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Abstract

Computer calculations do not exactly follow classical theoretical models: it is 

enough to think of rounding errors or of pseudo-random number generators, typi­

cally chaotic maps, simulating iid noise. The thesis aims to look at their impacts 

on statistical inference.

We prove that the attractors of dynamical systems are stable under some 

kind of infinitesimal random perturbation which is a good approximation to the 

rounding errors. Concerning the autoregressive models, we have obtained the 

asymptotic bias and the limiting distribution for the Yule-Walker estimator of 

the autoregressive parameter under considerably weaker assumption than that of 

independence in the noise sequence. In the same way, we have proved consistency 

and asymptotic normality of the linear regression estimator for quite general chaos 

driven linear stochastic regression models.

In particular, these suggest robustness of the corresponding classical asymp­

totic results and throw some light on the use of simulations in verifying these 

results.
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Chapter 1

Introduction

In numerous fields, observations of a phenomenon are made sequentially over time; 

these sequences of observations are called time series. In fact, the use of time series 

goes far into the past and can be said to have its origin at the invention of the 

writing: in each civilisation, almost simultaneously with writing appear numbers, 

dating and calendars. And these days, there is a multitude of time series to be 

found in the fields of economics, engineering, science or sociology, to give a few 

examples.

From these observations the aim is to construct a model which captures both 

important features of the data and the available underlying theory. The modelling, 

’as much an art as a science’ (Tong (1990)), is not going to be part as such of 

the thesis; important references are Box and Jenkins (1970), with the formulation 

of an iterative procedure consisting of the stages of identification, estimation and 

diagnostic checking, and Akaike (1985). We shall concentrate on discrete time 

series models.

Now, we can distinguish between two types of models. First, we have the so- 

called deterministic models, based on non-linear dynamics: the system is defined 

by a known (non-linear) map /  : M  -> M  : x t+i =  f{ x t). In this case, there is 

a perfect knowledge of the dynamic laws governing the system and randomness 

occurs just in the choice of the initial conditions. Note that, as t tends to oo, the 

system may not converge or if it does, it converges to a set called attractor, notion

1



CHAPTER 1. INTRODUCTION 2

which will be dealt with in the next chapter. Now, without entering into the details 

at this stage, some of these deterministic models exhibit an irregular and seemingly 

random behaviour. This so-called chaotic dynamics has been known since the 

beginning of this century (Hadamard (1898) and Poincare (1905)) and is closely 

related to the notion of ’sensitive dependence on the initial condition’. Roughly 

speaking, this means that, starting from any typical value in a neighbourhood of 

any initial condition x0, the orbit diverges from that starting from x0. So, even 

the tiniest of errors in the initial condition can lead to huge errors in (long-term) 

prediction (see, for example, Berliner (1991)). Within the last decade, there has 

been a fast growing interest in this chaotic dynamics (see, for example, Ott (1993) 

for a broad coverage) and some important applications have been established, in 

particular in engineering and in physics.

Besides the deterministic models, there are the so-called stochastic models, 

well known to the statisticians, which incorporate randomness at each time-step. 

We can mention the autoregressive (AR) models (Yule (1927)) of the form:

X t =  J2j=i ajX t-j  +  £t, where k > 1 is called the order of the AR model and { e j 

will be in this thesis a sequence of independent and identically distributed random 

variables with mean 0 and positive variance a2 < oo (that is et ~  iid(0, a2)). This 

class of models can be enlarged to the class of autoregressive/moving average 

(ARMA) models (for example, Brockwell and Davis (1989) gives a systematic 

study of linear time series models in both time domain and frequency domain); 

when linearity fails, non-linear models are used (see, for example, Tong (1990)). 

Of course, stochastic models also apply in the context of regression.

Now, an important fact to note is that links and interactions exist between 

deterministic and stochastic models (Tong (1990) and especially (1995)) and that 

each subject can benefit from the other.

The main aim of this thesis is to show the role of noise (and more particularly 

of machine-generated noise) in linking the two kinds of models and to estimate 

the effect of this interaction on the theory.
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On the one hand, observations practically never evolve according to a deter­

ministic (noise-free) system; noise is unavoidable in the real world (Tong (1990 

and 1995), Takens (1994a)). We can mention, for example, the impossibility of 

absolute accuracy in the measurements leading to the existence of measurement 

errors. A stochastic environment is also required if the true model is unknown 

to us and our deteministic model is just an approximation if there exist unpre­

dictable environmental changes or unknown external interactions. Finally, it is 

worthwhile for us to notice that computers commit round-off errors and so any 

orbit obtained from computer calculations is subject to noise.

So, the deterministic model x t+i =  f ( x t) should be replaced by the stochastic 

model X t+i =  g(Xt,et) in the practical applications. Now, what does the noise- 

free attractor become under the effect of noise? In particular, can we rely on 

the computers and think that the attractors on the computer screen are a good 

approximation to the noise-free (true) attractors? These questions are of course 

of special interest in the case of chaotic attractors. Ruelle (1981) and Kifer (1988) 

have analysed the related problem of random perturbations of dynamical systems 

from a mathematical point of view. We study the effect of different kinds of noise 

on the noise-free attractors from a statistical point of view which is conceptually 

simpler and allows a more general approach.

On the other hand, deterministic attractors bring a profound contribution to 

stochastic models in the following way: the pseudo-random numbers used by the 

computers to simulate sequences {fq} of iid random variables are generated by 

purely deterministic dynamical systems (see, for example, Knuth (1981)). So, in 

simulations, the sequence {ef} is replaced by {Et} which is a sequence of identi­

cally distributed random variables generated by a deterministic map /  such that 

E t+i — f{ E t) and each Et has the invariant distribution associated with /  as its 

marginal distribution. Typically, the map /  is chaotic and so the sequence {Et} 

is concentrated on chaotic attractors. A chaotic sequence can be treated as a time 

series in its own right (see, for example, Hall and Wolff (1995b)) and a chapter of
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this thesis focuses on properties of chaotic sequences.

Now, Tong (1995) has commented that simulation studies in the statistical 

literature typically assume albeit implicitly that central limit properties existing 

in the case of a model driven by iid noise continue to hold even when we replace 

{et} by pseudo-random numbers (that is a chaotic sequence {£’t})- It is therefore 

practically relevant to enquire why the simulated results seem to support the con­

clusion of central limit properties even though the assumption of independence no 

longer holds in the chaos driven model. We note that dynamicists have recently 

also shown considerable interests in the chaos driven models for their own sake 

(see, for example, Takens (1994b)). In this thesis, we focus on the statistical infer­

ence aspect of chaos driven models. In the statistical literature, Lawrance (1992) 

and Lawrance and Spencer (1997) have studied the related but different prob­

lem of connecting chaotic maps in reversed time with multiplicative congruential 

random number generators.

Consider an AR(k) model:

k
Xt = 22 “jX t- j  + £t

3 =  1

where ak ^  0 and et ~  iid(0,a2). Suppose that it is causal. It is then well- 

known that central limit theorems are available for the Yule-Walker estimator 

a — (da, ...,ak)' of a = (cci, ...,ak)'. Let Tk denote the covariance matrix [7(i — 

denote the sample autocorrelation matrix [p(i — j)]fJ=1 and pk = 

(p(l),...,p(k))'. Then a  =  Rk lPk and n1/2(d -  a) -V  Af(0, (J2̂ 1), where -W 

denotes the convergence in distribution, or equivalently a  = J\f{a,o2Tk l /n ) for 

large sample size n.

Now, the thesis will deal with causal chaos driven AR(k) models of the form:

X t = 22 + E t
3=1

and we shall consider the same Yule-Walker estimators because we want to know if
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the asymptotic properties of an AR(k) model with iid noise sequence are preserved 

when the iid noise sequence is replaced by a purely deterministic chaotic system. 

Note that the results and simulations relative to the AR(1) case closely follow 

Stockis and Tong (1996, submitted to the Journal of the Royal Statistical Society, 

Series B).

Consider the multiple linear stochastic regression model

Yj = PiXji + ... + PpXjp + Ej, j  — 1, 2,..., n,

where X ji , ..., X ]p are random variables and the Ejs form a martingale difference 

sequence. Let X  = (X lt)i<i<n, \<i<v and Y  =  (F i,..., Fn)'; X 'X  is assumed to be 

non-singular. Then Lai and Wei (1982) show that the linear regression estimate 

P =  (p1,...,Pp)' =  {X 'X )~ lX 'Y  is consistent and asymptotically normal under 

some weak additional assumptions. Now, we shall deal with chaos driven linear 

stochastic regression models; are the properties of consistency and asymptotical 

normality still present for the linear regression estimate if the noise sequence is a 

chaotic (purely deterministic) sequence?

The outline of the thesis is as follows. In chapter 2, after introducing precisely 

the notion of attractor in the same way as in Ruelle (1981), we have a close look at 

the effects of different kinds of dynamic noise on the dynamical systems and more 

particularly on their attractors. Chapter 3 introduces the notion of chaotic se­

quence, a notion which will be extensively used throughout the thesis. The degree 

of stochasticity of chaotic sequences is examined and their practical importance 

is highlighted. Finally, some useful properties of chaotic sequences are derived. 

Chapter 4 deals with the asymptotic properties of the classical Yule-Walker esti­

mator of the parameters for autoregressive models driven by chaotic sequences. 

The last section of this chapter says a few words on AR models driven by noisy 

chaos. In chapter 5, we focus on chaos driven linear stochastic regression models. 

After making four assumptions on the chaotic sequence and on the explanatory

5
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variables, we analyse some asymptotic properties of the linear regression estima­

tor: its consistency, its asymptotic variance and its asymptotic normality. The 

last section of chapter 5 indicates a possible direction for future research. Fi­

nally, chapter 6 summarizes our results and discusses future directions. Note that 

throughout the thesis numerous simulations illustrate the theoretical results; all 

the simulations use as basic elements the well-known modulo map and logistic 

map which are introduced in section 2.1.



Chapter 2

Attractors under dynamic noise

The structure of the chapter is as follows. Section 2.1 introduces a precise defi­

nition of attractors due to Ruelle (1981) and illustrates it by means of the well- 

known logistic map. Section 2.2 first, describes some kinds of noise; we then focus 

on systems submitted to small independent absolutely continuous dynamic noise 

and more particularly on their attractors. We prove that, given the noise level, 

it is possible to construct the attractors of these perturbed systems; moreover, it 

is shown that the attractors of noise-free systems are stable under such infinitesi­

mal random perturbations. Section 2.3 makes some important comments on the 

results of section 2.2 and illustrates them. Finally, section 2.4 deals with the case 

of systems perturbed by state-dependent dynamic noise. While it is possible to 

adapt some results of section 2.2 to this framework, the stability of the noise-free 

attractors under this kind of noise is not guaranteed.

2.1 A ttractors

This chapter deals with non-linear dynamics: generally, a non-linear dynamical 

system is defined either by an evolution equation of the form dxt/d t =  F (xt) 

(continuous-time case) or by a mapping x t+i =  / ( x t), where /  : M  —> M  is a non­

linear deterministic map. There exist many well-known examples of continuous- 

time non-linear dynamics: let us just mention the Navier-Stokes equation (time
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evolution of a hydrodynamic system) or the Rossler system (stirred chemical re­

action); see Ruelle (1989) or Diks (1996) for more details.

Now, this thesis will restrict itself to the discrete-time case; the main reason 

for this is that we shall be interested in the statistical analysis of digitised data. 

Here are two examples of discrete dynamical systems; both of them will be used 

extensively throughout the thesis.

• The so-called modulo map /  : [0,1] —> [0,1] : x i+i = 2xt modulo 1, 

that is

/  : [0, 1] —>■ [0, 1] : x —> f(x)
2x, if re € [0, 1/ 2]

2x — 1, if x 6 (1/ 2, 1]

This simple map is illustrated in Figure 2.1 (a). A way of viewing this map is 

to write the initial condition xq in a binary expansion: xo =  0.a0aia2a3... = 

52jZo 2~J~1aJ, where each a3 is either 0 or 1. Then, X\ — f{ x 0) =  0.aia2a3..., 

x2 = f{x \) — 0.a2a3a4... and so on. Thus, the orbits starting from two initial 

conditions equal up to the 50th digit (that is a change of x0 by 2~50) will 

diverge more and more and eventually, at time 51, there will be an important 

change between them. The modulo map exhibits sensitive dependence on 

the initial condition and so is chaotic (see chapter 1).

• the famous logistic map (May (1976), inspirated from animal population 

dynamics) /  : [0,1] [0,1] : x t+i =  9xt( 1 — x t), 0 < 0 < 4.

Figure 2.1 (b) shows this map for different values of the parameter 6. We 

can notice that the map becomes more concave as 9 increases. Note that 

for 0 < 9 < 4, if x t belongs to [0,1], then so does x t+u now, if the domain 

of definition of the logistic map is extended to the whole real line, then an 

initial condition outside [0, 1] implies that x t will move off to —oo.

Now, this chapter is centered on the behaviour of discrete-time dynamical
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(a) (b)

Figure 2.1: (a) The modulo map; (b) The logistic map with 6 =  1.00 (— • -■), 
8 =  2.00 (• • •), 6 = 3.00 (------- ), 9 = 4.00 (solid line).

systems as t —> oo. For linear dynamical systems, there are generically speaking 

two possibilities:

• the system does not converge, that is \xt\ —> oo as t —> oo,

• the system converges to a limit point.

For non-linear dynamical systems, in addition of these two cases, there exist ba­

sically three more:

• the system converges to a limit cycle of fixed finite period,

• the system is of the form x t = /(uqf, u2t , ..., luH), where f is a periodic 

function of period 2ti in each of its arguments and uji , to2, ■■■, are ratio­

nally independent frequencies; the motion then constitutes a quasi-periodic 

attractor,

• the system is chaotic (see chapter 1) and it converges to a non-empty closed 

set. This set is then called chaos or chaotic attractor. Generically, if a system 

converges to a closed set which is not a limit point, a limit cycle or a quasi- 

periodic attractor, then the system is chaotic and therefore the attracting set 

is called chaos. Now, there is a formal way to quantify sensitive dependence
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(a) (b)

Figure 2.2: Time series, starting from randomly selected initial values between 0 
and 1, generated by (a) the logistic map with 9 = 2.00, (b) the logistic map with 
9 = 3.50, (c) x t =  cos(V2 t) +  sm (\/3 t), (d) the logistic map with 9 =  4.00.

on initial conditions and so to detect chaotic dynamics, by means of the 

so-called Lyapunov exponents. This will be dealt with in the next chapter.

Figure 2.2 illustrates the four possible types of convergence for a time series, 

namely to a limit point (0.5 in this case), a limit cycle (of period 4 here), a quasi- 

periodic attractor and a chaos. For each of the four maps, the initial condition 

has been selected at random between 0 and 1.

As a verification, the logistic map with parameter 9 = 4.00 exhibits well sen­

sitive dependence on the initial condition: Table 1.1 illustrates it for two typical 

very close initial conditions.

Now, as already hinted by Figure 2.2, the logistic map /  : [0,1] —» [0,1] : x —>



CHAPTER 2. ATTRACTORS UNDER DYNAMIC NOISE 11

t=0 0.1 0.1000001
1 0.36 0.36000032
2 0.9216 0.92160036

10 0.14783656 0.14771543
15 0.00393603 0.00328172
20 0.82001387 0.93222609
23 0.12638436 0.73905231

Table 1.1: Time series generated by the logistic map with 9 — 4.00 for initial 
values 0.1 and 0.1000001.

0x{l — x) goes through a range of different asymptotic behaviors as 9 varies from 

0 to 4. When 9 < 3, it has an attracting fixed point, which becomes unstable 

at 9 = 3; there is then an attracting limit cycle of period 2” with n tending 

to oo as 9 tends to 3.57... =  r^ . At 0 =  rx , the so-called Feigenbaum Cantor 

set is produced. For < 9 < 4, the attractor is chaotic, except in narrow 

windows throughout the chaotic range, where the attracting orbit is periodic (see, 

for example, Ruelle (1989) and especially Ott (1993) for more detais).

Figure 2.3 shows the attractors for the range 6 <E [3.5,4], with increase jumps 

of 0.01 for 9, and then for the subrange [3.82, 3.83] with smaller increase jumps 

for 9. These figure suggest that the attractors are ’’often” chaotic in the range 

[3.58,4.00]; in the same time, we should keep in mind the presence of small win­

dows of periodic orbits throughout the range. Note the increase of the support 

of the chaotic attractor as 9 increases: it can easily be seen that the maximum of 

the support is given by /(0.5) and the minimum of the support by / 2(0.5).

Now, depending on the initial condition, the system may converge to different 

asymptotic sets. For example, for a chaotic logistic map with parameter 9, besides 

the chaotic motion obtained with probability 1 for uniformly distributed initial 

conditions included in [0, 1], there are two fixed points, 0 and (9 -  l ) / 0, and an 

infinite number of (unstable) periodic orbits (see, for example, Ott (1993) stating 

Sarkovskii’s theorem). Therefore, the supports of the chaotic motions are in fact 

discontinuous.
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(a) (*»

Figure 2.3: Attractors for the logistic map with, (a) 9 =  3.5, 3 . 5 1 , 4 . 0 0 ,  (b) 
9 =  3.82,3.8205, ...,3.83.
For each 9, the time series starts at random between 0 and 1. the map is iterated 
1000 times without plotting anything (in view of discarding transient states); the 
next 1000 iterations are plotted on the graph.

So, it is quite clear that we need a precise definition of what we shall actually 

call an attractor. In fact, Ruelle (1981) has introduced two distinct notions, that 

is attracting set and attractor, which both include invariance and attractivity (but 

in different meanings). We shall say a few words on attracting sets but we shall 

mainly focus on attractors..

D efinition 2.1 Let M  =  (M ,T ) be a Hausdorff topological space. Let f  : M  -» 

M be a map defining a dynamical system; the f l : M  —> M  are assumed to be 

continuous.

Then, a set B  C M  is said to be an a ttrac tin g  set if the following conditions 

hold.

1. B  is closed.

2. B has a neighbourhood U such that, for every neighbourhood V of B, we 

have f lU C V when t is large enough.

3. f lB  =  B for all t.

Remark: Given the two first conditions, there are equivalent conditions to the last 

one. See Ruelle (1981) for the details.
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Now, the notion of attracting set regroups the ideas of closedness, invariance, 

attractivity and open basin of attraction. (The basin of attraction of a set denotes 

the totality of initial states which iterate to this set.) The last idea is implicit 

in the definition but the basin of attraction of each attracting set has to be open 

(see my M.Sc. dissertation for a formal proof). This requirement of an open 

basin of attraction is not met by some sets, for example by the above-mentioned 

Feigenbaum Cantor set, which are usually seen as ’’attractors” (see, e.g., Ruelle 

(1981)). So, we need to concentrate on a mathematically weaker notion, namely 

the notion of attractor.

For the rest of the section, we assume that we work on a Hausdorff topological 

metric space M; the induced distance is denoted Moreover, the maps

/* : M  —> M  are assumed to be continuous, for all t G Z+.

D efinition 2.2 A curve, i.e. a family (xt)t=t0,t0+i,...,ti-i,t1 of points of M , is called 

an e-pseudoorbit if d is t( fx t, x t+\) < £ for t = t0, t0 + 1,..., tx — 1.

Remarks: (i) Ruelle (1981) uses a more general definition including time contin­

uous case, (ii) Note that the fact dist(x, y) < £ does not imply that there is an 

e-pseudoorbit going from x to y.

D efinition 2.3 We write a y  b (”a goes to b”) if, for arbitrarily small e > 0, 

there is an e-pseudoorbit going from a to b.

The relation >- is obviously a preorder, that is reflexive and transitive. (It is 

not an order since (a y  b and b y  a) jA (a — 6)).) Since >~ is a preorder, the 

relation ~  (a ~  b if a y  b and b y  a) is an equivalence relation (i.e. reflexive, 

transitive, symmetric) and we can introduce equivalence classes [a]. Moreover, the 

preorder y  induces an order on the equivalence classes: [a] > [b] if a y  b, [a] =  [b] 

if a ~  b.

Now, here is the definition of an attractor.
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D efinition 2.4 An a ttra c to r  is a minimal equivalence class, that is a class [6] 

such that jBa : [a] < [b] (or, equivalently, /Qa : h >- a and a )/- b).

We can have a look at the basic properties of an attractor.

An attractor is:

• closed. This is an easy corollary of the fact that the relation >- is closed (i.e. 

if xn and yn tend to a and b respectively and if xn >- yn, Vn, then a>- b).

• invariant. There is no orbit starting from an attractor which goes outside 

this attractor.

• attracting. An attractor is a limit set of (slightly) perturbed trajectories.

• irreducible. Each point in the attractor can be reached from any other point 

in the attractor by means of a slightly perturbed trajectory.

• stable under infinitesimal random perturbations. See sections 2.2 and 2.3.

Now, let us illustrate this concept by means of the logistic map. The space 

[0,1] is provided with the Euclidean topology; in particular, dist(a, b) =  \b — a\.

We start with /  : [0,1] -4 [0,1] : x  ->• 2x{l -  x) (see Figures 2.1 (b) and 2.2). 

There are two fixed points, {0} and {1/2}, with respective basins of iteration 

{0} U {1} and ]0,1[.

The class [1/2] = {1/2} is an attractor: fib ^  1/2 : 1/2 >- b. Now, all the points 

a e ]0 ,1[ are such that a y  1/ 2; therefore, {1/ 2} is the only attractor on ]0,1[.

Is [0] an attractor? For arbitrarily small e > 0, there exists bE G]0,1[ such that 

| / ( 0) — b£\ = be -  0 < e. For example, we can take bE =  e. So, for arbitrarily small 

e > 0, there exists an e-pseudoorbit going from 0 to 1/ 2; [0] is therefore not an 

attractor.

The only attractor (on [0,1]) is {1/2}.
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In the same way, the map /  : [0,1] —>■ [0,1] : x -» 3.5x(l — x) has one attractor, 

namely [0.500884] =  {0.500884,0.874997,0.382820,0.826941}.

Now, what is the attractor for the chaotic map /  : [0,1] —» [0,1] : x —» 

4x(l — x)?

Let C denote the chaotic motion; it is dense in [0,1]. Let c 6 C, what is [c]? 

[c] obviously contains all the points of the chaotic motion. Moreover, [c] contains 

all the unstable fixed points or unstable periodic orbits arbitrarily close to the 

chaotic motion. For: consider a limit cycle (or a limit point) P and p G P. Let e 

be any number > 0; then, at some stage, the chaotic motion will come closer to 

this limit cycle than e since the chaotic motion is dense in [0,1]. So, c y  p and 

p y  c.

Now, the chaotic motion is dense in [0,1]. So, [0,1] is the chaotic attractor of 

the logistic map with 9 = 4.00 on [0,1].

So, by definition of an attractor, a chaotic attractor does not necessarily con­

tain only the chaotic motion but also, if they exist, the limit points and the limit 

cycles arbitrarily close to the chaotic motion. As a corollary, in the particular 

case of the logistic map, the supports of the chaotic attractors (see Figure 2.3) 

are continuous (unlike the supports of the chaotic motions).

Now, after clarifying the notion of attractor, we can analyse in which way they 

are stable under small random perturbations.

2.2 T heorem s on th e  stab ility  o f a ttractors un­

der dynam ic noise

In the last section, we have defined the notion of attractor of a (noise-free) dynam­

ical system. Now, because of the omnipresence of noise in the real world, and in 

particular in the computer calculations (by way of round-off errors, truncations, 

...), we would like for the attractors to be stable under small random perturbations:
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the motion of the noisy system should be concentrated on the noise-free attractor. 

Note that a randomly perturbed chaotic system is such that no long-term predic­

tion is possible because of its dynamical unstability (sensitive dependence on the 

initial conditions); here, we would like for the asymptotic (statistical) properties 

of such a system to be preserved under small noise fluctuations.

In other terms, is an attractor a meaningful notion in practice? By extension, 

how is an attractor affected by noise of given finite amplitude? Can we rely 

on (noisy) attractors on the computer screen, are they close to the noise-free 

attractors?

Now, we essentially can distinguish between two types of noise, namely the 

additive noise and the dynamic noise.

The additive noise consists of the measurement noise: the system remains 

x t+i — f ( x t), but now instead of observing xt+1 as in the noise-free case, we 

observe Yt+1, where Yt+\ = x t+i + £t+1 and {e4} is assumed to be a sequence of 

iid random variables. Note that additive noise does not affect the state of the 

system, nor the evolution of the system. We are not going to deal with additive 

noise here; let us just mention that there exist methods for cleaning a time series 

from additive noise (see Grassberger et al. (1993) for a review).

Now, the most important errors from a practical point of view come from the 

dynamic noise, which affects the state of the system and therefore its evolution. 

A system affected by dynamic noise is of the form X t+i = F (X t,£t+i), where the 

et are iid random variables. Examples of dynamic noise are given by external 

interactions, round-off errors, approximations to the true system, ... .

Now, there exist many ways of introducing small random perturbations into a 

dynamical system.

Ruelle (1981) uses the mathematical notion of diffusions with compact support. 

Let M  be a metric space and let f  : M  —> M be a continuous map, generating 

a discrete-time dynamic system (/') . Let e > 6 > 0. Then, an affine map F  

from the space of probability measures with compact support in M  to itself is an
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(e, 6)-diffusion associated with f  if the following conditions are satisfied.

1. supp. F5X C f B x(e).

2. supp. FSX D f B x(S)

3. If cj) : M  —> R  is continuous, then x —> (F5x)(j) is continuous 

and (Ffi)<j) — f  fj,(dx)[(F6x)</>]. In particular,

supp. Ffi =  closure Uxesupp.n supp. F5X.

4. If <j> : M  -> R  is continuous, the set {(FSy)(f> : y € Bx(5)} is a closed interval.

Note that supp. denotes the support of a measure or of a set, 5X denotes the unit 

mass at x, Bx(e) the open ball of radius e centered at x and Bx(e) its closure.

Ruelle (1981) then proves the following theorem: ” Let ( / 4) be a discrete-time 

dynamical system, F  an (e, 5)-diffusion associated with / ,  and u a probability 

measure with compact support in the basin of attraction of an attracting set A. 

We assume that A has a neighborhood on which /  is uniformly continuous. We 

denote by A the union of all attractors contained in A, by A the closure of A , and 

we write A* = Oz&a IA-
Then, for every neighborhood 0  of A*, if e is small enough,

lim F tu(M  \  0) = 0.”

So, for a discrete time dynamical system submitted to sufficiently small such 

diffusions, the motion is asymptotically concentrated on attractors, if some weak 

conditions hold.

Now, we simplify the matter: the dynamical system (/*) is submitted to dy­

namical noise in the following way: X t+i =  f ( X t)+ £ t+1, where { e j  is a sequence 

of iid bounded absolutely continuous random variables. So, we take a simple 

statistical point of view. In presence of noise of given finite amplitude, we shall 

be able to construct theoretically the noisy attractor and to compare it with the
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noise-free attractor. This will allow us to see that the attractors are stable under 

infinitesimal random perturbations provided very general conditions are satisfied.

