACN9. Finally, we
itted the multivariate additive model to the data set with covariates restricted to the above selected covariates. We used
he so-called post-approximations to fkj’s by linear combinations of 5 spline functions as did in Fan et al. [3]. To save
pace, we only present the estimated non-vanishing nonparametric components related to the drug KIN001-135 in Fig. 1.
he results suggest that the IC50s of the drug KIN001-135 depended nonlinearly on these selected genes. These effects
ere also drug-specific random-effects.
To highlight the medical relevance of these selected genes to the drug sensitivity, we investigated the protein staining

f these selected genes in 20 common cancers as the protein products would indicate the functions of these genes (Stewart
t al. [15]). We gathered such information from the Human Protein Atlas Portal at http://www.proteinatlas.org for 5 of
he selected 7 genes, namely PEX5, NRXN2, EIF4GH1, CUL4 A, and ACN9. In these tables, we classified the protein staining
evels into 4 categories: high, medium, low and not detected. We assigned the scores of 3, 2, 1 and 0 to these categories
espectively. If a gene had not played a role in the sensitivity of an anti-cancer drug, we might obtain a score of zero as its
rotein staining at that cancer cell line would be hardly detectable. Therefore, the hypotheses of interest can be stated as
ollows: H0 : µ = 0 v.s. H1 : µ > 0, where µ is the population median of the protein staining score of a gene. For each of
he 20 cancers under investigation, we performed a one-sample Wilcoxon signed-rank test on the above scores, obtaining
p-value. The p-values for these cancers are displayed in Table 1, Section B, the Supplementary Material. We then carried
ut a Bonferroni correction as well as Holm’s correction (Holm [5]) for multiple testing respectively. The number of the
ejected null-hypotheses for each selected gene are shown in Table 2 in Section B, the Supplementary Material. The results
ndicate that all the 5 selected genes had positive protein staining levels in most of 20 cancers at the significance level
f 0.05 after the correction. We further conducted both the Bonferroni and Holm corrections for multiple testing across
ll cancer–gene pairs, in which two cancer–gene pairs, (EIF4G1, Colorectal cancer) and (ACN9, Glioma cancer), survived
fter the correction. We also applied the MIS to the above data set, resulting in 236 active genes, whose biological roles
re difficult to explain by using the above Portal.
To assess stability of the above analysis, we conducted a parametric bootstrap analysis. We simulated (Y,X) by using

he fitted multivariate additive model for each combination of (n, p, J), where n ∈ {42, 100, 200}, p ∈ {500, 1000}, J = 131
in the following steps. First, we set the above selected 7 genes as the true active covariates in the simulated model. We also
randomly selected p−7 gene covariates from the remaining 13314 genes in the above anti-cancer drug data and put them
12
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Table 4
Average sensitivity (SEN) and specificity (SPE) (in percentage) of fPVA with
standard deviations (in parentheses) for the stability analysis. Sensitivity
and specificity were averaged over 100 parametric bootstrap samples
drawn from the fitted multivariate additive model.
n p SEN SPE

42 500 66.1(11.06) 99.3(0.66)
1000 68.0(13.02) 99.4(0.56)

100 500 100(0.00) 99.3(0.74)
1000 100(0.00) 99.2(0.52)

200 500 100(0.00) 99.1(0.44)
1000 100(0.00) 98.8(0.31)

into the simulated model to form p covariates. Secondly, we calculated the p × p sample covariance matrix Ω of these p
enes by using the original gene expression data. Given Ω , we drew n random row-vectors from the p-dimension Normal

Np(0,Ω ) and stacked them row by row to form the design matrix X. Thirdly, we computed a J × J sample covariance
matrix Σ0 by using the 131 residuals of IC50 data derived from the above real data analysis. We drew n random row-
vectors from the J-dimensional Normal N(0,Σ0) and stacked them row by row to obtain the error matrix E. Fourthly,
we adopted fitted nonparametric functions f̂kj(·), 1 ≤ j ≤ J as the true component functions in the simulated model,
here k ran over the 7 genes obtained in the previous data analysis and assigned zero functions to the remaining p − 7
omponents. Finally, we generated Y according to the model (1). We repeated the above procedure 100 times, obtaining
00 simulated datasets. For each combination of (n, p, J), we applied the fPVA to each of the 100 simulated data sets in
rder to recover the underlying active covariates, pretending they were unknown. This allowed us to estimate sensitivity
nd specificity values. In Table 4, we display the averages of these values over 100 replicates. The results show that on
verage the fPVA could recover 4.8 out of 7 truly active covariates with the average specificity being bigger than 99%
hen the sample size n = 42 and p = 1000. This gave a recovering rate of 68% which was surprisingly high compared
o the relatively small n and J . In addition, the recovering rate was increasing in n and attained 100% on average when
≥ 100. The results suggest that the fPVA based data analysis was quite stable.

