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Abstract

This thesis investigates feedforward neural networks in the context of classification 

tasks with respect to the detection of patterns that do not belong to the same 

categories of patterns used to train the network. This refers to the problem of the 

detection and/or rejection of spurious or novel patterns.

In particular, the multilayer perceptron network (MLP) trained with the back- 

propagation algorithm is examined in this respect and different strategies for im­

proving its performance in the detection of spurious patterns are considered. The 

problem is investigated from different points of view that vary from the modifica­

tion of the multilayer perceptron network with different configurations that make 

it more intrinsically able to detect spurious information, to the introduction of 

novel auxiliary mechanisms which, when integrated with the MLP network, can 

provide an overall enhancement in the system’s rejection capabilities.

These different network configurations are examined with respect to the charac­

teristics of the decision regions constructed by the networks in 2-D classification 

problems, and the implications of these constructions for general pattern rejection 

are discussed. The technique of inversion in multilayer networks through gradient 

descent is used to observe the degree of visual correlation between the input pat­

terns recognised as valid by the networks and training class prototypes. Practical 

experiments on the classification of handwritten characters are employed as a test 

environment for the different approaches described.

Radial basis function networks (RBFs) are also examined in the same context 

and an experimental comparison is made between RBFs and the different MLP 

configurations studied.
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Chapter 1

Introduction and Background

This thesis reports on the investigation of strategies to improve the robustness of 

neural network computational architectures by seeking to enhance the reliability 

with which they process and categorise input stimuli which cannot be considered to 

belong specifically to any of the classes existing a priori in the pattern environment 

of the networks.

The field of neural networks is an area of study in computational intelligence 

that was originally conceived as a consequence of the observation that the human 

brain performs its function in an entirely different way from conventional serial 

computing paradigms. The basic idea in neural networks is that a large number of 

processing elements each computing a simple mathematical function, but highly 

inter-connected one to another, can exhibit a high computational power. To the 

processing units is attributed the name of “neurons” and to the whole structure 

of interconnected elements is given the name of “neural networks” [27, 29, 33, 44, 66, 68].

Neural networks have been used with success in many diverse areas of sci­

entific and technical disciplines including computer science, engineering, physics,

1



CHAPTER 1. INTRODUCTION AND BACKGROUND 2

medicine, cognitive science, neurophysiology and human perception.

Many models have been investigated from many different points of view that 

vary from the observation of the biological plausibility of the model’s properties 

in comparison with the information processing mechanisms found in the brain to 

the evaluation of these models simply as computationally efficient methods that 

are able to solve many real world problems.

With respect to the latter characteristic, one of the practical areas in which 

neural networks have found extensive application is in pattern recognition where 

examples of systems developed at an industrial and commercial level such as for 

speech processing, image recognition and optical character recognition are widely 

available [67].

1.1 Motivation

Until relatively recently, neural networks developed for pattern recognition had 

been mainly evaluated with respect to issues like the time required to train the 

system, the representational capacity of the model and, above all, with respect 

to their ability to generalise over the training patterns so that similar patterns 

presented later to the network during its usage phase are still correctly classified 

by the network.

More recently, however, another important characteristic in assessing the per­

formance of neural networks in certain practical applications has gained a lot of 

interest from the research community. This is related to the fact that in many 

situations, the method used to solve a particular problem needs to be able to 

differentiate between normal conditions of the environment in which the model 

operates and situations when these conditions reflect abnormal courses of be­

haviour, indicating that something is not happening as should be expected, or
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was previously defined, to happen. For example, if a neural network is trained 

to recognise a certain number of classes previously identified during the training 

phase, it should be able to detect later during its usage phase any pattern that dif­

fers significantly from the patterns belonging to the valid classes. In other words, 

the network should be able to identify the input as being completely novel or as 

a spurious pattern of information, never seen before.

A simple but very illustrative example of the importance of the problem men­

tioned above is given by Smieja and Muhlenbein [75] and is referred to as the 

“dog-paw test” . The test reflects the hypothetical situation of a system designed 

for handwritten digit recognition with a pen-based device and a drawing board 

used to give the input information to the system. Suppose that this system is 

a neural network that provides a very high recognition performance with respect 

to the classes of digits used to train the network. A problem which then arises 

considers the situation where the system is left unattended in a certain place and 

an animal (e.g. a dog) inadvertently puts its paw onto the input board. The ques­

tion that is now put is “what is going to happen” ? Clearly, the ideal response 

of the system would be that the paw of the dog is very different from anything 

that was used to train the system and therefore cannot be accepted as a valid 

input pattern. Although this action of response sounds like the natural procedure 

to be carried out, in many current neural network models there is no evidence 

to guarantee that this is actually what is going to happen if the problem occurs. 

In fact, there is not even any clue at all of what kind of output is going to be 

provided by the network.

Another environment where the problem of the detection of spurious patterns 

is seen as a very important task is in many diagnostic or monitoring systems. 

For example, sensors distributed throughout a plant may be used to monitor the 

condition of operation of a whole system, or of specific parts of the system, by the 

measurement of many characteristics. These variables are constantly monitored 

to see if they lie within their range of acceptable level of operation. If something
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unexpected happens the system has to be able to detect it and to sound an 

alarm so that appropriate remedial actions can be readily executed. This is of 

particular concern in some safety-critical applications where it is important that 

any unexpected abnormal event is readily detected.

It is therefore of considerable practical importance to be able to construct sys­

tems which are inherently able to decide when input patterns are genuine members 

of the a priori known classes and when they simply correspond to spurious pattern 

classes, never seen before. This characteristic can also be seen as an important 

point of reference in deciding about which neural network model is most appro­

priate to use in a particular application, depending on its inherent natural ability 

to deal with the occurrence of abnormal patterns of information. Networks which 

present a poor capability in this respect can then be modified or used in conjunc­

tion with an additional mechanism devised with the specific purpose of turning 

them into more reliable systems.

One of the first studies found in the neural network literature to investigate, 

in some detail, the spurious pattern problem was carried out by Linden &; Kin- 

dermann (1989) [42]. The work points out the fact that one of the most used and 

successfully applied neural network models in pattern recognition applications, 

the multilayer perceptron trained with backpropagation [66], can classify with 

high confidence patterns with completely random characteristics as if they were 

as legitimate as the most genuine representative members of the training classes. 

Linden & Kindermann also presented an approach to improve the ability of the 

multilayer perceptron to detect spurious information, normally referred to as the 

negative training approach. The same idea of the approach was later re-proposed 

by Smieja & Muhlenbein (1992) [75] as part of their reflective neural network 

architecture, and Bromley & Denker (1993) also re-used the same method [10].

Vasconcelos et al (1993) have presented an alternative method to be used with 

the multilayer perceptron with the property of not being dependent on the use of
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negative examples to improve spurious pattern rejection capability. The approach 

has been shown to work in the particular case of random patterns [78] and it 

was also shown to scale up well to more practical cases [79]. This technique will 

be described in Chapter 3. Modifications to the standard multilayer perceptron 

configuration presented by Vasconcelos et al (1994) [80, 81] have also shown how 

the rejection capabilities of the network itself with respect to spurious patterns 

can be improved. Chapter 4 will present these modifications.

More recently, several techniques with different characteristics have been pro­

posed, studied under the general name of novelty detection approaches. One of 

the possible strategies is developed from a statistical point of view and is based 

on the estimation of the probability density function of the training data. These 

methods are based on variations of, or share many similarities with, the approach 

of radial basis function networks [7, 52], Some of these techniques employ semi- 

parametric methods using kernel functions such as a mixture of Gaussians which 

represent a hidden layer of nodes to estimate the density of the data (Roberts & 

Tarassenko (1994) [64]). A test input is detected as novel if it does not approxi­

mate sufficiently the centers represented in the kernel functions. Bishop (1994) [6] 

shows how an approach based on Parzen windows for estimating the density of the 

training data can be employed for the detection of spurious patterns and another 

similar idea was proposed by Leonard et al (1993) [41].

A further strategy with a different characteristic is presented by Japkowickz et 

al (1995) [36] and is based on the use of the autoencoder type of neural network [66] 

to reconstruct at the output layer the positive instances of the patterns presented 

at the input layer, and the use of this autoencoder to recognise novel instances. 

The idea is that an autoencoder performs data compression on the input space and 

patterns presented at the input layer which are not seen by the network during 

the training phase are poorly reconstructed at the output layer. The method has 

been tested on some practical tasks but it still has shown the need for the use 

of negative examples of spurious patterns so that the system can separate them
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from the valid pattern classes.

Other examples of methods applied to very practical applications such as fault 

detection of helicopter gearboxes and fault detection of helicopter power train 

are now available. Some of these methods detect novel patterns through the 

previous modeling of the possible faults that might occur when the system is in 

use (Chin et al (1994) [14] and Kazlas et al (1994) [37]) or through an unsupervised 

learning method (Jammu & Danai (1995) [35]) similar to the principle employed 

in the guard unit technique of Vasconcelos et al [78] described in Chapter 3. The 

employment of a recurrent network to predict the temperature of an industrial 

distillation column process has also been illustrated by Ploix & Dreyfus (1994) 

[58]. The model is used to identify any discrepancy between the predicted and 

the actual temperatures so as to monitor faults in the operation of the system.

Yet another method, described by Courrieu (1993) [12], uses the definition of 

the convex hull polytope of a cluster or the definition of the circumscribed sphere to 

encapsulate the training data. A self-organising structure that presents properties 

similar to the ART models [11] has also been investigated by Bairaktaris [1] which 

uses modifiable thresholds to support a continuous adaptation regime to novel 

classes. Smyth (1994) [77] has studied the monitoring of communication systems 

with hidden Markov models (HMM) and their use in conjunction with neural 

networks to model both the known and unknown states of a system, where the 

unknown states are defined a priori or are represented in a (m +  1) state whose 

probability is determined through a Bayesian approach.

The main objective of this thesis is to study the class of feedforward neural 

networks, in particular the multilayer perceptron network, in the context of clas­

sification tasks with respect to the detection of spurious patterns. One of the 

aims of this work is to investigate possible modifications applied to the multi­

layer perceptron in order to transform it into a structure that presents an overall 

better performance when dealing with spurious information. Another strategy
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investigated, and one which has a fundamentally different nature, is the use of 

mechanisms in combination with the multilayer perceptron so that an integrated 

and more reliable architecture is obtained as a result of the combined structure.

One very important aspect to note about the solutions examined in this thesis 

is that they follow the basic principle that any enhancement in the spurious pattern 

detection abilities of a model should, to be of real practical benefit, be based only 

on the information provided by the patterns in the training classes rather than, as 

suggested by some methods, on the employment of negative examples of possible 

spurious classes to define the boundaries between the valid and the invalid classes.

Before passing on to the description of the chapters, it is opportune to mention 

that the issue of the spurious pattern problem is treated in the methods described 

in this thesis as a question of the rejection of spurious patterns. However, the 

observations and conclusions made are perfectly in accordance with the more 

general concept of the identification of spurious information as simply a different 

category from those previously known. It is clear that there are practical situations 

in which the interest remains in the grouping of these different categories instead 

of in their simple rejection.

It is also important to add that the investigation carried out in the present 

work makes use of the processing of visual patterns, in the practical application of 

the classification of handwritten characters, as a test environment. However, the 

ideas and concepts are completely general and can be extended to the processing of 

patterns of different natures. This type of application is used because it provides 

the benefits of testing network performance in the context of a widely recognised 

practical problem where many models of neural networks have been applied.
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1.2 Overview of the Thesis

This thesis is organised in seven chapters in total, each investigating the problem 

from a different perspective. In this chapter, the motivation for carrying out 

this research is described together with a review of all the work recently carried 

out that has a relation with the subject of the thesis. Fundamental background 

information about the multilayer perceptron trained with backpropagation is also 

presented, since this is the principal model studied in the thesis.

Chapter 2 begins explaining the reasons for the inadequacies of multilayer 

perceptron networks in dealing with spurious patterns and a technique of iterative 

inversion of multilayer networks is described as an important tool for visualising 

the appearance of the patterns confidently classified as valid by the network. The 

technique first proposed to overcome the spurious pattern problem, the technique 

of negative training, is also investigated in this chapter and experiments in the 

application of the classification of handwritten characters are used to assess its 

performance. These experiments are employed in all the other chapters of the 

thesis as a means of comparison between the different models studied.

Chapter 3 introduces the idea of an auxiliary mechanism integrated and par­

allel to the standard multilayer perceptron, the guard unit mechanism, developed 

with the specific purpose of dealing with spurious information. The main objec­

tive of this chapter is to show how the combination of two networks driven by 

different purposes can bring practical benefits in terms of an enhanced overall 

classification performance.

In Chapter 4, different approaches are considered for transforming the archi­

tecture of the multilayer perceptron network itself into a more inherently suitable 

network for rejecting patterns different from the training classes. It is shown how 

each one these modifications can alter the decision regions created by the net­

work in a pattern classification task and the implications of these modifications
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for spurious pattern detection are discussed.

In Chapter 5, the model of a feedforward network known as radial basis func­

tion networks (RBF) is described and this type of network is compared to the 

network configurations discussed in Chapter 4. The reason for this comparison 

is the fact that RBF networks appear as very natural candidate structures for 

the reliable rejection of spurious inputs and, therefore, their comparison with the 

standard multilayer perceptron as well as to the other versions of the MLP con­

sidered in the thesis offer a realistic way of examining the possible advantages and 

disadvantages of the different approaches.

Chapter 6 considers the problem of detecting spurious patterns from a very 

different perspective when compared to the previous chapters. It introduces a 

mechanism based on the ideas of bootstrapping for continually modifying the re­

sponses of a network across the pattern space. It is shown how this mechanism 

can, through “on line” adaptation, gradually enhance a network’s ability to reject 

spurious patterns. Practical experiments carried out with the mechanism show 

that it need not only be used in conjunction with the standard multilayer per­

ceptron but it can also be integrated with the other configurations described in 

Chapter 4.

Finally, Chapter 7 presents overall conclusions on the contributions of this 

overall programme. This chapter also discusses possible future investigations to 

be carried out as a continuation of the present work.

Providing the initial starting point for the thesis, the next section describes 

the single-layer perceptron model as well as the more general and powerful version 

that evolved from it, the multilayer perceptron trained with backpropagation. 

The information presented here is not intended to be a complete and exhaustive 

description of all the aspects of the model and only the most relevant information 

for its operation understanding is considered. For a very complete discussion of
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the features of the perceptron and of the multilayer perceptron see Rumelhart et 

al [66] and Haykin [27].

1.3 The Perceptron

One of the first and simplest forms of feedforward network was proposed by Frank 

Rosenblatt in 1962 [65] and was called the Perceptron. This model had a great 

influence in the historical development of neural networks as a research field and 

was proposed for the purpose of pattern classification.

In the simplest form, the perceptron is a model composed of an input layer, 

a single layer of connections and an output layer of processing elements of the 

type of neuron proposed by McCulloch & Pitts [49], as a simplified model of the 

biological neuron. For ease of explanation, the discussion in this section will be 

restricted to a perceptron with a single output node since the extension to the 

case of more than one neuron is a straightforward matter.

The operation of the neuron is described as a linear combination of its inputs 

applied to the connection weights and its comparison to a threshold, followed by 

the application of the result as the input to a linear threshold function (a hard 

limiting function) ( / ) .  Denoting the inputs of a neuron by Xi, x2, . . . ,  xn, the 

connection weights by w\,w2, . . . ,  wn and the threshold by 9, Figure 1.1 presents 

the schematic representation of the neuron.

The objective of the neuron is to classify the input into one of two classes 

Ci and C2 depending on the value of the weighted sum of the inputs (net =  

Yd= i Wi- Xi~ 9). If net is positive then the input is classified as belonging to class 

Ci and the neuron produces an output equal to +1 and if it is negative then the 

corresponding class is C2 and the neuron gives an output of —1. The classification 

operation executed by the neuron creates a separation boundary between the two
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Figure 1.1: Single perceptron

classes represented by a hyperplane which is defined when YAi=\ Wi ■ Xi — 0 =  0. 

In a typical classification problem involving more than two classes the number of 

processing nodes in the perceptron can be increased so as to represent the different 

classes.

The most important aspect about the operation of the perceptron is how the 

set of weights w\, u>2 , ■ ■ ■, wn are estimated. This is achieved by the application of 

an error-correcting scheme known as the perceptron learning algorithm. Given a 

sample of training patterns from classes C\ and C2 presented to the perceptron, 

the procedure adjusts iteratively the weights of the network after each pattern 

presentation. For the case where a pattern is correctly classified no correction is 

made to the weights and it is only when a misclassification of a pattern occurs 

that the weight vector is updated. Hence, at a given iteration t, if pattern xp in 

the training set is correctly classified by the weight vector w(t) no correction is 

made to the weight vector, as defined by :

w(t +  1) =  w(t) if YJi=1 u>i ■ Xi — 9 >  0 and xp belongs to C\
<

w(t +  1) =  w(t) if £"=i Wi ■ Xi — 9 <  0 and xp belongs to C2
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Otherwise, if pattern xp is incorrectly classified, weight w(t) is updated ac­

cording to the rule :

{w(t +  1) =  w(t) — r/Xp if X)"=i Wi ■ Xi — 6 > 0 and xp belongs to C2 

w(t +  1) =  w(t) +  rjxp if Y.i=i Wi ■ Xi — 9 <  0 and xp belongs to C\

where the term 0 < rj <  1 controls the rate of adaptation.

The interesting characteristic about this learning scheme, shown by Rosenblatt 

in his perceptron learning convergence theorem [65], is that, given that there exists 

a solution weight vector which separates the pattern set, there is a guarantee that 

the perceptron learning algorithm will always converge to it in a finite number of 

iterations. This guarantees that a solution of global minimum error is obtained if 

such a weight vector exists. The very limiting aspect of the perceptron, however, 

is the fact that it can only represent input/output associations of patterns that 

come from a linearly separable set. For example, it is shown that for the simple 

binary XOR function there is no set of weights that can be found to separate the 

input patterns into the proper sets to define the function.

This drawback was the most important criticism raised by Minsky and Papert 

in their classic book Perceptrons [53] which actually culminated in a great pes­

simism about the future of the neural networks field in the seventies. Although 

it has long been understood that the limitations of the perceptron only apply to 

networks with a fixed architecture of a single layer and that the use of intermediate 

layers could make the network able to compute more complex functions, it took 

several years to renew the interest in the area with the development of an efficient 

learning algorithm called the error-back propagation algorithm or the generalised 

delta rule, for training perceptrons with multiple layers.
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1.4 Multilayer Perceptron and Backpropagation

The very basic idea of the backpropagation algorithm is reminiscent of the work 

of Paul Werbos in 1974 described in his PhD thesis [83]. However, it was only 

later in 1986 with Rumelhart, Hinton and Williams that the algorithm became 

widely popularised through the classic neural network book Parallel Distributed 

Processing [66]. A similar generalisation of the algorithm was also developed inde­

pendently by Parker in 1985 [56] and another algorithm of similar characteristics 

was presented by LeCun in 1985 [39].

The multilayer extension of the perceptron model, commonly referred to as 

the multilayer perceptron (MLP), consists of a set of input units (sensory units) 

constituting an input layer, one or more intermediate layers (hidden layers) of 

processing elements and an output layer of processing elements, as illustrated in 

Figure 1.2.

first second output
hidden layer hidden layer layer

Multilayer perceptrons have been successfully applied in many real world ap­

plications such as the learning of the pronunciation of English text [69], optical
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character recognition [38], speech recognition [62], steering of an autonomous ve­

hicle [60], radar target detection and classification [28], control [84] and medical 

diagnosis of heart attacks [4]. One important result about this network is that 

a configuration with only a single hidden layer of processing elements has been 

shown to be able to uniformly approximate any continuous function [15], providing 

the model with the property of universal approximation.

The operation of the network has two distinct passes through the various layers. 

In a first pass, the forward pass, an input pattern is presented in the sensory units 

of the network (input layer) and the processing units compute, layer by layer, 

activation functions until a set of outputs is finally obtained at the output layer of 

the network. The backward pass begins with the measuring at the output layer of 

the error observed between the actual output produced by the network and a given 

desired output. The errors are then propagated back, hence the name error-back 

propagation, from the output layer to the input layer in a layer by layer basis and 

the weights at each layer are adjusted so as to minimise the difference between 

the network’s current output and the target output.

The backpropagation algorithm is in fact a method for implementing gradient 

descent in weight space for training a feedforward network. This implies that the 

objective of the method is the efficient computation of the partial derivatives of a 

certain function F{w\xp) implemented by the network (which approximates the 

function desired to solve the task) with respect to the components of the weight 

vector w for a given input vector xp. The employment of these derivatives for 

adjusting the weights of the network guarantees the minimisation of the error at 

the network’s output.

There are basically two modes for updating the network’s weights, per sample 

training and batch training. In per sample training the changes are performed 

after the presentation of each training example and in batch training the weights 

are updated only after each presentation of the whole sample of training patterns.
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Although in principle either of the two methods can be employed, it has been 

shown that the choice of which strategy to choose depends on the particular 

task [29].

One of the consequences of having a gradient descent procedure for training a 

multilayer perceptron is that it introduces, in contrast with the single perceptron, 

the existence of multiple local minima of the error function in addition to global 

minima. This is the case of any procedure based on “hill climbing” . The shape of 

the error function can present many valleys and while during the training process 

the network can reach any one of these valleys, it is possible that not far from that 

point a deeper valley with a better minimum could have been obtained. The issue 

of the effect of local minima on the practical use of the backpropagation approach 

is still not completely explained but Rumelhart et al [66] claim that this is in fact 

rarely a practical problem. This observation has been in some sense corroborated 

by the many practical applications in which the multilayer perceptron has been 

successfully applied.

Defining the Generalised Delta-Rule

The operation of each processing unit Uj in the network is defined by a propagation 

rule representing the activation of the unit with respect to its inputs (opi), where 

opi =  Xi if unit Ui connecting to unit Uj is an input unit,

netpj — 'LL) jiO p i ( l . i )

and by a semi-linear activation function fj which provides the output of the unit :

° p j  ~  f j ( n e ^ pj ) (1.2)
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The error at the output layer of the network is given by :

1 n
Ep =  — — °pj) ■ (1-3)

z j=i

where opj is the actual output of unit Uj and tPj is the desired output.

In order to minimise the network error, weight changes are defined according 

to the derivative of the error function Ep with respect to the weights Wji,

ApWji oc dEp
dwji

This derivative is then rewritten using the chain rule as the product of two 

factors, one representing the change in error as a function of the change in the netPj 

input to the unit and the other representing the effect that changing a particular 

weight has on the netpj input,

d Ep d Ep d netPj 
d Wji d netpj d Wji

Now, through Equation 1.1 the second factor in Equation 1.4 results in :

(1.4)

<9 netpj
d Wji

d
d Wji ^ ' WjkOpk 

k
Opi ■

With respect to the first factor in Equation 1.4, which reflects the change in 

the error as a function of the change in the netPj input, it can be defined as :
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d E p
d netpj ’

and Equation 1.4 finally becomes :

(1.5)

d Ep
d Wji

&pj Opi. ( 1.6 )

which says that for reducing the value of Ep (the implementation of gradient 

descent) the changes in the weights have to be proportional to SpjOpi or, in other 

words :

KpWji — T]3pjOpi (1.7)

The only variable that remains to be calculated is the value of Spj for each one 

of the units. Making use of Equation 1.5, and again of the chain rule, 6pj can be 

written as :

d Ep d Ep d Opj 
d netpj d opj d netpj

(1.8)

Looking hrst at the second term in this equation, it is obtained from Equa­

tion 1.2 that :

d ^ t j  =  (L9)

which is the derivative of activation function /  for unit Uj.

Considering now the hrst factor in Equation 1.8, two cases have to be consid­

ered. For the case where Uj is an output unit it is seen according to the dehnition
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of Ep :

d Ep 
d oPj

(tpj 0pj ),

that the value of 5Pj is given by :

fipj ~  (tpj opj)fj(netpj) (1-10)

In the case where unit Uj is not an output unit, the values of 5pj can only 

be calculated through a recursive procedure where the errors at a given layer are 

estimated as a combination of the errors in the following layer. The chain rule is 

applied to define :

d Ep _  d Ep dnetpk 
d Opj “  dnetpk dopj

which using Equation 1.1 yields :

R-2- =  Y q—  T~ A—  Y w*k°PO Opj "  dnetpk dopj ^

and using Equation 1.5 produces :

d Ep
d Opj ' y . t)pk Wjk ■ ( i . i i )

Finally, substituting Equation 1.9 and Equation 1.11 in Equation 1.8 it is

obtained :
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5pj f 'y ) 8pk Wj k  ( 1. 12)

k

for any unit Uj that is not an output unit.

It is seen that Equation 1.12 together with Equation 1.10 provide a procedure 

for computing all the 5pj values and consequently the weights in the network can 

be modified according to Equation 1.7. The errors have to be calculated in the 

output units first and then propagated back to the units in the preceding layers 

so that their weights can also be altered. This method constitutes the generalised 

delta rule for a feedforward type of neural network where the processing units 

compute semi-linear activation functions.

It was seen that in the case of the single layer perceptron the units compute a 

linear threshold function. This function can no longer be applied in the percep­

tron with multiple layers since a continuous differentiable function is necessary for 

the generalised delta rule to work. The reason for this is that the computation of 

the 6 values for each unit in the multilayer perceptron requires the derivative of 

the activation function to be calculated and this therefore imposes the constraint 

that the function should be continuous. The most commonly encountered contin­

uous differentiable activation used in the multilayer perceptron is the sigmoidal 

nonlinearity in its various forms. One of these forms is the logistic function :

1
PJ 1 -1- exp(—netpj )

where the output of the function lies in the range [0 ,1 ],

(1.13)

while another very common choice corresponds to an asymmetric form with re­

spect to the origin known as the hyperbolic tangent :
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oPj =  tanh(—netpj) (1.14)

in which case the outputs of the units fall in the range [—1 , 1 ],

The choice of which function to use depends upon each particular application. 

In some cases one of the two may be preferable to the other but in many cases 

either of them can be applied.

Considering the logistic function, the derivative is easily obtained by differen­

tiating both sides of Equation 1.13 with respect to the netPj input :

d°pj
dnetpj

f  (netpj) (1.15)

exp(—netpj)
[1 +  exp(—netpj)}2

Making use of the original equation of the activation function (Equation 1.13) 

this expression can be rewritten eliminating the exp term, and it becomes a very 

simple equation :

/  (netpj) — Opj[ 1 Opj)

which, as can be seen, depends only on the output of the processing unit for its 

calculation.

One important characteristic of the sigmoidal function is that its derivative 

f(netpj) reaches its maximum when opj =  0.5 and its minimum when oPJ is at one
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of its extreme values (oPj  =  0 or oPj — 1). This means that, since the adaptation 

of the weights of a unit is proportional to the value of its derivative, the units that 

will change most are the ones which have not been committed yet to respond with 

an output close to either 0 or 1. This characteristic of the function is pointed out 

by Rumelhart et al [66] as an important factor for providing some stability to the 

error-back propagation algorithm.

Generalisation

One of the major features of neural networks, and particularly of the multilayer 

perceptron, that has made them so popular in many practical applications is their 

inherent ability to generalise over the training classes and to identify successfully 

input patterns similar (but not identical) to the ones seen during the process of 

training. The use of hidden layers in the multilayer perceptron makes possible the 

extraction of features represented in the connection weights which are naturally 

defined by the network as “useful” for differentiating between patterns from dif­

ferent classes. Patterns are mapped to classes according to the criterion of “most 

similar to” and, consequently, this introduces flexibility to classify correctly pat­

terns that appear similar to the training patterns but are not exactly the same. 

However, this characteristic is also responsible for the multilayer perceptron not 

having any limit to the kinds of patterns that can be accepted as valid. In other 

words, the network is not good at extrapolating from the training data.

The issue of improving the generalisation performance of a network may be 

viewed from two different perspectives [27]. In the first, the architecture of the 

network is fixed a priori and the problem that remains is the estimation of the 

training set size needed to obtain a good generalisation performance. Theoretical 

estimations have been derived to determine appropriate training set size based on 

the number of connection weigths in the network but this serves only a guidance 

purpose since generalisation is very much problem dependent and, in practice,
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the number of patterns necessary to be used is many times smaller than the the­

oretical number. From the second point of view, the size of the training set is 

fixed and the issue that remains is to find the best network architecture that can 

provide a good generalisation. In this case, techniques known as network-pruning 

techniques have been proposed where the objective is to improve generalisation by 

the minimisation of the network size [27]. This is based on the concept that a net­

work with a minimum size is less likely to learn noise or anomalies in the training 

data and will tend therefore to generalise better to unseen data. In any situa­

tion, another technique useful for improving generalisation is the statistical tool 

of cross-validation. This procedure has become more widely used more recently 

and consists of defining a validation set of patterns in addition to the training set, 

which is used to evaluate the performance of the network during the evolution of 

training. Training is then stopped at a point where the best generalisation per­

formance is provided with respect to the validation set and the network can now 

be evaluated on the test set. One of the benefits of cross-validation is to avoid the 

problem of over-fitting where the network simply “memorises” the training data, 

which can result in poor generalisation capabilities.

Variations of Backpropagation

One of the major criticisms of the multilayer perception trained with backprop­

agation which relates to the stochastic nature of the learning process is that it 

requires many repetitions of the data set in order to allow the network to learn 

the appropriate task. A great deal of effort has been expended on research into 

the development of different strategies for speeding up learning in multilayer per- 

ceptrons. One of the simplest approaches, and one which is often very effective, is 

the introduction of a momentum term into the rule for adapting the weights [66]. 

The method consists of giving some importance to past weight updates for the 

modification of the weights at the current step. Equation 1.7 is modified to :
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l )  — Tj&pjOpi “i” Q L^p'W jii^') (1,16)

where a is the momentum parameter.