Let us summarise our framework. As in the previous section, M  is a Hausdorff 

topological metric space; for simplicity of notation, the induced distance dist(a, b) 

will be denoted |6 — a\. The maps /* : M  —> M  are assumed to be continuous. 

Moreover, M  is assumed to be the largest possible domain of definition of / .  Note 

that, if dynamic noise is introduced, it is possible in some cases for the dynamical 

system to leave M; we rule out this possibility (for instance, by allowing for 

boundary conditions).

We work on a probability space (M, T , P). Now, here is our first assumption.

A ssum ption  1 A dynamical system submitted to small random perturbations is 

such that X t+i =  f{ X t) -f et+i, Vi, where X t is the random variable describ­

ing the state of the system at time t and {et} is a sequence of iid, zero mean, 

bounded, absolutely continuous random variables with symmetric support such that 

P (\X t+i — / ( X t\ < e) =  1 and e is the lower bound such that the above probability 

is equal to 1.

In particular, if P (X t = x) =  1 at time t, then Assumption 1 means that the 

probability to lie in Bf;x)(e) (or in Bf;x)(e)) at time t + 1 is equal to 1. Note that 

for M = R, the support of the random variables et is simply [—e,e}.

On the other hand, as noticed in the previous section, it is possible for a 

dynamical system not to converge (that is, there is no attractor). Now, for the 

rest of the section, we would like that each system has at least one attractor. More 

particularly, we would like that for all a € M, there exists an attractor [b\ such 

that a >- b. To ensure this, we make the following assumption.

A ssum ption 2 M is compactified. That is, if M  is compact, we do not change 

anything; otherwise, we compactify M, i.e. we identify M (as a topological space) 

to a dense subspace of a compact space.



CHAPTER 2. ATTRACTORS UNDER DYNAMIC NOISE 19

We refer to any textbook in differential geometry for more details. In particu­

lar, if M  =  R, we can compactify R in the following way: we construct the space 

R = R  U {—00, 00} with, as base of topology, the Euclidean open sets, i.e. the 

sets ] — 00, N[, ]N, 00[ (N  € R).

Now, given the noise level e, what is the attractor of the noisy system? Let us 

introduce the relation (the beginning of the reasoning follows my M.Sc. disserta­

tion (1994)).

D efinition 2.5 a y £ b means: there is an e-pseudoorbit (see Definition 2.2) go­

ing from a to b.

The relation y £ is a preorder since the relation is reflexive (a y £ a) and 

transitive (if there is an e-pseudoorbit (a, a1)..., an, b) going from a to b and if 

there is an e-pseudoorbit (b, b i,..., bm, c) going from b to c, then a y £ c since 

(a ,ai,an,b,bi,...,bm,c) is an e-pseudoorbit).

Now, the same way of reasoning applies for the relation y £ as for the relation 

y  (see last section). In particular, an equivalence class for the relation will be 

denoted [a]£. Note that, by definition, the set [a]£ contains [a] since a ~  b =>• a ~ £ 

b.

D efinition 2.6 A minimal equivalence class [f>]£ for the relation y £ is called am 

a ttra c to r  for the  relation  >~£.

We can notice that each equivalence class for the relation y £ is closed; there­

fore, each attractor for the relation y e (also called noisy attractor) is closed.

Now, for all t, let Dt be the following set of events, Dt — {uj : \ f(X t-i(u )) — 

Xt_1(o;)| < e}, and let D =  f |“ i A -

Lem m a 2.1 Under Assumption 1, P{D ) = 1.

Proof, for each t , P{Dt) = 1 by Assumption 1, therefore P ( M \ D t) = P{D't) =  0.
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Now, D = fl< A  implies D' =  UtD[, and, by Boole’s inequality,

P (D ')= P ( \jD [ )< '£ P (D 't).
t t

So, P(D') = 0 and P(D) =  1. □

At this stage, we recall the notions of transience and essentiality (in the context 

of a Markov process); note that the sequence {X t} as defined in Assumption 1 is 

obviously a Markov process.

D efinition 2.7 A set is S  transien t if the probability that there exists an infinity 

o f i ’s such that X l belongs to S  is equal to 0.

Note that a set which is not transient is called recurrent.

D efinition 2.8 A set S  is essential if for all sets T  such that 3n : P (X t+n C 

T \X t c S ) > 0 , 3 m :  P{Xt+m C S \X t C T) > 0.

It is well-known that any recurrent set is essential. Lemma 2.2 follows directly.

Lem m a 2.2 Any inessential set is transient.

The next lemma plays an important role in the proof of the theorems.

Lem m a 2.3 Let Assumptions 1 and 2 apply. Let f  : M  —> M be continuous. 

Then, if a does not belong to an attractor for the relation y £, then there exists 

6(a) such that the subspace Ba(S) is transient with probability 1.

Proof. By Lemma 2.1, we can concentrate on sample points coming from event 

D.

Now, [a]e is not an attractor; therefore, by Definition 2.6 and Assumption 

2, there exists b belonging to an attractor for the relation y £ such that a >~£ b 

and b )f-£ a. In particular, there exists an e-pseudoorbit going from a to b, say 

(a,.Ti, ...,xm-i,b).
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On the one hand, since a g [6]e, closed set, there exists 8* such that B a(8*) D

[b], =  0.
On the other hand, since /  is continuous on M, there exists <5i such that 

|y -  a\ < =► |f{y) -  /(a ) | < e -  |si -  f{a)\.

This implies

\ f ( y ) ~x i \  < \ f {y )~ f{a)\ + \ f ( a ) - x i \

<  e  — \xi — f  (a) \ +  |/(a) — X\\

< £.

In the same way, there exists 82 such that

| y -  z i| < 82 => | f{y) -  f {x  i)| < £ - \ x2 -  f (xi)\

and so
\ f ( y ) - x 2\

and finally there exists ¿m+1 such that

\y - b \ <  8m+1 | f{y) ~ f{b) | < e.

Now, let 8 = min(<5*,5i). We get a path

Ba(8) -> BX1(82) -> ... -» B;cm_i(5m) -> J5b(dm+i) -4 Bf (b)(e)

such that, by Assumption 1, the probability to go from a ball to the next one in 

one step is strictly greater than 0.

So,

P{Nm+ 1 C 13/(6) 00l*o c  Ba(8)) > 0.
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Now, Bf{b){e) C [b}£; so, since [b]£ is an attractor, we have 

Vi > 0, P{Xt c B a(5)\X0 C[b]e) = 0 .

Thus, Ba(8) is inessential; the conclusion follows from Lemma 2.2. □

Now, given the noise level e, the following theorem provides us with the at­

tractor^) of the noisy system.

Theorem  2.1 Let Assumptions 1 and 2 apply. Let f  be continuous.

Let A denote the union of all the attractors for the relation y .

Let Le denote the union of the attractors for the relation y ,  which do not belong 

to attractors for the relation y E.

Let Ee =  A \ L e.

Then, as t tends to oo, the (noisy) system will tend to AE =  UzeEe[z\e W1̂ L Pr°b~ 

ability 1.

Proof: Let a G M. If [a]e is not an attractor, then, by Lemma 2.3, there exists 

8 such that Ba(8) is transient with probability 1. So, as t —> oo, the system 

converges to the attractor(s) for the relation y e (note that we are sure of the 

existence of such attractor (s) because of Assumption 2).

Now, each attractor for y £ contains at least one ’’true” attractor (that is, for 

>-). For: let us suppose it is not true: [d]e is a minimal equivalence class for y £ 

and there is no element from an attractor for >- in [d]£. We know, however, that 

d y  b for an attractor [6]; so, there exists an e-pseudoorbit going from d to b. 

Thus, b £ [d]£ and [b]£ = [d]e D [6].

By putting together the two parts of the proof, we get the conclusion. □

Note that L e can be non-empty: some attractors for y  may not be part of an 

attractor for y e. See next section for some examples.

Now, the next theorem shows that, as e —> 0, the noisy attractor Ae tends to 

the noise-free attractor A. In other words, a (noise-free) attractor is stable under
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infinitesimal random perturbation.

T heorem  2.2 Let Assumptions 1 and 2 apply. Let f  be continuous.

Under the same notations as in Theorem 2.1,

lim Ae =  A.£-> o

Proof.

First, we prove that

lim As C A.
e—>0

If [a] is not an attractor for the relation >-, then, for sufficiently small e, there 

exists an e-pseudoorbit going from a to a point b but no e-pseudoorbit going from 

b to a. So, for sufficiently small e, [a]£ is not an attractor for the relation >~e and 

therefore a & lim£_>o A£ by Lemma 2.3 and by definition of Ae.

Next, we prove that

A C lim  Ae.e—>0

Let [b] be an attractor for >- (that is, [6] C A). Then, there exists e* such that 

Ve < £*, [b]e is an attractor for >-e. Otherwise, for arbitrarily small e, there is 

an e-pseudoorbit going outside the attractor [b} which is in contradiction with the 

definition of an attractor (see Definition 2.2). So, Ve < e*, [b]E C At . □

2.3 C om m ents and exam ples

First, before considering the two theorems of the previous section into more details, 

we need to have a close look at their set-up. We work on a space M; M  is 

a Hausdorff topological metric space and, by Assumption 2, M  is compactified. 

In particular, a compact space M  ensures the existence of (noise-free or noisy) 

attractor(s). This compactification of M  is easy to visualise if M  = R n\ in this 

section, we shall focus on a simple compactification of R  given by R  =  R  U 

{-oo, +oo}.
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Now, the dynamical system x t+i = f{%t) is submitted to small random pertur­

bations and becomes the noisy system X t+\ = f ( X t)+et+1, t — 1, 2..., the dynamic 

noise {e4} being, by Assumption 1, a sequence of iid zero mean, bounded, abso­

lutely continuous random variables with symmetric support of amplitude e.

Note that this kind of noise is a good approximation to the round-off errors of 

the computers. The round-off errors are certainly bounded and it is reasonable 

to assume the other conditions. Of course, however, this is just an approxima­

tion to the round-off errors: a computer is a physical system and the concept of 

independence, to give an example, is unknown to him.

Finally, there is an important point to notice: we require for M, as it is the 

case in computing, to be the largest possible domain of definition of /  in view 

not to constrain artificially the effect of the noise (but, of course, we rule out the 

possibility for the noisy system to leave M, for example by allowing for boundary 

conditions).

This has important consequences. As an example, consider the logistic map /  

with parameter 6 = 4. Now, M  has to be the largest possible domain of definition 

of / ,  that is R. So, keeping Assumption 2 in mind, we consider /  : R  —» R : x —>■ 

4x(l — x).

But the set [0,1] which was an attractor on the space [0,1] (see section 2.1)

is not an attractor any more on R  since 0 >----oo and — oo 0. For: on the one

hand, for arbitrarily small e > 0, there is an e-pseudoorbit going from 0 to -oo , 

namely (0 =  / ( 0), -£ , f ( - e ) ,  / 2( - e ) , ..., -oo); on the other hand, - e ,  so a fortiori 

-oo , )/- 0 since | f { —e) -  0| =  -4 e (l +  e) > e and /  is an increasing function on 

] -  oo, 0[.

So, the only attractor for the logistic map with 6 =  4.00 on R  is [—oo] =  {—oo}. 

Therefore, the following comments apply to [—oo] and not to the set [0,1], which 

is not an attractor on 7?.; or, in other words, since Theorems 2.1 and 2.2 say that 

the only attractor of the noisy system is {—oo}, whatever the noise level is, it 

means that the set [0, 1] is unstable under random perturbations.
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Now, can we trust the (noisy) attractors which appear on the screen? In fact, 

Theorem 2.2 tells us that, provided /  is continuous on M,  the noise-free attractors 

are stable under infinitesimal random perturbations (that is, the amplitude of the 

noise level e tends to 0). So, for sufficiently small e, the noisy attractor(s) will be 

close to the true (noise-free) attractor(s). What does ’’sufficiently small” mean? 

Theorem 2.1 provides us with the answer. Note that, in most cases, the round-off 

errors are sufficiently small to ensure that the attractors on the computer screen 

are close to the true attractors.

For a given noise level e, Theorem 2.1 shows that, provided /  is continuous on 

M,  the motion will asymptotically concentrate on Ae as t —> oc; if the noise-free 

attractors are known, it is possible to construct Ae theoretically.

Before considering examples, a few comments are in order here.

1. As t —> co, the noisy system tends to the set of points Ae =

where A denotes the union of all noise-free attractors and L£ denotes the 

union of the noise-free attractors which are not part of noisy attractors. So, 

Le contains the true attractors which are destabilized by noise of amplitude 

e. Of course, L£ depends on the noise level; in particular, Le tends to an 

empty set as e —> 0 by Theorem 2.2.

Note that, by Assumption 2, Ae cannot be empty and so, for any noise level 

e, there will be noise-free (true) attractor(s) which are not destabilized, that 

is which are part of noisy attractor(s). In particular, if there is just one true 

attractor, it cannot be destabilized.

So, to summarize this comment, we could say that, for a given noise level e, 

some (but not all) of the noise-free attractors can be ’’lost” .

2. Since Ae consists on a union on z’s belonging to true attractors, each noisy 

attractor contains inside itself a noise-free attractor ; that is, for any given 

noise level, there is no created ’’completely fictitious” noisy attractor.

3. By definition of the equivalent classes [z] and [z]e, the support of each noisy 

attractor will be greater or equal to the support(s) of the true attractor(s)
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corresponding to it. (Note that disjoint attractors can belong to a same 

noisy attractor for some noise levels.)

Of course, the increase level of the support depends both on the dynamical 

system under consideration and on the level of noise, a lower noise level 

leading to a better approximation to the true attractor.

Now let us illustrate the theorems by means of some examples.

First, suppose that the logistic map f  : R  R  : rr —>• 2x(l — x) is affected 

by small random uniformly distributed perturbations U(—0.01, 0.01); this means 

that the noise level e is equal to 0.01. Of course, /  is continuous and the dynamic 

noise t /(—0.01,0.01) satisfies the requirements of Assumption 1, so both theorems 

apply.

Now, the noise-free attractors are [1/2] =  {1/2} and [—oo] =  {—oo} (see 

section 2.1). Comment 2 tells us that the only possible noisy attractors are [l/2]0.oi 

and [—oo]o.oi =  {—oo}. Of course, {—oo} is a noisy attractor as it would be for 

any noise level but what about [l/2]0.oi? And how to construct it?

In fact, it can easily be seen that the minimum of [l/2]0.oi is given by 2x{\ — 

x) — 0.01 =  x , that is x  ~  0.489792: there exists an 0.01-pseudoorbit going from 

1/2 to 0.489792, namely 0.5 /(0.5) -  0.01 = 0.49 -> /(0.49) -  0.01 =  0.4898 ->

/(0.4898) -  0.01 =  0.489792.

On the other hand, 2x(l — x) + 0.01 = x gives x ~  0.509808 but we know 

that there is the following 0.01-pseudoorbit: 0.5 —» /(0.5) + 0.1 =  0.51, so the 

maximum is 0.51.

Therefore, after noting that 1/2 ^ 0.oi —oo, we can say, following Theorem 2.1, 

that the noisy attractors are {-oo} and the closed interval [0.489792,0.51] for 

small uniform perturbations C/(—0.01, 0.01).

Now, the analysis of the noisy attractors for the logistic map with 0 =  2.00 

can be extended to uniform noise perturbations U(—£,e), £ any number > 0. 

Figure 2.4 shows the theoretical noisy attractor corresponding to the noise-free
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Figure 2.4: Theoretical noisy attractors corresponding to the noise-free attractor 
{1/2}; the dynamic noise is uniformly distributed between — e and e. For e > 
0.125, the attractor is destabilized.

attracting point {1/ 2} for different values of e. If e > 0.125, there is only one noisy 

attractor, namely {-oo} (the attractor {1/ 2} has been destabilized, see comment 

1). If e < 0.125, in addition to {—oo}, there is another noisy attractor, that is 

the closed interval [x, 0.5 +  e] where x  is the positive root of 2x2 -  x +  e =  0. The 

simulations confirmed these theoretical results. Note that, in accordance with 

Theorem 2.2, the interval tends to {1/2} as e —>0.

Now, consider the logistic map /  : R —> R  : x —» 9x( 1 — rr), with 9 — 

3.5, 3.51,..., 4.00. The noise-free attractors are given by {—oo} only in the case 

9 — 4.00 (see the beginning of this section) and by {-oo} and the attractor shown 

by Figure 2.3 for 3.5 < 9  < 4.00.

Let the logistic map be submitted to small random uniformly distributed 

perturbations U(—e,e), with e > 0. Theorems 2.1 and 2.2 then apply. Fig­

ure 2.5 shows the simulated noisy attractors for different values of e. If no 

attractor appears for some e and 9, it means that the only noisy attractor is 

{—oo}. The simulated attractors which are in agreement with our theorems 

form by far the majority. Now, in a few cases, Theorem 2.1 tells us that the 

only noisy attractor is {—oo} (that is, the other attractor has been destabilized) 

and still the simulations provide us with an attractor between 0 and 1. Let
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(a) (b)

(c) (d)

Figure 2.5: Simulated noisy attractors of X t =  +  £t, where /  is the
logistic map with 9 = 3.5, 3.51,..., 4.00 and the et are iid with unform distribution 
U(—e,e) with, (a) e =  0.05, (b) e = 0.03, (c) e =  0.01, (d) e =  0.005, (e) 
e = 0.001, (f) e =  0.0001.
For each 9 and e, the time series starts at random between 0 and 1. The map is 
iterated 1000 times without plotting anything; then, if the motion is still between 0 
and 1, the next 1000 iterations are plotted on the figure. The simulated attractors 
which are not in agreement with our theory are indicated by an asterisk (*).
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us have a closer look at one example: e = 0.05 and 9 = 3.75. There is an 

0.05-pseudoorbit going from 0.5 (and so from the attractor) to —oo: in fact, 

0.5 -» /(0.5) + 0.05 =  0.9875 ->• /(0.9875) -  0.05 = -0.0037 < 0 and so the true 

attractor between 0 and 1 is destabilized.

This apparent disagreement between simulations and theory disappears if we 

let the number of iterations increase by a sufficient amount. We have to remember 

that Theorem 2.1 deals with the asymptotic (i.e. as t —> oo) motion.

Finally, two remarks are worth to notice; as £ —» 0, the noisy attractor tends 

to the true attractor, as announced by Theorem 2.2. Note also for true periodic 

attractors and high noise levels the important increase of the support for the noisy 

attractors corresponding to them.

2.4 E xtensions tow ards sta te-d ep en d en t noise  

and random ly varying param eters

In this section, we concentrate on unidimensional maps; the main reason for this 

is the complexity of the notations for higher dimensional maps, which would have 

made our aims less clear.

Now, in the previous sections, the dynamical system xt = f ( x t~i) was subject 

to iid dynamic noise {£¿} with et independent from the past states X t- i ,X t~2, ••• 

(see Assumption 1). Let us relax this assumption in the following way.

Assumption 3 A dynamical system submitted to small random perturbations is 

such that X t — / ( Ab_i) + g(Xt- i ,6 t), where {<5t} is a sequence of zero mean iid 

absolutely continuous random variables with support [—5,5], S positive constant.

This assumption is satisfied by dynamical systems subject to state dependent 

noise. Boundary conditions typically imply this kind of noise. Also, the computer 

makes precisely the same round-off error when acting on the same number and 

therefore state-dependent noise occurs.
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Now, there is another important case in practice, namely a parameter of a 

dynamical system varies slightly in a random manner with time, for which As­

sumption 3 is often satisfied. Let x t = 1) a dynamical system, where a is

a known real parameter influencing /  and so the system. Now, replace a by a + 5t 

where 6t is as described in the above assumption. The parameter is now varying 

with time or more precisely randomly varying with time and our system becomes 

x t =  / ( a  + ¿¿,£¿-1).

Now, for a lot of unidimensional maps / ,  our noisy system can be decomposed 

like x t =  f ( a , x t-i)  +  g(a, x t~i, St) and therefore satisfies Assumption 3. As an 

example, we can take the logistic map with parameter 6 (see section 2.1): x t = 

(9 +  St)xt- i ( I  -  xt- 1 ) =  9xt-i{ 1 -  x t- 1 ) + 6tx t- i(l  -  x t~ 1 ) =  f { x t- i)  + g(xt- i ,6 t). 

We shall come back to the logistic map later in this section. Note that for some 

maps, it is not possible to express the noisy system in the terms of Assumption 

3; an example of such maps is given by x t = cos(axt- 1) with the noisy system 

corresponding to it x t — cos((a + 6t)xt- 1).

Now, the framework remains the same as in section 2.2: M  is a Hausdorff 

topological metric space with dist(a,b) =  \b — a|. The maps /* : M  —> M  are 

assumed to be continuous and M  is the largest possible domain of definition of / .  

As in section 2.2, we require for M  to be compactified (Assumption 2).

We need to impose some conditions on the function g (that is, on the noise 

term) in view to get analogous theorems to those of section 2.2. We regroup these 

conditions on g(x, y) in Assumption 4. Note that they are reasonable to make.

Assumption 4 • Vs 6 M,g(x, 0) =  0.

• Vx G M, g is continuous, strictly monotonic and bounded in y.

• Vy, g is continuous in x.

Now, by analogy with sections 2.1 and 2.2, we can introduce the following

notions.
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Definition 2.9 A sequence (x0, aq ,..., xn) is called an 5-pseudoorbit if there 

exist 5i E [-5, 5], i = 1, 2...n such that x t — / (x 2_i) + g{xi-\,8i) , i — 1, n.

Definition 2.10 a y& b means: there is an 6-pseudoorbit going from a to b.

The relation >-,5 is a preorder. Therefore, equivalence classes for the relation 

y s, denoted [aja, can be introduced and

Definition 2.11 A minimal equivalence class [£>]̂  for the relation called an

attractor for the relation

Now, is it possible to link 5-pseudoorbits and noise-free attractors (Definition 

2.2)? In other words, if for arbitrarily small 6 > 0, there is an 5-pseudoorbit going 

from a to b, do we come back to the noise-free case a y  b? In fact, the answer 

is: this depends from the particular case under consideration. So, since we do not 

necessarily come back to our true attractors, we need to go further.

Definition 2.12 a ys->-o b means: for arbitrarily small 5 > 0, there is an 5- 

pseudoorbit going from a to b.

This relation is a preorder. So, we can introduce equivalence classes [a]j_K) and 

attractors for this relation.

Definition 2.13 An attractor for the relation ^ 5_>.o IS cl minimal equivalence 

class for this relation.

We should keep in mind that these attractors do not necessarily coincide with 

the true (noise-free) attractors, especially in the cases where the parameter varies 

randomly over time.

Then, in the same way as in section 2.2, we seek theorems describing the 

asymptotic motion of systems submitted to random perturbations in the sense 

of Assumption 3. In particular, the following lemma plays an important role in 

proving these theorems.
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Lem m a 2.4 Let Assumptions 2,3 and 4 apply. Let f  : M  —» M  be continuous. 

Then, if a does not belong to an attractor for the relation yg, then there exists 

7 (a) such that the subspace Ba(7) is transient with probability 1.

The proof of this lemma follows the same scheme as Lemma 2.3 ’s proof and 

some technical points, although not very hard, lenghten the proof quite a lot. So, 

by sake of concision, we shall leave out the proof, which would not bring anything 

more to the discussion.

Now, given the noise level 5, the following theorem gives us the attractor(s) of 

the noisy system.

T heorem  2.3 Let Assumptions 2,3 and 4 apply. Let f  be continuous.

Let denote the union of all attractors for the relation yg^o-

Let Lg denote the union of the attractors for the relation yg->o> which do not

belong to attractors for the relation yg.

Let Eg = Ag^o \  Lg.

Then, as t —> 00, the (noisy) system tends to Ag = \JzeE6[z\s probability 1.

Proof: The proof is similar to Theorem 2.1 ’ s proof.

The next theorem deals with infinitesimal random perturbations (that is, <5 —> 

0) and provides us with the attractor(s) for a system so perturbed.

T heorem  2.4 Let Assumptions 2,3 and 4 apply. Let f  be continuous.

Under the same notations as in Theorem 2.3,

lim Ag = Ag^0.
<5->0

Proof: The proof is similar to Theorem 2 .2 ’s proof.

If, for the system under consideration, A g ^  is the true (noise-free) attractor, 

then we can say that the system is stable under such infinitesimal random per­

turbations. At this stage, we would like to insist on one point: in some cases,
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it is straightforward to see if the system is stable or not but, in other cases, the 

calculation of As->o involves highly complex hidden dynamical structures and even 

sometimes a definite answer cannot be given. So, saying that a system is stable 

or not can be an awkward task.

We can now look at an example. Consider the logistic map /  : R  R  : x 

9x(l — x) (see section 2.1) and replace 9 by 9 + 8t, where {<5t} is a sequence of 

independent random variables with uniform distribution U(—S,5). Then, x t = 

(6 + 8t)xt- i( l -  xt_i) =  0xt_ i(l -  x t- 1) + 5 txt_i(l -  x t- 1) = f{ x t- 1) + g(x t- i ,5 t) 

and both Assumptions 3 and 4 are satisfied.

Theorem 2.3 allows us to construct the noisy attractor(s) for a given noise 

level 8. Of course, for all 6, {-oo} is an attractor; if it is not the only one, 

then the second attractor should contain all the noise-free attractors of the range 

[6 — 8,0 + 8\. So, the second attractor, if it exists, is at least as big as the biggest 

true attractor in the range (in fact, in our case, it is even bigger).

Figure 2.6 provides us with simulations of the noisy attractor situated between 

0 and 1, if it exists, for different values of 8. All the simulations are in accordance 

with the theory. Comparing these graphs with Figure 2.3, we can see the dramatic 

changes for noise-free periodic attractors. This important increase in the support 

of the noisy attractors corresponding to them is easily explained: since the chaotic 

attractors are dense in [r00, 4.00], for a given noise level 8, there will be chaotic 

attractors in the range [9 + 8, 9 + 5] and so the noisy attractor is, by Theorem 2.3, 

at least as big as these chaotic attractors.