. Discussion and conclusion

We have proposed a novel approach to nonparametric component screening for multivariate additive random-effects
odels by using the B-spline approximation and the null-beamforming technique. Here, we have used nonparametric
ariance components to model overall effects of each covariate on all subjects. The proposed procedure involves a series of
patial filters, nulled-SNR indices, each is tailored to a covariate related to a particular additive component and minimizes
nterferences originating from other covariates and from background noises. The proposed method provides a perfect
orward variable selection in which the additional variable selection with penalization is not required. We have conducted
n asymptotic analysis on the behavior of the proposed procedure. In particular, under some regularity conditions, we
ave shown that the SNR-index can make a sharp contrast between active and non-active covariate. This has resulted in
he selection consistency of the proposed procedure in the sense that under certain regularity conditions, the selected
ctive set is asymptotically equal to the underlying one. As pointed out by one of reviewers, the regularity condition C1
an be weakened as follows: for any positive η, there exists a universal positive constant c∗ such that

Pr
(

max
1≤k≤p,1≤j≤J

sup
z,z+δ∗∈[a,b]

|f (r)kj (z + δ∗) − f (r)kj (z)| > c∗|δ∗|α
)
< η

or some non-negative integer r and 0 < α ≤ 1.
We have assessed the performance of the proposed procedure by use of simulated and real data. The simulations have

emonstrated that our new procedure can substantially outperform the linear PVA and the marginal screening procedure
IS in terms of sensitivity and specificity in a wide range of scenarios. We have applied the proposed procedure to the

ntegrative analysis of an anti-cancer drug data set, identifying 7 genes which might have influenced IC50 values. By use
f the existing protein staining data, we have demonstrated that in most of common cancers, at least 5 of these selected
enes had positive protein expression levels at the significance level of 5% after some multiple testing correction. This
uggests that these identified genes may have played certain roles in determining the concentrations of these drugs in
ancer cell lines.
In practice, both fixed-effects and random-effects models can be fitted to a multivariate regression dataset when the

umber of subjects, J , is not too large. Fixed-effects allow for structureless variation across subjects while random-effects
equire that unobserved heterogeneity obeys some probability distribution. However, when n, p and J are large, fixed-
ffects can result in a huge number of parameters (pJκn parameters in the approximate model) with group structures,
here dimensionality quickly becomes an issue. Instead of estimating many individual effects, random-effects only need
o estimate no more than min{n, J} ≪ p nonparametric variance components, which greatly reduces the parameter
imension. Once the active variance components are identified, we further use the data projection to conduct a post-
stimation of the trajectories of these selected random-effects on subjects. This suggests an advantage of random-effects
odels over fixed-effects models in multivariate nonparametric settings.
13
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ppendix A

In this Appendix, we introduce the lemmas and define the MIS and the linear PVA, which are used in Sections 3
nd 4 respectively. Lemmas 1–3 follow from the Woodbury matrix identity while Lemmas 4–8 are derived by using the
oncentration inequality for non i.i.d. samples (see, for example, Fan et al. [3], Zhang and Liu [19]): There exist constants
t , t ∈ {1, . . . , 5}, such that for any u > 0,

Pr

(
max
1≤i,j≤n

⏐⏐⏐⏐⏐1J
J∑

k=1

yikykj − cij

⏐⏐⏐⏐⏐ > u

)
≤ n2J exp

(
−

(Ju)κ

d1

)
+ n2 exp

(
−

(Ju)2

d2(1 + Jd3)

)
+ n2 exp

(
−

(Ju)2

d4J
exp

(
(Ju)κ(1−κ)

d5(log(Ju))κ

))
.

