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ABSTRACT.

There is still great need for more theorctical input in the form

of infeormation and constraints,derived from basic principles,

on the main features of physical scattering amplitudes of IT TIT

interactions in the low energy region. We derive new coanstraints

on scattering lengths and test the consistency of the experimental

data in the inelastic region with crossing,analyticity and

positivity~leading to an amplitude of IT IT interaction. To extract

the scattering amplitude from the cross section and other experi- .

! mentally observable quantities such as polarisations we perform

phase shift analysis. Above the inelastic threshold the unitarity

puts constraints on a scattering amplitude in the form of an

inequglity, and consequently,there exists a continuum of different

amplitudes corresponding to the same observables. The continuum

ambiguity is serious,even in ideal phésc shift analysis with

perfect data. In order to remove the continuum ambiguity, we

need theoretical input of a dynamical nature. And we need data |
L .

of high accuracy,as numerical analytic continuation is always 1

involved. However, the scattering amplitude is a complex number ‘

and the differential cross section is real,it is not obvious

that the information exists to fix an amplitude. In fact,there is

as yet no way reliable,in practice,of finding the complex

amplitude from the real cross section and other measurements in

the inelastic region.

In the first part of this work,we derive rigoroué
phenomenological new upper bounds on the s-wave I1T 1T scattering
lengths. On defining a central family of{SQP,D and F phase shifts
with associated errors in the energy range 0.45Gev£Ec.m.£1.9 Gev,
we use maximal amount of availablc data as directly as possible.
Also, proper care is taken of the consistency of the chosen
phenomenology with.principles of unitarity,analyticity and

crossing.We have derived some new upper bounds on the T1I IT
{ = I P
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. » " . W o — o s P
s~wave scattering lengths from IIOTIQ-%TIOITO and IT IT-»IT 1T°

data in the elastic region (0.45 Gev<Ec.m.<0.95 Gev) and in the
broad energy region (0.45 Gev<¢Ec.m.¢1.9 Gev). The results show
appreciable improvement over Bonnier's Bounds[i8] . We have
compared our results with results of BFP[30]model, satisfying
the low energy s wave phenomenology. Our method is model
independént and is capable of producing new class of upper
bounds on s-wave scattering lengths and their linear combinations)|
from central family of phase shifts with associated errors in

the low energy region.

In the second part of this work,we have derived new
sum-rule inequality on TI'IT —>TT'TT scattering amplitudes
'in’the inelastic region from anélyticity and positivity of
these amplitudes. They connect the real and imaginary parts
of the amplitude in the region where they are calculated from
phase shift analysis,and do not require knowledge of these
quantities at low energies or in the high energy region. The
experimental inelastic region sf&gﬁs mapped onto the unit
circle in the v-plane,while. remaining parts of the physical
cuts in this circle. To write the sum-rule inequality,we multiply
the amplitude by a polynomial P(v) which has zeros at v=0 and
v=o00,the point which corresponds to infinity in the complex
s-plane. It is arranged such that ImF(v)P(v) has a constant
positive sign on the cuts in the v-plane correspending to the
cuts in the s-plane. As the phase shifts are known in the
inelastic region this information can be used in the sum-rule.

The data from Estabrooks and Martin solutions A,B,C,DI81] and

Froggatt &Petersen [68,682) are used to test the sum-rule

inequality.Furthermore,the EM~-solutions have been rotated
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by Common {82} in a special way,the rotated data are also used to
test the sum-rule inequality. The local minimisation programs from
NAG-routines are used to find the minima with respect to zeros
of P(v).

Violations of our sum-rule inequality wou}d either indicate
the‘experimental data being at fault or something wrong with
our basic properties of the scattering amplitude.

EM's figure give the impression of very.smooth Argand diagrams,
but actual solutions are noisy.On plotting Argand diagrams of
FP's data,we get smoother curves which agree with results of the
published papers[éS,GBé).

There are clear violations of .our sum-rule. inequality in case
of EM's solutionsA,B,C,D and thei; rotated data. However, they
are of the order cof one to twc standard deviations(in most of
the cases) i.e. the order of errors involved in the experimental
data. Hence, we can not rule out EM-solutions completely on
the basis of violations of our sum-rule inequality. In case
of FP-data, our analysis shows much smoother behayiour'and
there is less violation of our sum-rule inequality and we can not
rule out their solutions either. It shows that as onec would
expect the smoother data is more consistent with analyticity

properties of the scattering amplitude.

The references are expressed in square brackets

with capital surname of scientific workers.
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CHAPTERI.

1.0 GENERAL INTRODUCTION TO IT TI INTERACTIONS.

The hadron world is.complex and we lack a dynamical theory
that could allow us to understand and calculate its properties.
Confronted with such a reality we try to construct models:they
are limited theoretical describtions of limited sectors of
physical phenomena. Although,as yet,there is no established
fundamental theory of hadrons much progress has been made towards
und erstanding their properties and interactions. Many principles
have emerged which seem likely to be necessary ingredients or
consequences of any complete theory. This can be regarded as a
limited objective. Eventually we hope to obtain a theory that
embraces both hadrons and leptons and which treats all the types
of interaction in a unified way.
The basic idea in such a model dynamical formulation
is that forceé of interaction are due to the exchange of particles.
- Each particle produces a force of interaction between some pair
of particles. This force may be attractive or repulsive and
in . situations where this is strongly attractive these two
particles can form a bound state or a resonance:a bound state
of two particles has mass less than the sum of the masses of the
particles so that it can not decay back into two constituents
and a resonance has a mass greater than the sum of the masses
and so it can decay.

To resolve the first order model, coming from non-relativi-
stic considerations cf piowm-nucleon scattering,Mandelstam
introduced double dispersion relations and oriented the whole
idea towards anlyticity propefties,unitarity and crossing. On
this line ﬁc have tremendous efforts to understand low and medium

energy 11 IT interactions.




The famous Veneziano models have been sﬁccessful in producing
mode 1 amp]itudgs that éccamudated ~—with certain limitations—:
(A) the low energy Qmplitudes, (B)natural spin parity mesons
in exchange degenerate SU3 nonet patterns in reascnable agreement
with experiment. It has also provided us with the predictions:

(A) relations between masses and coupling of particles with
different arbitrary spin at the parent level,(B) existence of
daughter states, (c) specific behaviours of low partial waves in

exotic channels. The model,however,lacks unitarity.

The dispersion theory and related ones "like Roy equations
have clarified interaction below 0.9 Gev energies but the main
préblemg associated with analyticity and the need for-considering
other TT IT channels at higher energies remain in the inelastic
region. |
The Chew-Low-Goebel suggestion of pion-exchange between the
incoming meson and the target nucleon laid the solid basis for
exﬁerimental meson-meson studies. In fact, the meson-meson ampli-
tude can be factored out in the meson-two-meson transition
amplitude off a nucleon,which is only possible- for the OPE reaction
cross-section. The statistics of available data has made it
easier to achieve the goal of a model independent pole extra-
polation at expense of some necessary assumptions on the prodution
mechanism:dominance of OPE,neglect of off-shell corrections,etc.
are the points of greatest criticism. All inferences from data to
elastic scattering proceed via some form of extrapolation either
xplicitly or implicitly. The implicit methods habitually under-
state the errors or fail to state the assumptions by which errors

ulties,elastic phase

O

are reduced. Despite the greatest diffi
shifts are available with believable errors associated with

them and various ambiguities have been resolved.
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Attempts to construct interaction Hamiltonian,which one can
apply in a field-theoretical framework to calculate strong intera-
ction processes have been almost entirely unsuccessful. The
reason for this failure,presumably,being the strength of strong
interactions which makes it meaningless to treat the interaction
part of the Hamiltonian as a perturbation. So,this does not
seem to be a good modellfor IT TT interactions. Most of the
progress in I1 T interaction theory has been based on S-matrix
models using rather general properties of scattering amplitudes.
In the first chapter, we review the present status of TT TT
scattering(in light of our work):(a) S-matrix and its mathematical
framewoik,(b) Kinematics, (<) anélyticity—unitarity-positivity,
(d)rigorous constraints in unphysical region, (¢)models based on
Roy's equations ,(f) results of model calculations of low energy
IT IT amplitudes (g) bounds on IT IT scattering lengths.

To extract the TI IT scattering amplitude from the experimentally
observable quantities such as cross-sections and polarisations,
we perform phase shift analysis. Unitarity determines the
unobservable angle-dependent complex phase of the scattering
amplitude with only a few alternative solutions for elastic
scattering. And above the inelastic threshold the unitarity
constraint on a scattering amplitﬁde is only an inequality and
@ continuum of different amplitudes correspond to exactly the
same observables. Practically, these differences are very important.
Extra theoretical input of a dynamical nature can remove the
continuum ambiguity but, because numerical analytic continuation
is always involved, data of high accuracy is required. Thus
unique answers can only be found by intrcduéing further model-
dependent assumptions. In the second chapter,we have reviewed
some aspects of the principles of phase shift analysis and

ambiguities of TT TI-interactions.
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There is still a great need for more theoretical input in
the form of information and constraints,derived from basic -
principles,based on main features of.a scattering amplitude
of TT IT interactions. In the third chapter,we derive rigorous
phenomenological new upper bounds on the s-wave IT TI scattering
lengths from T1°17°%-511°17° and T T1%17'11° in the elastic
region(O.@SGeV'iEc.m.ﬁO.QSGev) and in the broad energy region(0.45
Gev £Ec.m.<1.9 Gev); while taking care of the consistency of the
chosen phenomeﬁélogy of low energy IT T scattering with general
principles of unitarity,analyticity and crossing.

.In the fourth chapter, we derive new constraints in the

form of sum-rule inequalifies,to test the consistency of experi-~
mental data in the inelastic region with crossing,analyticity

. . . % ; . #* - oy -
and positivity leading to an amplitude of IT II =TI IT

interaction.
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4.4 Mathetical Framework of 8Scattering

As scattering pracess due to strong interactions may be
described in térms of initial and final states of non intera-
éting particles.Because of the short range of strong intera-
ctions the ingoing particles may be assumed to be non-intera-
cting a sufficient time before the collision and similar?y
the outgoing particleé will be non-interacting a sufficient
time after-the scattering.If we form the Hilbert space H of
all possible vectors representing any number of non-intera-
cting particles and ifl4> andifjare any twe normalized vectors
of H ,then a typical scattering amplitude is the amplitude
for an initial statehyof ninon—interacting particles to be
found, after scattering has taken place, as the final state!$)

ﬁontaining n_non-interacting pafticles. We write this ampli-
tude as<flISiv) .The set of all such amplitudes for all the
normalized Vectorsﬁﬁgof H may be regarded as the matrix ele-
ments of an operator S which is then fully defined by these
matrix elements. S may be called the scattering operator and

its matrix elements can be written as

R 3.1.
(FISWY = Sgi (1.1.4)
The set of all these scattering amplitudes,that is the matrix
defined by the operator S,is called the S-matrix.
The conservation of probability requires that the

S-matrix is unitary:

+ - : 2
< Sen Sni = gf@ (1.4.%)
m .
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It is convenient to seperate off the amplitude associated
with no interaction, and work in terms of a T-matrix defined
by

Sel+iT ({14 :3)

Studies of the S-matrix with the strong interactions
use theoretically based relations between S-matrix elements.
These relations are from rather basic properties,in parti
-cular analyticity;unitarity and the invariance properties
such as Lorentz invarince,time reversal,etc. The analyticity
properties of the S-matrix are thought to be connected with
causdlity. The unitarity comes from the conscrvation of pro-
bability. An important group of relations between scattering
amplitudes which are deduced from the analytic praperties
of the S-matrix are those known as dispersion relations.

Theorétical investigations of strong
interactions using the S-matrix fall into two categories.The
first of these uses relations involving S-matrix elements
to correlate experimental data.By inserting experimental
data on one side of such an equation deductions can'often
be made about the results of some other experiments.Or we
can use these relations to check on the consistency of these
results of different experiments. The other type of calculationv
involving the S-matrix is based on the philosophy that the
S-matrix is in fact fully determincd by rather general
properties. It amounts to postulating a dynamical S-matrix

theory in which all the elements of the S-matrix could be
calculated in terms of little or no inbut data.In such a

s-matrix theory the dynamical postulate of quantum mechanics
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involving the Hamiltonian has been réplaced by a dynamical
postulate about fhe S-matrix.Now,since we have a complete
set of stateslﬁ) we can always make them orthogonal,in
particular the momentum states are orthogonal. Then the total
number of events of all types,including no scattering at all
as a final event, is from the completeness

£ 4] @l £ 1) (1.1.4)
But the total number of final events is,from the conservation
of probability or the fact that each initial state will
give rise to just one final event,just the total number of

particles in the beam;so

<£Jf¢kﬁ\i> (1 +1+5)
Then from (i.1.4)and(1.1.5)
¢itststay=() iy (1.1.6)

As it is true for allli% we can write it as an operator

equationi.e. the unitarity of the S-matrix:

..r

S S=1I (1.4.7)
In terms of the T-matrix the unitarity relation becomes
g
T-Tw AT T (1.1.8)
. FemaSEnd W .
01 Im%{i%&}n« (1.1.8a)
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1.2 KINEMATICS.

We consider the two-body process TI+TI~+TI+IT and introduce
(Fig.1l) the four ingoing four-momenta 43297549359y with
. = . 2_.2 2 2
qi=(Ei,gi),(1=l,2,3,4) and the metric qi=Ei-9i =m; . The three

relastivistically invariant quantities s,t,u(Mandelstam variables)

are defined as:

. 2 2
s=(q *q,) "=(a5*q,) (1.2.1a)
2 ¥ |
t=(q;+q;) "=(a,*q,) (1.2 1)
2 2
u=(q;+q,) " =(q,*q5) | (1.2.1c)

In the case of ITT IT scattering ,the relation between these three

variables is

s+tu=dm 2=4, | | - (1.2.1d)
where mIIEl is the pion mass. The three related channels are
S-channel:IT+IT—TT+T1 : (1.2.2a)
t-channel:TT+IT —TI+T1 | (1.2.2b)
u-channel:TT+TT—>TT+IT (1.2.2¢)

-

In the c.m. frame, the total 3-momentum of the ingoing particles
and hence alsc the outgoing pair of particles is zero (Fig.2).
This frame of reference is the most suitable for a theoretical
analysis of any kind of scattering process since in this frame we
do not have to separate off a part of the total 4-momentum
corresponding to the overall motion of the system,which is irrele-
vant to the interaction itself.

Relation between the d and the physical four-momenta Py

in the s-channel is

q;=P, 4 (1.2.3a)
4,=P, | (1.2.3b)
qz=-Pyg » (1i2‘3C)
44="Py (1:.2.3d)

For the simple cacse of equal masses My =My
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2 2 2 . PP
5=NS=4(ﬁ;+mIT).> 4mII (1.2.4a)
t=-2p’(1-cos8 ) < O | (1.2.4b)
u=—2p§(1+cos@§)s 0 (1.2 4¢c)
cos@_=1+t/2p. , (1.2.4d)

where Wos P and GS are total ehergy,momentum and scattering angle
in the c.ms (respectively) for the s-channel reaction.

The range of vajues of variables s,t,u which corresponds to a
physically possible process is called the physical region for that
channel or process. As there are only two independent variables
the physical regions can be easily depicfed on a two dimensional
plqt with these two variables as coordinates. To display the
symmetry between the s,t,u channels,we draw the s=o,t=o,u=0 axes
so that they form an equilateral triangle of heights

$+t+u=2(mr% +m%} , (1.2.4e)

For equal mass elastic Scattering,the physical regions in the
- s-channel are given by equations(l.2.4a,b,c). And this case has
boundary curve decomposing into three straight lines(Fig.3)

In the t-channel, for equal masses,we have

q,=P, ' (1.2 .54)
a,="p, (1.2.5b)
93=P 5 (1.2.5c¢)
4,="Py o (1.2.54)

And the physical region for s,t,u in the t-channel is given

by (Fig.3):

2. -
s=-2pt(¢—cosot):>0 (1.2.6a)
2.2 Za D
4 2 o .
uw~2pt(l+cusbt)5§ 0 (1.2.6¢)
2
-cosGt= ]+5/2pt : (1.2.64d)

where WP and %t are total energy,momentum and scattering angle
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in the cms respectively. for the t-channel reaction.

In the u-channel for equal masses,we have

7P (1.2.7a)
q,%-P, (1+2.7b)
4z=-P ' (1.2.7¢)
a,%P, (1.2.74d)

and the physical region for s,t,u in the u-channel are given by

(Fig.3):

- 2 : :
s——2pu(1+cos®u):;O (1.2.8a)
t=72P§ (1-cose) <0 (1.2.8D)
2 Z 2 2 -
u=wu=f1(pu gy ) > 4mIT (1.2.8¢c)
2
= = 1
coseu 1+t/2pu , (1.2.84d)

where wu,pu,eu are total energy,momentum and scattering angle in
the cms respectively for the -channel reaction.

The physical regions for s,t,u in the three channels are
displayed in the Mandelstam diagram by figure 3(shaded ares).
The three physical regions do notboverlap.

.. : 2
We can eliminate u by the relation s+t+u=4mIT:

s-channel:sz4mT% (1.2.9a)
t=-2p’(1-cos6 )=-2(s/4 -m7) (1-cos6,) (1.2.9b)
L for cos@s=1 . (1.2.9¢)
min'=—s+4m§‘_1 for coses=~1 (1.2.94)
“t-channel: t;>4mI% | (1.2.9¢)
s=-2(t/4 -mr%)(l—coset) {1.2.9%)

nax. © ' (1.2.9g)
Smin(:_t+4mfi . (1.2.9h)

u-channel: s ¢«0 , (1.2.91)
t 20 (1.2.95)

The physical regions are shown in figure 4,




.—
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1.3 ANALYTICITY,UNITARITY AND POSITIVITY.

The IT TI scattering amplitude for fixed physical t within
a finite interval -t <t <0 is the boundary value of an analytic
function of s:

limit F(s+iE,t) (1.3.1)
E£E—=0

oL

F(s,t) is an analytic function in the complex s-plane with right
. = Am2 ~ PRy
cut (s Ieal>so 4mIT) and a left-hand cut -t s>so

And along the left-hand cut,we have

Lﬂg;ﬁhf(s iE,t)= FII+IT—+II+T1 . (1.3.2)

where (Ec.m.)2 of the reaction IT+TT->IT+I1 is given by
u= (4mT1) . |
The discontinuities of F across the cuts are given by the
absorptive parts in the s-channel and the u-channel.respectively.
A (s,t) = 1/21[F(s+i£,lt)—F(s—i8,t)J (1.3.3)
Further, if the‘scattering amplitude is polynomially

bounded,which is true in Lehmann—Symanzik Zimmermann formalism:
N

S 00 A (s',t)ds' © _ A (u yt)du'
F(S,t,U)= ——I—_If J \, o e TT
g s'(s'-s) Yur-w
0 ug
+polynomial in s and u, (1.3.4) .

for t fixed ,-tostng.

For s physical and cos6s outside the interval —1<coseS =1,
Lehmann{ 1] has proved that F(s,cos6_ ) is analytic inside an
ellipse in the cos@ —plane with focﬁ.coses=j1,which means that
inside this ellipse its Legendre polyﬂom131 expansion converges
uniformly and absolutely.

The pion-pion scattering amplitdde has the following

extended analyticity domain|16a] :

~H~

A 2 - O 3
{s,t,u[s+t+u=4mrT i - ccﬂg s-&,ranIT,u.\g44mIT,&%ro l 1.3.5)
where the domain téddcontains in particular

itl 4 4m and ~2Qr

2
IT




We can expand the scattering amplitude for equal mass and spin

zero particles (IT*%1""=#IT1 TI) in the s-channel into partial

waves at fixed physical energies:

¥ C*‘O

F (s,t)= l 5 (2]+1)f (s) P (cose ) (1.3.6)

st (nl 21d7(5) _q3 /23 : - 1.3.7
Cf10s)= (y(s) e 771 -1)/ lf(S)’ : (1.3.7)

below the inelastic threshold'ql(s) l,and so

15\ 51ndl(s) e21é (5)/5(5) o (1.3.8)

tol=

f(s)= ((s-4)/s) (1.3.9)

The partial wave amplitudes,fi(s),for orbital angular momentum 1
and isospin I are related to the real phase shift di(s) and
elasticity coefficient qi(s) ( Os'ﬁi(s)s 1 ) by equation. (1.3.7).

Scattering lengths ai are defined as

I 21
a —L1m11f (s) /2k ’
o} | (1.3.10)
k%=1 (s-4) | - (1.3.11)
and a =f' (4)=F' (4,0,0) for I=Oand 2 (1.3.12)

The optical theorem becomes
I e (efe_ 3ol :
Im F (s,0)= (5(s-4)) (total /16TT (1.3:15)

The partial wave can be projected into the form[la] :

1
fi(s)=; ~i P(s,t',u')Pl(coses) d(cos@s) - (1.3.14)
There are two possible sources of singularity in fl(s)
The first one occurs when F(s,t',u') has singularities in the
s-plane whose positions are independent of the values of t' oriaty
Secondly,we get possible source of singularit-ies in fl(s) at

values of s for which,as coses moves along its path of integration

-1 to +1, one of the variables t' or u' might take a value for

which F(s,t ,u') is singular.




The discontinuity in fi(s) across right-~hand cut is simply

2iIm fl(s),whire

. Im fl(s)= %51 As(s,t'(cos@Q]d(cosGs)ﬁ}Qxeg) (1.3.15)
So, fl(s) has a right-hand branch cut together with possible
poles on the positive real axis and these singularities correspond
directly to the s-channel singularity in F(s,t',u'). Also, fl(s)
1s singular along the negative real axis from s=o to s=-00.
These singularities are branch point singularities (at each point
along the negative axis) coming from the second source mentioned

above.

The linear aspect or the positivity property of the
unitarity condition gives results:
(a) the positivity property,
T £ (s)2 \fl(s)l 20 | | (1.3.16)
,(b) the boundedness aspect |
1> 1In £ (s) > 16, ()12 >0 (1.3.17)
In the elastic region, we have
£,()] % = 1m £ (s) | (1.3.18)
Some immediate consequences of the positivity property
can be expressed in the following way[16a) :
(i) The imaginary -or the absorptive-part of the scattering
amplitude in the forward direction is a sum of the positive:
terms and hence it is positive:
Im F(s+i8,cos@s=])s As(s,coses=l)l>0 (1.3.19)
(ii) From the expansion of the scattering amplitude into partial
waves at fixed phy§ical energies, we have extremely important

relations:

H ¥
dcosh ¢
S

k] n ‘
(~&w—~~\ A, (s,c0s8¢) >0 (n=0,1,...) (1.3.20)
\ |

‘cos@CZI
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and
n 1
-JL~—-> As(s,coses) ;2 d A (s,cos© ) 1.3.21
d cos® T S 5' |, (1:3.21)
S
c0563=l 3 COses
for n=o,1,... ~lceosogl
0 v
_d ) A (s,t) 2 D, for B0 54 (1.3.22)
dt '
t=0
a \n n :
<dt ol =~ \@) AsGt) , for n=o0,1,.(1.3.23)
=4k"¢ t<0

The constraints (i) and (ii) put linear constraints on the

scattering amplitude.




1.4 CROSSING SYMMETRY.

The amplitudes describing each of the three related channels
for TT IT elastic scattering are represented by one and the

same set of analytic functions. The three related channels are:

s-channel: IT+IT—TT+IT (1.4.1a)
t-channel:TT+IT—IT+T1 (1.4.1b)
u-channel:TI+IT-»TT+T1, (1.4.1c)

The pion is its own antiparticle and we write Il only to indicate
which pions have been crossed. In terms of these amplitudes

we have for instance

2
F o(s,t,u)=1/3.(E%s,t,u)+2F%(s,t,u)) (1.4.2a)

i S ke |

F o(s,t,u) =3(Fi(s,t,u)+F*(s,t,u)) (1.4.2b)

IF T1%Tt 1T
F(spt,u) =1/3. (2F%(s, t,w)*3F (s, t,u) +F* (s, t,u),

IT IT —»IT IT
(1.4,2c)
¥

where FI(s,t;u) is the total amplitude for the s-channel isospin I.

This crossing symmetry can be expressed in terms of

' .
Fl(s,t,u)= £, Cop,(sot) FL' (¢,5,u) R (1.4.3a)
1 .
EFT'CII'(S‘*“) oo (uyt,s) . (1.4.3b)
s I |
[t Cppe kbl T {88t . (1.4.3c)

where crossing matrices are

/2 6 10\
CII,(S¢+t)= 1/6./ 2 3 =5 (1.4.4a)
2 =3 %/
) £ I “(1.4.4b
CIIv(Sﬁu )=1/6. Z -6 10\ ( )
-2 3 5.

231./

Cyp i+ (tou )=/1 0o o0

o
0O -10 } . (1.4.4¢)
o 0 il /

R + 7
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The crossing property.of TI IT scattering amplitudes plays a
fundamental role and it has the features of relating all partial
.wave amplitudes to 6ne another. In certain cases, it can be
used directly to infer some structures of these partial-wave

. 0
amplitudes. Using the s+>u crossing properties of the rn°rn®—»rr
P prop

amplitude,we can write a twice subtracted fixed t dispersion

relation for 4>t>-28 in the form

: 1 Q0 S2 7
F(s,t,u)= g(t)+TT j~ ds’ (. s u \ Als';t); L1-425)
A ot 5%~3 s'-u j

where g(t) is a constant in s and only contributes to the 1=0C,

partial-wave in the t-channel.
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1.5 RIGOROUS CONSTRAINTS IN UNPHYSICAL REGION.

The search for the properties of the partial wave. amplitudes
on the unphysical interval 04s £ 4 is justified by the hope
that it may lead to limitations on the low energy behaviour
of the phase shift problem of pion-pion interactions.
Balchandran and Nuyts{2)discovered implications of crossing
alone,and later on Roskies[3]and otiers[4]established their
practical usefulness. Martin et al.[5) initiated a new approach
incorperating also analyticity and unitary properties. We get
sets of inequalities for partial waves in the unphysical region.
GMNf 6)have shown that knowledge of the I=1 p-wave and of some
high-energy parameters practically limits the possible s-waves

.

in a very restricted domein.

Wanders[7) and Roskies[8] have obtained crossing
constraints for higher waves,excluding s- and p~wave amplitudes
on physical partial waves. On the other hand, Roy[9] has
discovered TI TT equations with the properties of (i) expressing
each partial wave amplitude in the physical region (including
s and p waves) as an integral over physical absorptive parts,
and (ii) being well-defined up to 1100 Mev,giving us direct
consistency tests for experimental data. BGN[10] have shown
how the Chew-Mandelstam equatioﬁ can be obtained as a first
appoximation. Lovelace{1ll]proved that the Chew-Mandelstam
equations have no solutions if the p-wave absorptive part does
not vanish, and therefore in order to construct s- and p-wave
ITT IT amplitudes which satisfy unitarity dnd crossing, we have
to incorporate some informations about higher waves and

asymptotic contributions. The Martin inequalities and sum rules

are well suited for this.




(1%)

Wandes (12) has introduced the constraints in the unphysical
region in the following way:

Introducing

(s, t,u)= Lim , FI(s+iE,t,u-iE), (L.5.1)
£E—0
we have
.V[ds du TI(s,t,u)Q(s,t,u) =0, - (1.5.2)

A
where Ais thentrhngle{s,t,u!sgo, t>o, u;o} and the polynomial

Q(s,t,u) is antjsymmetric if 1=0,2 and symmetric if I=1 in

s5,t,u under S4>u crossing.

Pmpandlng Q(s,t,u) in the Legendre polynomia *s:P](z)(z=1+2t/(s—4)),
N ]

s, t,u)=Z ql( 3 (z), we get (L.5.2) in the form
1=0
1
v 4 T, .
| Iéb.i ds (4-s) ql(S) \5 de T (s,t,u) PIF?)

—

1
‘Ei = Cf;fg ds (4—s)q1(s) fi (s)=0 (1.5.3)
= 1=0 I' '
)
As q,(s) are pol}nomlals in $; (4. 3) is a 11neal relation
1

between moments of a finite number cf partial waves over the
unphysical interval{b,4} There are two (and only two)conditions
involving s waves cnly, and three (and only three) conditions

involving both s and p waves only:

§ as (4-5) (35-4) (£2(s)+2£L(s))=0 - (1.5 4a)
(e}
: 0 v _cflrayya .
iy ds(4-5) (2£2(s) =55 (5))=0 (1.5.4b)
| PRSI . ¢ (2.1 ,
4 ds(4-s)s( Lo(s,-Sfo(s))=-3g ds (4-s) fl&s) (1.5.4¢)
54 4

2 2 2. g
e ds (4-s) ngrg(s)—SfO(s))=-3é ds(%-s)sfl(s) (1.5.44d)

) & 4 < - 2- - -1«~

 ds(ams)Ssze® (s)'Sfi(s))=~3g ds (4-5)%s(35-4) £ (s)
0 o

(1.5.4e)
Balchandran and Nuyts|2]have shown that it is convenient to

expand
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fll(s) in Jacobi polynomials Pn(“l+l’o%£s—l):
oc g - (21+1,0)
£.0(s)=_Z Tt P (3s-1) (4.5.5)
And this series converges for o<s<4. The crossing conditions

relate the coefficients f]In‘with constant (1+n):
-3

1+n /
(1. = mLan fI/ (1.5.6)
1,n° 1=0 ¢ 1,1 1,1+n-1

Martin{5] started the investigations of the constraints
imposed by positivity and crossing symmetry on the S and P waves
in the interval[0,4], his coworkers followed his method[43] .
Wanders [12] has derived the following inequalities:

T (sgptu ) > T (¢ ) 3T1(to) (t- %5 ) (A e

At
0

T ( syt ,u )T (53 + 3T, (s ) (1-7" 20, (1.5.7b)
(0]

where (so to,uo) are points of the trianglea.
. ]
Furthermore, the inequalities comparing the values of S and P

waves ( or their first order derivative) at two points S, and t,

of the interval[o,4]are:
fgo(o)} fgo(S.ISS) (1.5.82)

(0.2134)>f 00

(2.9863) (1.5.8Db)
844f (0.2937)+3.765 £ (2.4226) < £°_(0.2937)-£° (2,4226)-
fg?o.2937)+f°g(2.4226) (1.5.8¢)
0.6146f%(0.2937)+2.510f%(2.4226)

)£’ (2.4226)~fo(o °937)+3f°g(o.2937), (1.5.84)

where FOO( )»~{ (s)+ f 1(s) are the 1°n>Tamp1itudes.
t.494 £°)(0.537)-1.62 zfgo(z 363) < £0£0.537) - -£07(2.363)
. 310100 (0.537)-1.622£° 2(4.363) (+.5.8¢)

9% €0.537)

These inequalities lead to the ceclusion that f
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) 5| P ~ . ;
1s equal to £ (2.363), up to D-weve corrections.

Thirdly, we have inequalities relating the derivatives

of S and P.wave amplitudes:

d 00y .~ .

asfgi‘s) £0 for 0¢sg 1.127 (1.5.9a)
q |

asfgo(51>0 for 1.7¢s <4 (1.5.9b)
_(_122 :Eog(s)>0 for 0<s 1.7 , (1.5.%9c¢)

ds
. 00 . .- . .
showing that fo {s) has a unique minimum in the interval [O,ﬂ

located between s=1.127 and s=1.7.

£0°(3.155) <£2°(0) <« £29(4) o (1.5.102)
£0°(2.9863)<£0°(0.2134)<£2°(3.205) (14.5.10b)

From these inequalities, we get a fairly good idea of the
shape of TT1°1T° s-weve in ‘the interval[o,{]. However, it is
difficult to judge which inequalities are the most constraining
and which ones are redunddnt. Both Roskies' and Martin's
inequalities are very useful ways of building up phenomenoclogical
models,but they hold in the unphysical region 0gsg4 .

Common and Pidcock{l4lhave used crossing and positivity
of the scattering amplitude to (i) improve the constraints
on the derivative cof the d wave previously obtained by one of
the authors ,and (ii) to derive an infinite set of inequalities
between the values of the d-wave at three points in the un -
physical region. They checked these inequalities against a number
of models,and some qualitative conclusi?ns have been drawn.
By using more restrictive crossing inequalities they have been

able to derive constraints on f.(s) in the whole intervallo,4].
2 2
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Their general effect is to ensure that fz(s) is a smooth

function of s in this interval, and although it can have

a maximum for s<i.47,it cannot become too small as s—-0.