Theorem 2.4 states that the asymptotic motion is concentrated on A,5_>o for a 

system submitted to infinitesimal random perturbations in the sense of Assump­

tion 3. Now, for the logistic map, the calculation of A ^o  needs the knowledge 

of very fine structures of the dynamics; Basing ourselves on the results and con­

jectures in Ott (1993), it seems well that the chaotic attractors are stable under 

such types of perturbations; the result is uncertain for periodic attractors (the 

simulations seem to suggest that they also are stable).
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(c) <“ )

Figure 2.6: Simulated noisy attractors of X t = (9 + where
9 =  3.5,3.51, ...,4.00 and the 8t are iid with uniform distribution U(—8,8). The 
different noise levels are: (a) 8 = 0.05, (b) 8 — 0.03, (c) 8 — 0.01, and (d) 
8 =  0 .001.
For each 9 and 8, the time series starts at random between 0 and 1. The map is 
iterated 1000 times without plotting anything; then, if the motion is still between 
0 and 1, the next 1000 iterations are plotted on the graph.
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To conclude this section, we can say that, for systems satisfying Assumptions 

3 and 4, it is possible to construct the noisy attractors for a given noise level S; 

it is also possible, at least theoretically, to construct the attractors for systems 

submitted to infinitesimal random perturbations. If the system is stable under 

these perturbations (that is, As^o coincides with the noise-free attractors), which 

is not necessarily the case, then the comments of section 2.3 obviously apply. This 

means that, for a given noise level 6, some (but not all) of the noise-free attractors 

can be ’’lost”; there is no created ’’completely fictitious” noisy attractor and the 

support of each noisy attractor is greater or equal to the support(s) of the true 

attractor(s) corresponding to it.



Chapter 3

Chaotic sequences: introduction 

and some results

Here is the plan of chapter 3. Section 3.1 introduces the Lyapunov exponent which 

allows us to give a precise definition of a chaotic system. Section 3.2 explains first 

what we shall actually call a chaotic sequence, a notion which plays a central part 

in the thesis. The degree of stochasticity of chaotic sequences is then examined. 

Finally, section 3.2 stresses the importance of this notion in various topics. Section 

3.3 states and proves a theorem for chaotic sequences, which is both a corollary 

of and an extension to the ergodic theorem. This theorem has important conse­

quences, in particular on the sample moments and on the empirical distribution 

function; they are highlighted at the end of the section. Section 3.4 computes the 

Lyapunov exponents of some chaos driven models analysed later in the thesis and 

links these Lyapunov exponents to the fractal dimension of attractors.

3.1 Lyapunov exp on en ts

In the previous chapters, the so-called chaotic dynamics has been mentioned on 

a few occasions. In an informal way, chaotic dynamics has been associated with 

’sensitive dependence on initial conditions’: starting from any typical value in a 

neighbourhood of any initial condition x0 the orbit diverges from that starting

36
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from xq. So, small errors in the initial value grow with time; in fact, they grow very 

rapidly (exponentially) with time, which makes long-term prediction impossible in 

practice (that is, when noise comes into account). Note, however, that statistical 

properties, unlike dynamical properties, can be preserved in a noisy environment: 

chapter 2 has shown that the noise-free attractors, so in particular the chaotic 

attractors, are stable under some kinds of random perturbations.

Now, coming back to a noise-free dynamical system, section 2.1 names the 

chaotic attractors (also called chaos) in the list of the different kinds of attractors 

and gives examples picked from the logistic map. At first sight, it could seem 

surprising to be able to get chaotic attractors, which are bounded, as chaotic 

dynamics is about exponential divergence of the orbits. In fact, this can easily be 

explained: besides the stretching process which leads to exponential divergence of 

nearby trajectories, the system has also a folding process which keeps the orbits 

bounded.

There is a well-known formal way of measuring the degree of dependence on 

initial conditions for a dynamical system, namely the Lyapunov exponents. We 

shall have a look at them now; we refer, for example, to Ruelle (1989) or Ott 

(1993) for more details.

First, consider the unidimensional differentiable map /  generating the orbit 

(xo, •■., xn, f ( x n) =  x„+i,...). Let x0 and x'0 denote two nearby initial points, xn 

and x'n, n = 0, 1, 2... denote the orbits starting respectively from xo and x'Q and 

let f  denote the differential of / .

Then,
dfn

x'n - x n = / V o )  -  f n(x o) -  TTT^oXzo -  x'Q)

Now, the chain rule of differentiation , that is

dfn 
<lx (xo) =

d f , .d f  . df
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allows us to define the average rate of change of ^£r{xo) as

1 dfn
X(x0) =  lim -  ln\——(xo)\, n-+ oo n ax

the Lyapunov exponent at x0. Here, we have assumed that the limit exists.

We notice that x'n -  xn ~  enA(lo) (x'0 -  x0); so a positive A(x0) leads to a mag­

nification of the initial difference. Now, this A(x0) is a local Lyapunov exponent 

in that it depends on x0. In fact, if the system is ergodic, which is the case of 

all chaotic attractors, (see next section for a definition of ergodicity), it can be 

proved (see Ruelle (1989) and the references therein) that X(x0) = X for p-almost 

all initial conditions x0 where p denotes an ergodic distribution of the system. We 

call A the (global) Lyapunov exponent of the system, which is chaotic if and only 

if A > 0. Note that A = J ln \ f  (y)\p(dy).

Let us generalise the notion of Lyapunov exponents to TV-dimensional maps 

M. A TV-dimensional dynamical system has TV (not necessarily distinct) Lya­

punov exponents. They can be defined in the following way. Let the map M  be 

differentiable and the system generated by M  be ergodic; then, for typical initial 

condition .x0 (in the sense of previous paragraph), the (global) Lyapunov expo­

nent corresponding to the orientation u0 (the vector u0 is assumed to have unit 

modulus) is equal to

h(u0) =  lim — ln\DM n(x0)u0\,
n —>oo f i

where D M n(x0) is the Jacobian matrix of M n evaluated at x0■ Now, let hin denote 

the modulus of the zth eigenvalue of D M n(xo), ordered so that h\n > h2n > ••• > 

hNn. The ith Lyapunov exponent A* is then

Ai = lim — In hin, i — T N.
71— > OO

Clearly, if Ai > 0, small differences in the initial conditions are stretched in
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the direction of the Ah eigenvector of D M n(x0).

Definition 3.1 A bounded dynamical system is said to be chaotic if it possesses 

at least one positive Lyapunov exponent; hence a bounded system is chaotic if and 

only if Ai > 0.

Finally, note that the Lyapunov exponents are not only useful in detecting 

chaotic systems but also in quantifying the sensitive dependence on initial condi­

tions.

Now, we can compute the Lyapunov exponent of the logistic map for the same 

values of the parameter 9 as in Figure 2.3, which pictures the attractors of the 

dynamical systems generated by fg : [0,1] —> [0,1] : x  —> 9x( 1 — x), 3.5 < 6 < 

4.0. What we have been actually calculating is the quantity

Xo = ^ £ lnl f ( / i M |)
2=0

with n =  5000, where x0 is a typical initial condition for the ergodic distribution 

pg. This is justified by the facts that the logistic map defined on [0,1] is ergodic 

for all 0 between 0 and 4 and that the ergodic theorem applies in our case (see 

the next two sections for more details on these notions).

The results are shown in Figure 3.1. As expected, the Lyapunov exponent 

is non-positive for systems exhibiting limit cycles and A > 0 for systems which 

converge to what we had called ’chaos’ in section 2.1 (this terminology is now fully 

justified). Note that the Lyapunov exponent is roughly increasing as 9 increases 

and that the maximum is reached at 9 = 4; A is then equal to hi 2.

3.2 C haotic sequences: in troduction  and m o ti­

vations

In this section, we focus on unidimensional maps; the main reason for this is the 

simplicity of the notations in this case. Now, in chapter 2 and more precisely
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Figure 3.1: Lyapunov exponent for the logistic map with (a) 6 =
3.5, 3.51,...,4.00, (b) d = 3.82,3.8205,..., 3.83.

in section 2.1 we dealt with the support of attractors for dynamical systems. 

Knowing that the asymptotic motion is concentrated on the attractor, the next 

question is: does there exist a probability measure which is invariant under the 

effect of the dynamical system? In fact, it has been proved (see, for example, 

Ruelle (1989)) that if a compact set A is invariant under the time evolution f \  

where for each t the map / s : A —> A is continuous, then there is a probability 

measure ir invariant under and with support contained in A; moreover, one 

may choose n to be ergodic (that is, indecomposable: there does not exist any 

invariant measures 7Ti and 7r2) 7Ti ^  7r2, such that n =  aq7ri +  0-2̂ 2, an, a2 E (0,1)).

So, we know that, for many dynamical systems, there exists a (not necessarily 

unique) invariant distribution associated to them. Note, however, that there is 

no general way for constructing these invariant distributions. For some maps, it 

has been possible to derive an invariant distribution: for example, it can easily 

be seen that an invariant (ergodic) density for the logistic map /  : [0, 1] -» [0, 1] : 

x -» 4.x(l -  x) is the Beta(l/2; 1/2) probability distribution function (that is, 

g(x) =  7t_1x_1/,2(1 — .t)-1/2 on ]0,1[). And an ergodic probability distribution of 

the modulo map is given by the uniform distribution on (0,1). These invariant 

distributions are shown in Figure 3.2.

Now, to find invariant distributions explicitly is a very hard (even impossible)



CHAPTER 3. CHAOTIC SEQUENCES 41

task in many cases. In particular, exact calculations for many logistic maps leading 

to chaos are suspected to be impossible (see Hall and Wolff (1995a)). Simulations, 

however, allow us to get a good idea of the invariant distributions. Moreover, 

section 3.3 will ensure us, under very weak additional conditions, that, as the 

sampling size of the simulations tends to oo, the simulated probability distribution 

functions tend to the invariant distributions with probability 1.

Four logistic maps will be more particularly examined throughout this thesis, 

namely the logistic maps with parameter 6 = 4.00, 3.98,3.825 and 3.58. These 

values have been selected because they appear in Hall and Wolff (1995b) and they 

lead to quite different behaviors as we shall see in the thesis. Their attractors 

can be seen in Figure 2.3; note that all of them appear to be chaotic (see section 

3.1 and Figure 3.1). Figure 3.2 shows their invariant distributions; except for 

0 =  4.00, the invariant distributions have been obtained through simulations: the 

first 1000 iterations being discarded as a warming-up, the next 5000 iterations 

come into account to construct the invariant distribution.

At this stage, it is time to introduce the notion of chaotic sequence. Without 

loss of generality, we can assume that E t has zero mean.

Definition 3.2 A chaotic sequence {Et} is a sequence of identically distributed 

random variables generated by a real chaotic map f  such that Et+i =  f (E t) and 

each Et has an ergodic distribution associated with f  as its marginal distribution.

Now, an important question we could ask ourselves is: how random are the 

chaotic sequences? What is their degree of stochasticity?

First, we shall precise our framework and make a list of notions, list in order 

of ’increasing randomness’; then, we shall fix where the chaotic sequences are on 

the list. Note that many notions defined here will appear again later in the thesis.

For the rest of this section, we suppose that {AT, k G Z} is a sequence of 

strictly stationary random variables; in particular, this implies that the dynamical
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Figure 3.2: Ergodic probability distribution functions
The ergodic distributions of the modulo map and of the logistic map with 
0 = 4.00 are obtained theoretically. The last three distributions have been ob­
tained through simulations: the first 1000 iterations are discarded, the next 5000 
iterations are used to build the histogram.
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system under consideration has an invariant measure. We assume that our prob­

ability space is (R Z,B Z,P ), where B denotes the standard Borel cr-field; we shall 

assume that for each u> G R z and each k £ Z, X k{uj) =  u)k. For —oo < J < L < oo 

define T f  =  a(X k, J  < k < L), where a(X k, J < k < L) denotes the u-field gen­

erated by this family of random variables. Let T denote the shift operator; that 

is, for each lo e R z , T lo is defined by (Tu>)k = u k+i and for any event A  £ Bz , 

TA  =  {lu : T~loj £ A}. Now, the following definitions come mainly from Bradley 

(1986), Sinai (1989) and Billingsley (1965).

Definition 3.3 A dynamical system is said to be ergodic (with respect to T ) if 

each invariant set (that is, a set such that T~lA =  A, or equivalently TA  = A) is 

trivial in the sense of having measure either 0 or 1.

Definition 3.4 The sequence {Xfc} is mixing in the ergodic-theoretic sense

if,
\ /A ,B e B z , Rm2P { A 0 T - nB )=  P(A)P(B).

Definition 3.5 The sequence {Afc} is said to be a K-system if its future tail 

a-field, i is trivial (that is, contains only events of probability 0 or 1).

Definition 3.6 The system is said to be a Bernoulli system  if it can be rep­

resented as a symbolic dynamics consisting on a shift T  on a finite number of 

symbols.

Definition 3.7 The process {A\.} is said to be strongly mixing if a(n) tends 

to 0 as n —> oo, where

a(n) =  =  sup \P (A oB ) -  P (A )P (B )|, A e B f ^ B e  T f f .
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D efinition 3.8 The process {AY} is said to be absolutely regular if /3(n) tends 

to 0 as n —» oo, where

m  = /J tJV  J ? )  = 8UV \  £  n -
1 i = l  j= 1

the sup being taken over all pairs of partitions { A \ , A Q  and { B i , B j }  such 

that Ai € P-oo for all i and Bj £ Pf° for all j.

D efinition 3.9 The sequence {AY} is 0-m ixing if 0(n) tends to 0 as n —f oo, 

where

4>{n) = H P - c o ^ n )  = sup\P(B\A) -  P(B)  |, A E P l ^ B e  Pf°.

All these definitions are modified in a straightforward way in the case of a 

singly-infinite strictly stationary sequence {X k : k — 1,2,3...}. We recall that 

the list is in order of ’increasing randomness’, that is a process which is 0-mixing 

is absolutely regular, a process which is absolutely regular is strongly mixing 

and so on... . Note that there exist other notions for measuring the degree of 

dependence of a process (see, for example, Bradley (1986) for a review) and that 

an iid sequence is, of course, 0-mixing, absolutely regular,..., ergodic.

Now, the following proposition tells us where the chaotic sequences are in the 

hierarchy.

P roposition  3.1 A deterministic strictly stationary sequence {A*,} is chaotic if 

and only if it is a K-system.

Proof: see Billingsley (1965) and especially Sinai (1989) and Ott (1993). □

Note that a chaotic dynamical system (in the sense of Definition 3.1) does not 

necessarily lead to a K-system since we need to have a strictly stationary sequence
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for the above proposition to apply. But the chaotic sequences (see Definition 3.2) 

are strictly stationary and so are K-systems, therefore mixing in the ergodic- 

theoretic sense and ergodic.

Some chaotic sequences are not only K-systems but also Bernoulli systems. 

Such an example is given by the sequence {E t}, where the chaotic map /  is the 

modulo map going from [0,1] to itself (see section 2.1), that is Et+1 =  2E t (mod 

1), and the associated invariant measure is the uniform distribution on [0,1]. Now,

El-1= E
j=-OO

where for each t, P (Z t = 0.5) = P(Zt =  -0.5) =  0.5 (see section 2.1 for more 

details). So, the modulo map is a Bernoulli system (consisting on a shift on two 

symbols).

Now, is it possible that some chaotic sequences are strongly mixing? The an­

swer is no, since a(n) = « ( .F ^ , F£°) > o:(Xq, J-ff) =  a(a(X 0), a (X n)) and X n is a 

(Borel-measurable) function of X0, so a(n) > a(a(X 0, a(X n)) > a (a(X 0), cr(X0)) 

=  c, strictly positive constant for all n. Thus, an does not converge to 0 as n —)■ oo.

The following proposition is quite interesting.

Proposition 3.2 If {Et} is a chaotic sequence and g : R  -» R is a Borel- 

measurable function, then the sequence {g(Et)} is a K-system,.

Proof: the proof follows directly from Proposition 3.1 and from the fact that 

a(g(Et)) C <r(Et) for all t, so the future tail cr-field of {g(Et)} is also trivial. □

Note that the sequence {g(Et)} is not necessarily a chaotic sequence (in the 

sense of Definition 3.2) since it is possible that g(Et+i) is not equal to a (chaotic) 

function of g{Et). We shall expand this in section 3.4.

A chaotic sequence {F,}, that is a strictly stationary process where E,+l =
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f (E t), f  being a chaotic map, (see Definition 3.2), obviously has extremely strong 

structural dependence since any data value may be represented as a deterministic 

function of any of the previous values. Nevertheless, many chaotic sequences 

exhibit short-range statistical dependence (that is, Xa>2 \corr(Ei, EQ\ < oo ); 

some of them, like the logistic map with 9 =  4.00, are even such that the sequence 

{Et} is uncorrelated for all lags (see, e.g., Hall and Wolff (1995b)).

Figure 3.3 shows the autocorrelation functions of sequences generated by the 

modulo map and the logistic map with 9 = 4.00,3.98,3.825 and 3.58. For the 

modulo map, the autocorrelation function is positive at all lags and decays in 

an exponential way. For the three logistic maps with 9 = 3.98,3.825 and 3.58, 

the (simulated; note that section 3.3 will show that the simulated values are very 

close to the true (unknown) ones) autocorrelation functions respectively appear 

to decay quite quickly, quite slowly and not at all. We notice that the function is 

negative at its first lag for these three maps.

Considering the last paragraph, it seems that there is a link between the pa­

rameter value 9 and the statistical dependence, Y,i>2 \corr(E\, EQ], namely that 

an increase in 9 could imply a decrease in the statistical dependence. We had 

a closer look at this: Figure 3.4 computes via simulations Xa>2 \corr(Ei, Ei)\ 

and plots it versus the parameter 9. Note the obvious facts that the expression 

Yh>2 \corr(Ei, Ei)\ is not defined if E t is a fixed point and that ]T)i>2 \corr{E\, EQ\ 

=  co if Et is a limit cycle. Now, we can go further and detect a similarity between 

Figure 3.1 and Figure 3.4 in the sense that a higher Lyapunov exponent seems to 

mean less statistical dependence, which can be seen as intuitively logical.

The motivations for introducing chaotic sequences are of different kinds. One 

can treat a chaotic sequence as a time series in its own right and compute the 

moments and the asymptotic properties for sequences generated by a particular
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Figure 3.3: Autocorrelation functions.
The theoretical values, when available, are displayed. There are no theoretical 
values available for the last three logistic maps since the invariant distributions 
are not known analitically. Consequently we have used simulations to get the 
autocorrelation functions for these maps.
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Figure 3.4: The value £ ”>2 \corr(Ei, Ei)\ (statistical dependence) is plotted ver­
sus the parameter 6 of the logistic map. The sample size n is taken to be 1000.

map, like Hall and Wolff (1995b) analysing in detail properties of sequences gen­

erated by the logistic map with 9 = 4.00. The beginning of this section and the 

next sections of this chapter will provide us with important properties of {Et}, 

which are valid for sequences generated by any real chaotic map / .

On the other hand, consider stochastic models X t = g(X t- i,Y i,e t) but now 

instead of taking {et} a sequence of iid random variables, we take {Et} a chaotic 

sequence and we look at X t — g(Xt~i,Yt, E t). Dynamicists have recently shown 

considerable interests in these chaos driven models (see, in particular, Takens 

(1994b)). Clearly, attractors of the two-dimensional deterministic system R2 —> 

R 2 defined by

Xt+i — OiXt +  Et+1, Et+1 = f{E t)

are of dimension no larger than 2. Their primary interests include the investigation 

of the extent to which such a low-dimensional deterministic dynamical system can 

mimic a stochastic dynamical system, which may be loosely speaking likened to 

an infinite dimensional deterministic dynamical system. In this thesis, we are 

not going to spend much time about these interests; note, however, that section 

3.4 will touch the point by calculating the Lyapunov exponents of chaos driven 

systems.
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The next two chapters will focus on the statistical inference on chaos driven 

AR models and chaos driven linear stochastic regression models. As already an­

nounced in chapter 1, this is particularly interesting since the computers, which 

are physical systems, cannot generate sequences {et} of iid random variables but 

instead simulate them by means of pseudo-random number generators which are 

typically chaotic maps.

Now, many papers in the statistical literature use computers to confirm their 

results by means of simulations. Tong (1995) has commented that simulation 

studies typically assume albeit implicitly that central limit properties existing in 

the case of a model driven by iid noise continue to hold even when we replace {et} 

by a chaotic sequence {Et}. The next two chapters are going to examine why this 

is the case for two well-known types of models.

We can say here a few words on pseudo-random number generators. In fact, if 

we have a generator of pseudo-random variables uniformly distributed between 0 

and 1, then we can simulate any sequence of independent random variables. We 

can give a rough idea of the reasoning in the following way. Let U be uniformly 

distributed on [0, 1] and A' a random variable obtained by Â  =  F -1([/), where 

F  is any cumulative distribution function. The distribution of X  follows then a 

law whose cumulative distribution function is F(x); for: P (X  < x) = P (F (X ) < 

F(x)) = P(U < u) = u, since U is uniformly distributed on [0,1], and therefore 

F(x) = u.

Now, the pseudo-random number generator of et ~  iid [7(0,1) has, among 

other things, to be as close as possible to independent output (there are numerous 

tests, empirically or theoretically based, to look at this; see, for example, Knuth 

(1981) and the references therein) but also it should allow for repeatibility and it 

should be fast (see, e.g., Ripley (1990) for more details). The most popular random 

number generators use the linear congruential method: that is En+i = (aEn -I- c) 

mod m , with m > 0, 0 < a < m , 0 < c < m  and 0 < A0 < m  (see, e.g., Knuth 

(1981) for more details). In this thesis, we make use of the NAG FORTRAN 

library; the routine G05CAF uses the multiplicative congruential method A')(+i =
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1313Arn mod 259.

Now, as pointed out by a referee of Stockis and Tong (1996), some of these 

pseudo-random number generators operate on congruential sequences {Et} which 

are not strictly chaotic since they have periods and discrete support. Of course, 

these periods are very long (for example, the G05CAF routine has a period equal 

to 257) and we can say that a chaotic sequence provides with a very good ap­

proximation to pseudo-random number generators. Moreover, we note that many 

results of this thesis still hold if, keeping the other assumptions, we only require 

/  to be a real deterministic map and we assume that Et admits an invariant 

distribution which is also ergodic.

3.3 P rop erties derived from  th e ergodic th eorem

It has been shown in the last section that a chaotic sequence {Et} was ergodic. 

Now, the principal consequence of ergodicity is the so-called ergodic theorem:

” Suppose a probability space is fixed. Let {X t} be an ergodic sequence, then, if 

g : R  —» R  is an integrable function, we get

- ¿ 9 « )  E[9(X«)],
71 t=  1

where —p-s- denotes the almost sure convergence.” (see, for example, Billingsley 

(1965) or Ruelle (1989) for more details). In the case of a chaotic sequence, 

the following theorem is easily derived from the ergodic theorem; throughout the 

section, we assume the existence of a probability space.

T heorem  3.1 Let {Et} be a chaotic sequence. Then, if the function h : R c+l —> 

R  : (Et, E t+i, ..., Et+C) -> h(Et,E t+i,...,E t+c), c finite non-negative number, is 

integrable, we get

— y )  h(Et, Et+\ , E t+C) —>""*■ E[h(Et, Et+\ , E t+C)\.
n ÍT¡
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Proof: We have h(Et, Et+i , ..., Et+C) = g*(Et), since {Et} is a deterministic se­

quence and therefore Et+i = f(E t), ...,E t+c — f c{Et).

Now, g* is an integrable function and {Et} is an ergodic sequence; so, we may 

use the ergodic theorem.

We get:

h(E ,,E t+1, . . , £ ,« )  = - E a ’(E,) % *(& )] =  E{h(E„Et+1, ...,E t+c)}.
" f e í  " T

□

A few remarks are in order here. First, we can notice that the condition for 

h to be integrable is quite a weak one, especially if we remember that chaotic 

sequences are concentrated on chaotic attractors, which are compact sets (see 

section 2.1 for more details).

Now, an important comment to note is the role played in the theorem by 

the fact that {Et} is a deterministic sequence. If {Et} would not have been 

deterministic, then we would have been back to the ergodic theorem, that is 

c =  0. So, the theorem is an extension to the ergodic theorem and brings very 

strong results. In particular, the sample joint moments converge almost surely to 

the true values of the joint moments, for moments of any order.