The idea with this modification is to give the weights some momentum (or 

inertia) so that they tend to move in the direction of the average “downhill trend” 

in the gradient descent process instead of oscillating in direction from one side 

to the other when looking for a solution to the problem. This happens because 

gradient descent can oscillate widely if the weights adaptation rate (77) is too large 

and it can. on the other hand, be very slow if 77 is too small. The inclusion of the 

momentum term aims at achieving a balanced course of adaptation.

Many other more complex methods have also been investigated, each of which 

focuses on a different aspect of the adaptation process. One natural path to 

explore is to have the learning rate (77) and the momentum parameter adjusted 

dynamically during training and/or to have these parameters separated for each 

weight. Some examples of methods development following this principle and some 

other ideas are the Delta-Bar-Delta method [34], the RPROP algorithm [63], the 

Quickprop algorithm [20], the Search-Then-Converge technique [16] and Silva & 

Almeida’s adaptation by sign changes [72], Other methods that have also been 

proposed are based on the calculation of second order derivatives of the cost (error) 

function Ep for optimising the learning scheme such as the conjugate-gradient 

method and the Newton’s method. A detailed description of all these techniques 

and many more can be found in [27, 71] and an experimental comparison between 

them can found in [71].
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1.5 Conclusion

This chapter has presented the initial motivations for the development of the work 

to be reported in this thesis and has provided some background information about 

the main model for the networks investigated. In the following chapters, a more 

detailed examination of the multilayer perceptron in the spurious pattern problem 

is initiated and strategies for enhancing the rejection performance of the model 

are considered.



Chapter 2

Recognition of Spurious Patterns

2.1 Introduction

In this chapter, the problem of the detection of patterns not belonging to the a 

priori defined training classes is investigated in the context of feedforward neu­

ral networks. More specifically, the multilayer perceptron network trained with 

backpropagation [44, 47, 66] is examined in this respect. The method referred 

to as the inversion of multilayer networks by gradient descent is described, which 

can be employed as a useful tool for the visualisation of the characteristics of the 

patterns confidently recognised by a network in a classification task.

The reasons for the inherent unreliability of the standard MLP in relation to 

the spurious patterns problem are explained and a technique for the enhancement 

of its rejection capabilities, known as the negative training approach, is described. 

It is shown, however, that this approach has limited practical use because it does 

not guarantee the definition of uniform decision boundaries encapsulating the 

valid training classes. The practical application of the classification of handwritten 

alphanumeric characters is considered, as an example, to examine the performance

25
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of the networks described.

Pattern recognition has been one the most successful areas in which neural 

networks have found practical application [7, 25, 32, 43, 47, 69]. In this application 

area, the models developed are frequently evaluated with respect to their ability 

to correctly classify patterns belonging to the classes on which they have been 

trained. However, a further important characteristic in assessing the use of neural 

networks in systems requiring high reliability is the ability of the model employed 

to deal with the occurrence of patterns that do not share real membership with 

any of the training classes present in the application domain. Many networks 

have been shown to provide very good classification performance when they are 

tested with patterns of the same classes as those in the training set but, until 

recently, little attention had been paid to the question of how these models will 

behave if a pattern completely dissimilar to the training examples is presented to 

the network.

The importance of developing appropriate methods for dealing with this kind 

of problem is particularly clear in applications where decision-making about the 

identity of the input patterns demands high reliability. In such situations, some 

form of rejection mechanism needs to be present in the environment either based 

on the built-in properties of the network itself, or through the introduction of an 

additional process integrated with the system.

It has been shown that one of the most effective networks used in pattern 

recognition, the multilayer perceptron architecture trained with backpropagation, 

can classify with a high degree of confidence random patterns as if they were 

authentic members of the trained classes [40, 42, 78]. Few solutions have been 

proposed to overcome the problem, and these have usually been based on the 

“negative training approach” , an approach which makes use of negative examples 

of random patterns distributed through the pattern space, presented to the net­

work during its training phase. This approach was first introduced by Linden &
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Kindermann [42], subsequently investigated by Smieja& Muhlenbein [75] and also 

re-applied by Bromley & Denker [10]. Here, this approach is described and practi­

cal experiments are conducted to assess its efficiency. These experiments will also 

serve as a test of comparative performance with the other methods investigated 

in this thesis.

2.2 The Inversion of Multilayer Networks

Neural networks and other pattern classifiers have been compared with respect to 

many characteristics such as classification performance, training time, memory re­

quirements and speed of classification, to mention just a few [26, 31, 40, 44], Some 

results obtained in practical tasks have even demonstrated that under appropri­

ate circumstances, such as the provision of a large enough training set, similar 

classification performance can be achieved by different classifiers such as the MLP 

network, K-nearest neighbours and radial basis function networks [40].

Another important aspect of system performance concerns the ability of the 

method employed to distinguish and reject patterns which are very distinct from 

the classes used to train the network. A comparative study developed by Lee 

in [40] on the practical application of the classification of handwritten characters 

has shown that while approaches based on K-nearest neighbour classification and 

radial basis function networks are quite capable of readily rejecting patterns with 

random shapes, the MLP network trained with backpropagation can accept these 

patterns, with a high degree of confidence, as valid members of the classes.

Williams in [87] and Linden in [42] have described how this phenomenon of 

finding random “false” patterns classified by the MLP network can be investigated 

through the technique of network inversion, after it has being submitted to a 

training phase. The method consists of clamping the network weights after it
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has been trained on a certain task and of modifying the input pattern initially 

fed into the input matrix through gradient descent according to the least-mean- 

square error between the current network output and a given output target. In 

other words, the input pattern is successively modified until the output reaches the 

target. Figure 2.1 illustrates a typical MLP network and the process of network 

inversion after training.

Modify 
Input Pattern

Modify 
Input Pattern

Hidden
Layer

v' •* .n .■.•v. ,»•

Output Teaching 
Layer Vector

0
0
0
0
o.
0
0
0
1
0

Classification
Decision

Freeze weights Clamp desired output

Figure 2.1: Standard MLP network and network inversion

Consider the problem of the recognition of handwritten characters. For exam­

ple, if it is required to modify an initial random pattern in the input matrix in 

order for to it be recognised as a ‘8’ , the network’s target output for class ‘8’ is 

clamped into the network’s teaching vector and, with the weights of the network 

frozen, the input pattern is modified until it has been correctly classified as be­

longing to class ‘8’ . The process stops when the global error between the current 

network output and the target output is less than a specified value.

In what follows, a more mathematical and detailed description for the method

is given.
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Description of the Method

Let, xp and tp be the input matrix and the target output vector of the network, 

respectively. The least mean square error (LMS) between the target (tpk) and 

current (opk) outputs of the network is used as a means of searching for an input 

xv which when presented to the network makes it respond approximately with the 

desired output tp. The LMS error is represented by :

E l m s  ^  ̂ {tpk Opk) •
k e o

Now, let xp(0) and op(0) be the initial values of the input matrix and the 

output vector, respectively. In order to modify the input matrix, the outputs 

of the network are first computed by running a feedforward pass through the 

network :

op(0) =  F (£p(0)).

The error signals are then calculated at the output layer and backpropagated 

to the preceding layers until they reach the input layer (input matrix). For all 

input units i that represent the input vector xp, the error signals are given by :

Jpi
d Ep

d netpi (2.1)

In this equation, another component, netpi, is introduced to prevent input 

activations increasing to arbitrarily large values. The reason for this is because 

if the derivatives of the error over the activations (api) in the input vector were 

computed directly, they would eventually drive those activations to lie outside the
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hypercube, which constrains the input pattern space. In order to prevent this 

from happening, the input activations api are clamped and each netpi is computed 

by the inverse of the sigmoid activation function. In this case, used in the non- 

symmetric form :

netpi f  (a,pi')

netpi — —ln{—  — 1)
d'pi

which is the inverse of the sigmoid function :

npi f  [netpi)

1
°"Pl l _|_ q—netpi

Using Equation 2.1, it is now possible to finally calculate the error related to 

each input unit and use it to modify netpi by gradient descent, according to :

A  netpi =  7] . Spi

where rj corresponds to the learning rate for modifying the input space.

According to the value of netpi each input activation api is computed again 

providing a new input vector. By proceeding in this way, the process is repeated 

iteratively several times creating a sequence of input vectors xp(0), xp(l) , . . . ,  xp(n)
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which minimises the distance between the output vector and the target vector until 

it is considered sufficiently small. This may be expressed mathematically by the 

condition :

(tp(n) -  op(n))2 < e y  ■

Application of the Method

Following this description, experiments of network inversion were carried out with 

the standard MLP network after it had been trained on the problem of the clas­

sification of handwritten digits. The database used to train the networks corre­

sponds to separate sets of machine printed and handwritten characters extracted 

from postcode information on envelopes in the UK mail.

Initial experiments were carried out using the database of machine printed 

characters. Several trials were simulated initialising the input matrix with differ­

ent patterns. The initialisation procedure consisted, conveniently, of varying the 

density of ‘on’ and ‘off’ pixels in order to transform the input pattern in a very 

random manner. Other initialisation methods, such as for example the random 

combination of different parts of patterns from the training set, could also have 

been equally applied. None of these particular methods, however, is expected to 

have any different effect in the results obtained (see [40]). Figure 2.2 shows an 

example of input vector initialisation.

Figure 2.2: An example of input matrix initialisation



CHAPTER 2. RECOGNITION OF SPURIOUS PATTERNS 32

Two variations for the input hypercube were considered in the network. In 

one of the variations the activation values in the input matrix lie in the range 

[0.1] and, in the second, the activations lie in the interval [—1,1], For this second 

case, the sigmoid function is still the same but a small alteration in the inverse 

function is necessary in order to make the output values of the inverse function 

to fall in the interval [-1 ,1 ], instead of in the original interval [0,1]. The inverse 

function is given in this case by :

nctpi —ln(
1 dpi
1 +  dpi )

The test of these two variations had the objective of verifying whether or 

not the substitution of ‘0’ by ‘ — 1’ as input value would have any effect in the 

reduction of the problem of recognising false patterns. This was based on an 

initial supposition that because pixels in the input matrix with activation value 

‘0’ do not contribute to changes in the network’s weights they could be responsible 

for under utilisation of the information present in the training data.

Figure 2.3 shows 20 patterns generated by inverting the network, the first row 

(a) corresponding to space [0,1] and the second (b) to spacef—1,1]. As can be 

clearly seen there is a high degree of deformation in those patterns recognised 

(from left to right) as belonging to the classes of handwritten digits ‘0’ to ‘9’ . 

There is also no visually discernible characteristic that could imply any difference 

in performance with respect to the two cases examined. As will be seen in the 

next section of this chapter, the reasons for the MLP network’s unreliability are 

of a different nature.

The same sort of experiment was repeated, this time, for the set of handwritten 

digits. In this case, patterns in the training database are even less uniform in their 

shape. Figure 2.4 displays examples of the inverted patterns obtained.
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Figure 2.4: False digits for an MLP trained with handwritten digits

2.3 The Reasons for the MLP Unreliability

In order to understand the factors which influence the general rejection perfor­

mance of a network in a classification problem and, consequently, the reasons for 

the acceptance as valid of patterns with completely random appearance, an ex­

amination of the network’s operation at the level of the function computed by 

the processing units in the network is necessary. With respect to the standard 

MLP, one important feature is the fact that each unit in the network implements a 

global mapping through a non-linear discriminant function that divides the input 

space into two portions bounded only by the extreme limits of the input space. 

This is the result of the combination of the weighted sum of the inputs as the 

network’s propagation rule (net =  J2j wijxj) and of the sigmoid as its activation
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function ((1 +  exp(-net))~x or tanh(net)), which creates a global receptive field 

such as the one shown in Figure 2.5, for the 2-dimensional case. This property can 

bring advantages in terms of maximising generalisation capabilities, but together 

with the backpropagation learning algorithm, it is primarily responsible for the 

confident recognition of spurious inputs observed in MLP networks.

Figure 2.5: Combination of the inner product with the sigmoid activation function

The following experiment, which visualises the classification surfaces generated 

by a MLP network applied to a classification problem in the 2-dimensional space, 

provides a useful way to investigate network rejection capacity. The experimental 

procedure consists of training a one (or more) hidden layer(s) MLP with a sample 

of training patterns in a 2-class problem, and of testing its classification response 

for a large matrix of points covering the input space. The classification decision 

associated with each point in the matrix is determined in accordance with a con­

fidence level imposed at the network’s output. A pattern is classified as belonging 

to one of the 2 classes if the output (in the range [0,1]) for that class exceeds that 

of the other by a chosen confidence level; otherwise, the pattern is rejected.

The result of the experiment using backpropagation with a high confidence
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level (0.65), shown in Figure 2.6, demonstrates that the vast majority of the 

points, even those most dissimilar to the training patterns (i.e at the extreme 

edges of the input space), are still confidently classified by the MLP network 

(points represented by the elevated surfaces in the diagram). As can be seen, only 

the points falling in between the training data points are rejected (points situated 

in the valley of the diagram).

test points —  
training points □

-3

Figure 2.6: Decision regions for the standard MLP

The application of the same procedure, this time in a problem involving 9 

classes, produces a similar result to that obtained for the 2-class problem in terms 

of the creation of open decision regions, as illustrated in Figure 2.7. This situa­

tion also demonstrates that the only rejection areas created in the pattern space 

correspond to the regions located in between the training classes, and any pattern 

falling outside these rejection areas is accepted as valid by the network.
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The combined reasons for this are, first, that the discriminant function used 

by the processing units in the network corresponds to hyperplanes and, second, 

that the only constraint involved in the determination of the placement of the 

hyperplanes is the characteristic of the learning algorithm, which only places hy­

perplanes directly between classes rather than (as might be desired) around them. 

This means that open decision regions are created in those parts of the input space 

for which no information is available.

Figure 2.7: Decision regions for the standard MLP (9 classes)

This characteristic of standard MLPs trained with backpropagation is not 

always taken into account when practical applications are considered. Although 

MLP networks are known to be capable of creating any form of complex closed 

decision regions [43], this experiment demonstrates that this does not occur with
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backpropagation when the training data only represents specifically the classes to 

be learned, and hence does not provide information about the space surrounding 

the classes.

In many practical applications it is clearly important that spurious extra-class 

patterns are detected as such, and rejected. For example, in a factory process 

controlled by a neural network it is important to detect abnormal operating con­

ditions so that the appropriate remedial action can be executed. It is therefore of 

considerable practical benefit to construct systems which are inherently able to 

decide when input patterns are genuine members of the known classes and when 

they simply correspond to spurious pattern classes.

2.4 The Negative Training Approach

One of the possible methods for improving the rejection capability of MLP net­

works consists of presenting “negative” examples of random patterns to the net­

work during its training phase and of teaching the network to reject them [42, 75]. 

This can be done in one of two ways : through the introduction of an additional 

unit in the output layer of the network, representing the “rejection” class and 

mapping the random patterns to this unit, or through the minimisation of the 

responses of all the network’s output units when a random pattern is presented to 

the network. The purpose of this approach is to create attractors in the pattern 

space generated by the random examples so that when another random pattern 

is presented it is more likely to be classified as “garbage” than as a valid member 

of the trained classes.

The problem with this method is that there is no guarantee that other patterns 

both different from the training classes and also from the negative examples will 

not be accepted by the network. The decision regions generated to separate the
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other parts of the input space from the training classes are not uniform and are 

very much dependent on the expectation that the random patterns arbitrarily 

chosen to represent unseen patterns correspond to good representatives of the 

portions of the input space desirable to be considered as rejection areas.

The effect of applying this method in the 2-class problem described above, in 

this case not with random patterns but with points carefully chosen to illustrate 

important characteristics, can be visualised in Figure 2.8. Here, a group of nega­

tive points surrounding the training classes is included in the original training set 

and the network is trained to reject these peripheral points. It is clear that the 

network is now able to generate closed decision regions because it has information 

about the whole input space. In real world applications, however, there is gener­

ally very little (or no) a priori information about the kinds of spurious patterns 

that should be rejected by the network and, therefore, there is great difficulty in 

finding an effective way of choosing the negative training examples.

2.5 Evaluating Negative Training

2.5.1 Network inversion

The process of network inversion can now be repeated to investigate the effects 

of the negative training approach on the tolerance of the network with respect to 

the input patterns classified as valid. As described earlier, the network is inverted 

after having been trained to recognise digits. In addition to the original training 

classes, random binary patterns are created on-line during the training process 

and are presented as examples of what the network should reject in its usage 

phase.

Inverted patterns accepted by the network trained on the set of machine
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Figure 2.8: Decision regions for the MLP with negative training

printed digits can be visualised in Figure 2.9. In this case, if compared care­

fully to the results previously obtained with the standard MLP architecture, it 

is seen that some improvement in the overall appearance of the digits classified 

is introduced. However, it can be observed that the patterns accepted by the 

network are still very indistinct. There is not much contrast in the shapes of the 

patterns obtained so that they could clearly be identified as numerals.

r «  « .
■

Figure 2.9: Inverted digits for the MLP with negative training
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2.5.2 Experimental results

In order to further compare the approach of negative training (MLP”69) with the 

standard MLP network in the rejection problem, extensive experimental work was 

conducted to measure recognition and rejection performances of both networks in 

the classification of handwritten characters. The experiments consist of training 

the networks to recognise handwritten digits, and of testing their performance in 

the rejection of spurious patterns using for this purpose alphabetic letters pre­

sented to the network during the recall phase.

The database used to train the networks is composed of 1000 handwritten dig­

its and the recognition performance of each network is tested on an independent 

set of 2000 digits. Each character in the database is presegmented and size nor­

malised as a binarised image matrix of 16 x 24 pixels. Hence, the input layer of 

the network is formed of 384 (=  16x24) units, while the output layer consists of 

10 processing units to allow discrimination among the 10 valid classes ‘0’ through 

‘9’ . The network is fully connected from the input layer (input matrix) to the 

hidden layer and from the hidden layer to the output layer.

A second database consisting of 7800 handwritten alphabetic letters is used to 

test the network’s ability to reject patterns not belonging to the training classes. 

Figure 2.10 shows typical samples of digits and letters present in the database 

to illustrate the general form and variability of the data used. The experiments 

carried out in this chapter, and most of the experiments carried out in the remain­

ing chapters of this thesis, were implemented using the Rochester Connectionist 

Simulator [24] running on a Sun Sparc-2 workstation.

All the networks are single-hidden-layer networks tested initially with different 

numbers of units in the hidden layer. Tables 2.1 and 2.2 present the classifica­

tion results obtained for networks with 80 hidden units. These were the network 

configurations further explored since they presented a slightly better performance
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Figure 2.10: Handwritten digits and letters

than the others and they allow a more consistent comparison with other MLP 

configurations described in future chapters. The experiments are repeated with 

different values of the confidence level imposed at the network’s output for accep­

tance of a classification decision. A pattern is classified as belonging to one of the 

classes if the output unit representing that class exceeds those of the others by 

the given confidence level. Otherwise, the pattern is rejected. Table 2.1 shows the 

correct recognition rates for the digits and also the proportion of letters rejected 

by the networks. Finally, Table 2.2 illustrates the percentage of digits erroneously 

classified together with the percentage of digits rejected by the network.

Although it would be more fair if the results obtained with the standard MLP 

could be compared to other types of classifiers in the same problem, it can be 

judged from Table 2.1 that its spurious pattern rejection performance is indeed
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confidence

Digit Recognition Rate Letter Rejection Rate

MLP MLPne° MLP MLPnes

0 92.0 91.5 0 0

0.15 89.4 87.2 17 28

0.25 88.2 86.2 25 36

0.35 84.4 80.3 32 48

0.45 80.8 79.4 46 56

0.55 81.3 80.2 48 53

0.65 72.9 78.4 64 60

Table 2.1: Digit recognition rate vs letter rejection rate

very poor. For example, for the value of 0.45 for the confidence level, the network 

is able to reject only 46 % of the entire set of alphabetic letters and, in this case, its 

correct recognition for the digits drops from 92 % to 80.8 %. In another example, 

for the small value of 0.15, the network does not reject more than 17 % of the 

letters and also, for the other cases, the performance of the network cannot be 

considered satisfactory.

The results observed with the MLPne9 network show a relatively inconsistent 

pattern of behaviour. In some cases, a substantial improvement in the rejection 

performance is noticed when compared to the standard MLP, while in other cases 

only a small increase in the rejection rate is observed. In other instances no sig­

nificant difference is apparent. This suggests that this approach is very dependent 

on the extent to which the negative random patterns chosen during the training of 

the network are representative of the parts of the pattern space considered as re­

jection areas. The experiments reported here correspond to the best case achieved 

with this approach. For example, for a confidence level of 0.15 the rejection rate 

is improved by 11 %, for a confidence level of 0.55 the improvement is by 5 %, 

whereas for a confidence level of 0.65 there is no improvement at all (indeed, in
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confidence

Digit Error Rate Digit Rejection Rate

MLP MLP"69 MLP MLP”eff

0 8.0 9.5 0 0

0.15 5.3 5.7 5.3 7.1

0.25 5.3 4.3 6.5 9.5

0.35 3.7 3.5 11.9 16.2

0.45 2.6 2.2 16.6 18.4

0.55 3.0 2.6 15.7 17.2

0.65 1.7 1.7 25.4 19.9

Table 2.2: Digit error rate vs digit rejection rate

this case, there is actually a decrease in the rejection rate). With respect to the 

digit (valid class) recognition rates, some small degradation in performance is also 

introduced, as can be seen in Table 2.1. The average reduction is by 1.8 % for 

the first 6 values of the confidence level whereas for the value of 0.65 there is 

actually an increase in performance. With respect to the letter rejection rates, 

the average increase is by 10.5 % for the values of 0.15, 0.25, 0.35, 0.45 and 0.55 

in the confidence level.

The other rates measured, the digit error rates and digit rejection rates de­

scribed in Table 2.2, have shown in some of the cases some difference in the results 

observed (for example, for the values of 0.25, 0.45 and 0.55 of the confidence level) 

although this does not correspond to any substantial change in performance. It is 

important to note that for a network developed with the intent of creating more 

rigorous decision boundaries, separating the training classes from the other parts 

of the pattern space, there should be a tendency for an increase in the rejection 

of valid patterns but also a reduction in the rate of misclassified patterns, which 

is not very apparent in this case.
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Another important point to emphasize is that this test of rejection performance 

is a strict one since letters are similar in many respects to digits. In all the 

experiments carried out it has been observed that certain pairs of numerals and 

letters such as 0 /0 , 1/1, 8/B, 5/S, 2/Z, etc. are very difficult to differentiate. In a 

practical situation, for example, it is impossible to differentiate between ‘0’s (the 

numeral) and ‘O’s (the letter) unless some contextual information is provided. 

The results presented therefore reflect a particularly difficult task environment.

Figure 2.11 gives a broad picture of the likelihood of confusion between let- 

ter/digit combinations. This figure represents the confusion matrix for one of the 

simulations with the standard MLP network with the confidence level set to 0.25. 

In this representation a grey scale coding is used to indicate the degree to which 

patterns from a letter class are being accepted as belonging to a specified digit 

class. Here, a very dark square corresponds to a large proportion of inappropriate 

classifications, while a white square signifies a very small number of letters being 

accepted as the corresponding digit class. As expected, it is seen that some of the 

letter classes such as ‘O ’, ‘I’ , ‘X ’ , ‘S’ and ‘Z’ are strongly recognised by classes ‘O’, 

‘ 1’ , ‘ 1’, ‘5’ and ‘2’ , respectively. These classes accepted as genuine digits 288, 202, 

208, 168 and 261 out of a total of 300 patterns present in the database of each 

letter class.

2.6 Conclusion

This chapter has introduced the problem of the recognition of spurious patterns 

and the MLP network has been investigated in this respect. The factors that 

influence the poor performance of MLP networks in the rejection of spurious 

information have been explained through the development of a very useful visu­

alisation experiment for the 2-dimensional case. Practical experiments conducted
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0 1 2 3 4 5 6 7 8 9

Figure 2.11: An example of confusion matrix
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on the classification of handwritten characters in the difficult problem of separat­

ing letters and digits have also been used to back up the observations made in 

the 2-dimensional problem. These experiments will also be employed in the next 

chapters to examine the performance of the different networks proposed.

The technique of the inversion of multilayer networks through gradient descent 

was presented both because it is to be used as a tool in the following chapters 

of this thesis, and also to illustrate the problems related to the standard MLP 

architecture. This technique has proved to be a useful tool for the investigation 

of the tolerance of the networks with respect to the appearance of the patterns 

classified as genuine by the network.

The approach of negative training was also examined in this chapter and it is 

possible to observe that this method does not provide very reliable solutions in 

practical applications. This is due to the fact that the approach is very dependent 

on the assumption that the negative patterns used to train the network provide 

a good representation of the parts of the input space desired to be considered as 

rejection areas, and this is often not a valid assumption in practice.



Chapter 3

The Guard Unit Approach

3.1 Introduction

In this chapter, an approach for improving the performance of MLP networks 

with respect to the rejection problem is examined based on the use of an auxiliary 

network acting in parallel and integrated with the standard MLP architecture. 

This integrated network has the specific goal of rejecting spurious patterns and it 

is shown both experimentally and theoretically how it can work efficiently in this 

respect while maintaining the network’s ability to classify valid patterns.

3.1.1 The guard unit approach

The idea presented in this chapter is that of basing the rejection of invalid patterns 

on the information provided only by the original patterns present in the legitimate 

training classes rather than on the information acquired by the presentation of 

“negative” examples (in contrast with the method of negative training presented in 

Chapter 2). The use of an independent set of processing units, called guard units,

47
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attached to the standard multilayer perceptron (MLP) network is proposed which 

have the specific objective of preventing patterns with arbitrary characteristics 

from being classified as belonging to the defined training classes. Each guard unit 

models an amalgamation of the patterns from the class that it represents through 

a very simple one-shot learning procedure during the network’s training phase. 

Thus, during the network’s recall phase, it accepts or rejects a pattern presented 

in the input matrix depending on whether or not it has a minimum similarity with 

that composite representation. The guard units are not responsible for deciding 

to which training class an input pattern might belong, that is the function of the 

MLP architecture. Instead, their function is more simply to classify the input 

pattern as a “valid” pattern or not.

The approach of guard units aims to combine the advantages of two different 

types of network each with its own characteristics. The first of these is the stan­

dard MLP, which has good generalisation capabilities as a result of, among other 

things, the feature based representations defined in the hidden layer(s) of the net­

work. The second network is a single layer type structure, the guard unit part of 

the system, which generates template-like representations of the training classes 

and uses them to assess the similarity between the inputs and the training classes. 

While the standard MLP can provide good overall generalisation performance it is 

unable to prevent the classification of patterns distinct from the training classes. 

With respect to the guard units, on the other hand, they are expected to perform 

very poor in terms of generalisation ability but are defined with the objective of 

limiting the regions of the pattern space associated with the training classes and 

can provide, therefore, a much better spurious pattern rejection capacity.

A similar method was independently developed by Burgess et al [8] where a 

hyper-box is defined to enclose the set of training patterns of a class, based on 

the orientation of the principal components of that class and estimation of the 

size of the bounded box through the set of training examples. Similarly to the 

guard unit method the algorithm is used in conjunction with a neural network (the
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“perceptron cascade” ) to obtain an improved overall classification performance.

The approach of guard units can be shown by Vasconcelos et al [78] to work 

very effectively in the particular case of the rejection of random patterns and it is 

also shown that the technique scales up well to practical cases, using for illustrative 

purposes its application in the classification of alphanumeric characters [79],

This chapter will describe the guard unit approach and present experimental 

results comparing the recognition and rejection rates attainable by both a stan­

dard MLP network and an enhanced architecture, operating on the same problem 

of the classification of alphanumeric characters described in the previous chapter. 

The mechanism by which the inclusion of guard units makes the network more ef­

ficient in rejecting “invalid” patterns is described and explained, and the practical 

implications of the advantages of using the enhanced architecture are established.

3.2 Single Guard Units

A set of special-purpose processing elements, the guard units, is defined which 

are responsible for checking if the input patterns presented to the network have a 

minimum similarity with the defined training classes. These guard units are inde­

pendent of the conventional network architecture, but are functionally integrated 

with it. The resulting (integrated) network is illustrated in Figure 3.1. Each 

possible class of patterns is associated with a separate guard unit and during the 

network’s training phase each guard unit sees only patterns belonging to the class 

that it represents. As with the units in the first hidden layer of the MLP at the 

heart of the processing network, each guard unit is fully interconnected with the 

input layer and its output provides an additional input, along with the classifica­

tion decision output from the MLP network, to a final decision mechanism. There 

is no competition among the guard units during a classification task, instead each
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guard unit provides an overall “accept” or “reject” decision with respect to an 

input pattern, depending on its similarity with the connection weights feeding 

into the guard unit.

Input

Figure 3.1: Multilayer perceptron network with guard units

The standard backpropagation learning algorithm is used to train that part 

of the network corresponding to the conventional MLP, while the guard units 

themselves are trained using a very simple “one-shot learning” procedure. This 

consists of defining the weight vector for each particular guard unit by taking the 

mean pixel values over all training patterns belonging to the class. This strategy 

is executed automatically during the network’s training phase and results in an 

amalgamation of the class training patterns. It requires only a single processing 

step over the entire training set for its definition, making the training of guard 

units a simple operation. Thus, if Wi denotes the weight vector of guard unit i 

and xpi denotes a training pattern from class i, then Wi is given by :

wi
pi

nr
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where nt is the number of training patterns in class i.

The crucial role of the guard units, however, is in the network’s recall phase. 