Lemma 1. Suppose that δ−qn/2q2nκ
1−r0
n = o(1) and that λ−1

mino = 0(1). Denote by αn any constant of order 0(1)δ−qn/2q2nκ
1−r0
n .

Under Conditions C1–C3, for any subset of covariates, ν, we have

Ψ (xν)⊤C−1Ψ (xν)/n = Fν + Rνν0R
−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

Rν0νn
−1

− Rνν0R
−1/2
ν0ν0

(
R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

)2
R−1/2
ν0ν0

Rν0νn
−2

+ Rνν0R
−1/2
ν0ν0

(
R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

)3
R−1/2
ν0ν0

Rν0νn
−3(1 + αn).

Proof. Using the Woodbury matrix identity, we have

Ψ (xν)⊤C−1Ψ (xν)/n = Ψ (xν)⊤
[
A−1
ν0

− A−1
ν0
Ψ (xν0 )

{(
E⊤

ν0
ΣEν0

)−1
+ nRν0ν0

}−1
Ψ (xν0 )

⊤A−1
ν0

]
Ψ (xν)/n.

The proof is completed by using the Taylor expansion. □

Lemma 2. Suppose that δ−qn/2q2nκ
1−r0
n = o(1) and that λ−1

mino = 0(1). Denote by αn any constant of order 0(1)δ−qn/2q2nκ
1−r0
n .

Then, under Conditions C1–C3 and C5, as n tends to infinity, we have:

(i) Uniformly for a ∈ {1, . . . , p} \ ν0 and a ̸∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-nulled predictive power Υa|ν1∪ν2

admits the form

γa|ν1∪ν2 =
1
n

{
Fa − (Raν2 − Raν0R

−1
ν0ν0

Rν0ν2 )F
−1
ν2

(Rν2a − Rν2ν0R
−1
ν0ν0

Rν0a)
}−1

(1 + o(1)).

(ii) Uniformly for a ∈ ν0 and a ̸∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-nulled power γa|ν1∪ν2 admits the form

γa|ν1∪ν2 =

(
ET

{a}|ν0Σ
−1
ν0\ν1

E{a}|ν0

)−1
+ n−1ET

{a}|ν0

(
ETν0ΣEν0

)−1
Φ1
(
ETν0ΣEν0

)−1
E{a}|ν0 (1 + o(1)),
14
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where

Σν1|ν0 =

(
ETν1|ν0

(
ETν0ΣEν0

)−1
Eν1|ν0

)−1
, Σ−1

ν0\ν1
=
(
ETν0ΣEν0

)−1/2
Pν0\ν1

(
ETν0ΣEν0

)−1/2
,

Pν0\ν1 = I|ν0|κn −
(
ETν0ΣEν0

)−1/2
Eν1|ν0Σν1|ν0E

T
ν1|ν0

(
ETν0ΣEν0

)−1/2
, Fν2 = Rν2ν2 − Rν2ν0R

−1
ν0ν0

Rν0ν2 ,

Φ0 = R−1
ν0ν0

+ R−1
ν0ν0

Rν0ν2F
−1
ν2

Rν2ν0R
−1
ν0ν0

,

Φ1 =

(
I|ν0|κn − Eν1|ν0Σν1|ν0E

T
ν1|ν0

(
ETν0ΣEν0

)−1
)
Φ0

(
I|ν0|κn − Eν1|ν0Σν1|ν0E

T
ν1|ν0

(
ETν0ΣEν0

)−1
)T
.

Proof. To prove (i), let ν denote ν1 ∪ ν2 ∪ {a}. We partition Ψ (xν)⊤C−1Ψ (xν) and (Ψ (xν)⊤C−1Ψ (xν))−1 in the same way
nto the block matrices below:

Ψ (xν)⊤C−1Ψ (xν) =

(
Ψ (xν1 )

⊤C−1Ψ (xν1 ) Ψ (xν1 )
⊤C−1Ψ (xν2∪{a})

Ψ (xν2∪{a})⊤C−1Ψ (xν1 ) Ψ (xν2∪{a})⊤C−1Ψ (xν2∪{a})

)
,

(Ψ (xν)⊤C−1Ψ (xν))−1
=

(
A11 A12

A21 A22

)
,

here Ψ (xν1 ) = Ψ (xν0 )Eν1|ν0 . Then, by definition we have γa|ν1∪ν2 = (1⊤

|ν2|
⊗ 0⊤

κn
, Iκn )A

22(1⊤

|ν2|
⊗ 0⊤

κn
, Iκn )