Table 3.1 and Table 3.2 respectively show the means and the variances of 

simulations of the first ten lags of some (normalised, that is the variance of the 

sequences is made equal to 1) autocovariance functions. Table 3.1 indicates that 

the means converge to the theoretical values (the same as those pictured in Figure 

3.3) and Table 3.2 reveals that the variances of the sample autocovariances tend 

to 0. Now, this is an indication of the fact that % tE{k) 7e (&) for k > 1, 

where —>p denotes the convergence in probability, for all the considered chaotic 

sequences (see Proposition 6.2.4 in Brockwell and Davis (1989)). Theorem 3.1 

goes even further and tells us that the sample autocovariances converge almost 

surely to the theoretical autocovariances for all the considered chaotic sequences.
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Simulated 
mean 

n = 2000

Simulated 
mean 

n =  5000

Asymptotic
mean

Modulo map

Lag 1 0.497741 0.499386 0.500000
Lag 2 0.248095 0.248750 0.250000
Lag 3 0.122717 0.123948 0.125000
Lag 4 0.061427 0.061987 0.062500
Lag 5 0.030003 0.031003 0.031250
Lag 6 0.013649 0.015028 0.015625
Lag 7 0.006010 0.007675 0.007813
Lag 8 0.002913 0.002770 0.003906
Lag 9 0.000688 0.001404 0.001953
Lag 10 - 0.001060 0.000555 0.000977
Logistic map 
9 = 4.00 
Lag 1 - 0.000941 - 0.000325 0.000000
Lag 2 0.000624 - 0.000092 0.000000
Lag 3 - 0.000727 - 0.000126 0.000000
Lag 4 - 0.000125 0.000310 0.000000
Lag 5 - 0.000972 - 0.000653 0.000000
Lag 6 - 0.001020 - 0.000160 0.000000
Lag 7 - 0.000301 - 0.000590 0.000000
Lag 8 - 0.001083 - 0.000302 0.000000
Lag 9 - 0.001272 - 0.000554 0.000000
Lag 10 - 0.000205 - 0.000275 0.000000

Table 3.1: Means of the sample estimators pE,n{i) for ¿ =  1 , 2 , 1 0 .
The simulated expectations are obtained using 2000 replications of PE,n[})\ the 
asymptotic means are the autocorrelations shown in Figure 3.3.
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Table 3.1: continued

Logistic map 
9 = 3.98 
Lag 1 - 0.221728 - 0.221348 - 0.221000
Lag 2 - 0.129503 - 0.130129 - 0.130000
Lag 3 - 0.017341 - 0.018023 - 0.018000
Lag 4 0.074693 0.075358 0.075000
Lag 5 - 0.045181 - 0.044766 - 0.045000
Lag 6 0.065456 0.065408 0.066000
Lag 7 - 0.033570 - 0.032867 - 0.032000
Lag 8 - 0.015399 - 0.015458 - 0.016000
Lag 9 0.018175 0.018930 0.019000
Lag 10 0.001239 0.000314 0.000000
Logistic map 
9 = 3.825 
Lag 1 - 0.551449 - 0.551449 - 0.552000
Lag 2 - 0.014987 - 0.014882 - 0.016000
Lag 3 0.351581 0.351232 0.352000
Lag 4 - 0.233459 - 0.233741 - 0.234000
Lag 5 - 0.029524 - 0.029378 - 0.029000
Lag 6 0.200452 0.200379 0.200000
Lag 7 - 0.143747 - 0.144598 - 0.144000
Lag 8 - 0.007277 - 0.007664 - 0.008000
Lag 9 0.097111 0.096846 0.097000
Lag 10 - 0.081481 - 0.081677 - 0.082000
Logistic map 
9 =  3.58 
Lag 1 - 0.907325 - 0.907574 - 0.907616
Lag 2 0.818079 0.818574 0.818578
Lag 3 - 0.899827 - 0.900650 - 0.901047
Lag 4 0.978341 0.979511 0.980343
Lag 5 - 0.899740 - 0.901073 - 0.901785
Lag 6 0.819181 0.820676 0.821246
Lag 7 - 0.902655 - 0.904582 - 0.905610
Lag 8 0.987892 0.990266 0.991786
Lag 9 - 0.901291 - 0.903716 - 0.905074
Lag 10 0.815620 0.818105 0.819257
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Simulated 
variance 

n =  2000

Simulated 
variance 

n =  5000
Modulo map 
Lag 1 0.000375 0.000152
Lag 2 0.000636 0.000262
Lag 3 0.000816 0.000313
Lag 4 0.000800 0.000319
Lag 5 0.000815 0.000332
Lag 6 0.000792 0.000313
Lag 7 0.000808 0.000320
Lag 8 0.000836 0.000328
Lag 9 0.000792 0.000308
Lag 10 0.000810 0.000329
Logistic map 
6 =  4.00 
Lag 1 0.000512 0.000207
Lag 2 0.000501 0.000212
Lag 3 0.000485 0.000198
Lag 4 0.000974 0.000695
Lag 5 0.000509 0.000198
Lag 6 0.000500 0.000201
Lag 7 0.000494 0.000199
Lag 8 0.000498 0.000198
Lag 9 0.000484 0.000200
Lag 10 0.000498 0.000201

Table 3.2: Variances of the sample estimators f>E,n(i) for * =  1 , 2 , 1 0 .
The simulated variances are obtained using 2000 replications of /?£,„(*); fhe vari­
ances are expected to tend to 0 as n —> oo.
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Table 3.2 continued

Logistic map 
9 = 3.98 
Lag 1 0.000132 0.000053
Lag 2 0.000339 0.000136
Lag 3 0.000563 0.000226
Lag 4 0.000603 0.000245
Lag 5 0.000475 0.000193
Lag 6 0.000629 0.000263
Lag 7 0.000554 0.000213
Lag 8 0.000542 0.000203
Lag 9 0.000576 0.000236
Lag 10 0.000585 0.000223
Logistic map 
9 = 3.825 
Lag 1 0.000064 0.000026
Lag 2 0.000510 0.000201
Lag 3 0.001139 0.000428
Lag 4 0.000579 0.000233
Lag 5 0.000541 0.000225
Lag 6 0.000928 0.000363
Lag 7 0.000704 0.000275
Lag 8 0.000646 0.000253
Lag 9 0.000811 0.000320
Lag 10 0.000766 0.000307
Logistic map 
9 = 3.58 
Lag 1 0.000000 0.000000
Lag 2 0.000001 0.000000
Lag 3 0.000000 0.000000
Lag 4 0.000000 0.000000
Lag 5 0.000000 0.000000
Lag 6 0.000001 0.000000
Lag 7 0.000000 0.000000
Lag 8 0.000000 0.000000
Lag 9 0.000000 0.000000
Lag 10 0.000001 0.000000
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As a last comment, we would like to stress again the importance of this theo­

rem, which will be often used from now on, by pointing out the weakness of the 

required conditions compared to existing theorems (see, for example, Hall and 

Heyde (1980) which deals with the almost sure convergence of sample autocovari­

ances). Finally, we can notice that Theorem 3.1 does not only apply to chaotic 

sequences but also to any deterministic ergodic sequence.

The next application of Theorem 3.1 will justify the use of simulations and 

histograms as a way to getting a good idea of the ergodic distribution. In partic­

ular, the last three graphs of Figure 3.2 are shown to be good approximations to 

the unknown invariant distributions.

The question we are going to answer is the following one: given a sample 

E i , E n obtained from a chaotic sequence, can we be sure that the sample dis­

tribution function
1 n

Fn(x) = ~ ^2 hEj<x) 
n j=i

( /  is the indicator function, that is I[Ej<x] =  1 if Ej < x, 0 otherwise) is close in 

some way to the distribution function F(x) of E\?

Glivenko-Cantelli’s theorem states: ” If {X n,n  > 1} are iid random variables 

with distribution function F  and Fn is the empirical distribution function based 

on X i, . . . ,X n, then

sup \Fn(x) — F(x)\ — 0.”
—oo<i<oo

(see, for example, Chow and Teicher (1988)). Now, Gyorfi, Hardle, Sarda and 

Vieu (1989) relaxed the assumption of iid random variables and replaced it by 

the condition that {Xn} is strongly mixing (see Definition 3.7) with a sufficiently 

fast mixing rate. We know from section 3.2 that no chaotic sequence {Et} is 

strongly mixing, so it is worthwhile for us to look at a possible Glivenko-Cantelli’s 

theorem for chaotic sequences. In fact, such a theorem exists: it is stated and 

proved below. The proof mainly follows the proof in the iid case and makes use
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of Theorem 3.1 (more precisely of the simple ergodic theorem).

T heorem  3.2 I f {En : n > 1} is a chaotic sequence (in the sense of Definition 

3.2) with distribution function F and if Fn is the empirical distribution function 

based on E x,...,E n, then

sup |Fn(x) -  F(x) | ->a's' 0.
— oo<i<oo

Proof: For every x G] — oo, oo[,

Tj =  I[Ej<x] and Zj I[Ej<x]i j T  1

constitute integrable (remember that we work on a probability space) functions 

of the random variable E j .

By Theorem 3.1, we get

r „ w  =  l ¿  V i E (  
n j=1

and

F„(i+) = i  ± Z j  E (Z¡) = F(x+).
U 1=1

Now, we follow the theorem’s proof for iid random variables (see Chow and 

Teicher (1988) for more details). Thus, if C = {c j,j > 1} =  set of rational 

numbers enlarged by any irrational discontinuity points of F  and 

A x = {u:  F%(cj±),j > 1},
A2 =  {lo : F¡f(x) is a distribution function,n >1}, 

it follows that P(Ai) = 1. Moreover, P{A2) = 1 and so P (A X Cl A2) =  1. Since 

for lo G A\ fl A2, {Ffi(x) : n > 1} is a sequence of distribution functions with 

F“(cj±) —> F(cj±), j  > 1, we can be sure that the random variable E% associated 

to F!f converges in distribution to E x for to € A\ fl A2 whence Ffi(x) converges 

uniformly to F(x) for oj e A x D A2 (there is a lemma in Chow and Teicher (1988) 

telling: ” If X n converges in distribution to X  and the associated distribution
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function Fn(x±) converges to F (x±) at all discontinuity points x  of F, then Fn 

converges uniformly to F in ] — oo, oo[). □

Remark that Theorem 3.2 applies in the same way to any ergodic (not nec­

essarily deterministic) sequence since we simply use the ergodic theorem in the 

proof.

To finish this section, we illustrate Theorem 3.2 by means of Figure 3.5, which 

shows the empirical probability distribution functions constructed from samples of 

different sizes taken from the logistic map with 6 — 4.00 and compares them with 

the true probability distribution functions. For large sample sizes, the empirical 

and the theoretical probability densities are similar.

3.4 Lyapunov exp on en ts o f chaos driven sy stem s

We assume throughout this section that we work on a probability space. Before 

considering chaos driven systems, we would like to come back to Proposition 3.2, 

such that if {Et} is a chaotic sequence, then the sequence {g(Et)} is a K-system 

(if g is a measurable function). This does not mean that {g(Et)} is a chaotic 

sequence (in the sense of Definition 3.2).

If g is invertible (that is g~x exists), then g(Et+i) = g fg~ 1g(Et) and gf g~l 

generates a chaotic sequence (in the sense of Definition 3.2) by Propositions 3.2 

and 3.1; in particular, {g(Et)} has a positive Lyapunov exponent.

Now, if g is not invertible, then we do not deal with a dynamical system any 

more and the notion of Lyapunov exponent (as defined in section 3.1) has no 

meaning in this case.

In the introduction and in section 3.2, we have stressed the importance of 

chaos driven models. Before looking at the statistical inference on such models 

in the next two chapters, it is interesting to compute the Lyapunov exponents of 

some chaos driven models in view to seeing how close such models are to their
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Figure 3.5: Empirical probability distribution functions of the logistic map with 
9 =  4.00.
The sample size is (a) 50, (b) 100, (c) 500, (d) 1000. The graph (e) shows the 
theoretical p.d.f. .
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counterparts with stochastically generated noise.

Consider the following chaos driven non linear model:

Xt — g{X t-i) + Et,

where {Et} is a chaotic sequence. The (positive) Lyapunov exponent for {Et} 

is denoted Xf, moreover, we assume that the Lyapunov exponent exists for a 

dynamical system generated by g, we denote it Xg.

We have here a deterministic dynamical system on R 2:

Now, as in section 3.1, we compute D M n(x0), the Jacobian matrix of M n 

evaluated at x0.

and, for large n, the eigenvalues of D M n(x0) are very similar to enXf and enXg. 

So, in the same way as in section 3.1, the Lyapunov exponents of M  are Aj  and

We see that at least one of the Lyapunov exponents, namely A/, is positive 

and so the map M  is chaotic. Now, A; +  As > 0 would mean that on average areas 

are stretched by M; on the other hand, A/ +  Aff < 0  would imply that on average 

areas are contracted by M .

Consider an n-dimensional chaotic attractor with Lyapunov exponents Aj >

M : R 2 R 2 : : X t =  g(Xt. i )  +  / ( £ < _ ! ) ,  Et =  f(Et-i) .

So,

Xg.
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A2 > ...An. We can introduce the following notion (see, for example, Ott (1993) 

for more details).

The interest of this notion comes from the fact that it has been conjectured 

by Kaplan and Yorke (1979) that the Lyapunov dimension is the same as the 

so-called information dimension (fractal dimension; see, for example, Ott (1993)

present, the conjecture seems to be true but no formal proof has been given 

yet. Now, if the conjecture would effectively be true, then it would mean that 

the fractal dimension of an attractor could be given in terms of its Lyapunov 

exponents.

Coming back to our chaos driven non-linear model, let us deal with a particular 

case which will be analysed in the next chapter, namely the causal AR(1) driven 

by chaos X t =  a X t-i  + Et, |aj < 1. In this case, the function g : R R  is simply 

g(x) =  ax  and \ g =  ln\a\ < 0 (As < 0 is not a surprise since g has an attracting 

point {0}). The two Lyapunov exponents are Xi — A/ and A2 =  ln\a\.

Note that, for a fixed chaotic map / ,  as a  -* 1, the stretching process of the 

map M  (that is the action of / )  dominates the contracting process (attraction to 

{0}): Ai + A2 > 0. On the other hand, if a —> 0, the contracting process becomes 

predominant: Ai + A2 < 0.

For our map,

Now, for chaotic sequences {E,} generated by the logistic map with 0 =  4.00

Definition 3.10 Let I\ be the largest integer such that i > 0.

The Lyapunov dimension of the chaotic attractor is then defined as

for the definition and more details) of the attractor for ’typical’ attractors’. At

if A/ + ln\a\ > 0 

if Ay 4- /n|aj < 0
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(a) Lyap. dim = 1.30 (b) Lyap. dim = 1.58

e «

Figure 3.6: Attractors of the 2-dimensional map

X t — a X t-i + Et, Et — 4Et-i( 1 — Et- i)
with (a) a  =  0.1, (b) a = 0.3, (c) a =  0.4, (d) a  =  0.7.

(Lyapunov exponent A/ =  In 2) and for different values for a, we had a look at 

the resulting attractor and we computed the corresponding Lyapunov dimensions. 

This is illustrated in Figure 3.6.



Chapter 4

Statistical inference on chaos 

driven AR models

Sections 4.1, 4.2 and 4.3 closely follow Stockis and Tong (1996); they all deal with 

the statistical properties of the Yule-Walker estimators in chaos driven AR(1) 

models. Section 4.1 concentrates on the asymptotic bias, section 4.2 on the 

asymptotic normality and section 4.3 presents simulations concerning the first 

two sections. Section 4.4 gives the asymptotic results for the parameter estima­

tors in the case of chaos driven AR(p) models, p > 1. Section 4.5 illustrates the 

results of section 4.4 by means of examples and simulations. Finally, section 4.6 

introduces AR models driven by noisy chaos and gives results on the asymptotic 

normality of the autoregressive parameter estimators.

4.1 A sym p to tic  bias o f th e  Yule-W alker estim a ­

tor for an A R (1)

We consider a causal AR(1) model driven by chaos: X t+i =  a X t +  Et+1, that 

is |cr| < 1 (in particular, the AR(1) model is stationary) and {Et} is a chaotic 

sequence, thus ergodic (see section 3.2). Moreover, Et is assumed to have zero 

mean and finite variance.

63
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We shall be interested in the well-known Yule-Walker estimators of a, namely 

An =  E ^ 1 X tX t+1/ £?=1 X l  and d j  = Et=i X'tX't+1/ £?=1 of a, where X[ = 

X t — X n and X n denotes the sample mean.

For an AR(1) model with iid noise {^f}, these estimators are asymptotically 

unbiased and an -+p a  and a'n -+p a. We consider the same estimators in the 

present set-up because we want to know if this asymptotic property is preserved 

when the iid noise sequence is replaced by a chaotic sequence. We note that our 

results still hold if, keeping the other assumptions, we only require /  to be a real 

deterministic map and we assume that Et admits an invariant distribution which 

is also ergodic.

Let Pe {^){t e { )̂) denote the autocorrelation (autocovariance) at lag i of the 

sequence {Et}, £ =  £ ~ i  oE V e W, 5 = 1 + 2a£ and c =  (1 -  a2)/5, where it is 

assumed that 5 ^ 0 .

Theorem 4.1

ân —yp a +  c£.

Proof:

a ,
X tx u l  i z  S E W X, 1

First, denote \  £?=1 Et+uEt+v by %,E(u ~ v) and %,e Ü )/Îti,e (0) by pn,E{j)- 

Now,

i [ E  Bw x t)
u  t= 1

= — [^2 Et+iEt + a ^2 Et+\Et-i  + a2 ^  Et+\E t-2 +  •■•]
71 t = 1 i = 2  t = 3

=  7n,£;(l) + a 7ji,e(2) + a27n,£(3) + ... +  Op( - ) .IL
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Similar calculations give

— Y  A 2 =  ;------ j[7n,e(0) +  2û'771 e (1) +  2 a 27„i£;(2) +  ...] +  O p (  —  ) .n fHy 1 — or n

By Theorem 3.1, we may say that j „,#(?) — 7^(i), i =  0,1,.... Hence 

Pn,E{i) ->p Pe (î), i = 1,2,... since for all z > 1, 7„,£;(z) 7b (z) and 7„)£;(0) ->d

7^(0), so PnlE(i) -*d Pe {î), which implies that pniB(z) ps (z), by using Propo­

sitions 6.3.8 and 6.3.5 of Brockwell and Davis (1989).

We conclude by noting that h : x  ->■ (1 — a 2)x /(l + 2ax) is a continuous 

mapping, so Proposition 6.3.4 of Brockwell and Davis (1989) applies. □

Corollary 4.1

OLn —C o. +  cf.

Proof : It is enough to show that &n -  a'n -7P 0. This is easily verified since 

X n —>a-s- 0 by the ergodic theorem (see section 3.3) and so {Xn)2 ->p 0 (h : x  —» x2 

is a continuous mapping). □

For all the chaotic sequences (with finite variance), we have been able to quan­

tify the asymptotic bias of the Yule-Walker estimators. These estimators are not 

necessarily asymptotically unbiased: in fact, the autocorrelation function for {Et} 

plays a vital role for the asymptotic bias of the estimators. Moreover, if there is 

bias, the value of a  comes into the bias term. Examples and simulations will be 

given in section 4.3. Now, we shall turn our attention to the asymptotic normality.

4.2 A sym p to tic  norm ality o f th e  Yule-W alker  

estim ator for an A R (1)

As in section 4.1, we consider an AR(1) model driven by a zero mean chaotic 

sequence {E,} with finite variance: Ari+i =  oiXt + Et+U |a | < 1.
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For a causal AR(1) model with iid noise {£î}, it is well known that the Yule- 

Walker estimators ân and à'n have central limit properties. In fact,

n» (a^ — a) —>■d Af(Q, 1 — a2).

Is this asymptotical normality preserved for chaos-driven models? Unlike the 

asymptotic bias, we shall not answer this question for all chaotic sequences but 

we shall give sufficient conditions on the chaotic sequence {Et} under which the 

asymptotic normality is preserved. As a by-product, we shall get the theoretical 

asymptotic variance, which will be, as it may be expected, often different from 

the iid case.

To study the asymptotic distributions of the estimators an and a'n, one way 

is to appeal to the central limit properties of the sample autocorrelation function 

which hold under some conditions. One commonly used condition is a linear 

representation of X t in terms of iid random variables Zt's with finite variance:

” If {At} is the stationary process

O O

A' t - p =  i z t} ~  iid(0,a2)
j— oo

where E(A'i) =  p, £ “L-oo |Vhl < 00 and X^-oo W j  < 00> then
for each h 6 {1,2,...}, p(h) is asymptotically J\f(p(h),n~1W), where W  is the

covariance matrix whose (Uj)-element is given by Bartlett’s formula,

O O

=  { J2 {pz(k + i)pE(k + j ) + pE(k -  i)pE(k + j)  +  2pE{i)pE(j)p2E(k)
k——oo

-2 p E(i)pE{k)pE{k + j) -  2pE{j)pE{k)pE(k +  »)})-”

(see, e.g., Theorem 7.2.2 of Brockwell and Davis (1989)).

This is clearly not directly applicable to our case because X t =  X “ o aJEi--j,
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where the E f  s are not mutually independent in view of the fact that E t+1 =  f ( E t). 

However, the technique is still useful indirectly as we shall now show.

Note that it is possible to relax the assumptions on the Zt’s and basically 

require them to be uncorrelated and that E(Zt jZt-i, Zt~2, •■■) = 0 almost surely 

for all t (see, e.g., Hall and Heyde (1980)). However, the last condition is not 

satisfied by our chaotic sequences {Et} since E(Et \Et-i, Et- 2, ...) =  f ( E t-i).

Now, some deterministic dynamical systems are Bernoulli systems. This means 

that they can be represented as a symbolic dynamics consisting of a full shift on 

a finite number of symbols (following Definition 3.6). So, the chaotic sequences 

{Et} generated by such systems admit the linear representation Et — E {Et) = 

YLiL-oo where {Zt} is a set of iid random variables with zero mean and

finite variance (see, for example, Billingsley (1965) or Ott, (1993) for more details). 

An example of a Bernoulli system is given by the modulo map /  : x —> 2x (mod 

1) from [0,1] to itself (see sections 2.1 and 3.2). The following theorem gives the 

central limit properties for the Yule-Walker estimators of AR(1) models driven by 

such sequences {Et}.

T heorem  4.2 If E t can be written as

OO

Et — 'y ( Vi Ht—i,
i= —00

where //. =  E (Et), E ” -oo iV’tl < 00 > E S -00 VWI < 00, and {Ztj is a set of iid 

random variables with E(Zt) — 0 and E(Zt2) = o1 < 00 , then

n*(etn — a — c£) —>d J\f(0, S~2c2aTWa),

where aT = ( l ,a ,  o ’2, ...) and

IE — (â ij )j=i , . . . , ^ = 1 , . . .

00
= ( {/^(^: + ’i)pE{k + j) + pE{k -  i)ps(k  + j)  + 2PE{i)pE(j)p2E{k)
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— 2PE{i)PE{k)PE(k + j )  -  2PE{j)PE{k)pE{k + *)})•

Proof:

a„ — cu —
bU E tX t-x

Here and later the symbol means ‘equal up to Op(^) \  Now, let

_  i £ M . ,  _  i Z X [
b E E ?  ’ a n d l " è £ £ f

Then

Zn — Rn = PE,n—l (l) + OipE,n- 2(2) + Cz2 pE,n~z{?>) + ■■■

and R n is asymptotically J\f(£,^aTWa) since for each j , the asymptotic joint 

distribution of (pe (1), •••, Pe U)) is normal (by Theorem 7.2.2 of Brockwell and 

Davis (1989), stated earlier in this section) The result then follows easily by using 

the characteristic functions or equivalently Proposition 6.3.9 of Brockwell and 

Davis (1989). Now,
1 + 2 aRnY r v  ___________________1 n  — -i 91 — or

and therefore an — a  ~  g(Rn) with g, differentiable at £, defined as

g(Q
( i - a 2)C 
1 + 2«C '

Thus, by Proposition 6.4.1 of Brockwell and Davis (1989),

«2 (an — a — c£) —>d Af(0, 5 2c2aTW a), 

which concludes the proof. □

Corollary 4.2 Under the conditions of Theorem f.2,
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—  a  — c£) —>d A/”(0, ó~2c2aTWa).

Proof: It is enough to show that Ei^-oo \cov(^t, N t+i)\ < oo. Now,■ =  —  0 0

OOE \cov(Xt, X t+i)\
i— — OO

00 00 00
= E E E a ] a k\c o v {E t - j , E t+i-k)\

i=—00 j=0 /c=0 
00 00 0000 00

= E aJE«fc E |cou(Et_i,£'t+¿_fe)|.

Further, E~-oo |cou(£t_j, £ i+i_fc)| =  a finite constant, independent of j  and 

k, due to the linear representation of Et and E “ _oo 1^1 < 00. □

Now, there exist similar propositions to Theorem 4.2. For example, we can 

trade off some of the assumptions on the sequence {tpt} with a finite fourth moment 

assumption on {Zt}.

Theorem 4.3 If Et can be written as Et — /i = E “ - 00 > where ¡j, =  E (Et),

E~_ool^ l  < 00 and {Zt} is a set of iid random variables with E (Zt) =  0 and 

E (Zf) < 00, then

where a, and W  are as in Theorem f.2.

Proof : The proof is similar to the proof of Theorem 4.2 but this time Theorem 

7.2.1 in Brockwell and Davis (1989) is used. □

c£) Af{0,6-2c2aTWa),

Corollary 4.3 Under the conditions of Theorem J,.3,
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n 2 (â'n — a  — c£) — A/"(0, 5 2c2ar ITa).

Proof: The proof is identical to that for Corollary 4.2. □

An example which meets the conditions of Theorems 4.2 and 4.3 is given by the 

above-mentioned map: Et+\ = 2Et (mod 1), which we shall analyse in the next 

section but for now we enlarge the class of chaotic maps such that the asymptotic 

normality for an still holds. To this end, we need to introduce the notion of 

U-statistics.

D efinition 4.1 Let Y\, I 2, ... be a strictly stationary stochastic process taking val­

ues in Rd with distribution F. Let h : R d x ... x R d —> R be measurable and
m times

symmetric in its m arguments; h is called the kernel for

6=  f ... Í  % i ,  Y[dF(yi).
J J i= 1

Then a U -sta tis tic  Un is given by

-1

Un =
n

m
h(Ytl,...,Ytm) (n > m).

l<tl <Í2<...<tm <n

We shall focus here on kernels of the type h : R  —> R  and so 9 =  /  h{y\)dF{y{) =  

EF(h(Vl)).

We shall appeal to Denker and Keller (1986), which provides asymptotic re­

sults including central limit theorems for U-statistics of sufficiently well-behaved 

functionals of an absolutely regular stationary process (see Definition 3.8 for the 

definition of an absolutely regular process). Here is Theorem 1 of Denker and 

Keller (1986) (for the case in which the kernel h. goes from R. to /?.): ” The sequence
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Un of U-statistics converges to 9 in probability, and the sequence n 1/2 (Un—9) con­

verges in distribution to the normal distribution with expectation 0 and variance 

<j2 = EF[h(Xi)2] -  92 + 2 T ,r>2 E[(/i(Ari) -  9)(h(Xr) -  9)], provided the following 

conditions hold.

1. h satisfies the Lipschitz condition: there are L > 0, r > 0 and p > 0 such 

that

|h(x) -  h(y)| < \x -  y\p{l + |x|r + |y|r), x ,y  e R.

2. {Zn : n > 1} is an absolutely regular stationary sequence with /3(n)2+i =  

0 (n~2~£) for some e,r) > 0.

3. {X n : n > 1} is a Lipschitz functional of {Zn : n > 1}: we assume that 

there exists a function g{u\, u2, ...) satisfying X 3 = g(Zj, Z3+15...) for j  > 1 

and g is Lipschitz-continuous in the sense that there are some a < 1 and 

c < oo such that

I g(zu z2,...) - 9(4 , 4 ,...) | < can if zx =  z[,...,zn = z'n.

Now, by Denker and Keller (1986), some dynamical systems {Et}, in particular 

the so-called interval transformations, can be regarded as functionals of absolutely 

regular processes {Zt} and many of the more complicated systems behave very 

much like an interval transformation . The next theorem follows from Theorem 1 

of Denker and Keller (1986).

Theorem 4.4 Let X t+i = a X t + Et+\ and, an be defined as before. Suppose that 

the following conditions hold.

1. {En : n > 1} is a Lipschitz functional of {Zn : n > 1}. Specifically there 

exists a function g{ux,u2,...) satisfying E3 = g(Zj, Zj+i, ...) for j  > 1 and 

there are some A < 1 and c < oo such that

\g(zu z2,...) -  g(z[,z'2,...)\ < c \n if zx = z[,...,zn -  z'n.
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2. {Zn,n  > 1} is an absolutely regular stationary sequence with (d{n)2+,i = 

0 (n_2~e) for some > 0.

3. h(Et) = Et[Y,i^\ a1-1 f l(Et)] satisfies the Lipschitz condition. Specifically, 

there are L > 0, r > 0 and p > 0 such that

O O  OO

| i E a i_1/ ‘(i)] -  y [ X V - 7 z(y)]l < L\x -  y\p{l + |x|r + |yf)
2—1 2=1

for all x and y belonging to the support of E t.

Then, an is asymptotically fif (ct + (0),c2a 2/(« 7| ( 0)52)),

where 9 =  Ejr[h(i?i)] with respect to the invariant distribution F for {Et}, a2 = 

Ef [/i (£’i )]2 -  92 +  2J2r>2^F[{h(Ei) -  0)(h(Er) -  0)] and c and. 5 are as defined 

in Theorem f . l .