Common ,Hodgkinson and Pidcock [Iﬂ have investigated

constraints on the derivative of the 'waavefoz (s) for
TTe»Ttusing crossing sum rules which follow from quadruply

subtracted dispersion relations.In particular,they have

shown that

df4(s)

(1.5.1)
ds

£0 for 4>s»1.488.
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1.6 LOW ENERGY MODELS BASED ON ROY'S EQUATIONS

In constructing low energy models, one intends to present the

complete set of amplitudes consistent with recent high stastics

pion-pion experiments and with the theoretical constraints
of analyticity,crossing and uhitarity.Then the implications of
these results and future experiments, which would remove the
final ambiguities in fhe low energymnmamplitude, are considered.
The experimental TN information is much more accurate and
abundant,while theoretical constraints onmuisufr,which is a closed
system under crossing, are more stringent. Our basic starting
point consists in the rigorous equations, expressing the crossing
pfoperty directly on physical partial wave amplitudes;derived
by Roy [24] .Roy's equations,which are non-diagonal but linear,
givé relationships between the reél and 1maginary parts of the
partial waveramplitudes,provide us with a check that the phase-
shifts deduced from the data are consistent with crossing
aﬁd analyticity properties[25] — at least within the limited
energy region in which they are valid. The smaller the errors
on the data the more restrictive are Roy's equations——therein
lies their power to discriminate between different phase-shift
solutions and analyses.

Several groups of workers like FP([2@,BG[27,GB [28]
PP[29]) ,BGN [10] have analysed the situation and the results may
be considered qualitatively similar. In future, it is absolutely
necessary to supplement crossing and unitarity with very precise
dynamical properties——and not just a few low energy parameters

in order to specify thewgamplitude.
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sion relation forw’ WM in the form:

We write the disper

0 o0 ,t(t-4
(s,t,u)= a +*§Twml— dx AOO(X,OJ— 1 e }
————————— | -t -
-~ [1 1 1 1
1 00 ; N _ 11
* TTJAX i ("tﬁf—s T X x+t—f}’
A
: (L.0.1)
where aog is the s-wave scattering length, the absorptive part

can be expanded in partial waves:

2t
-4

)

Clx,t)= F° (2b+1) Imft (x) Py (1+.2
=0
Using tau symmetry in the direct channel and projecﬁ%Foo

onto partial waves, we have[16]

1
£38s)= ;S

=4 j 4-st

——

(s,t,u) pi(3+§§z— ydt, (1.6.3)

We obtain a set of relations for partial wave amplitudes

equations (4.0.1) and (£.6.2):

0o ¢ z . /
fb °(s)= a _&o Y9 (2i41)~§0d5/xt(5,x) Im{E?(x),

L

where d}o is the kronecker delta and the kernels KL (s,x)
7
deduced from the above equations, provided L/converges in

range -4¢<s<60.

Roy has argued that if the absorptive parts Ime(s) are known

in the inelastic region 5}16

Im f& (s)= D(S)[:{REia\J)) +(Im1&(s)) J

provides a system of non-linear singular equations defining Imft(s)’

and hence the amplitude in the elastic region.

4>t>-28
(1.6.2)

(s,t,u)

1 .
Io%s,t,u) Pt(z)dz=‘f Foo(s,t,u) PL(Z) dz
. ' o

the clastic unitarity relation

(1.6.5)

on using

(1.0.48)

can be

the
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In case of charged pions,the equations have the

form[30] :

é .‘
» . / Lo
fL(S) ds +%(2ag —5a§)(s—4)/4.- 1/65L1 J +

O o

%0

®» O W

N

!

e
e9“

1

L, ’ [
KL,I (s X) Imf (x) dx * %L(s),
(1.6.6)

Meo o
M.
.pgﬂ,ﬁg

LI

@)

—
1
o

0 .
where a and a’ are the s-wave scattering lengths for I=0,2;

TI

2
0
?L(S) is a well defined sum of higher wave contributions (L';Z):

I 2-'_2_ >3 00!,'
$ )= . RL 1 (s x) Im IL,(X) dx 1.6.7)
- The kernels are given by BGN[}Q}" The first term in (1.0.6)
is a polynomial subtraction term;.satisfying all crossing
constraints. The second term is an integral over s and p waves,
satisfying all Martin inequalities and Roskies relations for
all Im fL‘ ,4'=1'=0,1 provided they ére positive.

Introducing scme cut off parameter N, we split the x

integral into two parts:

1 N

1 2 = I | I Tisy |

£y (s)= S.T.+I'ZO_ L Kyp(s,x) Im £ (x)dx + dy y
o = 4 ’

(.6.8)

where S.T. is the first order polynomial subtraction term in

(1. 6-6) 1nd d& % is called a driving term:

L(s)— d Lis) +a,(s) A.6.9)
The first term in (1.0.9) is the contribution of all waves
for x>N, whereas the second term éI(s) is the contribution
of higher,waves £'>»2 for x<N:

i < 00 00 T . w1
df (S)-J:;C if:O J Kﬁ? %s,x) Tm fhf(x) dx (1.6.10)

5 Ly
T% 0 § b ; Lt (x) dx (4.6.11)
.

KLT (s,x) Im ’9
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We choose for N an energy squared above which a Regge repre-
sentation of the amplitude is convenient.

On computing the Regge contribution in the dispersion relation

(1.01) and projecting the result on partial waves, the driving

term for the amplitude is
Lwemre | o
dl(s)= 3 §1dz L(Z) Tf‘fodx[?(x t) #° (x 0)+b(x,t,s)A ?x t;}

4 .06.12)
where one can read off a(x,t) and b(x,t,s) from equation(1.0.1)
In S and P-waves, the resulting driving terms can

be approximately parameterized between threshold and N by
3 :
d&(s)~ (3~4) 2. g, - (s=dy®L (1.0.13)
n=1 “§,n 5

where d; _are coefficients.

| !
Once we know the driving terms d;(s), equation (1.0.8)
becomes a system of non linear singular integral equations
for the amplitude in the region 4 <s <N when put together
with the unitarity condition §
1-(ny,(5))°
7O

After determing S and P-wave amplitude, higher partial

Imfg(s)= p(s)] £l (s)f "+
b P(s)| £y (s (1.4.14)

waves are computed directly by equation(i. G' 8):

TR T T .
g (5)= 120  {=0 '£ Kgp(s5%) Imf;(x)dx %
b N
(9 _4) T .
— § @ TRE00) + dy(s), b2, (1.6.15)
4 (x-4) ¥ (x-s5)

where the driving term contribution is redefined in order

to extract the direct channel right hand cut contribution.




In the region 4¢s £ 60,unitarity is a very weak constraint on

these waves,we define the phase shift by the approximate relation:
tan éi(s)a- ((s-4)/s) 2Re £1(s) (1.6.16)
The crossing constraints,which relate the d and higher waves,
together with positivity imply that the size of the d-wave (in
some defined average sense) controls the size of the imaginary
parts of the higher waves. These constraints imply that as far as
the s and p waves are concerned Roy's equationsembody the full
content of this limited s+>t crossing provided the so called

riving terms’ satisfy these subsidiary crossing conditions.
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1.7 BOUNDS ON SCATTERING LENGTHS AND AMPLITUDES

In additicn to the asymptotic bounds,rigorous limits
on the pion-pion amplitude have been obtained by Martin[i6]for

finite values of the argument:

\ 3 .%5.1 )I<too (1.7.1)
U51ug the axiomatic analyticity ana uﬁitafity we
can show that in the region s<4, t<4 and u<4 theTmfscattering
amplitude cannot be arbitrarily large.The upper and lower limits
have the merit to exist. i
At a fixed t,—tost-$4, a.dispersion relation for

a scattering amplitude, hthh is symmetric in s and u, is

F(s,t)=g(t)+ —ﬁj ~’s1)dc’ N ,uz, Aoou(u/,t)du/

/ “(S ) l T_I( ‘1 -—;—2'———.;_—-
1nt10duc1ng the variable z=(s- 2+t/2) , the right‘gnéu"u)left

(3.71.2)

cuts may be folded to give [16a]

o0
F ~’ _-:G )= i é_.- 1 G d T
(s,t)=C(z, t)=g(t)+%5 J(zwélﬁ (?Ztg)z (171.3)

This function,G(z,t), becomes a Herglotz function[lﬁ&]if it is
regular in Imz >0 and %m - >0 for Im L)>O (ﬁfi,SA)
Now, from (1.7.3) we have
( 4 )n G(z,t) >0 for z real( (2+t/2)% and O<t<4 (1.1.4a)
dt :

d ) . ‘ Y
( s ) k(s,t)’> 0 for fixed t, 2—t/25;sg 4 (1.51.4p)

From crossing symmetry, we have

d n
(dt ) F(s,t)> 0, for fixed s and 2-s/2 ¢t<4 (1.71.5a)

n
Q%E~> F(4—u—t,t,u);> 0 , for fixed u and 2-u/2<tg4 (1.T.5b)




(28)

Jin and Martin[ii}have shown that inside the triangle
s<4,t<4 and u<4, the point s=t=u=4/3 is an absolute minimum of
F{s,t,u). As we'know that atleast two out of the three variables
s;t,u are positive,one can take s,t positive. For s>t>u, we
have two distinguished cases:

(A)if t>4/3i.e.s)>4/3,
4 4y
» % 3)

-S)+E(s,3,53-5)-F(3,3,3)+F (5

F(Srt,u)= F(S,t,U)—F(S,%,
' (1 .1.6)

LAt 00
P

The first two terms on the right-hand side, taken together,
are positive on the basis of (131.53),and‘the third and the
fourth terms together are positive on the basis of (1.71.4b).
Consequently, we have
 F(s,t,u)> F (4/3,4/3,4/3). (L71.7)
(B if t<4/3i.e.u<4/3,
F(s,t,u)=F(s,t,u)-F(8/3-t,t,4/3)+F(8/3-t,t,4/3)~
F(4/3,4/3,4/3}) . +F(4/3,4/3,4/3)
The.first four terms taken together are positive,we have
F(s,t,u) >F(4/3,4/3,4/3) (171.8)
This result is true in all parts of the triangle. Also, F(s,t,u)
increases along any straight line originating ffom the symmetry
point inside the trimgle.
Using partial-wave expansions,Lukaszuk and Martin[17]
have found a function ¢ (}F(g,cos%n sS,t) such that

As(s,t),EQ (|F(s,cosq) ,s,z) for -kpos%<1, t30. (1 71.9a)

|F(2,2,0)]<37 (£.71.9b)
-Y00¢F(4/3,4/3,4/3) < 16 (1.7.9¢)
The TTOIIOscattering 1ength has the lower bound
_ 5 o
ano rIO} 2%m r} : 171.10)

Ignoring subtractions, we have much better absolute bounds:

V£ FOA L% . e
0% F(4/3,4/3,4/3)< F(2,2,0) < 3. (157.11)

»
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Bonnier and Vinh Mau [IYlhave improved the bound to

S -2.5m1“% (1.71.12)
T IT
Bonnier[ 18] has developed a new approach to derive
rigorous phenomenological bounds for the s-wave scattering
lengths. A new class of upper bounds on.s-wave scattering lengths
appear and the lower bounds are improved. The best result at

present given by Bonnier is (in units of the pion mass):

ag°> =%. 3 : (171.13)

We discuss Bonnier's bounds in chapter III,in detail,since

our method is a new development over his.
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1.9 LOPEZ AND MENNESSIER BOUNDS.

Lopez [19] has aeveloped a new method for finding a new
lower bound on the [TII°S-wave scattering length in terms of the
D-wave scattering length. The main ingredients of the method are
the Roy exact partial wave equations and an extensive use of
unitarity in the physical region.For a value of ago=7.3x10:4
he gets the bound a®8)%-0.33. This is an improvement over the
earlier results by Common and De Witt,aog) —I.I6;Dita,aog)-o.7i;
Furmansky,aog‘>—o.56 and Grassberger,aog>jb.42[20].

\s the basic idea is to use Roy's equations as a way
of iﬁposing analyticity and crossing constraints, the méthod
is in principle applicable to other waves by using the corresponding
' -3

. ' . y . 0
Roy's equation.The result for an Experimental" value a2=i.6x10

is a(i%>/ -0.23 [ 19a]

Furthermore,Bonnier,Lopez and Mennessier have uséd
-axiomatic properties[zi]to derive new absolute boundson the IT IT°
amplitude in the Mandelstam tringle. In particular, if the ampli-
tude is so normalized that its value at threshold is the scattering
length, the value at the symmetry point, which is considered as
a measure of the IIT coupling, is shown to lie between -{3.5and
G751

-13.5<F(4/3,4/3,4/3)< 2,75

-4.85<F(2,0,2)<2.9. (1.8.1 )

Lopez and Mennesier[22] have improved substantially the
precedent absolute lower bounds on the I1° IT°S-wave scattering
length. The main feature in their derivation is the exploitation
of the known sructure of the partial wave left hand cut disconti-
nuity,explicitly exhibited by Roy equations. Their final result is

00 S =175 (1.8.2)

Q
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1.9 EXPERIMENTAL RESULTS.

The picture of the nucleon which is implied by Yukawa model

is of a particle continually emitting and reabsorbing pions’
so that it is effectively surrounded by a pion cloud.If we
consider the various inter-nucleon forces in terms of the
exchange of the Yukawa quanta,pions, we obtain the following
results(fig.6).For proton-proton and neutron-neutron scattering
exchange of a neutral pion is reduired, unless exchange of
two-charged mesons is allowed.For neutron-proton scattering,
however, we may have exchange of both neutral and charged
pions.The equality of the n-n,n-pand p-p forces indicates
that all are due to the same type of exchange,so that we must
suppose that neutral, as well as charged, mesons should exist.
This extension of the original Yukawa proposal was made in
1938 by Kemmer. ‘

The Yukawa picture would suggest that it should be
possible to prcduce pions in nucleon-nucleon cqllisions if
the bombarding energy is high enough.Wé may picture the incident
nucleon interacting with a pion in the " cloud" and actually
knocking it free(fig.7).

~ The pion has spin-parity O and is called pseudo-
scalar particle.There exist three -TI-mesons which are almost
identical except for their charges.Thus we write 2I__+1=3,

1

so that isotopic spin III=l and we assign:

- = = i =4+
(Ir7-)5==1s (1150170, (1pp+)=+1.




The extraction of IT IT1 elastic phase shifts from experimental

information differs from the other low energy process in the
sense that thereis no diresct datarand one has to rely on indirect
evidence based on the following special features ,as reviewed by
Morgan and Pisutl25al:

(a) The piom is the lightest hadron therefore dipion systems
often feature among reaction products
(b) One pion exchange(OPE) is pervasive, which leads to the
possibitity of extrapolation to the pion-pele (Chew Low)
from the analysis of peripheral dipion produﬁtion in TIN-1T TT N
and also in TI N -=»TT TT4, I1I d-»NN IT IT.
(c) The structure of II IT elastic Scattering is especially
simple.In fact up to 1GEV,IT IT scattering appears to be des-
éribable by the five phase shifts.(notation di) and inelasti-

cities (notation ni -
w2 ad® &
do,cfo,dl, 2,2

A few partial waves are cxcitedeerSIT’because of G parity
and JT TI—4I1 does not set in until high encrgies.
(d) IT IT scattering is a crossing-symmetry 1in a relevant
way . |

We can classify reactions yielding information

on the IT IT system into those in which just two pions appear,

Ke decay:e+e_~-+-1"1+ TI",KS Lf>2TI, TIN—>TIN (extrapolated to

, L7
the t-channel), TIN->TI TIN with the OPE term successfully
isolated. There are some reactions in which three or moré pions
appear or two pions appear in company with another hadron:

O b e ks it o sam o : : :
q,KL,h JNN-—3TT,TiK—11 TL N with OPL term not isolated.
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BFP[32a]have used the crossing conditions on physical
region I IT partial wave amplitudes to study the implications
of the existeﬁce of the P.They have shown that the mere existence
éf the p does not constrain appreciably the s wave scattering
lenghts and that no correlation from crossing between the P
and the I=0 Eresonance can be established without further
physical assumptions.They have been able to draw the following
conclusioné:

(a) The uniqueness claim,made by GMN and BG,is a failure.

(b) Their findings are somewhat similar to thoseoMorgan and
Shaw [33], barring a few differences.

(C)Theif findings are also similar to those of Piguet and
Wanders' results with the unphysical region constraints.
(d)‘They find the absence of any'crossing correlation between
the p and € resonances.In particular, crossing does not cons-
train the striking features of low energy Il II s and p waves.

On making further investigation of T Il phenomenology
below 110C Mev, BFP[32b) have incorporated the following
information:

(a) For the p wave we fix the mass and width of the rho meson

Mp =765Mev,T =135Mev,but allow the scattering length ai

to be arbitrary.
(b) The isoscalar s wave phase shift Jg in the mass range
SOO<MBB<QOO Mev must lie in the between-down or between-up

bands[ 34].
5

(c) The I=2 s wave phase shift d has a rather smooth behaviour
) ) o]

with a value at the rho mass in the range dZ(M )=—]50j50
. & 0 P




(d) Inelasticity due to 4TI production below 1Gev is negligible,

5 % & *
but there is a strong cusp or S

effect causing dg to acelerate
rapidly through 180%nd a sharp onset of inelasticity, at the
KK “threshold.

Commenting on IT II dynpmics,BBSFP[S{]have made concluds
ing remarks:
(¢) that once a given set of data is chosen for dg and once ag
is fixed the TLIl amplitudes below 900 Mev are determined practi-
cally uniquely. And a very strong correlation is put by crossing
symmetry between the various partial wave amplitudes.
(i) In erder to reduce the remaining ambiguities,the direct
procedure would require (A) an accurate K84 experiment with
known small syStemétic errors and (B ) a reliable determination
of 49,

o
(@11) Owing to the correlations, several other pieces of infor-
mation constitute direct counter checks to any assignment
for ag( and dg(mp).
(v) As the s-wave scattering lengths are concerned, it is
not at all established at present that Weinberg's predictions,
ang.lﬁ and aéﬁv-0.045,are supported by experiment.

- . O
(v) If a,

and aé turn to be noticeably different from Weinberg's
values, either the structure of SU(2)XSU(2) breaking or the PCAC
smoothness assumption will have.to be considered.

(¥i) The exact values of ag and ai are of little importance

for the TT TT amplitude as we depart from the threshold region,

since we can produce phases with different scattering lengths

but which are very close above,say,500 Mev.




At present the most accurate and detailed information on Il IT-

scatterimg above 1 Gev comes from the 17 Gev/c CERN-Munich
experiment on I1 p-—IT IT n[36] .However,there are several ambi-
guities involved in obtaining the TI1 Ii scattering amplitude

from the data. Broadly speaking, there are 3 different classes

of ambiguities in reconstructing the ampltude from experiment(2¢]:
(a) it pertains to production amplitudes neither containing

the one pion exchange signal nor affecting it in the observables,
(b) it pertains to prgduction amplitudes describing (or affecting)
off-shell TI II scattering,

(c) the third class of ambiguitics contain those one would have

if experiments on a real pion target (rather than z virtual one)
eould be CaATTied ot B ordinary“scattcring experiment only

measures the absolute magnitude of the amplitude.

In the second chapter,we discuss these ambiguities in detail.
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CHAPTER II: PHASE-SHIFT ANALYSTS OF TI TI SCATTERING.

2.0, INTRODUCTION.

The scattering amplitude is the most important object at
the interface between theory and experiment. Theories are supposed
to predict scattering amplitudes,while experiment gives some
informations about observables like the scattering cross section
and other quantities such as polarisations. Phase-shift analysis
is the extraction of the scatterihg amplitude from scattering
cross section and other experimentally observable quantities.

In the case of energy dependent elastic écattering, unitarity
gives us the un-observable angle-dependent complex phase of the
scattering amplitude with a few choice of solutions. On the
contrary, above the inelastic threshold the unitarity puts cons-
traint on a sgattering amplitude in the form of only an inequa-
lity, and consequently, there exists a continuum of different
amplitudes corresponding to the same observables. The continuum
ambiguity is serious,even in ideal phase shift analysis with

perfect data.
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2.1. PROBLEM OF AMBIGUITIES.

In the elastic region unitarity directly relates
real and imaginary parts of the amplitude for each partial wave,
but in the inelastic region it only provides an inequality
constraint between them,demanding each partial-wave ampli-
tude to lie inside or on its unitarity circle.

The basic continum ambiguity is defined in the
following way.At fixed energy |

ﬁkz)=ei¢(z)F(z),¢(z) rea1,~l<z{1, (2.%+1)
gives the same cross section as given by F(z) for any such
function ¢(z). This continum ambiguity is serious. This phase
factor has nothing to do with the unobsgwable phase of wave
functions in quantum mechanics where,

g{x)= eih'§+F(@)E;£j~, =500 , (L. 3.2)

but the phase of the scatteringvamplitude is the relative phase
of the incident and scattered waves. The phase function @(z)[léi]
is restricted by the normal theoretical assumptions of phase
shift analysis,namely: |

(L) Lorentz invariance: it restricts the kinematical variables

to two ,e.g.,energyys and 65' or z=coseS .

(U) Unitarity: fl(s) is on a unit circle in the elastic region
and inside it in the inelastic region; it is this weakening of
the unitarity constraint to an inequality that gives the conti-

-num  ambiguity.

(R) Finite range:for 1s

arge anguliar nmomertum
kR

[<3
£.(s) ~0(e 1/KR, " 3)
](s)fv (e ), 1—>o00, (2.1.3)
where R is the range of the longest force.
The theoretical assumption of finite range is extended to
general analytic structure in z: there is a cut plane of

analyticity in z with Z and Z, corresponding to the lightest




t-channel and u-channel exchange respectively(Fy.5):

7 =1+ 1 (2.1.4)

The unitarity restriction has to be explored numerically
on the line of a few general remarks:

(1) An inequality constraint normally allows a continum of
solutions.

(i1i) The partial waves lie near the centre of the Argand diagram
in the inelastic region, for small inelastic amplitudes(fig.&).
So, the unitarity constraint is unimportant.

(iii) As the high partial waves lie near the edge of the circle
in elastic processes, it puts restrictions over @ near ZO:¢(ZO)30
ensures fl to be real. The z-discdntinuity of ?Iz) to be real
up to the spectral function boundary zl,ensuring that {1—%0

as 1-»o00 along thevproper quadratic curve(fig.8b),it puts more
restrictions over Q.

The ambiguity‘continum corresponds to an aica,or areas,
on each partial-wave Argand plot, each point of which is connected
to a point in a similar area for each partial wave. Tﬁese areas
are called islands of ambiguity. I1f the islands of ambiguity
cover a significant fraction of the Argand circle for some waves,
it is called a serious ambiguity and if the areas are small the
ambiguity is not serious -——even if there are.infinite set of
solutions.

None of the criteria, described above, restricps¢(2]
to a finite set and there is a continum of scattering amplitudes
for ecach set of perfect data ﬁeasurcmcnts,corresponding to
different functions @{Z). The question arises as to how large

is the ambiguity contimum.
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If the ambiguity continuum is a functional of the phase function
Q(zzcoseg, one has to explore the whole of an infinite dimensional
function space-in order to find its true boundaries. There have
been explorations in particular directions in the function space
which gives at lest a lower limit on the size of the ambiguity
continuum. However, a simple analytical way of approaching the
problem quatitatively has not been done. The main results for
perfect dafa with zero errors are essentially of the following
types: (a) the ambiguity is discrete with, at most, a finite
number of discrete solutions, (b) if all .partial waves, except
the s-wave, are not too large the amplitude is unique, apart
from the'trivial_ambiguity(F=—F*) corresponding to changing the
sign of all phase shifts,(c) if the partial waves are large,then

in a number of situations there is Crichton ambiguity[Sf}.

The trivial ambiguity corresponds to reversing the
sign of ali real parts and thus of all phase shifts. We can
remove it by observation of Coulomb interference,in the case
of charged particles. It can be alsc removed by the inclusion

of extra dynamical constraints on the amplitude of TT TI scattering




(40)

2,2 THE MODULUS AND THE PHASE OF THE SCATTERING AMPLITUDES.
The scattering amplitude F(s,Cos §) for the reaction

TT+TI-»II+IT1 is a function of two variables:s and 9.

The scattering amplitude F(s,cos%) is a complex number and the

differential cross section

2

do _-4
da. - S

is real, it is not obvious that the information exists to fix

F(s,c05¢) (2.2.1)

F(s,cosg). In practice, the modulus is most of the time the only
possible and accéssible quantity, the phase and the modulus

are linked by very general relationships based on things,which
are:conscrvation of probability, called unitarity implying in
particular certain positivity ﬁropertics,and causality(as expressed
by an underlying fiéld theory). If follows that the physical

scattering amplitude is the boundary value of an analytic function.
g I Y )

For any function ¢ of energy and angle, which is real

in the whole physical region,we have

F(s,cosQ)

F(s,cosg)= exp i@(s,cos@) (2.2.2)

both sides giving exactly the same cross section.
|F(s,cos8) is the modulus of the scattering amplitude,¢(s,cos@)
5 ) I

is the phase.




2.5 PHASE SHIFTS IN ELASTIC REGION.

If Ec.m.=Ys is low enocugh, all inelastic channels are
closed and unitarity takes the simplest form[ 3%]

f(s, 1 1

Ly 9= 25 pya, cosq), ' (2.3.1)
NG
where 11 and 12 are unit vectors in the initial and the final
directions of the colliding particles, so that COSQ?ll'lz

We can express unitarity by equation[38]:

Im £(s,1;,1,)% jdﬂ & (551,500 Efe,1..0,) (2/8.3)

One can expand F in terms of convergent partial waves,
S o)
- b . e «
F(s,cosQ)= <0 (21+1) fl(s} Pl(cos Q) (2.5 3)
and unitarity equation becomes

Im f (S)— lf (s)I”

~N

D 3a)

-~

o

f (S):Jﬁ;m exp(ld.) sind : (

.3.3b)
It is the UD]ftI’ﬁ} which guarantees that the phase shift,dl,.
is real.
We can consider equationA(Z.B.Zj as a non-linear
integral equation for the phase;once we know the modulus,
f(1y,1,)=£(1, ’12” expif(1,,1,), (2.3.4)
it is sufficient to find the angular dependent phasé @(s,cos%)

of the whele amplitude, which is obtained as the solution of

the non-linear integral equation

1l

|£015,1,)] sing (1,.1,)=957

dQ3 |f(11,1 )]1 ,1%L

. 1

- sin b1, .11 bes 12
or Sin %(_1 1, s71) \‘(
- s ]f(_:l_'_l’




(4-2)

Any function ¢ substituted in the right-hand side of (2.3.6)
yields another function ¢/on the left-hand side, and each of
these functions is a point in a suitable space so that ¢QO(¢).
If the output region of the function space ¢/produced by the
mapping lies entirely within the input region for any choice

of @, and any pair of points are brought closer together by the
mapping, we call it a contraction mapping. On applying such
successive mappings, we get smaller regions and so there can
always exist a fixed point, which-is mapped onto itself. The

fixed-point value of the phase function ¢ is the unitary solution

These fixed -point ‘theorems in non linear analysis have been

applied to the problems by Klepikov[38%,Newton[3@,Martin[4Q}

and Atkinson[41]. . o

In order to have at least one point fiXed in

the mapping (2.3.6), we need a limit on .
o 405 50y,1501£ 05 1) |

£y, 15)]

For the slowly varying phase, (2.3%.6) goes roughly to the

Sind

i

(2.3.7)

maximum value of sind .And this to be physical we should have
sindl,which ensures that (2.3.6) is a contraction mapping and»so
we must have at least one fixed point. Its phase gives us the
guarantee that elastic unitarity is satiSfied.By.iteration
procedure on a computer, ome can find out convergence to give
the solution. The condition sin&l is very restrictive;for an
example, duc to the presence of the denominator of (2.3.7}
it excludes differential cross sections with deep dips.

In order to remove the trivial ambiguity, we require

that the real part should be positive,then

¥

e X 0< G(cos@<k < TT/2 ' (2.3.8)
ov RefF(Cos@P >0, Tmfcosn) > O (2.3 3q)
and there are no sign changes. For L2 1,

dz Ref(z) | 1% P.(z)]>0, (2.3.9)
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aslPl(z)[<1 and similarly for the Im(foifl). These partial -waves
are on the unitéry circle in the elastic region and we have

Imf, < } or{dﬂ<II/2, (2.3.10)
it has been improved to |

1dﬂ <TI/6 , L1 _ (2.3.11)
In short, aill the waves except the s wave must be fairly small,
and certaiﬁly non-resonant for these results to hold good.

It is possible to prove, on the basis of analyses

of authors[SSa, 39, 40, 4ﬂ ,that the iterative solution converges

IE
Sup
over (-i;éi—if(li’lsﬁ}f(lz’ls)/110.79 (2.3.12)
all aﬁélegIT lf(ll,lZ)r

Therefore, in a situétion where we are close to a resonance
(d;~11/2),the condition (2.3.12) will be violated. The partial
wave amplitudes are exponentially decreasing, even then the
existence and uniquenéss of the solutions is not clear; different
sufficient conditions of some stronger and some weaker nature are
obtained. However,it has been shown by Martin [ 407that for
sinK<1/J2 the solution is unique.
Crichton[Si]has shown that there exist the two sets

- of phase éhifts which give ideﬁtical cross sections without
violating the Martin uniqueness theorems:

g, =~23" 20 d,=-43° 27! d,=26°

do=98050’ d]=—260 331 62=200

One may hope that the Crichton ambiguity could be the only sort

(2.3:13)

of ambiguity which can be found in the elastic unitarity
situation. It has been shown by Martin[40 ] in the form of a

relationship:

4 ( i .
: xn(id Vsind | caco-- £ Yas s £4 ~ 4 1
. EXPL1G,)sing,., f‘»ﬁu(l~x.llf:7 B | v} (c&,l] (c:or;Q;u__ +2 icotd
. fa .~ .)

] _ )(2.3.14)
riaise 2 L Jar s P 5 '"_

2
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Atkinson et al.[42) and Cornille and Drouffe[43] have extended
Crichton ambiguity to the case of four fold and five fold ambi-
guities. On the other hand, Itzykson and Martin [44] have found
the same result for entire functions, which are not polynomials.
Berends and Ruysenaars[45] put forward the idea
that there can be,at most, a two fold ambiguity. And one can
choose the option of writing the amplitude as a product over its
zeros:
L
F(Z)= F IT
toi=1

£3 L . : .
where the coefficient of z” is proportional tc }L’

(z-2,) (2.3.15)

§= exp (idL)sindL (2L+1)~%%£~—7- (2.3.16)
27 (1Y)
And the cross-scction can be written:

& 1 g2 .

e 5 1Bl % T1 (z-z)lz-2y) | (2.3.17)
- i=1 _

Gersten[46] observed it for the first time that the cross section

would be unaffected if we replace any of its roots 2 by 1its

complex conjugate.
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2.4 PHASE SHIFT SOLUTIONS IN INELASTIC REGION.

When the collision energy of T and [ is sufficiently
high other reactions compete with the elastic reaction
T3+ 0
Then the conservation of probability is not so simple expression
and we do not have anymore an integral equation for_the phase.
Unitarity ,which in the elastic region directly'relates real
and imaginary parts of the amplitude for each partial wave, now
only provides an inequality constraint between them,requiring
each partial—wave‘amplitude to lie inside or upon its ﬁnitary circle
If all partial waves lie inside and at finite distance from the
edge,there is a whole family of phase functions ¢(Z) of limited
magnitude but of infinite variety of functional ferm, which
does not move any wave outside its circle. One must make sure
that the transformation ¢ keeps the waves inside their circles.
There isacontinum of scattering amplitudes for
each set of perfect data measurementz,vcorreSpqnding to differenf
functions @(Z). The ambiguity continum corresponds to an area,
or areas, on each partial-wave Argand plot, each point of which
is linked to a point in a similar area for each paftial wave.
If the islands of ambiguity cover a fraction of the Argand gircle
for some waves, it is clearly serious, which isvthe usual
situation in inelastic region. The ambiguity continum is a
functional of the phase factor @(Z) and to find its true
boundaries is a very difficult problem, which involves exploring
the whole of an infinite dimensional function space.
The partial wave amplitudes should lie inside the

unitary circle:

| 5
2K & rom vzl .
—L2-£, () ~1/2] ¢ (2 4.1)
~ ~ |
and Imf (s) )0 (2.4.2)



i's a function of positive type over the

Cosequently,Imf(s,1,,1

1 2)
rotation group and for any reasonable function Q of the direction

1., we have [ 38]:

Q*(;l) ImE (s,1;.1,) Q(1,) df22 40120, (2.4.3)
which is obtained by inserting the partial wave expansion of
ImF for every 1 by taking Q(}1)=Pl(ll.1% with 1osome fixed
direction.
In the forward direction (Q;O) ,we have
ImF (s,cos@=1)= 2 @+1) imfl(s), . (2.4.4)
a sum of positive terms, which is positive. ImF(s,cos€z1) can
not vanish unlessvthe scattering ampltude is identically zero
at all energies and all angles. Hence,we have
ImF= sin{) |F| >o
and O<{(s,cosg=1) <IT | (2.4.5)
At a particular emergy s _, one has O<,¢(so,cosq;])<_IT to
remove the 2IIn ambiguity. This phase satisfies inequality (2.4.5).
On the other hand, in the physical region ("1<COSQ§413
the imaginary part of the amplitude is not necessarily positive,

evenat very close to the forward direction.

From the result]Pl(cos%ﬂ<;Pl(cosQ;1)=l, we have the
inequality
[ Im F(s,cos%)f<ImF(s,cosq;l). (2..4.6)
Kinoshita and Martin [[47] have derived an inequality
ImF(s,cosQ) />-44 cosQ> -3 (2..4.7)

Im F{s,cos€r1)
This inequality gives new information on the phase.