⊤. The proof of (i)
s completed by using Lemma 1, the Taylor expansion and the fact that the smallest eigenvalue of any main block matrix
s larger than that of the whole matrix. Similarly, we can complete the proof of (ii). □

emma 3. Suppose that δ−qn/2q2nκ
1−r0
n = o(1) and that λ−1

mino = 0(1). Denote by αn any constant of order 0(1)δ−qn/2q2nκ
1−r0
n .

hen, under Conditions C1–C4, as n → ∞, we have:

(i) for any ν ⊆ ν0,

Ψ (xν)⊤C−2Ψ (xν) = ETν|ν0
(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

Ψ (xν0 )
⊤A−2

ν0
Ψ (xν0 )R

−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
Eν|ν0n

−2(1 + αn).

(ii) for any ν ⊆ {1, . . . , p} \ ν0,

Ψ (xν)⊤C−2Ψ (xν) = n
(
Ψ (xν)TA−2

ν0
Ψ (xν)/n

)
+ n(1 + αn)

{
−Rνν0R

−1
ν0ν0

Ψ (xν0 )
TA−2

ν0
Ψ (xν)/n

−(Ψ (xν)TA−2
ν0
Ψ (xν0 )/n)R

−1
ν0ν0

Rν0ν + Rνν0R
−1
ν0ν0

(Ψ (xν0 )
TA−2

ν0
Ψ (xν0 )/n)R

−1
ν0ν0

Rν0ν
}
.

(iii) for any ν = ν1 ∪ ν2 with ν1 ⊆ ν0 and ν2 ⊆ {1, . . . , p} \ ν0,

Ψ (xν)⊤C−2Ψ (xν) =

(
Ψ (xν1 )

⊤C−2Ψ (xν1 ) Ψ (xν1 )
⊤C−2Ψ (xν2 )

Ψ (xν2 )
⊤C−2Ψ (xν1 ) Ψ (xν2 )

⊤C−2Ψ (xν2 )

)
where

Ψ (xν1 )
⊤C−2Ψ (xν1 ) =

1
n
ETν1|ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

(
Ψ (xν0 )

⊤A−2
ν0
Ψ (xν0 )/n

)
R−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
Eν1|ν0 (1 + αn),

Ψ (xν1 )
⊤C−2Ψ (xν2 ) =

1
n
ETν1|ν0

(
E⊤

ν0
ΣEν0

)−1
R−1
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
ζ0R−1

ν0ν0
Rν0ν2 (1 + o(1)),

Ψ (xν2 )
⊤C−2Ψ (xν2 ) = n

(
Ψ (xν2 )

⊤A−2
ν0
Ψ (xν2 )/n

)
+ n(1 + αn)

{
−Rν2ν0R

−1
ν0ν0

(
Ψ (xν0 )

⊤A−2
ν0
Ψ (xν2 )/n

)
−
(
Ψ (xν2 )

⊤A−2
ν0
Ψ (xν0 )/n

)
R−1
ν0ν0

Rν0ν2 + Rν2ν0R
−1
ν0ν0

(
Ψ (xν0 )

⊤A−2
ν0
Ψ (xν0 )/n

)
R−1
ν0ν0

Rν0ν2
}
.

roof. Using the Woodbury matrix identity, we have

Ψ (xν0 )
⊤C−2Ψ (xν0 ) = Ψ (xν0 )

⊤A−2
ν0
Ψ (xν0 )R

−1/2
ν0ν0

{R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

n−1
+ I|ν0|κn}

−1R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
n−1

− R1/2
ν0ν0

{R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

n−1
+ I|ν0|κn}

−1R−1/2
ν0ν0

Ψ (xν0 )
⊤A−2

ν0
Ψ (xν0 )

+ R1/2
ν0ν0

{R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

n−1
+ I|ν0|κn}

−1R−1/2
ν0ν0

Ψ (xν0 )
⊤A−2

ν0
Ψ (xν0 )

× {R−1/2
ν0ν0

(
E⊤

ν0
ΣEν0

)−1
R−1/2
ν0ν0

n−1
+ I|ν0|κn}

−1R1/2
ν0ν0

.