In this phase they operate by providing an output proportional to the similarity 

between their weight vectors and the input pattern. This requires the definition 

of an appropriate criterion of similarity between the two vectors in order for an 

acceptance or rejection to take place. In the experiments described in this thesis 

two variations have been considered. The first is based on the calculation of 

the inner product between the vectors and, therefore, defines a linear guard unit 

(LGU), while the second is based on the use of a simple Euclidean distance metric, 

defining a Euclidean guard unit (EGU). Other similarity measures such as, for 

example, the Mahalanobis distance [70] could also have been applied. Because 

the effectiveness of the distance measure employed will depend on the statistical 

distribution of the training data, in some situations the Mahalanobis distance 

could generate better representations of that distribution. The disadvantage is, 

however, the fact that it is a bit more complex to calculate than the simple inner 

product or the Euclidean distance.

It should be noted that this method of computing a similarity measure can be 

related to other approaches that limit the region of the input space considered to 

belong to each class, such as nearest neighbour [13, 88] or Bayesian classification 

methods [19]. However, the method presented here has a much lower degree 

of computational complexity which, as will be shown, nevertheless works very 

effectively in practice.

The output of the guard units is taken into account by the system in computing 

a final decision about the identity of an input pattern. For each guard unit that 

did not accept the input pattern as having a minimum similarity with its weight 

vector, a ‘0’ output is issued. Otherwise, the guard unit’s output is ‘ 1’ . The 

final decision device is responsible for checking the response of the guard unit 

associated with the class to which the MLP processor would, if operating alone,
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assign the input. In the case of a ‘0’ output, then no matter what the output 

of the winning unit in the output layer, the final decision is to reject the pattern 

as not belonging to that class. However, if the guard unit’s output is ‘ 1’ then 

the normal classification process of the MLP architecture is accepted as the final 

decision defining the identity of the input pattern.

3.2.1 Linear guard units (LGUs)

In order to decide whether an input pattern has a minimum similarity with the 

training patterns, or not, it is necessary to define a point of reference. One 

straightforward approach is to use the inner product of the guard unit’s weight 

vector by itself (wi ■ uJi), as this vector represents a point in the input space ex­

pected to be located near the middle of the region in which the training patterns 

of each class are located. Since it is not expected that input patterns will be rigor­

ously similar to the amalgamated training patterns it is necessary to moderate the 

inner product Wi ■ Wi with the introduction of a relaxation parameter (p), which 

can be calculated as a certain percentage of the original inner product (wi ■ Wi). 

Obviously, the larger the value of p chosen the more flexible is the boundary 

defined by each guard unit. This represents the threshold for considering the in­

put pattern as having a minimum similarity with the guard unit’s representation. 

Equation 3.1 denotes the output function (opi) for input pattern xp for LGUs.

®pi(-£p)
1 , if Xp ■ Wi >  (Wi ■ Wi -  p);

0 , otherwise

This represents the simplest form of guard unit specification.

(3.1)

In situations where the patterns present in the context of application are bi­

nary, as is the case of the experimental environment described in this thesis, they
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can be used directly as input to Equation 3.1. In the case of non binary patterns 

it is more appropriate that all training patterns are normalised to the interval 

[0,1] (keeping the information about the amplitude of the vectors) before defining 

the guard unit representations. This is in order to avoid patterns with arbitrarily 

large components of being accepted as valid when given as input to Equation 3.1.

3.2.2 Euclidean guard units (EGUs)

In the case of the EGU, each guard unit defines a rejection area corresponding to 

a hypersphere in the input space. In a similar way to the case of a radial basis 

function [7] that computes how distant a pattern is from a centroid, the guard 

unit’s output function (opi) calculates the simple Euclidean distance between the 

input pattern and the vector representing the amalgamated training patterns. 

This is given by equation 3.2, where n denotes the dimensionality of the input 

space and d is the minimum similarity considered for accepting the input pattern 

as valid.

0 , otherwise
1 . if ATT,-  > d; (3.2)

This offers an alternative mechanism for pattern rejection which is based on the 

commonly used and intuitively satisfying Euclidean distance metric.
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3.2.3 The decision surfaces with the guard units

In order to explain and illustrate the function of the guard units more clearly, the 

classification problem involving two classes illustrated in Figure 3.2 can be consid­

ered. This shows the decision boundary created to separate the two classes deter­

mined by the backpropagation algorithm together with typical decision boundaries 

defined for the case of LGUs.

The introduction of guard units makes possible the definition of a rejection 

area in the input space in contrast to the case when the MLP network is used 

alone. The stored pattern in each guard unit corresponds in practice to a template 

pattern representing its class. Consequently, patterns which are very dissimilar 

from that template do not cause the guard unit to respond positively, while the 

criterion of required similarity can be controlled to avoid, or at least minimise, 

rejection of valid patterns. As can be seen in Figure 3.2, the discriminant function
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determined by each linear guard unit significantly reduces the area considered 

to belong to each training class. The entire region above the decision boundary 

defined by backpropagation is now confined to region A, when considering patterns 

belonging to class 0. Similarly, the region below the decision boundary defined by 

backpropagation is confined to region B , when considering patterns from class 1.

A similar situation occurs in the case of EGUs but, in this situation, the deci­

sion surface defined by each unit corresponds to a circular region (a hypersphere, 

in the n-dimensional case) as illustrated in Figure 3.3. The acceptance regions 

considered as “valid” by the combined network are also significantly reduced in 

this case.
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3.2.4 The inversion of MLP networks with guard units

The observations made in the previous section in the case of a simple 2-dimensional 

problem are important in order to understand the benefits gained with the ap­

proach presented. It is important to establish that these observations scale up to a 

higher dimensional class of problems, more appropriate to a practical application. 

This leads to the problem of how to visualise the results. One technique that can 

be used is to test the tolerance of the networks with respect to the visual appear­

ance of the input patterns presented. Clearly, a network with limited tolerance to 

input pattern distortions will be good at rejecting spurious patterns. The method 

of network inversion for multilayer networks described in Chapter 2 provides a 

means of testing this tolerance.

In order to investigate this idea, the standard MLP and the LGU version of the 

guard unit network were trained on the problem of the recognition of characters, 

making use in one of the cases of a database composed of machine printed digits 

and in another case of a set of handwritten digits. The inversion of the networks 

were simulated several times after they had been trained with different values 

of the moderation parameter p and sets of patterns accepted as legitimate were 

obtained.

In all the simulations executed, there is a consistent observation that the mod­

ified network is much less tolerant to patterns with random characteristics. Fig­

ure 3.5 illustrates one of the trials for a network with guard units trained with 

machine printed digits, and the variable p set to 100. This value was chosen based 

on the maximum value of matching considered between the guard unit’s vector 

and an input pattern, which is (wi ■ Wi), equal to about 220 on average (value of p 

corresponding to 45 % of the original inner product). A substantial improvement 

in the digit shapes can be noted as compared to those obtained in the case of an 

MLP without guard units (Figure 3.4). An improvement is similarly noted for 

handwritten digits in this case with much less uniform characteristics. Figure 3.6
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illustrates the inverted patterns for a LGU network with p equal to 60 (p equal 

to about 50 % of the inner product). Even if compared to the inverted patterns 

obtained for the network without guard units trained on the machine printed set 

(shown in Figure 3.4), whose patterns present much less variation than in the 

handwritten set, a clear improvement in the shapes of the digits is noted.

Another, perhaps more objective way of measuring the function of the guard 

units, is to observe the values of the inner product between the final inverted 

pattern for each class and the amalgamation of training patterns. Since an amal­

gamation of the patterns from a certain class is expected to represent relatively 

well the main characteristics of that class in the case where there is not much 

spread in the training data, this procedure can give a good idea about how far 

patterns being accepted as genuine by the networks are from the training classes. 

Therefore, the closer a pattern is to another pattern the greater should be the 

inner product between them.

Figure 3.4: Inverted digits classified by an MLP trained with the machine printed 
set

Figure 3.5: Inverted digits for the MLP with LGUs trained with the machine 
printed set

The comparative results for the standard MLP and the enhanced network 

with LGUs are shown in Table 3.1 for the case of machine printed digits and
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Figure 3.6: Inverted digits for the MLP with LGUs trained with the handwritten 
set

Table 3.2 for the case of handwritten digits, and they confirm that the inverted 

patterns accepted by the guard units are much closer to the training patterns 

than those accepted by the standard MLP. The maximum values presented in the 

tables correspond to the maximum value of the inner product between each guard 

unit’s weight vector and itself. It can be seen that in certain cases (class 5 in 

Table 3.1, for example) the approximation between the inverted pattern and the 

amalgamation of the patterns is very poor in the case of the standard MLP and 

this does not happen in the case of the LGU network (and also with the EGU 

network), since the criterion of a minimum similarity does not allow acceptance 

of random patterns.

Class MLP Network MLP with LGUs, p =  100 Maximum

0 7.48 186.60 249.57

1 56.10 84.77 170.23

2 80.07 170.19 245.28

3 68.85 171.61 250.05

4 24.99 98.16 184.09

5 1.65 127.22 213.67

6 33.72 162.92 223.78

7 91.00 174.31 253.26

8 23.25 133.49 231.23

9 79.61 112.91 198.74

Average = 46.67 142.22 221.99

Table 3.1: Inner products for networks trained with machine printed digits
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Class MLP Network MLP with LGUs, p =  60 Maximum

0 61.03 107.87 159.99
1 0.82 82.22 97.11

2 34.64 88.27 146.73

3 6.62 112.53 157.37

4 18.78 88.69 137.88

5 16.62 103.73 134.51

6 59.97 101.17 146.55

7 45.05 108.65 181.53

8 29.75 62.04 104.53

9 36.57 89.90 139.85

Average = 30.98 94.50 124.86

Table 3.2: Inner products for networks trained with handwritten digits 

3.2.5 Experimental results

In this section, a series of practical experiments in the application of the classifi­

cation of handwritten characters is considered as an example to demonstrate the 

improvement in performance obtained with the introduction of the mechanism of 

guard units. First, a number of experiments are repeated with the standard MLP 

and, subsequently, results are shown with the networks using guard units.

The experiments deal with the same task described in Chapter 2 of training 

the network to recognise handwritten digits extracted from postcode information 

on envelopes, and of testing its rejection performance with respect to alphabetic 

letters. As mentioned before, these particular data sets were adopted in order to 

carry out a strict test of rejection performance, since many letters and numerals 

share similar characteristics (for example 2/Z, 5/S, 0 /0 , 1/1, etc). The technique 

is general, however, and can be equally applied to any other data sets. The use 

of such “real” data is particularly important in evaluating the practical benefits
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offered by the approach described.

The simulations considered a single hidden layer network composed of 20 pro­

cessing units. The entire database of digits contains, in this case, 2400 patterns 

separated into two disjoint subsets of 400 and 2000 patterns, respectively. The 

first subset was used to train the network with 40 patterns per class which was 

found, through experimentation, to be of an adequate size. By adequate size, it is 

meant here that the classification results observed are not far from other similar 

results reported in the literature on the same problem [38, 40, 47] and they are at 

a level sufficiently high to allow a fair comparison of the networks in terms of spu­

rious pattern rejection capabilities. The second subset was employed as a test set 

for measuring correct digit recognition performance. The database of alphabetic 

letters, from the same source, is composed of 7800 patterns with 300 patterns per 

class.

In the experiments with the standard MLP, the best rate of digit recognition 

achieved for the database of 2000 digits was 87.5 % for a 0 % rejection rate of 

alphabetic characters. In other simulations, a level of confidence for acceptance of 

a classification response was introduced imposing the constraint that it should be 

accepted only when the response of the winning output unit exceeds those of the 

others by a certain margin. Otherwise, the input pattern is rejected. Figure 3.7 

shows the results obtained using different values for the level of confidence of 0, 

0.15, 0.25, 0.35. The best rate of letter rejection achieved was 36.8 % using the 

value of 0.35 for the level of confidence but, in this case, the digit recognition rate 

dropped to 77 %.

Experiments with networks integrated with either LGUs or EGUs showed an 

improvement over the rejection performance of the conventional architecture. Fig­

ures 3.8 and 3.9 illustrate the results observed for simulations carried out using 

different values of the relaxation parameter (p) for LGUs and different values of 

the d parameter for EGUs, respectively. These results were obtained with the
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variation of decision confidence level

Figure 3.7: Digit recognition vs letter rejection for the standard MLP

level of confidence for the MLP part of the network set to 0. The previous results 

with the standard MLP are included in Figures 3.8 and 3.9, using the digit recog­

nition rates as a point of reference (matching them over the rates obtained with 

the architectures with the guard units). Since the structure with linear guard 

units and the standard MLP generated approximately equivalent digit recogni­

tion rates (the enhanced architecture, in fact, performed marginally the better) a 

meaningful comparison of the respective letter rejection rates can be made, and it 

can be seen that a significant improvement can be obtained in terms of rejection 

capability.

The best digit recognition rate achieved was 88 % for a rejection rate of 22 

% for non-digit characters, against 0 % for the rejection rate achieved previously. 

This suggests that an effective rejection mechanism can be implemented by a 

judicious change of the processing architecture which does not add significantly 

to its complexity. Modifying the p parameter to smaller values (implying more
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rigorous classification criteria) brings about an improvement in the rejection of 

non-digit characters, although this will also cause a degradation in the network’s 

performance in the classification of the digits. The best rejection rate achieved was 

55 % together with the worst recognition rate of 77 %. This represents an increase 

by a margin of 18 % in the letter rejection rate as compared to the standard MLP 

maintaining the same rate of 77 % for the recognition of digits.

Figure 3.8: Digit recognition vs letter rejection for the MLP with LGUs

As can be seen in Figure 3.9, the network using the Euclidean guard units also 

showed a stronger capacity to reject letters than the standard MLP architecture. 

The best rejection rate reached 62 %, although in this case the digit recognition 

rate dropped to about 72 %. As the value of the d parameter is changed a trade 

off can be observed between the digit recognition rate and the letter rejection 

rate. This result, however, demonstrates a clearly improved performance over 

that attainable with the conventional MLP network alone.
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Figure 3.9: Digit recognition vs letter rejection for the MLP with EGUs

3.3 Multiple Guard Units (MGUs)

Although the definition of LGUs and EGUs have shown overall improvements 

in terms of network rejection capability, some problems with the initial method 

can be raised with respect to the fact that the definition of single guard units do 

not take in consideration situations where the training data is not confined to a 

convex region of the pattern space and is, contrarily, very spread throughout the 

space. With the objective of considering this problem, an extension of the original 

concept is introduced in this section.

The modified procedure allows the number of guard units for each training 

class to grow dynamically during the training phase through the use of a clustering- 

algorithm. This network is referred to as the multiple guard unit network (MGU).
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3.3.1 Description of the method

The broad strategy adopted is basically the same as that used by the guard unit 

network to reject invalid patterns but, in this case, the procedure is used during 

the training phase in order to create new guard units when the distance between a 

new training pattern extracted from the database and the stored template in the 

corresponding guard unit exceeds a given threshold value D. In the experiments 

reported here, the Euclidean distance was used, once again, as the distance metric 

between the patterns but other metrics could also have been used.

The process begins with the adoption of a single guard unit for each class and 

then, by performing a single step over the entire training set, new guard units are 

added whenever the criterion of similarity exceeds the threshold D. The value of 

the D parameter is essentially defined ad-hoc but taking into consideration the 

important fact that it controls the number of clusters formed and consequently 

the number of guard units defined for each training class. The behaviour of the 

network in the recall phase is similar, with the introduction of a further threshold 

variable cl. This is appropriate because although this variable has the same role 

as the variable D it has optimum values which might be different for each training 

class, depending on the similarity distribution of the patterns encountered in a 

particular application.

The use of multiple guard units (MGUs) per class allows a more refined repre­

sentation of the areas in input space occupied by the training classes. In this case, 

combinations of hyperspheres define more complex decision surfaces than those 

obtained with LGUs and EGUs and, therefore, provide a better approximation of 

the training data distribution. Figure 3.10 illustrates the result of applying this 

modified version of the network in the definition of the valid acceptance areas 

for the two-class problem considered previously. As discussed at the beginning 

of this chapter, the only regions important in the diagram as far as the guard 

units are concerned is the decision surface which surrounds, as a whole, all the a
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priori defined training classes. This makes the job of guard units rather easier and 

more effective than if they had to create optimal decision boundaries separating 

the training classes. It is a common observation that the use of systems based on 

distance metrics for classification purposes is not usually as efficient as classifiers 

based, for example, on the use of hyperplanes as the discriminant function. For 

this reason, the part of the system that measures distance between patterns, the 

guard unit network, is used to encapsulate the training data and not to define 

classification regions to separate each training class from the others.

The definition of MGUs, however, introduces the question of how to estimate 

efficiently the values of the threshold variable d for the many guard units in 

the different classes. In a real application, it would be appropriate to seek the 

development of an automatic system so that the manipulation of the values of this 

variable in order to obtain a good solution to the problem could be minimised. 

A simple way of solving this problem is to make use of a validation set for the 

estimation of the parameters. The idea consists of submitting the network to a
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second presentation of patterns belonging to the training classes and of modifying 

the parameters according to the their maximum (or mean) distances to the guard 

unit representations previously created. The original training set itself may be 

used as a validation set. as in the case of the experiments reported here.

Algorithm for creating MGUs

1. For each training class i do;

2. Take a training pattern xp from class i;

3. If there is no guard unit for class i create one, assign the current input to 

its weights and go back to 2; otherwise go to 4;

4. Amalgamate the input pattern (the mean over the input and the guard unit’s 

weights) with the closest guard unit representation if the distance between 

them is less than variable D , go back to 2; otherwise go to 5;

5. If none of the guard unit representations has an Euclidean distance to the 

input less than variable D create another guard unit assigning the input 

pattern to its weights;

6. Go back to 2;

Algorithm for estimating the thresholds

1. For each training class i do steps 2 to 4;

2. Take a validation pattern xp from class z;

3. Carry out a competition between the guard units of class z and calculate the 

distance between pattern xp and the representation of the winning unit;
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4. Consider the calculated distance as the new estimated value of variable d 

for the particular winning guard unit if that distance is greater than the 

current value of d; otherwise do not change the value of d; go back to 2;

5. Finally, relax the values of each estimated variable d by a very small per­

centage rp (d =  d +  rp/d x 100) in order to create more flexible thresholds.

3.3.2 Experimental results

Adopting this principle, further recognition experiments were carried out with 

the defined data set of handwritten characters, and the results demonstrated a 

further improvement over the previous architecture when LGUs and EGUs were 

used. These will now be described in more detail.

Experiment 1

Again, the experiments deal with the classification of handwritten characters. A 

set of 7800 letters is used to test the performance of the networks for rejecting 

spurious patterns. In this set of experiments with MGUs, a slightly bigger training 

digit set composed of 1000 patterns (100 per class) is used to train the network 

and the same set of 2000 digits employed before is used to test network recognition 

performance. The MLP part of the network contains the same number of 20 hid­

den units employed initially in the single guard unit structures. The experiments 

are repeated several times for different values of the confidence level imposed at 

the outputs of the MLP network for acceptance of a classification decision. The 

MGU network is also tested with different values of the relaxation parameter (rp) 

used to moderate the estimated values of variable d.

In a first attempt, no relaxation (rp =  0%) was used and this case presented 

the best results in terms of letter rejection performance (for example, in one of
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the cases, a 41 % rejection rate was obtained as opposed to 0 % observed with the 

standard MLP). However, as might be expected, the degradation in the recognition 

of digits was also substantial (4.8 % on average). The full results achieved in this 

particular simulation are described in Table 3.3.

Relaxation Parameter rp) =  0 %

confidence

Digit Recognition Letter Rejection

MLP MGU A = MLP MGU A =

0 91.5 85.0 -6.5 0 41 +41

0.15 88.6 85.0 -3.6 21 49 +28

0.25 86.2 81.6 -4.6 31 56 +25

0.35 85.4 80.0 -5.4 40 57 +  17

0.45 80.5 75.0 -5.5 48 66 +18

0.55 76.7 70.9 -5.8 58 71 +13

0.65 74.3 70.0 -4.3 65 75 +10

Table 3.3: Digit recognition rate vs letter rejection rate for the MGU, rp =  0

With the introduction of a small relaxation into the thresholds d, a very good 

trade-off can be brought about. For example, Table 3.4 summarizes the results 

obtained for both the standard MLP and the architecture with MGUs with 2 % 

of relaxation. This particular case represented the best compromise in terms of 

performance, if “best” is seen as the situation where a consistent improvement in 

the rejection rate is obtained with only a very small degradation in the recogni­

tion of valid patterns. As shown in Table 3.4, for a small averaged degradation in 

the digit recognition performance (1.6 %) the increase in letter rejection is very 

substantial. Other values for rp were also tested and presented different compro­

mises between spurious pattern rejection and valid pattern acceptance. Probably 

one of the best strategies for the definition of the relaxation value is to start with 

0 % relaxation and observe any degradation with respect to the valid patterns.
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Then, the value of rp can be increased until any possible degradation has reached 

an acceptable level. It is important to note, however, that the term “acceptable 

level” used here is entirely dependent on the particular task environment and it 

can only be accurately determined by considering the objective context of the 

application.

Relaxation Parameter rp) — 2 %

confidence

Digit Recognition Letter Rejection

MLP MGU A = MLP MGU A =

0 91.5 89.4 -2.1 0 28 +28

0.15 88.6 86.7 -1.9 21 41 +20

0.25 86.2 84.7 -1.5 31 44 +  13

0.35 85.4 83.4 -2.0 40 52 +12

0.45 80.5 79.2 -1.3 48 57 +9

0.55 76.7 75.8 -0.9 58 69 +11

0.65 74.3 72.9 -1.4 65 72 +7

Table 3.4: Digit recognition rate vs letter rejection rate for the MGU, rp =  2

Another important aspect, as indicated in Table 3.5 for the case of relaxation 

parameter rp equal to 2 %, is the reduction of the digit error rates with the MGU 

network as a result of the more rigorous test of similarity between patterns. It 

can be concluded that patterns for which the network has low confidence about 

their identity are now being rejected instead of taking the risk of performing a 

misclassification. Indeed, it is important to pay attention to the fact that in all 

the experiments carried out with the different values of the parameter rp, the 

loss in recognition rate observed has not been transcribed into an increase in the 

error performance of the network but into an increase in its rejection performance. 

In other words, the overall error rates of the network has not gone up with the 

application of the MGU strategy.
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Relaxation Parameter (rp) = 2%

Digit Error Rate Digit Rejection Rate

confidence MLP MGU MLP MGU

0 8.5 6.1 0 4.5

0.15 7.1 5.1 4.3 8.2

0.25 5.7 3.8 8.1 11.5

0.35 4.8 3.5 9.8 13.1

0.45 3.5 2.4 16.0 18.4

0.55 2.5 1.7 20.8 22.5

0.65 2.3 1.6 23.4 25.5

Table 3.5: Digit error rate vs digit rejection rate for the MGU, rp =  2

The training of guard units created about 20 units per class on average (200 

units in the total). Although this number of units can be considered high when 

compared to the original number of 20 units in the conventional MLP network, 

it can be argued, in fact, that if a full distance based classifier had been devised 

for the purpose of both classification of valid patterns and rejection of spurious 

inputs, the number of required processing units would be much higher1.

Experiment 2

An additional group of experiments carried out with the MGU network was 

developed with the purpose of demonstrating that the performance of this im­

proved network should be even more striking when the input patterns are very

1 In chapter 5, for example, it will be seen that in order to maintain a similar level of valid 
pattern recognition performance a network such an RBF needs to have a considerably larger 
number (1000) of processing units.
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different from the training classes. The experiments consist of the test of ac- 

ceptance/rejection of 5000 randomly generated binary patterns presented to the 

network. Table 3.6 shows the complete results obtained where it can be seen 

that, even for very random patterns, the performance of the pure MLP can only 

slightly approximate the results achieved with the MGU architecture with a very 

high confidence level imposed at the network’s output (0.65, 88 % spurious pattern 

rejection rate). For a far superior rejection performance (99 %), the integrated 

network provides a much better valid pattern recognition rate (89.4 %) as opposed 

to 74.3 % obtained with the standard MLP. Again these results correspond to the 

value of 2 % for the parameter rp.

Relaxation Parameter (rp) =  2 %

confidence

Digit Recognition Random Pattern Rejection

MLP MGU A = MLP MGU A =

0 91.5 89.4 -2.1 0 99 +99

0.15 88.6 86.7 -1.9 32 99 +67

0.25 86.2 84.7 -1.5 45 99 +54

0.35 85.4 83.4 -2.0 65 100 +35

0.45 80.5 79.2 -1.3 71 100 +29

0.55 76.7 75.8 -0.9 73 100 +27

0.65 74.3 72.9 -1.4 88 100 +  12

Table 3.6: Random pattern rejection rates for the MGU

3.4 A Comparison with Other Models

The concept of guard units has a correspondence with that of the vigilance pa­

rameter in ART models [11] although the process of classification itself in these
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networks presents a completely different characteristic from that of the integrated 

MGU structure.

In the recall phase of operation of the ART network, when a pattern is fed 

into the input vector it is passed through the network from the input layer and 

matched against the representations stored in each node of the output layer. The 

winning node then sends its stored class pattern backwards to a comparison layer 

where its similarity with respect to the input pattern is tested. A reset circuit 

is responsible for the test by checking whether or not this degree of similarity is 

within the limit of a vigilance threshold. The test is a ratio count of the number 

of matched ones in both the input vector and comparison vector (in the AR.T-1 

version) and subsequent verification of the result against the threshold.

It is in this respect that the guard unit approach is similar to the ART 

paradigm. As with the reset circuit in ART networks, each guard unit is re­

sponsible for performing a match operation between the input pattern and the 

composite representation of the training patterns. The fundamental difference, 

however, is in the fact that in ART networks the decision taken about the mem­

bership of an input pattern among the possible training classes is also a result 

of a template-match operation where the input is compared directly against the 

representations stored in the network. In the MGU architecture, the process of 

classifying an input pattern as belonging to one of the valid classes is executed 

by the MLP part of the network, which takes its decision based on the identifica­

tion of certain features in the input pattern rather than on the distance between 

the input and the representations defined in the network. Only the guard units 

perform operations based on pattern matching and their role is to classify the 

input pattern as a “valid” pattern or not, without regard to which training class 

it might belong.

The operation of MGUs can also be related to other classifiers that use the 

Euclidean distance metric as a measure of similarity between patterns such as
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radial basis function networks (RBF). MGUs are different, however, again in the 

sense that they are not involved in the process of deciding to which training 

class an input pattern might belong. That is the function of the MLP part of 

the network. Consequently, it can be said that the job of the guard units is made 

easier because the objective in this case is that of creating boundaries surrounding 

all the defined training classes as if they corresponded to a single category. It can 

be argued that fewer processing units of the Euclidean distance based type should 

be expected to be necessary in the MGU network in order to maintain at an 

appropriate level the generalisation of genuine patterns than in a network such 

as an RBF, whose processing units have also to satisfy the additional imposed 

constraint that each training class has to be separated from the others.

It is also worth mentioning that, as a single clustering technique, the algo­

rithm for the definition of MGUs presents some similarities with other known 

methods for cluster definition such as Learning Vector Quantisation (LVQ) and 

other general clustering procedures [70, 5].

3.5 Conclusion

This chapter has shown how a simple independent set of units working in parallel 

with a conventional MLP architecture enhances the reliability of the network 

with respect to the rejection of arbitrary patterns which do not share real class 

membership with the legitimate training classes. Moreover, this desirable property 

can be realized without a significant increase in the complexity of the network, 

and even the configuration which generates multiple guard units -  the architecture 

which gave the best performance -  uses only a simple clustering algorithm in order 

to build the required class representations which control rejection.

The experiments reported have shown that the standard MLP trained with
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backpropagation performs very badly when patterns different from the training 

classes are presented as input but, on the other hand, the network generalises very 

well over the training patterns. The guard units present an opposite behaviour 

with very bad generalisation performance and good ability to separate the training 

classes from the other regions of the pattern space. The objective of the integrated 

architecture is essentially to combine the good characteristics of MLPs with a more 

rigorous definition of the decision surfaces created by the guard units.

It has been shown that rejection of invalid patterns can be significantly im­

proved without much degradation of performance with respect to the recognition 

of valid patterns. Considering the level of performance achieved with the experi­

mental character data reported, where there can be a natural inter-class similarity 

between certain letter/numeral pairs (e.g 0 /0 , 8/B, 5/S, 2/Z, etc), it is to be ex­

pected that in many practical situations where the patterns to be rejected may 

share significantly less similarity with the training classes, the enhancement in 

performance can be even more striking.

Other advantages of this approach are that its applicability is independent 

of the classes present in a domain of application and that the auxiliary network 

embodying the guard units can also be used in conjunction with other kinds of 

networks which also lack the ability effectively to reject unknown patterns. The 

enhanced architectures described here would therefore appear to offer significant 

advantages over the basic MLP architecture since they improve the spurious pat­

tern rejection performance of the model at low cost.



Chapter 4

Alternative MLP Network 

Configurât ions

4.1 Introduction

In the previous chapter, the problem of the detection of spurious patterns was 

considered from the perspective of the development of an additional mechanism 

integrated with the MLP network.

The objective of this chapter, in contrast, is to explore different alternative 

configurations for the standard MLP in order to transform the network itself into 

a structure more inherently able to detect invalid patterns. In this situation, 

the only factor taken in consideration for deciding about the identity of an input 

pattern is a confidence level imposed at the network’s output for acceptance or 

rejection of a classification decision. The transformations applied to the standard 

network are developed with the main objective of establishing limits to the areas 

of the pattern space associated with each training class. However, since it is also 

of primary concern that the generalisation capacity of the network should not

75
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be significantly impaired, the boundaries defined surrounding the training classes 

should not be excessively rigorous. The algorithms described first construct the 

separation lines between the classes and then, as a consequence, boundaries are 

also created to separate the training points from the other parts of the pattern 

space. The idea is not to approach the problem from the perspective of a direct 

computation of the density of the training data, for example through the estima­

tion of its probability density function, as in the case of some methods based on 

Bayesian theory [6, 64], Instead, the aim is to modify the characteristics of the de­

cision boundaries generated by the MLP network, through changes in the network 

structure and unit function, so that the decision regions defined not only separate 

the training data but also create bounded regions encapsulating individual classes.