We measure (ds/d) (cosq) as a continuous function of cos Q.



There is some angular interval (O<§§60) in which

de sy (1
e [ COSE) = de
an - (co s)/(4)—-3%(c0595=1) (2.4.8)
and|F(s,cosQ)|> 3| F (s,1)[>} ImF(s,1) (2..4.9)

In the case of 60<,2II/3, we have
ImF(s,cosQ)> -3 ImF(s,cosg=1) (2.4.10)
It is obviops from the equations(2.4.10) and (2.4.9) that
Re F=0 ImF<0O. So, the phase factbr @(s,cos%) can not be equal to
-IT/2+2nTT. For the forward scattering,we have
O<1¢(s,1}(IT‘and on using continuity in %,we conclude that

-TT/2< {(s,cos8) < 3TT/2 for 006 <2T1/3 (2.4.11)

<
¢}

Although this information about .the phase comes from the modu1u§,
it is considered to be a weak one.

By considering detailed properties of Legendre
polynomials,Cornile and Martinfd&]have found the result:

: 4
l q) (s, Coses)kfff (:{7(]/4))

ds
- 8YBic o —Eji(s,cosgfl)
= =~ g

- m— (2.4.12)
g——(s,cose')
4

Here we no longer have restriction €<2T1/3.

Bowcock et al.[49) chose partcular forms for Q(z)
and varied the coefficients of expansioh until the unitarity
limit is found out in some partial waves:

§(z)=249; (2) (2.4.13)
They made a very limited exploration of this phase ambiguity
orn selecting a particular form of ¢, with. one parameter bg

$(2)= b[ (1-2%/1.5)

Satisfying the restrictions (L), (U)-(iv) and (R). However, the

-(1-1/1.5)# ' (2.4.14)

[SISY

method is Jlimited to only one direction of @ space with the neigh-

bourhood of b=0. Theycsnclude that,while no resonancer




is created or destroyed, quite large quantitative changes in

resonance parameters are possible.lt has since been extended
by Pietarinenfsd].
Bowcock and Hodgson[51] model amplitude is in the form:
F(z)= ¥ - (Z.4.15)

(RE4Er- 2K (B 2) Va . "
and §(z) = 5[(‘,\1.4_ o akE =)= (K+E 2R®) > ] g

It has been observed that for values of d between -2 and 1 all

waves (s,p,and d) lie inside the unitarity circles and corresponding
points on arcs represent allowed partial waves.

The ambiguities form lines only because the phase function ((z)

has one parameter.

‘ Atkinson[52] and - co-workers have developed a new method
of the partial waves which rests on the fact that there is no conti-.
num ambiguity in elastic region,where the inelasticities are fixed
and then using the latter as variables with which to parameterize

the contimpm. The method is systematic and powerful. They have
applied the method todAelastic scattering at 35 Mev. The results
show clearly the islands of ambiguity. The ambiguity is as large

as a third of the circle for the s-wave but it has a tendency to
become more one dimensional in the higher waves. Recently, they

‘have extended this work to piomnucleon scattering({53],

The islands -are ,in general, smallér than ind&«L scattering, and

in some cases remarkably small.There is the real possibility of

suppressing the resonancein some cases where small resonance

circles are involved.

The situation is more ambiguous in the case
+ , . S .
of TI p and k+p,as oberved by Van Driel{54l. There are islands of
ambiguity which actually varies the speed on the Argand diagram

and so none of the usual stuctures should be taken seriously as

Yesonances.

el
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Atkinson et al.l55] have constructed I1+p contingm
ambiguities from 1974 Sclay phase-shift analysis. It leaves
unchanged the total cross-section, the differential cross-section
and the polarization.They find that most of the resonant structuvres
are stable, but that alternative’solutions are possible that lack
the second.831or the 639 resonance. Further, they suggest that
disagreements between different groups concerning the existence of
the weak resonances,or concerning the masses and widths of stronger
ones, may be caused by the existence of .the contimum ambiguity.

In conclusion, we can obtain the scattering amplitude
from the experimental data in the elastic region with only a few
discrete alternative solutions at most.. On the other hand,
there has not been developed any reliable inelastic phase-shift
analysis which gives convincingly justified results. The uncer-
tainties in the amplitude produced by the continum ambiguity are
serious. Methods_based on energy smoothing to find a unique
amplitude are quite arbitrary, while the method of multi=
energy analysis based on fixed-momentum dispersion relations
seems to be a sound route to unique amplitude. It is most desi-
rable, but very difficult,to find a sound procedure which

can be justified by analytic argument and error analysis.
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2.5 ANALYSES OF MARTIN AND EST3ROOK§ES

In the low energy region (MHE§ZGCV), the presence of

the P(l+(1- )w),f(0+(2+)+) and g(l+(3—)—) resonances with masses
and full widths (770+ 1OMev,1SOiiOMeV),(1270:10,170i30Mev)and
(1686+20Mev,180+30Mev) respectively is clear from the high statis-
tics TI p-—sTT TI n(56]and ITT P—TI TT data(57] . The study
by Flatte et al.[58] has shown the existence of the S*(O+) resonance
near the Kk threshold . Although the Frascati e+e:—>2IT(4II)
data [59]) is not conclusive, there is definite evidence for a
P' (1600) from.the photoproduction pracess Y Be ~»2TT(4IT)Be
observed at FNAL(60] .The p' is also evident in IT TT partial
wave analyses of the CERN-Munich high statisiics TT”p—?II"I%h
data(61] .
Using Barrelet zéfos[6a,Martin and Estbrooks [63]

have made an -energy independent IT II partial wave analysis in
the energy range 1.O<1MIT.II$1.8 Gev, to examine in detail the
possible ambiguities, and to study the resulting II—IT* resonance
spectrum. The study has been done with a motivation for a possiblé
£' resonance [64] under f, and p' resonance under g resonance.

Before extracting T1 TI partial waves from II p—-
IT TI'n data, we have the moments<Yﬂ>,J=6,1, v umsdliy O the
II—II+—~>II—II+angular distribution where L denotes the highest
non-neglible partial wave.(Yi) determine the magnitudes and relativ
phases of the first L+1 partial waves,but not the overall phase.
In addition to that , we have a discrete ZL fold ambiguity,
expressed in terms of Barrelet zeros Zj(s) of the T‘I.I'I+
scattering amplitude in the complex Zi‘cos%;Plane:

L
F(s,2)= £(s) TI (Z-2,), (%.5.1)

. : B (=1 T - .
L-»co in general. Thid ambiguity is- due to the fact that the

signs of 'J'_mZ_j cannot be determined frcm the angular distribution.




In the low energy region; elastic unitarity may resolve this ambi-
guity; whereas in thg inelastic region the unitarity constraint
is no longer as powerful. As the IT-II+ partial wave resonates
(p,f,g,.,.‘),zeros are close - to the physical region. It is clear
from the study of Estabrooks[ﬁg]and Hyams [66] that the zero contours
Zj(s) are extremely smooth in S except the S* near the KK
threshold. So, Barrelet zeros have found to be very useful .in
the phase shift analysis of IIwII+ scattering in the following
sense:
(i) one can find all the ZL solutions at a given s:

(ii) One can keep track of the physical solution by continuity
of the Z.(s) with increasing s, and can find the valueé of
s,where alternative solutions arisg(Iijﬂo);
(iiij one can investigate the resonance spectrum for searching
the existencerof daughter resonances, and determine their
parameters.

In EM's[63] study, for each Myt 17.the data
determine the values of eight parameters, namely the magnitude

Rl gelatines Pheses o So’po’Do’Fo and the parameter C. The

amplitude Lo is given by

M
SO NI LI 7 s

Jk~ : i Ls (2«52
where the partial wave amplitudes are defined by
I : 24)
I ld . (2.9
( N.)= the overall normalisation factor. (2.5.2b)
k= TT momentum in IT" 1T C.m. frame. (’“S'ZCJ
3 =%(2f? +f§) for even L (25 2d)
(2-5.2.¢)

1 :
f ?for odd h%i II*dipion mass

This ( N.) is determined by the elastic P wave phase shift to
Y

0 "y . o
go smoothly thrcugh 90 at the p resonance. In equation (2.9.2)
L]

it is assumed that the IT exchange amplitudes L _ have a common
o
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t dependence, which is independent of MIF . This method has been
used by Hyams et al.[66] , which gives reliable results below 1.4
Gev.

The solution A is defined by the magnitudes and
relative phases of J/2L+1 fL and the parameter C, which determines

the non IT exchange production amplitudes. The complex zeros, Zj
: )

are obtained from the solution:

3 -
b2 1 1¢ = 2
r=o c2L+*) PL(Z) lfﬂ g L a;11(2 zj) (1.5.4)
One can find alternative solutions at each MII T by replacing

Im Zj by —Imzj for one or more of the zeros, calculating a new
set of magnitudes and relative phases of the Lo amplitudes frém
equation (2.5.4), and then fitting to the data. So, one obtains
eight solutions at each energy. As:the existence of the f resonance
requires the second zero to approach the physical region with

Im Zz<0, and similarly the g resonance requires Im23<0, the ambi-
guity due to overall 2L solutions at a given s is immediately
reduced. Hence, one has a two-fold ambiguity depending simply on

. the sign of Ile at each an.in the f region (MEB§J.4GeV); The
solution A with Ile>O leads to a better description of the 35 II?

mass spectrum in this region,resolving the ambiguity in the f re-

-sonance region. Their solutions are classified as follows:

Solutions Sign of ImZ Sign of ImZ,

1

A

B + : o
C k

D
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It is found in their study that Ilec:O around
MHBF1.24 Gev. They define solution B in which Ile does not
change sign at MI1ﬁ1'24 Gev.

The overall phase has been chosen to give
reasonable continuity of the partial waves consistent with the
existence of the f and g resonances, aﬁd with'unitarity. It
appears that solution A shows no evidence fof dahghtér resonances
in this region; whereas for solution B the S partial wave in the
region of the f resonance and the P wave in the g region follow
approximately circular contours iﬂ an anticlockwise direction in
the Argand plot. The speed of rotation of these lower partial
waves is not clear indication of resonant behaviour and these
daughter resonances must be relatively broad (T'~400 Mev), and
are difficult to be established. Atcording to EM's observation the
S wave of soluﬁiontB'is outside its unitary circle for 1.25£M§1.5
Gev, consequently, the relatively large errors on this partial
wave make it possible to use unitarity‘to definitely eliminate
this solution. |

For further EM'si@study, the energy depepdence
of the solutions is needed in terms of zero contours, which is
suggested by the smoothness of Zj in S. The Zj(s) is parametérized
as a ratio of polynomials in S and determine the complex coeffi-
cients from the relative magnitudes and phases of fL' Further,
23(5) is parameterized in the g region such that at 1.5Gev it

joins onto the value calculated in the f region on using the f

and g resonance forms. The resonance form is expressed by
fL= XR YR(s)
M —s-iYR(s)’

&

R)'
The overall magnitude is specified by fitting;fDlin the range

(2.55)

where YR=YO+ Yl(s-M (2.5.6)
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1<:MIT II<1'4 Gev,[félin the region 1'5GeV<MIT <1.8 Gev to

(2.5.5) and (2.5.6). Excellent fits to the amplitudes are

.obtained.

Now, it is clear from EM's study that s-dependence
of Im zj(s) indicates the main ambiguity between solutions A
and B. On changing the sign of Im Z, in solutions A and B for
MTT rI>l.4Gev ,we get two other solutions C and D respectively.
The resonance parameters and values of the zeros at complex
pole positions show that solution C like A has only leading
resonances;whereas solution D appears to have a broad D-wave
resonance in the g region. The solution A shows no rescnance
structure other than the leading f and g resonances. However,
solution B having a broad p' respnénce (400 Mev) in the g
region, violates S wave unitarity in the f region.

Em's published figures give the impression of very
smooth argand diagrams,but actually solutions (plotted from
tables) are very noisy. On the other hand,the problem of
truncation at L=3 introduces spurious uniqueness and there

are continum ambiguities clearly present.

In EM‘s[éi]notation; on the question of the existence
of a p wave P'(1600) resonance their solutions divide into two
categories: (i) solutions B,D have a P' coupling relatively
strongly to IT IT (elasticity 25%);whereas (ii) solutions A,C
show no evidence for a p' signal (elasticity 4%). These two
categories arise because the first zero,zl(s),to enter the phy-
sical region has Im Zl=0 neaf s= MTI TI?I.ZS Gev and so a
bifurqation of solutions is possible. Above this energy,

solutions of type(i)and (M) correspond to Im21> 0 and ImZI<O

respectively,




Recently,Johnson,Martin and Pennington[é?}have exploited

analyticity to distinguish between classes of 1" IT partial
wave solutions. In their view, fixed-t and fixed-u dispersion
‘relations determine the overall phase of the amplitude and
clearly select solutions with a p'(1600) resonance of 25%
elasticiﬁy. The relevant qpestion of existence of p', W' and
¢' vector mesons, with the advent of new @ particles, is out-
standing. There is so far only information on the p' resonance.
On the assumption that the truncation of the partial
wave series at L=3 (and moment series at J=6) is exact,
so that the unknown phasg ¢o depends on s and is independent
of t, Johnson et al {ﬁf}conclude that analyticity overwhelmingly
favours the IT IT partial wave solutions(B.and D) with a sizeablé
P' coupling to IT TI and determines the overall phase of
these solutions. Further work is continuedito resclve the
remaining ambiguity between the B and D solutions. It is
mofe complicated in the sense thét it depends on Barreiet
zero(z,), which unlike z,, is near the physical regionJvs 31.45
Gev (where the bifurcation of Im Z2 actually occurs) énd so
just oqtside the range of validity of fixed mcmentum transfer

dispersion relations.
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2.6 ANALYSES OF FROGGATT AND PETERSEN.

Froggat and Petersen[68] have used extrapolated ‘0 i . 40
moments from amplitude analysis of the 17Gev/c CERN-Munich

experiment on II p—sIT II n, and reduced phase-shift ambiguities
by imposing fixed-t and fixed-u analyticity. The result and
solution agree qualitatively with semi-local duality. A phase-
shift analysis by constraining the result to be éompatible with
fixed-t(-u) amplitudes have been performed. Consequently, a smooth
phase-shift solution is obtained, which shows a clear p' signal.
Broadly speaking, we face 3 different claéses of
ambiguities in reconstructing the amplitude from experiment,
described earlier. FP (68] have concentrated their work to class
3rd ambiguities (in lack of a real pion target an ordinary scattering
experiment only measures the absolute magnitude of the amplitude),
while using the results of Estabrooks and Martinp3].
We can write the IT+II’—¥II+IT— elastic scattering
amplitude as
i 2
Mo sy 088 Q| = % (21+1) Ay My pp )Py (cosq),
(2.6.1)

[F

L
where AL s are real coefficients given by the Clebsch-Gordon
‘'series as bilinear functions of the fi

Using the EM solutions[63]the first 7 A, 's can be calculated.

These values are independent of the overall phase ambiguity.

's with known coefficients.

It seems that the most promissing
proposal for dealing with the phase-shift ambiguity problem
consists in demanding compatibility with fixed-t and fixed-u ana-
lyticity. FP[68)introduced a crossing symmetric energy variable
v:

S-u

B amp o (2.6.2)
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with v=vo(t) and v=v(t) the s-channel physical threshold and
the start of the s-channel physical region respectively:
vo(t)=mIT+t/4mrI

{z(t)=mH-t/4mH | (2.6.3)

If we have the following information about an amplitude
F(v,t) for fixed t:(a) ImF(v,t) is known on the unphysical
cuts such that ‘i(t)SVSfVO(t) and vo(t)5y$§(t), (b) \ E(v,t)] .
be known throughout the physical regions -oo < v< -¥(t)and
9(t)gv<oo and (c) at infinite energies the growth of |F(w,t)]
be under control i.e.\F(y,t)PiM.lvﬁ%or}V\>N, Yy real+if
(M,{finite); then F(v,t) is uniquely défined up to a finite-
dimensional ambiguity [6@. The method for imposing fixed-
homenfum transfer analyticity on amplitude analysis;developed
by Pietarinen[6il, has been used. The input is assumed
to consist of numerical informafion at a finite number of
energies. It is optimal and capable of providing unbiased
error-estimates.
We can expand the fixed-t (or fixed-u) amplitude
F(y) in terms of a suitably chosen set of functions.i@n(vj} .

each possesing the desired analyticity properties:

N
FO= 248 ) (2.6.4)
i=o :
The expansion coefficients are found by minimizing
2 2
X“(F)=X(F) + §(B), : (2.6.5)

where‘X?(F) is for the experimental data and @(F) is the
convergence test function in order to give a penality for
lack of smoothness.

Theykdhave presented two analyses of 1 rI” scattering
between 1.1 Gev and 1.8 Gev. The first one results in a set
of fixed momentum-transfer amplitudes satisfying analyticity

propérties exactly and the second one has correspondingly good
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properties at fixed energies: smoothness in cos 6 and
unitarity. The two analyses agree to the extent that we can talk
about one solution.
The FP([68] solution has the following salient features:

(a) It reproduces the experimental Legendre-moments iAﬁ.
(b) It not only has good smoothness properties, both as a function
of energy and cos G, , but it satisfies crucial analyticity re-
quirements..
(c) It agrees reasonably with unitarity.

However, the solution does not .satisfy semi-local
duality. And, the amount of remaining ambiguity has not been
determined.

In constructing the Argand diagrams from the il s Al

partial wave amplitudes an error has been made by FP[68]in the

case of I=1,. Indeed,Pland F.as given in their figures 8&9 as well

1
as their values reconstructed from tablel are too large by a factor
l3/2f secondly, the asymptotic cross- section corresponding to
their fig.7 should be 4mb. These corrections have been made by
FP[68d] .

It is observed that FP's partial waves are much smoother

than EM's , on plotting Argand diagrams.
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PART ONE
CHAPTER III : BOUNDS ON IT TT SCATTERING LENGTHS.

2.0, INTRODUCTION.

Martin[7Q]dem6nstrated that the constraints imposed on the
scattering amplitude by the results of axiomatic field theory
limit the strength of the strong interactions, at leastfor the
case of IT IT scattering. From the requirements of analyticity,
unitarity, and crossing symmetry he proved that within its ana1y¥
ticity domain,including the symmetry point, the TI TT scattering
amplitude is bounded above and below as a function of the pion
mass alone. Martin's numerical results were improved by fukaszuk

and Martin[71]using a refinement of Martin's original method.

These bounds are rigorous consequences of axiomatic
field theory. Uniike the asiﬁtotic bounds on scatteringamplitudes
(e.g. the Froissart[72] and Jin-Martin [17] bounds) they contain
no arbitrary constants and represent. quantitative restrictions
on the size of the amplitude at finite energies. It is there-

fore desirable to see if they can be improved by making better
use of analyticity,unitarity, and crossing symmetry.

In the real world there are no bound states in the
ITI-TT system,and their absence has been explicitly incorporated
in the analyticity assumptions used to derive the bounds on
the TI-TI amplitude.

A nice development‘is that rigorous phenomenology
leads to some improvements over the axiomatic results.
Recently,on this line of approach the lower bounds of the IT TI
S-wave scattering lengths have been developed on the basis of
some estimates of the D-wave scattering lengths[20]

| ,Bonnier[}{]has derived rigorous upper and lower
bounds .on the IT IT S-wave scattering lengths,starting from a

given phenomenological input(upper and lower boundsof the real

b b 2



and -imaginary parts of the TT IT and IT 1T° amplitudes

on the region O.4SGevé.EC mé 1.9Gev,0<t« 4m§g.

Lopez[413] has found a new lower bound to the T
S-wave scattering length in terms of the D-wave scattering
length. The main ingredientg of the method are the exact
Roy partial-wave equations and an extensive use of unitarity .

4
Jie gets

in the physical region. For a value of az=7.3x10-
the bound a&»—O.SS. Further, prez and Mennessier[2Zhave
improved substantially the precedent absolute lower bounds
on the rr Tr S-wave scattering length. The new feature in
their derivation is the exploitation of the known structure
of the partial wave left hand cut discontinuity, expiicitly
exhibited by the Roy equations.'The result is
,a§° > -1.75 | b )

Furthermore,Bonnier,Lopez and Mennessier[21] have
used axiomatic propertiés to derive new absolute upper and
lower bounds on IIOITOamplitude in the Mandelstam triangle.
In particular, if the amplitude is so normalized that its
value at threshold is the scattering length ,the value at the

symmetry point, which is considered as a measure of the TI TX

coupling, has been shown to ..lie between -13.5 and 2.75.




Z1l. BONNIER'S BOUNDS ON THE TI TI S WAVE SCATTERING LENGTHS.

~'

%.2 Introduction.

Bonnier B8]has developed a new approach to derive
rigorous phenomenological bounds on the S-wave scattering
lengths, but he adopts the position of using the maximal amount
of available experimental data as directly as possible,
and not only thrcugh the D-waves. As a result a new class of
bounds appear (upper bounds) and the lower ones are improved.
However, in this approach we have to take care of the consisten-
cy of the chosen phenomenology wifh general principles.In  the
energy range 0.45GevE c.m.£1.9 gev, the main features of
TI II‘scattering are common td most‘of the analysés and one
can define a " central" family of S,P,D,F phase shifts with
associated 'errors'. In order to cover thé spread of the
data, he has multiplied the errors (between 0.45Gev and 4.9 Gev)
by a scaling factor € (0 £ E<1) such that E=0 gives the central
family and E=1 the band of maximal expanse. This £ is not
a measure of the errors in a given analysis, but an estimate
of the discripancies between various analyses. In this way,
for any fixed value of £ one can easily compute the lower
and upper bounds of the IT TI amplitudes and then derive the

bounds on the scattering lengths.
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3.3 NOTATIONS AND SUM-RULE INEQUALITY.

We can write the S-channel partial wave expansion of the
S-channel isospin (I) TI II amplitude F(I%s,t,u) in the form;

(21+1)

(1) _ Dl *
EX (s, t,u)= 1%% _I fl(s) P (1+2t/(s-4)), (3.3.1)
where m=1,
s AL 1
fs)=mles) 21y 21p0),p00)=((s-0) /) 3.3.2)

and the optical theorem is in the form,
I

I _ T
Im F (s,0)= ((s )/(5-4)) Ozétal(s)/lﬁTI. (3.3:3)
The s-wave scattering lengths for I=0,2 are simply
a =f. (4)=F'(4,0,0)  (3.3.8)
At fixed t=t_ , Oj§t0<4 the elastic amplitudes have the
combinations:
FO+2F22Fy, for TI1% IT°——>T11917°
.F1+F2=FS, for TT% 19— rrirr® (3.3.5)
' 2 2
z=((s-u)/(4+t )) "= ((2s+t_-4)/(4+t ) (3.3.6)

We find that s<+u crossing even amplitudes are real analytic
functions in the complex z-plane cut for z 21. 'One can assume
safely that on some part (sl,sz) of the physical region (4<sl<sz),
mapped onto (21’22)’ the available data are sufficiently reliable
to give us upper and lower bounds of the real and imaginary

parts of F, and FS. Also, the chosen data should satisfy the

N
sum-rule inequality of Common[74] which expresses s<>u

crossing and positivity. So,it appears that this kind of
information can be rigorously used in a powerful way on general

lines.




1-vw where w=%"%1 (3.3.7)

Mapping:v= T Z Tz,

It maps the cut z-plane onto a unit disk DV of the v-plane
such that the low-energy region 1l¢z < z, goes to the cut
vlsvsl, the intermediate energy region zlfzs zz(where both
the real and imaginary parts of the amplitudes FN and Fs
have phehomenological bounds) goes to the circumference of
an unitary circle:

V=v(eie), v(z=zz)= -1 » (3.3.8)
and finally the high-energy region 2>z, goes to the cut

-1<v<O0 in order that when z-»00,v—0 like:

_ 2
T L e | DA - e L 0 SO D)
4z ; 4z 16s2

The mapping is shown in fig.9.

The union of the regions[-l,Q]and[vl,ljis denoted
by I. If P(v) and Q(v) are two real analytic functions, one
can construct a function Ltv) which is real and analytic in

the unit disc and bounded on its boundary:

L(v)=v] P(V)Fy(V)+Q(v) F_(v)] . (3.3.10)
Now,if v=0 we have corresponding point infinity
in the s-plane. The Froissart-Martin bound for the ampli-
tudes can be written as
[L(v)| < const. Gﬁvrlog%vg ) as v~0 (3.3.11)
From (3.3.9) and (3.3.11) it follows that

L(0)=0.

For any point Vs inside the unit disc DV(O<QVd<v1),

we can write from Cauchy integral:

_1 L(v')dv'
L(VO)“zﬁ.EjgvgYVi =




1 0 1
s | T e eomey s ) ey e (s (v))]
=1 vy V'—vo
(2.3.12)
or L(vo)=Lo(vO)+LI(VO), ' (3.5.13)

where LO(VOJ and LI(VO) are the contributions of the circle
and the region I respectively. A; the absorptive parts of FN
and FS on I are ppsitive, it follows from (3.3.12) that the
contribution LI(VO)ZO or LI(VO)5;O according as P and Q>0 or
£0 respectively. In this sense,P and Q are not arbitrary.

The intermediate energy region,(experimental) is
on the circle and its contribution;Lo(vo), can be computed for
all such P and Q to a certain accuracy, accordingly one can :

calculate upper and lower bounds:

LM (v )<L (v) < LI‘O“(VO) | (3.3.14)

On combining the results (3. 3 13) and (3.3.14) we obtain
Bonnier's sum-rule inequalities for any to and Vo

o$t6$4,o<v63v

l:
L(vo);;Lg(vo) P,Q20 for all points on I (3.3.15)
L(vo)ngg(vo) ' P,Q< O for all points on I (%.3.15a)

They are true for any unphysical values,but tere is a focus on

the scattering lengths.

-

——

=]
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3.4 BOUNDS ON THE SCATTERING LENGTHS.

The S-wave scattering lengths for I=0,2 are

ao=fg(4)=F°(4,o,0) (3.4.1)
a2=fi=P2(4,O,O) with s<u symmetry. For old bounds.with the
choice to=0,w0=vl,we have the combinations
0 2
FN(vl)sF (4,0)+2F (4,O)=ao+2a2 (2.4.2)
Fs(vl):F1(4,O)+F2(4,O)=a2 (3.4.29

Then,we have bounds
- N
L(w_)=a v P(vi)+a,v, (Q(v i+2P(v,)) (34 .3)
Applying inequalities (3.3.15) on (3.4.3), we get information
about some combinations of a and a,. Equation (3.3.15)

needs PQ >0 on I and since v belongs to I as end point it is

1
impossible to bound a, alone, that would require LP(VI} Q(V )=0.
However, this is p0551b1e on a, [Tv1)=O,QFv1)=€}but then
Q(vl)=1 implies P,Q>0 on I which allows us to compute only
lower bounds. This is trué for a0+232. In this way we recover
here the lower bounds, already obtained by Common [30),Goebel
and Shawl[75 and Basdevant et al. [34. These lower bounds can
now be positive and optimized owing to the freedom allowed
in the weight functions P(v) and Q(v).
Now on applying s«<-»t crossing, we have a noticeable

improvement over the bounds . Chqosing to=4,v0=v(z=o)
(o<¢v <v1) we have the combinations of the amplitudes

Fy (V )=F° (O 4)+2F (0,8)= =F°(4, O)+2F (4,0)= B * Zaz (3. 4. 4)

F (v )= pl (o, 4)+F (0,4)= 2/3[-F (4,0)- v (4, é] —Z/S(a -a )
and the bound ' B 4 5)

L(w )= a v (P(v_)+2/3.Q(v_))+2a,v (P(v )-3Vo)) I
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As VO do not belong to I, the values of P and Q at v, can
now be prescribed independently of their required behaviour
on I. With the help of equation (3.4<6), we can compute upper
énd lower bounds for any linear combination of the scattering
lengths, and in particular for the scattering lengths themselves.
Bonnier [18) has selected to bound a

2a -5a, and a *2a
o) : o)

a
0’72?

with corresponding values of P(vo) and Q(vo).

2 2

To make choice of the weight functions.'P(v) and
Q(v),we can select a finite subset of the infinite set of polyno-
mials which give necessary and sufficient conditions for the
solutions of the  associated 'mdment problem',

1
By jo vig(v)dv + [ v'g(v) dv , n=0,1,2,....(3.4.7)
| Vv L e

-

with g(v) a non-negative function of v[76] .For the purpose,

Bonnier (18] has constructed §

P(V)= PR (M T (v-viy (v . (v—vk | (348
Jc e —<iyEdx (Vv
' (vo vb) (vo vp) K o P |
where v%=r% elep ,V;=r%e 19p,rp2:0, O(Gp<:IT'for all j 7 ;
k k ' (343
vps-l or vp;>1 for all k values ' 4-9)

Rp=l or v(v-vl)/vo(vo-vl) according to the sign of P(yo)

and Q(vo) and to the nature of the wanted bound. '
This parameterization (3.4.9) gives the most general
expression for a polynomial of fixed degree (=2J+K)submitted
to the constraints. The number and location of real and
complex zeros entering these representations are parameters
which are optimized to give the best bounds for a given set
of data. Bonnier has appiied MINUITL to obtain the extrema

of Lg(vo) and Lg(vo) with at most 48 parameters.




2.5 PHENOMENOLOGICAL INPUT.

Bonnier([1§ has pointed out that these types cof bounds,
M
L?(VO) and LO(Vo), can not be constructed from any set of

data. Firstly, they should fulfil the obvious constraints
L?(VO)<LL§(V0) | {3.5:1)
Secondly, the chosen data must satisfy the sum-rule inequa;
lity of Common[7ﬂ,satisfying.s++u crossing and positivity.
Thirdly, we can also add to these requirements some s<>t
crossing sum-rules for all ost6<4.

In the energy range 0.45 Gev <Ec.m.<£ 1.9Gev, the
main features of IT IT scattering agrec with the recent
analyses[?ﬂ. We can define the whole situation by a central
family of S,P,D,F phase shifts with assocated errors.
In order to cover the spreadlof the data,it 1s convenient
to select a scaling factor £ (0K E 1) such that the cent}al
family (E=0) is obfained,and E=1 gives the band of maximal
expanse. This B is not a measure of the errors in a given
analysis, but it is an estimate of the discrepancies between
various analyses. We can compute the lower and-upper
bounds on IT IT amplitudes,thereby,the bounds on the scattering
lengths for any fixed value of E. Phenomenologically,

the results with E=1 should only be taken with confidence.




(63

3.6 CONCLUSIONS AND REMARKS.

Bonnier (18] has selected three values of E(E= 0,3 andl.O).
The computed upper bounds on s-wave scattering lengths vary con-
siderably with three values of E and with different combinations
of the scattering lengths. However, the lower bounds remain
always small, in particular, for E=1 stay rather on a firm
basis. it has already been pointed out by Basdevant et al(35]
that they can increase considerably if some peculiar phase-shift
analysis of Estabrooks et al.7§ are used to rule out the Weinberg
values of the scattering lengths. On the contrary, this smallness
of the lower bounds in all cases weakens the phenomenological
interest of their present axiomatic values.

The uppér bounds for €=1 are weak and surprisingly
constraining for €= 0. Bonnier has suggested that in order to
obtain a better estimate of the scattering lengths one can
stay rather far from threshold (450 Mev), then one has to reduce
the errors.

It is a fortunate situation that on a definite
set of coherent data,Bonnier's method[18) yields a model-inde-

pendent measurement with true errors of scattering lengths.
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3.7 NEW UPPER BOUNDS ON THE TI TT S-WAVE SCATTERING LENGTHS.

3.8 Introduction.

Asymptotic bounds represent asymptotic properties
and it is difficult to settle at what energy asymptotics
really sets in. Therefore one can hardly over-emphasize the
importance of devising rigorous bounds on closed curves in the
comblex ﬁlane of the energy.

In this work we derive rigorous phenomenological
upper bounds on the s-wave TI TI scatteriné lengths. On defin-
ing a central family of S,P,D,F phase shifts with associated
errors in the energy range O.45Gev$ Ec.m. g 1.9gev, we use the
maximal amount of available experimental data as directly as
Apossible. Also, proper care is taken of the consistency of the
chosen phenomenology with general principles of unitarity,
.analyticity and crossing. As a result we have derived some new
upper bounds on the TI TI S-wave scattering lengths.

Starting from notation and normalization, sum-rule
inequalities are derived. The zeros of the TI TI scattering .
‘amplitudes and properties of analytic behaviour are discussed.

The expression for the upper bounds is derived in detail.

The bounds are computed in elastic(O.45Gévs Ec.m.sO.95Gev)

and in the broad energy (0.45Gev< Ec.m.<1.9Gev) regions from
TTOTLS_+TI°IT° and II+T19ﬁII+IIO interactions. A suitable
‘minimization program from NAG;routine manual is adopted to find
the minima of the bounds with respect to parameters,for different
combinations of TI TIT scattering lengths in the two regions.