Remarks: (i) Condition 3 is met if /  is continuously differentiable, (ii) There 

are maps which satisfy the conditions of Theorems 4.2 and 4.3 but not those of 

Theorem 4.4. One such map is given by Et = 2Et-i  (mod 1).

Proof :

an — a. — Ï Z E t X t - 1
I T . X 2

Let Zn =  %EEtX t-i  and Yn = ¿ E X 2. Now,

E7= 1 E i E i + 1 , Y fiZ i  E í E í+2 , 2  E ? T i 3  E j E l+3
Zn — + a + £T +

n n n

and
El+l = f (E l) ,E l+2 = .f2(El),

and so on. Therefore,

Zji - i : T O ) + « m ) + 4
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Also, Zn ~  i  YfiiZi E^YTjLi aj ~l f j {El)\. Now, Zn is, up to order 1 /n , equal to a Li- 

statistic whose associated kernel is h : x —> ol1~1 f l{x)] . Thus, by Theorem

1 of Denker and Keller (1986), we get that Zn is asymptotically AT(9, a2/n)  , where 

9 = Ef IHE^} and

o1 = Ef[h(Ei)}2 - 9 2 + 2 £  M i H E i )  ~ 9){h{Er) -  0)}.
T >  2

So, {7£ (0)}_1Z„ ~  A/’(0/7f;(O),a2/(n7|(O)). Now, we can use the fact that 

{7£ (0)}-1y„ ~  (1 +  2Q{7E(0)}-1Zn)/( l  -  a 2) in a similar way to the proof of 

Proposition 2.2 to get the result. □

Note that the well-known logistic map E  —* 4E{1—E), E  G [0,1] is an example 

of dynamical systems which satisfy the conditions required in the above theorem.

Lem m a 4.1 Let X t+x = a X t + Et+x be defined as before. Suppose that the fol­

lowing conditions hold.

1. {En,n  > 1} ¿5 a Lipschitz functional of {Zn,n  > 1} in the sense of Theorem 

44.

2. {Zn,n  > 1} is an absolutely regular stationary sequence with /?(n)2+7 = 

0 (n~2_e) for some e, 77 > 0.

Then X n is asymptotically J\f (0, v2/{(1 — a)2n}), 

where v2 — var(Ex) + 2 X)r>2 cov(Ex, Er).

Proof:

X = En + ... + E2 + L  + ftPn-1 + ... + OtE\ T
n

(1 +  « + ... +  a"“ 1)
n

E x + ... +
(1 +  a  + ... + cvn l) En

n
1 1

i=i j=o 1 i=i
E,.
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So the function h : x —>■ x can be seen as the suitable kernel. We can apply 

Theorem 1 of Denker and Keller (1986) and deduce that X n is asymptotically 

Af(0, u2/{ (l -  <y)2n}), where v2 = var(Ei) + 2 X4>2 cov(Ei, Er). □

C orollary 4.4 Under the same conditions as in Theorem 4-4, ¿4 asymptoti­

cally Af(a  + c9/j e (0), c2u2/(n 7| ( 0)(i2)).

Proof: It is enough to prove that lim,woo nVar(X„) < 00 which follows from the 

above lemma. □

We shall illustrate the above asymptotic results with numerical examples in 

the next section.

4.3 S im ulations

The purpose of our simulations is to illustrate the theoretical results of sections 4.1 

and 4.2 by means of sequences {Et} generated by some maps introduced earlier in 

this thesis. As bench-marks, we include two pseudo-random number generators 

from the NAG Fortran library, namely G05DAF (for uniform distribution) and 

G05DDF (for Gaussian distribution), both of which are based on chaotic maps of 

the same form as G05CAF (see section 3.2 for more details) . Other maps include 

(i) /(-£)) =  2Et (mod 1), the so-called modulo map, which fulfils the conditions 

of Theorems 4.2 and 4.3 because

E , - \ =  E  V - 'Z t- i ,
j = ~  OO

where, for each t, Zt =  —0.5 or 0.5 with equal probability, (ii) the logistic map 

Et+\ =  9Et( 1 — Et), 0 < Et < 1, 9 = 4.00, which fulfils the conditions of Theorem

4.4 (Denker and Keller (1986)) and (iii) three other logistic maps, namely 9 =  3.98, 

9 = 3.825 and 9 = 3.58, for the first of which the autocovariance appears to decay 

quite quickly, for the second of which quite slowly and for the last of which not
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at all (see Figure 3.3). These three maps satisfy the requirements of Theorem 4.1 

( like all the other maps included in this section) but do not fulfil the conditions 

of either Theorem 4.2. 4.3 or 4.4.

For the simulations, we standardize every chaotic sequence {Et} to zero mean 

and unit variance. A minor remark is in order here: for the map x i—>■ 2x(modl), 

we replaced 2 by 1.99999 in the simulation in order to avoid degeneracy due to 

finite precision arithmetic.

Figure 4.1 compares, on the one hand, the means of observed a'n and those 

based on our theory. The results appear to be in accord with Theorem 4.1 and 

Corollary 4.1. It also provides with the asymptotic (theoretical) means for all 

the possible values of a. We can notice the role of both the noise autocorrelation 

function and the true value of a in the determination of the bias. In particular, we 

get a positive bias for the models driven by the modulo map since the modulo map 

has a positive autocorrelation function and we get a negative bias for the models 

driven by the last three logistic maps since the first lag of their autocorrelation 

functions is (clearly) negative and predominant in the computation of the bias.

Figure 4.2 gives the sample variances of the observed o^s and the asymptotic 

variances. For the first four maps, their asymptotic (theoretical) counterparts 

are available because these maps meet the requirements of either Theorem 4.2, 

Theorem 4.3 or Theorem 4.4. The observed results appear to be in accord with 

the theoretical ones. In particular, we can note that, for some values of a , the 

asymptotic variances can be smaller in the case of chaotic noise than in the iid 

noise case. For the sake of curiosity, we have also included the results based 

on Theorem 4.4 for the three other logistic maps (with 9 ^  4) although strictly 

speaking these maps do not meet the requirements of the said proposition. There is 

apparently good agreement with the sample variances only for the case of 9 — 3.98.

Finally, Table 4.1 and Figures 4.3, 4.4, 4.5, 4.6 and 4.7 (all located at the end 

of this section) focus on the asymptotic normality of the estimator of a.
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gOSddf; g05dal; logistic map 4.00

modulo map logistic map 3.98

logistic map 3.825 logistic map 3.58

Figure 4.1: Means of the estimators of a.
The simulated expectations are obtained using 2000 replications of a 'n; n, the 
estimators sample size, is taken equal to 2000. Simulated means ( denoted by an 
asterisk on the graphs) are obtained for four values of a  ( -0.9, 0.1, 0.5 and 0.9). 
The theoretical (asymptotic) means are based on Corollary 4.1 (solid line on the 
graphs). When different from the theoretical values, the (unbiased) means of the 
iid case are displayed, (dashed line on the graphs).
Note that in the first graph, ’x’ and ’o’ respectively denote the simulated 
expectations for gOSddf, gOSdaf and the logistic map 0=4.00.



CHAPTER 4. CHAOS DRIVEN AR MODELS 77

F igure 4.2: Variances of the estimators of a.
The simulated variances are obtained using 2000 replications of a'n; n, the esti­
mators sample size, is taken equal to 2000. Simulated variances ( denoted by an 
asterisk on the graphs) are obtained for four values of a ( -0.9, 0.1, 0.5 and 0.9). 
The theoretical (asymptotic) variances are based on the results of our paper (solid 
line). ( The asymptotic variances of the last three logistic maps are computed 
using Corollary 4.4 although these maps do not satisfy its conditions. They are 
included for the sake of curiosity.) When different from the theoretical values, the 
variances in the iid case are displayed (dashed line).
Note that in the first, graph, ’+ ’ and ’x’ respectively denote the simulated variances 
for g05ddf and g05daf.
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The Lin-Mudholkar test statistic, which is calculated in Figure 4.3, is a for­

mal test for normality of a sample {ei,...,e^} against asymmetric alternatives. 

Specifically, we calculate

1 N
Vi { yy

N
CTe,N  - )2]}1/3. ¡ = 1. 2, . . . ,A’

and then
P _______— e)(y. -  V)______________

[EfeiW(«i-e)2E,=,
The Lin-Mudholkar test statistic |(Ar/3 )1/'2/n [(l+ i? )/(l-i? )] is asymptotically 

Gaussian with zero mean and unit variance, under the null hypothesis of Gaussian 

et (see, e.g., Tong (1990) for more details).

In conformity with our theoretical results, approximate normality is apparent 

with the cases corresponding to the two bench-mark pseudo-random number gen­

erators and the maps Et+1 =  2E t (mod 1) and Et+i = 4.0015)(1 — Et) across a 

range of a-values but with slower rates when |a | gets close to 1. We also note 

some dissimilarity between results for negative and positive cc’s of the same abso­

lute value and this is especially pronounced when |a | is close to 1. Interestingly, 

apparent normality is also discernible for the cases of Et+i = 3.98i5t(l — E t) and 

Et+i — 3.825i5t(l — Et) although these maps are not covered by our theorems. 

Perhaps simply a sufficiently fast decaying autocorrelation function will suffice as 

far as asymptotic normality of an is concerned (see comments in section 5.5).
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Sample
Skewness

Sample
Kurtosis

g05ddf 
n =  2000 
ct =  0.5 - 0.102929 3.156206
a  =  0.1 - 0.035588 3.013313
a — - 0.9 0.205289 3.080298
a  = 0.9 - 0.213887 2.946009
n = 5000 
a  = 0.5 - 0.031205 3.097154
a = 0.1 - 0.036171 2.970640
a  =  - 0.9 0.137397 2.932504
a = 0.9 - 0.127471 2.798081
g05daf 
n = 2000 
a  =  0.5 - 0.044629 3.009571
a  = 0.1 - 0.076833 2.892512
a = - 0.9 0.325429 3.099805
a =  0.9 - 0.312897 3.100372
n = 5000 
a = 0.5 - 0.065595 2.873174
a  =  0.1 - 0.037893 2.961994
a = - 0.9 0.167542 3.163506
a = 0.9 - 0.175853 3.128923
modulo map 
n =  2000 
a = 0.5 - 0.073572 2.901026
« =  0.1 - 0.142594 3.077332
a = - 0.9 0.193375 2.767712
a = 0.9 - 0.299238 3.023678
n = 5000 
a =  0.5 - 0.026970 2.992609
a  = 0.1 - 0.030186 2.996988
a = - 0.9 0.157215 2.941212
a = 0.9 - 0.145436 2.780902

Table 4.1: Skewness (E(A' -  p)3/(E(AT -  p )2)3/2 =  0.0 if normality) and kur- 
tosis (E(X — //,)4/(E(Ar -  /7,)2)2 =  3.0 if normality) were calculated using 2000 
replications of a'n.
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Table 4.1 continued

logistic map 
9 = 4.00 
n =  2000 
a  =  0.5 - 0.081083 2.803469
a  =  0.1 - 0.016817 3.057636
a  =  - 0.9 0.154694 2.959089
a = 0.9 - 0.334866 3.424140
n = 5000 
a  -  0.5 - 0.107170 2.756208
a — 0.1 - 0.036229 3.048160
a — - 0.9 0.120772 2.901569
a = 0.9 - 0.119712 3.025298
logistic map 
9 = 3.98 
n =  2000 
a  =  0.5 0.034626 2.980752
a =  0.1 - 0.106701 2.921137
a =  - 0.9 0.140162 2.966413
a = 0.9 - 0.241007 3.097172
n =  5000 
a  = 0.5 0.030967 2.985265
a  = 0.1 0.021639 2.918680
a = - 0.9 0.091189 3.052831
a — 0.9 - 0.172674 3.092035
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Table 4.1: continued

logistic map 
9 = 3.825 
n =  2000 
a  =  0.5 0.157950 2.921348
ol =  0.1 - 0.099438 3.208453
a — - 0.9 0.315055 3.150483
a = 0.9 - 0.120731 2.912444
n =  5000 
a  =  0.5 0.086102 3.155930
a  =  0.1 - 0.075569 3.024323
a  =  - 0.9 0.105426 2.906152
a  =  0.9 - 0.078113 2.938930
logistic map 
9 = 3.58 
n =  2000
a  =  0.5 0.848187 3.615705
a = 0.1 0.181564 2.980237
a  =  - 0.9 0.264270 2.243885
a = 0.9 1.445372 4.436787
n =  5000 
a  =  0.5 0.563053 3.412199
a  =  0.1 - 0.000096 3.204436
a  =  - 0.9 0.247537 2.312345
a  =  0.9 1.458308 4.499411
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g05ddi

parameter

parameter

g05daf

F igure 4.3: Lin-Mudholkar test statistics.
Under normality, the Lin-Mudholkar test statistic has a standard normal distri­
bution.
Lin-Mudholkar test statistics were calculated using 2000 replications of a'n. ’+ ’ 
and ’x’ respectively denote the Lin-Mudholkar statistics for n=2000 and for 
n=5000. They are displayed for four values of a  ( -0.9, 0.1, 0.5 and 0.9).
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Figure 4.3: continued
logistic map 3.98 logistic map 3.825

parameter parameter

parameter
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g05ddf g05daf

Figure 4.4: Normal probability plots for the case a = —0.9.
The normal probability plots were obtained by using 2000 replications of a'n\ n
was taken to be equal to 5000.



CHAPTER 4. CHAOS DRIVEN AR MODELS 85

F igure 4.4: continued
logistic map 3.98 logistic map 3.825

logistic map 3.58

data
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g05ddf g05daf

Figure 4.5: Normal probability plots for the case a = 0.1.
The normal probability plots were obtained by using 2000 replications of a!n\ n
was taken to be equal to 5000.
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Figure 4.5: continued
logistic map 3.98 logistic map 3.825

logistic map 3.58
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g05ddt g05daf

Figure 4.6: Normal probability plots for the case a = 0.5.
The normal probability plots were obtained by using 2000 replications of a'n\ n
was taken to be equal to 5000.
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F igure 4.6: continued
logistic map 3.98 logistic map 3.825

logistic map 3.58



CHAPTER 4. CHAOS DRIVEN AR MODELS 90

g05ddl

data

modulo map

g05daf

data

logistic map 4.00

Figure 4.7: Normal probability plots for the case a = 0.9.
The normal probability plots were obtained by using 2000 replications of a'n; n
was taken to be equal to 5000.
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Figure 4.7: continued
logistic map 3.98 logistic map 3.825



CHAPTER 4. CHAOS DRIVEN AR MODELS 92

4.4  E xtensions of th e  resu lts to  A R (p )

We consider now a causal AR(p), p > 1, model driven by chaos:

X t = a iX t-i  +  ... + apX t- p 4- Et, oiv ^  0.

We recall that an AR(p) model is said to be a causal function of {Et} if there exists 

a sequence of constants {tjjj} such that E y L o  l^ l  <  0 0  and X t =  Y^jLo^jEt-j,

t — 0 ,1 ,_ See, for example, Brockwell and Davis (1989) for more details. In

particular, an AR(p) is causal if and only if <j>(z) =  1 — ol\Z  — ... — apzp, the 

characteristic equation of the model, has all its roots outside the unit circle (that 

is, |Ax| > 1,..., |AP| > 1). The fact that an AR(p) is causal implies thus that it is 

stationary. As for the AR(1) case, {Et} is assumed to be a chaotic sequence (in 

the sense of Definition 3.2) with zero mean and finite variance.

For a causal AR(p) model with iid noise {et}, et ~  ud(0 ,a2), it is well known 

that

n i (&n -  a) -Ad M(0, (r2r~ x),

where ~^d denotes the convergence in distribution, FPtx  — [7x(*— j)]ij=i» an<i  Hie 

Yule-Walker estimators an =  (di,„, d2,n, •••, &p,n) = Rp,h,xPp,n,x, where Rp,n,x = 

[Pn,xi} j)]ij=1) Pp,n,X (Pn,x(l)j •••) Pn,x{p)) and

- M  7n,A'(j) j g W p
jn,x(0) ‘ U , ! , 2 '

The rest of the section will deal with the following question: when the sequence 

{et} is replaced by a chaotic sequence {Et}, are the asymptotic properties (i.e. 

unbiasedness, normality) of the Yule-Walker estimators preserved?

Two remarks are in order here. Firstly, similar to the AR(1) case, there are 

also estimators a'n =  RPjn,xPp,n,x- Note that a11 the properties which will be 
derived for an apply to a!n. The proofs, which are similar to those of sections 4.1 

and 4.2, are omitted for the sake of brevity; so, we are not going to speak about a'n
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in this section. Secondly, our results still hold if, keeping the other assumptions, 

we only require /  to be a real deterministic map and we assume that E t admits 

an invariant distribution which is also ergodic.

By causality, there exists a sequence {ipj} such that iV'jl < 00 and X t — 

t = 0,1,... . Now, the coefficients {ipj} are determined by the

relation

A possible way of obtaining these coefficients is as follows: ( l - o q z - . . . - a pzp)[^{)Jr 

ipiz +  i>2Z2 + ••■) =  1-
Equating the coefficients of zj , we get ip0 =  1 and

Therefore, by recursion, ipo =  ljVh = « 1,^2 =  a 2 +  (see, for example,

Brockwell and Davis (1989) for more details and other ways of getting the ipj’s). 

So, in the following, we should keep in mind when facing the ipj's that they can 

easily be calculated in practice.

We study the bias first.

Theorem 4.5

*w = | ZC z> = W Y

1

â n -+p RPtxPp,x

where Rp¡x =  [px(i ~ j)]h=i> PpA -  (px{ 1 ) ,  Px{p))'■

Proof:

-  (V»o + + -)7n,js(0) + 2(i/>oVh + Vh'02 + ••■)7n,E(l)
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+  2 ( V )o V , 2  +  ' 0 l ' * / , 3  +  ■••)7n,£(2) +

In the same way,

n—k
7»,*(*) =  - E M i+fc

t=l

= — EiV’oEt +  ip\Et- i  + •• •)('00-̂ 't+fc + ij)\Et+k-\ +  •••), A; — 0, 1, ...,p.n

Thus,

7n,x(*0 -  E (^^+ fc)7«T (°)
i=0

O O  O O

+ E E(̂ V»j+|i-fc|) + ÿj1Pj+i+k)în,E(l), k =  0, 1,
i - 1 j = 0

Now, 7„,£;(0 7s(*) , i = 0,1,2,... by Theorem 3.1 and J n,x(k) =

A(7n,jB(0),7n,£;(l), • ••), with /* continuous function, k = 0,1, ...,p. So, by Propo­

sition 6.3.4 of Brockwell and Davis (1989), we get 7n,x(k) -* p fk{jE{0),  7 e (1), ...)> 

k — 0,1, ...,p and thus, by Proposition 6.3.8 of Brockwell and Davis (1989),

- (k) p /fc(7g(O),7g(l),-0
P"’A( '  / o(7e (0),7e (1),...)’

k = 1, 2, ...,p.

Now, for A: =  0,1, ...,p,

7x(fc) =  cov(Xt,X t+k)
OO OO

cot; Ç £ ' P i E , - i , Y .  'Pi-Ht+k—i)
j=0 ¿=0

00 0 0 0 0

= E(Wi+*)7s(°) + E E(̂ +̂|i-fc| + V»iV»j+i+fc)7jB(0
j=o ¿=1 j=o

=  //c(7e (0),7e (1)>---)

and so,

Pn,X {k̂ j ->p px(k).
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Now, for i = 1,2, cqi7l is a continuous function of pn,A'(l)> Pn,x{p) 

and thus, by Propositions 6.3.4 and 6.3.7 of Brockwell and Davis (1989), we get

an —>p Rp xPp,x- 61

Now, RpxPp,x is not necessarily equal to a. In fact, except in the case where 

the sequence {Et} is uncorrelated, we get an asymptotic bias. This can easily be 

seen from the form of px(k) =  /o(7g(o)7g(i)’"') ■ particular, in the case of an 

AR(1) model, we have

1 9 00
7x(°) = ^ ¿ 7 s ( 0 )  +

and 7x {j) =  <*7x{j ~  1) +  T,Zj a I-J7£(*), j  = 1, 2,... .
So,

px{0) = 1 ,Px(j) = u p x 0  -  1) + - ------O > !>

which can be very different from the iid (or, equivalently, from the uncorrelated 

case) where px{j) = j  > 0.
For all the chaotic sequences (with finite variance), we have been able to quan­

tify the asymptotic bias of the Yule-Walker estimators. In the next section, ex­

amples and simulations will be given in the case of an AR(2) model.

We now focus on the possible asymptotic normality of the Yule-Walker esti­

mators. Remember that it has been possible to obtain the asymptotic normality 

of a  in the case of AR(1) basically for two types of chaotic sequences, namely 

the Bernoulli systems and chaotic sequences satisfying a version of Denker and 

Keller (1986)’s theorem. We are going to show that for AR(p), p > 1, we can get 

the asymptotic normality of a for the Bernoulli chaotic sequences and for chaotic 

sequences satisfying a version (slightly stronger than in the AR(1) case) of Denker 

and Keller’s theorem.

The next theorem corresponds to Theorem 4.2 in the AR(1) case. Before
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stating it, we need to introduce the following notation. By the proof of The­

orem 4.5, we know that, for k = 1,2, ...,p, px(k ) is a (continuous) function of 

Pe (1), Pe (2), thus, each component of the column vector Rf^xPP,x is a function 

of pe (1),pe(2), ...: we denote {R~'x pP,x)k =  Pfc(Pi?(l), Pe (2), ■■•)> k =  1,2,

T heorem  4.6 I f E t can be written as

OO
Et p — ^ ) ipiEt—i,

i=—OO

wdiere p = E(Et), Jf°Z_00 iV’il < 00 > YliZ-oo < °o, and, {Zt} is a set of iid 

random variables with E(Zt) =  0 and E(Z2) = cj2 < oo , i/ien

n5(an -  # ; > , , * )  ->d Af(0, W D ') ,

where aT =  (1, a, a 2, ...) and 

W  =  (iUij)i=l,...J=l,...
OO

= ( 5Z { P s^  + ^ P E ^  +  j) +  Pb (& -¿ )P e (* +  j)  + 2pE(i)pE(j)p2E(k)
k — —oo

-2 p E(i)pE(k)pE(k +  j) -  2pE{j)pE{k)pE{k +  *)})•

and D is the matrix [(^)(p*)]i=1,2...P; ¿=1,2,..., where p* -  (pE(l), pE(2),

Proof. For each j ,  the asymptotic joint distribution of (pE( 1),...,pE(j)) is normal 

(see, e.g., Theorem 7.2.2 of Brockwell and Davis (1989)).

So,

(Pe (1),Pe (2), •••)' is asymptotically J\f ((pe(l), Pe(2),...)', n~lW)

Now,

®fc,n — 9  k ( P ti,e ( 1 ) i Pn,i?(2) )•••)) k  l , 2 , . . . , p

and each gfc is continuously differentiable in a neighborhood of p*\ on the other 

hand, the matrix DW D' has all of its diagonal elements non-zero.
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So, we can get the conclusion by applying Proposition 6.4.3 of Brockwell and 

Davis (1989). □

The following theorem is the analog of Theorem 4.3 which addresses the AR(1) 

case.

T h eorem  4.7 If Et can be written as Et — ¡a =  , where p =  E (Et),

'ÏZiZ-oo \4>i\ < oo and {Zt} is a set of iid random variables with E (Zt) =  0 and 

E(Zt4) < oo, then

nH an -  R-)cPv,x) ->d Af(0, DWD'),

where W , D, gk, k = 1,2, and p* are as in Theorem f.6.

Proof: The proof is similar to the proof of Theorem 4.6 but this time Theorem 

7.2.1 of Brockwell and Davis (1989) is used. □

Note that the chaotic sequences {Et} generated by the modulo map satisfy 

the requirements of Theorems 4.6 and 4.7.

Now, we shall state and prove the theorem which corresponds to Theorem 4.4 

in the AR(1) case. The condition 3 in Theorem 4.4 has to be slightly strengthened 

if we wish to ensure the asymptotic normality of the Yule-Walker estimators for 

any order p of the causal AR(p) model. We can, however, notice that, if /  is 

continuously differentiable, then the (new) condition 3 of Theorem 4.8 will be 

met as was the condition 3 of Theorem 4.4.

Before Theorem 4.8, we introduce the following notation:

R~xPp,x = =  (/i(7S(0),7£(1), - ) , - , / p(7£(0),7*(1),-))'

T heorem  4.8 Suppose that the following conditions hold:

1. {En : n > 1} is a Lipschitz functional of {Zn : n > 1}. Specifically there 

exists a function g(ui, u2, ...) satisfying Ej — g(Zj, Zj+\ ,...) for j  > 1 and
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there are some A < 1 and c < oo such that

\g(zu z2, ...) -  g(z[, z'2, ...)| < cXn if zx = z [ , z n = z'n.

2. {Zn,n  > 1} is an absolutely regular stationary sequence with /3(n)z+* = 

0 (n~2_£) for some e,rj > 0.

3. hk(Et) =  Etf k(Et), k — 0,1, 2, and every linear combination of hk(Et) ’s 

satisfies the following Lipschitz condition:

let h be any of the above functions; then there are L > 0, r > 0 and p > 0 

such that

\h(x) -  h(y) | < \x -  y\p{l + |.x|r + |y|r), 

for all x and y belonging to the support of Et.

Then,

n 2 (an — RppcPp,x) ~^d A/"(0, GTjG1),

where

OO

= ( X] (E( E t E t + i E t + s E t + s + j )  — 7b(*)7b(j )))
,S=; —  0 0

and G is the matrix [(f^)(*')]i=i,2,...,p;.?=i12,... where v =  (7#(0), 7s(l) ,

Proof: For each k, the kernel hk : x  —v x f k( x) satisfies condition (i) of Theorem 

1 in Denker and Keller (1986). Now, 7n,E{k) is, up to order l /n ,  equal to a U- 

statistic whose associated kernel is hk. Therefore, by Theorem 1 in Denker and 

Keller (1986), 7E(k) is asymptotically normal; in fact, 7#(&) is asymptotically 

A i M ^ ^ ( E [ h k(E1)]2- e i  +  2 E T>2E[(hk(E1) - 9 k)(hk(Er) - e k)})), k =  0,1,2, . . . ,  

where 9k =  E[/?.fc (iTi)] -
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Moreover, it can easily be seen that

OO
cov(yniE(i),7n,E(j)) -  -  E  (E(EtEl+fEt+,E l+,+j)-

n  s= -oo

Now, every linear combination of 7e(A;)’s is asymptotically normal. For: let 

K  > 0 , d0, d i , ..., dK > 0, then

n - K

T  di'yE(i) — do — ' y  Et + di — ~y EtEt+i A- ... Y d# — ^  EtEt+K
i=0 n t=i n í=i n t=i

1
n

y  Et(doEt + d if(E t) +  ... +  d x f   ̂(E t))
t=i 

1 "
n

y E tr ( E t),
t=1

and so dijE^) is asymptotically normal. Theorem 1 in Denker and Keller 

(1986) applies because of condition 3 of our theorem. So, (7.e (0), 7e (1), ...)r is 

asymptotically AA((7E(0), 7b (1), ...)', n_1E).

