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In section 1 we consfruct the unrestricted free nonasggeliative
algebra A ,we show that A is afree nonassaciatiye algebra.
In sections 2 and 3 we consider the problem of showing %hht
the unrestricted free associative algebra l__ is a free assoc-
-iative algebra. lie make use of results due to S.Moran(23),

P.Cohn(5) and the PoincaréeBirkhoff-Witt Theorem.

In section 4 we show that the unrestricted free commutctive
algebra (:: is a free commubétive algebra, using a corollary of
the Poincaré&-Birkhoff-Witt Theorem.

In the fifth and final section we establish some results on
the completion of.rz-groups following M.Hall (11),and then
establish via a subalgebra theorem of S.Feigelstock(6) that the
projective limit of free anarchic algebras is a free anarchic

algebra. We conclude with this last result.




REVIEW OF THE LITERATURE ON UNRESTRICTED PRODUCTS OF GROUPS AND

ALGEBRAS. \

\

PRELIMINARTES ‘ \

For an understanding of this review it is necessary to have

some knowledge of verbal products and nilpotent products .

We discuss these under the general heading ' products of groups'.
The list of papers quoted in this discussion can be found in
Combinatorial Group Theory, Magnus, Karrass and Solitar, Inter-
-science, Wiley, 1966, We will therefore give only the year and
author, not the full description of the publication. Unrestricted
products will be dealt with under a separate heading ,and then
descriptions of publications will be given in full. Finally,

we will outline the relevant details of the research contained

in this thesis, Indicating ,in particular , how it follows on
from the work on unrestricted products of groups.

PRODUCTS OF GROUPS.

Golovin in 1950, investigated the question of whether the concepts

of the direct product and free product of groups are special cases

of a wider class of products . To present his results we use the

following notation: . Given any two groups, /A\ and EB ,we

denote by A" B their direct product and A*B their free product.

By A o B ,we denote the direct or free product or any multiplicative operation,
still to be defined . Also , we shall use the notation /ﬁyato

denote the normal closure of /A\(the smallest normal subgroup

containing/\.)in the group Gﬁ ,where'/\ will usually be a subgroup

of éi ,but may be any set of elements of Gi .
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Now we list six properties of multiplication of groups, all of whiqh
are satisfied by the direct and free product:
~ ~
I, Given any two groups A and E) ,there exist a group Gl :
denoted by A° 8 and called the product of K and % ,such
™)

that G\ cofn:ains an isomorphic copy A of A and an isomorphic
copy 8 of 6 and is generated by A and g .
II. AG intersects 6 in the identity, and 6G intersects A
in the identity .
14 1 % /A\° 6 X~ 6" /A\ under the isomorphism which maps the subgroups

A - 8 of the first product into the subgroups A > 6
respectively ,of the second product, (We call this isomorphism
the natural isomorphism)

—~ ~ ~/ %4
. Ir A N B ,C are any three groups (with C = C ), then
A-BFC = Ao(BC)

again under the natural isomorphism.
V. Let Mbe any normal divisor of‘/A\ and let N be any normal
divisor of B .Then, if 6 = AeB

(A/M)o (B/N) = G/(ME NT).
under the natural isomorphism , mapping A/M and B/IV in \
(AIM)o(8/N)ento the sungroups (A- M- NIFEN), BHNMANG
ot G /(M7 N hespectively. The dot denotes the usual group
operation.
VI. Let HC A and K< B be any subgroups of A\ and D
respectively . Then the subgroup & of (= Ao B generated by

and ¥ is isomorphic to .T= H °‘< under the isomorphism which

maps HC S onto HC'Tand KCS onto KC,T.



(We call this isomorphism the natural isomorphism). Golovin in

1950, called a product satisfying I & II a regular product, and

a product that also satisfies III and IV a fully regular product

If we use the notation (A, E)) for the subgroup generated by the

commutators (A, b) witha in A, © in B ,we see that (/3\96)

is a normal divisor of A* 6 and under the natural isomorphism,

AX E)”—-‘: (A*B)/(A; 6) . Golovin showed that any regular

product Ao E) has the property that, under the natural isomor-

~phism, A"ED Z(A*EB}/N where NC (A, Bland N s a normal subgroup
of A% [ .Ruth Struik in 1956, showed that there

exist products for which I and II but not III, or I,II andIII

but not IV, or I,II,III andIV but not V is satisfied. In addition,

she gave an example of a product satisfying I,II,III and V but

not IV, Regular products satisfying III but not IV were also

constructed by S.Moran 1956, and by Benado 1956, 1957. Golvin,

1950, constructed an infinite sequence of fully regular products

all of which also satisfy condition V. His construction was

given in different forms by S.Moran 1956, and R.Struik 1956.

Following Golovin, we shall define, for K=1,2,3,..., a product

A% & which will be called the nilpotent product(more

properly, _Kth nilpotent product) of A and B .To do so, we need

the following notation:«:
Let G( be any group and let H be any subgroup of 6\ We define
i G
for K‘O/')»z;..., :DH(ﬁ: ‘"'—\ ’KH(:[: (K-l H(,’) Q) .Then

the K th nilpotent product is defined by




AZS (A * 6)/ (A 6>6 (Golovin)
Ae D= (A%B)/ (Aa,« Ba) (cAa,oBa)  (struix)
Ae:(& ( A% B)/(A &)ﬂ (/A\ 5)(,, (Moran)

where throughout (3 is used as an abbreviation for A\* B.The
equivalence of the three definitions can be derived from an

identity proved independently by Struik, 1956, and Moran, 1956: Ty

K(A 6 ﬂ ( Aa,hgﬁ) (oAG)K&Q)'(66@9KA6>

n+Em=K
where G] = A* B .Golovin,Moran , and Struik proved that ,in

general, A = ) and A%E) are not isomorphic
under the natural isomorphism if K# ¢ .