We compare our results with .Bonnier's bounds[18] .The results

show . improvement over Bonnier's bounds. Finally,

we compare our results with BFP[SQ]mddel results.
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3.9 NOTATION AND NORMALIZATION.
The S-channel partial wave €xpansion of the s-channel

isospin (I) T amplitude reads (mII=c=h=l):
00

FOD (s, t,u)= 2 (21+1) £ (s) P (cosg ), (3.9.1)
where f (s)— (n1(5) 6216 (s) 1)/21PL5) (3.9.2)
p(s)=/—?[ (3.9.3)

JS= Ec.m. (2.9.4)

cosg,  =1+2%o/ (574) (3.9..5)

t —4mr12=4 | (2.9.6)

Partial wave amplitudes fi(s) for orbital angular momentum 1
and isospin I are related to the real phése—shift &i(s) and
elasticity—coefficient-ni(s) by equation (3.9 .2).

The scattering lengths are defined as

i : I 21 I .1
as= Lim _f(s)/k a =f (4) (3.9.7)
1 e 1 - o "0 :
where k is the c.m. 3-momentum:
k%= 1 (s-4) (3.9.8)

The s-wave scattering lengths are given by

ag=f (4)= Fl(4,0,0), 1=o0,2 (3.9.9)
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%.10 SUM RULE INEQUALITIES.

In the fbllowing we consider (t=to=4m%1=4) Tf‘TfL_+Tf T1°
and I1+IIB——9IT+IIO elastic amplitudes and the corresponding

s-wave scattering lengths:

F(s,4) = 1/3.(F%(s,4)+2F*(s,4)) = 1/3.(a,+2as) (3.10.1)
WS nore 1 5
%iﬁ%:ﬁw (s,4)+F7"(s,4) = 41/3.(ao-ax (3.10.2)

these s«su crossing are analytic functions in the complex z-

plane cut for z>1, where

2s+t -4m*. %
7= o 11 (3 .10.3)
. ,

+
4mI_1 to

On defining G(Z)EF(S,t% , it follows from the symmetry
of amplitudes (34v.1) and (3.90.2) under s<»u interchange that
G(z) is a real analytic function of z in the whole complex z-
plane cut from 1 to oo.

We then assume that‘on some part[sl,sg of the physical

region (4<s <sz), which through(3.10.3) is mapped onto[zl,zﬂ

1

(1<z <zz),the available data are sufficiently reliable to yield

1
upper and lower bounds on the real and imaginary parts of
amplitudes. We can use this information in a powerful way in

the framework of general principles.

First we introduce the mapping:

e ”E. ol ) with ADO0 . (%.10.4)

z-2,
We wish to map w=o to w=-o0o0 onto circumference of a unit disc D,
in v-plane such that the point zq goés to w=o in the w-plane,
and to v= 1 in the v-plane; the'point z, goes to w=-00 in the
w-plane, and to v=-1 in the v-plane. Also,the point z=o
should go to w= A(El)in the w-plane, and corresponding to

2
V=V (~1¢ VO<1) in the v-plane.




QA

We can express this mapping by

P ‘ (3.10.5)

fui B+/w ? Zl
o
where vV, ) (3.10.6)
B+ /A-&
x £3.10.7)
s B-l 3-100
Taking A= 22 /21 We have Vv =gia=— .
hence, p= 1%V, (3.10.8)
l-v0

Substituting these values of A,B,w and VO into (3.10.5), we

get
1+v 1+v z
.0 =[w 0 - /.72 (z-zy) (3.10.9)
1-v . 1-v Z1 ——:——_
V= 1+V0 lz'—z}
e ———
1-_Vo +/W_ liYO :/ z2 (z-zl)
5 i 1 )
1 Vo 21 z-z,

1+VO - 52(1—21 )
1-v, 1\ 1-z, _
(3.10.10)

(3.10.11)

The mappings are shown in figure 10.
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2.11 ZERO OF THE AMPLITUDE.

If G(O) >0 corresponding to the scattering length,we can
prove that G(z) has exactly one zero between z=o0 and z=-0p.
2

At a fixed t=to=4mIT—4, a dispersion relation for a scatter-

~ing amplitude (symmetric in s<»u) can be written in the form:

b 00
‘ 2 A (s',t )ds' ' '
F(s,t0)=g(t0)+ %T 5 7o . _22 Au(u ’to)du
4 s'Ys'-s) IT o
4 u (u'-u)
(3.1.1.. )
Introducing the variable 2
- 25+t0—4m{._I
4m* +to ’
IT
the right and left hand cuts may be folded to give
00
1 (z—zo) Im G(z') dz'
G(z)= G(zo) * T 7 R ( 311.2)
1 (zﬁz')(zﬁzo)
where Zg is a‘polé,as shown in figure 11.
1 1 '
or G(z)=G(z ) + = ' 1
Im G -
e] Hi 1 (Z ) (ZI_Z) L szv
(. 331.3)

As we have defined G(z)= F(s,4), ImG(z')= ImF(s,4) >0,where
1<z % oo0. Taking imaginary part of ( 311.3), we have

1 90
InG(z)= ImG(zo)+ figf ImG(z') Im(1/(z'-z))dz"'-
1

Qo0
1

ifT InG(z') Im (1/(2"20))dz' ( 321.4)

Now, In(1/ (2" -2))= In(1/((z" - (x+1y)) =Im((z ' ~-x+iy) A(z'~x-iy) (z'-x+i}
CIn((t-xriy) /(-0 Py D) ey (e o) Beydy . ( aasa)
InG(z,) = ImG(x+i0)=0 ' . ( 3.1.5b)
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L 1 z'+10 -X }
Im(z«"zo =L 2 (x*10) T M TGO (27X I0)

z'-x+i0 Or Im(l/(z'—zo))=0. { 331.5¢)
(z'-x)2+0

=Im

Putting the results ( 3il1.5a,b,c) into ( 311.4), we get

( 341.6)

1 ® Ly P
Im G(z)= 7 ‘5‘ Im G(z') (ZI_X)Z.{.yz
1

so, we see that Im G(z) is positive or negative as y 1s positive
or negative respectively:

y>0, Im G(zj) 0

y<0, Im G(z)<O
Therefore G(z) can only have zeros for z real, -oo<z<l1l,
Again,

60 1P mosn s sa

dz L1 zg"=z) ‘ S
As the denominator is always positive and Im G(z')> 0 for y»O0,
hence the integral is positive i.e.
gqgl>m ~00<z<1. (341.7¢)
z _ :

It is obvious that G(z) can have only one zero on the cut.

On the other hand, if G(z) has no zeros then

a0
1 _ 1 °j° Im(1/G(z")) dz' __ 1 j Im G(z')dz' O
ITI (z'-z) TI lG(z')lz(z'—z)
1

( 3.11.8)
As we are looking for upper bound to G(0) so we can assume

safely G(0)»O0,

Hence, G(z) has exactly one zero between z=0 and z=-00.
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Owing to our special mapping, we can define a function

G(z)=g(v), which has exactly one zero between Ll and P

at V=v1(say). Then we can construct a function

_ 1=¥, ¥
h(v)-g(V)[_?H’ | ( 341.9)

which has no zeros inside the circle.
Also, on the circumference of the circle |v=1, we have
Ih (V)= |g (v) | (. 3.1.10)
332 DOMAIN OF_ANALYTICITY OF THE FUNCTION.

We have defined the function

h(v)=gcv)[1“’1" ]

V-V
" 1 . 4
and this function h(v) has no zero inside the circle.

On the circumference of the unit circle, on which the experi-
mental region is mapped, fhe absolute values of the functions
h(v) and g(v) are the same:
|h(v)<g(v)] on Ivk1 | ( 3.2.1)
Furthermore, we take log of the function h(v), and introduce
a new function H(v) in its place
H(v)= logh(v) ( 342.2.)

As we have observed that h(v) has no zeros inside circle,the

new function H(v) has the same domain of analyticity i.e. the

cut circle D .
v




3.43 DERIVATION OF THE UPPER BOUND.

- *
On using Cauchy theorem forl?éxl ,keeping v constant ,
o

round the contour indicated in figure 10, we have

\4

: 00
= 1 1 '
do - ppfuener b e nomey
! ¥ R T _

0 el 1=V Vv ) (v V) :J (I-v'vi) (v V)

1 s

1 Disc H(v')dv' -
VT

*

*
It is to be noted that l_Vvo #0 inside or on circle, and ¥ Vo

- being real.

Taking v=vo which is real and introducing v'=el’< for the unit

circle, we can write (3.13.1) in the form

2 .
o L1~V ] 211 ; .
H(v,) = .[ H£¢1£} K g

1

21T -
K 3K
Vo) (e¥=v )

o (1-e

Vv

- 00
+ (1 Vo) j DiscH(v')dv'

21T 1 _ —_ -

1 (1-v vo)(v VO)
2 1 ,

* (1-v) Disc H(v')dv' . (343.2)

21T 1 _ . N

Vg (1 v'vo)(v Vo) ,

Now the real parts give

21T

: ¥
log|h(v )| = Re H(v )= (1'Vi3 j Re H(e¥) Re\ - :£ = aL
e (1-e1vo)(el-vo)

211
_ 0
21T :
2 . 1A
-(1_Vo) S Im H(eyﬁlm‘.e Y — dA
P | ple v,) (e"=v,)

21T
(343.3)

0
'{oo 5£—D;iscIT H(vlg dv'
) +'tfj clfv vo)(v—vo)

+ (l-v%}éﬂ:



As we are interested in the real parts, the integrand of the

second integral

Im el ; =0 (3.43.4)
(1"6"‘\/0) (exl_vo) 10,

over the 1limit of integration. The second integral over the

limit of integration vanishes and we have,

1ogtheM)| dX
1+V -2v cos»()

2 o0 '
+—(~%-%el[ B +j Disc Im H(v") dv'
-1 Ty (1-v'v0)(v'-vo')

{(333:5)

2 I
log| h(v ) = _o_ S
0

Now Im H(v'tie)= Arg h(v*ic) and at the beginning of the right

hand cut (V=VT-G), we have

h(v)=| 17V1V
g(v) >0, since g(v)>0. (343.6)
V=V
For v=v.+e +ie Jlwith  €>0 , Im h(v)>0 and Re h(v)>0 from

T
continuity so that IT/2)Argh(v)> O.
As Re(v) increases Reh(v) may change sign but Imh(v)>0 since
Img(v)>0, from unitarity condition:Im F(s,4)>0.
Therefore, TT 2> Argh(v+ iC—))O.b Similarly;for v=Rev-i¢,we have
O d>arg h(v)>-IT. Also, from reality of h(z), h(V+iC—)=h*(v-ic—),
then for the range l>V>VT,AI’g h(v+i¢) =-Argh(v-ie).
Therefore,K Disc Im H(v')= Arg h(v+ie)-Argh (v-i¢)=2Argh(v+i¢)
=2Arg"g(v4iG) ‘ (343.8a)

Hence, on the right hand cut, we can replace '

Disc ImH(v')=2Arg g(v+ic) (343.7)

Similarly, on the left hand cut of the Disc—DV (—1gv\<voo) we

have Disc Im H(v')=Arg h(v+ig. -Arg h(v-i¢ }=2Arg h(v+ic)
_._.,..J.(\H'lc) ‘\ [ +1e-
=2A1\rg {[ V+_lC -'\,1 — 8(\/ A )j

©
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or Disc Im H(v')=-2Arg g(v+ie) (3.13.8Db)
And on both cuts of the disc Dv’ we have
0L Arg g(v+ice)L TI, 4 (53.05.9)

since Im g(v+ie)>O0.

Now, substituting the results of Disc Im H(v') from (3.12.8a) and

(3.13.8b) into the second integrals of (3.13.5), .we have

Py .§°° +3'—1[Disc Im H(v')dvlf

(0] { '
T 211 =1 vV it VO) (v —.VO J
'voo 1
=(1-v2) j : J”z Azg g (v vie) dv. (3.13.10)
2 IT (-1 v ?El-v'vo)lv'—vo[

On the circumference of unitary circle:
log]h(el*ﬂ= 1og]g(erﬂ,but in the general case

log]h(vojl= lcg’[l_vlvo} g(vo){ (343.11)

-V
Vo 1

substituting (3.3.10) and (3.1311) in (34%.5), we get

log lr 1=viVo 1 g(v )| = (1-‘% ) j:r log | g(ei&)‘d"( +
/ v - } ° 2! 0
o 1

3]

1+ v —2vocosd~‘

LfArg g(v'+ic)dv'

g[?l—v'vo)lv'—vo[

T

+
™
|y
<
(yS)
L —
M<
g
+
<“~—ro

(323.12)
We have defined G(z)=F(s,tO)=F(s,4)=g(v),

so Arg g(v)= tan~1 { Im F(s,4) J (3.13.13)

Re F(s,4)

and on the circumference of-the circle

\eCe™S )= |Fs, 9 | (3.13.14)

Since the zero occurs between z=0 and z=-0o, we can write (3.12.12)

in the form:
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T
vz) (' L0G|g(e™ yax

1=
T (L+vg-2v cos«L)  *
0

y
)
L
4 1
(1-v ) S j Argg(v'+ic)dv'
(3.15.15)
IT _ vy

(lvv){v-v[

[«

Max Y ‘1

1
1=v;v o-ll

<
A
<
A
<
I

_— (343.16)
1-v.,vVv 1-v v
1 o0 0 00

Hence, we obtain the expression for the upper bound

"
T [1+vé-2vocos£]

2 .
: §~ A 143G dv!
+ (HVO)B S ]J re sviE) & 2 3.13.177 .
VTJE v'vo)!v'—vo] f




g(v)~—

(79a)

Later we w&ll try to improve our bounds by the replacement

=

gvl= g(v)+ i=o i+1(V-vo)1,where A.1 are arbitrary real para-
meters adjusted to give the best bounds.However,gl(v) may have
more zeros than g(v) in the unit circle. We will show that the
inequality (3.13.17) still holds when g(v) is replaced by gl(v).
We have to consider two interesting cases (i) if there are
(ii) if

N number of zeros introduced between Y=V, and Y=V ¥

there are Nl—pairs of complex conjugate zeros inside the circle

as well as N real zeros.

(i) Firstly,we suppose that gl(v) has N real zeros
between VEY, and VEV o 8L VEV Vo, Vayeeennn ceaVy (say). Then we
can construct a function

h(v)= g, (V) ﬁl{ i::iv ] | (3.13.18)

which has no zeros inside the circle and on the circumference

of the circle |vi=1,we have |h(v)| = [g(v).The function H(v)=log h(v)
has the same domain of analyticity as h(v) i.e. the cut circle DV.
Now Im H(v'+ie)=Arg h(v+ ie) and at the beginning of the right

hand cut (v=vT-e),we have

y Cye ﬁ;l{i::?v ng(vl>o, since we can assume g, (Vv)> o

otherwise we would lget a better bound.For v=vT+ etiec with e >o,

Im h(v) Do and Re h(v) >0 from continuity so that TI>Arg h(v+ie)y
On the left hand cut of the disc (-15vsgvoo) we have

Disc H(v)= Arg h(v+ie)-Arg h(v-ie)=2Arg h(v+ie)

N 1-v. (v+ie) ] .
- m 1 g, (v+ie)
2Arg§ [i=l Viie-v, 171
=(-1)" 2arg g, (v+ie) (3.13.19)
On the circumference of unitary circle log !h(ehﬁ)\= log ]gl(ehﬁﬂ >

while at V=V,

N 1-v.
log | = 1 - J g, (v )] (3.13.20)
og h(vo)l— log) P vy 1%V g | .

So,we can replace(3.13.12)by 0
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2. TI i
1 (1ov ) (1 log|gy(e™)dk
' +
log I{% 1-viVvo gl(V') . ,5
N ) TI 1+v 4 =2V _COSAK
i=l'v-vy ] . 0 0 0
v
+(1-vg)[ _g°°(-1)N+1Arg g, (v'+ie)av'
TI
-1 (l-v'vo)\v'-vo\
1 (v'+ie)dv'
tj‘ Arggy | ]
VT(l-v'vo) \v'-vol
< Max, \ {%w;vi }
or g(v_) el
107 voo<y1,v2,v3, ..... ,VN<VO 1-v, v,
TI
iRk
Exp (l-vg) S\ log\gl(e )\ +
' T # (1+vg —2vocbsﬁJ
v
+ __.(.1’-—-0V2) \T ('l)N‘Fl Arg g (v'+ig)dv' *
T +
21 (l—v'vo)\v'—vo‘
1 3 ]
. 1 Arg gl(v +ie)dv (3.13.21)
(1-v'v ) fv'-v |
Vi N
i (3.13.22*
Max . %’ Vo Vi = Yo™Voo
Now, Voo<v.,v,,v v, <we 1oy v 1-v Vv
: allale o linr. L N o io 00
Hence,we obtain the expression fgr the upper bound
g, (v )< “o~ Yoo JN Exp) (7o) T 10glg; (eask +
1" 0"~ 1-v_V
cinll L2 0 [1+vi -Zvoco&ﬁl
o N+ ' )
*(1'Vg) (-1) 1 Arg gl(v'+1e) dv'
T
! L
. 21 (1-v vo)]v vof
* Arg g (v'+ie)dv' ]

ve. (1-v'v )lv'-v ]
T 0 2 (3.13.23)
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N
Vv _-V S
If Ns1 ,f @ W < Vo Voo (3.13.24)
1-v_ v
1-v_ v s
00 O _
and (-1)N+} Arg gl(v'+ie).§ Arg gl(v'+ie), (3.13.25)

and consequently, we get lower value of the bound numerically.
As we are looking for the upper bound,the inequality (3.13.17)

holds when g(v) is replaced by gl(v).

(ii) If as well as the above real zeros gl(v) has N1

pairs of complex zeros Vi,Gi,i=N+1,N+2,........,N+N1,then we

. |
iV r11< 1-vyv ‘> (3.13.26)
v

construct the function,

<1

_ N1+N LY, v] {1-
BiLv)= gl(V) —rr V_Vi_J Lv—ﬁi ’ Vi

i=N+1

which has no zeros in the unit circle.

Now{_l-vifwil_viv is real positive when v real so that for
V—Vile-Vi |

-l1<v<v__ we again have
~ 00
disc H(v)= (-l)NZArg gl(v+ie) and for VT$V<<1

disc H(v)= 2Arg gl(v+ie).

1-v;v| | 1-v.v ]=1.

v—vilIv—ﬁi |

Also on the unit circle

So we can this time replace (3.13.12) by,

" . Ny +N [1-v, vgjg [ﬁ 1-V:vo | g (v)
—vivo TT 1" o
logj| TT 1=N+1 vo-vi// \\V .-y

i=] _—— // o 1
o i

v
2 00
Ca-vh T roglg (eak LoavB | b e e o
TT 1+vi—2vocos&: 1T _ll(l—v'vo),v'—vo ‘
Arg gl(v'+ie) dv' .
N (3.13.27)
(l-v'vo) \V'-VO\
VT
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Exponentiating and using- the fact that (v =v,) (vg=v ) &1

(1—Vivo)(1-viv0)
for all viinside unit circle, (3.13.23) again holds so that the

inequality (3.13.17) holds when g(v) is replaced by gl(v).
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3.14 NUMERICAL CALCULATIONS.

We calculate )g(clﬁﬁ=‘F(s,4ﬂ from phase shifts, and

IT

SO i _
loglg(e ﬁldx
g (1+v:-2vocos ) can be calculated.

Abovevs~2Gev ,Im F (s,4)>> Re F(s,4) so in this region

Arg g(v'+i¢ )~TII/2, and we can evaluate the integral

v ‘ ‘
J o Arg g(v'+ie) dv' by varying the arg F between
=1 (I-V'VO)[V'-V

ol

O to TII/2 in the high energy region (Js ~2Gev).

Finally, we need an estimate on upper bound for

| . = '
S Arg g(v'+ic)dv . . The amplitude can be expanded

Vo (1-v vo)]v —Yo\

in terms of partial waves in the two regions. In the region
' I 4)%]

Hence we can approximate the ratio

I I ' '
Im F" (s,4) ~ Im fo(s) (3.%#.1)

I ¢,9) :

Re F~ (s,4) = I 8

’ 1=o(21+1) Re fl(s) P1(1+§:Z——)
I
For certain isospin combinations, LimitRefl(S)
s—>4

(5_4)(21+1)/2

= £,>031=2,4,8,... (3.#.2)
We expect from Froissart-Gribov formula that'Refi(s);>O in

the range[500%F>s >4 for 1=2,4,8,....
: 0 (%, ;> 0, and hence

&y

Also,we assume F(4,0)= LO—

; Im £.(s) ‘ ’ |
Im F~(s,4) 7 ,4§s<[SOOMevJ €3.14.3)
I D .
Re F (s,4) Refo(s)
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1dI -

Now, f0(5)= 1/3{fg(s)+2f§(s)) and fi(s):;e © sindé and
D147 ,we expect the order £,(s)~1/3(£3(s)). Considering
- these results, we obtain the ratio
Im F(s,4) _ )
1 ’ <tan™l Im £0(5)
Re F(s,4) Re fg(s)
x4 (s) (3.H.4)

Looking at the data, it seems to be a good approximation to

Arg F (s,4)= tan

take dg(s)s IT/6 for 4sss(500Mev)2. Then in the low energy
region: 0L Arg F(s,4)< TI/6 and in the high energy region:
O<<Arg.F(s,4)$ IT/2 seem to be true. If one does not want to
ﬁake such ass@}tions rigorously,we can apply OsArgF(s,4)<IT,

and can get bound to

1
J Arg g(v'+ie) dv!
v
T
-y! -
(1-v'v ) |v vo\

Putting all these conclusions together, we can evaluate the

upper bounds on the s-wave scattering lengths:

1-v_ v

IT .
g(v )¢ Yo" Voo ]E)(p{(l%czﬂ i log |g(e™® Yok
00 O

[1+V€-2vocos£J

1
+ 2 (Yoo ‘\ 1] 3 ]
(1—vo ) j 4 Arg g(v'+ic)dy (3.45)
TT 1 o (l-v’vo)!v'—vol 9

T

T We define Arg F(s,4)=Arg g(v) =GR for computational purpose
and select the set of argumentsiGR=II/6,GR=II/%}#FR=TI/6,GR=I?},
«’LGR=I'I/2,GR=1T} and{GR=1'I,GR=Tl} according as {VEX)VIEVO,)KVI} for
the function g(v)=F(s,4).The above arguments suggest that OsArgF(s,§

<TI/6 do not apply to the case TI TI°~T1"TT° since in that case

the I=1 contributions to Re F(s,4) can be negative.




We replace
g(v)—g(v) * ALt %El Ai+l(v—vo) . =h(v) (3.14.6)
so that the central wave has the upper bound
|h(v)lsih (V)] +]ag(v)] (3.%7)
The first expansion coefficient Alshould be selected to
give an upper bound | g(v ) +A1|$ M(A;), and
0¢g (v JSM(A,)-A] -
The amplitude has a band of variation on the plot
of energy (E )against phase (do):

Fis,4)= F, 288, . (3.%.3)
where FC corresponds to the central case with positive and
negative errors. The intregral over the bound involves
lots of internal panceliations,whichilead to stable upper
bounds.

In order to improve the upper bounds further ,we
include . . four coefficients to replace
g(eiy —y 8(V) A A, (Vv ) +AL (vev ) EeA, (vev )0 (3K
in (3.145). On the other hand, the arguments (GR) of the
amplitude are varied between sets:
iLGR=rI,GR=rI/z} and {_GR=IT,GR=1'T}ac‘cording as
§XOVI=v orX < VI§ respectively. The last set should give the
worst Values;whereas the first,set Should give the best
values. The set of arguments are selected accordingly. ‘
. We can not use the more restrictive bounds O<Arg g. (v'+ie)STI/6
in this case because the real part of gl(v) on the cﬁ% is modified

by the addition of a real polynomial.
We keep z., fixed at value corresponding to

1
¥5=450 Mev,and vary two parameters(vo and zz). This Z, is
varied from values corresponding toJs = 950 Mev to 1900Mev
at 160Mev intervals. Also, vois varied from vo=—0.9 to 0.5

at intervals 0.1. The first two coefficients Al and A2 are

varied from 0.05 to 1.0 at intervals 0.05;and -0.05 to -0.096

at intervals-0.05 respectively.

>
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To find the amplitudes by interpolation, we apply

inverse mapping:
B{w

VE Bdw =1 on unitary circle. (3.149)
or vB+ww =B-/w
1-v
or 7= (—) B
1+v 2 Z2-Z
w= | (1-v) B] =A. Z_Zl , ANO (3.1.10)
(1+v) 2 ,
‘AZ -WZ g‘-z Z -WZ _ Z]zz(l_w)
Hence z= 1 "2 o n 1 "2 -
R Z, _y | zyWzg
1
(2s+t_-4) )2 2 5 |
- o ' =(2s/8)" = (s/4)" ,t_=4. (3.%.11)
= o
4 + tg / 5 .
Zl= (51/4)1—’ 22= (52/4) (3.%.12)

. . ik 5 - .
$o,if we are given a v(e ) point on the unitary circle, we

have to follow the following order of calculations:

: LW .
(1) B= T v, (3.%.13a)
.. N 2
(ii) w-{%;x g} Cy= B (3.1.13b)
1+v ‘ B+/w
212, (1-w)
(iii) z= (3.1%13c)
Z,Wzq -
(4+to)f7" (t_-4)
o (3.H#.13d)

(ivl.s =
Z

(v) Given this s, we calculate the amplitude F(s,4)= G(Y)

by interpolation.
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- 3.15 UPPER BOUNDS IN THE ELASTIC REGION.

In order to include errors in phase shift
measurement,z:dl, we suppose that they are all correlated

to give error in total amplltude in the elastic region:
il (z.15 1)
Pl o s ]@d ,where dl are 1n'raglans 3

1=0,1 661

=z’,|621611 |Pl(cos@))lAd{[ (3.15’.2)
(=04

Taking the right combinations for T1°+11° > 17°%+11°

Hence,AF

scattering, we have error,
AF's (1/34F°+2/35AF2 ) = 1/346216 P, (COSG)HAAOH
+2/3|e Zldol \p (cos@)l(dd?)z e
Now, we replace
g (et "I Jg (V) +A *A, (Vv ) +AL (V-v ) Z4A s (VY 3 +eafr,
where ¢= 0,0.5 and 1. (345.4)

Consequently, we have

v -V (1-v%)
- 0 00 Exp . O
ANS1 _[- J {_—TT_—

1-v_ v ,
00 O .

log{(g(elA)+A1+A2(v—v0)+A3(v—vo)2+
+A4(v—vo)ﬁ+GAJ”} dK

oL—,q

2
(1+V0-2V0C0$<)

L2 (3.15.5)
o 'Vgo J EXP{( Vo) j’oo
(9)

T Arg g(v'+ic}) dv'
-1

(l—v'vo), v'-vol
(3.1576)

1 1 3~ 1
[ Vo Voo Y(lfvg) IR e "Z -
ANS 3= ] Exp (3.15.7)
VooV IT

(1"V'VO)IV"VJ

g(v, ) & FINANS. = ANS1+ANS2+ANS3 (3.45.8)

—
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So, equation (3.15.8) computes equation (3.145) to give
the uppér bounds in the elastic region (0.45 Gev<Ec.m.<0.95Gev),
For the funétion‘(3;6f4), we have 0<d<«IT for VT<V<1.

The data for central values and errors used,to
compute the bounds for the -real and imaginary parts of the
amplitude,are given in table 1[18] The phase shifts are
given in degrees and the inelasticities fulfil
sup { 0, u—Aq}quInf{l, n+ A"n\}..

The computational results of upper bounds are given
in table 2.

+ .
For I'I++1"IO———}IT +1Toscatter1ng, we take the

"combination F (os,r4°) = %LF1+F2]. If errors are correlated,
Arls 120,1 \e21dl\ | P, (cosg)ad,) (3457.9)

AFl___leZidi P, (cosQ)|(sd] )

. ¢2
AF%= \82160 PO(COS@‘ Q_\dg)

, o1 i g2
. AF'= %(AFl’f AFZ) = 3le 161 Pl(cos%)M‘Jr%Ie 160 Po(cos%)!@do)

(3.15.10)
The amplitude should be successively replaced by |
FW*T(\?—;TI\J‘{*)H“E g(eidq ) .
\g(el’/\)l-———> tg(v)+Al+A2(v—vo) +A3(v—vo)2+A4(v-vo) 3( +€AF’,
(3.15.11)
€=0,0.5 and 1.0. The computational results of upper bounds
are given in table3. The sets of arguments are il‘I,I‘I/Z}

and{I‘I,l’I} according a'S{(X> VO,X<vojfor this combination.




- Table 1

Ess™ | 0.45 lo.s |o.55 lo.6 |0.65 |o0.7 .75 lo.s lo.85 b.o  |0.95
62 |a0+9 |44r9 |s50+9 |58+9 |63+11 |70+11 ps+11 [82+11 [89+13 |97+14 [130+36
a2 17+ 3 |lot4 " 2+4  f14+S 1545|1645 [17#5 1847 |19+7 DO+7  [20%7
d | 3.5#1[6.5+1.510+1.5[15.5+1925+1.5|42+2 [15+2.5 [115+3.§140+25[150+2.5154+2.
Beeml 1.0 |1.os [1.20 1.2 f1.3 l1.4 [15 16 Ji7 1.8 .o
2 |180+60 [240+20| 250415270415 [290+15|312+15532+15 |358+15 |380+15 400+ 15405 +15
ng 025+02505+025| 07+025f 09+03 [095+03|095+03| 09+03 |085+03 |075+03p.7+03 jo.6+03
-d Rox7 2087|2147 |21+9 |2249 (22411 p3+11 P3+11 |24+15 p5+15 P5+1S
né 1 1 1 1 1 1 1 1 1 1 1
4t | 154+14157+10{159+10] 163+14165+11 [166+11167+11 168411 [169+11|169+11| 169+11
n& 1+0.151.0%01%095+01p0o55+150.94013085+15p.7+015/05 4015 085+01$1+015 [l+015
O |85 |1246 |17+6 h2+10 100+13|142+11|157+11| 160+11160+11{160+11] 160+11
nd | 1#0.2 | 1+0.2|1.0t02| 0.94020.65+090.75+0f 082+0fg + o [0.9+0.30,, o | e, 0o
a1 | 153 f1#3 23 2+3 | 3¢5 443 |6+3 | lo#3 |5+3  1-10+3 | -833
nl |1+0.5| 1#0.5({1+0.5 [120.5 | 1+0.5 [1+0.5 0.92+05 o d o N o o os

(98)
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TABLE 2:
Funct. YIS Vo A A, | A, Pppper Bounds (Minimump
T1/612 0.172 0.7595
TI,TTA 0.088 11.73
T1/61T|0.235 1.0476
TIT,TT |0.088 14.74
W P TU6,TH 0.171 0.847

3 IT,T72|0.087 13.08

+ 176, T1[0.17 1.064

5 TI,T1 |o0.087 16.44

= TI6T12) 0.085 0.935

i 1.ILIT/2] 0.089 14.43

é‘o TI/6IT | 0.085 1.174
o ﬁ,ﬂ 0.089 18.13
5‘2 b [1T,772| 0.108 |-0.039 |-0.472 3.0770940
I IT,TT | 0.1089-0.039|-0.472 3.8661006
= : _

v | 0.8IT,7T72{0.532 |0.091 [-0.769 5.0187147
;ﬁ.\?_ TT,JT | 0.532 [0.091 [-0.769 6.3055740
i_ LOIT, 172 0.532 |0.0861]-0.766 6.5502428
%.w TI,TT | 0.532 [0.086 [-0.767 8.2298045
%% II,I_I/”O.loo -0,031] ~0,4770.,00689 2,9330533
;j;j; ITT,IT lo.,loo !-0.,031 -0.47%0.0069| 3.6848775
« o
%3 |o.5L,I¥20.463 l0.083 | -0.6940.051 | 5.0462178
?;“ﬂ I, IT l0.517 10.092 | -0.759 0.019] 6,2955831
i 1. ofTs T2 [0.5199/0.088 | -0.75§ 0.0114 6.5478322
9.3_? IT,TT [0.5199|0.088 F0.757 |0.0114| 8.2267758
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TABLE 2 (CONTINUED):
XWI:GR;d Vo Al A2 3 A4 Upper Bounds.
Funct| € . (D
R s R (Minimum)
L &1,11/20.098 -0.031| -0.4710.00689-0.0009 [3.0566328
S 2 . >
33
r T1,TT |0.098 |-0.031f -0.4710.0689-0.0009|3.8374145
<3
+ 31
zig% .5T1,T1/40.144 |0.065 F0.639 |0.1398(-0.163 [4.1947098
<«
ot Y
T T TT1,TT (0.144 [0.065 F0.639 |0.1398-0.16295.2702844
5 T [1,11/40.144 [0.067 F0.637 [0.141 |-0.161 |5.8221501
= 1,71 |0.14 [0.067 }0.637 |0.141 [-0.161 [7.315099
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Table 3: (Set of arguments:%>¥{1GR=TI,I'I/Z )
<Vl GR=TT,IT
Function € | v A A A A Upper bounds
° 1 é 3 4 (Minimun)_.
0 [O0.T0 8.7950186
U.ToT 11.050168
- 0.5[0.101 B [9.7196570
S TTol — 1Z.2TI895
L mEsp—— 5 = - i s
.E lg. o[ 9+ 10T 10.600076
o
o0 0.101 13.318064
. 0 0.423910.0799]-0.269 9.3249948
—
< 0.42  10.079 |-0.269 11.716036
~ 1551
> ¢ ]0.5.0.464[-0.094!-0.318 12.093706
f o 0.464 |-0,0939 -0318 15.194679
1 .
< 2 [1.00.568 J-0028 |-0.459 14.392596
~— o~
8 < 0.568 |-00278(-0,459 118.083038
fNNL Jo 10.468 |00256 +04399 1.0304 3,2810942
~ o~
< .0 0.468 [00256 +0.4399| 0.0305 4,1093775
~ 1 ¥,
Z 2 ]0.5.0.531[0.093 |-1.166| 1,082 6.8624974
T 3 0.53110.093 |-1.166/1.080 8.622125
h 1 © _"l1.0
HL B 0.52410.154 |-1.28311,222 8.7712799
~— -3 q
2 >~ 4 p.s2z lgisg 1.1.2771.213 11.020651
S, 0 0.025 0.081 $0.264 | 0.0008/3 -00043, 9.7238868
+ N -
< oY b.025 [0.081 |-0.264p.0008 |-0.002% 12.217233
+ RO
® 5 . |0.5]0.310(0.158 |-1.008|1.164 | -0565|5.6873326
La 1 :
p < ~,| P.3105(0.143 [-1.094]|1.146 -0.565|7.1331543
~ ~_ 7~
¢ °L | 1.D,0.649 0.198|-1.748/1.586 [0.918 |8.4311597
0 [
- >
= O < | P.649 {0.200 |-1.749|1.589 j0.919 [10.584160
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3,16 UPPER BOUNDS IN THE "BROAD ENERGY REGION®

In order to calculate the upper bounds in the energy
region(0.45 Gev<Ec.m.£1.9 Gev), we assume the errors to be

correlated for two combinations of amplitudes.