Now, ~  /fc(7n,JB(0),7n,£:(l)I ■■■), k =  1,2

Each f k is continuously differentiable in a neighbourhood of v and the matrix 

G EC  has all of its diagonal elements non-zero. So, we can get the conclusion by 

applying Proposition 6.4.3 in Brockwell and Davis (1989). □

An example of a map which satisfies the conditions of Theorem 4.8 is given by 

the logistic map with 6 = 4.00, that is Et -A 4Et(l — Et). Now, we shall illustrate 

the above asymptotic results in the next section by means of the chaos driven 

AR(2) case.

4.5 S im ulations

In this section, we concentrate on chaos driven AR(2) models (i.e. X t — a xX t-i  + 

a 2Xt_2 +  Et) with a view to illustrate in a simple way the results of section 4.4. 

First, we recall the Yule-Walker estimators of an AR(2) model and some of its
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properties:

&i,n
Pn,.y(l)(l -  P n,X (2))

l - ( P n ,x ( l ))2

and
_  Pn,x{2) -  (pn,A-(l))2

a%n ~  1 -  ( f t , , * ( l ) ) 2 ■

Provided the roots of 1 — a.\z — a^z2 — 0 are both outside the unit circle, we 

can write X t = YJLo'tpjEt-j, t = 0 ,1... and the ip/s can easily be obtained (see 

section 4.4).

The calculations of the asymptotic means and variances are based on the 

following formula (see section 4.4 for more details):

m  ^ Z j L o t y j ' I ’ j+ k h E iQ )  + E g i  j ip j+ i+ k ) iE { i )

P X { ’ E “ o V',?7e (0) + 2 E S i EJio 'I’j'l’i+ j 'lE d )

Now, as in section 4.3, we consider chaotic sequences {Et} generated by the fol­

lowing maps: the two pseudo-random number generators G05DAF and G05DDF, 

the modulo map and the logistic maps with 6 — 4.00, 9 = 3.98, 9 = 3.825, 

9 — 3.58. Their autocorrelation functions can be seen in Figure 3.3. All the maps 

satisfy the set-up of Theorem 4.5 (concerning the asymptotic bias); on the other 

hand, the three last logistic maps do not fulfil the conditions of either Theorem 

4.6, 4.7 or 4.8, which means that we do not expect a priori that their Yule-Walker 

estimators are asymptotically normal and that we do not know their asymptotic 

variances.

For the simulations, we standardize every chaotic sequence {Et} to zero mean 

and unit variance. Note that for the modulo map, we replaced 2 by 1.99999 in 

the simulation in order to avoid degeneracy due to finite precision arithmetic.

Numerous simulations have been made; for the sake of brevity, only a typical 

part of them has been reproduced in this thesis. Note that all the figures and 

tables related to this section are located at the end of this section.
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The simulations concern the asymptotic bias (Figures 4.8 to 4.23), the asymp­

totic variance (Figures 4.24 to 4.32) and the asymptotic normality (Table 4.2 and 

Figures 4.33 to 4.36). On the one hand, simulated results are compared with 

our theoretical results. When the conditions of our theorems are satisfied, the 

agreement is good. On the other hand, our theoretical results are illustrated for 

different values of the parameters. Note that some of the figures display non­

smooth theoretical curves (this is particularly clear for Figure 4.32). In fact, the 

non-smooth character is due to discretisation. Now, we can make some general 

remarks.

Concerning the asymptotic bias of on (or, equivalently, of d2), we notice the 

role of the noise autocorrelation function and, if the noise is correlated, of the true 

values of aq and a 2. So, in the case of a non-zero asymptotic bias , the value of 

a 2 affects the asymptotic bias of aq (as does obviously aq).

When looking at the figures on the asymptotic variance, we can see that the 

asymptotic variances of aq and a 2, which are both equal to (1 — a 2)/n  in the iid 

case, depend not only of a 2 but also of ai for all the other considered sequences; 

note, however, that the asymptotic variances of aq and d2 are identical in the case 

of the modulo map. For the sake of curiosity, we have also included some results 

based on Theorem 4.8 for the three other logistic maps (with 9 ^  4.00) although 

strictly speaking these maps do not meet the requirements of the said theorem. 

There is apparently good agreement with the sample variances for the cases of 

9 =  3.98 (as in the AR(1) case) and of 9 = 3.825.

In conformity with our theoretical results, approximate normality is apparent 

with the cases corresponding to the two bench-mark pseudo-random number gen­

erators, the modulo map and the logistic map with 9 =  4.00. As in the AR(1) case, 

the Yule-Walker estimators aq and d2 for the cases of the logistic maps 9 =  3.98 

and 9 = 3.825 also appear to be asymptotically normal although these maps are 

not covered by our theorems. Perhaps, a sufficiently fast decaying autocorrelation 

function is enough to get asymptotic normality of aq and a 2 (see comments in 

section 5.5).
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gOSddl; g05daf; logistic map 4.00

parameter parameter

Figure 4.8: Means of the estimators of au for the case a\ =  0.5, while a2 varies 
through the range of values for which the AR(2) model is causal.
The simulated expectations are obtained using 2000 replications of n, the 
estimators sample size, is taken equal to 2000. Simulated means ( denoted by an 
asterisk on the graphs) are obtained for eight values of a2 ( -0.4, -0.3, -0.2, -0.1, 
0.1, 0.2, 0.3 and 0.4) The theoretical (asymptotic) means are based on Theorem 
4.5 (solid line on the graphs). When different from the theoretical values, the 
(unbiased) means of the iid case are displayed, (dashed line on the graphs). 
Note that in the first graph, ’+ ’, ’x’ and ’o’ respectively denote the simulated 
expectations for gOSddf, g05daf and the logistic map 0=4.00.



CHAPTER 4. CHAOS DRIVEN AR MODELS 103

g05ddi; g05dal; logistic map 4.00

modulo map

logistic map 3.825

logistic map 3.98

parameter

logistic map 3.58

Figure 4.9: Means of the estimators of a2 for the case aq =  0.5, while «2 varies 
through the range of values for which the AR(2) model is causal.
The simulated expectations are obtained using 2000 replications of d2,n; n, the 
estimators sample size, is taken equal to 2000. Simulated means ( denoted by an 
asterisk on the graphs) are obtained for eight values of a2 ( -0.4, -0.3, -0.2, -0.1,
0.1, 0.2, 0.3 and 0.4) The theoretical (asymptotic) means are based on Theorem
4.5 (solid line on the graphs). When different from the theoretical values, the 
(unbiased) means of the iid case are displayed, (dashed line on the graphs). 
Note that in the first graph, ’+ ’, ’x’ and ’o’ respectively denote the simulated 
expectations for g05ddf, g05daf and the logistic map 0=4.00.
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g05ddf; g05daf; logistic map 4.00
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

parameter

modulo map logistic map 3.98

logistic map 3.825 logistic map 3.58

Figure 4.10: Theoretical means of the estimators of a.\ for the case a\ — 0.1, 
while a 2 varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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g05ddf; g05daf; logistic map 4.00

modulo map logistic map 3.98

logistic map 3.825 logistic map 3.58

Figure 4.11: Theoretical means of the estimators of a2 for the case =  0.1, 
while a2 varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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gOSddf; g05daf; logistic map 4.00

logistic map 3.825

Figure 4.12: Theoretical means of the estimators of ou for the case on =  —0.5, 
while a 2 varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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g05ddf; g05daf; logistic map 4.00

logistic map 3.B25 logistic map 3.58

Figure 4.13: Theoretical means of the estimators of a2 for the case a.\ =  —0.5, 
while a 2 varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.14: Theoretical means of the estimators of o?i for the case a i =  —0.9, 
while «2 varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.15: Theoretical means of the estimators of a2 for the case a x =  —0.9, 
while a2 varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.16: Theoretical means of the estimators of cti for the case a 2 =  0.5, 
while ai varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.17: Theoretical means of the estimators of a2 for the case a2 = 0.5, 
while cci varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.18: Theoretical means of the estimators of a\ for the case a2 = 0.1, 
while Q'i varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid, case are dis­
played (dashed line on the graphs).
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Figure 4.19: Theoretical means of the estimators of a2 for the case a2 = 0.1, 
while a.\ varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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g05ddf; g05daf; logistic map 4.00

logistic map 3.825

Figure 4.20: Theoretical means of the estimators of a x for the case ct2 =  —0.5, 
while «j varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.21: Theoretical means of the estimators of a2 for the case a2 =  —0.5, 
while a.\ varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.22: Theoretical means of the estimators of a\ for the case a2 =  —0.9, 
while O'! varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.23: Theoretical means of the estimators of «2 for the case Of2 =  —0.9, 
while d] varies through the range of values for which the AR(2) model is causal. 
The asymptotic means are based on Theorem 4.5 (solid line on the graphs). When 
different from the theoretical values, the unbiased means of the iid case are dis­
played (dashed line on the graphs).
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Figure 4.24: Variances of the estimators of aq for the case an =  0.5, while a2 
varies through the range of values for which the AR(2) model is causal.
The simulated variances are obtained using 2000 replications of a'n\ n, the esti­
mators sample size, is taken equal to 2000. Simulated variances ( denoted by an 
asterisk on the graphs) are obtained for eight values of a2 ( -0.4, -0.3, -0.2, -0.1, 
0.1, 0.2, 0.3 and 0.4). The theoretical (asymptotic) variances are based on the 
results of our paper (solid line). ( The asymptotic variances of the last three logis­
tic maps are computed using Theorem 4.8 although these maps do not satisfy its 
conditions. They are included for the sake of curiosity.) When different from the 
theoretical values, the variances in the iid case are displayed (dashed line). Note 
that in the first, graph, ’+ ’ and ’x’ respectively denote the simulated variances for 
g05ddf and g05daf.
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Figure 4.25: Variances of the estimators of «2 for the case au = 0.5, while 0:2 
varies through the range of values for which the AR(2) model is causal.
The simulated variances are obtained using 2000 replications of a'n\ n, the esti­
mators sample size, is taken equal to 2000. Simulated variances ( denoted by an 
asterisk on the graphs) are obtained for eight values of a2 ( -0.4, -0.3, -0.2, -0.1, 
0.1, 0.2, 0.3 and 0.4). The theoretical (asymptotic) variances are based on the 
results of our paper (solid line). ( The asymptotic variances of the last three logis­
tic maps are computed using Theorem 4.8 although these maps do not satisfy its 
conditions. They are included for the sake of curiosity.) When different from the 
theoretical values, the variances in the iid case are displayed (dashed line). Note 
that in the first, graph, ’+ ’ and ’x’ respectively denote the simulated variances for 
g05ddf and g05daf.
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g05ddt; g05daf

Figure 4.26: Theoretical variances of the estimators of a\ and a2 for the case 
«1 =  0.1 , while a2 varies through the range of values for which the AR(2) model 
is causal.
On the graphs labelled (1) and (2) the solid lines show the theoretical variances 
of the estimators of au and a2 respectively. There is only one graph in the iid 
case since it is then wrell-known that the theoretical variances of the estimators of 

and those of the estimators of a2 have the same values. When different from 
the theoretical values, the variances of the iid case are displayed (dashed line on 
the graphs).
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g05ddf; g05daf

Figure 4.27: Theoretical variances of the estimators of a\ and a.2 for the case 
Ui =  —0.5 , while «2 varies through the range of values for which the AR(2) model 
is causal.
On the graphs labelled (1) and (2) the solid lines show the theoretical variances 
of the estimators of qu and 02 respectively. There is only one graph in the iid 
case since it is then well-known that the theoretical variances of the estimators of 
«i and those of the estimators of ct2 have the same values. When different from 
the theoretical values, the variances of the iid case are displayed (dashed line on 
the graphs).
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Figure 4.28: Theoretical variances of the estimators of a i and a2 for the case 
a  1 =  —0.9, while «2 varies through the range of values for which the AR(2) model 
is causal.
On the graphs labelled (1) and (2) the solid lines show the theoretical variances 
of the estimators of au and 0:2 respectively. There is only one graph in the iid, 
case since it is then well-known that the theoretical variances of the estimators of 
gu and those of the estimators of 0:2 have the same values. When different from 
the theoretical values, the variances of the iid case are displayed (dashed line on 
the graphs).
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g05ddf; g05daf

Figure 4.29: Theoretical variances of the estimators of a>i and a2 for the case 
a2 = 0.5, while a\ varies through the range of values for which the AR(2) model 
is causal.
On the graphs labelled (1) and (2) the solid lines show the theoretical variances 
of the estimators of gu and a2 respectively. There is only one graph in the iid 
case since it is then well-known that the theoretical variances of the estimators of 
a.\ and those of the estimators of a2 have the same values. When different from 
the theoretical values, the variances of the iid case are displayed (dashed line on 
the graphs).
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Figure 4.30: Theoretical variances of the estimators of a.i and a 2 for the case 
a 2 =  0.1, while a \ varies through the range of values for which the AR(2) model 
is causal.
On the graphs labelled (1) and (2) the solid lines show the theoretical variances 
of the estimators of q.\ and a 2 respectively. There is only one graph in the iid  
case since it is then well-known th a t the theoretical variances of the estim ators of 
« 1  and those of the estim ators of a 2 have the same values. W hen different from 
the theoretical values, the variances of the iid  case are displayed (dashed line on 
the graphs).
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Figure 4.31: Theoretical variances of the estimators of ol\ and a 2 for the case 
a 2 =  —0.5, while a.\ varies through the range of values for which the AR(2) model 
is causal.
On the graphs labelled (1) and (2) the solid lines show the theoretical variances 
of the estim ators of a.\ and a 2 respectively. There is only one graph in the iid  
case since it is then well-known th a t the theoretical variances of the estim ators of 
a i  and those of the estim ators of a 2 have the same values. W hen different from 
the theoretical values, the variances of the iid  case are displayed (dashed line on 
the graphs).
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Figure 4.32: Theoretical variances of the estim ators of a.\ and for the case 
a 2 =  —0.9, while « i varies through the range of values for which the AR(2) model 
is causal.
On the graphs labelled (1) and (2) the solid lines show the theoretical variances 
of the estim ators of au and respectively. There is only one graph in the iid  
case since it is then well-known th a t the theoretical variances of the estim ators of 
q.\ and those of the estimators of « 2  have the same values. W hen different from 
the theoretical values, the variances of the iid  case are displayed (dashed line on 
the graphs).
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Simulated
skewness

Simulated
kurtosis

Lin-Mudholkar 
test statistic

g05ddf 

a 2 =  - 0.4 0.056143 3.025619 - 0.499687
a 2 =  - 0.3 0.047395 2.933155 - 0.432614
ol2 — - 0.2 - 0.016495 3.113604 0.147530
ol2 — - 0.1 - 0.092498 3.185653 0.834433
«2 =  0.1 - 0.098066 3.215379 0.880149
c¿2 =  0.2 - 0.040295 3.146723 0.360567
a 2 — 0.3 0.019822 2.939489 - 0.182022oII 0.000841 2.999467 - 0.007143
Ôl2
a 2 =  - 0.4 0.064693 2.827570 - 0.603556
o¡2 =  - 0.3 0.032865 2.960944 - 0.299779
a 2 =  - 0.2 - 0.043812 3.009757 0.405766
a 2 =  - 0.1 0.016805 3.028521 - 0.151449
a 2 =  0.1 0.008856 2.939526 - 0.082105
oí2 =  0.2 - 0.013689 3.166596 0.120540
a 2 =  0.3 - 0.087408 2.979284 0.828541
Of2 =  0.4 - 0.074197 2.962823 0.702954

T able 4.2: Sample skewness, sample kurtosis and Lin-Mudholkar test statistics 
are computed for the case ai — 0.5, while a2 takes different values.
The simulations are obtained using 2000 replications of ai>n, i — 1,2 and n =  2000.
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Table 4.2 continued

g05daf
à i
a 2 =  - 0.4 - 0.044829 2.990984 0.417147
a 2 =  - 0.3 - 0.081705 2.781583 0.815780
o¿2 =  - 0.2 0.028445 3.025214 - 0.254902
a 2 =  - 0.1 0.044251 2.969529 - 0.400858
a 2 =  0.1 0.104280 3.007476 - 0.917276
o¿2 — 0.2 0.057774 2.952897 - 0.522681
a 2 =  0.3 0.043040 2.769650 - 0.411203oIICNa 0.012764 2.961361 - 0.117167
â'2
a 2 =  - 0.4 0.164917 2.948780 - 1.442408
a 2 =  - 0.3 0.072142 3.053276 - 0.634789

P to II O to - 0.063335 2.917163 0.604258
Q'2 — - 0.1 - 0.013733 3.087221 0.123077
a 2 =  0.1 - 0.001236 3.214640 0.010602
cn2 =  0.2 - 0.114359 2.842211 1.136700
a 2 =  0.3 - 0.009161 2.929267 0.085588
a 2 =  0.4 - 0.032681 3.015771 0.300081
modulo map
Oil
a 2 — - 0.4 0.085024 3.016447 - 0.750995
«2 =  - 0.3 - 0.115458 2.953179 1.114223
o.'2 — - 0.2 - 0.057722 3.090354 0.526690
a 2 =  - 0.1 - 0.073422 2.968918 0.694670
ci2 =  0.1 - 0.046603 2.977041 0.435785
a 2 =  0.2 - 0.019582 3.191064 0.172211
0:2 =  0.3 - 0.081664 3.009592 0.766757
0 2  =  0.4 0.028477 2.962145 - 0.259843
â  2
O2 =  - 0.4 0.065479 2.902191 - 0.599386
o 2 =  - 0.3 0.105722 2.890995 - 0.956616
02 =  - 0.2 0.054996 2.940836 - 0.500338t-Ho1IICNa 0.068601 3.073131 - 0.601052
02 =  0.1 0.034717 3.081857 - 0.306973
0 2  =  0.2 - 0.014552 3.186395 0.127495
O2 =  0.3 0.100850 2.922849 - 0.907290
0 2  =  0.4 0.008658 2.957621 - 0.079855
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Table 4.2 continued

logistic map 
9 =  4.00
â i
a 2 =  - 0.4 - 0.005504 2.988565 0.050264
a¡2 — - 0.3 - 0.149464 3.066566 1.417812
c¿2 =  - 0.2 - 0.152481 3.068790 1.447195
tt2 =  - 0.1 - 0.126512 3.236125 1.142452
0.2 =  0.1 - 0.128964 3.259592 1.159435
0 2  =  0.2 0.024498 2.795138 - 0.234049

p to II o CO - 0.107751 3.159073 0.983346
0 2  =  0.4 0.046864 2.812451 - 0.441824
&2
02 — - 0.4 0.075327 3.037970 - 0.664513
a 2 =  - 0.3 0.064757 3.125559 - 0.560912
0 2  — - 0.2 0.072896 3.192504 - 0.620957
0 2  =  -  0.1 0.077779 2.925641 - 0.704277
0 2  =  0.1 0.053784 3.002637 - 0.481503
0 2  — 0.2 - 0.040609 2.835461 0.393042COOIIe 0.045085 2.877693 - 0.418012
0 2  =  0.4 - 0.116932 2.920388 1.138363
logistic map 
9  =  3.98

0 2  —  - 0.4 - 0.180173 3.120499 1.706449
o í2 =  - 0.3 - 0.097416 2.935346 0.937792
0 2  =  - 0.2 0.018411 3.041646 - 0.165246
0 2  —  -  0.1 - 0.096803 3.015249 0.912523
0 2  =  0.1 - 0.038719 3.008213 0.358266
0 2  =  0.2 - 0.154427 3.045733 1.475744

P to II 0 CO -  0.090338 3.055195 0.840785
Q '2 =  0.4 -  0.049485 2.849755 0.479127
Ô 2

0 2  =  - 0.4 0.080220 3.015578 -  0.710049
0 2  =  _ 0.3 -  0.015999 3.201163 0.140222
0 2  =  -  0.2 0.046973 2.942648 - 0.428120

P to II 1 0 y—
*

-  0.045464 2.930127 0.430171
OÍ2 =  0.1 -  0.063257 2.920767 0.603740
0 2  —  0.2 -  0.017877 2.957893 0.165695
0 2  =  0.3 -  0.169963 3.141579 1.595645
o¿2 —  0.4 - 0.003875 3.019914 0.034863
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Table 4.2 continued

logistic map 
9 =  3.825 
à \
o>2 — - 0.4 - 0.070576 2.915737 0.676194

P to II O CO - 0.016943 2.920389 0.158847
ot.2 — - 0-2 - 0.018533 3.016826 0.169748
O2 =  - 0.1 - 0.055313 2.972819 0.518968
a 2 =  0.1 - 0.131882 2.998510 1.265168
o¡2 =  0.2 - 0.075711 3.044402 0.702931
o¿2 =  0.3 - 0.058555 2.965702 0.551221
a'2 =  0.4 - 0.122760 2.975999 1.180164
&2
a.2 — - 0-4 - 0.020308 2.912147 0.191357

Q to II 1 o Co 0.004598 3.059198 - 0.041725
a  2 — - 0.2 - 0.017775 2.969566 0.164574
a'2 =  - 0.1 0.072046 2.982660 - 0.644216
0,2 — 0.1 0.003126 3.027819 - 0.027977
0 2  =  0.2 - 0.070173 3.166561 0.631052
0̂ 2 =  0.3 - 0.075758 2.863455 0.737177
0 2  =  0.4 - 0.192895 2.765555 2.026053
logistic map 
9 =  3.58
Ôi
0 2  — - 0.4 1.201583 4.395433 - 6.481278

P to II 1 o CO 1.107133 4.288325 - 6.152710
0í2 — _ 0.2 0.946324 4.107422 - 5.547814
02 =  - 0.1 0.930832 4.028278 - 5.532063
02 =  0.1 1.119891 4.220266 - 6.260561
02 =  0.2 1.267612 4.335562 - 6.804667
02 =  0.3 1.402347 4.525006 - 7.200866
02 — 0.4 1.432739 4.532688 - 7.313896
Ô2
02 =  - 0.4 0.045339 3.182190 - 0.390921
02 — - 0.3 0.116266 3.065765 - 1.004290O1IICN 0.246374 3.208201 - 1.981487
02 = - 0.1 0.400075 3.296770 - 3.025399
02 =  0.1 0.976540 3.969486 - 5.796585
02 =  0.2 1.227970 4.273355 - 6.687259
O2 — 0.3 1.394606 4.507407 - 7.184177
o¿2 = 0-4 1.430539 4.523115 - 7.312901
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g05ddf g05daf

Figure 4.33: Normal probability plots for the case oq = 0.5, a2 = 0.1.
The normal probability plots were obtained by using 2000 replications of a 1;71; n
was taken to be equal to 2000.
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Figure 4.33: continued
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g05ddf g05daf

Figure 4.34: Normal probability plots for the case au = 0.5, a2 = 0.1.
The normal probability plots were obtained by using 2000 replications of a2tn; n
was taken to be equal to 2000.
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Figure 4.34: continued
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g05ddf g05daf

Figure 4.35: Normal probability plots for the case ax = 0.5, a2 — 0.3.
The normal probability plots were obtained by using 2000 replications of di)71; n
was taken to be equal to 2000.
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Figure 4.35: continued
logistic map 3.98 logistic map 3.825



CHAPTER 4. CHAOS DRIVEN AR MODELS 137

g05ddf g05daf

Figure 4.36: Normal probability plots for the case Oi\ — 0.5, a2 =  0.3.
The normal probability plots were obtained by using 2000 replications of a2)n, n
was taken to be equal to 2000.
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Figure 4.36: continued

logistic map 3.825

logistic map 3.58

0.1 0.11 0.12
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4.6 Som e com m ents on noisy  chaos driven A R  

m odels

In the previous sections of this chapter, we have obtained interesting asymptotic 

results for the Yule-Walker estimators a  of chaos driven AR models X t — aqXt_1-|- 

...+apX t-p+Et, where {Et} is a chaotic sequence. In particular, we have evaluated 

their asymptotic bias and we obtained asymptotic normality of these estimators 

for some chaotic sequences.

Now, one of the main interests for studying chaos driven AR models is that 

pseudo-random number generators typically are chaotic maps. An important 

point to note here is that the deterministic chaotic sequences are a good ap­

proximation to the sequences generated by the computers but that they are not 

exactly the orbits obtained from the computers since any computer-produced or­

bit is subject to noise (as an example, let us mention the unavoidable rounding 

errors). We recall that chapter 2 of this thesis focused on the support of attractors 

obtained from noisy dynamical systems. Now, we shall say a few words on AR 

models driven by noisy chaotic maps.

Here, we shall concentrate on AR(1) models driven by chaotic sequences sub­

mitted to dynamic noise (see section 2.2) in the following way:

x ; =  u x u  +  e ;,

where El  =  /(A ’y J + e f  and et are iid(0, a2) random variables which are absolutely 

continuous and bounded. Note that this is a good approximation to the round-off 

errors of the computers. Now, stochastic randomness has returned to the model 

albeit at a deeper level.

This has some immediate consequences because the stochastic dynamic noise 

destabilizes some chaotic maps. For example, the logistic map /  : [0,1] —► [0,1] : 

x —> 4x(l — x ) leads to the chaotic attractor [0,1] but the same map on R  has no 

(bounded) attractor any more (see section 2.3 for more details).

On the other hand, we can obtain the asymptotic normality of the Yule-Walker
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estimators for many noisy chaotic maps (provided the noise is sufficiently small) 

as we shall now show.

In fact, there is a theorem by Collomb stating: ” Let Zt = G(Zt~ 1, Zt- g)+Et, 

where {et} is a sequence of iid random variables and G is a function going from 

Rpq to RP; then, if G is bounded and the probability law of E\ is absolutely con­

tinuous w.r.t. Lebesgue measure, then {Zt} is 0-mixing (see Definition 3.9) with 

geometrically decreasing mixing coefficients.” (see, for example, Gyôrfi, Hardie, 

Sarda and Vieu (1989) for more details).

Now, provided a (bounded) noisy attractor exists (see sections 2.2 and 2.3 for 

more details on noisy attractors), we have

(  X *  \ _ (  a x ;+  '
) +

G A

\ E l  ) ’ / ( £ ? - 1) ,1 l  £ t  )

and (Xf ,  El)'  is (/»-mixing with geometrically decreasing coefficients (in particular, 

El  is an ergodic distribution for the noisy chaotic map).

Then, Denker and Keller (1983) provide us with central limit theorems for U- 

statistics (see Definition 4.1) of ¡/»-mixing sequences: ” Let h : R m —> R  be a non­

degenerate kernel. Then the U-statistics corresponding to h is asymptotically nor­

mal provided { X t} is 0-mixing in both directions of time with mixing coefficients 

0(n) satisfying £ 0 (n )  < oo, cr2 ^  0 and s u p ^ ^  E(h(Xtl, h ( X tjn))2 < 

oo.” .