The first part of this chapter describes the idea of mapping the original in­

put space of an MLP into an extended space where it is possible to create closed 

classification surfaces. This network is referred to as the paraboloidal MLP. A 

second approach based on a modification to the original propagation rule of the 

standard MLP (the inner product) through its normalisation by the input vector 

is considered and simulations are used to outline the implications of this method 

with respect to the network operation. Then, two additional modified MLP con­

figurations are investigated from the same point of view : the first consists of an 

MLP which uses additional direct connections (short-cut connections) from the 

input to the output layer of the network, and the second is an MLP which uses a 

Gaussian as its activation function instead of the usual sigmoid and which defines 

“semi-localised” receptive fields for the processing units in the network.

It is shown how the models investigated construct their decision regions in the 

pattern space, and the implications of these constructions for pattern rejection 

are discussed. The technique of network inversion is used to evaluate the var­

ious approaches, and practical experiments on the classification of handwritten 

characters are reported.
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4.2 The Paraboloidal MLP Network (MLPpar)

4.2.1 Extending the input pattern space

The first method considered in this chapter for modifying the MLP network comes 

from an idea in computational geometry theory, and is based on the observation 

that if a linear threshold unit that is operating initially in a space of n-dimensions 

(with inputs denoted by [x\,x2, ■. . ,xn]) now receives its input from an extended 

input space of one higher dimension where the (n +  1) coordinate corresponds to 

the sum of the squares of the other original n coordinates ([rzq, x2, . . . ,  xn, x\ +  

x\ + . . .  +  x„]), then its receptive field becomes a sphere [55]. In this situation, the 

initial infinite half-space which would be normally covered by the threshold unit 

is mapped onto a limited region of the original space in the form of a localised 

receptive field (hypersphere). The usual backpropagation algorithm can be used 

to find the set of weights represented by uq, w2, . . . ,  wn, wn+i which solves the 

required input/output mappings, where wn+i corresponds to the weight associated 

with the extra coordinate.

The geometrical representation of the transformation that takes place is that 

the original input space is mapped into a hyper-paraboloid of revolution in a space 

of higher dimension and the hyperplanes defined in this extended space during the 

process of network training intersect the paraboloid creating ellipsoids that form 

localised receptive fields, when projected onto the original input space. Figure 4.1 

illustrates the construction of the paraboloid for the 2-dimensional case, where 

it is possible to see the result of the input space transformation. In this figure, 

x and y correspond to the coordinates in the original space and the addition of 

the coordinate z =  x2 +  y2 creates the paraboloid. The shaded area in the 

diagram represents the localised receptive field generated with the intersection of 

a hyperplane with the paraboloid.
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Figure 4.1: Construction of the paraboloid for the 2-dimensional case. Redrawn 
from [Omohundro(1990)]

The basis of this technique is the assumption that patterns belonging to the 

same class are expected to have similar values for the (n +  1) coordinate and 

that the more distant the patterns become from the training patterns the more 

different will be the values of the (n +  1) coordinate (as compared to the values 

obtained for the training patterns). Hence, the presentation of this additional 

information to the network enables it to define hyperplanes in the extended space 

which tend to separate the training points from the other parts of the input space 

through the creation of closed boundaries.

The concept of defining localised receptive fields for the MLP network makes it 

approximate another model of feedforward neural networks —  the class of radial 

basis function classifiers [7, 52]. In fact, work reported by various researchers [48, 

55] has demonstrated how one type of network can be mapped onto the other (for 

example, how the MLP can be mapped onto the RBF structure through the idea 

of the paraboloid) and Dorffner [18] has even shown how a unified framework can
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be devised to integrate both types of architecture. The idea presented in [18], 

described as conic section function networks (CSFN), is to define receptive fields 

for the processing units so that they can fold to a more closed receptive field or 

unfold to a completely open one depending on the particular characteristics of the 

data distribution. In this thesis, however, since the primary concern is to avoid 

spurious patterns being classified as valid by the network, only closed decision 

regions are of interest.

In this section, it is shown how the implementation of the idea of the paraboloid 

in the standard MLP modifies the decision regions generated by the network and, 

therefore, directly contributes to the enhancement of its rejection capabilities. 

This concept of extending the input space is not only a potential solution to the 

rejection problem but it has also been seen by some authors as an advantageous 

method for improving the convergence of the training process of some neural net­

works based on constructive algorithms [9, 22, 51]. From here on, this modification 

in the MLP network will be denoted as the paraboloidal MLP (MLPpar).

4.2.2 Visualisation of the decision regions

In order to understand the influence of the input space transformation in the def­

inition of the decision regions in a classification process, the visualisation experi­

ment in the 2-dimensional classification problem defined in Chapter 2 is repeated 

with the MLPpar structure, in a situation involving 9 classes. The result is shown 

in Figure 4.2.

In contrast with the result obtained with the standard MLP in the same prob­

lem, presented in Chapter 2 and illustrated again in Figure 4.3, the decision re­

gions created in this case tend to correspond to closed regions with a much more 

confined area of the input space associated with each class. The hyperplanes are 

placed in this situation not only to separate the training classes but also to create
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Figure 4.2: Decision regions for the paraboloidal MLP (9 classes)

flexible boundaries surrounding the training points. This situation is more reliable 

for rejecting spurious patterns than that obtained with the standard MLP since 

the rejection areas in the pattern space for the case of the standard MLP only 

correspond to the regions in between the training classes, and patterns far away 

from the training points are still very likely to be classified as valid patterns.
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Figure 4.3: Decision regions for the standard MLP (9 classes)

4.2.3 A further evaluation of the method

An examination of the propagation rule defined for the processing units in the 

modified structure can provide some useful information. The first thing to note is 

that the propagation rule corresponding to the inner product (netj, for each unit 

j) given by :

71+1

netj =  }  Xj • Wij
7 —  1

(4.1)

can be re-written in a different way [18] to provide :
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n n

netj =  Y l xi ' WL +  ^ n + i E ^ '
i = i  ¿ = i

It is important to observe in this equation that the role of the weight von+\ 

is different from that of the others in the sense that it directly determines the 

influence that the paraboloid has on the definition of each unit’s receptive field.

Originally, the weight wn+i associated with the n +  1 input is defined in the 

same way as all the other coordinates during the normal process of training and, 

therefore, it is expected that a different value for wn+1 should result for each 

different processing unit. If the value of wn+1 defined is small then the term 

YCi=i will have a small effect on the shape of the decision region created by the

processing unit. Conversely, if wn+\ is large then the paraboloid part will have a 

strong influence on the receptive field, creating decision regions of more limited 

size. The determination of which hidden units will have small receptive fields and 

which will have large receptive fields is not known a priori in this situation and is a 

result of how these units have their weights adapted by the learning algorithm to 

represent the training data. For example, some units that are adapted to represent 

certain features may only require small receptive fields, which are sufficient for 

their differentiation from other features. While in some other units that evolve to 

represent different features it may be the case that only larger receptive fields are 

sufficient to fit the training data in a way that it separates the different classes.

Another way of approaching the situation, however, is to consider the definition 

of weight wn+1 as a constant prior to the training phase (B =  wn+1). This constant 

can be manipulated accordingly so as to obtain a receptive field of a different size 

each time but common to all processing units [18]. For example, if B =  0 the n +  1 

input will have no effect in the definition of the decisions regions and the units will 

see the input space exactly as if they were operating in the original n-dimensional
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space, instead of in the extended space. In other words, the discriminant function 

of the units will correspond to hyperplanes and unlimited decision regions will be 

created by the network. If B > 0, on the other hand, then the hypersphere part 

is taken into consideration, creating bounded decision regions with variable size 

according to its value.

Figure 4.4: Decision regions for different values of the B variable. Redrawn from 
Dorffner (1994)

Figure 4.4 illustrates the effect of modifications in the value of B. In this exam­

ple, two classes with a small number of patterns from each class are represented 

in the diagram and two hypothetical hidden units each responding to patterns 

from a different class are shown to encapsulate the training data. As explained, 

the straight line corresponds to the case where 5  =  0.

The actual simulation of a single-hidden layer MLPpar network and the visuali­

sation of the decision regions generated in the 2-class problem shown in Figure 4.5 

further illustrate the variable influence that the hypersphere part can have in the
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shapes of the classification regions. Figure 4.5 shows the results obtained with dif­

ferent values for B , illustrating a gradual evolution of the decision regions created 

from completely open regions (when B =  0) to bounded regions (when 5  =  1).

One important and interesting aspect to mention about the MLPpar but which 

also relates to some other networks described in this chapter is that with the 

usual process of network training with backpropagation, where the initialisation 

of the weights is performed randomly, there is an imminent risk, albeit unlikely to 

happen in practice, of the occurrence of a certain configuration for the shapes of 

the decision regions which is completely undesirable with respect to the spurious 

pattern problem.

This situation refers to the case where for a given class, among all the possible 

classes present in the problem, all the hidden units that respond to patterns from 

that class are defined in the training process as “negative” detectors of the other 

classes in the problem. This situation is easier to understand if the example shown 

in Figure 4.4 is considered. For the separation of the two classes in this problem 

it is clearly seen that only one processing unit is necessary and sufficient since this 

unit can easily generate a decision boundary between the two classes. Consider, 

however, that more than one hidden unit is present in the network. Since during 

the original training process the only constraint to be satisfied is the separation 

of the classes, with no additional imposition that the two classes should have 

boundary lines surrounding each one of them, it is possible that all the existing 

processing units are adapted to become “positive” detectors of the presence of 

patterns from only one of the classes. All the patterns are then classified as 

belonging to the first class if they lie in a limited region of the pattern space 

corresponding to the receptive fields of the units but any other input will also be 

considered as genuine as those that effectively belong to the second class. Another 

interpretation, one which is more appropriate to describe the more general case of 

m classes, is that the processing units have become in fact “negative” detectors 

of the presence of patterns from the first class because they have their weights
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(a) (b)

(c) (d)

Figure 4.5: 2-class problem : MLPpar with different values for the B parameter 
(a) B =  Q ,(b)B  =  0.4, (c) B =  0.8, (d) B =  1.0.



CHAPTER 4. ALTERNATIVE MLP NETWORK CONFIGURATIONS 86

defined so that any arbitrary input not belonging to this class is assigned as a 

member of the second class.

However, fortunately, there are easy ways of circumventing this kind of prob­

lem and one of them is to make sure that there is a distribution of processing- 

units as positive detectors of the different classes. Since the introduction of the 

paraboloid makes MLPs similar to RBF networks, one natural way of doing this 

is to initialise the hidden units with weights in the vicinity of the regions where 

patterns from the different classes are concentrated, causing them to respond pos­

itively to these regions. Then, during the training process, there is always a way 

of preventing these units from becoming negative detectors of the other classes. 

Another similar strategy is to initialise the network through the process known as 

a Voronoi tessellation of the input data which is an idea inspired on the design of 

MLP networks using principles from nearest neighbour systems [76]. The idea is 

to place the hyperplanes directly between the data points from the different classes 

as an initialisation process, where the data points are represented by approximate 

cluster centers (for example, the mean over the patterns). In the particular case 

described here, the utilisation of this technique would be slightly modified so that 

when a hyperplane is placed between two training classes, another version of the 

same hyperplane pointing in the opposite direction is also defined in order to make 

sure that the classes are not only being separated but are also being encapsulated 

by confined decision regions.

The effectiveness of the MLPpar approach should be expected, however, to 

vary in different situations according to the particular problem. This is because 

the introduction of only one extra coordinate in the extended space which carries 

information about all the other coordinates should have its effect diminished in 

proportion to the number of dimensions involved in the particular task. Consid­

ering the context of practical applications, where there can be a natural tendency 

for variations in the input data, it is logical to think that the application of this 

method in spaces of lower dimensions is likely to be more successful since the
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information in the extra coordinate is much more representative of the training 

classes. In spaces of higher dimensions, the occurrence of variations in the input 

data within each individual class is much more likely to affect the extra coordinate 

and this may lead to similar values for the extra coordinate being obtained for 

different classes. In consequence, the separation of the training classes based on 

the extra input becomes much less effective.

In problems involving higher dimensions, a possible modification in the ap­

proach is to consider the extension of the original input space in m-dimensions 

instead of only one, and of associating the calculation of each one of the m coordi­

nate values with subdivisions of the input space instead of the whole space. This 

would allow the division of the responsibility for carrying information about the 

original coordinates between the different extra coordinates, where each of them 

is responsible for covering only a specific area of the input space.

One possible drawback of the MLPpar method is in problems involving binary 

patterns and this will become evident in the next section with the experimental 

results reported.

4.2.4 Experimental results

The MLPpar network was tested in the application of the classification of hand­

written characters following the same scheme of the digit recognition and letter 

rejection experiments described in the previous chapters. A network with 80 hid­

den units was simulated to compare with the equivalent standard MLP configura­

tion of Chapter 2, and the complete set of results is presented. The experiments 

are repeated with different values for the classification confidence level imposed 

at the network’s output. A pattern is classified as belonging to one of the classes 

if the output unit representing that class exceeds those of the others by the given 

confidence level. Otherwise, the pattern is rejected.
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Table 4.1 outlines the digit recognition rates obtained with different values 

defined for the constant B. Table 4.2 describes the letter rejection rates also asso­

ciated with each B value. The digit recognition results show a gradual decrease in 

the rates as B increases towards 1, although this degradation is not accentuated 

up to B =  0.5. This result is not surprising since that the use of units with a more 

local receptive field is expected to bring about some loss in terms of generalisation 

ability.

confidence

Digit Recognition Rates (%)

5 = 0 ta II o 1—‘ 5=0.2 5=0.3 ta II o 5=0 .5 5=1 .0

0 92.0 90.8 89.3 89.9 90.4 90.3 84.8

0.15 89.4 88.9 88.3 88.9 87.1 88.3 85.0

0.25 88.2 87.5 87.5 86.1 86.0 86.5 82.6

0.35 84.4 87.1 85.2 84.6 83.6 86.5 79.6

0.45 80.8 84.9 85.6 81.5 84.0 80.6 79.3

0.55 81.3 84.2 81.5 82.7 80.9 80.5 80.2

0.65 72.9 81.6 80.5 79.6 79.8 79.5 75.0

Table 4.1: Digit recognition rates for the MLPpar

The more interesting and to some extent intriguing result, however, is with 

respect to the letter rejection rates obtained. Table 4.2 shows that for small values 

of B (0.1 and 0.2) there was actually a decrease in the rejection performance. 

Then, for B =  0.3, the rejection rate was improved when compared to the standard 

MLP (B =  0) for most cases and for B > 0.3 it started again to decrease. This is 

rather surprising because, in principle, it would be expected that larger values of 

B would generate more strict and closed decision regions. Therefore, there should 

be an increase in the rate of spurious patterns being rejected by the network. 

The results also suggest that there is actually an optimum value (0.3) for setting 

the B variable in this specific situation examined. Indeed, when compared to the
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standard MLP, the MLP with the paraboloid presented in this particular case 

offered an improved, although not very significantly, rejection performance (see 

Table 4.2).

confidence

Letter Rejection Rates (%)

ta II o B=0.1 B = 0.2 5=0 .3 ta II o A 5=0 .5 5=1.0

0 0 0 0 0 0 0 0

0.15 17 14 14 25 23 19 19

0.25 25 22 31 37 31 26 24

0.35 32 30 41 42 37 32 30

0.45 46 32 45 48 47 46 35

0.55 48 44 55 53 52 54 37

0.65 64 53 57 58 57 57 45

Table 4.2: Letter rejection rates for the MLPpar

The disappointing performance of the MLPpar in the experiments can be ex­

plained by two factors. The first concerns the already mentioned problem of the 

number of dimensions involved in the task. There are 384 inputs in the original 

space in addition to the extra 385th coordinate. This can be considered a rela­

tively high dimension and it can raise the question of the relevance of the extra 

coordinate. The second factor, and one which is more relevant in this case, refers 

to the fact that the task in hand deals with the classification of binary patterns. 

A simple examination of the equation for the n +  1 coordinate, given by :

% n+l x \ + x l +  . . .  x2n. (4.2)

shows that in the case of binary patterns much information is reduced.

Consider initially the case where the pixels that compose the input matrix are
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represented by Is and Os, since extending the explanations given below to other 

representations is, as will be seen, a straightforward matter. Given that the only 

values in the input matrix are either Is or Os and the square of a unity value 

remains unchanged, equation 4.2 can be simply re-written with the removal of the 

squared factor :

x n + l  — £ 1 + 0:2 +  x n-

Now, one possible interpretation for this equation is that the only information 

represented in it about an input pattern is the area (the number of pixels with 

value 1) occupied by the pattern in the input matrix. The equation is in effect 

taking a crude count of the number of ‘on’ pixels present in the input matrix. 

It is therefore clear that this information is not sufficiently relevant for discrim­

inating between different classes in a practical application, especially when the 

task involves high dimensional data and the particular experiments concern the 

discrimination between patterns which share many characteristics such as letters 

and digits. To back up this argument, the simple example illustrated in Figure 4.6 

can be considered. This Figure shows two patterns representing the digits 5 and 2, 

respectively, which are obviously different but cover exactly the same area in the 

input matrix (each composed of 90 coordinates). In spaces of higher dimensions 

the possibility of finding patterns from different classes with similar area values is 

even more likely to happen.

Taking into consideration the case where other values are employed to represent 

the binary patterns, such as arbitrary constants b and c, the situation is not very 

different. Equation 4.2 can be simply re-written as :

x n + 1 —  b\  +  b2 +  . . .  - \-b 2r n +  . . .  +  +  c \  +  . . .  c £ .
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where m is the number of pixels with value b in the image and n is the number of 

pixels with value c. A simple transformation in this equation produces :

xn+\ =  ((b2 x m) +  (c2 x n)) x 1.

Interpreting variable m as the area occupied by the pattern in the input matrix 

and variable n as the rest of the input matrix (the area not occupied by the 

pattern), and considering that parameters b and c are constants defined a priori 

and are the same for all input patterns irrespective of their class, it is seen that 

the extra coordinate simply calculates the sum of multiples of theses areas and, 

therefore, does not provide much more relevant information to distinguish between 

different patterns than the calculation of the simple area would produce.

: : : : : :

Figure 4.6: A simple example of patterns that cover the same area in the input 
matrix.

An examination of the character recognition experiments with respect to the 

variation of the n +  l coordinate for the different digit classes and its comparison 

with the values observed for the test classes confirms the comments made above. 

Table 4.3 presents the mean, the minimum and the maximum value obtained for 

the n +  l input calculated for the training set of 100 patterns per digit class.
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This table also shows the same values calculated for the test set of 300 letters per 

class. For the reader’s convenience, only the results corresponding to the letter 

classes ‘A ’ to ‘J’ are shown in Table 4.3 since these are sufficient to illustrate the 

point. This shows a complete overlap between the range of values found for both 

the digit classes and the letter classes implying that the information contained 

in the extra coordinate can have an opposite effect to that aimed at in the first 

place, contributing to the training and test classes being considered more similar 

to each other instead of for the differentiation between them. As can be seen, it 

is virtually impossible to find a digit class which does not overlap with any of the 

alphabetic classes.

Class

Digit Classes

Class

Letter Classes

Min Mean Max Min Mean Max

0 17.0 43.7 88.6 A 14.6 40.9 84.3

1 14.4 83.9 154.9 B 13.3 42.3 87.2

2 9.2 34.6 88.7 C 5.6 32.0 64.0

3 9.1 34.6 93.2 D 13.8 39.7 104.1

4 7.7 29.8 87.4 E 10.3 37.7 89.9

5 12.3 33.1 87.9 F 7.9 33.9 77.2

6 5.5 38.1 95.1 G 12.2 34.5 94.5

7 8.6 28.5 58.1 H 7.7 38.7 79.0

8 9.2 40.9 93.9 I 14.7 65.3 170.4

9 8.4 35.8 68.9 J 6.5 28.7 67.1

Table 4.3: Overlap between training and test classes with respect to the (n +  1) 
coordinate

The final comment about this method, however, is that its ineffective appli­

cation in the case of the experiments described does not invalidate completely 

its practical use. Many practical applications with different characteristics may 

still be found where the approach can be applied. The simple concept of creating
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a paraboloid in an extended space based on information from the original space 

is an appealing idea for the creation of bounded decision regions in the MLP 

architecture.

Extensions of the original idea can be easily thought of, such as the use of more 

relevant information represented in the extra coordinate. It may be possible, for 

example, to consider the extraction of some features from the original input image 

such as moments (or of other possible variables) and it is important that these 

features are used as input to a paraboloidal function to determine an output 

value to serve as the extra input. In this case, of course, other aspects about 

the computational complexity of the method involved has also to be taken into 

consideration.

In the context of the experiments carried out, of the classification of binary 

patterns, the MLPpar fails for the reasons already explained. However, the results 

obtained with the visualisation experiment in the 2-dimensional case showing the 

creation of bounded decision regions gives evidence to expect that in environ­

ments of real valued inputs, and especially in problems of lower dimensions, the 

method may still represent a potential enhancement in the network’s rejection 

performance.

4.3 The Normalised MLP Network (MLPraor)

In this section, a modification in the original propagation rule employed in the 

standard MLP, the inner product, is considered with the objective of modifying the 

way that similarity is seen by each component unit in the network. This consists 

of taking the normalisation of the original inner product (■netj =  • lüÿ)

for each unit by its input vector before presenting it as input to the network’s 

sigmoid activation function ((1 +  ex p (-n e fj))-1). The idea is to consider only
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the angle between the input vector and the weight vector as the most important 

aspect in deciding about their degree of similarity. With the normalisation of the 

propagation rule, instead of the region of the input space which a processing unit 

responds to being determined by a simple hyperplane, two separation lines form 

a receptive field defined by an angle with the unit’s weight vector.

Equation 4.3 defines the new propagation rule netj for each unit Uj in this nor­

malised MLP network (MLPnor), with </> being the angle between the input vector 

( f p ) and the weight vector (ulj) and 9 the usual bias value. The normalisation of 

the propagation rule by the input vectors transforms the original pattern space 

into a hyper-sphere of unity size and any pattern is mapped into this sphere.

netj cos 4> — 9 (4.3)

The idea with this modification in the propagation rule is that, in theory, it is 

possible to obtain an input space separation for the training classes where only a 

limited region of the space is attributed to each class. Consider, for example, the 

hypothetical classification problem involving two classes illustrated in Figure 4.7. 

The weight vectors w0 and vj\ representing the output units of classes 0 and 1, 

respectively, are defined such that they point in the direction where the training 

patterns of each class are located, and they form decision regions (regions A and B) 

according to an angle between each vector and two left and right boundary lines, as 

shown in the picture. In this case, despite the fact that, because the magnitude of 

the inputs are not considered, many patterns with different magnitudes (but that 

point at the same direction in the pattern space) can be mapped to similar points 

on the surface of the unity sphere, the regions representing the training classes 

(shaded areas in the diagram) are much more confined to the neighbourhood of the 

training points than for the case of the standard MLP network. In contrast, the 

part of the diagram corresponding to rejection regions (in white) is consequently
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much increased.

Figure 4.7: Ideal input space separation for the normalised MLP

Theoretically speaking, the introduction of this modification in the MLP net­

work requires the re-definition of the original equations for training the network 

with the backpropagation algorithm. This is necessary in order to guarantee that 

the process of network training still converges to a global (or local) minimum so­

lution in the error space in a finite period of time. The complete re-definition of 

the backpropagation equations are described in Appendix A.

4.3.1 Unsatisfactory practical performance

In contrast with the original expectation, however, it was observed that the ap­

plication of the backpropagation algorithm to the MLP"or network in the same 

handwritten character classification problem described in the beginning of the
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chapter does not provide a much improved solution over the standard network 

configuration. The repetition of the experiments basically did not show any sub­

stantial difference in the classification rates obtained. One interesting aspect ob­

served in the experiments was that the training process converged normally using 

the original generalised delta rule and since this form of the learning rule saves 

computation time it was preferred to the re-defined rule described in Appendix A.

Table 4.4 shows the digit recognition and letter rejection results for the MLP"or 

and standard MLP networks. While the recognition rate of digits does not really 

change, the rejection of letters is only marginally improved in some of the cases 

and, therefore, cannot be considered as an overall improvement in performance.

confidence

Digit Recognition Rate Letter Rejection Rate

MLP M pp7107- MLP MLPnor

0 92.0 91.9 0 0

0.15 89.0 90.0 16 21

0.25 87.9 88.3 32 32

0.35 86.4 84.7 37 43

0.45 83.0 82.3 51 51

0.55 80.9 79.8 57 58

0.65 75.1 77.1 68 66

Table 4.4: Digit recognition rate vs letter rejection rate for the MLPnor

In order to investigate the reasons for the unsatisfactory performance of the 

MLP”or network in practice, a hyperplane animator program [57] was used to 

monitor the evolution of the decision regions generated by the units in the network 

in the 2-class illustrative problem described above. The original animator program 

displays the gradual movement of the weight vectors of the processing units in the 

network throughout the pattern space. A modification was then appropriately 

made to show the different type of decision boundary defined in the MLP"or
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network (corresponding to the two separation lines that form an angle with the 

weight vectors).

Figure 4.8: Actual input space separation for the normalised MLP

The simulation of the experiment explains that, most often, the decision re­

gions generated by the network lead to solutions where very open areas of the 

space are attributed to each class, such as the one presented in Figure 4.8. Al­

though theoretically, a unit’s receptive field can be generated so as to be confined 

to a limited area of the space because there is a flexible movement of the sep­

aration lines that form the receptive field, it can be seen that this may not be 

necessarily the case after the training process is completed. In Figure 4.8, the 

regions representing the training classes are not as confined to the neighbourhood 

of the training points as might be expected, and even points very distant from 

the training patterns are considered as belonging to the trained classes.

The reason for this is, unfortunately, the same as that which explains the 

definition of open decision regions in the pattern space with the standard MLP
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network : the fact that because no information is available to the learning algo­

rithm about points in other regions of the input space and the only constraint 

imposed in this context is the separation of the training data, the angle between 

the weight vectors and the separation lines can grow arbitrarily large1, which 

defines a region that not only encapsulates the training patterns but also other 

regions in the input space.

Figure 4.9: Input space separation with additional training data

This explanation can be further supported with a similar experiment to that 

described in Chapter 2 which makes use of extra training data points surrounding 

the original training patterns. These negative examples are designated by ‘N’ in 

Figure 4.9. In this case, the extra information imposes an additional constraint 

to be satisfied which requires the separation of the patterns ‘N’ from the other 

patterns in the training classes. As a result, the solution achieved by the learning 

algorithm approaches much more the “ideal” situation shown in Figure 4.7. It is

1A variation of the original idea might be possible where the angles are prevented from 
growing arbitrarily. However, this further idea has not being investigated in this thesis.
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important to note that, within the self imposed constraints of the work carried 

out in this thesis, this example can only serve as an illustration since information 

about the patterns to be rejected is not available.

Although the MLP"or has not presented the enhancement in performance de­

sired, this network can be used, as will be seen in the following section, in con­

junction with other different configurations.

4.4 MLPs with Direct Connections (DMLP)

Another possible idea for achieving an improvement in the MLP rejection perfor­

mance is through structural modifications by the addition, to the existing inter­

layer structure of connections, of direct connections from the input to the output 

layer of the network.

Apart from the theoretical work of Sontag [73, 74] considering the recogni­

tion power of this variation of MLP networks in the particular case of threshold 

units, no work has been reported which investigates the implications, especially in 

practical applications, of using such direct connections. This section explores this 

novel network configuration (DMLP) with respect to its reliability as a pattern 

classifier.

The motivation for this is that the representations stored in the direct con­

nections tend to correspond more closely to template-like representations of the 

training classes, instead of the normal feature based representations obtained in 

the hidden layer(s) of the network. As a result, this introduces an additional 

constraint to be satisfied by the backpropagation algorithm when looking for a 

solution to a problem, since the response of the network’s output units to the 

input patterns is more directly dependent on the similarity of the patterns to a 

template representation of the training examples.
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4.4.1 Some theoretical consideration

Consider the case of a single hidden layer network2 * with direct connections. The 

function computed by each output unit Uj for a given input pattern xp, F j ( xp), 

can be defined as :

k
Fj{*p) =  / (0  +  Vo-Xp +  Y l wif(neti))> (4 -4 )

¿=i

where /  is the sigmoid activation function, 9 is the bias of unit Uj, uq is the weight 

vector associated with the direct connections, k is the number of hidden units in 

the network and netj is the inner product netj =  xi ' vij ~ t-

An examination of the above equation can give some insight into why the 

addition of direct connections can help the network to be more rigorous with 

respect to spurious inputs. In Chapter 1 it was seen that the weights of an MLP 

trained with backpropagation are modified according to the following rule :

K p W j i  — V^pjOpi, (4 -5 )

where in the case of an output unit Uj, the value of 6Pj is calculated by :

3pj — {tpj °pj)f (netpj)i (4-6)

and in the case of a hidden unit Uk, it is given by :

2 Although the observations made here reflect the case of an MLP with one hidden layer they
also apply to networks with more hidden layers.
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p̂k f  (P'dpk') 'y Wkj■
j

Consider initially the case of a standard MLP without any direct connections. 

This corresponds to having the term iT0 • xP removed from Equation 4.4. In this 

case, the equation for 5pk for the hidden units can be further developed by replacing 

5PJ by the corresponding values measured at the output layer, so that :

fipk f  i'ftG'pk) y ]\fi(netvi)(tvi Opĵ wkj\. 
j

which leads to :

5pk f  (Ti6tpk') [/i(ncipi) (ipi Opî wkij +

f'(netpk) [/2(neip2)(tp2 -  op2)wk2] +  . . .  +  

f\netpk) [fm(net

where m is the index into the output nodes.