AF(x;)= . N |AX; l|'5f | ‘ (3.16.1)
I
so, faFi %o( /(s-4))2 (21+1){ ie2d1 ] /21.p L)
1 I
or ’aFI g (s/(s-4))% (2 1+1)nl 6216 .P (x), (3.16.2)
~1I  1=0
od; 2

2m
where X= (1+4.~—g— ).
‘ s-4mI_I

I jgo 5Y(21+1) e2141) 125 b ( %3
similarly,? = =l /2i.P)(x) (3.2.3)

I
’c)nl

Putting the results (3.162) and (3.%.3) into (3.1.1), we have

(0, 0) 1 |
AFL = (s/(s-4)* (21+1)[{n§ e21lel{x) .Adil

T
y 2id; An] Py (x)] (3.16.4)

21

Now AF's (1/3.8F° +2/3.AF?) for IT°Ti®—> TI°TT°

2id° |
- _ 1 o 2id° e “ 0
1/3. (s/(s-4)) {ﬂ“o e OA&g\ v - Ano\]Po(x)
216O '
€
+5[|ng eZIdZAd [ + I————zl AnZl]P (X)}
. ' . 42
- 2id 3
+2/3.(s/(54)) !Lz Zl‘fAdZw LI PR
° 2i
3.5%.5)




(91)

And for TT'T1°—T1T 1T° scattering,
AF'=}(aFl+nF? ) 2
e2161

1 . 1
=l (s/(s—4)5{ 5 I 2141, t|lr—Angl [P 00+

.|
., 21 2id 1

+7[ln§ ezldSAéy a 9__?_____3_An3l]1>3 (x) +

71 B

Zidg

. (2 e
+[]n(2) ezldo Adil + ————ATLZD PO (X)}J
2i °

(3.16.6)

In the elastic region,we assume m=1 and the partial wave

amplitudes are calculatedd y
3o idi(s) .o fI
f{(s)= (s/(s-4)) e’ 1 .51ndl($), (3.16.7)

whereas in the inelastic region we use equation (3.9.1)

and (3.9.2). On calculating amplitudes in .the respective
regions, we apply the same mapping and the expression (3.4.5)
to calculate upper bounds on s-wave scattering lengths in

the broad energy region with &= 0,0.5,1.0. Errors (3.%.5)
and (3.16.6) are taken into due consideration. The results

are given in tables 4 and 5.
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Funct|{€& XWI:GR; Vo Al A2 A3 A4 Upper Bounds
¥l s GRe (Minimum.)
0 H/(»,H/fo.zss 0.9904
TT,T1/0.236 14.7303
6,71/0.112 1.163
TT,TT [0.236 15.5811
0.'5[TT6, T720.112 1.099
W I1,T7/2[0.112 16.35
Z 6,TT[0.113 2.43
; IT,TT [0.112 17.29
> 1.0076,I720.224 4.1759
= IT,T72]0.112 17.49
7; TT/6,TT[0.224 4.242
& TT,TT |0.112 ' - 118.50
§ O |IT,I¥2]0.123 [0.005 }0.479 3.73156
f TI,IT [0.123 |0.0052| -0.479 3.9471
:‘,;\LL 0.5/T, 112 [0.111 |0.0067] -0.475 4.3402
e IT,IT |0.111 |0.0067-0.475 4.5909
&f* 1.0r1,172[0.111 |0.0068F0.475 4.7302
= IT,IT [0.111 [0.0067-0.475 5.0034
;tf’;? 0O |IT,I72[0.102 |-0.019}-0.482 |0.012 3.8445
53 1,17 |0.101 |-0.019F0.482 [0.012 4.06661
z_;;:\ 0.5[[T,T72/0.101 |-0.020-0.482 |0.010 4.6501
i%\m IT, TT[0.101 |-0.020-0.482 [0.010 | 4.9187
;j;i 1.00T,TT2|0.101 [-0.020F0.481 [0.010 4.8753
& IT,IT |0.101 |[-0.020-0.481 |0.010 5.1569
S
ge
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TABLE 4 (CONTINUED):

X>VI:GR,==
Funct |G v A A A A Upper bounds.

XVI:GRt © . 2 . &

(minimum. )

2% ,
3= 0 H,I’YZ 0.108 | -0.019 -0.4840.012 }0.003 | 3.7461
>
<3 A
+ = TT,7T |10.108 | -0.019 -0.4830.012 ] 0.003 | 3.9625
<
_‘t‘:?\. 0.9T1,T72/0.113 | -0.0203-0.481]0.010 |0.006 | 4.53618
=W
;féff IT,IT [0.113 | -0.02¢-0.481[0.010 [0.006 | 4.7982
-+
3 1.QT1,I72|0.112 +0.020[-0.481]0.010 |0.005 | 4.98216
g IT,IT [(0.112 0.020 |-0.481}0.010 | 0.005 | 5.26993
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Table 5:
Functi g lysvi:l v (A, | A, [ A A Upper bounds
GR=, o) 1 2 3 4 el
éﬁ!l: ( 1§}mum).
‘%1. 0 [T ™2]06099 10.096549
T [T, T 10099 10.679722
5«5 D5 [T, T72]0. 11 I1.115231
0 [T, {01 1T, 757243
¥ 1 [T, 17200 112 | 11.898474
&~ 0L 1T 12.585673 ]
X O, W,l0078 |0.153-0257 [ 7.1247006
“EL T, 0078 |0.153-0257 7.5362216
g’lé bs | ™. 1/2]0077 [0.153-0257 7.9012722
T 7, 70 0077 {0.153-0257 8.3579170
isj ‘1 1|17, Tijg)oo78 [0.153-0257 8.4747998
g 1,7 0078 {0.153-0257% 8.9642957
&
L3 |0 T, W2{0077 |0.154-025700003 7.1711222
f;{\& .7 |0077 [0.154-025700003 7.5853239
5 23 ps | W2j0077 0.154-025700003 7.9918524
%"“+ T, {0077 10.154-025700003 8.4534586
_,3: 1| W.1,0076 |0.154-025700004 8.4901218
kS T, T {0076 [0.154{-025700004 8.9805088
%Ej 0| W W2]Q077 [0.154-025700001000027 7.0290661
ff‘i w7 10077 |0.154-025 700001000027 7.4350620
;gf DS | T,117210077 0. 154{-025 70000900002 7 7.8803580
The T, T {0077 |0.154-025700009000027 8.3355271
.g“ 1 “‘/W{z 0077 |0.154-0258000020.00002 8.4729797
= T 10076 10.154-02580000200002 8.9623751
Table 6_:
£=0 £=0.5 E=1.0
U.BJ 0.86 6.8 ‘ 12.2
a  L.B.| -0.07 -0.31 . -0.47
U.B. 0.60 2.65 | 4.5
a2 _L.Bl-0.02 =0.17 -0.27
U.BJ 1.71 17.2 32
Zao“SgiB' ~2.8 -9 -16
U.By 1.28 % 12.5
a0+2312c13- 0.1267 -0.12. | - _‘o_izmm |
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% 17 DISCUSSION OF RESULTS.

In the present work, we have adopted the main
features of TI IT scattering in the energy region 0.45Gevg
Ec.m.¢ 1.9 Gev,defining the same centfal family of S,P,D and
F phase shifts with associated errors. Furthermore, we have
also defined and multiplied the errors in the (A)elastic
region and in the (B) broad energy region by the same scaling
factor E (0<E<1 ) such that E=0 gives the central family
and £=1 gives the bands of maximal expanse. For any fixed
value of E , we compute the upper bounds of IT TT amplitudes
in the two regions of energy for 1°%+11°—T11°%+711° and

,TI+II°—+II+rointeractions. We have used Bonnier's[18]

-

normalization factor:
p(s)=[(s-4)/s] * (3.47.1)
In the elastic region for TIO+ITO_+IIO+IIo,we have
selected one third and two third combinations of amplitudes
for isospin zero and two respectively. For TS t+rr® N

we have taken half and half combinations of amplitudes for

isospins one and two.

For comparing the results,Bonnier's bounds[18] are given

in table 6. Numerical values(for differentivalues of E)

of thé bounds on ao,az,Zao-Sa2 and a0+2a2have been obtained
by him on using data(table 1). Bonnier's bounds[18] are
approximately linear with E (0¢E<1). Our results are to

be compared with the upper bounds on ao+2a2with different
values of €= 0,0.5 and 1.

,The bounds given in tables 385 are upper bounds for} (F1(0,4)+
F (Os4))=1/3~(30'32)fsee BeR:5)

3 it




(A) Elastic region (0.45Gev<Ec.m.£0.95Gev ):

T1%+11°%—T11°+11°%:In the beginning, we select same sets of
' (m, W2) & (7, m
arguments,namely (Iﬂ%jT/Z)} (IIQII)4 then we have > sets

of .arguments: (IT,IT/2) and (IT,IT).

The first set ,in the latter case,should give the best resdts
H

while the last one should give the maximum value. The minimum
is found at v0z0.08 consistently. Firstly,in the best case
of arguments (IT,IT/2) the numerical values of the bounds
are 11.73,13.08 and 14.43 for .E= 0,0.5 aﬁd 1 respectively.
In the worst case of arguments (IT,IT),the numerical values
are 14.74,16.44 and 18.13 for €= 0,0.5 and 1.0respectively,
which can be compared with Bonnier's result 12.5.

On expanding the total amplitude in terms of powers
of (v—vo) with the help of certain coefficients,like Ajand
AZ swe find lots of cancellations going on and finally it
leads to stable bounds. The numerical values of the bounds
drop to 3.077,5.019 and ¢.55 - corresponding to the set of
arguments (IT .,IT/2) and E= 0,0.5 and 1.0 respectively.
In the worst case , the numerical values are 3.866,6.306
and 8.229 which show considerable improvement over Bonnier's
result 12.5. On inclusion of more coéfficients of expansion,
the bounds improve a lot down to our numerical value 7.31
in the worst case of arguments, which shows a considerable

drop of 41.67/ as compared to Bonnier's value 12.5.
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T17+11S TI411°: We select same sets of afguments (,T/2) & (T7,70)

for this isoépin combination. We find that the numeri-

cal values of the ﬁpper bounds are 8.79,9.72 and 10.6 for

~ £=0,0.5 and 1.0 respectively with the argument(ii,II/2). The
minima are found consistently at VO=O.101. In the worst case
of arguments (IT,IT), the numerical values are 11.05,12.21 and
13.32 for, E=0,0.5 and 1.0 respectively. On inclusion of
coefficiénts of expansion for (v—vo),we have considerable
improvement over the previous numerical values of bounds,

down to our result 10.58 in the worst case of arguments with’
E=1.0,which is still lower than Bonnier's result[18].

(B) In the second part of this work,we have
selected the broad energy region with the same mappings and
.expression for the upper bound. The central family (E=0)
shows some increése in the values of upper bounds as compared
to our initial results in the elastic region. There is the.
reverse case with other values of E,the bounds improve as
compared to corresponding cases in pure elastic region.

It is a remarkable observation that minimum values of upper
bounds are found at VO#O.l in almost all cases of expansion
with different values of € (0,0.5,and 1.0)in this case;while
in the elastic region the minimum values of upper bounds are
found at values of L Varying from V0=O.08 to VO=O.53 in

different cases of power expansion of the amplitudes.

I1%+11°%—11°%711% 1In the beginning, we have selected foursets

of arguments (TWe, W3, (We, 1D, (W, W2)&(w,1m) ;and then two sets of
arguments _ : - (r1,11/2) and (II,II) are sele-
cted. In the case of central family (E=0),the numerical

values of upper bounds are 14.73,16.35 and 17.49 for the set

of arguments (IT,IT/2);while the numerical values for the set
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of arguments (IT,II) are 15.58,17.29 and 18.50.

On inclusion of different power expansion of (v-vo)in
terms of coefficients,the bounds improve a lotand the best
value is 373 at VO=O.113,A1= 0.005,A2='O.479

after minimization;while the worst value is 5.269
=~0,481,A,= 001 and A,~0,005.

1 2 <] 4
Both results show great improvement over Bonnier's results.

at v_=0.112,A.=-0.020,A
O

+ +
TT IT°——11 11°: We have selected samesets of arguments

of the amplitude for this combination: (T, TI/2) & (07,T0),
In the former case,we have numerical.values of the bounds
10.09,11.415 and 11.898 for €=0,0.5 and 1.0 respectively;
whereas in the latter case of arguments their values are 10.679
11.757 and 12.586'respeétive1y. They.show considerable improve-
ment over the corresponding results in the elastic region.

On inclusion of the power series in (v-vo) with
four coefficients,we get the best numerical values 7.029,
7.880 and 8.473 for E=0,0.5,1;whereas in the case of arguments

(IT,TI) their values are 7.435,8.335,8.962 for E=0,0.5and

1.0 respectively on minimization. All these results show

much more improvement over previous results.
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3.1%CONCLUSIONS.

We find that all values of upper bounds,given in
tables (2,3,4,and5),depend strongly on E and the set of
arguments used. The best values of upper bounds on
s-wave scattering lengths are obtained for E=0 and arguments
(Ir1/6,11/2) or (IT1,I1/2)

_;whereas the worst upper bounds are
obtained for E=1 with arguments (IT,IT). On replacing
g(ei£)= F(s,4) by a power series in (V—vo), the integrals
over the upper bounds involve lots of internal cancellations
and lead to stable. upper bounds.

In the elastic region (0.45Gev & Ec.m.£0.95Gev),
the upper bounds get stabilised on intrddﬁction of coefficients

A,A,,A,,A, of the power series. There is much improvement

12529731
over Bonnier's[l&]results with same normalisation
factor in all cases of E-values.

On selecting broad energy region with the same
mappingand expression for upper bounds,the central family
(E=0) shows some deteriation. However,reverse is the ﬁase
with oler E_Values______bounds improve as compared to those
in the elastic region. The minima aré almost stable at
v, =0.1, except in few cases of E-values; whereas in pure
elastic region they are found at values of v, varying
from- VO=O.O8 to VO=O.53 under different conditions of
parameterization.

Finally, our method is model independent and it
gives new upper bounds on s-wave scattering lengths and

their any linear combinations,on defining central family

of S,P,D,F phase shifts with associated errors.
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We would like to compare our results with general s-wave

phenomenology based on BFP model[3C0] with the same normaliza-

tion factor.

Both Saclay and Berkeley data restrict the

isoscalar s-wave scattering length to the range

while

-0.05 ¢ ag <0.6,

the CM-EM1 phases require a8>0.15. The BFP model[30]

gives the following s-wave parameters for Saclay and CM-EM1
phase shifts,as shown in table 7:

Table 7:

Saelay CM-EM1

data: ! Aatas

5 ‘

ag a_ 3(§£230 ag aiﬁ '1/3.(a2+2a§)
-0.056| -0.108 -0.087 [[0.17 +0.066 | 0.013

0.16 | -0.037 0.029 0.31 -0.030] -0.083

0.30 | -0.006 0.096 |]0.40 -0.010 0.127

0.58 | 0.047 0.224]]0.59 ]0.028 | 0.178

From BFP model[30, it is apparent that

and

-0.087< 1/3. (a+2a’)< 0.224 for Saclay data
-0.083<1/3.(a%+2a2) < 0.178 for CM-EM1 data.

On the basis of our model,the best results

on s-wave scattering lengths in the (A)elastic and (B) broad

energy region are(with arquments (m fya) amd ¢ = 0)-

. : - o} 2 e "
(A) Elastic reglonzl/a,(ao+230)g'3.057v;vo—0.098,A1~—0.0312,

A,=-0.4709,A

A4=—O.OOQ9.

5=0.0063,
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(B) Broad Energy Region:l/S.(a0+2a2)$3.73,vo=0.123,A =0.005,

1
A,=-0,479,

2
On the other hand, the upper bounds on s-wave scattering
lengths with arguments (I1/6,IT/2) and €=0 are
(A) Elastic Region:l/S.(a0+2a2)$0.7595,vo=0.172
(B) Broad Energy Region:l/S.(a0+Zaz)5.0.9904,V0=O.235.
The upper bounds from BFP[30)models for Saclay and CM-EM1 data
are 0.224 and 0.178 respectively. As compared to BFP results from
Saclay and CM-EM1 data our bounds for arguments (IT/6,IT/2) with
€=0 are 3.39 and 4.27 times higher in the elastic region respect-
ively;while in the broad energy region our bounds are 4.42 and
5.56 times higher.
For IT+IT°—+II+IT°scattering,our bounds are higher with
the set of arguments (IT,II/2) and G=1:
(A)Elastic Region:l/S.(ao-az) §8.43,Vo=0.649,A1=0.198,A2=-1.748,
A;=1.586,A,=0.918.

3 4

(B) Broad Energy Region :1/3.(ao—a2)58.47,V0=O.O77,A1=O.154,A301%

» A3=O.OOOZ,

& : A,4=0.000002.
The corresponding upper bounds from BFgfédrhodels for Saclay
and CM-EM1 data are 1/3.(a0-a2)50.177 gnd 0.190 respectively.
As compared to these bounds our bounds are much higher in both
the elastic and broad energy regions. However,our model shows
closer bounds. to BFP results.

This method is model independent and is capable of

producing new class of upper bounds on s-wave IT IT scatteing

lengths and their linear combinat-ions,defining central family

of S,P,D and F phase shifts with assogated errors in the low

energy region.
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PART TWO
CHAPTER IV:T1T IT SUM-RULES AND PHASE SHIFT

SOLUTIONS IN THE INELASTIC REGION.

4.0.INTRODUCTION.

We can derive sumrules for pion-pion scattering
amplitudes using analyticity,crossing symmetry and rigorous
bounds. If they involve integrals only over physical
quantities ,they are called superconvergent. brdinarily,
superconvergent sum rules involve only absorptive parts of
amplitudes. WandersL7] superconvergent sum rules differ
from the simplest superconvergent relations because absorptive
parts as well as derivatives of absorptive parts with respect
to the momentum transfer appear in the integrals. On the

" basis of the three basic ingredients of the imaginary parts
of the partial wave amplitudes, Roskies[8] has derived inequ-
lities on integrals involving the low partial waves of elastic
1T°171° scattering in the physical region. The integrals
have been found sensitive only to thé low-energy region,and
they can be tested once we know a phase shift analysis.
Also, the relations can be used to discriminate between.
various proposed IIOTTOphase shifts. On expansidn of the
work,Roskies{8}has obtained sum rules involving the absorptive
parts of all partial waves for each isospin. Using these |
absorptive parts,we can re-obtain the sum rules as inequalities
involving integrals of the low partial-wave amplitudes which
are sensitive only to the low-energy region. Furthermore,
it is observed that the necessity for subtractions in the
dispersion relations impligs that no results can be obtained
for s and p waves. It has been proved by different authors
that two subtractions are necessary in IT TIT dispersion

relations. This is confirmed by axiomatic field theory[17].
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On the other hand,sum-rules on pseudoscalar meson-meson
scattering émplitudes in the physical region have been
studied by Grassberger[ 79] to show that a broad f is preferred
by sum rules which are derived from crossing and analyticity.
A class.of sum-rules dominated by the P,f,gpeson and the P
regge amplitude has emerged. Furthermore, Grassberger[79]
has obéerved that in the absence of the Pomeron,there is
perfect agreement if both the f and the g are as narrow as
given by Veneziano model,to some extent narrower than €Xxperi-
mentally observed;but on inclusion of the high-energy
contribution due to the Pomeron,one sees that the f must

be much broader to get .saturation.

Commonﬁaﬂ]has derived sum rule inequalities on the
fI IT scattering amplitudes from analyticity,s«su crossing
and positivity of these amplitudes,connecting the real and
imaginary parts of the amplitude in the energy region where
they may be calculated frbm phase-shift analysis,and they
do not require knowledge of these quantities at low'energies
or in the high energy region. These inequalities are abtained
by mapping the region,where the phase shifts are known |
experimentally,onto the circumference of the circle,while
the remaining parts of the physical cuts are mapped onto
cuts in this circle. They put constraints,over the forward
amplitude for the process IT T1°—TT'T1° and T1°11°->T11°TI¢
which are violated by the two solutions for the phase shifts
given by Estabrookﬂ?@L However, the fiolation,

'is found to be of the order of experimental errors,so neither
solution can be ruled out completely. The results are in
favour of solution 1,in agreement with I1 11" —I1°r1%nd

*
the behaviour of the amplitude at the S threshold.
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4.1 Description of sum-rule and sum-rule Inequalities.

We can write the sum-rules in the most general form
%? A(s,ti)Q(ti,tj,tk,s)ds =0 , (.4 .1)
J .
cyclic permutations
of i,j,k=1,2,3
where A(s,t) is the absorptive part of the II TI scattering
amplitude,Q is a known function of its arguments and [tﬂ$4m§r.
These types of sum rules have been derived by wanders[7]
and Roskies([8) from dispersion relations containing derivatives
of A(s,t).

On selecting'Seﬁu symmetric combinations of the
amplitudes for different isospins and transforming to the
symmetric variable z=(s—2m%T )2 and defining G(z)= F(s,0)
it follows that G{z) is a real analytic function of z in the
whole complex z-plane cut from 4m%1vto oo. Common[74] has

used the mapping for the sum-rule,

1 4
z—~v= [1+
“legta,l - 2= (21%25) o
(zl—zz) (zl—zz) (zljzz) (zl-zz)
1 T >
1+ +/1-
(23%23) 22 “(2372) 2
(29250 " 2172y 21°23 . L237%3)
(4:4.2)
where the region 214242, is mapped onto the circumference

of the unitary circle. The high energy region (zyz,) is

mapped ~onto the cut -1<v<0 and the low energy region 282

is mapped onto the cut V8V<l with Vd-—%z=4mr%
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If w)is chosen to be a polynomial, which is positive

for -1sv<0 and v_<v £1,one gets a sum-rule inequality:
<L o g y

T1
“Re j £e*®w(er®et®a0 30 .1 .3)
0

From this mapping,we can prove the convergence

Slm f(v+iB)w(v) dv ~ \[ A(s,0)ds as s—00,v—>0 (%1.4)
3
s .

There can be an infinite set of polynomials to test the
inequélity (4.1.3),but we should be sure about necessary
and sufficient conditions of the connected moment problem,
déscribed by equation (3.4.7) in chapter III.

Furthermore, if we know either Imf(v+iE€) on part of the
real axis ,or haye'a lower bound for it ;the inequality can
be improved: |

Imf(v+iE) 2 h(v) > 0, -LSV<V£<O
IT vy
ke j £ P ey an] - L hvTw (v dv. O, (4.1.5)
0

where h(v) is a known function like h(v)s Imf(v+i€)=A(s,0)

According to Commor74) ,the data of Estabrooks et all]80]
on IT IT phase shifts up tovs= 1.38Gev for their two solutions
(land 2) are normalised for I=0 s—wave t6 2/3,to (2/3.[5 for
the D-wave and I=1 P-wave to J3. The region 0.45Gev</s<£0.97

Gev(elastic) is mapped onto the circumference of the circle

in the complex v-plane with VO=O.7. There is an overall phase

ambiguity due to inelasticity, but the ambiguity is not large.

L
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For the process II++IIO—+TI++IIO, the inequality @&.1.5)
are
should be non-negative. TheyL§atisfied better by sclution 1

than by solution 2. More precisely, for the latter solution
many of conditions are violated by less than one standard
deviation. In the case of the process TT°+TT°——+TTO+IT?the
constraints are violated in a number of cases .by both solution 1
and solution 2 . This violation is always smaller than one
standard deviation in the former cése, whi;e in the latter case
some constraints are violated up to 1.5 standard deviations.

So, Common[74] observesthat solution 1 is more likely to be |
correct than solution 2,but we cannot rule out solution 2.

In this way , it has been found by Common([74] that this
violation of constraints is of the order of experimental error
so neither solution of Estabrooks[80)can be ruled out

completely.'
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4.2. INTRODUCTION.

In the present work, we derive sum-rule inequality
on TT+TT —>TT +T1 scattering amplitudes in the inelastic
region from analyticity and positivity of these amplitudes.
They connect the real and imaginary parts of the amplitude
in the region where they are calculated from phase shifts
analysis,and do not require knowledge of these quantities
at low energies or in the high energy region. We choose
a "polynomial,P(v),so that it has zeros at v=0  and ¥ ey
the point which corresponds to infinity in the complex
s-plane. It is arranged such that ImF(v)P(v) has a constant
sign from v=-1 to v=0 and v=v  to v=+1. The experimental
inelastic region,slssgs2 is mapped onto the unitary circle in
v-plane. As the phase shifts are known in the inelastic region
this information cankused in the sum rule. So,we need definite
sign of ImF(v)P(v) for -1l¢v<o and vdsv.SI.

The data from Estabrooks and Martin solutions

A,B,C,D[81] and Froggatt-Petersen[68,68a] are used to test
the sum-rule inequality. Furthermore,the EM-éolutions A,B,
C,D have been rotated by Common[8Z}in a special way,the
rotated data are also used to test the sum-rule inequality.
The local minimization progfams are used to find the minima
with respect to zeros and its parameterizations.
We consider the s«su crossing?f&?ariant amplitude:

If“g‘s‘_,O)=2/3.Fo(s,0)+l/3.F2(5,0)+F1(s,0), (4.2.1)

where PI(s,O) is the forward scattering amplitude in s-channel

with tdtal isotopic spin I. The forward scattering amplitudes

F(s,0) are analytic in the complex s-plane cut from 4m2TI to

oo and o to ~oco. We choose normalization such that

[0,
= (21+1)£1(s) P (cosQ), (4.2.2)

Fl(s ¢y=
213 LR

.
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f:Il(s)=(n§(s)62idi(~s)—1)/Zip(s) 8. (4.2-3)
UP(S)= (s/(s;4))% . We adopt natural units (c=ﬁﬁmri=1) in

our calculations.s,t,u are usual Mandelstam variables. If
IT+TT:phase shifts are known for a particular energy,s=Ec.m.,
then both the real and imaginary parts of Fi(s,O) can be
calculated. A set of sum rules ,which connect both real

and imaginary parts,are derived. On using the positivity

of A(s,0) in the experimental region (1.01Gev< Ec.m.g1.79Gev)
we deduce inequalities from these equalities by mapping the
region where the phase shifts are known onto the circumference
of a unitary circle,while mapping the remaining parts of the

physical cuts onto cuts in this circle.
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4.2 Derivation of sum-rule Inequalities.

On defining G(s)=F(s,0), it becomes analytic in = the
complex s-plane cuts,wheress=Ec.m. . If the phase shifts
for TIY TI~ scattering are known in the region S, 2525,
and s is transformed to the complex v-plaﬁe by |

[s-s
/s-s2 _ 1

s—pys =52 LI /51=1.01 Gev and/s,=1.79Gev,

535, "5 . 4 3, 1)
~%9 N |

such that s —m+v=—1,s=O—+v=O,J§=4m%T——+vo=O.0137,

1 2
s=oo—+voo=-0.2786. It maps the cut s-plane onto a cut

=>y=+],8

circle in the complex v-plane o%”unit radius,centre the
origin as ghown in figure 13. The region slsssgsz,where
both real and imaginary parts of the function G(s) are known,
is mapped onto the circumference of the circle. The high
energy region s 2s, is mapped onto the cut{g?g"voé and the
low energy energy region 4m§1ss <Sq is mapped onto the cut
vdsv:él,where ¥ is determined by the mapping and corresponds
to s=4mr% . The left hand cut -oogs < o-is mapped onto the
cut vodngso, as shown in figure 13.

The sum-rules are obtained by using the fact that if

P(v) is any function analytic in the cut circle, then

S f(P)P(v)dv=0 , (4.3.2)
C
where f(v)=G(s)=F(s,0). We consider the simplest case when

P(v) is a polynomial in v:



~
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o (v-vy) 4.3.3)
P(V)=v(v-v ) TT (v-v))(v-v2) IT - A
, jed P P™ kex V)
. 4]
where vJ=1’ elep (4.3.4a)
PP
Vj=rJ emieJ j >
p 'p P, r5 20, 0< 03<TI for all j (4 .3.4b)
k . k
vps-l oT vp%l for all k. 4-.3.4¢)
For computation,we have defined
j=N, 0z A, Vll;EVPK,rER (4. 3. 4d)

In our calculation,this parameterization gives the most
general expression for a polynomial of fixed degree E2J+K+1)
submitted to our constraints. The number and location
of real and complex ze;os entering fhese representations
are parameters,which are optimized to give the best results
for a given set of data.

Now,A(s,O)=Imf(s+iE,O) from unitarity for s.>4m2fT,
so Imf(v+i€) 20 for V05V$+1 and -1<v< 0. If we choose
P(v) to be a polynomial which has positive values for v ¢v<1
and -1<v<0, thenP.Imf(v+iE) becomes positive.

Then we have -
: 00
)elede -, [

-Re] T £(ei®p(et® Im £(v+iE)P(v) dv+

.

71
(o]
+‘\S Imf(v+iE) P(v)dv+
VOO

1
+f Imf(v+ig)P(v)dv  (4.3.5)

v
(o)

The right hand side integrals of (4.3.5) are positive so

that
T ie e io

_=Re J f(e” )P(e e

0

A

def > O (4.3.6)

————
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4.4 Convergence of s.

In the case of s=0,v=0 the right hand side of (4.3.5)
vanishes. For a small negative value  of v,we have to prove

the convergence

0
Vj~ Imf(v+iE)P(v)dv ~ J‘Aiéggl—ds ' 4.4.1)
00 s

For thathmf(v+iE)P(v')dv= fA(s,O)[P(v) av] 4
: ds

NJA(S’O)E'(V-VOO)QV—} ds as s—>o00

ds
@4.4.2)
The proof is given in the appendix:
0
S Inf(v+iE)P(v)dv ~ A(s,O)[v(v-voo) dv st
ds
v
(e, 0] .
3
NJA“’M[(; )st - (4.4.3)

From the results of Jin and Martin[jilthe,integrals
of (4.3.5) exist as s—o0o0 and that on the left hand side as

Lisadls PO In this way all the integrais of (4.3.5) exist.
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4.5 Numerical results.

The'EM[Sl}data is for TI+II—partia1 wave magnitudes (L)
and relative phase (év) in the inelastic region (1l.01Gevg¢JsE
1.79Gev). The amplltude is expressed by

@-—) R ‘ 1d
Bl oy LZ=O'L b b (cosg) 4.5.1)

The four solutions A,B,C,D are classified by the signs of the
imaginary parts of the first two zeros in the g region:
. 3
ZO (2L+1) Py (2) 1fL|e‘1¢’L =a IT,(z-z;) (4..5,2)
The phases are all relative to a 90° D-wave . The combination

of the signs of Im Zq and Im z, define the solutions; described

in chapter II:

Solution ' Sign of Im zq Sign of Im z£

A = ' =

B s - ’

G t ' (4.5.3)
D - + ]

The partial wave amplitudes (lL])are given at energy values 1.01,
1.03,1.05 Gev etc. by Martin. The phase shifts are interpolated
at energy values 1.01,1.03,1.05 Gev etc. Then we add to each
phase @D—QOO of EM[81) data.In this special way, Common[82]

has rotated EM data.