The proof of (i) is completed by using the Taylor expansion and the assumption that λmin(E
⊤

ν0
ΣEν0 )

−1
= 0(1). The

statements in (ii) and (iii) can be proved by a similar approach. □

Let κ3 = max{2(2/κ1+1/κ2)−1, (4/3)(1/κ1+1/κ2)−1/3, 1}. As before, let ∥D∥F =
√
tr(DDT )/n be the size-normalized

Frobenius norm and ∥D∥ be the spectral norm of D respectively. Let µn = tr(C)/n. We have ∥D∥F ≤ ∥D∥. The following
lemmas are partially adapted from Zhang and Oftadeh [21].
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Lemma 4. Under Conditions C1–C7, if τnJ = o(1) as n → ∞ and J → ∞,

E max
1≤i,j≤n

⏐⏐ĉij − cij
⏐⏐ = O(τnJ ), E max

1≤i,j≤n

(
ĉij − cij

)2
= O(τ 2nJ ), max

1≤i,j≤n

⏐⏐ĉij − cij
⏐⏐ = Op(τnJ ).

Proof. For notational simplicity, denote Qij =

⏐⏐⏐ 1J ∑J
k=1 yikykj − cij

⏐⏐⏐. For a large sequence of constants 0 < hn = O(1),
nvoking the inequality (15), we have

E max
1≤i,j≤n

Qij ≤ hnτnJ + E
[
max
1≤i,j≤n

QijI( max
1≤i,j≤n

Qij > hnτnJ )
]

≤ 2hnτnJ +

∫
∞

hnτnJ

Pr
(

max
1≤i,j≤n

Qij > u
)
du

≤ 2hnτnJ +
n2d1

κ(hnJτnJ )κ−1 exp
(
(hnJτnJ )κ

d1

)
+

n2d2(1/J + d3)
2hnJτnJ

exp
(

−
(hn

√
JτnJ )2

d2(1/J + d3)

)
+

n2

2hnJτnJ
exp

(
−

(hn
√
JτnJ )2(1 − o(1))

d4

)
= τnJ (2hn + o(1)) = O(τnJ ),

which yields max1≤i,j≤n Qij = Op(τnJ ). We also have E[max1≤i,j≤n Q 2
ij ] ≤ (τnJ )2(2h2

n + o(1)) = O(τ 2nJ ). Similarly, we can show

E max
1≤i,j≤n

|ȳiȳj| = O(τnJ ), E max
1≤i,j≤n

|ȳiȳj|2 = O(τ 2nJ ), max
1≤i,j≤n

|ȳiȳj| = Op(τnJ ).

ombining these with the other equalities shown before, we complete the proof. □

In the next lemma, we show the convergence rates of the threshold estimator.

emma 5. Under Conditions C1–C7, if mnτnJ = o(1) as n → ∞ and J → ∞, then for h > 0,

E∥Ĉh − C∥ = O(mnτnJ ), E∥Ĉh − C∥2
= O(mnτnJ )2, ∥Ĉh − C∥ = Op(mnτnJ ).

or h = 0, the above results continue to hold if mn is replaced by n.

roof. Without loss of generality, we assume π (j) = j, 1 ≤ j ≤ J . For h > 0, we have

E∥Ĉh − C∥ ≤ E[I] + E[II] + E[III] + hτnJmn, (15)

here

I = max
i

n∑
j=1

|ĉij − cij|I(|ĉij| > hτnJ , |cij| > hτnJ ), II = max
i

n∑
j=1

|ĉij|I(|ĉij| > hτnJ , |cij| ≤ hτnJ ),

III = max
i

n∑
j=1

|cij|I(|ĉij| ≤ hτnJ , |cij| > hτnJ ).

t follows from Lemma 4 that for 0 ≤ δ, ϵ < 1,

E[I] ≤ E max
1≤i,j≤n

|ĉij − cij|max
i

n∑
j=1

I(|cij| > 0) = O(τnJ )mn.

E[II] ≤ E max
1≤i,j≤n

|ĉij − cij|

⎛⎝max
i

n∑
j=1

I(|ĉij − cij| ≥ (1 − δ)hτnJ ) + mn

⎞⎠+ hτnJmn = O(mnτnJ ).