It is seen from this equation, that the modifications in the weights from the 

input layer to the hidden layer are given by a combination (with weights wkj) of a 

proportion of the errors measured at the output units representing all the different 

classes. Therefore, many possible different sets of weights (wki, wk2, . . . ,  wkm) that 

satisfy the equation can result from the training process. Since this is the case, 

the representations of the training classes that are stored in the network’s hidden 

layer are commonly features that the learning algorithm defines to be useful for
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distinguishing between the classes.

In the case of the network with the direct connections, however, a different kind 

of representation is also obtained in the network. The modifications in the weight 

vector v*0 are made according to Equation 4.6 and in this situation the changes in 

the weights for a given output unit are directly proportional to the input pattern 

and the error computed at that output unit only e =  (tPj — oPJ). In effect, what 

happens during training is that when the input pattern xp is a representative of 

class j, the value of e is positive and the weight vector is modified towards the 

direction of the input. When pattern xp is from another class, e is negative and 

the weight vector is again adjusted so that it moves in a direction opposite to that 

of the input. As a result, the kind of patterns stored in the direct connections 

taken on template like representations of the training classes.

An illustration of the characteristics of the representations stored in both hid­

den layer connections and direct connections can be obtained from the example 

of a DMLP simulation applied to the problem of the classification of machine 

printed digits. Figure 4.10 shows the weight values represented in grey-levels of a 

network with 20 hidden units. The first block in the diagram (the first four rows 

of 5 patterns each) correspond to the hidden unit representations whereas the 

second block (the last two rows) correspond to what each digit class’ output unit 

sees from the input matrix. These last representations are obtained by taking the 

mean over the hidden layer representations weighted by the corresponding weight 

value from the hidden to the output layer. While the shapes of the digit classes 

0 to 9 can be identified in these last images (from left to right, top to bottom), 

in the hidden layer images only pieces of shapes that form partial representations 

can be seen.

The display of the direct connection weights, on the other hand (Figure 4.11), 

illustrates the creation of representations that actually resemble the shapes of the 

training patterns. Hence, in addition to the feature based representations derived
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Figure 4.10: Representations stored in an MLP network. First block corresponds 
to hidden layer representations and second block to the representations seen from 
the output layer
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in the hidden layer, template-like patterns are also defined.

A further modification that can be made to the network is based on the obser­

vation from Equation 4.5 that the changes in the direct connections for an output 

unit tend to move those connections in the direction of the training patterns from 

that class. Since this is the case, a small change in Equation 4.5 can be thought 

of which only affects the acceleration of the direct connections training. This con­

sists of using a process of incremental learning for moving the weights a fraction 

further towards the input, according to :

ApwJl — (opi Wjì). (4.7)

The result of this modification is that patterns produced in the direct connec­

tions correspond to a slightly smoother representation of the digits, as depicted 

in Figure 4.12.

Figure 4.11: Representations stored in the direct connections

Figure 4.12: Another example of representations in the direct connections
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4.4.2 Visualisation of the decision regions

The introduction of direct connections is a general idea that can be used in combi­

nation with many network variations. In what follows, it is shown how this tech­

nique can affect the decision regions of both the standard MLP and the MLPnor 

examined in the previous section.

Figure 4.13 shows the visualisation of the decision regions generated by the 

DMLP in the 9 class problem. Here, it can be seen that boundaries start to appear 

in the pattern space surrounding the training points. Similarly to the case of the 

MLPpar network, it can be argued that this DMLP configuration should provide 

a more reliable structure than the MLP for rejecting invalid patterns.

In Figure 4.14 the same experiment is repeated but this time for the normalised 

MLP network with direct connections (DMLPrior). This result shows an even 

better definition of limited boundaries when compared to the above case.

One important aspect to observe about the inclusion of the direct connections 

is that the units in the network still use the same type of decision surface (hyper­

planes in the case of the DMLP) to separate the classes, nevertheless, classification 

regions which tend to enclose the training data are seen to emerge naturally from 

the process of network training.

This behaviour can be explained by the fact that the responses of the out­

put units are dependent on the direct connection representations and the errors 

committed by the network during training as a result of these responses not only 

influence the adjustment of these connections but also indirectly affect the place­

ment of the hyperplanes in the hidden layer(s).

The output units operate in a space whose dimension is determined by the 

number of units in the input layer together with the number of units in the last 

hidden layer. The hyperplanes in this space defined from the combination of the
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Figure 4.13: Decision regions for the DMLP (9 classes)

hidden layer representations and the direct connections have to organise them­

selves so as to satisfy the constraint that they not only separate the training 

classes but also, and more importantly in this case, cause the output units to 

respond positively only for input patterns similar enough to the template repre­

sentations in the direct connections. The result of this additional constraint is 

that the training patterns are much more surrounded by hyperplanes than in the 

case of the standard MLP. The same argument applies to the DMLP”or and the 

fact that the decision surface computed by the units is not a hyperplane (it is a 

region defined by an angle between two lines) seems to create classification regions 

even more appropriate in terms of pattern rejection.
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Figure 4.14: Decision regions for the DMLPnor (9 classes)

4.4.3 Experimental results

It is now important to establish the link between the performance observations 

discussed above and the rejection performance of the networks in practical pattern 

recognition applications. The set of experiments in the classification of handwrit­

ten characters were conducted on the DMLP networks. In all the simulations 

carried out it was noted that the normalised version of the network produced a 

more stable and faster convergence of the training process and, therefore, was 

used in these extensive experiments. Two variations of the network were eval­

uated, the first corresponding to the normal DMLPnor network and a second, 

denoted by DMLP' , which uses the incremental learning scheme of Equation 4.7.
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Networks with 10, 20 and 40 hidden units were initially tried and since the 

configuration with 40 units presented a slightly better performance this was the 

version further explored. Table 4.5 presents the correct recognition rates for the 

digits and also the proportion of letters rejected, obtained for networks with 40 

units.

confidence

Digit Recognition Rate Letter Rejection Rate

MLP DMLPnor DMLP* MLP DMLPnor DMLP*

0 92.0 90.6 91.6 0 0 0

0.15 89.1 85.4 88.1 16 30 29

0.25 87.9 83.1 85.6 32 45 44

0.35 86.4 79.9 82.1 37 53 52

0.45 83.0 76.6 78.3 51 61 61

0.55 80.9 69.9 73.0 57 71 71

0.65 75.1 66.2 66.5 68 76 78

Table 4.5: Digit recognition rate vs letter rejection rate for the DMLPs

Considering the results obtained with the networks, with each value of the 

confidence level, both DMLP configurations presented a consistent increase in 

the letter rejection rates when compared to the standard MLP. This refers to the 

general ability of the networks to detect patterns different from the training classes 

with a fixed imposed confidence. For the case of the DMLPnor, the rejection rates 

are increased by 14.3 % on average for small values of the confidence level (0.15, 

0.25, 0.35) and for the DMLPi the improvement is by 13.3 %. For larger confidence 

level values (0.45, 0.55, 0.65) the rejection ability is enhanced by 10.7 % on average 

in the case of the DMLPnor and by 11.3 % in the case of the DMLP*.

As might be expected, there is also some degradation in the digit recognition 

performance as a result of the more strict definition of the classification surfaces. 

In this respect, however, the DMLP* presented a much improved performance
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when compared to the DMLPnor, while maintaining the same enhancement in 

rejection performance. While for the DMLP4 the reduction in the digit recognition 

rate for small values and for larger values of the confidence level is smaller, around 

2 % and 7 %, respectively, for the DMLP"or it is 4.1 % and 8.7 %, respectively.

Another way of looking at the results is to observe the letter rejection rates 

obtained for each network with respect to a particular digit recognition perfor­

mance; although this kind of evaluation is more related to the general classification 

capacity of the networks (achieved with respect to a particular fixed learning set) 

than to the their natural ability to distinguish between different patterns with 

a required level of confidence. From this point of view, while there are cases of 

clear improvement in terms of general classification capabilities with the DMLP*, 

in some other cases, the enhancement in performance is not very evident. For 

example, for a digit recognition rate of 89.1 % and rejection rate of 16 % with 

the MLP, a similar recognition rate of 88.1 % with the DMLP* corresponded to a 

letter rejection rate of 29 %. In another situation, for 80.9 % of digit recognition, 

the MLP provided 57 % of letter rejection while the DMLP4 provided 78.3 % of 

digit recognition and 61 % of letter rejection.

One very important point to make about the experiments carried out is that, 

for a fixed network configuration, while recognition performance can be boosted by 

the use of a larger training set, therefore approximating even more the performance 

of the DMLP4 to that of the MLP, rejection capacity cannot be increased by the 

same procedure so as to make the performance of the MLP approximate that 

achieved by the DMLPL Improvement in rejection performance is only possible 

with the introduction of structural modifications, such as the use of the direct 

connections. The recognition performance of the DMLP* can also be improved 

with a larger network, as evidenced below.

Additional trials were performed with the DMLP4 configuration and with the 

standard MLP, this time employing 80 hidden units, to see if any improvement was
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confidence

Digit Recognition Rate Letter Rejection Rate

MLP DMLP|0 DMLPj20 MLP d m l p |0 d m l p ‘120

0 92.0 92.2 92.7 0 0 0

0.15 89.4 88.3 89.5 17 29 26

0.25 88.2 85.7 87.4 25 42 39

0.35 84.4 82.9 83.6 32 53 50

0.45 80.8 78.4 82.1 46 62 60

0.55 81.3 73.6 76.8 48 71 69

0.65 72.9 66.5 71.9 64 79 74

Table 4.6: Another set of results for the DMLP*

observed when compared to the configuration with 40 units. A DMLPi configura­

tion with 120 units was also simulated and the complete set of results obtained is 

summarised in Table 4.6. These results illustrate a general improved compromise 

between the letter rejection and the digit recognition rates when compared to the 

MLP.

The classification rates obtained with the MLP with 80 units represented a 

reduction in rejection performance in comparison with the configuration with 40 

units. With respect to the DMLP* with 80 units (DMLPg0), the enhancement in 

the rejection rates at each value of the confidence level is by 17.3 % on average 

(in comparison with the MLP with the same number of units) whereas the digit 

recognition rates drops by 3.1 %. The DMLP4 with 120 units (DMLP^q) also 

showed a consistent increase in rejection performance (by 14.2 % on average) but 

with the important characteristic of practically maintaining (a decrease by only 

0.7 %) the same digit recognition rates obtained with the standard MLP.

A further examination of the values in Table 4.6 also shows that, even in terms 

of general classification capacity, the performance of the DMLPs exceeds that of
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the standard MLP. At similar recognition rates obtained for both the MLP and 

the DMLPs, the rejection rates of the DMLPs are superior. Consider, for example, 

the case of the DMLPj^. For a digit recognition rate of 89.4 % and 89.5 % with 

the MLP and the DMLPj^, respectively, the letter rejection rates are 17 % and 

26 %, respectively. In another situation, for 84.4 % of digit recognition with the 

MLP and 83.6 % with the DMLPj20, the rejection rates are 32 % and 50 %, 

respectively. Other comparisons can be obtained from Table 4.6 and a similar 

evaluation can be made for the case of the DMLPg0.

Another important information extracted from the experiments refers to the 

digit error rates and digit rejection rates achieved by the different networks. These 

results, illustrated in Table 4.7, indicate an overall reduction in the digit error 

rates in the case of the DMLPs. A general comparison between the DMLPs and 

the MLP also shows an advantageous trade-off in favour of the DMLPs, in terms 

of recognition and rejection performance obtained with a fixed error rate. For 

example, comparing the DMLPj20 with the MLP for an error rate of 1.7 % (i.e. 

the confidence level is set to 0.65 in the MLP), the digit recognition rates obtained 

are 72.9 % for the MLP and 78.4 % for the DMLPj20, with similar letter rejection 

rates of 64 % for the MLP and 60 % for the DMLPj20. In another case, for an 

error rate of 2.6 %, the digit recognition rate for the MLP is 80.8 % and the letter 

rejection rate is 46 %, while the DMLPj20 presents 83.6 % of digit recognition and 

50 % of letter rejection.

From the results obtained with the experimental work, it can be concluded 

that the introduction of direct connections represents a real enhancement in the 

rejection capabilities of MLP networks.
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confidence

Digit Error Rate Digit Rejection Rate

MLP DMLPgo DMLPÌao MLP DMLPgg DMLPj20

0 8.0 7.8 7.3 0 0 0

0.15 5.3 5.1 5.0 5.3 6.6 5.6

0.25 5.3 3.4 3.7 6.5 10.9 8.9

0.35 3.7 2.2 2.5 11.9 14.9 13.9

0.45 2.6 1.6 1.8 16.6 20.0 16.1

0.55 3.0 1.1 1.1 15.7 25.3 22.1

0.65 1.7 0.8 0.9 25.4 32.7 27.2

Table 4.7: Digit error rate vs digit rejection rate for the DMLP*

4.5 The Gaussian MLP Network (GMLP)

The unreliability of standard MLPs with respect to the rejection problem, caused 

by the creation of open decision regions in the input space, can be partially at­

tributed to the type of activation function used in the network (i.e. the use of an 

inherently “open” function). This implies that the use of a different activation 

function might profitably be considered. A multilayer network which employs a 

Gaussian activation function (GMLP) instead of a sigmoid function in combina­

tion with an inner product as the propagation rule has recently received some 

attention [17, 21]. In this network, a typical activation function is :

a3 -  f(netj) =  exp^-net*/ c?), (4.8)

where the parameter c3 controls the width of the function and net3 is the inner 

product :
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n

Tictj  ̂ ' W ij  0 ,
¿=1

where 9 is the bias term.

The idea of using a non-monotonic function like the Gaussian as the activa­

tion function of a feedfoward network is not completely new and dates back to 

the work of Ballard in 1986 [2], What is new, however, is the recent observed 

fact, contrary to previous assertions [66] about the need for using only monotonic 

activation functions in the MLP trained with backpropagation, that a network of 

Gaussian units of the type described can be trained using the generalised delta 

rule (backpropagation).

It has been shown that this modified architecture is capable of approximating 

the same sort of functions as MLPs and RBF networks [21] and it is claimed 

to provide faster training times and to reduce the number of units necessary for 

particular problems [17]. This network is examined in this chapter with respect 

to the problem of spurious pattern detection and it is shown how the substitution 

of the sigmoid by the Gaussian function contributes to the enhancement of its 

rejection capabilities.

With the substitution of the sigmoid by a Gaussian function, the receptive 

field of each network unit is transformed into a kind of hyper-hill in the pattern 

space which forces the unit to generate strong responses only if its input falls 

within a certain range. This is the result of the combination of the inner product 

as the propagation rule and the Gaussian as the activation function, which creates 

a semi-local receptive field such as that illustrated in Figure 4.15. As can be seen, 

points falling along the discriminant line perpendicular to the unit’s weight vector 

produce the same unit output and as they move in parallel to the weight vector 

the unit response becomes weaker. When projected onto the plane, the decision
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region defined by the unit is bounded by two parallel hyperplanes.

Figure 4.15: Combination of the inner product with the Gaussian activation func­
tion

4.5.1 Training GMLP networks

The motivation for using a Gaussian function in the MLP is combined with the 

idea of applying the generalised delta rule as the learning procedure for the net­

work. As described in Chapter 1, the generalised delta rule uses the difference 

between the actual output of the network and a given desired output as the basis 

for changing the network’s weights. The error at the output layer of the network 

is given by :

~ ¿2(tPj oPj ) . (4-9)
z j=i

where op] is the actual output of unit u3 and tPj is the desired output.

It was also seen that for reducing the network errors two rules have to be
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formulated which define, respectively, how the connection weights leading directly 

to the output layer are modified as a function of the errors measured at the output 

layer, and how the connection weights leading to each existing hidden layer can 

be changed recursively in terms of the error signals of the individual units of the 

layer to which it directly connects and the weights of those connections. Once 

the errors at the output layer are defined, they can be backpropagated through 

the preceding layer and when the errors at the preceding layer are defined they 

can be backpropagated again to the next layer. This process goes on until all the 

weights in the network are adequately modified. Consider again the equation for 

changing the weights, defined as :

ApWji

where 0PJ is calculated in the case of an output unit by :

(4.10)

fipj — (tpj Opj) f  ipGpj),

and in the case of a hidden unit by :

3pj /  iT' '̂pj) ^ ' fipk W k j .
k

Now, for training the GMLP with backpropagation, the derivative f'(netPj ) in 

the above equations need to be properly redefined to account for the change in 

the activation function. This is given by :

f'[netpj) =  —2 netpj cij.
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The training process can then go on as before with the introduction of some 

small modifications. Dawson and Schopflocher [17] propose that, for avoiding 

the problem of easy local minima being reached by the learning algorithm, an 

augmented error function of the form presented below should be used instead of 

the plain version of the function (Equation 4.9).

 ̂ n i n

E p  =  — — °pj) + x ' ( n e t p j )  .z j=i z j=i
The reason for this is the observed fact that for an activation function like 

the Gaussian (f(netj) =  exp(—net2/ c2), the derivative rapidly goes to zero as 

the netj input reaches extreme values. The addition of term tPJ ■ (netPJ)2 elevates 

the derivative of the error with respect to the net input such that in situations 

where the derivative tends towards zero (making learning difficult), the extra term 

takes a strong role in the expression preventing it from become null and allowing 

learning to proceed. In fact, as noted by Flake [21], this modification in the error 

function is simply equivalent to the addition of a small constant to the derivative 

function f  (netpj), so that :

f  (netpj) ~  —2 netpj (dj + e ).

The difference, however, is that the augmentation of the first derivative by 

the constant is applied to each unit in the network whereas the modified error 

function has an effect only on output units. In the latter case, the units in the 

hidden layers can still suffer from the same problem of the zero derivative, but 

both constructions are potential solutions to the problem. The simulations carried 

out in this chapter all use the first formulation.
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4.5.2 Visualisation of the decision regions

The result of the 2-D visualisation experiment for the 2 class problem is illustrated 

in Figure 4.16. In this simulation, the training patterns from one of the classes 

are confined to the region limited by the two parallel lines in the middle of the 

diagram and the other points are considered to belong to the second class. The 

decision regions identified in the diagram show, however, that in this particular 

case one of the classes still accepts patterns distant from the training points as 

genuine members of the class. This is because, as explained in subsection 4.2.3, the 

hidden units in the network that are actually responding to the patterns from that 

class are doing so by acting as negative detectors of the second class. Although 

this situation can still be considered more reliable for rejecting spurious patterns 

than that obtained with the standard MLP, because the rejection areas are indeed 

increased, there are ways of controlling the distribution of the responses of the 

hidden units so that there are positive detectors of both classes.

The result of a simulation considering the distribution of positive detectors of 

both classes is illustrated in Figure 4.17, where it can now be seen that limited 

acceptance regions for the two classes have been created. It is important to 

mention the fact that in all the practical experiments reported in the next section it 

was actually observed that an undesirable situation like this is unlikely to happen, 

especially when there are an increasing number of training classes present in the 

problem.

Repeating the visualisation experiment for the GMLP, this time for a problem 

with 9 classes, generates the characteristics shown in Figure 4.18. In this case, 

the decision regions created by the network tend to correspond to closed regions 

with a much more limited area of the input space associated with each class, 

when compared to the case of the standard MLP (see Figure 4.3). The problem 

observed with the standard MLP is minimised with the GMLP since the rejection 

areas are substantially increased.
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Figure 4.16: Decision regions for the GMLP (2 classes)

4.5.3 Experimental results

The handwritten character classification experiments are now executed with the 

GMLP network. The previous results obtained with the standard MLP, the 

DMLP* and with the negative training approach (MLPne9) described in Chap­

ter 2 are also re-presented in order to allow a final comparison between the various 

approaches.

GMLP networks were also simulated with a different number of hidden units 

but the networks with 80 units presented the best results. Tables 4.8 and 4.9 

present the classification results obtained for these networks. Table 4.8 shows the
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Figure 4.17: Another example of decision regions for the GMLP (2 classes)

correct recognition rates for the digits and also the proportion of letters rejected. 

Table 4.9 illustrates the percentage of digits erroneously classified together with 

the percentage of digits rejected by the network.

In the case of both the GMLP and the DMLP4, a consistent increase in the 

letter rejection rate is observed when compared to the standard MLP as well as in 

comparison to the MLPne9 network (whose performance is very irregular). For the 

case of the GMLP, the rejection rates are increased by 20 % on average for small 

values of the confidence level (0.15, 0.25, 0.35) when compared to the standard 

MLP, whereas for larger confidence level values (0.45, 0.55, 0.65) the rejection 

ability is enhanced by 21 % on average. There is also some degradation in the
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Figure 4.18: Decision regions for the GMLP (9 classes)

digit recognition performance. The reduction in the digit recognition rate for small 

values of the confidence level is smaller, around 1.4 %, whereas for larger values 

the degradation in digit recognition is greater (around 6 %). For the case of the 

DMLP‘ network, the increase in letter rejection for small values of the confidence 

level is by 17 % with a decrease in the digit recognition by 1.3 %. For larger values 

of the confidence level, the rejection rate is enhanced by 18 % whereas the digit 

recognition drops by 5.5 %.

One very relevant aspect to consider regarding the GMLP and the DMLP*, 

shown in Table 4.9, is that there is a reduction in the rate of misclassified patterns 

for all values of the confidence level introduced, especially in the case of the GMLP
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conf.

Digit Recognition Rate Letter Rejection Rate

MLP MLPnes GMLP DMLP* MLP MLPnes GMLP DMLP*

0 92.0 91.5 91.0 92.2 0 0 0 0

0.15 89.4 87.2 87.5 88.3 17 28 36 29

0.25 88.2 86.2 86.7 85.7 25 36 44 42

0.35 84.4 80.3 83.5 82.9 32 48 55 53

0.45 80.8 79.4 77.6 78.4 46 56 65 62

0.55 81.3 80.2 71.4 73.6 48 53 76 71

0.65 72.9 78.4 67.5 66.5 64 60 80 79

Table 4.8: Digit recognition rate vs letter rejection rate for the GMLP

(except where there is no confidence level imposed on the network, value =  0). 

For instance, while the digit error rate is 5.3 % for the standard MLP, with the 

value of 0.15 for the confidence level, it is 3.8 % for the GMLP. This is a result of 

the fact that some patterns, for which the network has no confidence about their 

identity, are being rejected by the GMLP instead of being erroneously classified.

With respect to the general classification capacity of the GMLP, in comparison 

with the MLP in terms of the letter rejection rates obtained at similar rates 

of recognition performance, the GMLP presented a clear improvement over the 

standard MLP network. The following associations can be used as examples. For 

a 88.2 % of digit recognition rate obtained with the MLP and 87.5 % obtained 

with the GMLP, letter rejection rates of 25 % and 36 % are produced by the 

two networks, respectively. In another situation, a letter rejection rate of 55 % is 

provided by the GMLP with a recognition rate of 83.5 %, as opposed to a much 

inferior rejection rate of 32 % and similar recognition rate of 84.4 % with the MLP. 

Another important fact is that, in both examples, the error rates observed with 

the GMLP are smaller than those produced by the MLP. In the first case, while 

the GMLP presented an error rate of 3.8 %, the error rate with the MLP was of
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5.3 %. In the second case, an error rate of 0.9 % was obtained for the GMLP in 

contrast with a 1.7 % rate for the MLP.

conf.

Digit Error Rate Digit Rejection Rate

MLP MLP”es GMLP DMLP* MLP MLP"e? GMLP DMLPi

0 8.0 9.5 9.0 7.9 0 0 0 0

0.15 5.3 5.7 3.8 5.1 5.3 7.1 8.7 6.6

0.25 5.3 4.3 2.9 3.4 6.5 9.5 10.4 10.9

0.35 3.7 3.5 2.0 2.2 11.9 16.2 14.5 14.9

0.45 2.6 2.2 1.4 1.6 16.6 18.4 21.0 20.0

0.55 3.0 2.6 0.9 1.1 15.7 17.2 27.7 25.3

0.65 1.7 1.7 0.6 0.8 25.4 19.9 31.9 32.7

Table 4.9: Digit error rate vs digit rejection rate for the GMLP

It becomes readily apparent that GMLPs and DMLP^ provide a more reliable 

structure for rejecting invalid patterns than the standard architecture, with the 

GMLP presenting the best overall performance among all the networks tested. 

However, as might be expected, considering the results observed at fixed confi­

dence levels, there is a small trade-off between enhancing the rejection capabilities 

and losing some performance in the recognition rates of valid patterns (although 

the error rates are also accordingly reduced). The choice of which network to use 

should be made depending on the parameters imposed by a specific application. 

Standard MLPs tend to maximise generalisation capabilities with respect to a 

given training set but can be very unreliable in use, making them unsuitable for 

problems which demand a high degree of reliability.

Another aspect to take into account, as mentioned before with respect to 

a fixed architecture, is that while the use of a larger training set can further 

enhance the recognition performance of the GMLP and the DMLP4, making them 

even more attractive in terms of their general classification performance when
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compared to the MLP, it cannot have the same positive effect on increasing the 

rejection capabilities of the standard MLP.

4.6 Inversion of the Different Configurations

In Chapter 2 and Chapter 3, it was described how the use of the technique of 

network inversion could assist in the observation of the tolerance of the networks 

with respect to the appearance of the patterns accepted by it. In this section, 

the inversion technique is used again to compare the visual characteristics of the 

inverted patterns obtained with the two networks that presented the best per­

formance in the character classification experiments, the DMLP* and the GMLP 

network.

First, the inversion of the DMLP* architecture was implemented following the 

same scheme for network inversion presented in Chapter 2 and the result of several 

runs showed a substantial improvement in the appearance of the patterns accepted 

by the network. Figure 4.19(b) illustrates the result of one of the trials and it can 

be seen that the inverted patterns approximate much more the usual shapes of 

digits, indicating that the network is much less tolerant to deformed or unknown 

patterns. In Figure 4.19(a), the inversion of the standard MLP is also given, 

allowing a better comparison between the results.

For the case of the GMLP network, the result of several trials also demon­

strated a clear enhancement in the shapes of the inverted patterns (Figure 4.19(c)), 

when compared to the standard MLP, although less apparent than that attained 

with the DMLPL Such an analysis suggests that the observations made on the 

simple 2D-problem scale up to higher dimensions and it also corroborates the 

results of the practical experiments reported in the previous section.

The experiments of network inversion provide in conjunction with the results
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(c)

Figure 4.19: Inverted patterns : (a) MLP, (b) DMLP*, (c) GMLP

obtained in the problem of the classification of handwritten characters a more com­

plete examination of the rejection capabilities of the different MLP configurations. 

These two sets of experiments complement each other. While the classification 

of handwritten characters examines the performance of the networks in a diffi­

cult situation where the objective is to check their ability to reject patterns that 

share many similarities with the training classes, but still are known to belong 

to different classes, the network inversion experiments allow the observation of 

the general characteristics of the patterns accepted as valid by the network and, 

therefore, provide a means of checking the tolerance of the networks with respect 

to patterns very different from the training classes.
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4.7 Conclusion

The work reported in this chapter has investigated the problem of the detection of 

spurious inputs from the perspective of enhancing network capability based on the 

built-in properties of the network itself. In this case, the imposition of a threshold 

for measuring the confidence level of the network’s outputs is the criterion used 

to accept or reject an input pattern.

It has been observed that the type of similarity measure computed by the 

processing units in the network plays an important role in its ability to reject 

spurious patterns. Units that compute global mappings of the input space, as in 

the case of standard MLPs, tend to classify into one single class extensive areas 

of the input space. Here, the simple application of a high confidence level for 

acceptance of a decision response is not sufficient, since in these conditions even 

patterns with very random characteristics are still confidently classified by the 

network.

Basically, four potential strategies for improving the MLP performance were 

examined. The first, based on the idea of transforming the receptive field of 

the processing units into hyper-spheres (MLPpar), although it has not generated 

the expected performance in the test application considered (the classification of 

handwritten characters) is still a potential solution to the problem that can be 

employed in other applications. The second strategy, using a network that employs 

the normalisation of the propagation rule also did not show the improvement 

expected but proved to be very useful when applied in conjunction with the MLP 

network with direct connections.

Finally, the last two strategies examined produced the best practical results 

and confirmed the theoretical observations. The GMLP network investigated 

represents a possible way of overcoming or, at least, minimising the spurious 

pattern problem, where the combination of the inner product as the network’s
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propagation rule and the Gaussian activation function creates a semi-localised 

receptive field in the pattern space. This network can offer the benefits of a 

much more enhanced structure for rejecting spurious data when compared to the 

standard MLP with only a small degradation in the recognition of valid patterns. 

The other alternative configuration, the DMLP network, enhances the network’s 

rejection ability through the imposition of additional constraints on the learning 

algorithm for the definition of the decision regions during the training process. The 

introduction of the direct connections allows for the generation of “template-like” 

representations in these connections which tend to force the learning algorithm to 

create boundaries surrounding the training examples.

Next chapter will look at another type of feedforward network, the model of 

radial basis function networks (RBFs), and practical experiments will be used 

to compare this model with some of the MLP configurations explored in this 

chapter.



Chapter 5

Radial Basis Function Networks

5.1 Introduction

Radial basis function networks (RBFs) are together with the multilayer perceptron 

among the most widely used neural networks in practical applications. Many 

researchers have contributed to the theory and design of radial basis function 

models [7, 52, 54, 59] as well as in its application to many real world problems 

such as speech recognition [54, 61], medical diagnosis [45], radar point-source 

location [82] and handwritten character recognition [40], to mention just a few.