(A)ROTATED. DATA: )
%ﬁrinnnJLGHE‘ls expressed in the form

() (s, 1)= (:;/(5-4))Z{fo+ﬁfly§f2ﬁﬁff3§ , (4-.5-4)
where fO=Islei®5 .PO(COSQ) 1
£= 10 e20p P, (cost,)
£2 =|D!ei®D.PZ(cos%) 4
£~ |F| c“"f’P. P, (cos6;) (45.5)

~=an

CosOz 1+2t/(s-4) =1lfor t=0,forward scattering. _J
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Then,F*™) (s, 0)= (s/(s—4))%;s;eiQS.PO(¢OS@+J3ﬂ ei¢p.p1(cosqg+

i .
ik %.Pz(coses)d? | elQE.P3(COS%)}

(4.5.6)
If errors are _uncorrelated,we have
2 N 2 12
[f(xi)} = 2 jaxy R (x;) l .
i=1 (4.5.7)
0 X4 |
and '2 ) . 2 2 )
[AF(+—)(5,Oﬂ = (s/(s—d))hel¢5.Po(cos%ﬂ 4&&] * paie1¢s.Po(cos@H2.
2 +
|add

ﬂ@'ei¢p .P (cose)lz IMWZ +lf—|P\iei®
2
P (cosgj P¢J +5 ei¥p .p: (cos@nium|
2
IS 1Dl ie QD P, (cose)’ \AQ& 47 e1¢f p (cosdﬂqﬂ\ +

47 )Fliei¢f.P3(cosqﬂ-ﬁA¢ﬂ_}

. (4.5.8)
By defining F(+_)(s,0)sf(v), we have tested the sum-rule
inequality ] I ) )

Is-ReL%n f(eie)P(eie)eiedGJ +~£ 'Af(ele)HP(elO)i e >0

(4.5.9)
We define this equation for computational purpose:
FINANS=ANS1+ANS2, - (4-.5.10)

Fortran minimization programs are applied to find out the
minimum values of the integrals (4.5.9) with respect tb
parameterizations (4.3.3) and (4.3.4.a,b,c,d):

0% 1j<0.99, 0.01<ei TT-0.01 v;>l 01 or <-1.01 (4..5.11)
The rotated data are given in tables 8,9,10 and 11,the
computational results after local minimization with respect to

parameters are given in table 12.EM datal81i] are given in tables

13,14,153%16.
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(B) EM"S Unrotated Data:

Now, we use EM data for solutions A,B,C,D
to test the sum-rule inequality for TI'IT  scattering in the

inelastic region. If the errors are uncorrelated, then

N 2 5
[Af(xi)]2= Z \Axi\ (4.5.12)

i=1 ef(xi)

3xi

gives the square of the error in function f of X5 The

amplitude is expressed by

1
F(+“)(s,0)= (s/(s~4))2{fo+f3fi+f§f2tﬁf33 (4.5.13)

and the error is expressed by (4.5.12). The same program

is applied to get the minimum values bf integrals (4.6.9) with

respect to the parameterization. ‘The results are presented

in table 17.

(C)FP datal68,68a:

 We use FP DATA[68,68a] to test the sum-rule
inequlity (4.5.9). The forward amplitude has the combination:
F(+-)(s,0)= 2/3.F(9 (s,00+r D (s,0)+1/3.F(2) (s,0). (4. 5.14)

The corresponding errors are supposed to be uncorrelated:

(+- 2 2 1 2 2
arceio) | ¥ < ajoqanton 2 Aar 12 g p@)) (4.5.15)

The results correspond to smoother behaviour of partial -
waves for So’Do’Pl’Fl’SZ&DZ' "So" wave is out of unitary
circle from 1.23Gev to 1.37Gev of energy. However, DO wave
is completely inside the unitary circle. Similar is the situ-
ation with P1 and F1 waves.S2 and D2 arc confined to a very
small region of argand diagrams. The Scattering amplitude

F(+—)(s,0) has similar movement as in the published pape68,68a.




(115)

The data are presented in table 18. The results of test

for sum-rule inequality are given in table 19,and our phase

shift analysis in

the inelastic region are given in table 20.



Table 8:EM -solution A (Rotated by Common)

z'i”fs' st | & |tad |ip faip | 4|22 4 DA 1Dl |4, xadp | Il prAlRL | dp fAd
2 P

101963 [0.07 [80.1 |6.8 [0.40 |0.11 |151.5] 4.6 |0.40 | 0.05 |29.8 [0.0 [0.03 |0.0 |18.50]0.0
103p54 [0.06 |83.0 |6.5 | 0.32 |0.10 |146.9|4.2 |0.43 |0.05 |29.4 0.0 |0.05 [0.0 [16.70 |0.0
105Ps56(0.10 |88.3 |5.7 | 0.46 |0.10 |153.9] 4.5 |0.43 |0.04 p9.0 [|0.0 |0.03 |o.0 |14.8 ¢.0
107p71[0.06 |81.7 [7.1 0.35 |0.11 |150.1| 4.6 |0.42 |0.05 [1.0 |0.0 |0.04 |o0.0 |14.9 Jo.
1oohs1(009  |91.4 |5.4 |0.45 |0.10 |157.0|4.6 |0.50 |0.04 [33.0 0.0 |0.04 0.0 .14.7 |o.
f11bs1fo.10 [9z.4 .8 Jo.az [o.11 [156.0] 5.4 Jo.6s [0.05 Ps.z oo fo.os [0.0 |1, loo
113p450.16  [88.8 [12.8 |o.46 |0.15 h42.6 |14.2 |0.74 .03 [37.2 0.0 |0.05 |0.0 }13.2 0.0
115b64]0.10 |98.8 | 4.3 Jo.29 |o0.11 ha7.9 la.1 |o.69 |0.03 l0.0 lo.o |o.06° |0.0 f11.5 |o.0
117ps6| 0.10 |93.4 |s5.3 Jo.29 |o0.08 fh44.4 3.9 |o0.87 |o0.03 ks.2 |o.0 |o.06 |0.0 [11.6 0.0
119073{0.09 lol.8 4.7 |o.18 Jo.12 h39.1 |12.8 |o0.88 |0.04 0.4 |o.0 |o0.07 b. 10.3 |0.0
l121b64 [0.14 |97.9 Jio.4 [0.19 |0.20 h27.6 [33.5 |1.07 D.03 |s7.8 lo.0 .07 |o.0 |9.6 |o0.0
123p70]0.11 |107.2 | 9.3 o.23 |o.22 fi39.5 |27.8 |1.11 p.o3 [67.4 |o.0 p.08 |o0.0 9.3 0.0
125p64]0.13 |97.2 [17.3 |0.36 |0.24 |146.2]14.6 |1.26 p.0o3 |77.0 | 0.0 |0.09 |0.0 |7.6 0.0
127p62| 0.11 |102.6 19.6 [0.30 |0.22 p49.6 [23.0 |1.27 p.os [87.8 |o.o Jo.10 |o.0 {6.4 0.0




Table 8(Continued)

”ggv s frast | Ao |rade e rapr | d jradDe A d pady |'F fA'F'kF £4%
| 1.29 0.63 | ©:%% 1159.9 [10.2 | o.53 6.1 128 g x I 1.16 1 0.03 [98.6 lo.o 0.11 4 0.0 [5.8.0
131) 0.65 | ©.08 1155.6 114.8 0.40 |g.13 t8]. 5 | 150 1.19 | 0.03 [107.6 |o.o 6.12 lo.o 4.800.0
_ffS 0.67 | 6,13 [95.7 |18.1 | 0.32 |4.15 141.3)20-3 | 7,11 | 0.05 [114.8 jo.0 0.13 |o.0 [3.80.0
| 185 0.62 1 471 [116.6 [12.1 | 0.47 |,.12 180.0 9.3 w94l 0.08 |122.0 |0.0 0.14 |o.0  [4.6o.0!
P 157) 0541 15 |125.9 | 14.3 | 0.53 | 4,15 192.7110.0 | . a7] 0.05 |126.8 |o.0 0.11 |0.01 {487268]
39 08T | og |134-9 |9:5 | 0.60 |6.20 |, 0 4l10.4 | .ol 0.09 |131.6 |00 0.11 |0.02 1456351
14 0.53 | . 1132.5 124.8 | 0.41 |4 30 19130357 | 2ol 0.09 |134.2 |o.0 0.13 | 0.08 | g602 ’:3
143 0.571 .13 [132.6 [14.6 | 0.25 | o.06 160.4] 9-9° o.78] 0.08 [134.6 |o.o0 0.23}0.07 |4 4151}
h"}AS 0.33| .11 |137.7 119.1 | 0.23 | 5,06 152.9 | 46.9 0.72| 0.08 {135.0 |o0.0 0.27 { 0.06 234]5Q
17; 0-471 5,12 |127-5 [18.0 | 0.45 | 5,15 | 100 ol 10.0 | .51 0.06 [135.4 |o.0 0.17 | 0.04 15352292
149 0.341 19 |144.8 |37.4 | 0.47 | 4,27 199 . o] 20.0 0.55| 0.14 1135.8 |o.0 0.16 | 0.03 [-339Z01
151 ©.36) .. 1132.8 |27.2 | 0.23 | 5.09 174.91 33.4 6.59 0.07 |136.4 |o0.0 0.27{ 0.05 |9.3106
153 0.33 o 1 139.7 | 22.1 0.28 | 0.05 162.4 25.5 6.59 ©0.07 |137.2 Jo.0 0.32[ 0.05 5o 4 5.9
154 .36 e 132.7 | 13.7 | 0.30 | 0.05 134.4] 18.6 g 0.09 |138.0 0.0 0.39| 0.04 B6.243
157 0.46 0.461134.3 | 1o.0 0426 | 5.0l 147.3| 14.4 0.62 0.13 | 140.0 ] 3.4 0.42| 0.03 §13l0.0
159 ©0.421 5,42{130.2 | 13.2 | 0.25 | .05 139.5| 29.0| 0.57 | 4,12 | 142.0 3.9 0.45| 0.04 {4690.0
lfﬂ[ 0.391 ,39/129.9 | 10.3 | 0.33 ] .03 1595 9-3 | 64 | o g |143.6 3.5 0.43| 0.03 |5170.9




Table §(continued)

Mggv ise |l | dg o frade L rapr | 6,0 [ra | De o pad ) dp kA dy (IFE O [EAIFL ) ﬁté&
1.63 0.38 0.15 ]124.4 { 10.6 0:29 0.06 134. 205 -39 0.11 144 .8 3.2 0.57 0.03 po.®».0
1.6 0.39 | 0.05 [123.3 8.5 0.29 |o0.03 |118.2 [ 12.4 lo.61 |0.13 |[146.0 2.4 0.64 lo0.03 59.70.0
1.67 o.40 0,13-1123.8 11.8 .25 0.06 139, 2540 61 o.lo 150.0 |3.7 0.60 0.03 [/470.0
1.69 o.40 o.13 | 124.9 13.2 |0.22 0.06 118. 28 .0 «55 0.13 154.0 |4.0 0.67 0.03 [70j0.0
Ll.?] 0.43 o.11 {124.0 16.1(0.23 0.06 144. 32.1 .58 o.lo 156.0 15 .9 0.64 0.03 961% o
1.73 o.4do 0«12 } 115,5,] 20.6}0.31 o.lo 153, 25 .0 «56 0.07 156 6.0 0.63 0.03 101% )
1.73 ©.37 0.11 117.8 20.8 jo.35 0.11 184. 16.5 49 0.08 156.0 (11.3 0.56 0.03 |118¢ 0-0
177 0538 o.o05 | 111,9 19.910.29 0.04 174 . 11.4 .54 011 155 5.3 0.55 o.04 1128 o.0
1.79 0.42 o.05 | 117.4 16.1]0.21 0.06 95 . 55.3 B3 0.06 154.4 (7.4 0.55 0.03 105;00

(81T1)




Table 9:EM -solution B (Rotated by Common)

“éfv}rsx | s d. *ad, P} tALPY é; A 6: ,inx +AD db kA iF ) jAJFl%% %ﬁé
1.01 ©:63 | o0.07/81.9 | 6.8 [0-40 |01l hes 3 14.6 Jo.40 |0.05 [1.6 | o.0 p.o3 | g r0do.d
103 064 | o 06/84.4 | 6.5 [932 |o.10 [148.3 (4.2 l0.43 |o0.05 Po.8 |o0.0 k.03 L. o  181]o.d
L od ©:56 | 0.10]89.3 | 5.7 [°+46 |o.10 |sa.o [4.5 [0.43 |o.04 Bo.o | 0.0 .03 .o -158|o0.d
Lo ©71 | o.06|81.5 | 7.1 |9-35 |o.11 [149.9 |4.6 0.42 |0.05 [50.8 [o0.0 lo.od o 147lo.q
') od 061 | 5.09]90.0 | 5.4 [9-45 |o.10 [155.6 | 4.6 [o0.50 [o0.04 [31.6 | 0.0 lo.od Lo  §33|o.c
.11 ©-81 ] .10/ 92.0.1 4.8 [°:42 [o.11 [155.6 |5.4 {0.65 |o0.03 |34.8 0.05 k.o 138 0.9
1.13 045 | o.16| 91.6 | 12.8 |0:46 | 5,15 |145.4 | 14.2 |0.74 |o0.03 {40.4 | 0.0 j0.05 Iy 5  [60|0.g
1.14% 0.64 o.lol 104.8| 4.3 0.29 0o.11 1[153. 4.1 0.69 0.03 (46.0 0. 0.06 0.0 175! 0.
{.17] ©:56 | 5.10{ 97.8 | 5.3 1©°:29 |o.08 [148.8 | 3.9 |0.87 |o0.03 [49.6 | 0.0 |0.06 |5 o lN6o|o.d
10 ©73 | c.09) 1o4.6] 4.7 |°-18 |o.12 [141.9 | 12.8 |0.88 |o.04 [53.2 | 0.0 oo oo  [3d|o0.c
L 210 064 | 5.14] 99.5 | 10.4 [©+19 | 5,20 |129.2 | 33.5 [1.07 |o0.03 |59.4 | 0.0 [0.07 |5.o [12]0.
1.23] ©:70 | .11 108.0| 9.3 [©:23 | o.22 |140.3 | 27.8 |1.11 | o0.03 [68.2 | 0.0 |0.08 |5 o  fiol]o.c
1.25] ©:75 | o.06 108.3| 8.7 {©°-19 |o.11 f117.1 | 30.1 |{1.23 | 0.03 |77.0 | 0.0 [0.09 |5 o [7.6l0.¢
1.270 071 | .10 114.1} 11.9 | ©:16 | 5,10 [93.3 | 40.1 [1.25 | 0.05 [85.4 | 0.0 lo.1lo |5, l4.0{0.0
1.291 ©:89 | o.07 128.5! 6.3 |©°21 | 0.10 {73.9 | 40.9 |1.10 | 0.06 [93.8 | 0.0 Jo.11 |55 |1.0/ 0.4
1.311 ©:76 | .08 128.5| 10.5| 949 | 0.16 |57.3 | 17.9 [ 1.13 | 0.03 |1l00.8 | ¢.0 [0.12 |50 |-2ob.o
;1_33‘ 067 0.0 125.5] 12 0.32 o.11 185.72 2.7 1.11 0.02 |106.4 0. 0.13 0.0 }—MD'OJ

(677)




Table 9 (comtinued) -

:r:"_ 151 e e L top |y frady D (sl dy pady |'F [sAIFL G drad]
1?55 0.72 | 0-11 [140.7 |, ¢ . 6.19 61.5 113.1 |o0.84 <|0.07 [112.0 | 0.0 ¢.14 lo.o 54 10.0
1.37) ©0.71 | 0.11 |138.5 |14.7 | 20 | 0.26 [77.0 [30.5 [0.86 |o0.05 [114.4 6.0 0.11 0.02  +664700
21.39[ 0.71 | 0.11 |144.6 |13.2 0.28 0.29 182.53 4o0.2 0.9 0.05 |[116.8 0.0 0.11 lo.02 -é@& 823
1.4 0.64 | 0.23 [141.6 | 19.9 0.5z | ©+25 [84.5 35.7 0.77 o.lo [119.4 0.0 0.11 jo.02 -61.3 {606
11.43 ©0.52 | 0.17 |{140.1[29.1 | _ ¢, | 0.30 |69.8 |24.5 |o0.67 |p.13 [122.2 | 0.0 | 0.23]0o.08 -9.4 (150
'1_45 ©.47 | 0.16 |150.4 |22.6 | c¢ | 0.25 |76.0 {16.2 |o0.57 }o0.13 125.0 } ©.0 0.27 Jo.o6 |, J157
1.4% 0.48 | 0.18 }143.2 | 31.0 | J 4; | 0.20 |80.0 |28.9 |o0.51 |o0.05 |lZ29.0 | 0.0 0.17 |o.02 < o426
1.49 0.51 | 0.14 [161.5 | 13.1 | _ 59 | 0.16 |1ol.6 |20.4 | 0.54 .| 0.06 |133,0 | 0.0 | 0.16j0.03 | 1311
1.51 ©.32 1 0.12 |168.0 | 26.1 |  ,c | 0.13 {88.1 |15.6 | 0.48 0.08 (136.2 | 0.0 0.27 l0.05 _2{127
1.59 ©.27 0.09 178.0 | 19.9 0.53 0.13 | 106.8 {11.0 0.43 o.lo |138.6 0.0 0.32 |0.03 s wld o
1.53 0.20| 0.08 |160.5 | 46.4 | ~ g | 0.12 |109.1|11.9 | 0.42 | 0.13 j141.0 | ©.0 0.39 10.04 34.47.1
1.57 0.14 | 0.09 |173.9 | 30.5 | _ 2z | 0.08 {120.6 | 1l0.6 | 0.32 | 0.14 [141.8 | 8.2 0.42 10.05 |s5440.0
1.58 0.12 | 0.07 [160.7 | 50.2 | _ 7 | 0.08 |114.0|6.7 | 0.35 | 0.15 |142.6 | 7.2 | ©0.45j0.04 |4340.0
1.6f o.1o| 0.07 | 160.5| 50.3 | _ 29 | 0.08 | 124.4] 7.3 0.38 | 0.14 |143.0 | 6.4 0.43 |o.04 49-70.0
1.65 0.09 | 0.15 }{99.6 4o.4 068 0.08 | 128.2 | 8.4 0.36 | 0.15 [143.0 | 7.2 0.57 |o.04 6290.0
1'6% o Y 85.1 45 .2 o 0.07 | 120.1] 6.7 0.35 0.17 |143.0 6.2 0. B8 0,03 59.40.0
1.67 01515 13 |68.7 | 32.9 |0.68 | 0.06| 144.0] 7.3 | 0.34 | 0.13 |144.6) L ©.03 [g1g0.0




9 (continueg)

‘gn +Afs) +ad, rAIp) ta‘d; IDt  |+aiDy IF + Fl
YRV

1.71 0.12 20 o7 8.3 O « 09 0.64 &5 - %

1 7# 0.12 21 1o 13.6 0.44 .1lo 0. 6% 0% "
11.74 0.13 20. 11 16.8 | 0.49 }o.08 0.56 0.03 11200.d
11,77 0.11 30. . 18 7 121.9 | 0.49 |o0.12 0.55 0.03
1,79 0.15 29. .31 24.1 | 0.35 jo.07 0.55 | ©0.03
|
§
i’"

- :
"

L.

§ |

:
|

(121)
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Table 10:EM-solution C(Rotated by Common)

‘E(I;'(I‘TV IS\ s | dg tad IP| +AIP) cfp YN cfp VIIDI +A|D| ch ba & |'F) *AlFl o LZLAOP
1.01] 0.63 |0.07 |81.9 16.8 45 40 1511 [153.3 | 4.6 |o.40 [0-05 [31.6 |o.0 |o.03 |©:© bozp.o0
1.03| 0.64 0.06 | 84.4 16.5 4 29 4.10 148.3 (4.2 .43 0.05 [30.8 & B 0.03 | 90 }4gqp-.0
1.05| 0.56 [©0.1o | 89.3 1 5.7 4 4¢ 0.lo0 |154.9 |4.5 0.43] 0.04 [30.0 lo.0 |o.03 |00 hggl.o0
11.07| 0.71 [©0.06 | 81.5 7.1 | 5 0.11 [149.9 4.6  |o.42 | o0.05 [30.8 |o.0 0.00 | 0.0 haslo.o
%1.09 0.61 |©0.09 [ 90.0 | 5.4 1 4l 15 155.6 |4.6 |o.50 | 0.04 [31.6 |o0.0 |o.o4 |00 lzalo.o0
1.11) 0.61 | 0.1o | 92.0 1 4.8 | 5 45 | 5,11 |155.6 |5.4 |o.65 | 0.03 |34.8 |o.o | o.05 | ©:0 hszglo.o 3
3_1~13 0.45 | 0.16 | 91.6 | 12.8 | 46 | .15 |145.4 | 22| 04 | 0.03 [40.4 0.0 |o.05 | ©© heolo-o] B
il.ls 0.64 |o0.lo | 10481 4.3 | 59 | .11 153.9 [*1 | 69 |o0.03 [46.0 0.0 |o0.06 | 90 h75le.o
21.17 0.56 | 0.1o | 97.0 | 5.3 | 99 | o 08 (148.0 |37 [5.87 [o0.03 [48.8 |00 | o.06 | ©° lh52ls.0
11.19) 0.73 | ©.09 | To3.op 47} g | 512 |140.3 [ 128 | g | 0.04 [51.6 |o.0 | o.07 | 0 h15|o.d
1.21) 0.64 o014 | 97.9 1 10:4 | 19 | 26 1127.6 |3° 1107 | 0.03 1578 |60 | o.07 | ©° D9.6lo.d
11.23 0.70 | 0-11 | 10720 9.3 | 53| 5,22 |139.5 | 278 |1 11 | o0.03 [67.4 [6.0 |o.08 | 0 lg.3]0.d
§1.25 0.64 | 0.13 | 97.2 | 17.3 | 36 | 5.24 {146.2 | %0 |1.2¢ | 0.03 [77.0 |o.0 0.09 | 99 17.6|0.d
El~27 0.62 | 0-11 | 103.41 19.6 | 551 .22 [150.4 | 23° |1 27 | 0.03 [88.6 |0.0 | o0.10 | ©° [7.2h.0
é1.29: 0.63 | 0.08 1138} logs 0.53 0.12 | 174.1 s 1.16 0.03 |100.2 |g.0 6.11 0.0 17 4L o
;l.SL 0.65 | 0.08 | 106.2\ 14.8 | o 4 | o 13{162.2 | 13" 1.19 0.03 [108.2 | 5.0 0.12 | ©° s.4b o
1.33 0.67 | 013 | 93.5 ) 1811 o 55 | 51511391 [ %% |1 97 [ o.0§ [112.6 |66 | o.15 | ©° l1.6] 0.4




Table 10 (continuegd)

’gf st x| dg drads e raipg | dy fra D be D} dy o fady VFE IFD G rad

.35 0.62 | o.11 | 111.6}12.1 047 6. 17 175.0(9.3 0.94 |o0.08 |117.0| 0.0 lo0.14 |o.0 J‘O-%.o
1.37] 054 o.10 1123,7(14.3 0.53 | 0.15 190.5(10.0 0.87 |o0.05 124 .6 0;6 0.11 |o0.01 Llgod268
1.39] @47 1 0.08 |135.5/9.5 |o.60 |o0.21 | 202.0[10.4 |, 79 |0.09 |132.2] 0.0 |0.11 |o0.02 l454 351
1,41 %23 0.20 | 134.1(24.8 | 0.41 |o0.30 | 192.9135.7 ¢ 29 |o0.09 135.8| 0.0 |0.13 |o.08 _15.%60-’3
11.43 ©37 | 0.38 | 133.4(14.6 | 0.25 |o0.06 | 161.2/9.9 0.78 |0.08 |135.4] 0.0 |0.25 |o0.07 lo.b151
%1 15| ©53 [ 0,12 | 137.7[19.1 | 0.23 | 0.06 | 152.9]46.9 s o | 6.l | 18501 e 028 |io.ubike bise
5:1.47 ©.46 | 0.42 | 135.9/70.5 | 0.44 | o0.41 | 188.8{58.2 | ¢ | o0.05 | 136.2| 0.0 | o0.17 | 0.02 | 35%289
i-l_il%‘ ©.51 | 0.15 | 108.8|21.5 | 0.29 | 0.28 | 168.1|54.0 | ¢4 |-0.05 | 137.4| 0.0 | 0.16 | 0.03 40678
r1.51 ©.50 | 0.09 | 105.4|23.3 0.17 | 0.06 109.3150.9 | J 55 | 0.09 | 138.6{ 0.0 | 0.27 | 0.05 fs 5144
1.53 ©+°° 1 0.07 | 103.4[19.5 | 0.28 | 0.10 | 93.1 |37.6 | 4o | 0.10 | 139.8] 0.0 | 0.32 | 0.05 b1 Lo.d
1.58 ©9% | 0.09°| 110.2]20.2 | 0.34 | 0.12 | 95.6 |29.8 | 40 | 0.14 | 141.0] 0.0 [ 0.39 | 0.08 l53g8!8.4
vil.S” 0.64 | 0,09 | 127.2]14.0 0.32 | 0.17 98.5 | 39.6 .39 0.15 143.8| 7.4 0.42 0.03 ls5glo.d
1.cd ©:59 1 0.07 | 120.1$9.0 0.33 | 0.06 | 98.0|14.0 0.39 | 0.20 | 146.6] 5.7 | 0.45 | 0.03 l1g6| 0.0
1.67 °°05 | 0o.lo | 115,9{11.8 | 0.32 | 0.10 | 107.0/ 37.4 | | 29 | 0.18 | 145.6] 6.2 | 0.43 | 0.04 |s24|0.d
1.63 ©:62| 0.08 | 121.2(8.9 0.37 | 0.11 | 93.9 [22.8 |, 25 | 0.20 | 140.8 11.3] 0.57 | 0.03 [s23] 0.4
1.6 ©-01| 0.07 | 114.4}8.5 0.41 | 0.09 77.5115.7 | 526 | 0.16 | 136.9 9.4 | 0.64 | 0.03 |54¢|0.9
g 1.6{ 0.64 0.06 134_3‘8.8 0.37 6. 11 96.7 } 21 .2 % 0.15 129.6 34.1| o.60 0.03 [gogl 0+ 9

ezt)




Table 10(Continued)

.,H‘ o RS d, +ad, ™ +A 1P| Jp +A pr DI [+AIDj ch ady |IF AN 8 | xa6;
1.69 0.60 | 0.05 |125.2 | 7.8 0.36 [0.08 [73.9 |16.2 21 is.12 [123.2]15.2 | 0.67 [0.03 |cgq oo
1.71 0.61 | 0.07 |150.6 | 9.7 0.35 lo.11 [96.5 |[24.3 J0.36 | ¢ l176.8135.2 | 0.64 |o0.03 Lodi 06
11.73 0.58 | 0.08 |156.7 | 12.4 | 0.36 |0.08 |113.4 |30.6 [0.33 |0 o 1354 ]35.5 | 0.63 [0.03 104 | 0o
21.75 0.54 0.06 | 143. 14.2 0.22 |0.05 133.4 | 48.1 .39 Sl 104; 23, 0.66 {0.03 |114g o
.77 0.54 | 0.11 |153.8 | 20.1 | 0.26 |0.14 |1lo4.1 [48.8 [0.42° | o 11044l 30.1 | 0.55 |o.04 N .
11.79 0.42 | 0.15 | 168.5 | 26.5 | 0.46 [0.15 |72.5 |47.5 [0.35 | ¢ |104.8!51.9 | 0.55 |o0.03 WO .

(4 7.1)




Table 11:EM-solutijon D(Rotated by Common)

‘i(r;ifv s st d +ad, | 1p1 +A1P] cfp’ +a d_ | 1DV |+aD) ch * A IF | +AIF i il
1.01] 0.63 [ 0.07 |81.9 6.8 o.40 |(o0.11 ['153.3 4.6 o B 0.05 | 31.6 | O- 0.03 0.0 [20310.4
1.c3] 0.64 | 0.06 {84.4 |6.5 0.32 o.lo |148.3|4.2 - 0.05 | 30.8 | O 0.03 o.o (1810.0
g1.03 0.56 o.lo {89.3 5.7 0.46 o.lo 154.9 | 4.5 0.4% 0.04 30.0 | O° 0.03 0.0 - [1580.0
'1.07] 0.71 0.06 {81.5 7.1 0.35 0.11 149.9 | 4.6 0.42 & . 685 25.8 | O 0.04 0.0 [147]0.g
i.o9 0.61 0.09 |90.0 5.4 0.45 o.lo 155.6 | 4.6 6.5 0.04 31.6 | O- 0.04 o.o [133p.o
1.1%70.61 o.1lo | 90.0 4.8 0.42 o.11 153.6 | 5.4 0.65 o.03 37.8 | ©O 0.05 0.0 1}8?-0
P1.13! 0.45 | 0.16 {85.6 | 12.8 |0.46 |0.15 |139.4|14.2 | o.74 | 0.03 | 34.4 | 0.0 [0.05 0.0 [loop.o
!1.15 0.64 | 0.10 |{94.8 | 4.3 [0.29 |o0.11 | 143.9 4 1 0.69 | 0.03 | 36.0| 0.0 [0-06 | 0.0 75 b.o
51.17 0.56 o.1o | 89.8 5.3 0.29 0.08 140.8 | 3.9 6.87 0.03 | 41.6 5 0.06 0.0 [8.0p.0
1.19 0.73 | 0.09 |98.6 | 4.7 {0.18 |o0.12 |135.9|12.8 | .88 | 0.04 | 47.2 | 0.0 |0.07 | 0.0 [7.1p.0
r1.21 o0.64 0.14 { 94.5 l1o.4 |©0-.19 ©:20 124.2 | 33,5 1.07 0.03 | 54.4 0. 0.07 o.o [6.2p.0
ii1.2: o.70 0,11 |} 1lo03. 9.3 0.23 0.22 135.3} 27.8 1.11 0.03 6%.2 O 0.08 o.0 P.lp.0
1.2 0.75 0.06 | 103. 8.7 0.19 0.11 112.1] 34.1 1.2%3 | 0.03 72.0] ©- 0.09 o.0 [2.6p.0
1.2% 0.71 o.lo | 108. 11.9 | ©0.16 o.lo | 87.9 | 40.1 1.25 | 0.05 So.n | Os o.lo 0.0 |-Il4b.o
ll 29 0.89 | o0.07 !122. 6.3 |0.21 |jo.lo | 68.1 } 40.9 | 1.10| 0.06 | 88.0| ©O- 0.11 o.o |=48p.o
1.3 0.76 0.08 | 123. lo0.5 | 0-.40 0.16 52.5 17.9 1.13 | 0.03 96 . 5 0. 0,12 o.0 |-68p.o
11.33 0.67 | o0.07 |123.1] 12,6 |©.32 | 0.11 | 77.8 | 37 6 | 1 17| o.02 | 104.4 ©-0 |0-13 0.0 |-70p.0

|

(g 1)




Table 11(Continued)

ﬁ?E\ st pas g rad bapr | rarpe ) 6y [ra d 1D Dl dy o pady [IFE(2aLF é& itaé
1.330.72 | 5.11 !140.7 l10.8 |©-54 ]0.19 [61.5 [13,1 10.84 15,07 [112.0]0.0 [©-14 [°-0 [S5.4.0
{l+37 Qsd L 0.11 | 747.7 |14.7 0.30 }0.26 [80.2 |[30.5 0.86 15.05 |117.6 | 0.0 0.11 [0.02 639,
11 z0l0.71 | 0,11 |151.013-2 [0-28 |0.20 |88.7 140.2 |0.79 |o.05 |123.2|4.o |O©-11 [0-02 p59q.
1 21 0.47 | 5,13 | 126.6 1249 |0.57 Jo0.14 |62.4 |11.6 0.73 |0.06 1127.8 | o.0 0.13 10.05 303
LL_43 0.40 | 0.17 |127.1130:2 067 |o.15 |63.7 18.4° | 062 |o.12 |151.4),0 |©-23 [0-07 La7] .
11.490.29 | 0.15 | 107,7./50:4 |0:77 |o0.12 |62.1 |16.6 | ©0.43 15,15 135.0 0.0 | ©:27 [0-90 73 |
§1A47 0.44 0.45 | 146.0|78+4 | ©0:45 j0.41 | 83.8 |56.1 0.51 | 0.06 |138.6/ 6.0 0.17 |o.02 508,
149 0:33 | o0.10133.1]23-0 [©-47 |o.04 | 78.9 |7.4 0.5 | .08 |142.2] 4.0 | ©-16 [0-02 L4771 o
1. 51 0.20 0.06 | 113.0 | 14+4 | 0.57 jo0.06 | 73.6 |11.0 ¢4l | 5. 07 145.2 o 0.27 j(o.06- Lgg -
l1.540.25 | o.07 | 77,4 |10.4 | ©.63 |0.06 | 80.6 5.6 0.27 | 5.06 | 147.6] 0.0 | ©-3% [0-0% 1m4y
él.SJ ' 0.07 | 96.4 | 15-1 0.66 | 0.06 97.% 4.9 0.26 5 .05 150.01 0.0 0.40 |0.03 g23 »
{ 1,5) 0.28 0.06 | 101.7 15.7 | 0.75 | 0.05 | 125.9]6.4 0.11 | 5.07 | 150.0] 30.6 | ©:43 [0-04 §74 s
gi;jﬁ o.11 0.07 | 167.8 60.5 0.67 | 0.08 121.416.7 0.33 | 5.15 150.0] 7.2 0.45 |o0.04 ¢10 L s
Tllé_ 0.36 | 0.08 | ¢z.1 | 14-3 | 072 | 0.05 | 95.6:/8.9 0.14 | 5,05 | 131.6] 14,5 | 043 [0-04 29|
L 6% 0.42 | 0.09]gg.2 | 14:2 | 0.65 0.08 | 117.9[12.1 | 0.06 | 5.07 | 94.8 | gg.1 | ©-57 |0-03 k35 N
| 1.6% ©:40 | 0.13] 4.1 | 14:9 | 067 0.07 | 110.3(11.7 | 0.04 | 5,03 | 58.0 | 100.9]| @64 [0-03 o2 |
i 1.6% 0.48 0.06 | 147 7 12.4 0;58 0.07 143.518.1 0:18 § 5 a8 58.4 | 20.0 0.60 {0.02 546 e

CxAD)




Table 11(continued)

(St +8|S| ds jAdg P} TALPY Jp +A ép Dy +4[D | db A db iFi +A[F] 5%- - ltad,
0.42 o.lo 115.6 15 .2 | 09.57 0.09] 153.4} 4, 0.19 lo.14 58.8 47.3 0.68 lo.03 10420 | o0
‘]Lo.SZ 0.06 1108.2 |1l4.0 0.42 0.08] 1l40.4 14.7 1 0.37 lo.06 62.0 12 .4 0.64 Jo0.03 9860 5.5
N o.06 {117.4 |17.3 0.35 0.09| 125.5| 271 51 0.39 lo.11 68 .0 21.0 0.63 |o.03 16358 1 o
6.54 | o.06 {113.8 | 13.9 0.22 0.05| 103.1 49.9 | 0.39 lo0.06 74 .0 23.1 0.56 {0.03 869 0 |o.o
0.53 | ©+09 [128.8 |25.2 | 0.22 | .07 114.90 69 5| o.45 [0.12 |80.4 |,y 5 | ©.55 [0:05 |y gp0 |
0.42 0.13 123.6. 43.4 0.20 0.25] 143.8 103.4 0.53 |o0.19 86.8 0.55 lo.o3

17.7 13660 | o.0




(128)

of sum-rule Inequality of EM'S Rotated solutions.