E[III] ≤ E max
i

n∑
j=1

(|ĉij − cij| + |ĉij|)I(|cij| > hτnJ , |ĉij| ≤ hτnJ ) ≤ O(τnJ )mn + hτnJmn = O(mnτnJ ).

nvoking the inequality (15), we have

E∥Ĉh − C∥ = O(mnτnJ ), ∥Ĉh − C∥ ≤ Op(mnτnJ ).

he remaining part of Lemma 5 can be completed by a similar argument. □

emma 6. Under Conditions C1–C7, if mnτnJ = o(1) as n → ∞ and J → ∞, then for h > 0,

1
J2

J∑
k=1

1
n

n∑
i=1

n∑
j=1

((yik − ȳi)(yjk − ȳj) − ĉij)2I(|ĉij| > hτnJ ) = Op(mn/J)

or h = 0, the equality holds if m is replaced by n.
n

16
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Proof. Without loss of generality, we assume that π (j) = j, 1 ≤ j ≤ J and that ȳi = ȳj = 0. By use of Chebyshev’s
nequality, it suffices to show

1
Jn

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)2I(|ĉij| > hτnJ )

]
= O(mn/J).

ote that for 0 < δ < 1, the above equation follows from the following claims which can be derived from Lemma 4:

1
Jn

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)2|I(|ĉij| > hτnJ ) − I(|ĉij| > hτnJ )|

]
≤

1
Jn

n∑
i=1

n∑
j=1

E(yi1yj1 − ĉij)2I(|ĉij| > hτnJ , |cij| ≤ δhτnJ ) + E(yi1yj1 − ĉij)2I(|ĉij| > hτnJ , δhτnJ < |cij| ≤ hτnJ )

+
1
Jn

n∑
i=1

n∑
j=1

E(yi1yj1 − ĉij)2I(|cij| > hτnJ , |ĉij| ≤ hτnJ )

≤
n
J

max
1≤i,j≤n

(
E(yi1yj1 − ĉij)2η0

)1/η0 max
1≤i,j≤n

P
(
|ĉij − cij| ≥ (1 − δ)hτnJ

)1−1/η0
+

2mn

J
max
1≤i,j≤n

(yi1yj1 − ĉij)2

=
1
J

max
1≤i,j≤n

(
E(yi1yj1 − ĉij)2η0

)1/η0 o(1) +
2mn

J
max
1≤i,j≤n

(yi1yj1 − ĉij)2 = O(mn/J).

1
J
1
n

n∑
i=1

n∑
j=1

E
[
(yi1yj1 − ĉij)2I(cij| > hτnJ )

]
≤

1
J

max
1≤i,j≤n

E(yi1yj1 − ĉij)2mn = O(mn/J). □

emma 7. Under Conditions C1–C7, if mnτnJ = o(1) as n → ∞ and J → ∞, then for h > 0,

µ̂n = µn + Op(τnJ ), δ2n = ∥C − µnIn∥2
F + O(mnτnJ ), d2n = δ2n + Op(mnτnJ ), b2n = Op(mn/J).

For h > 0, the above equalities continue to hold if mn is replaced by n.

Proof. Without loss of generality, we assume π (j) = j, 1 ≤ j ≤ J . It follows from Lemmas 4 and 5 that

µ̂n =
1
n

n∑
i

ĉii =
1
n

n∑
i

cii + Op(τnJ ) = µn + Op(τnJ ). b̄2n = O(mn/J)

It follows from Ledoit and Wolf (2004) that ∥C∥
2
F = O(1), since maxi E[y4i1] < ∞. We have

|E
(
∥Ĉh − µnIn∥2

F − ∥C − µnIn∥2
F

)
| ≤ E∥Ĉh − C∥

2
F + 2∥C − µnIn∥FE∥Ĉh − C∥F = O(mnτnJ ).

Note that

|dn − ∥Ĉh − µnIn∥F | ≤ ∥(µ̂n − µn)In∥F = |µ̂n − µn| = Op(τnJ ),

which implies that

d2n =

(
∥Ĉh − µnIn∥F + Op(τnJ )

)2
= (∥C − µnIn∥F + Op(mnτnJ ) + Op(τnJ ))2 = ∥C − µnIn∥2

F + Op(mnτnJ ).