So, without entering into the details, we get asymptotic normality for a  pro­

vided there exists a (bounded) noisy attractor and E[Ef] is finite. Of course, 

this tells us nothing about the convergence rate to normality, which can be very 

slow for small dynamic noise. Now, for sufficiently small noise level, all the noisy 

logistic maps, except the one with 9 =  4.00, have bounded noisy attractors (see 

section 2.3 and in particular Figure 2.5). So, this and the fact that E[i?t*4] is finite 

for these noisy maps ensure asymptotic normality for a. An illustration of this 

is given in Table 4.3 and Figure 4.37 for the logistic map with 9 =  3.58 and a
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Sample
skewness

Sample
kurtosis

Lin-Mudholkar 
test statistic

a  = - 0.9 0.191715 3.259277 - 1.550774
a  = 0.1 0.027516 3.319813 - 0.231448
a  = 0.5 - 0.041465 3.018742 0.382466
a  = 0.9 - 0.105891 3.060376 0.989992

Table 4.3: Sample skewness, sample kurtosis and Lin-Mudholkar test statistic of 
the estimators of a  were obtained by using 2000 replications of an\ n was taken 
to be equal to 2000.
The model is X I  =  aX£_ 1 -f E where El  =  3.582?t*_i(l — El_x) + et and 
Et  ~  U { —0.05,0.05).

dynamic noise uniformly distributed U(—£,e) with £ =  0.05. When we consid­

ered, in the earlier sections of this chapter, AR models driven by this logistic map 

(6 — 3.58), the simulations told us that a  was far from being asymptotically nor­

mal but, as can be seen from Table 4.3 and Figure 4.37, for AR models driven by 

the logistic map 6 =  3.58 subject to noise, the distributions of an with n chosen 

equal to 2000 are close to normality.

Now, this is just the first level of the reasoning: as argued in chapters 3 and 4, 

computers are physical systems and so they simulate iid noise by pseudo-random 

number generators. That is, our model becomes XI* = OiXl*x +  El*, where 

El* =  / ( E l*j) + Gt and {G^} is a chaotic sequence.

We can go further and say that noise is unavoidable in the real world, so 

stochasticity comes back again but at an even deeper level; now, iid noise is 

simulated by chaotic maps and so on ... . Deterministic and stochastic models 

are inextricably intertwined.
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(a) <b)

Figure 4.37: Normal probability plots for the cases: (a) a  =  —0.9, (b) a  = 0.1, 
(c) a  — 0.5, (d) a  =  0.9. The normal probability plots were obtained by using 
2000 replications of d n; n was taken to be equal to 2000.
The model is = aXl_x 4- F t*, where El — 3.58Ft*_j(l — E*t_ J  +  et and 
et -  U(—0.05,0.05).



Chapter 5

Statistical inference on chaos 

driven linear stochastic regression 

models

The structure of chapter 5 is as follows. Section 5.1 introduces linear stochastic 

regression models and recalls some earlier results on the subject. Finally, section 

5.1 states with comments the four asssumptions which we shall make throughout 

the next three sections. Section 5.2 shows that the linear regression estimator 

is consistent under these four assumptions; we then say a few words on stochas­

tic regression with state-dependent noise and conclude the section by giving the 

asymptotic variance of the estimator. Section 5.3 presents three theorems which 

allow us to get asymptotic normality of (3. Section 5.4 illustrates the results of 

sections 5.2 and 5.3 by means of examples and numerical simulations. Finally, 

section 5.5 suggests an explanation for the simulation results in chapters 4 and 5 

by indicating a possible way of getting a central limit theorem for general chaotic 

sequences.

143
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5.1 T he fram ework

The classical linear regression model is of the form:

p
Vi — 'y ) OLjXij T Ei, i 1) 2 , n, 

i=i

where the XijS are non-random constants and {£¿1 is either a sequence of uncorre­

lated zero mean random variables with variance a2 (weak distributional assump­

tions) or a sequence of iid normally distributed N (0, a2) (strong distributional 

assumptions).

In matrix notation, the model becomes Y  = X a  +  e, where Y  =  (jq, ...,yn)', 

X  = ( x i j ) i = j = i , . . . , P, ot — (q;i , otp)' and e =  ( e q , en)'. It is usually assumed 

that X  is of full rank (that is rank(X) = p). Then, the matrix X ' X  is invertible 

and the least squares estimator a  of a, also simply called the linear regression 

estimator, is given by a =  (.X 'X )~ lX ' Y . The properties of a  are well-known: 

E(o:) =  cr, var(a) = cx2(X 'X )_1, a is the best linear unbiased estimator of a  and, 

in the case of strong distributional assumptions, a  is normally distributed.

Consider now the (multiple) linear stochastic regression model:

p
Y{ = y  ) T E{, i 1, 2,..., n 

j-1

where the EiS are unobservable random errors and X n , . . . ,X ip are random vari­

ables, i = 1 As previously , we can write the model in the matrix form

Y  =  X/3 +  £] it is assumed that rank(X) = p. Note that AR(p) models can be 

written in this form (except for the first p elements of the sequence {X4}).

Now, Lai and Wei (1982) show that, if {et} is a martingale difference se­

quence with respect to an increasing sequence of a-fields {IFt} (that is, et is 

•^-measurable and E[et|JR_i] =  0 for every t), then the linear regression esti­

mator ¡3 =  {X'X)~xX 'Y  is consistent and asymptotically normal provided some 

additional conditions are satisfied. Specifically, Theorem 1 of Lai and Wei (1982)
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states the following: ” Suppose that in the regression model, {et} is a martingale 

difference sequence with respect to an increasing sequence of cr-fields {Ft} such 

that supt E(|et |“ |Ji_ i) < oo a.s. for some a > 2. Moreover, assume that the de­

sign levels Xu, . . . ,Xip at stage i are jTj_1-measurable random variables such that 

Armn(n) ->• oo a.s. and log\max(n) =  o(Amin(n)) a.s., where Amin(n) and Amax(n) 

respectively denote the minimum eigenvalue of (X 'A )-1 and the maximum eigen­

value of (X ' X )~l . Then ¡3 —>-a"s- Theorem 3 of Lai and Wei (1982) states : ”

Suppose that in the regression model, {et} is a martingale difference sequence with 

respect to an increasing sequence of cr-fields [Ft] such that supt E(|£t |a |.7ri_1) < oo 

a.s. for some a > 2 and lim^oo E{e2n\Fn-\)  =  a2 < oo a.s. . Moreover, assume for 

each i that the design vector Xi = (X u , ..., X ip)' at stage i is JEi_1-measurable and 

that there exists a non-random positive definite symmetric matrix Bn for which 

B~l (Yfiy XiX})1/2 — Ip, identity matrix of rank p and maxi<i<n \\BL1xi \\ -*p 0. 

Then /3 is asymptotically normal.”.

In this chapter, we shall concentrate on chaos driven linear stochastic regression 

models, that is
p

Yi — fijXij +  Ei, i = 1 , 2 , n. 
i=i

In matrix form, we have Y  =  X/3 +  E , where Y  = (Yi,..., Yn)', X  = 

(Xij)i=i,...,n-, j=i,...,p, 0 =  (Pi,-,Pp)', E  = (El ,. . . ,Eny. Now, {Et} is a chaotic 

sequence (in the sense of Definition 3.2) with finite variance. In particular, we 

have Et = f ( E t-\),  where /  is a deterministic (chaotic) map and thus the theo­

rems in Lai and Wei (1982) do not apply in our case since {Et} is not a martingale 

difference sequence (E[Et\Et-i,  Et_2, ■••] =  f ( E t- 1) 7- 0).

At this stage, we shall make four assumptions on our chaos driven linear 

stochastic regression model. First, we deal with three of them. The first two 

are straightforward; the third one is reasonable to make. After stating this third 

assumption, its importance for the rest of the chapter will be sketched.

Assumption 1 The chaotic sequence {Et} has zero mean and finite variance.



CHAPTER 5. CHAOS DRIVEN REGRESSION MODELS 146

Assumption 2 The p explanatory random variables X 1,...,ATP have zero mean 

and finite variances a2Xi , afi .

Of course, the zero mean assumptions are made without loss of generality.

Assumption 3 The p explanatory random variables X i , . . . ,X p are jointly er- 

godic.

The notion of joint ergodicity is a direct extension to ergodicity (see Definition 

3.3). It means that the p-uple (Xi, . . . ,Xp) is ergodic. Obviously, this implies 

that each X u i =  1 is ergodic. Note that the fact that X t is ergodic for 

i — 1,2, ...,p does not imply that (A^,..., X p) is ergodic. See, for example, Pinsker 

(1964) for a nice discussion on this.

Now, /? - /?  =  ( X 'X ) - lX 'Y  - f i  = (X 'X)~1X'(X(3 +  e) -  ¡3 = (X 'X)~ lX 'E .  

Equivalently, ¡3 — ¡3 = n(X 'X)~ l ( ^ X 1 E ) . Assumption 3 combined with the er­

godic theorem (see section 3.3) and Assumption 2 ensure that n{X 'X)~ l —>a-s- C, 

(finite) constant matrix. In the same way, n1/2(/3 — (3) can be rewritten as 

n (X 'X)~1(n~1'2X 'E)  and once again because of our assumptions, in particular 

because of Assumption 3, n(X 'A )-1 —>-a-s- C. So, we can see the role of Assump­

tion 3 in the determination of consistency and in the construction of central limit 

theorems.

Note that the chaos driven AR(p) models analysed in chapter 4 are a particular 

case of chaos driven linear stochastic regression models (simply let Yx = X i: Xu  =  

X i - U .. . ,Xip = X i-P) and satisfy Assumptions 1, 2 and 3. Now, the chaos driven 

AR models will not satisfy the next assumption, which we shall state now.

Assumption 4 Vj = 1 Vi =  l,...,n , Vt = l,...,n , X id is independent of

E t.

If Assumption 4 is satisfied, we shall say that ’A and E  are independent’. 

Clearly, in the case of a chaos driven AR model, Assumption 4 is not satisfied
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since Et and X t, X t+i , ... are dependent. However, this assumption is often met in 

regression analysis. In fact, Assumption 4 (combined to the three other assump­

tions) will allow us to get consistency of ¡3, as we shall now show.

5.2 C onsistency  and asym p totic  variance o f  th e  

linear regression estim ator

First, we can note that ¡3 is an unbiased estimator of (3. This is obvious since 

E 0 )  = (3 +  E ( (X 'X ) - lX 'E)  = p + Ex Ee ( ( X 'X ) - 1X 'E \X )  = (3 + Ex (0) by 

Assumptions 4 and 1 and so E(/3) =  (3.

Now, we can go further: the next theorem will show that the linear regression 

estimator (3 is a consistent estimator of P (that is, ¡3 —A P) for the models satis­

fying Assumptions 1 to 4. Roughly speaking, this means that ¡3 is asymptotically 

unbiased (we know that this is right) and that var(P) —> 0 as n —> oo. It is 

interesting to notice that we shall get consistency for all the chaotic sequences 

(with finite variance), in particular even for the chaotic sequences with long-range 

dependence. Note that the fact that {E t} is not only a deterministic ergodic 

sequence but also a chaotic sequence plays a role in the proof.

T heorem  5.1 Under Assumptions 1, 2, 3 and 4, P is a consistent estimator of 

P ,  that is P  = (X 'X)~ lX 'Y  converges in probability to P  (in short, P  —A  P ) .

Proof. We have

¡3 = ( X ' X Y ' X ' Y  = p +  n ( X 'X ) - l - X ' En

On the one hand, ^ X 'X  —Y  C , finite constant matrix, by joint ergodicity 

(Assumption 3), by the existence of finite variances for the explanatory random 

variables (Assumption 2) and by application of the ergodic theorem (see section 

3.3).

Now, let k be any of the numbers 1, We are going to show that ^(X'E)k
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—A 0, where (X'E)k denotes the /cth component of the column vector X'E .

As a first step, we note that the process {£t} = {(Xtk, Et)} is ergodic since 

{Et} is mixing in the ergodic-theoretic sense (see Definition 3.4), {X tk} is ergodic 

(Assumption 3) and X  and E  are independent (Assumption 4) (see, for example, 

Pinsker (1964) for a proof). Note that {Et} being ergodic would not have been 

sufficient to ensure {&} being ergodic.

Then, let ipt =  X tkEt Vi; the process {•0«} is ergodic as a measurable function 

of the ergodic process {6}- Now, ±{X'E)k = pL E t X tkEt E[XtkEt] = 0, by 

ergodicity of {0t}, Assumptions 1, 2 and 4 and an application of the ergodic 

theorem.

Now, i X 'E  — (0, ...,0)' by using Propositions 6.3.7 and 6.3.5 in Brockwell 

and Davis (1989). We then get the conclusion by using Proposition 6.3.8 in 

Brockwell and Davis (1989). □

Before considering the asymptotic variance of ¡3, we shall say a few words on 

more general models than the ones analysed in this chapter, namely the state- 

dependent noise chaos driven linear stochastic regression models of the matrix 

form Y  =  X ¡3 + g ( X \ , X P)E,  where Y,X,(3 and E  are as previously and 

g : Rp —> R  is a measurable function. Then, under the same assumptions as 

previously and provided weak additional conditions are satisfied, we get consis­

tency for ¡3 = (X 'X)~ lX ' Y . The next proposition states the result; its proof is 

very similar to the proof of Theorem 5.1 and so it will be sketched.

P roposition  5.1 Under Assumptions 1 to 4 an<3 if g(Xi, .. .,XP)Xk has zero 

mean and finite variance for k = 1,2, then (3 —>p [3.

Proof, (sketch)

We have

¡3 = ( X ' X y ' X ' Y

= { X ' x y 1X'(Xf3 +  g(Xu ... ,XP)E)



CHAPTER 5. CHAOS DRIVEN REGRESSION MODELS 149

= n ( X 'X ) - l ^ g { X u ...,Xp)X'E.

We shall show here that £ g(Xti, . . . ,  X tp)X tkEt ->p 0, k =  1 ,  2, . . . , p ;  all the 

other points of the proof are identical to the previous proof.

Now, {£t} =  {(g(Xt\, . . . ,Xtp)Xtk,Et)} is ergodic since {Et} is mixing in the 

ergodic-theoretic sense, {g(Xn , ..., X tp)X tk} is ergodic as a measurable function 

of ergodic (Ad,..., X P) (Assumption 3), and g( X) X  and E  are independent.

Then, {tpt =  g(Xti , ..., Xtp)XtkEt} is ergodic as a measurable function of the 

ergodic process {^¿}.

Now,

- Y , 9( X t i , ~ , X tp)XtkEt -+p E[g(Xtl, . . . ,X tp)X tkE t) = 0
n t

by ergodicity of {tA}, Assumptions 1 and 4, the fact that g(Xti , ..., X tp)X tk has 

zero mean and finite variance and by application of the ergodic theorem. □

Note that this kind of model has asymptotic properties analogous to those 

for the models analysed in this chapter not only for the consistency but also for 

the variance and the normality. We are not going to discuss them further in the 

thesis. Our goal was just to illustrate by means of an example the many possible 

simple extensions based on our results.

Now, as ¡3 is an unbiased estimator of (3, var((3) = E[(/3 — /3)2]. Since ¡3 — (3 =  

(X•X)~lX'E> we have 0  -  (3f =  (.X'X) - lX'EE'X{X'X j " 1 and so

var0 )  = E[(X'X)~1X ,E E 'X (X 'X )~ 1].

In particular, var{(3) does not depend on (3.
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Then,

v a r 0 ) = Ex ^ e [{X'X)-1X iE E ' X { X 'X ) - 1\X}

= Ex[{X'X)~lX 'T EX ( X 'X ) ~ l)

by Assumptions 4 and 1, TE denoting the variance-covariance matrix of {Et}, 

that i s TE = {lE(i ~  j)}i=

In particular, in the case of one explanatory random variable (p=l), we get

var(P) = Vx \ ^ ( X i...Xn)TE(X l ...X

which leads immediately to the following theorem.

Theorem  5.2 In the case of one explanatory random variable, under Assump­

tions 1 to 4, and if Ylih 7e (07a'W  < then

J  oo

„limn var0 )  = ^ ; ^ y2-(7x(Q)7g(0) +  2 £  7e (*)7x (*))-

Obvious extensions are possible in the case of p explanatory random variables. 

So, provided a weak condition is satisfied, we get the asymptotic variance of $ 

in a simple form. In particular, var(fl) converges to 0 in a rate 0 ( l /n ) ,  which 

suggests that under suitable conditions we could get central limit theorems for p. 

The asymptotic normality will be the subject of the next section. Examples and 

numerical simulations of asymptotic variances will be given in section 5.4.

5.3 A sym p totic  norm ality  o f th e  linear regres­

sion estim ator

In the last section, it has been proved that, under Assumptions 1 to 4, ¡3 was 

unbiased, consistent and, provided a weak additional condition is satisfied, with
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an asymptotic variance easy to calculate. Now, we shall focus on the (possi­

ble) asymptotic normality of ¡3. We recall from section 5.1 that nl/2((3 — (3) — 

n (X 'X )~ 1(n~1/2X 'E)  and, because of the joint ergodicity of X\,  ... ,Xp (Assump­

tion 3) and the fact that they have finite variances (Assumption 2), we have 

n (X 'X )~ l _ > a  s - C, (finite) constant matrix. So, a central limit theorem exists for 

(3 if and only if there is a central limit theorem for n~xl2X ’E.

No general answer can be given concerning the asymptotic normality of X'E.  

We have to impose conditions on {Aj} and/or {Et}. Here, we shall concentrate on 

the case of one explanatory random variable; the main reason for this is the large 

number of central limit theorems available for sequences of real random variables. 

Now, in case of p explanatory random variables, the univariate asymptotical nor­

mality of (3k can be deduced exactly in the same way as in the case p= l; the 

joint asymptotic normality of ¡3 is more complicated to get: one way to proceed is 

to ensure that every linear combination of the (3ks is (univariate) asymptotically 

normal.

We shall state here three theorems which allow us to get asymptotic normality 

of n -1/2 Yfffi X tEt and thus of (3. All of them are easy corollaries of well-known 

central limit theorems. We could have used many more theorems but our goal in 

this section is to indicate important ways for getting asymptotic normality of (3 

and not to make a review of all the existing central limit theorems.

The first theorem requires for the sequence { Xt} to be a martingale difference 

(that is, X t is Aj-measurable and E[At|At_i] =  0 for every t). Note that no 

condition is imposed on the chaotic sequence {Et}, except that it has to satisfy 

Assumptions 1 and 4.

T heorem  5.3 Under Assumptions 1 to 4 and if { X t} is a martingale difference 

related to the o-algebra T t, then

1 OO

n 1/2(/3 -  (3) -A' W(0, -— ^ tv¿(7 a'(0)7e (0) +  2 ¿ 7 b (*)7a'(*)))-(7x (0))2 i=1



CHAPTER 5. CHAOS DRIVEN REGRESSION MODELS 152

Proof: If { X t} is a zero mean (Assumption 2) martingale difference related to the 

cr-algebra T t, then X tEt is a martingale difference related to T t \l o[fEf) since X tEt 

is T t V o{Ef)  - measurable ({Et} is a chaotic sequence, so Et — f t~1(Ei )) and 

E[XtEt \Tt- i  V <j (Ei )] = EtE[Xt\Tt^ y  a(E1)) = 0

So, n~1,/2 J2tXtEt is asymptotically normal with finite variance since E tX t are 

stationary ergodic martingale differences (see, for example, Hall and Heyde (1980), 

p51). □

In particular, if X t ~  iid(0,a2) and {A^} and {Et} are independent, then 

n1/2(i0 — (3) is asymptotically normal (with mean 0 and variance 7£(0)/<t2).

The next section will illustrate this.

The next theorem basically requires the sequence {Xt} to be strongly mixing 

with a sufficiently fast mixing rate; again no additional condition is imposed on

{£.}•

T heorem  5.4 Let the four assumptions be satisfied. Let 0 < 5 < oo be fixed. 

Suppose that the stationary sequence {ATt} is strongly mixing (see Definition 3.7) 

and E|Ad|2+<5 < oo, in case 0 < 6 < oo, or |Ad| < constant < oo if 5 = oo, while 

E “=i[a(n)]<5/2+'5 < oo.
Then, we get

1 00
-  (5) ->•d AA(0, (7x (o~))2(7 x (0)7g(°) +  2 £ t eW7a'(0))-

Proof: We shall show that the sequence { X tEt} meets the requirements of Theo­

rem 5.2 in Hall and Heyde (1980).

Now, {X tEt} is stationary, ergodic (by the same argument as in the proof of 

Theorem 5.1), with EAT =  0, EAq < oo (Assumptions 1 and 2). Moreover, we 

know, by Corollary 5.1 in Hall and Heyde (1980), that {At} satisfies the conditions 

of Theorem 5.2.
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Take Ad0 as a cr-field such that X 0 is Ado-measurable and Theorem 5.2 applies, 

then X 0E0 is Ado V a  (Ho) - measurable and such that 

E{XkEkE (X NE N\M 0 V cr(Ho)) =  E(XkEkEj^E(X^\Mo)) since H/v = / A (Ho)

=  E(HfcHAr)E(A'fcE(ALAr|Ado)) by Assumption 4 

and so

£  |E(AAHfcE(AwHw|Ado V a(H„)))| <
k=1

<

^ |E ( H ,H Ar)||X fcE(AJV|A40)|
fc=i

oo

7£ ( 0 ) ^ |X fcE(XN|Ado)|
k=1

which is finite and tends to 0 as N  —>■ oo. Theorem 5.2 thus applies. □

Examples and simulations will be given in the next section.

The last theorem requires for {Et} and for { Xt} to be well-behaved function­

als of absolutely regular processes in the sense of Denker and Keller (1986). In 

particular, both {Et} and {At} can be purely deterministic chaotic sequences.

T heorem  5.5 Let the four assumptions be satisfied.

Suppose that the following conditions hold.

1. {En : n > 1} is a Lipschitz functional of {Zn : n > 1} in the same sense as 

in Theorem 4-4-

2. {Zn : n  > 1} is an absolutely regular stationary sequence with /5(n)i?/,2+T' =  

0 {n ~2~e) for some e,rj > 0.

3. {A'n : n > 1} is a Lipschitz functional of {Z'n : n > 1} in the same sense as 

in Theorem 4-4-

4. {Z'n : n > 1} is an absolutely regular stationary sequence with /?(n)7?/2+7? = 

0{n~2~e) for some e, 77 > 0.

5. h(Xt, Et) = X tEt satisfies the Lipschitz condition.
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Specifically, there are L > 0, r > 0 and p > 0 such that

\h(y) — h(z) \ = \h(y1,y2) - h ( z 1,z2)\ = \ y m - z i z 2\ < L \ y - z \ p(l +  \y\r + \z\r)

for all yi,z\ belonging to the support of X t and all y2, z2 belonging to the 

support of Et .

Then

1 OO

n1/2(/3 -  0) Af(0, (~  (Q~ j2'(^ (° )^ (0 )  + 2 £  7x(i)7E(i)))-

Proof: This is an immediate corollary of Theorem 1 of Denker and Keller (1986).

□

Now, the next section will illustrate the results obtained in sections 5.2 and 

5.3.

5.4 Sim ulations

We illustrate in this section, by means of examples and numerical simulations, the 

theoretical results obtained in the last two sections. We take as {Et} the same 

chaotic sequences as in chapter 4, namely sequences generated by the pseudo­

random number generator G05DDF (normal distribution), the modulo map, the 

logistic maps with 9 =  4.00, 9 =  3.98, 9 = 3.825, 9 =  3.58. Note that {Et} gen­

erated by the pseudo-random number generator G05DAF (uniform distribution) 

brought in all cases under consideration very similar results to G05DDF, so we 

omit to present here these results for the sake of concision. As previously, we 

standardize every chaotic sequence {Et} to zero mean and unit variance; for the 

modulo map, we replaced the multiplier 2 by 1.99999 in order to avoid degeneracy.

Basically, we present here theoretical and simulated results on ¡3 relative to 

four different examples of chaos driven linear stochastic regression models Yt = 

p X t + Et, P fixed real number. All the cases under consideration satisfy the foul- 

assumptions introduced in section 5.1
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Before having a closer look at them, we make two remarks. First, all the simu­

lations concerning the bias confirmed the obvious theoretical fact (see section 5.2) 

that ¡3 is an unbiased estimator of p. So, we omit them here. Second, we show 

just part of the simulated results concerning the asymptotic normality; comple­

mentary results corroborate the following commments. They are not included for 

the sake of brevity.

The first (simple) example is such that X t ~  iid JV(0,1) and the {Et} are 

as described above. Theorem 5.2 tells us that the asymptotic variances of (3n 

will be the same for all the chaotic sequences (since all the chaotic sequences are 

standardized to unit variance), namely var(/3n) =  1/n. Simulations (Figure 5.1) 

confirm this. Note that the simulations also confirm that var(l3n) does not depend 

on P but this is hardly surprising (see the general form of va,r(/3) in section 5.2).

{A^} meets the requirements of Theorems 5.3 and 5.4, so we get asymptotic 

normality of ¡3 for all the chaotic sequences {E t}, as shown in Table 5.1 and Figure 

5.2.

The second and third examples are respectively Yt =  p X t~2 +  Et and Yt =  

P(At2_2 — 4/3) + Et, where X t =  0.5AVi + £t, £t ~  Ed Af(0,1) and the {Et} 

are the above-mentioned chaotic sequences. They have been inspired by a similar 

model in Yao and Tong (1994a) (in their article, in place of {Et} they worked 

with r/t, independent and identically distributed random variables). For both 

examples, Theorem 5.2 applies to all chaotic sequences {Et} (even to the long- 

range dependent sequence {Et} generated by the logistic map 9 =  3.58); Figure 

5.3 (example 2) and Figure 5.5 (example 3) give the asymptotic variances and 

simulations, which confirm the theoretical values. Note that in both examples 

the lowest asymptotic variance is obtained for the logistic map with 9 =  3.58. 

This is easily explained by the facts that the autocovariance function of X t is 

positive at all lags (so in particular at lag 1) and decays exponentially quickly, 

while 7e (1) =  Pe (I) is strongly negative for 9 = 3.58 (see Figure 3.3).

Concerning asymptotic normality, Theorem 5.4 requires for {At} to be strongly
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mixing with sufficiently fast mixing rate. Now, X t is a causal AR(1) model driven 

by iid absolutely continuous noise and therefore, {Ah} is absolutely regular with 

exponentially decreasing rate (see Bradley (1986) and the references therein). This 

implies in particular that {Ah} and {Art2} are strongly mixing with exponentially 

decreasing rate. Theorem 5.4 thus applies. Simulations (Tables 5.2 and 5.3, 

Figures 5.4 and 5.6) confirm the asymptotic normality of ¡3 for both examples and 

all the chaotic sequences {Et}.