This chapter examines the model of radial basis function networks with respect 

to the rejection problem. RBF networks are compared to both the standard MLP 

and to the GMLP and DMLP networks described in the previous chapter. The 

motivation for this comparison is the fact that RBF networks appear naturally 

as very strong candidate structures for the reliable detection of spurious inputs, 

due to the characteristics of the processing units in the network which compute 

localised functions of the pattern space.

The classification problem in the simple 2-dimensional space is used first, to

127
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visualise the shape of the decision regions generated by RBF networks and, sub­

sequently, some practical results are presented with RBFs in the same context of 

the classification of handwritten alphanumeric characters described in the previ­

ous chapters. First, however, the mathematical background for the design of RBF 

networks is presented.

5.2 Theoretical Background

The design of a feedforward network based on the approach of radial basis func­

tions presents a very different characteristic from that of a multilayer perceptron 

network. While the definition of an MLP through a learning algorithm can be 

viewed as a statistical optimisation process, the design of an RBF network is 

made from the perspective of a function approximation problem where a surface 

in a multidimensional space (corresponding to a function / )  is defined by a linear 

combination of basis functions (0) that provide a fit to the training data.

In the case of the standard MLP, the classification decisions created by the 

network to partition the pattern space are built from hyperplanes defined by the 

inner product (J2i wi • ^¿) between the input and the weight of the processing 

unit which are then used as the input to a non-linear activation function (e.g the 

sigmoid). In a RBF network, in contrast, the classification regions correspond to 

hyperellipsoids which are the result of functions of the form <f>(\xp — c|), which 

compute a distance measure between the input pattern xp and a given center c.

Given n pairs of input/output associations (xp,yp), the function /  computed 

by an RBF network can be defined as :

k
f(xp) =  J 2 wr  (K\xp-Cj\)

j=i
(5.1)
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where 0 is a basis function, Cj are the centers that have to be defined according

The function 0 can take various forms but, usually, it is defined to be a Gaus­

sian function, i.e.

where d, controls the width of the function.

And the function | . . .  |, corresponding to the distance measure, is usually cho­

sen to be the Euclidean distance :

The representation of this description in a feedforward network can be illus­

trated in Figure 5.1. The network is composed fundamentally of three layers : an 

input layer, a hidden layer and an output layer. The elements in the input layer 

do not compute any function and, as in the case of an MLP, serve only the purpose 

of passing the input pattern to the network. The k processing units in the hidden 

layer compute the radial functions 0 as defined above. The outputs of these units 

are then combined linearly in the output layer through the connection weights Wj.  

The output unit computes therefore a function /  which is an approximation of 

the n input/output pairs (xp,yp).

In a typical classification problem, the units in the output layer implement, in 

fact, a logistic activation function (e.g the sigmoid) instead of the linear function, 

so that the outputs of the units are limited to the range [0,1], The other extension 

is that there can be as many units in the output layer as are necessary to compute

to the training data and Wj are the coefficients (weights) of the basis functions.

(5.2)

(5.3)
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different functions / ,  each one representing a training class (in a classification 

problem, for example).

hidden layer

Figure 5.1: RBF network

5.3 Training RBF Networks

There are many possible strategies for training an RBF network especially be­

cause there are three different sets of parameters that have to be estimated : the 

widths d of the basis functions, the centers Cj and the weights Wj from the hidden 

to the output layer. The widths d can be set to a constant value prior to the 

training process, can be defined through a gradient descent technique or through 

a heuristic process. This third situation, usually referred to as the nearest neigh­

bour heuristic, has been used very frequently and consists basically of defining 

each width to be proportional to the distance to its nearest neighbour.

For the definition of the centers cj, one possibility is to evenly or randomly 

spread the basis centers throughout the input space in order to cover it almost
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completely. This strategy is only feasible when the number of dimensions in 

the problem is small. Another more realistic technique is to choose randomly 

a sample of patterns from the training classes and use them as the centers of 

the functions. This strategy has been used in many applications and has been 

shown to work effectively. The third method corresponds to training techniques 

based on competitive learning, feature map techniques and genetic algorithms 

[27]. The objective in this case is to find gradually a distribution for the centers 

that approximates in the end the distribution of the input patterns.

After the widths and the centers are defined, all that is left to be estimated are 

the weights Wj in the output layer of the network. It is here that one of the great 

advantages of RBF networks becomes evident. Since these are parameters of a 

linear function, the problem of finding them can be solved by a linear optimisa­

tion technique where a solution of global minimum is, in contrast with the MLP, 

guaranteed to be obtained. The training of the weights can be achieved either by 

an error-correcting scheme : a gradient descent technique such as the least-mean- 

square algorithm (LMS) [27] or a one-dimensional Newton-like method [21] or by 

a straightforward procedure of matrix manipulation known as the pseudo-inverse 

method [7, 27]. The latter approach is the one described below since this is the 

method employed in the practical experiments reported later in the chapter.

The problem of training an RBF network to define a function /  that approxi­

mates n associations (xp, yp) is viewed as the problem of minimising the error in 

the output layer of the network, which can be defined as :

m  = E(»p - /to »2 + aiip/ ii2 (5.4)
p

where the first part of E[f] (Ĵ piVp ~ f(xp))2) accounts for the condition for the 

minimisation of the error of the approximation and the second part (A||P/||2)
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corresponds to a stabilisation factor which controls the smoothness of the approx­

imation.

The minimisation of Equation 5.4 with respect to the weights Wj in this equa­

tion (remember that f ( x p) =  Yl]=\ wj 4 0(|%P ~  cj|)) is shown to be calculated [27] 

by the following matrix operation :

w =  (Gt •G +  AGo)“ 1 ■GT -y

where G is the matrix :

G =

<ß(\x[ — ell) 

<P(\W - ¿ i l )

0(|®i -  cl|) 

0(1 ¿2  -  cl 1) ¿h
 

Ä
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i
cv

 
rs.

?s-
1 

R- *

<t>(\Xn -  ell) 0 (\xn -  cl|) . . .  (f){\xn -  cl|)

and G0 is defined as :

G0 —

0(|cl -  Gl) 

<I>{\C2 -  cl|)

0(|cl -  cl|) 

</>(|cl -  cl|)

••• 0 (| cl-c l| ) 

0(|¿2-Cfc|)

_ 0(1 c ; -  ell) 0(|c; -  cl|) H\Cn~Ck\)

The parameter A can be set to 0 [27] and in this case Equation 5.5 becomes 

equivalent to the computation of the Moore-Penrose inverse matrix. This ma­

trix represents the best solution of an undetermined system composed of linear 

equations.

The advantage of RBF networks is exactly the fact that the linear weights
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Wj can be computed directly as indicated above. However, the success of the 

matrix procedure is dependent upon a good choice of the other network parame­

ters, especially of the centers (weights) of the hidden layer. For this reason it is 

frequently recommended after the definition of the weights Wj with the pseudo­

inverse method the use of a gradient descent procedure (for example, the LMS 

algorithm) to append a few training cycles to the network, so that all the param­

eters can be fine tuned to better approximate the input/output mappings.

5.4 A Comparison Between RBFs and MLPs

Although superficially, RBF and MLP networks can present some similarities, 

which make even possible the development of a general framework that integrates 

both architectures [18], there are in fact fundamental differences that can be easily 

spotted by looking at the two networks. The first important characteristic is the 

fact that an RBF network is usually composed of a fixed architecture of three 

layers, each one of them with a very different purpose. The first layer is made 

up of source units (that only pass the inputs to the network) as is in the case of 

the MLP. The hidden layer implements the basis functions that actually fit the 

training data and the output layer only combines linearly the outputs of the hidden 

nodes. In the standard MLP, there is no fixed number of layers. This depends 

essentially on the characteristics of the problem being investigated. Although 

in theory an MLP with only one hidden layer is sufficient to define any form of 

complex decision region [44], it is observed that in some applications the use of 

more hidden layers can be appropriate. Apart from the input layer, regardless of 

the number of layers used in the network, there are no fundamental differences 

between the intermediate layers themselves nor between them and the output 

layer, in terms of the purpose served by each one of the layers.

The fact that the output layer of an RBF computes a linear function is also a
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crucial difference between the two networks. Training in RBFs can be extremely 

fast because after the hidden layer weights are defined (which can also be done 

quickly) the output layer weights can be computed by the direct pseudo-inverse 

method. This is only possible because the hidden processing units implement local 

functions. In effect, what happens is that the radial functions expand the inputs 

into a space of higher dimension where the patterns are now linearly separable. 

It is precisely because of this, however, that it is usually necessary to use many 

more processing units in the hidden layer of an RBF network than is required 

in a MLP network for the same problem. Since the volume of a space increases 

exponentially according to its dimension, the number of radial functions necessary 

in the hidden layer to maintain the same level of approximation capacity observed 

in lower dimensions must expand at the same rate. For example, in some practical 

applications using RBFs thousands of units need to be employed to maintain at 

the same generalisation level what would be achieved by a hundred units in an 

MLP (see the experiments described later in this chapter).

A further fundamental difference between RBF and MLP networks is the main 

object of study in this chapter. This is that the local functions used in RBFs can 

bring a practical benefit to the network with respect to the spurious pattern 

problem. This property is clarified with the experiments described in the next 

sections.

5.5 Implications for the Rejection Problem

From Equations 5.2 and 5.3 it is seen that, in contrast with the global function used 

in the units of a standard MLP, each node in the hidden layer of an RBF network 

computes a localised mapping of the input space defined by the combination of a 

distance metric as its propagation rule and a Gaussian (usually) as its activation 

function. The effect of this combination, as illustrated in Figure 5.2, is the creation
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of a receptive field which forces the unit to respond positively to only a restricted 

region of the input space close to a center stored in its weights. The output of the 

unit is maximum when the input pattern xp has a zero distance to the center Cj 

and decreases rapidly as the input becomes more distant from it.

R e c e p tiv e  f ie ld  fo r  R B F  -------

Figure 5.2: Combination of the Euclidean distance with the Gaussian activation 
function

Regardless of the procedure used to estimate the centers cj in the hidden layer, 

the basis functions will always form a convex set that encapsulates the training 

data. The centers cj are defined to be template-like representations of the training 

patterns (usually, for example, by the nearest-neighbour heuristic) and, therefore, 

any input which is significantly different from the training patterns receives a low 

output from the hidden units in the network. This is the basis of the argument 

to believe that RBF networks can present a very natural behaviour for rejecting 

patterns that differ significantly from the training classes, when the criterion of 

the confidence level for acceptance of a classification decision is imposed on the 

network.

Figure 5.3 illustrates the result of the visualisation procedure with an RBF
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network in the 2-class 2-dimensional problem. The decision surfaces defined by 

the network show, as originally expected, the generation of completely bounded 

regions surrounding the patterns from the training classes. The widths of the basis 

function are defined according to the nearest-neighbour rule and the classification 

decision taken by the network uses the confidence level (here defined as 0.65) for 

the acceptance/rejection of the input patterns.

Figure 5.3: Decision regions for the RBF (2 classes)

In the 9-class problem the situation is not different and, as depicted in Fig­

ure 5.4, closed boundaries are again naturally created surrounding the training 

classes. It is clearly seen that the rejection areas are hugely increased in the case
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of the RBF, not only when compared to the standard MLP but also to the sit­

uations where the other MLP configurations considered in the previous chapters 

were employed.

test points —  
training points □

-5

Figure 5.4: Decision regions for the RBF (9 classes)

5.6 Experimental Results

Practical experiments in the classification of alphanumeric characters have been 

carried out with RBF networks and a comparison with the standard MLP and 

with the most successful networks described in Chapter 4, the GMLP and the
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DMLP*, is presented here. The strategy used to define the centers of the basis 

functions correspond to the nearest-neighbour heuristic procedure whereas the 

method employed for estimating the output layer weights is that of the pseudo­

inverse matrix. The experiments were implemented in part using the Rochester 

simulator [24] and in part using the mathematical tool Matlab.

Although RBF networks with a different number of hidden units were initially 

attempted (100, 500 and 1000) only the networks with 1000 units were further 

explored. The reason for this is that this particular configuration was the only 

one to present results comparable to the other networks in terms of generalisation 

performance, and the number 1000 corresponds to the use of the same set of 

100 patterns per class employed in the experiments with the other networks (100 

patterns per class and 10 classes which gives a total of 1000 units to be defined in 

the hidden layer of the network)1.

Table 5.1 presents the digit recognition and letter rejection results achieved 

by the network together with the previous results obtained with the MLP, GMLP 

and DMLP¿ networks. It is observed that even for a small value of the confidence 

level (0.15) the rejection rate obtained with the RBF (44 %) is almost three times 

better than the equivalent with the standard MLP (17 %). For bigger values of 

the confidence level, the improvement in rejection performance is also very evident 

when compared to the MLP.

There is, however, a degradation in the recognition of valid digits critically 

proportional to the increase in the required confidence level. For example, it can 

be seen that with the use of the value of 0.55 for the confidence level, the digit 

recognition rate drops by up to 25 %. This is a result of the fact that many input 

patterns that receive low confidence outputs from the hidden units in the network 

are being rejected, in order to reduce the risk of a misclassification. The evidence

1 This confirms the initial expectation that usually many more units are necessary to be used 
in a RBF than in an MLP.
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confidence

Digit Recognition Rate Letter Rejection Rate

MLP GMLP DMLP( RBF MLP GMLP DMLPÉ RBF

0 92.0 91.0 92.2 91.1 0 0 0 0

0.15 89.4 87.5 88.3 85.7 17 36 29 44

0.25 88.2 86.7 85.7 80.3 25 44 42 63

0.35 84.4 83.5 82.9 74.9 32 55 53 74

0.45 80.8 77.6 78.4 66.7 46 65 62 82

0.55 81.3 71.4 73.6 55.8 48 76 71 89

Table 5.1: Digit recognition rate vs letter rejection rate for RBF networks

for this argument can be illustrated by the results outlined in Table 5.2 which 

presents a comparison between the proportion of digits rejected by the network 

and the percentage of digits erroneously classified. This shows a decreasingly 

small error rate with the direct variation of the confidence level and, conversely, 

an increase in the rate of valid patterns rejected by the network. For example,

for a confidence level of 0.55 the error rate generated by the RBF network is
«

around 0.2 % whereas for the standard MLP it is 3 %. On the other hand, 

the rate of digit rejection is around 44 % for the RBF and 15 % for the MLP 

network. However, it is important to note that if the detection of spurious inputs 

is one of the most important aspects to be considered in a given problem then 

the results obtained with the RBF network offer a better solution, even in terms 

of the trade-off between valid pattern recognition and spurious pattern rejection. 

For example, if it is required to establish a maximum error of around 3 % for the 

valid patterns, the RBF is able to recognise correctly 85.7 % of the digits with 

the small confidence level of 0.15 imposed on the network, as opposed to 81.3 % 

achieved with the MLP with the high value of 0.55 for the confidence level (see 

Table 5.1). In this case, the rejection of letters achieved with the MLP network 

is around 48 % and with the RBF network it is around 44 %. Another example



CHAPTER 5. RADIAL BASIS FUNCTION NETWORKS 140

can be given when a minimum recognition rate of 80 % is established. In this 

example, the rejection of letters achieved by the RBF is 63 % for a digit error 

rate of 1.4 % and the rate obtained with the MLP is 46 % for a digit error rate 

of 2.6 %. It is clear that a better balance between valid pattern acceptance and 

spurious inputs detection is obtained with the RBF network.

confidence

Digit Error Rate Digit Rejection Rate

MLP GMLP DMLP¿ RBF MLP GMLP DMLP4 RBF

0 8.0 9.0 7.9 8.8 0 0 0 0

0.15 5.3 3.8 5.1 3.4 5.3 8.7 6.6 10.9

0.25 5.3 2.9 3.4 1.4 6.5 10.4 10.9 18.3

0.35 3.7 2.0 2.2 0.5 11.9 14.5 14.9 24.6

0.45 2.6 1.4 1.6 0.4 16.6 21.0 20.0 32.9

0.55 3.0 0.9 1.1 0.2 15.7 27.7 25.3 44.0

Table 5.2: Digit error rate vs digit rejection rate for RBF networks

Comparing the results obtained with the DMLP4 and, especially, the GMLP 

network presented in Chapter 4, the improvement shown with RBF networks in 

terms of letter rejection is not as marked as that observed when compared to 

the standard MLP. The increase in the letter rejection rate at fixed confidence 

levels is by about 15 % on average with respect to the GMLP and by 19 % when 

compared to the DMLPL However, the same comparisons made above with the 

MLP when applied to these networks show that, in various cases, the compromise 

between valid pattern recognition and invalid pattern rejection offered by them 

can be similar or, in some cases even superior, to that attained with the RBF 

network.

Consider, for example, the following correlation between the results obtained 

with RBFs and the results obtained with GMLPs. For an error rate of 3.4 % 

observed with the RBF network, 85.7 % of the digits are correctly classified with
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44 % of letters rejected by the network. An even smaller error rate of 2.9 %, 

obtained with the GMLP, provides 86.7 % of digit recognition and the same 44 

% of letter rejection rate. In another case, for a digit recognition rate of 85.7 % 

with the RBF, the digit error rate is 3.4 % and the letter rejection rate is about 

44 %. For a recognition rate of 83.5 % obtained with the GMLP and a digit error 

rate of 2.0 %, the rejection of letters is 55 %.

A similar level of evaluation can be made with the DMLP* network although, 

in this case, its performance is slightly inferior to that achieved by the GMLP 

network. For example, for a digit recognition rate of 85.7 % with the RBF, 44 % 

of letters are rejected and the digit recognition rate is of 3.4 %. Almost exactly 

the same rates of 85.7 %, 42 % and 3.4 are obtained with the DMLP* with the 

confidence level set to 0.25. In another situation, while the RBF network provides 

80.3 % of digit recognition, 63 % of letter rejection and 1.4 % of digit error rate, 

the DMLP4 provides similar rates of 78.4 % of digit recognition, 62 % of letter 

rejection and 1.6 % of digit error rate.

The results illustrated here indeed indicate that RBF networks are strong 

candidates for the reliable rejection of spurious patterns. However, the results 

also indicate that GMLPs and DMLP^ can, in various situations, represent a 

better alternative in terms of the trade-off between valid pattern recognition and 

spurious pattern rejection.

One very important aspect to note concerns the relative computational and 

implementational complexities associated with RBFs and with the GMLP and the 

DMLPb Although RBF networks can be trained very fast, they require a much 

larger number of processing units than the GMLP and the DMLP‘ to provide a 

similar classification performance. The results reported above has shown situa­

tions of similar classification rates obtained with the RBF and the DMLPf with 

the important difference that the DMLPi used only the same number of 80 hidden 

units employed originally in the MLP, whereas the RBF network was composed of
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1000 units. With respect to the GMLP, the comparison is even more favourable 

to this latter network since the same number 80 of units provided a better overall 

classification performance in various situations.

5.7 Addressing a Potential Problem

This section examines a specific situation which, in the event of occurring, can af­

fect the rejection capabilities of RBF networks. A simple example network is used 

to illustrate this situation and possible solutions to the problem are considered.

It has been seen in this chapter that the hidden units of an RBF network 

provide a way of constructing a convex set that fits the training data in a way 

that any point falling outside the limit of the closed boundaries tend to receive 

low outputs from the units. It was also seen that this is precisely the reason why 

RBFs present an inherently strong rejection capability.

However, since the process of network training uses only the outputs of the 

hidden units with respect to the training patterns to define the representations 

stored in the output layer weights and hyperplanes are used at the level of the 

output layer to partition the pattern space, it is possible that the situation where 

all the hidden units provide low outputs (a situation which does not happen during 

the training process and does not represent any of the training classes) is mapped 

exactly to the set of responses given by the network to one of the trained classes. 

If this happens, any input presented to the network that receives low outputs from 

the hidden units will be accepted if as belonging to the referred class.

Figure 5.5 shows the example of a network in a 2-class problem, carefully 

designed to exhibit such behaviour. Two hidden units are used to represent 

two cluster centers (cn =  —0.99, c12 =  0.99) and (c21 =  0.67, c22 =  —0.65), 

and the output layer weights Wji and biases Wj0 are defined in a way that the
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decision regions are bounded for the output unit representing class 2 (w21 =  

-3 .63 , w22 =  3.57, w2o =  -0 .96), but are open for the unit representing class 1 

(u>n =  3.85, W12 =  —3.96, m10 =  1.13). In the latter case, the situation of low hid­

den unit outputs are mapped as belonging to this second class. The calculation 

of class 2’s output unit activation when the outputs of the hidden units are set to 

zero is the result of the inner product (net2 =  —3.63 x 0 +  3.57 x 0 +  (—0.96)) 

applied as input to the sigmoid function a2 =  1/(1 +  exp(0.96)) which provides 

a2 =  0.27. This is a level of activation considered to be small and the imposi­

tion of the confidence level on the network can easily reject the input associated 

with it. However, the calculation of class l ’s output unit activation, the inner 

product (neti — 3.85 xO +  (-3 .96) x 0 +  1.13) given as input to the sigmoid 

ai =  1/(1 +  exp(-lA3)) provides ax =  0.76. This output can be considered as 

high as any other response given to a slightly distorted valid pattern presented to 

the network.

hidden layer

Figure 5.5: An example of RBF network

The actual implementation of the above network and the test of its response to 

a large matrix of points covering the input space results in the diagram illustrated 

in Figure 5.6. This experiment illustrates the occurrence of the problem. For class
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2, only the points in the area surrounding the training patterns of this class are 

classified as belonging to it. However, any other input that is not classified to 

belong to class 2 is accepted as belonging to class 1.

Although this undesirable situation can be considered unlikely to happen in 

practice (for example, in all the experiments reported with RBF networks this was 

never observed), it is important that the problem is understood and that possible 

mechanisms for dealing with it are considered, and used if necessary.

Figure 5.6: Decision regions for the RBF network of Figure 5.5

There are different ways of handling this problem. One straightforward idea 

can be the further test of the network after it has been trained on a particular
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task, where the output unit responses are checked for the case of low hidden 

unit outputs. If all the output nodes are providing low outputs to low hidden 

unit activations then nothing needs to be done. Any pattern very different from 

the training classes should be rejected by the criterion of the confidence level. 

If, however, one of the trained classes is detected to be responding positively 

to low hidden unit outputs then a minimum level of hidden unit activation can 

be established as a condition to accept the input pattern, based on activations 

previously obtained for patterns from the training classes. A validation set can 

be used to estimate the threshold for the level of activation below which any 

input would be rejected by the system. The level of activation would correspond 

to the linear combination of the hidden layer outputs <f>j(\xp — cjj) according to 

weights Aj. Since no assumption is made about the kind of distribution that the 

training data has, the values of A j can be defined considering that they contribute 

equally to measuring the level of activation in the hidden layer. Another possible 

procedure is to choose the values of A j based on the log likelihood of the training 

data with respect to the variable Ap [6]. Hence, the level of activation for a pattern 

xp can be defined as :

k
Ap A j ■ M \xP ~ cj |)

3=1

where k is the number of hidden units, J2j=i A j =  1 and 0 < Xj <  1. Since all A /s 

are defined to be equal each Aj =  T

The presentation of the validation set is then used to estimate the threshold 

value for Ap. For example, the values of Ap are calculated and the threshold 

is set so that most of the patterns in the validation set are classified as valid 

by the network. Any input that does not produce a level of activation above 

the threshold can be readily rejected by the system. This would be seen as an 

additional mechanism integrated with the network which examines the responses
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of the hidden layer before taking a final classification decision.

Another possible strategy can be the inclusion of an additional node in the 

output layer of the network to represent the class of spurious patterns, and the 

previous training of the network with this further class. This strategy is similar to 

that of negative training described in Chapter 2 with the very important difference 

that there is no need for the presentation of a massive number of random patterns 

as members of the spurious class. Instead, the unit representing this class has to 

account only for the case where all the hidden units provide low outputs. The 

training of the additional class is carried out by the presentation of low hidden 

outputs and the explicit definition of the hidden to output layer weights, leading 

to the unit representing the spurious class, so as to recognise those patterns as 

genuine members of the spurious class.

All the procedures applicable originally (least-mean squares, pseudo-inverse 

matrix, Newton-like method) can still be used with this modification. In order to 

maximise the spurious pattern rejection rate, it is necessary to define for each ap­

plication appropriate values for the hidden unit outputs representing the spurious 

class. This can be done by considering, for example, the level of degradation in the 

network’s recognition performance with respect to the training classes measured 

at each different trial. The hidden outputs representing the spurious class can be 

initiated with a close to zero response and can be further elevated gradually until 

they reach a point just before the situation where the degradation in recognition 

performance for the application starts to be considered substantial. This would 

represent the boundary on the activations of the hidden units for which a pattern 

should be classified as genuine or not.

The definition of the hidden to output layer weights through a linear opti­

misation technique (like the pseudo-inverse matrix) defines a boundary line to 

separate the spurious class from the valid classes. Since the higher the activation 

of the hidden layer units the more likely it is that the input pattern belongs to the
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training classes and the lower the activations are the more likely the pattern is 

to belong to the spurious pattern class, the decision surface that results from the 

training process should be such that any input that receives hidden unit outputs 

below the thresholds should tend to be classified as more similar to the spurious 

class rather than as to the valid classes.

5.8 Conclusion

This chapter has investigated the model of radial basis function with respect to 

the rejection problem and an experimental comparison between RBFs and some 

of the other networks described in the thesis was presented. In general, it can 

be said that networks in which the processing units compute a localised function 

of the input space should naturally provide more reliable structures for rejecting 

spurious inputs. One such class of networks correspond to the radial basis function 

architecture. In this case, because each processing unit in the network creates a 

localised receptive field in the input space, there is a very low probability of 

spurious patterns being accepted by the network.

Indeed, the results shown in this chapter confirm that RBF networks are pow­

erful candidates for applications that demand high reliability when one of the pri­

mary concerns is the correct identification of spurious input patterns. However, an 

example illustrating the practical application of the classification of handwritten 

characters has shown that some “intermediate” network configurations between 

MLPs and RBF models such as the DMLP, and especially the GMLP, may offer 

a better compromise between the recognition of valid patterns and rejection of 

spurious patterns. The other advantageous feature of the GMLP and the DMLP 

when compared to RBFs is that they can improve the rejection abilities over the 

MLP network with a much smaller number of free parameters required in the net­

work. Whereas the RBF network used 1000 hidden units for achieving the results
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reported in this chapter, the GMLP and the DMLP* each employed only 80 units 

as used in the standard MLP network. On the other hand, RBF networks offer 

the benefits of a very fast training process.

It is clear, therefore, that the choice of which network to use in a practical 

application has to take into account the particular parameters demanded in the 

specific problem. This chapter has explored and identified some of these parame­

ters of choice.



Chapter 6

A Bootstrap-like Rejection 

Mechanism

6.1 Introduction

All the approaches described in this thesis so far refer to solutions where the 

problem of the detection of spurious inputs is dealt with during the process of 

network training. In this chapter the subject is investigated, in contrast, from a 

very different perspective.

A mechanism is proposed based on the ideas of bootstrapping [46] that can be 

incorporated into the standard MLP architecture, as a back-end mechanism, with 

the objective of providing the network with the ability to continuously modifying 

its responses across the input space during its usage phase. The mechanism makes 

use of the outputs provided by the network itself during its recall phase, in order 

to improve performance in the rejection of spurious inputs, through a scheme of 

reinforcement of the classification decisions taken by the network.

149
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The bootstrap algorithm is a powerful mechanism that provides a way of adapt­

ing the weights of the processing units in a neural network when the desired output 

for each training input pattern is not known in an application environment. The 

concept of the bootstrap has a long history, going back to the work of Lucky [46] 

in 1966 and Widrow [85] in 1973 and it is one of the basic principles of the classical 

paradigm of reinforcement learning [3, 85]. The algorithm has been successfully 

applied in practical applications [86] and, more recently, Hinton & Nowlan have 

demonstrated how it can be viewed as an unsupervised clustering procedure [30].

In this chapter, it is shown how an adaptation mechanism based on the con­

cept of bootstrapping can be incorporated into an MLP network to improve its 

knowledge of the pattern space in classification problems. It is shown how the 

decision regions generated by the network pre-trained on a set of classes through 

supervised learning can be gradually modified, during the network’s recall phase, 

to improve its ability to detect spurious patterns. The procedure makes use of 

the classification decision taken by the network itself as a bootstrap signal for 

readapting the weights of the network without the use of any supervised training.

An example of the operation of the mechanism is given in the practical ap­

plication of the classification of handwritten characters and some practical con­

sideration is given for its use in a real-world environment. It is also shown how 

the performance of the different MLP network configurations considered in the 

previous chapters, such as the GMLP and the DMLP networks, can be further 

enhanced with respect to the detection of spurious patterns through their inte­

gration with the bootstrap procedure.
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6.2 The Bootstrapping Algorithm

The idea of the bootstrap algorithm was conceived taking into consideration situ­

ations where an adaptive element (a linear unit) operating in a particular pattern 

environment is presented with a series of inputs for which there is no a priori in­

formation about what the desired output should be for each given input pattern. 

In such situations, one approach is to consider the actual output of the linear unit 

itself thresholded at zero as the desired output, assuming that the decision taken 

by the unit is in fact correct. Figure 6.1 illustrates the general form of operation 

of the mechanism (redrawn from [85]). When the output of the unit is above zero, 

+  1 is taken as the desired output (d) and the weights of the unit are adapted 

accordingly. A similar action takes place in the case of an actual output below 

zero but, in this case, the desired output becomes -1. This form of bootstrap 

is referred to as positive bootstrap or learning by reward. An alternative way of 

defining the desired outputs is by inverting the signal of the thresholded output 

and training the unit to modify its response in a direction away from the actual 

output. In this case, the bootstrap is known as negative bootstrap or learning by 

punishment.