Table 12: Test
scIN, | R A VPK ANS 1 Ans 2| FINAN
A1 0.99 |o.0loc00122 1.0000000 20453 4.3329{ -4.712
2 0.99 [o.0lo00000 1.0000000 l
0.99 |o.0looo000 1.0174767 +90.2949 26.309¢63.986
3 0.99 [0.94988243 1.000094 -258.8537
0.99| o.0l00000 1.0000004
0.99] o.o0looo000 1.0000087 -258.8537[106.74F152.11p
B 1 0.5438 [0.015491386 1.0006006 -6.8938 2.4918| -4 .402
210.99 (o.0loo000 1.0000006 -95.3637 35.8037|-59.56
0.99 |o.o0loo0000 1.0047628
310.99 |o.0lo0000 1.0000005
0.99 |0.0140748 1.0000045
0.99 |o.0lo0000 1.0000005 -273.9860 151.1{?22.839
c |1 0.693 |0.0l00000 1.000000 -7.8839 3.6456| -4.238
Z2 Jjo.,99 0.0lo0000 1.0006153
0.99 |o.0loo0000 1.00000 -94.0818 |[38.166r55.916
3 0.99 [0.073761499 1.000000
0.99 [0.96557566 1.0000117
0.99 J|o.0looo000 1.0000032 ~335.1028 168‘71§166.394
D|1 _10.4956 j0.0100000 1.0000000 -7.6083 2.2043r5.4039
2 0.99 Jo.01000000 1.0000001
0,99 0.0100000 1;0000098 ~1061.2619 135.269F65,9935
3 0.99 |0.0100000 1.0000079
 0.99 11.0769872 1.0000041
0.99 0.0100000 1l.0000001 +289.3262 1141.69 —147.65




Table 13: EM-data for solution A.
_MEF ] , . l 4
Cex st lewisi d. |rad Pl |+a)p) dp i“d-p IDI | xalD| éD ““ID IFl | +AlFl F *ACKF
1.01 10.6%3 | o0.07|140.3/6.8 [0-40 | 0.11|211.7 4.6 |o.40 |o.05 {90.0 | 5 |0.03 | 0.0 |75 7 |00
1.03 0.64 | 0.06|143.6{6.5 |0.32 | 6.10|207.5 §.2 0.43 j0.05 |90. 0.0{0:03 0.0 Jy7.3 | ©-0
1.05 56 | 0.101149.3|5.7 10.46 | 5.10(214.9 K.5 0.43 |o.04 |90. 0.0l0.03 0.0 loc g | 0.0
1.07 71 | 0.06|1406.707.1 |0.35 | 0.11{209.1 #.6° [0.42 jo.0o5 |9o0. 6.0l0.08 |00 |z o | 0.0
1.09 61 0.09 | 148.4| 5.4 [0.45 o.10!214.0 #.6 o».So .04 90. o.0 | Dol | Bxl 71.7] ©+0
11.12 10.61 {0.10]|147.2 4.8 10.42 | ©.11|210.8 .4 0.65 {0.03 [ 90. 6.0| 0.05 0.0 (69.0 | 0.0
1.13 | 0.45 | 0.16|141.7 12.8|0.46 | 5.15[195.0 4.2 [0.74 |0.03 [90.0| 5,0[0.05|0.0 ]65:6 | 0.0
1.15 64 | o.10]148.8 4.3 [0.29 | 5.11|197.9 #.1 |0.69 [0.03 |90.0| 5 of0.06]|0-0 61.5| 0.0 |ka
1.17 56 | 0o.10] 138.2 5.3 |0.29 | 0.08(189.2 B.9 0.87 l0.03 | 90. & 3 0.06] 0.0 56.4! 0.0
1.19 1 6.73 | 0.09| 141.4 4.7 |0.18 | 0.12]178.7 fi2:8 |0.88 [0.04 | 90.0| o o 0.07|0.0 | 49.9 0.0
1.21 .64 0.141 130.1% lo.4}0.19 0.2 1159.8 3.5 1.67 .03 90 0.0l 0.07]0.0 41.8 0.0
1.23 | 0.70 | 0.11] 129.84 9.3 [0.23 | o.22|162.1 7.8- [1.11 | 0.63 | 9o0. 0.0l 0.08] 0.0 31.9| o.o0
1.25 | 0.64 | 0.13]| 110.2 17.3/0.36 | .24]/159.2 4.6 |1.26 jo0.03 | 90.0| 5 o| 0.09]0-0 20.6| 0.0
1.27 .62 | 0.11| 104.8 19.6{0.30 | 5.22/151.8 P3.0o | 1.27 .03 | 9o. 0.0l 0.1lof 0.0 8.6 | 0.0
1.29 | 6.63 | 0.08| 101.3 10.2|0.53 | o.12/163.9 W.5 - | 1.16| 0.03 | 90.0| o ,o| 0.11] 0.0 -2.8 | 0.0
1.31 1 0.65 | 0.08] 88.0| 14.8|0.40 | o.13|144.0 13.9 | 1.19| 0.03 | 90.0| o o} 0.12f 0.0 |-12.8] 0.0
1.33 | 0.67 | 0.13| 70.9| 18.1l0.32 | .15/ 116.5 Po.3 | 1.11| 0.05 | 90.0f 5 of 0.13/ 0.0 -21.¢ 0.0




Table 13 (Continued)

) is1 *als) d rad, IPI APy dp +A Jk iD\ +4\D| ch Fi TOLF]
3% 0.62 | 0.11 | 84.6 [12.1 .47 212 148.0 |g.3 .94 Jo.o4 90.0 .14 0.0
? 0.54 o0.10 | 89.1 |14.3 .53 Jo.15 |155.9 |414.0 .87 .05 90.0 .11 lo.ol
| 0.47 0.08 | 93.3 |9.5 .60 |0.21 [159.8 {154 |0.79 |0.09 {90-0 11 | 0.02
§ 0.53 ©-20]88.3 124.8 .41 lo.30 [147.1 |35 7 79 0.09 |90.0 .13 | 0.08
) e 0.13 | 88.0 |14.6 .25 |o.06 [115.8 |9 g 78 | 0.08 |90.0 .23 | 0.07
i ] o.53 0.11]92.7 |19.1 .23 |o.06 | 107.9 146 9 {0.72 |0.08 |90.0 .27 | ©.06
% -4% 0.47 ©.12182.1 118.,0 (45 {0.15 | 144.5 |14 4 .51 | 0.06 {90.0 .17 | o.o04
49 .34 ©0.18]99.0 [37.4 | 0.47 |0.27 |153.2|29.2" |0.55 |o0.14 |90.0 16 | 0.03
'5# 0.3§ ©0.12 86.4 |27.2 23 .09 115.2 { 33.4 .59 0.07 | 90.0 .27 0.05 1
| '5% 0.33. 0.70192.5 122.1 .28 [0.05 |86.4 [23.5 |0.59 | 0.07 |g0.0 .32 | 0.05 1
!15:} 0.301 o0.07 |84.7 |13.7 .30 .05 197.3 18.6 .58 0.9, | 95.0 .39 0.04
iz. 0-46} 0.06|84.3 110.0 .26 [o0.04 {87.5 | 14.4 .62 | 0.13 | 90.0 42 | 0.03
?1.55 0.421 0,16 78.2 13,2 <25 .05 105,7 29.0 .57 | 0.12 { 96.0 .45 | 0.04
Tl 0.35| 0.04}176.3 |10.3 Lz .03 |80.0 |9.3 .64 0.09 | 9¢.0 .43 | 0.03
0.38] 0.15}1069.6. | 15,6 .29 {0.06 |62.2 |20.5 59 | 0.11 | 96.0 .57 | 0.03
©.39! o0.05|67.5 |g,5 .29 | 0.03 {79.1 | 12.4 61 ] 0.13 ] 95.0 .64 | 0.03
0.40{ 0.13]63.8 ;171.8 .25 .06 |54.1 | 23.6 61 | 0.10| g4.6 .60 | ©:03




Table1z (Continwed)

.

.‘LTJ.. j-

[ 3T | s s | dg tad, | pt +A1p) 6p +A cfp IDt |+AD} dy [ady |IF t8IFL g | 1Ad,

[ |

i ¢ 2

F:;f. o.40 | 0.13 60.9 113.2 0.22 0.06 54 .1 28.0 0.55 0.13 90.0 1.0 0.67 8. 6% e o.

| A R 3

1.71 0.43 7 dkl 58.0 |20.6 0:2.3 0.06 78.9 25.0 | .53 6. Lo 90.0 16.0 0. B4 0.03 o 5.

| z = " o - * ]

§1‘73_o.4o « 12 49.5 116.1 0.351 o.lo 87.0 32.1 a.56 0.07 90.0 |5.9 0.63 0.03 |zc & . |

{ 27 1 = 1 |

11,75 0.37 . 51.8 |20.8 035 0: 11 118.7} 16.5 .49 & . 6l 90.0 |11. 5.56 5 c5 ko s |

it O 4 (o8 ! !

11.77 0.38 «05 46.7 119.9 0.29 o.04 109.0| 11.4 5.54 .11 96.0 15.3 0.55 o.0b i " !

;1.7910.44 0.05 53.0 | 16.1 0.21 0.06 31.0 55.3 | .53 o 5k 90.0 | 7.4 0.55 0.0331,  « o L

t i '.Q'M—“—q tpd

| N

| iE

; ]

|

i |

| i !
i




Table 14:Data for EM-solution B

M
G%_\[/1T 1S} +\a 8| d r ad 1P| TA\D| d ;t-_Aci’1 1D} 13—_1&{(1){ ]

i 4
s | =7 7s |F| | XAF| é% tAéé

(=}

.ol 0.63 1 0.07 | 14036.8 0.40 |o.11} 211.714.6 0.40 | 0.05 Bo.o Db.o 0.03 ot 78.7 ¢.0

p-a

.03 0.64 } 0.06 {143.6] 6.5 0.32 |00} 207.5{4.2 0.43 | 0.05 90.0{ 0.0 | 0.03 lo.o0 77.3 | 0.0

1.05 0.66 | 0.10 |149.3] 5.7 0.46 lo.lo | 214.914.5 0.43 |0.04 90.0l 0.0 0.03 lo.o 75.8 0.0

1.07 0.71 | 0.06 [140.7l 7.1 0.35 lo.111 209.114.6 0.42 10.05 90.0! 0.0 0.04 Jo.o 739 0.0

i.09 0.61 | 0.09 148.4|5.4 0,45 lo.lo| 214.0{4.6 0.50 |o0.04 98.0} 0,0 0.04 o.o0 71 .7 0.0

1<11 0.61 |o.10 (147.2] 4.8 0.42 lo.11 1| 210.8 (5.4 0.65 [0.03 90.0l0.0 | 0.05 J|o.o0 69.0 0.0

1.13 0.45 | 0.16 141.2{12.8 | 0.46 |o.15 | 195.0]14. .74 063 90.0]0.0 0.05 Jo.o 65.6 .0

3]
O

(1)

.15 0.64 |o.10 148.8 4.3 10.29 lo.111]197.9(4.1 0.69 |o0.03 90.0(0.0 0.06 j{o.o0 615 0.0

o

(=)

.17 0.56 Jo.1lo &38.2 543 0.29 f{o.08 |{189.21(3.9 0.87 |0.03 90.0[0.0 0.06 Jo.o 56.4 6.0

1.19 |%0.73 | 0.09 [141.4]4.7 0.18 l0.12 1178.7(12.3 |0.88 Jo.o04 90.0l0.0 c.07 lo.o 49.9 0.0

1.21 0.64 |0.14 130.1}10.4 |0.19 0.20 |159.8 |33.5 [1.07 |o0.03 9c.0|0.0 0.07. .o 41.8 0.0

1.43 0.70 |o.11 0129.8(9.3 0.23 .22 }162.1127.8 |1.11 |o.03 90.0(0.0 0.08 " pb.o 31.

o]
]
o}

1.25 0.76 {0.06 121.3|8.7 0.19 .11 {130.1 {30.1 {1.23 |0.03 90.0/0.0 0.09 p.o 20.6 0.0

1.27 0.71 }o.10 118.7|11.9.{0.16 p.lo {97.9 |4o.1 |1.25 |0.05 90.0l0.0 o.lo b.o 8.6 0.0

1.28 0.89 lo.07 124.7(6.3 |0.21 p.lo |70.1 |40.9 |1.1lo |0.06 | 90.0|0.0 |[0.11 p.o |-2.8 0.0

.31 0.76 {0.08 117.7|10.5 |o0.40 b.16 [46.5 17.9 |1.13 |o0.03 90.0(0.0 0.12 p.o -12.8 1 0.0




14 (continued)

M

1615_7 Is| tiasi) d 1y Add 1P| |1 Cfp +A6p DL} xapi) &y feady | T RralEl |4y ZMSP “
i.37 ) e 67 0.07 109.112 6 32 lo.111 63.8 127.0 .11 |o0.02 i90.0 6.0 P13 0.0 -21.0'l0.
1.35 [0.72 | 0.11 [118.710.8 | 0.54 [0.19 | 39.6 |13.1 |0.84 |0.07 | Z0.0|  |o0:14 (0.0 |-27.4]o.
LT.57 0.71 o.11 {114.114.7 .30 |0.26}52.6 |30.5 .86 {0.05 90 o 0.11 lo.02 |-90.8 |70.0
1.39 {0.71 }o.11 [117.813.2 |0.28 [0.29 | 55.5 |do.2 |0.79 }o0.05 | 90.0f ~ |o.11 Jo.02 |-92.9 |82.3
1.41 |o0.64 10.28 [112.209.9 .30 [0.25 | 55.1 130.7 |0.77 jo.lo | 90.0{ 0.1l jo.02 |-90.7 60.6
1,43 I 0.52 0.17 1o7.909.1 .52 lo.30137.6 |24.5 .67 |0.13 90.0 0.0 0.23 Jo.08 [|-41.615.0
1.45 |0.47 |0.16 [115.4{22.6 56 0.25 |41.0 |16.2 l0.57 |0.13 | 90.0|  |0.27 Jo.06 |-27.8 |15.7
1.47 |0.48 |0.18 lo4.2|31.0 |0.41 |o.20 |41.0 |28.9 [0.51 |0.05 | 90.0| - f0.17 fo.oz |-97.3 [26.4
1.49 |o.51 10.14 118.5/13.110.29 [0.16 {58.6 [20.4 [0.54 [0.06 | 90.0| o [0.16 fp.03 [91.731.1
1.51 |¢.32 }0.12 |21.8/26.1 |0.45 ©0.13 |41.9 |15.6 |0.48 |o.08 | 90.0| . |0.27 .05 [48.212.7
1.53 [0.27 o.09 129.4119.9 |0.53 b.13 {58.2 [11.0 [0.43 lo.lo | 90.0|, . |0.32 p.0o3 |-26.5 7.
1.55 lo.20 |0.08 109.5(46.4 |0.59 b.12 |58.1 |[11.9 .42 10.13 | 90.0f o 10.39 p.od |-16.5 7.
1.57 |0.14 |0.09 122.1{30.5 73 p.o8 |68.8 |lo.6 0.3 Jo.14 | 90.0]|g , |0.4Z p.o5 P.0 0.
1.59 lo.12 lo.07 |108.150.2 {0.67 p.o8 |61.4 6.7 0.33 0.15 | 90.0|, , |0.46 b.o4 [90.0 o.
il,6l 0. 1o 0.07 {107.% 50.20.71 b.o8 [71.4 7.3 .38 Jjo.14 90.0 6.4 0.43 p.o4 3.3 Jo.
1.63 10.09 |0.15 |46.6|40.4 |0.68 b.o8 |75.2 8.4 .36 [0.15 | 90.0|, , |0.57 p.od P.o Jo.

| i | | l {

1)

(22



Table 14 (continued)

c:T st | x| S| aady p | € fad) {or Je g dp |zadp |1F1 [£AlR d%rﬂ&“rp i
1.65 | 0.10 {0.14 | 32.1] 45.2[0.69 | 0.07| 67 6. .35]0.17 {90 6.2 |0.68 |0.03] 6.4 |o.o
1.67 0.15 Jo.13 14.31F 32 0.68 0.06] 89. 7 .3410.13 |90 12.6 |o0.60 0.03 27.3 Jo.0
1.69 | 0.18 |0.11 | 0.1 | 30.6/0.64 | o0.06| 84 162 29|0.14 190.0 '115 6 [0.67 |0.03 6.7 Jo.oO
1] 71 0«36 | 0.,42 129.9] 2o w58 0.07} 111.1 19, .37 jo.09 {90 17.7 lo.64 0.03 2.4 |c.0
11.73 | 0.33 |o0.13 | 33.0] 21.5|/0.52 6.1lo 103.6 {13.6 .44 10.10 {90 15.0 10.63 0.03 #7.6 (0.0
1.75 0:57 10,41 |51.7] 20.8]|6.85 o.11 118,.7 |16.8 .49 lo.08 |90. 11.5 {6.56 o.0% Bl.6 (6.0
1.77 0.36 1o.18 1 39.51 30.8)0.40 o0-18} 117.3 21.9 A9 10,12 (90, 20.9 lo.55 6.6%3 k5.2 lo.o
2.79 ] 0.41 lo.20 §36.2] 29.3j0.46 0.31} 122.6 24,1 36 lo.07 190. £1.8 g L5 5.63 B1.2 bb.o '

o)




‘Table 15:Data for EM-solution C

CTIT § | ad
Gev | st [xwsi| % | #2°| pp |rapi| & ead | DV [xeDi |4y fpady |1V (EAIR) 4y +ady
1.01 | 0.63 {o.07 l40.3]6.8 o.40 jo.11 211.7 4.6 o.40 | 0.05 0. 0. 0.03 0.0 78.7‘0'O
1.03 | 0.64 lo0.06 14%.616.5 |0.32 b.lo po7.5 [**% {c.2%j 0.05| 90.0| 0.0.}0.03 |0.0 177 3 |0.0
1.05 0. 567 010 149,345 7 0.46 ob.lo P214.9 4.5 0.43| o0.04 | 9o0. 0. 0.03 0.0 75.8 1 0.0
!1.07 0.71 [0.06 140.7|7.1 |0.35 pb.11 Poi.l 4.6 0.42 | 0.05} 90. 0. 0.04 0.0 173 9 lo.,0
(1.09 ! 0.61 |0.09 148.4/5.4 |0.45 p.lo pPl4.o | 4.6|0.50]| 0.04] 90.0} 0.0 J0.04 0.0 j77.7 |o.0
.11 | 0.61 |o.lo 147.2]4.8 0.42 - p»11-Plo.8 5.4{0.63| 0.03} 90. 0. 0.05 0.0 go. 21 avn
1.15) 0 45 1o0.16 141.2]12.8 |0.46 b.15 195.0 | 14.2 0.74] 0.03| 90.0| 0.0 |0.05 l0.0 |cc 65,0
L1515 64 |o0.10 |148.84.3 |0.29 b.11 §97.9 | 4.1|0.69] 0.03| 90.0| 0.0 |0.06 0.0 |95 4.0
117} 056 lo.10 |1382]5.3 |0.29 b.o8 §89.2 | 3.9 0.87| 0.03| 90.0| 0.0 |0.06 l0.0 Jec 4| o.0
1.19 1% 23 16.09 l141.44.7 lo.18 b.12 178.7 | 12.8 0.88 ! 0.04| 90.0| 0.0 |0.07 |0.0 |49 9]0.0
1.21 ) 5 .64 lo.14 1130.110.4 |0.19 b.20 159.8 | 33.5{ 1.07 | 0.03| 90.0| 0.0 {0.07 . 0.0 |41 8 | .0
1.25 1 96 lo.11 1129.99.3 lo.23 b.22 162.1 | 27.8/ 1.11 | 0.03| 90.0| 0.0 |0.08 |0.0 |37 9| 4.0
1.25 | 64 10.13 |110.417.3 l0.36 b.24 159.2 | 14.6 1.26| 0.03| 90.0| 0.0 [0.09 Jo0.0 |,0 ¢ 4.0
1.27) 562 lo.11 1104.919.6 l0.30 b.22 151.8 | 23.d 1.27 | 0.03 ] 90.0| 0.0 |0.10 |0.0 |g ¢ | ¢.0
1.29 | 063 lo.08 |101.310.2 l0.53 .12 163.9 | 4.5]1.16! 0.03| 90.0| 0.0 [0.11 |o0.0 | _5 51| 0.0
§1'31 0.65 lo.o8 188.0/14.8 lo.40 b.13 [144.0| 13.91.19 | 0.03| 90.0| 0.0 |0.12 [0.0 | 15 8 0.0
L | | SR l

N




15 ( Continued)

M

égiﬁ isi {+as) J; rad{ 1py |+ap ép T dp DI | a(D| Lady F] lsalF & leady
1.33 |0.67 b.13 po.0 |18-1190-32 |5 370116.5(20.3 | 1.11]0.05 [90.0 |0.0 |0.13 p.o [2l.0 .0
1.35 10.62 b.11 |84.6/12.1 |0.47 | 0.47(148.009.3 | 0.94]0.04 [90.0 |0.0 .14 | o0.0[27.4 0.0
1.37 10.54 b.lo 89.1114.3 b.53 053] 155.9 110.0 0.87 lo,05 *190. c.0 11 0'01—85.5 26.8
1.39 l0.47 |o0.10 |93.3]/9.5 [o0.60 | 0.60/159.8 |10.4 | 0.79]0.09 |90 0.0 .41 0.02{ g7 9 35.1
.41 16.53 0.20 | 88.3]124.8 |o0.41 0.41/147.1 |35.7 0.79 lo0.09 |90. 0.0 13 0.08) 9 1 6o0.2
1.43 l0.57 lo0.13 |88.0}14.6 {0.25 | 0.25{115.8 9.9 0.78 {0.08 [90. 0.0 23 0.07| z¢ 15.1
1.45 |0.53 0:11:192.7119.1""10.23 0.23] 107.9 46.9 0.72{0.08 |90. 0.0 -1 0.06 1 ¢ | 15.0
1.47 jo.46  |0.42 179.7]70.5 0.44 |o0.441142.6[58.2 | 0.51]0.05 |90. 0.0 .17 0.02 o7 ¢ | 28.9
1.49 lo.51 0.15 |61.4{21.5 ]0.29 0.29/120.7 154,0 0.54 lo.06 |90. 0.0 .16 0.03 07 4 { 78.4
1.51 lo.50 |0.09 |56.8{23.3 }0.17 |0.17}60.7 J60.9 | 0.50}0.0- 9.0 |0.0 .275 p.o5 | 4c 7 12.4
1,53 |0 .55 0.07 " 153.6119.5 |0.28 0.28}143.3 137.6 c.4o0lo.10 |90. 0.0 .32 pb.o5 L og 7 2 o
1.55 1o0.54 0:09_159.2120.2 |0.34 0.34144.6 |29.8 o.40l0.14 |9o0. 0.0 .393 p.od | 17 5 8.0
1.57 lo.64 0.09_173.4114.0 |0.32 0.17}144.7 139.6 0.39 ]0.15 |{9o0. 7.4 424 p.o3 |}, , 0.0
1.59 _l0.59 0,07 163.518,0 (s PO B 0.06{41.4 J14.0 0.39 lo.20 |90. S 45 Pp.od -lo.g 0.0
1.61 lo.65 Jo.lo }60.3111.8 |0,32 0.10f51.6 137.4 0.39 0.18 {90. 6.4 .43 p.od -3.2] 0.0
1.63 10.62 0.08 |70.48.9 - |0.37 o.il 43.1 2.8 0.28 lo.20 |90. 11. .57 p.o3 11.5} c.o0
L L \

(921)




~Table 15(continued)

; ; -

ézrzTr!s. +18s) d :tAd; | P| +AP| dp £ ad DI |-+aM) a8 T dF o,
1:65 0.61 | 0.07 | 68.4 8.5 0.41 0.09 31.5 [15.7 il 0.15 |90 9. 64 0.03 18.6 0.0
|1.67 0.64 0.06 194. 8.8 o I o1} 511 [Z1.2 w3 o.iS 90 34 i 0.03 141.3 lo.o
1.69 {o.60 0.05 92 748 0.36 0.08 40.7 |16.2 + 21 0.12 |90 15 . 678 lo.03 135.6 lo.o
1.71 jo.61 0.07 [123.8] 9.7 0.35 0.1l 69.7 |24.3 30 15,65 |90 75 64 5.053 l77.8 0.0
{1.73 {o0.58 0.08 1136.3112.4 | 0.36 0.08/ 93.0 |30.6 « 33 6.05 |90 33 63 6.05 160 :0¢ 0.0
1.75 (o.54 0.06 {129.8]14.2 | 0.22 0.05 119.4148.1 .39 0.06 90. 23 663 lo.03 |102.8 0.0
,1°77 0.54 0.11 139.4] 20. 0.26 0.14 89.7 |o.8 s 0.08 |90. 0. 5 0.00 l106.610.0
:l 79 10.42 0.15 153.7|26.5 | 0.46 0.15{ 57.7 |47.8 « 55 0.06 |90. 1. c o.03 198.2 lo.o




“Table 16: Data for EM-solution D

M

GgT.T Isl. |tais| cfstwfs Pl (& Pl Jp tACfP | DJ + AlDI d'D + ch | Fi +AalH ch ':Ach

1.0l | 0.65 ] 0.07 |140.3 6.8 | o 46 |5.111211.7 4.6 |o0.40 |0.05 §#90.0 | o o p.03 |, o [78.7 Jo.o0

1.03 | 0.64|0.061143.6/6.5 | <5 | 10l07.5 |4.2 |0.43 |0.05 |90.0 |0.0 | o0.03| o [77.3 |o.o0

1.05 | 0.56 | 5,10 [149-35-7 | 5.46 |o.10[214.9 |4.5 |c.43 |o.04 |90.0 |0.0 | 0.c®| . o |75-8 |0-©

1.07 0.71 1 4 06 140.7) 7.1 0.35 lo.111209.1 |4.6 0.42 |lo0.05 {90.0 J0.0 0.04 -~ 73.9 {o.0

1.09 0.61 & 148 .41 5.4 0.45 lo:ie 21d.0 4.6 0.506 .04 190.0 {0.0 0.04 0o 71.7 lo.o

.11 0.61 1,14 147.2) 4.8 0.42 lo.11 {210.8 5.4 0.65 |0.03 {90.0 0.0 0.05| % o l69.0.19°° =

1.13 | 0.45 | [ 16 {141.2)12.8 | 46 |5.15{195.0 {14.2 |0.74 |0.03 |90.0 |0.0 | 0.05| Jec g |00 ¥
_}‘15 .04 1 5.10 La8ebl &5 6.29 0.11{197.9 |4.1 {0.69 }0.03 {90.0 | 0.0 0.06 R R e -

1.17 0.56 o.lo 138.2) 5.5 . 0.29 lo.08 |189.2 |3.9 0.87 lo.c3 |90.0 | 0.0 0.06 0.0 |56.4 0.0

kxe °-73 ) 5.09 14?'4 4.7 16.18 lo.12 h78.7 [12.8 |0.88 {o0.04 {90.0 0.0 0.07| o la9.9 |°-°

1.21 | 0.64 |- 4, [130.2110.4 | 5 19 15,20 (159.8 [33.5 |1.07 |0.03 |90.0 0.0 | 0.07| o |47 |00 ’
11.23 | o0.70 | 17 [129-8]9.3 | 73 l5.22 l162.1 {27.8 |1.11 [0.03 [90.0 {0.0 | ©0.08| 379 (OO

1.25 0.75 14 .06 121.318.7 0.19 lo0.11 {130.1 |30.1 {1.23 }0.03 |90.0 0.0 0.09| o l20.6 |°°°

1.27 | 0.71 | 9o J18.7)11.9 0 0 16 |5.1097.9 |d0.1 [1.25 |o0.05 |90.0 Jo.0o | o.1o| o o [g.6 [°-O

1.29 0489 14 gy Fetef} Bl 0.21 lo.lo |70.1 40.3 |1.10o {0.06 |90.0 0.0 o:11f . ~ |l.2.8 |0+©

1.31 | 0.76 | o g 117.7110.5 } o 4o 16,16 6.5 [17.9 |1.13 |o0.03 |90.0 |o.o | 0.12} (0 i_17.8|0:©

| l




.S

Table 16: Data for EM-solution D

MHW 1 1si + A5 -cfs iAcfs |P| + AP 613 tAC{p D +a\D| dﬂD +A d'D [F| +aF] | 6}:" s d';‘
Gev. ,

£-35 -f GeBP-.| 000 103, 3080 o 53 0.1163.8 127.0 |1.11 |0.02 |90.0 0.0 0.13 |o.0 |-21.0l0.0
1.35 f0.72 | 0.11]138.710.8 | ¢4 |5 .10]30.5 [15.1 |0.84 |0.07 |90.0 | 0.0 | 0.14 Jo.o |-27.4]0.0
1.37 | 0.71 | 0.111114. 1.7 10,20 |0.26(52.6 |3n.5 |0.86 |0.05 [90.0 {0.0 |0.11 |o.02 |-80.8]70.0
}'39 0'71'! 0.111117.813.2 |\; 28 15.2955.5 |40.2 {0.79 |0.05 |90.0 | 0.0 |0.11 jo.02 }-92.9182.3

‘ Latd -4 0.13188.5 124.9 0.57 0.14{24.5 111.6 10.73 }l0.06 |90.0 | 0.0 0.13 |o.05 {-68.1(38.3
1.43 |o0.40 } 0.17180.7130.2 |5 67  109.15/22.3 [18.4 |0.62 |0.12 |90.0 0.0 |0.23 |o.07 |-46.1|12.8

1.45 10.29 {0.15156.1 1504 1) 79 15 12117.1 |16.6 |0.43 |0.13 |90.0 | 0.0 |0.27 |o.06 |-37.7|7.5

(E<T)

0.44 | 0.451{97.4 [78.4

}..J

18

~1
o
~
(2]
o]
£
[

252 56.1 !0.51 {o.06 {90.0 | 0.0 0.17 lo.o02 1-99.2}130.7

33 0.10(80.9 |23.0

P
s
e}

C

o

=

~J

o

O

—-—

26.7 7.4 0.55 |o0.08 | 90.0 | 0.0 0.16 lo.02 {-99.9}119.9

0.57 0.06118 .4 11.0 {0.41 {0.07 | 90.0 | 0.0 0.27 lo.0o6 |-60.7112.7

1.53 |0:25 | ©0.07119.8 [16.4 | 63 1o 66]23.1 |5.6 |0.27 |0.06 |90.0 | 0.0 | 0.32 [o.04 |-46.