The last example concerns exclusively chaotic sequences: {Et} is taken to be 

generated by the logistic map 9 = 4.00 and the {Ah} are generated, independently 

of Et, by the modulo map and the logistic maps 6 =  4.00, 6 =  3.98, 9 =  3.825 

and 6 = 3.58. Theorem 5.2 obviously applies for all the {Ah} since 7E(i) = 0, 

¿ = 1,... . Simulations (Figure 5.7) confirm that var(/3) = 1/n , for all {Ah}.

Now, if {Ah} is generated by the logistic map 9 =  4.00, {Ah} and {E t} meet the 

requirements of Theorem 5.5 and thus ¡3 is asymptotically normal. The simula­

tions (Table 5.4 and Figure 5.8) corroborate this; on the other hand, simulations 

suggest that ¡3 is also asymptotically normal for the other {Ah} although the 

{Ah} generated by the modulo map and the logistic maps 9 =  3.98, 9 =  3.825 and 

9 =  3.58 do not satisfy the conditions of Theorem 5.5 or, a fortiori, Theorems 5.3 

and 5.4. The next section indicates a possible reason for this.
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parameter parameter

Figure 5.1: Variances of the estimators of (3 for example 1.
The simulated variances are obtained using 2000 replications of /3n; n, the estima­
tors sample size, is taken equal to 2000.
Simulated variances ( denoted by an asterisk on the graphs) are obtained for four 
values of ¡3 ( -0.9, 0.1, 0.5 and 0.9). The theoretical (asymptotic) variance is based 
on our paper (solid line).
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Sample
skewness

Sample
kurtosis

Lin-Mudholkar 
test statistic

g05ddf 
n =  2000 
/3 = - 0.9 0.022040 3.065404 - 0.197915
(3 = 0.1 - 0.042518 2.968338 0.397913
(3 = 0.5 0.035246 3.062191 - 0.313074
(3 = 0.9 - 0.007979 2.931642 0.074305
n = 5000 
(3 = - 0.9 0.008035 2.814271 - 0.076753
¡3 = 0.1 - 0.101872 2.974190 0.972322
(3 = 0.5 0.070979 3.023089 - 0.628973
(3 = 0.9 - 0.028116 3.052059 0.255759
modulo map 
n =  2000 
P = - 0.9 - 0.058157 3.046030 0.536814
(3 =  0.1 - 0.023977 2.888702 0.226852
(3 =  0.5 - 0.004351 2.976477 0.040107
(3 =  0.9 - 0.009391 2.949795 0.087262
n =  5000 
f3 = - 0.9 0.013738 2.958020 - 0.126288
(3 = 0.1 - 0.032930 2.873775 0.314535
(3 = 0.5 - 0.075187 2.908727 0.722830
13 =  0.9 - 0.046788 3.022108 0.431829
logistic map 
e =  4.00 
n =  2000 
(3 = - 0.9 - 0.060127 3.181207 0.537654
(3 = 0.1 - 0.047553 3.098304 0.431066
(3 = 0.5 - 0.038284 2.867528 0.367288
(3 =  0.9 0.051977 3.138807 - 0.450099
n =  5000 
(3 = - 0.9 - 0.020754 2.892723 0.196475
(3 =  0.1 - 0.034389 2.868189 0.328977
/3 = 0.5 0.026214 2.916889 - 0.242363
(3 = 0.9 0.005884 3.168387 - 0.051288

Table 5.1: Asymptotic normality for example 1.
Sample skewness, sample kurtosis and Lin-Mudholkar test statistic were calculated 
using 2000 replications of ¡3n
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Table 5.1: continued

logistic map 
9 =  3.98 
n =  2000 
P = - 0.9 0.012593 2.947486 - 0.116111
p = 0.1 0.143107 2.996492 - 1.245828
P  = 0.5 0.034713 3.115379 - 0.304613
p  =  0.9 0.048316 2.915902 - 0.443895
n =  5000 
P = - 0.9 0.093684 3.162456 - 0.798489
p  =  0.1 - 0.059229 3.061085 0.544222
p  = 0.5 0.013736 3.123518 - 0.121468
P  = 0.9 0.047675 2.981877 - 0.429504
logistic map 
9 = 3.825 
n =  2000 
P  = - 0.9 0.024587 2.943978 - 0.225472
p  =  0.1 - 0.049649 3.061751 0.454371
p = 0.5 - 0.030124 3.224413 0.264067
P  = 0.9 0.004856 2.937390 - 0.044770
n =  5000 
P = - 0.9 0.120924 2.878059 - 1.092088
p  = 0.1 - 0.001516 2.992549 0.014189
P  = 0.5 0.020398 3.001345 - 0.185057
P  = 0.9 0.098038 2.907311 - 0.885603
logistic map 
9 = 3.58 
n =  2000 
P — - 0.9 - 0.105007 3.126289 0.966190
p =  0.1 0.058001 2.961774 - 0.524104
P  = 0.5 - 0.091358 2.926848 0.879781
P  = 0.9 0.000254 3.266967 - 0.002079
n =  5000 
P  = - 0.9 - 0.051014 3.080481 0.465252
p =  0.1 - 0.086969 3.112080 0.797515
P  = 0.5 0.132109 3.292118 - 1.080722
P  = 0.9 - 0.038028 2.947302 0.356980
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g05ddf modulo map

Figure 5.2: Normal probability plots for example 1.
The normal probability plots were obtained by using 2000 replications of (3n\ n 
was taken to be equal to 5000. We reproduce the plots for the value /? =0.5. The 
plots for the other values of ¡3 are not significantly different from the ones here.
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parameter parameter

Figure 5.3: Variances of the estimators of ¡3 for example 2.
The simulated variances are obtained using 2000 replications of ¡3n] n, the esti­
mators sample size, is taken equal to 2000. Simulated variances ( denoted by 
an asterisk on the graphs) are obtained for four values of ¡3 ( -0.9, 0.1, 0.5 and 
0.9). The theoretical (asymptotic) variance is based on our paper (solid line). 
When different from the theoretical value, the variance of the iid case is displayed 
(dashed line on the graphs).
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Sample
skewness

Sample
kurtosis

Lin-Mudholkar 
test statistic

g05ddf 
n =  2000 
P =  - 0.9 0.058911 2.949253 - 0.534025
p  =  0.1 - 0.112042 3.108897 1.037340
P = 0.5 - 0.004271 3.010583 0.039125
P = 0.9 - 0.029514 2.804668 0.287091
n =  5000 
p = - 0.9 - 0.075556 2.969972 0.714864
/3 = 0.1 0.088653 3.080090 - 0.770456
/3 = 0.5 0.032157 2.923131 - 0.295914
P =  0.9 0.017921 3.017702 - 0.162576
modulo map 
n = 2000 
P =  - 0.9 0.028176 2.927859 - 0.258923
p = 0.1 - 0.050053 3.172654 0.446716
p  =  0.5 0.028631 2.996737 - 0.259330
P =  0.9 - 0.028922 2.869930 0.276386
n = 5000 
P = - 0.9 0.090252 2.900915 - 0.819010
p = 0.1 - 0.065741 2.917982 0.628627
P = 0.5 0.008976 3.046495 - 0.080650
P =  0.9 0.008946 3.046467 - 0.080633
logistic map 
0 =  4.00 
n =  2000 
P = - 0.9 0.049587 2.974481 - 0.447866
p  =  0.1 0.040944 2.969714 - 0.371021
/? =  0.5 - 0.030980 3.014691 0.284563
p = 0.9 0.043746 2.910120 - 0.401801
n =  5000 
p = - 0.9 0.051413 2.872158 - 0.476549
p = 0.1 - 0.022345 2.935574 0.208649
P = 0.5 - 0.047335 2.831869 0.459553
/l =  0.9 0.064447 2.983945 - 0.578053

T able 5.2: Asymptotic normality for example 2.
Sample skewness, sample kurtosis and Lin-Mudholkar test statistic were calculated 
using 2000 replications of (3n
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Table 5.2: continued

logistic map 
6 = 3.98 
n =  2000 
0 =  - 0.9 - 0.48422 3.262085 0.423641
0 =  0.1 - 0.063960 3.155572 0.575278
0 = 0.5 0.023472 3.078451 - 0.210030
0 = 0.9 0.006850 2.815946 - 0.065586
n =  5000 
0 = - 0.9 - 0.024245 3.004036 0.222940
0 = 0.1 - 0.043841 2.919484 0.415906
0 = 0.5 0.014915 3.016785 - 0.135478
0 = 0.9 0.009675 3.074029 - 0.085941
logistic map 
9 = 3.825 
n =  2000 
0 = - 0.9 0.031782 3.016561 - 0.286269
0 = 0.1 - 0.001464 2.907003 0.013604
0 = 0.5 0.127194 2.908697 - 1.137833
0 =  0.9 - 0.075823 3.051904 0.702037
n =  5000 
0  =  - 0.9 0.072705 2.956622 - 0.654292
0 =  0.1 - 0.004777 3.176480 0.042034
0 = 0.5 0.018868 2.980779 - 0.171731
0 =  0.9 0.040121 3.007966 - 0.360992
logistic map 
9 = 3.58 
n =  2000 
0  =  - 0.9 - 0.037055 2.892379 0.352641
0 = 0.1 - 0.022058 2.903171 0.207893
0 =  0.5 0.059152 3.078970 - 0.519473
0 = 0.9 0.105597 2.852842 - 0.965040
n = 5000 
0 = - 0.9 - 0.028649 3.035158 0.262295
0 = 0.1 0.061373 2.955145 - 0.554767
0 = 0.5 - 0.153308 3.107112 1.442278
0  =  0.9 0.029376 2.906723 - 0.272188
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g05ddf

logistic map 4.00

logistic map 3.825

modulo map

data

logistic map 3.98

logistic map 3.58

Figure 5.4: Normal probability plots for example 2.
The normal probability plots were obtained by using 2000 replications of ¡3n\ n 
was taken to be equal to 5000. We reproduce the plots for the value ¡5 =0.5. The 
plots for the other values of (3 are not significantly different from the ones here.
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parameter parameter

Figure 5.5: Variances of the estimators of ¡3 for example 3.
The simulated variances are obtained using 2000 replications of /3„; n, the estima­
tors sample size, is taken equal to 2000.
Simulated variances ( denoted by an asterisk on the graphs) are obtained for four 
values of /3 (-0.9, 0.1, 0.5 and 0.9). The theoretical (asymptotic) variance is based 
on our paper (solid line). When different from the theoretical value, the variance 
of the iid case is displayed (dashed line on the graphs).
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Sample
skewness

Sample
kurtosis

Lin-Mudholkar 
test statistic

g05ddf 
n =  2000 
0  =  - 0.9 - 0.043167 2.940596 0.406848
0  = 0.1 - 0.047389 3.048025 0.434569
13 = 0.5 0.031714 3.008956 - 0.285180
f3 = 0.9 - 0.012763 3.226253 0.110752
n =  5000 
0 = - 0.9 - 0.091213 3.002028 0.860572
/3 =  0.1 0.025228 3.040130 - 0.226248
0 = 0.5 - 0.009994 2.918578 0.093641
0 = 0.9 0.063891 2.931593 - 0.580189
modulo map 
n =  2000 
0  =  - 0.9 - 0.048941 3.174955 0.435398
0 = 0.1 0.048774 2.920711 - 0.447384
0 =  0.5 - 0.027007 3.042101 0.246740
0 = 0.9 - 0.039739 2.926235 0.375028
n =  5000 
0 = -O.9 - 0.100851 3.054374 0.942476
0  =  0.1 0.005110 3.063058 - 0.046004
0 = 0.5 0.018668 3.107051 - 0.165370
0 =  0.9 0.045393 2.996605 - 0.409007
logistic map 
6 = 4.00 
n =  2000 
0 — - 0.9 0.074366 3.004418 - 0.661013
0  =  0.1 0.042516 3.028228 - 0.380105
0 = 0.5 - 0.019117 3.008019 0.175145
0 = 0.9 - 0.004901 3.051311 0.044189
n =  5000 
0 — - 0.9 - 0.057201 3.145481 0.514260
0  =  0.1 - 0.124447 3.071069 1.168209
0  = 0.5 - 0.024543 3.087424 0.221605
0 = 0.9 - 0.093894 3.058190 0.874372

T able 5.3: Asymptotic normality for example 3.
Sample skewness, sample kurtosis and Lin-Mudholkar test statistic were calculated 
using 2000 replications of 0n
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Table 5.3: continued

logistic map 
9 =  3.98 
n =  2000 
P =  - 0.9 - 0.042204 2.981463 0.393277
p  =  0.1 0.058367 2.880236 - 0.538539
P =  0.5 - 0.168714 2.965149 1.656494
P =  0.9 0.030751 2.982472 - 0.279745
n =  5000 
P =  - 0.9 - 0.076668 3.062892 0.708560
p  =  0.1 0.019419 3.131635 - 0.171000
P =  0.5 - 0.101357 3.003555 0.960283
P =  0.9 0.091537 3.095664 - 0.791954
logistic map 
9 =  3.825 
n =  2000 
P =  - 0.9 - 0.059207 2.991525 0.553546
p  =  0.1 - 0.043354 2.999630 0.402653
P =  0.5 - 0.072246 3.020246 0.674211
P =  0.9 - 0.118830 3.169564 1.086786
n =  5000 
yd =  - 0.9 0.054531 3.019285 - 0.486623
p  =  0.1 - 0.057383 3.077809 0.526235
P =  0.5 0.037175 2.737798 - 0.359020
P =  0.9 - 0.005072 3.176264 0.044606
logistic map 
9 =  3.58 
n =  2000 
P =  -0.9 0.087362 3.109046 - 0.753990
p  =  0.1 - 0.039842 2.887086 0.380489
P =  0.5 - 0.031480 2.959448 0.293830
p  =  0.9 - 0.062334 3.236238 0.550208
n =  5000 
^ =  - 0.9 0.001519 2.987700 - 0.013745
yd =  0.1 - 0.017323 2.911859 0.162914
yd =  0.5 - 0.037747 2.949071 0.354008
yd =  0.9 0.011144 2.931654 - 0.103300
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g05ddt

logistic map 4.00

logistic map 3.825

modulo map

data

logistic map 3.98

data

logistic map 3.58

Figure 5.6 Normal probability plots for example 3.
The normal probability plots were obtained by using 2000 replications of /3n; n 
was taken to be equal to 5000. We reproduce the plots for the value (3 =0.5. The 
plots for the other values of /3 are not significantly different from the ones here.
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parameter

Figure 5.7: Variances of the estimators of /3 for example 4.
The simulated variances are obtained using 2000 replications of /?n; n, the estima­
tors sample size, is taken equal to 2000.
Simulated variances ( denoted by an asterisk on the graphs) are obtained for four 
values of (5 (-0.9, 0.1, 0.5 and 0.9). The theoretical (asymptotic) variance is based 
on our paper (solid line).
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Sample
skewness

Sample
kurtosis

Lin-Mudholkar 
test statistic

modulo map 
n =  2000 
P = - 0.9 0.052629 2.935793 - 0.479439
p = 0.1 0.073487 3.081560 - 0.642097
P =  0.5 0.066237 3.016511 - 0.589392
p = 0.9 - 0.105216 2.957195 1.009930
n =  5000 
P = - 0.9 - 0.005980 3.021834 0.054218
p = 0.1 0.015619 3.126208 - 0.137381
P = 0.5 - 0.029980 3.072433 0.272365
p  =  0.9 - 0.095176 3.040944 0.891138
logistic map 
9 = 4.00 
n =  2000 
P =  - 0.9 - 0.016154 3.061507 0.146867
p =  0.1 0.052299 2.936906 - 0.476442
P = 0.5 - 0.022526 2.916575 0.212134
P =  0.9 0.028213 3.031125 - 0.253730
n =  5000 
P =  - 0.9 0.006230 2.957358 - 0.057118
p =  0.1 0.050465 2.925851 - 0.461161
P = 0.5 - 0.052442 3.011357 0.486137
P =  0.9 - 0.023180 2.920517 0.218344
logistic map 
9 = 3.98 
n =  2000 
P = - 0.9 - 0.016376 3.128877 0.146202
p = 0.1 0.055360 2.890137 - 0.509674
P = 0.5 0.090501 2.986479 - 0.804223
p = 0.9 0.067328 2.896332 - 0.616014
n =  5000 
P = - 0.9 0.019800 2.923412 - 0.182340
p  =  0.1 0.130499 3.084124 - 1.117711
P = 0.5 - 0.014515 2.887800 0.136886
P = 0.9 0.123112 3.111031 - 1.050643

Table 5.4: Asymptotic normality for example 4.
Sample skewness, sample kurtosis and Lin-Mudholkar test statistic were calculated 
using 2000 replications of f3n
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Table 5.4: continued

logistic map 
9 =  3.825 
n =  2000 
p = - 0.9 - 0.031183 2.910835 0.294799
(3 = 0.1 0.006320 3.076893 - 0.055962
P = 0.5 0.051307 3.044352 - 0.455348
(3 = 0.9 0.012728 2.961693 - 0.117078
n -  5000 
(3 = - 0.9 0.003875 2.931882 - 0.035626
(3 = 0.1 0.038739 2.907221 - 0.357371
P =  0.5 - 0.046381 2.922019 0.439429
P = 0.9 - 0.013851 2.872886 0.131478
logistic map 
9 = 3.58 
n =  2000 
P — - 0.9 - 0.004454 2.956451 0.041193
p = 0.1 - 0.002275 3.136049 0.020371
P = 0.5 0.067461 2.998111 - 0.602345
P = 0.9 0.063379 3.048641 - 0.560099
n = 5000 
P = - 0.9 0.009459 2.950808 - 0.087037
p  =  0.1 0.058007 2.936228 - 0.527561
P = 0.5 0.047564 3.084741 - 0.418523
p =  0.9 0.019707 2.996737 - 0.179183
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modulo map

data

logistic map 3.98

logistic map 4.00

logistic map 3.825

data

logistic map 3.58

Figure 5.8 Normal probability plots for example 4.
The normal probability plots were obtained by using 2000 replications of /?„; n 
was taken to be equal to 5000. We reproduce the plots for the value ¡3 =0.5. The 
plots for the other values of ¡3 are not significantly different from the ones here.
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5.5 Towards a central lim it theorem  for general 

chaotic sequences

In the chapters 4 and 5, we have got central limit properties for a lot of parameter 

estimators of chaos driven models. Some of them were predicted by our theory 

but many others were not a priori expected. Let us mention for example the 

autoregressive models driven by logistic maps with 6 =  3.98 and 6 =  3.825, or the 

stochastic regression models only involving chaotic sequences.

My conviction is that there exists a central limit theorem for chaotic sequences 

{Et} (and, by extension, for {h(Et)}) provided some mild conditions are satisfied, 

like the absolute summability of the autocorrelations (X ^ i |P£(0I < °°)- In 

particular, if this theorem exists, it would be the underlying reason explaining our 

simulation results. In the following of this section, I shall motivate my conviction 

by describing informally a very promising possible way for getting this central 

limit theorem; before doing that, some simulations are shown, which reinforce the 

idea.

Table 5.5 and Figure 5.9 deal with the asymptotic normality of n -1/2 £"=1 Ei, 

where {Et} are zero mean chaotic sequences generated by the modulo map and 

the four logistic maps under consideration throughout the thesis. We can discern 

apparent normality for all of them; in particular, the sequences generated by the 

logistic maps with 6 =  3.98, 6 =  3.825 and 6 — 3.58 seem to admit a central limit 

theorem, although there is no theoretical justification to this. We now indicate a 

possible way for proving formally this central limit property.
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Sample
skewness

Sample
kurtosis

Lin-Mudholkar 
test statistic

modulo map 
n =  2000 - 0.028703 3.250566 0.249478
n = 5000 - 0.040171 3.166374 0.357585

logistic map 
9 = 4.00 
n =  2000 - 0.113510 2.892336 1.112318
n =  5000 - 0.079357 2.944676 0.757063

logistic map 
9 =  3.98 
n =  2000 0.063462 3.063883 - 0.558807
n =  5000 0.030343 2.986421 - 0.275722

logistic map 
9 = 3.825 
n =  2000 0.148756 2.920087 - 1.317247
n =  5000 0.071949 3.155663 - 0.617811

logistic map 
9 = 3.58 
n =  2000 0.212373 2.942397 - 1.831800
n =  5000 0.185259 3.201798 - 1.520086

Table 5.5: Asymptotic normality.
Sample skewness, sample kurtosis and Lin-Mudholkar test statistic were calculated 
using 2000 replications.
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modulo map logistic map 4.00

Figure 5.9: Normal probability plots.
The normal probability plots were obtained by using 2000 replications; n was 
taken to be equal to 5000.
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We start from the following observation: the chaotic sequences {Et} are not 

strongly mixing but they are not far from it in the sense that they are K-mixing 

systems (see section 3.2). In fact, the main reason for not being strongly mixing 

is that E t+1 = which means that the future can be (perfectly) predicted if

the past is (perfectly) known.

Now, consider the following sequence {Et +et}, where {£¿1 is a sequence of iid 

random variables with mean 0 and finite variance a2 ({et} can be seen as additive 

noise). The sequence {Et + et} is not purely deterministic any more and the fact 

to know E0 + e0 does not help at all to locate En, or a fortiori En + en, for large 

n because of the sensitive dependence on the initial conditions of the chaotic map 

/ .  So, it seems reasonable to conjecture that {Et + et} is strongly mixing. Note, 

however, that proving formally the strong mixing property for such a sequence is 

a difficult task.

If the conjecture ({Et +  Et} is strongly mixing) is true, we can then make use 

of one of the many central limit theorems existing for strongly mixing sequences. 

For example, there is a theorem by Denker (1986) which states: ” For a strongly 

mixing sequence, the central limit theorem holds if and only if the squares of the 

normalised partial sums are uniformly integrable.”. Basically, for our sequence, a 

sufficient condition for getting the central limit theorem is that E| E ”=i Ei\2+6 = 

o(n1+s) for some 5 > 0.

Now, the last step is to show that

(n~1/2 ¿ ( £ ¿  + Ei) Af(0, o%+e)) =» (n~1/2 ¿  Ei Af(0, <r|)).
i=  1 ¿ = 1

Let E * = n~1' 2 E ”=i Ei and e*n = n“1/2 E ”=i D-

Looking at the characteristic functions, we get

Eje¿í(£;+ £ñ)] _). e(- í2/2)<r2E+e

and by independence of {Et} and {et}
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E[e¿tE"]E[e¿te"] -4 e(_t2/2)<7*+<. 

Now, since et ~  iid(0, a2), we have

E[eite"] -4 e(-*2/2)<

So,

E[eiiE-] -4
= ( —í 2/2)cr B + e

, ( - * 2/ 2)4
e(~t2/*W

since <j£+e = a E + a2 by independence of {£)} and {s*}. 

Since, e^~t2̂ aE is continuous at t — 0, we get

n ^ ( E j  +  ... +  E?„) —>d Af(0, cr2E).

Moreover, it can easily be seen that aE = D}=̂ °oo I e U) (see, f°r example, 

Theorem 7.1.1 of Brockwell and Davis (1989)).

So, if the conjecture is true, we get a central limit theorem for chaotic sequences 

{Et} provided E| YCi=\ Ei\2+S = o(n1+s) for some 6 > 0. Obviously, a similar 

reasoning applies for sequences {h(Et)}.

Now, on-going research suggests that the conjecture could be true but there is 

no definite answer yet.



Chapter 6

Conclusion

We have analysed the effect of dynamic noise on the attractors of dynamical 

systems. This is of particular practical interest since any orbit obtained from 

computer calculations is subject to rounding errors. We have shown that the 

attractors (defined as in Ruelle (1981)) are stable under infinitesimal random 

perturbations which are bounded, independent and identically distributed with 

absolutely continuous distribution. Moreover, it has been possible, given the noise 

level, to construct the noisy attractors corresponding to systems subject to more 

general forms of dynamic noise.

We have introduced chaotic sequences. Besides their academic interests, these 

sequences are important from a practical point of view because their analyses cast 

light on computer simulations. We have obtained interesting properties for chaotic 

sequences; in particular, a strong law of large numbers can easily be proved for 

their autocovariances.

We have analysed AR(k) models driven by chaotic sequences. We were espe­

cially interested to enquire why the simulated results seem to support the con­

clusion of central limit properties even though the assumption of independence 

no longer holds for pseudo-random number generators. We have evaluated the 

asymptotic bias of the classical estimator of a  for such chaos driven AR(k) mod­

els. Moreover, it has been possible to obtain asymptotic normality of this estima­

tor for some chaotic random sequences. This gives the asymptotic variance as a

178
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by-product.

We have considered chaos driven linear stochastic regression models. Under 

the assumption that the explanatory random vector and the chaotic sequence 

are independent, we have obtained consistency of the classical linear regression 

estimator. It has also been possible to give its asymptotic variance. Moreover, 

provided some reasonable additional conditions on the explanatory random vari­

able are satisfied, we have also proved the asymptotic normality of the regression 

estimator.

Now, here are some directions of generalization.

The simulation results in chapters 4 and 5 suggest that asymptotic normality 

of the parameter estimator might still be obtained even if we relax some of our 

conditions. A possible explanation and theoretical justification could come from 

a central limit theorem for chaotic sequences under weak conditions. Section 5.5 

sketches a promising way for proving such a theorem. There is, however, no 

definite answer yet; there could exist an easier or more general proof or it is even 

possible that a central limit theorem does not exist for general chaotic sequences.

Another direction of generalization is to extend to chaos driven non linear time 

series and to nonparametric regression techniques and nonparametric estimation 

when the iid sample is replaced by a chaotic sample. Without entering into the 

details here, we would like to mention that the first results are promising: in 

particular, for the kernel density estimation in the presence of a chaotic sample, it 

can be seen, provided some weak conditions are satisfied, that the kernel estimator 

is consistent and that the ideal window width is of order n -1/5 as in the iid case.

Finally, we point out the inextricable interactions between the noisy dynamical 

systems dealt with in chapter 2 and the chaos driven models analysed in chapters 

4 and 5. On the one hand, chapter 2 analyses dynamical systems subject to some 

kind of iid noise. However, computers simulate iid noise by means of pseudo­

random number generators which are typically sensitive to initial values. So, 

a better model approximation of dynamical systems under computer noise is a
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(complex) chaos driven model. On the other hand, the chaos driven models of 

chapters 4 and 5 are themselves only approximations of computer simulations 

since no computer generated numbers can be free from rounding errors. In this 

case, stochastic randomness returns to the model albeit at a deeper level. Section

4.6 illustrates the situation for an AR(1) model and provides us with asymptotic 

properties of a  for quite general AR(1) models driven by noisy chaos. Now, it is 

clear that section 4.6 is just a first step and further investigations are necessary.
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