In typical situations of the application of reinforcement learning, an external 

element, a critic, is responsible for deciding what form of adaptation should be 

carried out, whether reward or punishment, based on a series of observations of 

the behaviour of the system. If successes are achieved as a result of a sequence of 

decisions taken by the system, positive bootstrapping takes place; otherwise, the 

system is punished for its failures.

In the next section, it is shown how the principle of bootstrapping can be used 

to modify the outputs of an MLP network to the input pattern space, using as a 

basis for re-adaptation the classification decisions taken by the network itself.
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actual output
input
pattern

positive bootstrap
+

negative bootstrap

bootstrap 
control input

Figure 6.1: Bootstrap adaptation

6.3 A Bootstrap-like Rejection Mechanism

6.3.1 Combining negative training with bootstrapping

In chapter 2, it was described how one of the first techniques proposed to over­

come the problem of the rejection of spurious patterns was based on the idea 

of previously training the network with random “negative” examples. Unfortu­

nately, it was also demonstrated that the solution obtained with this method does 

not guarantee that the decision regions generated by the network to separate un­

known regions of the pattern space from the training classes are uniform. This 

problem becomes especially critical in situations involving higher dimensions, as 

is frequently the case in many real world applications.

However, the original concept of using negative training to provide a network 

with information about rejection areas of the input space can be further consid­

ered in the recall phase of the network. Since, in the network’s training phase, 

there is little (or no) a priori information about the kinds of patterns that should 

be rejected in a certain environment, one possibility is to use the classification 

decision taken by the network itself in the recall phase to dynamically change
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its knowledge about the structure of the pattern space. The technique of boot­

strapping is a method that allows such a form of continuous re-adaptation to the 

properties of the current pattern environment.

The scheme for a bootstrap-like rejection procedure can be described as fol­

lows : when a given pattern is rejected by the network as a result of “considerable 

doubt” about its identity, it is “assumed” that the decision taken by the network 

was in fact correct and the entire network is re-trained to reinforce its decision. 

The whole idea is based on the assumption that if none of the output units is re­

sponding positively to the input pattern with a minimum level of activation then 

it is very reasonable to assume that the input should correspond to an invalid 

pattern and, accordingly, this recent acquired information can now be used to en­

hance the network’s rejection response to the current pattern. The network enters 

a process of re-learning by applying the same gradient descent process used in the 

training phase making use of a new training set created on-line, composed of the 

rejected pattern and a sample of other patterns from the original training set, 

included in order to avoid the problem of catastrophic forgetting of their previous 

learning [23, 50]. This modification in the MLP network operation results in the 

architecture shown in Figure 6.2.

When a pattern is presented to the network, the responses of the output units 

are evaluated and compared against each other to determine if the output of the 

winning unit exceeds those of the others by more than a given confidence level. 

If so, the pattern is accepted as belonging to the corresponding trained class. So 

far, this description of network behaviour is exactly the same as that presented 

previously. A different operation takes place, however, when a rejection decision 

occurs. In this situation, another component of the system, a bootstrap control 

mechanism (see Figure 6.2) is responsible for checking the degree of “uncertainty” 

about the identity of the input pattern present in the rejection response of the 

network. In a typical classification decision, it is observed that a rejection decision 

occurs either when the responses of all the output units are very low (close to ‘0’) or
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Figure 6.2: Multilayer perceptron with bootstrapping

some (or most) of the outputs are high (close to ‘1’). In either case, if the rejection 

decision is taken because the difference between the largest output and the second 

largest output did not reach a minimum defined certainty level then it is assumed 

that the input pattern is very different from the training classes and can be used 

to re-train the network negatively to reinforce its rejection (with the vector of 

desired outputs defined as [0,0,.. .,0]). The certainty level implements, therefore, 

the threshold for the state of doubt from the network. If one of the output 

units reaches a large enough level of activation to exceed those of the others by 

this threshold then the rejected pattern is not considered for negative re-training. 

Otherwise, there is “considerable doubt” about the input pattern membership, 

enough to consider it as an invalid pattern and this is used to reinforce the rejection 

decision.

The confidence level, as described in all the approaches in the previous chap­

ters, can be varied to make the acceptance of an input more or less rigorous ac­

cording to the needs of the particular problem, whereas the certainty level should 

be small in order to reduce the risk of valid patterns being re-trained negatively. 

It is important to note that the use of a sample set of patterns from the original
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valid training set is absolutely crucial; otherwise, the network will tend to forget 

the previous input/output associations learned in the training phase.

The idea behind this approach is based on the expectation that other patterns 

similar to the current rejected pattern, which were still being erroneously classi­

fied, also come to be rejected as a result of the modification in the decision regions 

generated by the network. Consider the simple 2-class classification problem il­

lustrated in the example of Figure 6.3. Figure 6.3(a) shows a pattern (denoted 

R ) which is an example of a pattern normally rejected by the network (it falls in 

the rejection region represented by the shaded area in the diagram). Similarly, 

another pattern (designated S) represents a pattern considered to be similar to 

R which is still erroneously classified as belonging to class X . In Figure 6.3(b), 

a hypothetical result of the network re-training to reject pattern R is depicted, 

where the classification boundaries are altered in such a way that pattern S now 

becomes a rejected pattern.

(A) (B)

Figure 6.3: Input space separation for the MLP with bootstrapping

The mechanism of reinforcement of a network’s response described here can 

be seen as an optimisation process where the network’s parameters are adjusted
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to include the new information obtained with a rejection decision. The problem 

at hand is different from that encountered in a situation employing the classical 

paradigm of reinforcement learning in the sense that there is no “critic” involved 

in the process of determining the desired output of the network based on the 

successes or failures of the system.

In the context of the application of the bootstrap rejection mechanism, there 

is no specific concept of success or failure because there is no way of knowing what 

the correct output should be for any given input pattern. It is considered that 

the decision taken by the network is correct by “assuming” that the network has 

been properly trained previously during the training phase and a control signal 

is issued for readapting the network such as in the case of a positive bootstrap 

adaptation (reward) [85]. If the input pattern is accepted as belonging to one of 

the training classes then no process of retraining takes place1.

It is also useful to note that the rejection mechanism differs from the original 

concept of the bootstrapping algorithm in the sense that the actual output of 

an individual processing unit is not thresholded at zero to determine the desired 

output for that unit. Instead, the rejection mechanism determines the desired 

output of the entire network through what can be called a transition from a state 

of “doubt” about the identity of the input pattern (the original rejection decision) 

to a state of “certainty” that the input pattern is indeed a spurious pattern and 

should, therefore, be rejected (represented by the reinforcement of its rejection 

decision by defining the desired responses of all the outputs units to be [0,0,.. .,0]). 

However, as with the original procedure, the basic principle of reinforcement of a 

response is still the active ingredient of the system.

XA similar reinforcement strategy can be thought of when an input pattern is confidently 
accepted by the network, but the effectiveness of this further modification is not examined here.
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6.4 Visualisation of the Decision Regions

The experimental visualisation procedure which considers the classification prob­

lem in a 2-dimensional input space is applied again in this section to illustrate 

how the mechanism of bootstrapping can dynamically modify the decision surfaces 

generated by the network.

An MLP network (with one or more hidden layers) is trained through back- 

propagation learning with a sample of patterns representative of the training 

classes, and a test input matrix large enough to encompass an extensive area 

of the pattern space surrounding the trained classes is presented to the network. 

The responses of the output units for each point in the input matrix are compared 

and a pattern is classified as belonging to one of the training classes if the output 

(in the range [0,1]) for that class exceeds those of the others by a given confidence 

level; otherwise, the pattern is rejected.

The experiments are carried out with a very high value of the confidence level 

(0.65) and the results are shown in Figure 6.4 for the case of a 2-class problem, 

where the elevated surfaces correspond to the points confidently accepted by the 

network while the rest of the points represent the rejected patterns. Figure 6.4(a) 

corresponds to the simulation of the standard MLP where the bootstrapping mech­

anism is not yet integrated with the network. As previously illustrated in chap­

ter 2, almost all the points in the input matrix are either classified as belonging 

to one of the classes or to the other, and even those most distant from the train­

ing patterns are still accepted by the MLP network. Only the points falling in 

between the training data points are rejected.

In Figures 6.4(b),6.4(c) and 6.4(d), the effect of applying the bootstrap re­

jection mechanism in the 2-D problem is illustrated. These show the gradual 

modification in the shape of the decision regions after 1, 3 and 5 test epochs of 

presentation, respectively, of the whole set of matrix points covering the input
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space. As can be seen, the weights of the network are modified towards a more re­

liable structure for detecting spurious patterns through the creation of boundaries 

surrounding the training data; and, more importantly, these modifications take 

place without the action of an external teacher for dictating the desired output 

for each input pattern.

Now, in addition to the original constraint imposed for the separation of the 

trained classes, the process of bootstrapping slowly displaces the hyperplanes to­

wards a distribution that limits the areas of the pattern space considered to belong 

to each class, as would be most appropriate for the purposes of spurious pattern 

rejection.

A repetition of the above experiment now on the classification problem in­

volving 9 classes ratifies the initial observations. Figures 6.5(a),6.5(b) and 6.5(c) 

show the evolution of the decision surfaces with the bootstrap mechanism, where, 

again, a gradual transformation of the class boundaries is seen from open regions 

to closed regions.

It is important to emphasise that the main objective of this visualisation pro­

cedure is to demonstrate that the inclusion of the bootstrap mechanism makes 

possible the alteration of the responses of a pre-trained network as a result of 

the occurrence of rejection decisions taken by the network itself during its usage 

phase. It is clear, however, that in real environments it is not possible to have the 

presentation of a whole matrix of points covering the pattern space so that the 

original decision boundaries can be modified. On the other hand, the experiments 

reported are very useful in understanding the beneficial gradual transformations 

(in terms of spurious pattern rejection) of the decision regions which can result 

from the application of the mechanism.

Further simulations were used to observe the behaviour of the network in a 

slightly more complex situation in the 2-class problem where the data consists of
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Figure 6.4: 2-class problem (a) standard MLP, 1 test epoch; MLP with the boot­
strap (b) 1 test epoch, (c) 3 test epochs, (d) 5 test epochs.
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clusters of larger sizes that form a 90 degree-like shape between them (in contrast 

with the simple clusters seen in Figure 6.4). Various trials were attempted and 

the results of two of these are presented in Figures 6.6 and 6.7. In Figure 6.6, 

the diagram shows again an evolution from completely open decision regions to 

closed regions after some cycles of the presentation of the input matrix. This 

result ratifies the previous simulation with the simple clusters. An interesting 

result, however, is in the case of Figure 6.7 where closed decision regions are not 

entirely obtained. As can be seen in this case, the generation of closed regions 

is observed for only one of the cluster class whereas for the second class the 

classification regions is practically unchanged from the original configuration for 

the MLP without bootstrapping. It is suspected that this particular problem is 

caused by the scanned presentation to the network of the test points in the input 

matrix, where all points are fed sequentially in a given pre-defined order (for 

example, from left to right, top to bottom). This is an artificial situation which 

biases the development of new hyperplanes towards the start of the scanning 

process and thus creates rejectable points correlated in one region in advance of 

rejectable regions in other regions. In the example shown this appears to have 

created a region, on the right of the plane, in which improvement in rejection does 

not occur.

While the overall result is still clearly an improvement in terms of of rejection 

performance, the network has settled on a sub-optimal solution with respect to 

an ideal closed configuration for the decision regions. If, as conjectured, this is 

due to the artificial sequence of scans then in a real environment where rejectable 

events are more likely to occur in a arbitrary manner, then a more acceptable 

arrangement of hyperplanes is likely to result. It is clear, however, that the per­

formance of the bootstrap method is problem dependent being influenced by the 

distributions of the training data and by the particular occurrence of rejectable 

points in each situation.
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(a)

(b)

( c )

Figure 6.5: 9-class problem, MLP with the bootstrap (a) 1 test epoch, (b) 3 test 
epochs, (c) 5 test epochs.



CHAPTER 6. A BOOTSTRAP-LIKE REJECTION MECHANISM 162

(d) (e)

Figure 6.6: 2-class problem with larger clusters (a) standard MLP, 1 test epoch; 
MLP with the bootstrap (b) 1 test epoch, (c) 3 test epochs, (d) 5 test epochs, (e) 
7 test epochs.
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(a) (b)

test points —  

training points □

-5

(c) (d)

Figure 6.7: Another trial for the 2-class problem with larger clusters (a) standard 
MLP, 1 test epoch; MLP with the bootstrap (b) 1 test epoch, (c) 3 test epochs, 
(d) 5 test epochs.
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The evidence to back up the argument given above is the fact that simula­

tions with different order of presentations of the input matrix provide different 

solutions. For example, in Figure 6.6 the simulation corresponds to a different pre­

sentation for the input points from that of Figure 6.7 and in this case the resulting- 

decision regions are closed. A last experiment carried out in fact confirms such 

observations. In Figure 6.8 the input points are selected from the input matrix 

and presented to the network in a completely random order. The result of several 

trials have shown that in every case the evolution of the classification regions tend 

to be such as the one shown in Figure 6.8, with a much more satisfactory arrange­

ment of the decision boundaries in terms of rejection performance. It is suggested 

for a further work a fuller investigation of how the bootstrap mechanism behaves 

in many different complex arrangements of data clusters such as, for example, in 

the known 2 spirals problem.

With the aim of investigating how the rejection mechanism would scale up to 

real-world problems and in order to establish a relation between this method with 

the other approaches described in the previous chapters, the next section consid­

ers its operation in the practical application of the classification of handwritten

characters.

6.5 Experimental Results

Extensive experiments have been carried out to investigate the performance of the 

proposed technique in the handwritten character recognition application employed 

in the previous chapters. The database of digits used is, as in the previous ex­

periments, divided into two subsets composed of 1000 and 2000 characters, used 

respectively to train the network and to test its recognition performance. The 

set of letters used as a model of spurious patterns consists of 2600 patterns with 

100 patterns per class. The MLP networks composed of 80 units are run several
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(d) (e)

Figure 6.8: 2-class problem with larger clusters, random presentation of points 
(a) standard MLP, 1 test epoch; MLP with the bootstrap (b) 1 test epoch, (c) 3 
test epochs, (d) 5 test epochs, (e) 7 test epochs.
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times and the results are measured for the different values of the confidence level 

(from 0.15 to 0.65). In accordance with the explanation given in section 6.3, the 

certainty level is chosen to be small (0.15).

The experiments can be divided into two parts. The first part consists of pre­

senting the whole test set of digits and letters to the network and of measuring 

the recognition and rejection rates both when there is no bootstrapping mecha­

nism operating and when the mechanism is present. Furthermore, the results can 

illustrate the enhancement in performance that can be obtained with respect to 

a test set of completely novel patterns, never seen before by the network. The 

second part consists of, again, presenting the character database to the network 

but this time alternating the entire set of digits and letters several times in order 

to measure the evolution of the classification rates in the presence of bootstrap­

ping. Although this second procedure cannot be considered completely realistic 

in quantifying any improvement in performance in a real environment, due to the 

fact that there is no repetition of patterns during the recall phase, it provides a 

convenient way of qualitatively evaluating any possible change in performance, 

particularly in terms of degradation in the recognition rate for valid patterns as 

the system evolves to a more reliable structure for rejecting spurious inputs.

Table 6.1 outlines the rejection results for the complete set of experiments. The 

results obtained may first be compared in the absence of the bootstrap (epoch 0 

in Table 6.1) 2 with those obtained when the mechanism is operating (epoch 1 in 

Table 6.1). It is observed that with the application of this technique the rejection 

rates for the letter test set are substantially increased, especially for smaller values 

of the confidence level. For example, for a confidence level of 0.15, the rejection 

rate changes from 17 % to 32 % (an increase by a margin of 15 points over the 

original rate). For the other values of the confidence level, there is an improvement 

by 9.5 % on average. With respect to the correct recognition of valid patterns

2In this sense, an epoch is defined as the presentation of the whole set of test patterns in the 
recall phase of the networks; there is no supervised training involved in this process.
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Confidence Level

epochs 0.15 0.25 0.35 0.45 0.55 0.65

0 17 25 32 46 48 64

1 32 39 45 53 56 67

A1 = +15 +  14 +13 +7 +8 +3

3 53 52 61 63 66 67

6 61 64 67 70 73 76

9 66 68 70 74 76 76

12 68 69 71 76 77 79

15 68 70 72 75 78 79

A15 = +51 +45 +40 +29 +30 +15

Table 6.1: Letter rejection rates for the MLP with bootstrapping

(digits) there is no degradation in performance as illustrated in Table 6.2. In 

reality, in this case, some improvement in the recognition rates is noticed. Results 

are also measured in terms of error rate in the recognition of digits, which are 

presented in Table 6.3. Although not significantly apparent at this stage, these 

results show a tendency for a reduction in the rate of misclassified patterns with 

the employment of the bootstrap.

With respect to the second set of experiments, the network is run through a 

further 14 test epochs in the recall phase (represented by the epochs 3 to 15 in 

Table 6.1). It is then possible to observe a gradual increase in the letter rejection 

rate, epoch after epoch, with a further increase to 68 % after the 15th epoch, for 

the value of 0.15 in the confidence level. With respect to the other values an 

improvement by over 40 % is obtained after the 15th epoch. Results measured in 

terms of the recognition rate of the digits (see Table 6.2) show an advantageous 

trade off between reliability in rejecting invalid characters and introducing some 

degradation in the recognition of valid patterns. It can be observed that initially
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Confidence Level

epochs 0.15 0.25 0.35 0.45 0.55 0.65

0 88.1 88.1 84.4 80.8 81.3 76.0

1 89.4 88.3 85.9 84.5 82.0 81.0

A1 = +1.3 +0.2 +1.5 +3.7 +0.7 +5

3 88.5 87.1 86.6 84.2 82.6 81.3

6 87.1 84.7 85.2 82.4 81.3 77.6

9 85.8 82.8 82.9 81.7 78.5 78.3

12 84.2 82.1 81.8 79.9 77.9 76.0

15 84.2 82.2 81.0 79.3 77.1 75.7

A15 = -3.9 -5.9 -3.4 -1.5 -4.2 -0.3

Table 6.2: Digit recognition rates for the MLP with bootstrapping

there is no degradation in the digit recognition rate but, eventually, as the network 

runs through the test phase, the onset of degradation is observed. For the value of 

0.15 for the confidence level after the 15th epoch the decrease is by 3.9 % and for the 

other values it is by about 3 % on average. These results clearly demonstrate an 

advantageous compromise between spurious pattern rejection and the recognition 

rate of valid characters.

Another interesting characteristic observed in Table 6.3 (which shows the evo­

lution of the digit error rates in the recall phase) is the fact that there is a sub­

stantial decrease in the error rate in all the cases reported as the network changes 

towards the more reliable structure. This is consistent with the objective of in­

creasing the reliability of systems, where patterns for which there is low confidence 

about their identity are rejected, instead of being misclassified.



CHAPTER 6. A BOOTSTRAP-LIKE REJECTION MECHANISM 169

Confidence Level

epochs 0.15 0.25 0.35 0.45 0.55 0.65

0 5.3 5.3 3.7 2.6 3.0 1.7

1 5.3 4.3 3.7 2.4 2.8 1.7

A1 = - 0.0 - 1.0 - 0.0 -0.2 -0.2 - 0.0

3 3.4 3.5 2.2 1.9 1.8 1.3

6 3.0 2.5 1.8 1.6 1.3 0.9

9 2.2 1.9 1.4 1.3 1.1 1.1

12 2.1 1.8 1.4 1.1 1.0 0.9

15 2.2 1.8 1.4 1.1 0.8 0.8

A15 = -3.1 -3.5 -2.3 -1.5 -2.2 -0.9

Table 6.3: Digit error rates for the MLP with bootstrapping

6.6 Integrating the Bootstrap with Other Net­

work Configurations

A significant advantage of the idea of bootstrapping is that this procedure can 

be integrated with other network configurations, more reliable than the standard 

MLP regarding the rejection problem, in order to further enhance their rejection 

capabilities.

In Chapter 4, it was shown how the standard MLP can be turned into two more 

reliable structures in this respect through modifications in the network structure. 

The first configuration is the GMLP network, where each processing unit defines 

a semi-localised receptive field as a result of the use of a Gaussian as the network’s 

activation function, instead of the usual sigmoid, in conjunction with the inner 

product as its propagation rule. The second is the MLP which uses additional 

direct connections from the input to the output layer of the network (DMLP). In
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this section, a comparison is made between the results obtained with the GMLP 

and the DMLP operating alone in the pattern classification problem described 

above with the results achieved when the rejection mechanism is incorporated 

into the network. The experiments are carried out with the chosen value of 0.15 

for confidence level, for illustrative purposes.

The recognition and rejection rates are measured after each presentation of the 

test set of 2000 digits and 2600 letters over a period of 15 test epochs. The results 

are shown in Table 6.4, also including the previous results with the standard 

MLP integrated with the bootstrap mechanism. As in the case of the previous 

experiments, epoch 0 in Table 6.4 represents the results with the networks when 

no bootstrap mechanism is applied and epoch 1 corresponds to the case where all 

the patterns presented are previously unseen.

A further improvement in the rejection rates is seen in all cases when the boot­

strap mechanism is employed, and this is seen to be especially effective for the 

GMLP network. For this network, the rejection rate is increased from 34 % to 

47 %. This corresponds to an improvement of about 30 % over the performance 

of the standard MLP architecture (17 %). After the 15th pass 77 % of the letters 

are rejected by the GMLP network. Again, the fast enhancement in rejection 

performance also introduces, with time, some degradation in the recognition rate 

of valid digits. In the case of the GMLP, there is no initial decrease in the recog­

nition rate but after the 15th epoch the degradation is by about 9 % (from 87 

% to 78 %). Once again, some trade-off is observed between establishing a more 

reliable structure and losing some performance in the correct classification ability. 

This is supported by the fact that the digit error rate also drops from 3.8 % to

1.4 % in this case.

A similar pattern of behaviour is also seen in the case of the DMLP network, 

although in this case it is less marked. After the l si epoch, the increase in the 

letter rejection rate is from 29 % to 41 %, with a small decrease in the rate of
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Digit Recog. Letter Rejec. Error Rate

epochs MLP GMLP DMLP MLP GMLP DMLP MLP GMLP DMLP

0 88.1 87.0 89.5 17 34 29 5.3 3.8 4.6

1 90.2 88.7 88.2 32 47 41 5.3 4.3 4.1

A1 = +2.1 +1.7 -1.3 +15 +13 +12 +0.0 +0.5 -0.5

5 87.3 88.3 85.0 57 68 59 3.0 2.0 3.3

10 85.0 81.6 83.5 68 70 65 2.1 2.2 2.8

15 84.2 78.2 82.6 69 77 67 2.0 1.4 2.5

A15 = -3.9 -8.8 -6.9 +52 +43 +38 -3.3 -2.4 -2.1

Table 6.4: Networks integrated with the bootstrap mechanism

correct classified patterns by 1.7 %. After the 15th epoch, the letter rejection rate 

is improved further to 67 % (an increase by 38 %) and the degradation in the 

digit recognition rate is from 89.5 % to 82.6 % (a decrease by 6.9 %).

6.7 Practical Consideration of the Bootstrap 

Mechanism

In order to operate the bootstrap mechanism in a real-world environment, some 

practical issues concerning the monitoring of the system performance have to be 

addressed. It has been observed in the experiments reported that the continuous 

use of the bootstrap mechanism may incur some loss of performance in terms of 

the recognition of valid patterns. Although it has been seen that this degradation 

in performance is advantageous when it is considered against the benefits gained 

in terms of spurious pattern rejection, it is important to explore some means of 

dealing with these possible degradations in system performance.
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One of the strategies that can be proposed is to continuously evaluate the 

performance of the network in order to decide if the bootstrap rejection mechanism 

should be allowed to continue its operation or if it should be stopped at a certain 

point to maintain at the current level the recognition of valid patterns /  rejection 

of spurious patterns. Figure 6.9 illustrates the components of a practical neural 

network system designed on the basis of the bootstrap mechanism.

The system is mainly composed of two networks, one of which is static most 

of the time and which, therefore, does not change its structure after being trained 

on the a priori defined training classes, and the other of which is dynamic and 

modifies its responses to the inputs whenever a bootstrap signal indicates that 

it should do so. The static network is the one that actually provides the system 

outputs to the input patterns.

Figure 6.9: Neural network based system with bootstrapping

The steps required before applying the system to the task environment are
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as follows : initially, after being submitted to the supervised training process, 

the performance of the static network is estimated on an independent test set 

belonging to the trained classes, as usual. This performance is stored into a 

performance evaluation unit, responsible for making comparisons of the system 

performance in the future. The values of the parameters of the static network 

are then fully copied onto the dynamic network and the system now passes to the 

phase where it can be used in the application environment.

In the usage phase, when a pattern is rejected by the static network in ac­

cordance with the criterion of the certainty level (see section 6.3), the bootstrap 

signal activates the re-adaptation of the dynamic network. The static network, 

however, continues its operation as normal in order to not affect the throughput 

of the system. When the re-adaptation ceases, the parameters of the dynamic 

network are copied onto the static network and the classification process carries 

on as before.

From time to time, the performance evaluation unit carries out an estimation 

of the current performance of the dynamic network on the same test set used 

previously before copying its parameters to the static network. If there is any 

substantial degradation, the values of the parameters in the static network are 

not changed and, instead, it is the dynamic network that receives the values of 

the weights from the static network. Again, the classification process continues 

indefinitely.

The final component of the system that has to be considered in practice, as 

shown in Figure 6.9, is a resources management unit which is responsible for 

evaluating the level of information saturation in the dynamic network. The role 

of this unit is also to add new processing elements whenever it determines that 

the network performance is being affected as a result of too many input/output 

mappings being stored into the network. Different strategies can be considered 

for determining how the dynamic network is augmented with the inclusion of new
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units. Again, the static network is only modified after the process of re-adaptation 

is completed in the dynamic network.

6.8 Conclusion

The work reported in this chapter has considered the problem of the rejection 

of spurious patterns in MLP networks through the development of a dynamic 

mechanism based on the ideas of bootstrapping which can be defined to gradually 

modify the response of an MLP network across the input space, in the recall phase, 

without the need of supervised training. Although this mechanism is dependent 

on the occurrence of patterns rejected by the network originally in order for ré­

adaptation to take place, it provides a way of changing the network’s knowledge 

of the pattern space if and when any spurious pattern is presented to the network. 

Moreover, it has been shown that it can be used with network configurations 

which are inherently more reliable in this respect (the GMLP and the DMLP) in 

order to further enhance their rejection capabilities.

In practical situations, the occurrence of spurious patterns should be much 

less frequent than that assumed in the experiments of letter rejection reported 

with the bootstrap rejection mechanism. However, the experiments have been 

successful in demonstrating how the network performance can be altered to boost 

rejection performance in an interesting and powerful unsupervised manner.

Future work will consider the actual implementation of the system described 

and its evaluation in a fully practical environment.



Chapter 7

Conclusion

This thesis has studied the problem of the detection of spurious or novel patterns 

in feedforward neural networks in the context of classification tasks. The main 

object of this investigation being the multilayer perceptron network trained with 

the backpropagation algorithm.

The major objectives of this work have been to understand the reasons why the 

multilayer perceptron classifies, as valid, patterns completely different from the 

training classes with a high degree of confidence and to propose different strategies 

for increasing the rejection abilities of the model. The main contribution of this 

research has been to show how the observed inability of the multilayer perceptron 

for detecting spurious patterns can be consistently improved both through the 

introduction of novel modifications in the network structure and unit function —  

the DMLP structures and the GMLP network — and through the addition of 

auxiliary mechanisms integrated with the network —  the guard unit mechanism 

and the bootstrap mechanism.

The investigation of the proposed methods through the use of the iterative 

inversion of multilayer networks by gradient descent, through the visualisation

175
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of the decision regions generated by the networks in 2-D classification problems 

and through the experiments in the practical application of the classification of 

handwritten characters provide an overall and comprehensive examination of the 

performance and abilities of these different methods.

7.1 Summary of the Thesis

Chapter 2 described the problem of poor extrapolation from the training classes 

observed in the multilayer perceptron where patterns with random characteristics 

are accepted as genuine by the network. The technique of iterative inversion in 

multilayer networks through gradient descent was used to illustrate this problem 

in the classification of handwritten characters. A very useful visualisation experi­

ment was developed in Chapter 2 which aids the understanding of the factors that 

influence the poor performance of MLP networks in the rejection of spurious pat­

terns. This is achieved through the observation of the decision regions generated 

by the network in 2-dimensional classification problems.

Chapter 2 also examined the effectiveness of the negative training approach to 

avoiding the recognition of “false” patterns. This technique is based on an exten­

sive presentation of random patterns during the training phase that is intended 

to create boundaries between the training classes and the rest of the input space. 

Experimental work carried out on the classification of handwritten characters in 

the difficult problem of separating letters and digits made it possible to conclude 

that this method does not provide very reliable solutions in practical applications. 

This is because it relies on the assumption that the random patterns used to train 

the network are good representatives of the rejection classes. These observations 

were also corroborated by results obtained through the inversion of MLP networks 

applied to the same training data.
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Chapter 3 has shown how the integration of the MLP with an auxiliary net­

work, the guard unit structure, makes it possible to combine the good generalisa­

tion properties of the standard MLP with a network more suited to the detection 

of patterns that are very different from the training classes. The concept of using 

a combined architecture is shown to provide an overall enhancement in classifi­

cation performance where part of the network, the multilayer perceptron part, is 

responsible for deciding to which training class an input pattern is most likely to 

belong and, the auxiliary structure, the guard unit layer, is accountable for check­

ing the degree of similarity between the input and the training classes so as to 

decide whether or not it can be accepted as a genuine pattern (no matter to which 

class it might belong). Network inversion carried out with these combined struc­

tures have clearly demonstrated the benefits obtained, and experiments based on 

the classification of handwritten characters have also shown that the system’s re­

jection capabilities are substantially enhanced with only a small degradation in 

the correct recognition rates. More importantly, the error rates observed do not 

increase with this integrated architecture and these rates are, on the contrary, 

usually reduced.