™o
~
(@)

g5 | ©0:27 |©0.07(36.4 15.1 |, 66 15.06037.5 (4.5 |0.26 |0.05 [90.0 | 0.0 |o0.40 j0.03 |-27.7]4.3

hg7 |©0:28 J0.06 1.7 5.7 | 55 |y o5les.9 |6.4 !0.11 |0.07 |90.0] 30.6|0.43 |0.04 (7.4 |o0.0

0«11 0.07 {1lo7.6/60.5

159 lo.57 0.08 [61.4 6.7 0.33 |0.15 | 90.0}| 7.2 0.45 lo.04 {-9.0 0.0
161 |©-36 j0.0820.5 4.5 ) 79 lo.05|54.0 [8.9 |o0.14 |0.05 |90.0|14.8|0.43 jo.04 |-6.7 0.0

1.63 ' ) : ' 065 0.08 1113.1 12.1 {0.06 {0.07 {90.0 | 80.1| 0.57 (0.03 58.7 |o0.0




- Table 16(Continued)

90.0

zg” st |+as) 4, lsa d_| b1 |xalp ap + dp IDU j£ADI | dp tradp| IFI [ x8IFL] dp Jaadg
1.65 4o j0.13 116.1] 14.9 .67 |o.07 {142.3 |11.7 |0.04 10.03 |4 [l00.9 p.64 0.03 [92. 0.0
1.67 48 b.o6 [139.312.4 | 0.58 |o.07 |175.1 [8.1 0.19 o.05 |5 o }20.0 p.60 0.02126.2 0.0
1,69 .42 p.lo 1146.8}{15.2 .57 lo.09 1184.6 {12.1 }0.19 {0.14 90.0 ft2.3 0.58 0.03 |135.4 0.0
1.71 $2 - .p.ob . 136.2]14.0 .42 l0.08 {168.4 |14.7 |0.37 |o.06 dg.g | 12+8 0.64 0.03 126.6 j0.0
1,73 «55 0.06 139.4]17.3 35 o909 H47:5 151.5 }0.39" .1l 90.0 |21.0 0.63 0.03 123.3|o.0
1.75 «hd 0,06 (129.8)13.9 22 lo.o5 [119.1 149.9 {0.39 |o0.06 Q6. 23,1 |0586 0.03 {102.9 |o.o0
1.77 |0.53  }0.09 [138.4/25.2 22 Jo.o7 124.5 149.5 j0.45 Jo.12 |, |24.2 |0.55 | o0.03 [117.8 |o.0
1.75 42 0.13 126.8|43.4 .20 .25 147.0 |106.4(0.53 oﬂ19 17.7 |o.55 l.03 139.8j0.0

(orT)




Table 17:To test

(141)

sum-rule inequalities(EM-data:sols.A,B,C&D)

sol . N1 R A VPK ANS1 ANS2 FINANS.
A 1 0.38 .0loocoo 1.00000|=-7.0227|1.5159 5.5068574
2 10,99 .0lo000 1.00000
0.99 .0lo0009 1.00015|-68.6928§ 26.5347( -42.158070
0.99 .0loood 1.00000
0.99 .188531 1.00000
0.89 .0loood 1.00000{-278.893 91.7325| -187.15938
B 1 p.338426|c.0l0009 1.00000(-6.7689 | 1.7835 | -4.985397
2 10.98 .oloooq 1.00000
0.99 .0loood 1.00000|-76.4596 35.8887| -40.570932
3 | 9.99 .0looo00 1.00007
0.99 .070246/ 1.00000
0.99 .0loooo 1.00001|-302.1024144.5777| -157.52438
C 1 |0.33861|0.010000 1.00000|-6.0770(1.9279 4.1491247
2 {0.99 .0looo0| 1.0000
0.99 .0loocol 1.00000({-92.8313 38.1776| -54.653739
5 | 0.99 .0locoo0] 1.00000
0.99 .912435 1.00000
b.99 .0loooo| 1.00000(-404.825 174.974+229.85132
D |1 b.407606|0.0l0000 1.00000|-6.7681] 1.9136 | -4.8545553
2 Q;99 .0l10000| 1.00000
0.99 .010000] 1.00000|-127.829 35.2693] -92.559633
3 10.99 .0l0000] 1.00006§
20,99 .669326] 1'.000004
0.99 .0loooo| 1.00000% -379.56 191.050{-188.54578




Table 18:FP data [68,68a)

mrle | E g L |y [T e Al [ & [
Gev. ‘ﬁi 302 n,” 4 IR 4 | n,° 4 | m5 41
1 ~43.81] 1 -1.0 0.+ 34% l4.0 |0.97 -24.1| 0.83 14.0 l.oo Jo.o
l.0lo |o 0 0 0 +0.26121.4 |0.08 4.7 0.07 2.3 0.0l |o0.3 9.1
1 -23.7} 1 -1l.0 0.28 8.8 0.94 -22.8] 0.79 15.6 l.o 0.0
l.030 jo 0 0 0 0.25 26.0 |0.08 4.9 0.07 2:5 0.0l |o0.3 | 8.8
1 -23.81 1 =1.1 o T 52.7. 10.98 <21.3% 0.86 16.1 l.00 |o0.0 =
1.050 |o Q (o) Q 0.22_ 1 51.7 lo.o8 1 4.7 0.0Z 2.2 1l o.0l lo. 3 3:9‘_~ E;
1 -24.0] 1 -1.2 0.35 75.4 10.97 ~20.6] 0.81 16.6 l.00 |o0.0
1.07/0 10 0 0 o) 0,22 17.9 o.o7' 4.1 0.07 2.4 0.0l l0.3 8.5
1 -24.1( 1 ot 037 79.8 [0.98 -19.4| 0.83 20.3 l1.00 |o.0
1.090 o 0 0 0 0.22 | 16.8 |o0.07 4,1 0.07 | 2.3 0.0l 0.3 3.0
1 ~24.3) 1 -1.4 0.48 82.3 {[0.95 -18.2| 0.83 26.8 l.00 |o.o0
1.110 |© 0 0 0 0.21 12:.7 |o.07 4.2 007 2.4 o.0l lo.4 3.8
1 ~24.41 1 =L <5 0.43 82.9 ]|o0.89 -15.91| o0.80 31 .2 l1.00 (0.0
1.130 |0 0 1o 0 0.21 | 14.8 |o.07 4.5 | 0.07 | 2.5 0.02 lo.4 3.4




Table 18 (Continued)

-

Myt ‘“22 i
2
Gev. ’no do
1 -24.5 |1
1.15{° ¢ °
. -24.6 |
i a¥d e | @ . 0 21 |12.1 .07 4.5 .07 2.7 i 2
: -24.7 |, -1. .69 |-83.5 .89 -13 .72 43.3 i
e e o . 0 21 8.6 .07 4.5 .07 2.9 03 =
' -24.8 |, -1. .64 |-83.2 .88 -12 .71 55.3 $00
' 374 0 . 0 21 [9.4 .07 4.5 07 | 3.0 i L.
1 “24.8 | -2. 92 [-76.1 91 -12. .65 61.5 100
1.23do 0] o o .19 6.0 a7 4.4 .07 35, Sk Ls
. -24.9 |, 5 1o |-72.1 .92 -12 .67 76.1 $ 00
125 do 0 . 0 19 |5.5 .07 4.3 .07 3.0 a s
. -25.0 |, -2. .14 |-63.6 .95 -1o .64 89.0 - 00
}.273_0 0 0 0 .20 15.6 .07 4.2 .07 3.2 .02 s




Table 18 (continued)

&HT)

.
R IR A A EA AR
Gevi  m, 4y | d, M, d b 9, ., dzk 3
i1 -25.1 -2.4 .99 -55.7 .ol -11.3 .61 -76.3 .00 0.0
1.29100 o o .18 5.2 .07 4.0 o7 3.3 .02 0.6 8.
1 -25.1 -2.5 .05 -49.2 .93 -9.6 .75 |-65 .00 0.0
1.3110 0 0 .18 5.2 .07 4.3 o7 [2.8 .02 0.7 8.
11 -25.1 -2.6 .08 -42.0 .86 -8.3 81 -56 .00 0.0
1.3310 .0 o .19 5.3 .07 4.8 o7 |[2.6 .03 0.7 lo.
1 -25.1 -2.8 .18 -38.0 .83 -5.3 77 -46. .00 O«
1.3510 0 0 .19 5.5 .07 :14.8 08 2.9 .03 0.6 21.
1 -25.1 -2.9 .00 -38.1 .77 -3.8 .76 |-40 .00 1.5
L.37 o 0 (o) .22 6.4 .o7 5.2 .08 3.0 .03 0.7 30.
1 -25.2 -3.1 .00 -35.1 « 74 -3.1 78 -35. .00 1.9
1.39 10 0 o .21 6.0 .07 5.6 .07 2.7 .03 0.8 20.
1 ~25.2 5.2 | 1.6 | ~32.5 |o65 | -3.6 .80 |-32 .00 |1.2
.41 0 0 0 21 | 6.0 07 | 6.2 08 2.7 03 |o.8 1.




Table 18(continued)

ﬁerni di : né , d ne d° n} , éil ng d; né 6% . x?
Gev.‘no2 do Ry Ry dﬁ 4 51 'Rg dg nz 63

1 =25.2 -3, .00 |=30.2 0.61 -4.2 .80 -30.6 1.00 x5

1.43) o 5 21 6.0 0.07  |6.6 .08 2.7 0.03 .9 lo.
1 9% 7 - .00 |-27.0 0.57 -4.5 .76 -27.4 1.00 .8

1.451 5 | o . .21 6.1 0.07 | 7.0 .08 2.9 0.03 .9 6.3
1 w38 . 2 5, .00 |=21.9 0.56 -4.5 .74 -21.1 | 1.o00 .0

1L.47] q a o .22 6.2 0.07 7.1 .08 3.0 0.03 .0 5.9
1 -5 7 -3, .00 |-18.8 0.52 -4.2 .74 -20.2 1.00 .6

1.49] o o - 22 6.2 0.07 7.7 .08 3.0 0.03 .0 3.7
1 -25.3 -4, .00 | -14.5 0.51 -4.0 .75 -18.8 1.00 i

1.51] o & 0 .22 6.2 0.07 8.5 .08 5.0 0.03 .0 3.9
1 -25.3 -4. .00 |-12.7 0.47 -8.4 .69 -17.4 | 0.95 .2

1.53]| o - = .22 6.2 0.07 8.5 .08 343 0.03 .0 1.7
1 ~25 .8 -4, .00 |=~lo.4 0.43 -12.1 |0.65 -17.6 | 0.92 .2

1.55] o a & .22 16.2 0.07 9.3 .08 3.4 0.03 .0 %
1 -285 % -4, .00 |-8.2 0. 39 -15.0 .61 -16.7 0.87 7

1,57 & - | o 22 16.2 0.07 lo.7 .08 3.7 0.03 il 3B

(§H1)



Table 18(continued)

by (2 (@ | | 2] ] @ ] 4] 8w e
Gev. n2 AZ _nz 62 o 040 n1 61 5 g0 ~ dl X
0 0 2 2 i 0 1 1 no Z 3 3
1 =25« { 1 -4.9] l.0o0|-4.0 o.40. -17.4 j0.67 ~15.1 |lo.87 8.6
1.590 | o 0 o) 0 0.22 16.2 0.07 9.9 0.08 r 0.03 2.2 346
1 -25.3 |1 -5.1f 1l.00 | -0.6 0.42 -23.2 [0.64 -14.4 | 0.84 8.7
1.610 (o) 0 0 0 0.22 1 6.2 |o.07 9.5 0.08 Bsh 0.03 23 ;e
1 -25.3 |1 -5.4] l.00 ] 4.3 0.45 -25.3}0.63 -13.4 | 0.77 lo.1 EE
1.630 o 0 o) 0 0.21]16.1 0.07 8.8 0.08 3s5 0.03 2.5 4.3 &
1 -25.31] 1 -5.6/ l.o0| 8.6 - [0.49 -28.00.69 -12.3 | 0.72 11.2
1.650 e 0 o) 0 6211 6.1 0.07 8:1 0.08 Py 0.03 2.7 17
1 -25.4| 1 -5.8, 1l.00] 13.3 0.57 -27.8]0.62 -9.2 0.69 9.6
1,670 0 0 0 o) 0.221 6.2 0.07 1:0 0.08 3.6 (0.03 ’ 2.5 33
1 -25.4 | 1 -6.1] l.oo| 18.6 0.65 -27.1(0.68 -6.6 0.63 | 9.5
1.690 0 0 o) 0 0,221 6.3 0.07 6.1 0.08 3.3 0.03 3.0 8.2
1 -25.4 |1 -6.3] l.o00]| 23 7> 0.71 -25.6]0.52 -4 .7 0.60 7«2
1.710 0 0o o) 0 0.23| 6.4 0.07 5.6 0.08 4.5 o.04 3.8 2.8




e ———————————————

Table 18(continued)

e R R - U R R O R A
Gev. 'Hi di n% d2 ng éo ni d1 ng d2 g dé
1 -25.5 1 6.6 0.97 | 29.5 |0.74 | -23.60.48 | -3.7 |o.60 | 5.6
1.730‘ 0 0 0 0 0.23 6.8 0.07 5.4 |o.08 5.4 o.04 3.8 2.6
1 ~25.5 1 -6.8| 0.91 | 32.8 |0.78 -20.2 0.45| 0.0 |o0.61 | 4.2
1.750 0 0 0 0 0.24 7.5 0.07 5.1 0.09] 5.6 0.04 3.8 2.0
1 -25.4 1 ~7.1| 0.82 37.7 |0.78 --8.3 o0.43| 1.2 0.63 | 3.2 _
1.770 | o 0 0 0 0.25 8.6 |o0.07 5.1 0.09| 6.1 0.04 3.7 1.3 ég
1 -25.4 1 7.4 0.76 | 42.3 |0.79 -16.4 0.47| 3.2 0.65 | 2.6
1.790 1 o o 0 o | 0.25 | 9.6 lo.o7 | 5.1 1 o0.10] 5.8 |o.08 | 3.5 5.6
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Table 19: Test of sum-rule inequality for FP [68,68a] data
FP'g '
N1 R A VPK ANS1 ANS?2 FINANS.
P.S|
1 b.81238 lo.0l100000 |1.0000008/-9.6389]3.185% -6.4534856
2 p.99 0.0277000 |1.0000001
hiy D. 99 0.0100000 |1.0000001] -97.47625.988 -71.493202
O
o |13 b.6679210.0100000 |1.0000047
2
& 0.99 0.0100000 ;1.0000000
0.99 0.010000011.0000101-139.03:98.81{-40.21967




Table 20: Phase-shift analysis of

FP ‘data[68,68a] for IT IT scattering(l.ol

A 5 P 1 2 F{5,0)=FA.
I Sn ReD ImDQ;, RePlr ImPl ImF, ReS‘ ImS2 Re FA ImFA.
1. 0.362910.19780.1364 |-0.368i0.1757 p.o 0.0 ~0.3727.1574 .0003F05463 [1.2767
1. 0.380310.2075{0.1654 j-0341610.1706 0.0 0.0 -0 « 1597 .0003F0.4588 {1.3705
| 1. 0:5321}0.232110.1377 |-03367}10.1379 b.o 0.0 =0 .1607 .0004+0.3533({1.2818
1 0.669610.224310.1634 |-03237]0.1338 0.0 0.0 -0 .1630 0.0004F0.3182 |1.4475
1. 0.6911{0.2733] 0.1861 [-03105]0.1166 0.0 0.0 -0 .1641 0.0005/~0.1318]1.4867
1 0.749910.3337] 0.2538 [-02846}0.1168 0.0 0.0 -0 .1665 0.00060.1634 |1.7527 3
ii 0.726210.36¢2{ 0.3144 |-0236310.1222 0.0 0.0 o .1676 0.00070.3680 |1.9557| 0320
gl. 0.773%3010.3481} 0.3143 |-02119}0.1144 0.0 0.0 = .1687 0.00080.3165 {1.9637
1, 0.7656!0.3867} 0.4279 |-02016[{0.1034 0.0 0.0 =0 .1698 0.00090.5251 |2.3047
70.852910.3684] 0.4778 |-01986/0.1019 lo.0 0.0- =0 .1709 0.00100.3819 |[2.5255
«2 1 20.826610.3474] 0.6248 {-01920]0.1044 0.0 0.0 -0 L1721 0.0011jc.3315 [3.0062
23 30.914810.2895} 0.6791 {-01926]0.0877 |0.0 0.0 -0 w119 0.0012/0.0357 |3.1961
223 20.947910.1808| 0.8050|-019%01|0.0810 0.0 0.0 -0 «1731 0.0013-0.3962[3.6183
27 90.8382({0.0378] 0.8382 [-01670{0.0552 J0.0 0.0 -0 .1742 0.0014}-0.8904{3.5788
1.29 10.67291-0.163] 0.7787 |-01938l0.0320 0.0 0.0 -0 L1741 0.0017-1.6416]3.2030
11.31 L 0.5664 .306] 0.7427 {-01526|0.0609 (0.0 0.0 -0 L7153 0.0018|-2.0363]|3.0974
1,33 «A3ZT .389] 0.6521|-01224}0.08%0 [0.0 0.0 -0 L1552 0.0020-2.2337{2.7906
1:35 .3450 .3931 6.5203]-00760{0.0937 |0 0 -0 .1750 0.0023-2.0497;2.3088
S .3718 .381] 0.4372 |-00507]0.1207 o 0 =0 .1749 0.0025-1.7796}2.1344
1.39 . 3223 .373 0.3725|-00381|0.1500 |0 0 -0 1761 0.0028-1.662811.9773

(6v1)




Table 20 (continued)

(6ST)

MDF So ) Da P1 F1q Sy Dy F*(5,0)=FA. Errof—w
Gev {Re So Im SC Re DC Im D |Re P, |{Im P, |Re F, Im F, ReS, |ImS, Re Do |Im D, in FA.
fl.4%~o.454lo.2779-0.3664 0.3305|-0.04050.18100.0208 i0.0004 |0.38540.1760+0.0554 0.0030|-1.72061.8965 .0.346
L1.4%—0A361 0.2459+0.3518 |0.30341-0.04430.20200.0571 |0.0032 -0.38520.1759|-0.0586/0.0034 ;-1.42291.8680 {0350
1.45 {-04047]0.2000t0.3107 |0.2785/-0.04430.22250.0656 {0.0042 |-0.385d0.1758|-0.0622/0.0038;-1.21091.8236 |0.350
1.47 1-0345110.1348F0.2447 |0.2253]-0.0435/0.2274/0.0690 |0.0047 0.38480.1757|-0.0656/0.0042 |-09405]1.6214 |o0.354
1.49{-03036[0.1005+0.2388 {0.21771-0.03770.24700.0793 10.0062 {-0.38440.1757|-0.06730.0045 [-07968|1.6431 j0.355
L.51(-0240810.9606+0.2276 |0.2025 —0.03520.25170.0986 0.0095 |-0.38560.1769)-0.07070.0049 |-05852(1.6042 |0.366
i .53{-021280.0467+0.1957 |0.2172|-0.06730.2792/0.1011 |0.0361 |F0.38540.1768|-0.0741l0.0054 !-05405]1.9136 |0.353
1.59-01760/0.0314F0.1861 10.2353|-0.08740.30790.1133 |0.0546 |-0.38540.1767|-0.0775/0.0059 [-04641}2.1801 J0.351
,1.57-0i398 0.0196+0.1667 [0.25681-0.096700.3351/0.1144 j0.0811 {-0.38510.1766]|-0.0808/0.0065 |-04012]2.4783 |o0.411
1.59-00689(0.0047+0.167110.2114]-0.11330.3392)0.1274 [(0.0848 }-0.38490.1766]|-0.0842/0.0070}-03200{2.3896 |o0.404
1.61-00104]0.0001}+0.1528 [0.22091-0.15130.35740.1243 10.0997 |-0.38480.1765|-0.0876/0.0076|-03741}2.5783 [0.400
1.6300739 J0.0054+0.1407 |0.2204}-0.173110.3585/0.1316 ]0.1395 |-0.384€0 1764|-0.0926)0.0085 |-03006[2.8633 |0.403
1.6901462 {0.0215+0.1421(0.1874{-0.202500.363110.1357 |0.1682 |-0.384590.1764|-0.096 |0.0092 {-03217|2.9797 0.405
1.6702216 |0.0510+0.0967 [0.2079(=0.2343l0.3378{0.1122 |0.1757 |~0.38550.1776|-0.09930.0098 |-0-3864] 3.0458 |o0.401
1.6902996 {0.0980F0.0767 10.1709]|-0.2624l0.30770.1014 |0.2041 —o.385fo 1776|-0.10440.0109 |-04360}3.0636 |0.402
1.7103656 10.1558+0.0419 [0.2466]-0.27570.27490:0737 |0.2118 |-0.38540.1775}-0.1077/0.0116}-05134]3.3112 |0.443
1.7304143 10.24230.0305 0.2653|-0.2695/0.24610.0575 [0.2081 |-0.38640.1788]|-0.11270.0127|-05481{3.3218 j0.446
1.75304138 10.3%037p.000 0.2785|-0.25050.20100.0440 |0.2007 |-0.38610.1787]-0.11640.0135|-04899|3.2204 ]0.456
1.7703979 10.3880p.008 0.2888!-0.2302l0.18540.0346 10.1892 |-0.38710.1800{-0.12100.0147|-04839|3.1863 |0.460
1f7906813 0.4553p.0258 10.2697}-0.2116{0.16690.0290 |0.1784 |-0.387¢ . 1700l -0 126d0 0159 !-04%01l 2.0385 |o0.465




§
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4,6 Discussion of results.

We have derived the constraints of sum-rule inequality

(4-.5.9) on the basis of unitarity and positivity with pheno-
menological input of data in the form of EM's solutions A,B,C,D
and FP's analysis togetherwith the experimental errors

involved therein. If the constraints are satisfied we should
get positive values of integral (4.5.9).

(A) Rotated Data:
In case of rotated data for solution A,we find minima

of sum-rule inéquality (4.5.9) consistently for the set{Bf O.9§h
which is almost at the boundary of the unitary circle =
v% =r%ei6% . The minima are found cpnsistently for set of
angles in the radian meésure{ér 0.0l}, except in one case of
polynomial of ordér 3.Also, we find the minima vé@ry consistently
for {v?f 1.000001}, just at the beginning bf the cut outside the
circle. There is some violation of our sum-rule inequality
(4.5.9) :the higher is the order of polynomial P(v) the higher
is the degree of violation of our sum-rule inequality.
The results are very sensitive to input values of Vp in
polynomial (4.3.3),in general.
There is similar situation with solution B. The minima
. : k ;
are found for {R= o.s4s},{e= 0.915}and {vp= 1.0000006} in case
- of polynomial P(v) of order 1. The error integral shows

less numerical value than that in case A.

In case of solution C, the error integral of sum-rule
inequality (4.5.9) shows larger value than that in case of
solution B. However, total value of the sum-rule inequality
(4-.5.9) for solution C is less than that in case B.Consequently,
there is less violation of unitarity.in case of solution C

than in case of solutionB for polynomials of order 1 and 2;

the reverse is the cace with polynomial of order 3.

—
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As the error integrals are concerned, the solution D shows
less error than solutions A,B&C for polynomials of order 1& 2,
but the total value of the integral (4.5.9) is more negative

for solution D than for solutions A,B and C.
(B) EM'S Unrotated Data:
In case of EM'S solutions A,B,C and D (unrotated),we

have less values of error integrals than the corresponding
values with rotated data. The minima are fouﬁd cohsistently
for the set {vicl.ooooooi} ,XLA-—~0.01} and[LR= 0.99}, with a few
exceptions in case of polynomials of higher orders.

Solution A shows the léast values of error integrals
in %.5.9) foliowed by solutions B,C&D. However, solution C
shows the least violation of our sum-rule inequality for the
polynomial of order 1, followed by solutions D,B and A.

(C) FP'S Data:
In case of FP data, the minima are found almost

consistentiy for fhe set{vifl.OOOOO%}i§=0.0{§and{3= 0.9%-,

except in one case of polynomial where it is for the set

{R=O.81 or0.6é} The errors in integral 4 .5.9) are less in thig .
case than those for EM'S solutions. However, the data show
much more smooth behaviour and the violation of. our sum-rule
inequality (4.5.9) is of the order of experimental errors
involved in the data,thereby, we cannot rule out completely

the FP-solution.
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47T CONCLUSIONS.

We have derived the sum-rule inequality (4.5.9) on the basis

of unitarity, analyticity of 1t T amplitude and positivity
of its absorptive part A(s,0) with phenomenological input of
experimental data in the inelastic region. Its violation
shows either a clear indication of the experimental data at
fault or something wrong with our basic properties of the
scattering ampl-<tude. The chosen data satisfy the sum-rule
inequalities of Common{74] . EM'S figures give the impression
of very smooth argand diagrams,but actual solutions are very
noisy. However, the problem is not solved by changing and
fotating the overall phase. On the other hand, the problem of
‘truncation at L=3.introduces spurious uniqueness and there are
continum ambiguities clearly présent. On plotting argand
diagrams of FP's data, we get smoother curves which agree with
the published papers [68,68a) .
| On the basis of our computational results,after
local minimization with respect to the zeros of the parameters,
we find that there are clear violations of our sum-rule
inequality (4.%5.9) in case of EM's solutions A,B,C and D.
This violation is found to be less pronounced in the case of
unrotated data than in the cése of rotated data. However, they
are of the order of one to two standard deviations,in most of
the cases, which is the order of errors involved in the
experimental data. Hence we cannot rule out EM-solutions
completely on the basis. of violations of our sum-rule
inequality.

In case of FP-data, the anulysis shows much more smooth

behaviour and there is less violation of ocur sult-rule

inequality and we cannot ruie out the two soluticns. So, the

smoother data is more consistent with analyticity propertics
0f the scattering amnlitiidec . .
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Appendix

b Convelgegfirgl S5 .
erto prov

Im £(v+iB)P(v) dv~ |A(s,0)| v(v-v_)|dv ds_|A(s,0)
Vio m V+i v v \f S )[ Ll S ]ag skj S; ds,

we proceed as follows:

V= ( A1)

/=1 4+ J1-1
S, s si
T [
S, 1
s—»00,V___ = - =-0.2786. (A2)

‘/1-2 1~ B : ' o .
v= S2 5] (A3)

(A4)
J
=A.B.C 3 " |/1 2 ( A5)
1X*-(-1 }
3 |k 2 1
where A= &1/5—1/s§Q-(1/5 _1/5$3_ {E S, (s}
(1/sq ~1/s2) (1/s4-1/s,)

-
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. . r Wiﬁ‘

g 1|1/s-1/52 ) 1¢( 1/5—1/51) | ( 56 ;
| (1/s-l/slﬂ s2[(1/5-1/52 ) ] N
c= 1[ 1 2 L 46
g o 1
|G- )% I

Now we consider these factors separately:

ﬁ/s—l/s;+1[s—1/sl;2(1/5-1/57)%(1/5'1/51)5)_
(l/sl—l/sz)

‘(-1/52—1/slr2(-1/slsz)%) —1
(1/51—1/52) J

Il

. ! ; ' 23 (1-1 2]
/s—2/(slsz) i (l—z(sz/s)—1/8(sz/s) )(1—2(51/5)-1/8(51/5) -{q

L (l/sl-l/sz)
2/5-2/(s,5,) { -1 (5, /5+5,/5)+0(1/5)

i}

2
,neglecting higher order

i (1/51-1/SZ )
terms.
=2/s+2/(slsz)%.(1/2@-(51+52) 7
[ ( 1/s.-1 /s,) + 0(1/s) 1]
: 4 i W’ (A8)
=A'/s +0(1/s)“,where A'= |2+ T s“)% J
172 1/2

15 _ -1/51(1-51/5)
-1/5,(1=-s,/ ’
. 1/51<\ s,(1-5,/s) > _ 1/51\\
~1/sl(1-sl/s )

—1/52(1-52/5)

- . . _ 2
—1/(5152 [ -1/25(52-sl)+1/25(s1 sz) + O(l/s)]’neglecting

higher order terms.

(S _ 57) 2
=1Asls§@wwi;——:-' +0(1/s)”
S S 5 =8
. 5 172 (A9)
or B= B'/s + 0(1/s)” ,where B'= !

(Slsz)
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1

C=1/s’ ; 1
[(1/5—1/52)i ?(1/5-1/51)21 5

[(l/s-l/sz)i—(l/s—l/sl)iJ
=1/§[

(—l/sz+1/sl)2

=1/s|—=1/s2 -1/5] -2/(s157)} ] +0(1/s)°
(-—1/s2 +1/sl)2 .

«Ctls # O(LEs}>, y
-1/s,-1/51-2/(515,)°

(-1/s2 +1/51)2

(Alo)

where C'=

Putting the values from (A8)(AS) and (A10) we have
ALB.C = (A'/s +0(1/s))(B'/s +0(1/s)2)(C'/s + 0(1/s)%)

~“A'B!'(C!
_——5—-————-

- +0(1/s)* as s—»00 . (A11)

i.e. for/s;=1.0lGev, s,=1.79Gev, A.B.C = 13.7(1/5)3+O(1€s)4)
| Al2

Putting the result (Al12) into(A14), we have

V(T Voo) %%‘ =13.7 (1/s)% +0(1/5)* (A13)

Hence, ~§ Imf(v+iB) P(v) dv -~ jg(s,O)';(v-voo)dv]ds~«AL§LQlds'
Voo L ds s (A14)

is true for small negative values of v.
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2. Table Captions.

1.The central values and errors used to compute the bounds for
the real and imaginary parts of the amplitude on the inter-
mediate energy region 0.45 GerSEC Irl~51.9 Gev. The phase

shifts are given in degrees and the inelasticities fulfil[18]

Sup {O, E i An\}g n< Infle * A*n\},
2. Upper bounds on FrIo+IIo_+rIo+rTo(s,4)='1/3.(F0+52F2)

=1/3.( a, +2a, ) for s-wave in ‘the elastic region(0.45 Gev<E <

Q@.95Gev ).

) .
3. Upper bounds on F(s,4) =3 (F +F“)=1(a_-=a,) in
I1+r10-> 1% +11° °

the elastic region.

Iy
3

. e 0.2 i

4. Upper bounds on FIIOIIO_+TTOIIO(S,4)=1/3.(F +2F )=l[o.(aoﬁhl)
for s-wave in the broad energy region(0.45 Gevsﬁc m:il.QGev).

: 1 .2

5.Upper bounds on }IT+IIE¢II+TIO(S’4)=%(F +F%) =3(ac~a,)
for s-wave in the broad energy region.

6. Numerical values for different €-values of the bounds on -

" " 7

ao,aZAZao—Sa? and(ao+232)obta1ned by Bonn1er[l§jf The

bounds are approximately linear with € (O<Es1).

7. Low-energy s-wave parameters calculated for the Saclay and

CM-EM1 phase shifts by BFP[S@ .

8 .EM'S data[81] rotated by Common[82] for solution A

9. Do for solution B
10. Do for solution C
11. Do for solution D

12. Test of our sum-rule inequality for EM'S (rotated by

Common) solutions:A,B,C& D

1

|
14. Do B

13. EM's data[81] for solution A

15. Do C



(158)

16. EM'S data [81) for solution D
17. Test of our sum-rule inequality for EM'S solutions:A,B,C&D.

18. FP data[68,68%:M is dipion mass in Gev. For orbital

IT IT
angular momentum ! and isospin I, éé and‘ni are phase shift ‘
in degrees and elasticity coefficients. For I=2 numbers represent
fixed input into the analysis.The other column is a measure of.
uncertainty. The last column gives the'X? for a fixed energy

to 7 Legendre moments of elastic cross-section.

19.Test of our sum-rule inequality for FP data[68,684]

20. Phase shifts analysis of FP data[ﬁS,éSq]for T rT” scattering

in the inelastic region.
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3.Figure captions.

1.SCATTERING PROCESS:Four lines representing four ingoing
free particles.
2.The scattering process: IT+TT¥+II+TT in the cms.
3.Mandelstam diagram:Physical regions for s-,t- and u-channels.
4 .Mandelstam diagram: t vs u
5.Singularities of the scattering amplitude in z=cos€s—plane.
6.Feynman diagram for nucleon-nucleon scattering with pion
as an exchange particle.
7.(a) Nucleon-nucleon scattering in c.m. frame.

(b) Feynman diagram for proton-proton scattering with pion as
an exchange particle,producing a pion and a nucleon.
‘8.(3) Argand circle for small inelastic amplitudes:the parial
waves lie near the centre of the circle.

(b) Argand circle for elastic processes,where the high partial
waves lie near the edge of the circlg.
9.Bohnier's Mapping[18] from (a) z-plane to (b) v-plane.
10.Mappings:z-plane to w-plane, -~ - . , and w-plane to
v-plane.
11.Complex z-plane: right hand cut and a pole zo.on the real
axis.
12. Complex h(v)-plane:(a) O=Arg h(v+iE), (b) céntour near V.
13.Special mapping from complex s-plane to v-plane with

contours of integration.
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