herefore, d2n = δ2n + Op(mnτnJ ). The proof is completed. □

emma 8. Under Conditions C1–C7, if mnτnJ = o(1) and ∥C − µnIn∥F is bounded below from zero as n → ∞ and J → ∞,
hen

∥Ĉhs − C∥ = Op(mnτjn), ∥Ĉ
−1
hs − C−1

∥ = Op(mnτnJ ), ∥Ĉ
−2
hs − C−2

∥ = Op(mnτnJ ).

roof. Note that

∥Ĉhs − C∥ = ∥
b2n
d2n

(In − C) +
d2n − b2n

d2n
(Ĉh − C)∥ ≤

b2n
d2n

∥In − C∥ +
d2n − b2n

d2n
∥Ĉh − C∥

= O(mn/J) + (1 − O(mn/J))Op(mnτnJ ) = Op(mnτnJ ).

the remaining proofs are similar to the proof of Lemma 3 in Zhang and Liu (2015). The details are omitted. □

In the remaining of the Appendix, we describe the MIS and the linear PVA as follows. In the MIS, we treat the
multivariate additive random-effects model as multiple univariate additive models. We conducts the iterative univariate
17
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nonparametric independence screening of Fan et al. [3] for active covariates in each of these univariate models. This gives
rise to J potentially overlapped estimated subsets of active covariates. We then takes the union of these subsets as an
estimated set of active covariates. The MIS can be implemented in the following steps.

• Step 1: for each k ∈ [1 : p], compute f̂kj = argmin{∥yj − fkj(xk)∥2
2/n : fkj ∈ S}, where S is the space of polynomial

splines of degree s ≥ 1 and s is pre-specified. Randomly permute the rows of X, yielding X̃ = (x̃1, . . . , x̃p). Let
f̂ ∗

kj = argmin{∥yj − fkj(x̃k)∥2
2/n : fkj ∈ S}. Then, we select the active set Aj1 = {k : ∥f̂kj∥2

≥ mink ∥f̂ ∗

kj∥
2
}.

• Step 2: Apply the penalized procedure, penGAM of Meier, Geer, and Bühlmann [12] to the jth univariate additive
model with the covariate set, say Aj1, resulting in an estimated set of active covariates, say Mj1.

• Step 3: For each i ∈ Mc
j1 = {1, . . . , p}\Mj1, minimize ∥yj −

∑
k∈Mj1

fkj(xk) − fij(xi)∥2
2/n with respect to fkj ∈ S for all

i ∈ Mj1 and fij ∈ S. Following the same marginally screening procedure in Steps 1 and 2, except that only the rows
of (xk : k ∈ Mc

j1) are randomly permuted, to select an additional subset of active covariates, Aj2. Then, the penGAM
is applied to the jth univariate additive model with the covariates restricted to Mj1 ∪ Aj2, giving rise to an updated
estimate of active covariates, Mj2.

• Step 4: Repeat Step 3 until Mjl = Mj,l−1 for some l. Let Mj = Mjl.
• Step 5: Take the union of Mj, j = 1, . . . , J as the final estimate of active covariates.

In our simulation studies, we adjust the screening level in the MIS so that its specificity is close to a required level.
For example, to make the specificity of MIS no less than α, we consider the following. We will take the union of
Mj, j = 1, . . . , J as the final estimate of active covariates when the cardinality of union of Mj, j = 1, . . . , J ≤ ⌊(1 − α)p⌋.
Otherwise, we need to replace Step 5 by Step 5’ below.

Step 5’: Sort all the indices in the Mj, j = 1, . . . , J in descending order by number of occurrences and take the
⌊(1 − α)p⌋th index as the final estimate of active covariates.

In the linear PVA, consider the following multivariate regression model

Y = XB + E,

where Y, X, B and E are the n× J response data matrix, the n× p design matrix, the p× J random-effects matrix and the
n × J error matrix. The linear PVA is a SNR-based screening procedure for the above model. See Zhang and Oftadeh [21].
The details are omitted.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105069. More
details on numerical results can be found in the Online Supplementary Material. Part A: The boxplots of the simulated
sensitivities and specificities show robustness of choosing tuning parameters in the fPVA. The boxplots of the CPU times
show the advantage of the fPVA over the MIS. Part B: Tables 1 and 2 present the p-values of the Wilcoxon signed test for
the significant cancer-gene pairs.
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