Chapter 4 has investigated ways of modifying the standard MLP so that the 

network itself can become, without the use of secondary mechanisms, more rigor­

ous with respect to the acceptance of input patterns. This chapter has described 

and proposed various novel alternative network configurations, the MLPpar, the 

MLPn°r, the DMLP and the GMLP networks, and has used the technique of 

visualising the decision regions constructed by these networks in 2-dimensional 

classification problems to give some insights into how these different network con­

structions should perform in relation to the rejection problem.

The experimental work carried out on the classification of handwritten char­

acters has identified two particular configurations as providing the best improve­

ments in terms of spurious pattern rejection capabilities. These are the MLP with 

additional direct input-output connections (DMLP) and particularly the MLP
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which uses a Gaussian as its activation function (GMLP). An overall enhance­

ment in rejection performance was obtained with these networks at the cost of a 

slight loss in the recognition rate for valid characters, but with a reduction in the 

error rates observed. The GMLP and the DMLP also represented an improve­

ment over the MLP in terms of general classification capacity with respect to the 

error rate of valid patterns and the rejection rate of spurious patterns obtained at 

similar rates of recognition performance.

The technique of network inversion was also employed to further illustrate that 

the GMLP and the DMLP show a higher degree of correlation between acceptable 

inputs and class prototypes. The most important aspect about these network 

configurations is that they improve rejection performance without any substantial 

change in the original network in terms of both network size and the computational 

complexities involved in the process of network training.

Chapter 5 examined radial basis function classifiers and an experimental com­

parison was made with the other models described in the thesis. These experi­

ments confirmed the natural ability of RBFs to deal with the rejection problem 

but have also importantly shown that networks such as the GMLP and the DMLP 

may offer a better overall classification performance, with a much smaller number 

of processing units required to solve a given problem. Although RBF networks 

can offer the benefit of fast network training, it requires many more processing 

units than the standard MLP to provide good generalisation. The GMLP and the 

DMLP presented an enhancement over the MLP network comparable in many 

cases to that achieved with the RBFs with only a judicious change in the MLP 

structure.

Finally, Chapter 6 presented a novel bootstrap rejection mechanism for grad­

ually enhancing the rejection performance of the MLP network during its usage 

phase. The concept of the bootstrap-like rejection mechanism was developed in 

response to the imposed constraint that in real environments there is usually very
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little (or no) a priori information about the classes of patterns that should be 

rejected in a given situation, which in turn makes it impractical for a supervised 

training procedure to be applied with respect to these classes. The most appealing 

and interesting aspect of this mechanism is exactly the fact that it modifies the 

decision regions generated by a network in a classification task in a completely 

unsupervised manner, taking into consideration only the responses of the network 

itself to change its classification decisions. It was shown, through the experimen­

tal work in the character recognition problem, that the mechanism not only can 

improve the performance of the standard MLP but it can also be employed with 

the DMLP and the GMLP to further enhance their rejection capabilities.

7.2 Comparing Different Strategies

Table 7.1 presents a comparison of the results obtained with the multiple guard 

unit network (MGU) in the handwritten character recognition application with 

those of the GMLP, the DMLPg0 and RBF networks. The results show different 

characteristics of the MGU as compared to the other networks, related to the 

values of the confidence level used to classify the input patterns. Consider initially 

the comparison between the MGU and the GMLP and the DMLP|0.

Examining the absolute values of the rejection rates achieved by the networks 

with each confidence level, it is seen that when the confidence level is small the 

performance of the MGU structure is superior to those of the GMLP and the 

DMLP|0. In the particular case of the confidence level equal to zero, while the 

GMLP and the DMLPg0 cannot reject any pattern, the MGU is able to reject 28 

% of the letters at a small cost of reducing the digit recognition rate by around 

2 % (when compared to the GMLP and the DMLPg0). With the increase of the 

confidence level, the performances of the GMLP and the DMLPg0 approximate 

that of the MGU, and this leads eventually to the achievement of better rejection
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rates. This is explained by the fact that the relaxation parameter employed in the 

MGU network was kept constant and only the confidence level associated with 

the MLP part of the integrated architecture (MGU/MLP) was changed from 0 to 

0.65.

confidence

Digit Recognition Rate Letter Rejection Rate

GMLP DMLPg0 RBF MGU GMLP DMLPg0 RBF MGU

0 91.0 92.2 91.1 89.4 0 0 0 28

0.15 87.5 88.3 85.7 86.7 36 29 44 41

0.25 86.7 85.7 80.3 84.7 44 42 63 44

0.35 83.5 82.9 74.9 83.4 55 53 74 52

0.45 77.6 78.4 66.7 79.2 65 62 82 57

0.55 71.4 73.6 55.8 75.8 76 71 89 69

0.65 67.5 66.5 — 72.9 80 79 - 72

Table 7.1: A comparison between different networks

Using the digit recognition rates as a point of reference by matching the re­

sults obtained for each network with similar results of the others (see Table 7.1), 

it is seen that the MGU, the GMLP and the DMLPg0 all presented similar let­

ter rejection performance (with a slight advantage for the GMLP). Consider, for 

example, the following comparisons : for recognition rates of 86.7 %, 85.7 % and 

86.7 % obtained with the MGU, the DMLPg0 and the GMLP, respectively, the 

corresponding rejection rates are 41 %, 42 % and 44 %. In another case, for recog­

nition rates of 83.4 %, 82.9 % and 83.5 % associated with the MGU, the DMLPg0 

and the GMLP, in this order, the rejection rates are 52 %, 53 % and 55 %. Yet 

in another example, recognition rates of 72.9 %, 73.6 % and 71.4 % for the MGU, 

the DMLPg0 and the GMLP, respectively, provided 72 %, 71 % and 76 % of letter 

rejection performance.

Comparing the results obtained with the MGU with those of the RBF, a
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similar level of evaluation can be made. In terms of the absolute values of the 

rejection rates, for the case of the confidence level equal to zero, the MGU presents 

a rejection rate of 28 % as opposed to 0 % with the RBF. For increasing values of 

the confidence level the performance of the RBF is superior to that of the MGU, 

as can be seen in Table 7.1. In terms of the rejection rates observed with similar 

recognition rates, the results with the RBF are slightly better than those of the 

MGU (by around 3 % on average). The following correlations can be made. For 

recognition rates of 84.7 % and 85.7 % obtained with the MGU and the RBF, 

respectively, both networks achieve 44 % of rejection rate. Finally, for recognition 

rates of 79.2 % and 75.8 % with the MGU and recognition rates of 80.3 % and

74.9 % with the RBF, corresponding rejection rates of 57 % and 69 % are obtained 

with the MGU and rejection rates of 63 % and 74 % are obtained with the RBF.

In view of the results observed, one important characteristic to take into ac­

count when deciding about which network to use refers to the relative computa­

tional complexities associated with each of them. The RBF network is fast to 

train and presented a slightly superior performance than that attained with the 

MGU, but requires a much larger number of processing units in the network. For 

example, while the MGU consisted of 220 processing units in total (200 units 

corresponding to the guard units), the RBF network was composed of 1000 units.

In the case of the GMLP and the DMLPg0, it can be said these networks rep­

resented the best compromise in terms of memory requirements and classification 

performance, when compared to both the MGU and the RBF. Both networks 

used the same number of 80 units and still provided rejection capabilities similar 

to those of the other networks. The MGU is expected to provide a more direct 

control of rejection performance than the GMLP and the DMLP|0 because it can 

make use of more (or less) rigorous values of the relaxation parameter according 

to the needs of each particular application. On the other hand, the GMLP and 

the DMLP|0 present a natural enhancement in performance without the inclusion 

of any additional computational mechanism into the network.
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7.3 Future Work

There are various ways in which the ideas and methods presented in this thesis 

can be further explored. In this section, some of these potential investigations are 

considered for the future.

Perhaps, the most natural extension for the work presented in Chapter 4 is to 

examine the combination of different MLP configurations into a single network. 

For example, the addition of direct connections between the input and output 

layers can also be employed in the GMLP network. Although in principle, it can 

be conjectured that a further improvement in pattern rejection might be obtained 

with such a network version, only a detailed exploration of the method can point 

out whether or not any real benefit is gained with this combination.

The integration of the different strategies developed in the various chapters can 

also be considered such as the association of GMLPs and DMLPs with the MGU 

network. One interesting aspect to investigate in this case would be the applica­

tion of one of these structures (or even, the standard MLP) to an environment 

where the MGU network is used to teach the MLP part to improve its rejection 

abilities. For example, when an input pattern is rejected by the MGU network, 

this information can now be used to inform the MLP part that the current input 

should not be accepted as valid and the MLP weights can be altered to store this 

recent information. The tendency is that the MLP part of the system would, 

with time, absorb the “knowledge” of the MGU network and, consequently, this 

would make possible the removal of the MGU from the architecture. There are, 

however, crucial issues that have to be examined concerning the effective control 

of a practical system with these characteristics, and this obviously requires a very 

detailed investigation of the system’s operation.

The application of some of the approaches explored in the thesis to solve many
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practical problems is also of great interest. One investigation particularly attrac­

tive is to observe the effectiveness of the bootstrap mechanism of Chapter 6 in 

the control of processes. Consider the control of a process in a factory, a chemical 

process for example, in an environment characterised by the possible occurrence of 

many abnormal situations. One strategy for applying the mechanism is to define 

an experimental phase where the system monitors the process under constrained 

operating conditions until it reaches a point where it can be left operating by it­

self. In this situation, a mixture of approaches can also be considered such as the 

use of the negative training strategy in the system’s training phase together with 

the bootstrapping mechanism during its operating phase. This would provide the 

system with some prior knowledge about the invalid areas of the pattern space 

making it easier for the bootstrap mechanism to further enhance the system’s 

knowledge gradually during its normal course of operation.

Another possible study is the application of other models of feedforward neural 

networks in conjunction with the bootstrap mechanism. Taking into considera­

tion the characteristics of bootstrapping, the class of constructive networks is one 

type of neural network that might be profitably used in combination with this 

mechanism [8, 20]. Since the application of bootstrapping introduces a form of 

continuous incorporation of new information into the network, the scheme behind 

constructive networks of the gradual addition of more processing units into the ex­

isting structure, when necessary, introduces a very natural procedure for network 

size optimisation in the presence of bootstrapping.

Finally, a very useful future development of a completely different nature, is 

the construction of a software tool for the continuous animation of the decision 

regions as they are created by a network when solving a task. The definition 

of the visualisation procedure used in this thesis to examine the neural network 

models provided very useful information about their operation, and the addition 

of an animation tool would constitute an important asset in understanding the 

behaviour of many network models in a step by step manner.
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7.4 Final Remarks

The work reported in this thesis has examined a problem which has direct practical 

consequences to the application of feedforward neural networks in many real- 

world tasks, from a fundamental point of view —  the problem of the detection 

of spurious or novel patterns. The investigations carried out have contributed to 

the understanding of the operation of some important neural network models in 

relation to this problem, in particular the multilayer perceptron network, and it is 

hoped that the methods and ideas investigated have provided some contributions 

to the consolidation of the field of neural networks as an approach that can be 

efficiently used to solve many practical problems in pattern recognition.



Appendix A

Redefining the Delta-Rule

In this appendix, the equations that define the generalized delta rule are re­

examined in order to fulfil the requirements for training the normalised MLP 

network (MLPnor), described in Chapter 4, with its modified propagation rule.

It was seen in Chapter 1 that the modification in the weights of an MLP 

trained with backpropagation is achieved by minimization of the sum-squared 

error obtained at the output layer of the network, according to :

A d E PA p W j i  =  a  - - —

d Wjt
( 1.1)

The above equation is then re-written as the product of the following factors, 

which represent the change in the error Ep as a function of the change in the netPJ 

input, and the effect that changing a given weight (Wji) has on the netPj input :

d Ep d Ep d netPj 
d Wji d netpj d

185
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The second part of the above equation is now redefined to capture the modi­

fication in the propagation rule, as :

d netPJ _  d E k wjkQPk
d  W ji  d  W ji  OpkOpk

which, after the computation of the appropriate derivatives, leads to :

9  TICtpj Opi

a w >- ~ tS ' (1.3)

Now, taking into consideration the first part of Equation 1.2 and defining it

to be :

d Ep
uni —PJ d netpj ’

(1.4)

the following final equivalent form for Equation 1.2 is obtained

d Ep Opi

dw i> ~

As in Chapter 1, in order to implement gradient descent in E , the weight 

changes in the network have to be given according to :

XpWji — r]8pj r—— —. (1-5)
VEz o;t

It is seen, however, that Equation 1.4 is also dependent on the propagation 

rule and has, therefore, to be re-examined. To compute 8pj =  - Ef  , the chain
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rule is applied again to write this derivative as the product of two factors :

d Ep d Ep d oPj
d netpj d o pj  d netPJ ( 1.6 )

The second factor remains unchanged since o Pj  =  fj(netpj ) and therefore

d opj

d netpj
f'j (netpj),

which is the derivative of the activation function /  for unit Uj

Now, to compute the first factor in Equation 1.6 two cases have to be consid­

ered. For the case where Uj is an output unit, no change in the original equation 

is necessary and the value of 5P] for any output unit Uj is given by :

fipj ~~ (tpj °pj)f (netpj).

where tPj is the value for the j th component of the desired output pattern for the 

input pattern p.

For the case where unit Uj is not an output unit, the chain rule is used to

y -  d Ep 
k dnetpk

dnet.pk
do.pj

d E p  

fc dnetpk
d  T l i  ^ k iO p i

d°pi N n

E dEp wkj 
dnetpk J'Eioli

netpj Opj
n+l
pi, o:

define :
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and finally yields :

k

w k j netpjOpj

JZ i Ôpi
„n+1
Jpi

(1.7)

where n +  1 is the number of connection weights of unit ur

In this case, with the substitution of the two factors in Equation 1.6, the value 

of 5PJ is calculated by :

p̂j — f  (nGpj) s.'pk
W k j netpjOpj

\ J ° l i  yftïi
rJl-f 1
Jpi

( 1.8)

This concludes the modifications in the equations for training the MLP”or 

network. Then, the normal process of computing the values of the 5’s at the 

network’s output layer and backpropagating them to the preceeding layers can be 

executed taking in consideration the altered equations.



Bibliography

[1] Bairaktaris, D. (1994). Dynamic adaptation scheme (DAS) - feature discov­

ery in dynamically evolving environments. Technical Report, October, Hu­

man Communication Research Centre, University of Edinburgh, Scotland.

[2] Ballard, D. (1986). Cortical structures and parallel processing: structure and 

function. The Behavioural and Brain Sciences, 9, 67-120.

[3] Barto, A.G., Sutton, R.S., Anderson, C.W. (1983). Neuronlike adaptive 

dements that can solve difficult learning problems. IEEE transactions on 

Systems, Man and Cybernetics, Vol. SMC-13, No.5, pp. 834-846.

[4] Baxt, W. (1993). The applications of the artificial neural network to clini­

cal decision making. Neural Information Processing Systems : Natural and 

Synthetic, November, Denver, CO.

[5] Beale, R., Jackson, T. (1991). Neural computing: an introduction. Adam 

Hilger, IOP Publishing Ltd.

[6] Bishop, C. (1994). Novelty detection and neural network validation. IEE Pro­

ceedings: Vision, Image and Signal Processing, Vol. 141, No. 4, 217-222.

[7] Broomhead, D.S., Lowe, D. (1988). Multivariable functional interpolation 

and adaptive networks. Complex Systems 2, 321-355.

189



BIBLIOGRAPHY 190

[8] Burgess, N. (1992). The generalization of a constructive algorithm in pattern 

classification problems. International Journal of Neural Systems, Vol.3 (Supp. 

1992), pp. 65-70.

[9] Burgess, N. (1994). A constructive algorithm that converges for real-valued 

input patterns. International Journal of Neural Systems, Vol.5, No.l, March, 

pp. 59-66.

[10] Bromley, J., Denker, J. (1993). Improving rejection performance on hand­

written digits by training with rubbish. Neural Computation 5(3), 367-370.

[11] Carpenter, G.A., Grossberg, S.A., (1987). A massivelly parallel architec­

ture for a self-organizing neural pattern recognition machine. Comp. Vision, 

Graphics, and Image Proc. 37, 57-115.

[12] Courrieu, P. (1994). Three algorithms for estimating the domain of validity 

of feedforward neural networks. Neural Networks, vol. 7, no.l, 169-174.

[13] Cover, T.M., Hart, P.E. (1967). Nearest Neighbor Pattern Classification. 

IEEE Transactions on Information Theory, vol. IT-13, no.l, 21-27.

[14] Chin, H., Danai, K, Lewicki, D. (1993). Fault detection of helicopter gearboxes 

using the multi-valued influence matrix method. In ASME Winter Annual 

Meeting, New Orleans, Louisiana, November.

[15] Cybenko, G. (1988). Approximation by superposition of a sigmoidal function. 

Mathematics of Control, Signals and Systems, 2, 303-314.

[16] Darken, C., Moody, J. (1991). Note on learning rate schedules for stochas­

tic optimization. Neural Information Processing Systems. Lippmann, R.P., 

Moody, J.E. and Touretzky, D.S. (Editors), pp. 832-838.

[17] Dawson, M.R.W., Schopflocher, D.P. (1992). Modifying the generalized delta 

rule to train networks of non-monotonic processors for pattern classification. 

Connection Science, Vol. 4, No. 1, 19-31.



BIBLIOGRAPHY 191

[18] Dorffner, G. (1994). A unified framework for MLPs and RBFNs: introducing 

conic section function networks. Cybernetics and Systems, 25(4).

[19] Duda, R.O., Hart, P.E. (1988). Pattern Classification and Scene Analysis. 

New York : Wiley.

[20] Fahlman, S.E. (1988). An empirical study of learning speed in back- 

propagation networks. Technical Report CMU-CS-88-162.

[21] Flake, G.W. (1993). Nonmonotonic activation functions in multilayer per- 

ceptrons. PhD Thesis, Institute of Advanced Computer Studies, Department 

of Computer Science, University of Maryland, College Park, MD 20742.

[22] Frean, M.R. (1990). The upstart algorithm. Neural Computation 2, 198-209.

[23] French, R. (1992) Semi-distributed Representations and Catastrophic Forget­

ting in Connectionist Networks. Connection Science, Vol. 4: 365-377.

[24] Goddard, N.H., Lynne, K.J., Mintz, T., Bukys, L. (1989). Rochester Con­

nectionist Simulator. Technical Report 233, Computer Science Department, 

University of Rochester.

[25] Gorman, R.P., Sejnowski, T.J. (1988). Analysis of hidden units in a layered 

network trained to classify sonar targets. Neural Networks 1, pp. 75-89.

[26] Hinton, G.E. (1987). Connectionist learning procedures. Tech. Rep. CMU- 

CS-87-115, Carnegie Mellon University, Computer Science Department.

[27] Haykin, S. (1994). Neural networks: a comprehensive foundation. Macmillan 

College Publishing Company, Inc.

[28] Haykin, S., Bhattacharya, T.K. (1992). Adaptive radar detection using super­

vised learning networks. Computational Neuroscience Symposium, pp.35-51, 

Indiana University-Purdue University at Indianapolis.

[29] Hertz, J., krogh, A., Palmer, R.G. (1991). Introduction to the theory of 

neural computation. Reading, MA: Addison-Wesley.



BIBLIOGRAPHY 192

[30] Hinton, G.E., Nowlan, S.J. (1990). The bootstrap Widrow-Hoff rule as a 

cluster-formation algorithm. Neural Computation 2, 355-362.

[31] Kohonen, T., Barna, G., Chrisley, R. (1988). Statistical pattern recognition 

with neural networks: bench marking studies. IEEE Annual Int. Conf. on 

Neural Networks, San Diego, CA.

[32] Kohonen, T. (1984). Self-organization and associative memory. Berlin: 

Springer-Verlag.

[33] Kohonen, T. (1988). An introduction to neural computing. Neural Networks, 

Vol. 1, pp.3-16.

[34] Jacobs, R.A. (1988). Increased rates of convergence through learning rate 

adaptation, Neural Networks, vol.l, pp. 295-307.

[35] Jammu, V.B., Danai, K. (1995). Unsupervised pattern classifier for fault 

detection of helicopter power train. Vibration and Noise ’95, April, Venice, 

Italy.

[36] Japkowickz, N., Myers, C., Gluck, M. (1995). A novelty detection approach 

to classification. Submitted to IJCAI 1995.

[37] Kazlas, P.T., Monsen, P.T., LeBlanc, M.J. (1993). Neural network-based he­

licopter gearbox health monitoring system. In IEEE-SP Workshop on Neural 

Networks for Signal Processing, Linthicum, Maryland.

[38] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, 

W., and Jackel, L.D. (1989). Backpropagation applied to handwritten zip code 

recognition. Neural Computation 1, 541-551.

[39] LeCun, Y. (1985). Une Procédure d’Aprentissage pour Réseau à Seuil As- 

symétrique. In Cognitiva 85, 599-604. Paris: CESTA.



BIBLIOGRAPHY 193

[40] Lee, Y. (1991). Handwritten digit recognition using K  Nearest Neighbour, 

Radial Basis Function, and Backpropagation Neural Networks. Neural Com­

putation 3, 440-449.

[41] Leonard, J.A, Kramer, M.A., Ungar,L.G. (1992). Using radial basis functions 

to approximate a function and its error bounds. IEEE transactions on Neural 

Networks 3, 624-627.

[42] Linden, A., Kindermann, J. (1989). Inversion of multilayer nets. IJCNN 

Washington.

[43] Lippmann, R. (1989a). Review of Neural Networks for Speech Recognition. 

Neural Computation vol. 1(1), 1-38.

[44] Lippmann, R. (1989). Pattern classification using neural networks. IEEE 

Communications Magazine, November.

[45] Lowe, D., Webb, A.R (1990). Exploiting prior knowledge in network opti­

mization: an illustration from medical prognosis. Network 1, 299-323.

[46] Lucky, R.W. (1966). Techniques for adaptive equalization of digital commu­

nications systems. Bell System Technical Journal 45, 255-286.

[47] Martin, G.L., Pittman, J.A. (1991). Recognizing hand-printed letters and 

digits using Backpropagation learning. Neural Computation 3, 258-267.

[48] Maruyama, M., Girosi, F., Poggio, T. (1992). A connection between GRBF 

and MLP. Massachusetts Institute of Technology, Cambridge, MA, AI Memo 

No. 1291.

[49] McCulloch, W., Pitts, W. (1943). A logical calculus of ideas immanent in 

nervous activity. Bulletin of Mathematical Biophysics 5, 115-133.

[50] McCloskey, M., Cohen, N. (1989). Catastrophic interference in connections 

networks: the sequential learning problem. The Psychology of Learning and 

Motivation, 24, 109-165.



BIBLIOGRAPHY 194

[51] Mezard, M., Nadal, J.P. (1989). Learning in feedforward layered networks: 

the tiling algorithm. Journal of Physics A 22, 2191-2203.

[52] Moody, J., Darken, C. (1989). Fast learning in networks of locally-tuned 

processing units. Neural Computation 1, 281-294.

[53] Minsky, M., Papert, S. (1969). Perceptrons. Cambridge: MIT Press.

[54] Niranjan, M., Fallside, F. (1990). Neural networks and radial basis function 

in classifying static speech patterns. Computer Speech and Language 4, 275- 

289.

[55] Omohundro, S.M. (1990). Geometric learning algorithms. Physica D 42, 

North-Holland, 307-321.

[56] Parker, D.B (1985). Learning logic. Technical Report TR-47, Center for 

Computational Research in Economics and Management Sciences, Mas­

sachusetts Institute of Technology, Cambridge, MA.

[57] Pratt, L., Hoeper, P. (1992) An X-based hyperplane animator. Technical 

Report, Computer Science Department, Rutgers University.

[58] Ploix, J., Dreyfus, G., Corriou, J., Psascal, D.(1994). From knowledge-based 

models to recurrent networks: an application to an industrial distillation 

process. Neuro-Nimes 1994.

[59] Poggio, T., Girosi, F. (1990). Networks for approximation and learning. 

Proceedings of the IEEE 78, 1481-1497.

[60] Pomerleau, D.A. (1992). Neural network perception for mobile robot guid­

ance. PhD Dissertation, School of Computer Science, Carnegie Melon Uni­

versity, Pittsburgh, PA.

[61] Renals, S. (1989). Radial basis function network for speech pattern classifi­

cation. Electronics Letters, Vol. 25, 437-439.



BIBLIOGRAPHY 195

[62] Renals, S., Morgan, N., Cohen, M., Franco, H., Bourlard, H. (1992). Improv­

ing statistical speech recognition. International Joint Conference on Neural 

Networks. Vol.2, pp.302-307. Baltimore, MD.

[63] Riedmiller, M., Braun, H. (1992). RPROP- A fast adaptive learning algo­

rithm. Technical Report (Also Proc. of ISCIS VII), Universität Karlsruhe.

[64] Roberts, S., Tarassenko, L. (1994). A probabilistic resource allocating network 

for novelty detection. Neural Computation 6, 270-284.

[65] Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.

[66] Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning inter­

nal representations by error propagation. In Parallel Distributed Processing, 

Vol. 1, D.E. Rumelhart and J.L. McClelland, eds., pp. 318-362. MIT Press, 

Cambridge, MA.

[67] Rumelhart, D., Widrow, B., Lehr, M. (1994). Neural networks: applications 

in industry, business and science. Communications of the ACM, March 1994, 

Vol.37, No.3.

[68] Rumelhart, D., Widrow, B., Lehr, M. (1994). The basic ideas in neural net­

works. Communications of the ACM, March 1994, Vol.37, No.3.

[69] Sejnowski, T.C., Rosenberg, C.M. (1987). Parallel networks that learn to 

pronounce english text. Complex Systems, vol. 1, pp. 145-168.

[70] Schalkoff, R. (1992). Pattern recognition : statistical, structural and neural 

approaches. John Wiley & Sons.

[71] Schiffmann, W., Joost, M., Werner, R. (1993). Optimization of the back- 

propagation algorithm for training multilayer perceptrons. Technical Report, 

University of Koblenz, Institute of Physics, Rheinau 3-4, W-5400 Koblenz.

[72] Silva, F.M., Almeida, L.B. (1990) Speeding up backpropagation. Advanced 

Neural Computers, Eckmiller R. (Editor), pp. 151-158.



BIBLIOGRAPHY 196

[73] Sontag, E. (1990) On the recognition capabilities of feedforward nets. Techni­

cal Report SYCON 90-03, Department of Mathematics, Rutgers University.

[74] Sontag, E. (1992)Feedforward nets for interpolation and classification. Jour­

nal of Comp. Syst. Sci., vol. 45, pp. 20-48.

[75] Smieja, F.J., Muhlenbein, H. (1992). Reflective modular neural network sys­

tems. Technical Report, German National Research Centre for Computer 

Science, Germany.

[76] Smyth, S.G. (1992). Designing multilayer perceptrons from nearest neighbor 

systems. IEEE Transactions on Neural Networks, vol.3, no.2, 329-333.

[77] Smyth, P. (1994). Markov monitoring with unknown states. IEEE Journal 

on Selected Areas in Communication, December.

[78] Vasconcelos, G.C., Fairhurst, M.C., and Bisset, D.L. (1993). Enhanced relia­

bility of multilayer perceptron networks through controlled pattern rejection. 

Electronics Letters, Vol. 29, No. 3, 261-263.

[79] Vasconcelos, G.C., Fairhurst, M.C., and Bisset, D.L. (1993). The guard unit 

approach for rejecting patterns from untrained classes. Proceedings of the 

1993 World Congress on Neural Networks (WCNN’93), IV 256-259, Portland, 

OR.

[80] Vasconcelos, G.C., Fairhurst, M.C., and Bisset, D.L. (1995). Investigating 

feedforward neural networks with respect to the rejection of spurious patterns. 

Pattern Recognition Letters 16 (2), 207-212, February, Elsevier Science B.V. 

(North-Holland).

[81] Vasconcelos, G.C., Fairhurst, M.C., and Bisset, D.L. (1994). Efficient de­

tection of spurious inputs for improving the robustness of MLP networks in 

practical applications. Neural Computing & Applications, Springer-Verlag, 

To Appear.



BIBLIOGRAPHY 197

[82] Webb, A.R (1993). Functional approximation by feed-forward networks: A 

least-squares approach to generalization. IEEE transactions on Neural Net­

works, 5.

[83] Werbos, P. (1974). Beyond regression : new tools for prediction and analysis 

in the behavioral sciences. PhD Thesis, Harvard University.

[84] Werbos, P. (1989). Backpropagation and neurocontrol: a review and prospec­

tus. International Joint Conference on Neural Networks, Vol.l, pp. 209-216, 

Washington.

[85] Widrow, B., Narendra, G.K., Maitra, S. (1973). Punish/Reward: Learning 

with a critic in adaptive threshold systems. IEEE transactions on Systems, 

Man and Cybernetics, Vol. SMC-3, No.5, pp. 455-465.

[86] Widrow, B., Stearns, S.D. (1985). Adaptive signal processing. Prentice-Hall, 

Englewood Cliffs, NJ.

[87] Williams, R.J. (1986). Inverting a connectionist network mapping by back- 

propagation of error. In Proceedings 8th Annual Conference of the Cognitive 

Science Society, Lawrence Erlbaum, Hillsdale, NJ.

[88] Wolpert, D. (1988). Alternative generalizers to neural nets. Neural Networks, 

vol.l, supp.l, p.474, Abstracts of 1st Annual INNS Meeting. Boston.

( tem plem an  1
l LIBRARY I