Moran, 1956, showed that Golovin's nilpotent products are
special cases of a much more general class of products which

he called verbal products .To construct them ,we define first

a fixed (but otherwise arbit@ry) verbal subgroup V(&) for every
group (5 . Then we define the \/—product A‘\D/ B by

AcB = (A*B)/(A,BINV(A*B)

For all possible types of verbal subgroups the \/ ~product of
groups is fully regular and satisfies postulate V. In addition,
it is possible to write down explicitly the \/-product of any
set of groups /A\"( , where K runs through an arbitary index set
- . (Since we shall use the free product of the Ao( we may
identify them with theiv replicas in their free product,

omitting the use of the /A\(,() For this purpose,let G be the
free product of all the /\ sk Tado (o0 ) e ie- pratnik: o

the normal closures of all (/A\o( P\)ln , Where a(;é/g - «ﬁe b

We call C ( 6 ) the Cartesian subgroup of the free product of the 64\ .




known

l;

Obviously, G /C- (61) is the (restricted) direct product of the A,‘.
Then Moran (showed that the \/ -product of the Ao( is given by
G/C(G )/\ V/G). Also S, Moran, 1956, proved that C[G)
is always a free group.

Except for verbal products, no other products satisfying I :bo V are
On the other hand , the free and direct products are the only
verbal products known to satisfy postulate VI. In fact Wiegold has
shown (unpublished) that free and direct products are the only 1 verbal:
products which satisfy postulate VI . However, Moran in two papers published‘
in 1959 constructed larger classes of regular products of groups satisfying
postulates III gnd IV which are not verbal products in general,

Golovin, 1950, had shown that each decomposition of a given
group into a regular product corresponds to a set of orthogonal
idempotent endomorphisms. Benado, 1956,1957, used this result as a
starting point for an investigé.tion of associative products, and for
constructing examples of nonassociative products.

In general, it is a difficult task to prove that two verbal pro-
-ducts are different if the verbal subgroups used for their
definition are different in a free group on sufficiently many

generators, If we define the e‘th soluble product as the verbal

product arising from the case when V(&) is the e-— th derived
group of (= ,then it can be shown(Moran 1958 ) that for €2 the
soluble product of Abelian groups contains a locally infinite sub-

-group. Since Golovin ,1950, 1951, had proved that the nilpotent



products of a finite number of finite groups are themselves ,
finite it follows that the soluble products are, for.l?%lgnot
nilpotent products . R.Struik, 1959, proved that a large class of
verbal products (defined by using 'complex' commutators for the
definition of the underlying verbal subgroups) are different from
each other and from Golovin's nilpotent products.

All of the problems that have been studied in connection with the
definition of the direct and of the free product also can be investigated
for verbal and other fully regular products of groups. These investigations
have been carried out in part for nilpotent , especially for 52,—nilpotent,
products by Golovin 1951 (two papers) . Maximality conditions have been
found by S.Moran 1958 , who also showed that a group isomorphic to a
verbal product A?/ B where 3 does not denote the free product , cannot
be decomposed into a free product(of non trivial groupé)except when.A/\ and ES
are of order two .

There are many other results of Golovin, Moran, Benado and Struik,
but for our purposes we do not need to give a too detailed discussion.

UNRESTRICTED PRODUCTS

We begin our survey of the literature on unrestricted products by first
giving some of the results of R. Baer ( | ) on torsion free abelian groups.
We will only give those results which relate to the unrestricted sums of
infinite cyclic groups; usually called the complete direct sum of infinite
cyclic groups see Fuchs (27 ).

First we have some definitions. A torsion free abelian group is

completely decomposable (irreducible) if it is a complete direct sum of
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groups of rank 1., A homogenous abelian group is an abelian torsion
free group all of whose elementéfﬁgve the same type (for a definition
of type see Fuchs (L7)). A torsion free abdian group Ca is
separable if every finite subset of the group éﬁ can be embedded in a
completely decomposable direct sum of CS .

Now it is shown by R. Baer ( | ) that the complete direct sum of an
infinite set of infinite cyclic groups is torsion free. More particularly,
the essentiel part of the following result was proved by R. Baer ( | )
"A complete direct sum of an infinite set of infinite cyclic groups is 9{—
free, but is not free".

Also in the same paper R. Baer showed that if Cﬁ is a homogenous
group of finite rank ﬁF:) <EW is completely decomposable if and only
if C%y/Es is finite whenever the subgroup EB of Cﬁ is the direct sum

of VYV~ pure subgroups of rank 1. Note a pure subgroup 53 of 63 is a

subgroup S containing the solution to NX=Q if the equation also
has a solution in (3 O‘E.S, Vin - an integer. Tt can be deduced that

@ particular case of an homogeneus group is a complete direct sum of
an infinite number of infinite cyclic groups. Conditions for an homogengmus
group to be completely decomposable are given in ( | ) and it is remarked
that a complete direct sum of infinite cyclic groups does not satisfy one
of these conditions.

An important example of a separable not completely decomposable group
is a complete direct sum of an infinite number of infinite cyclic groups.

As it turns out, separable subgroups are completely decomposable.
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There are meny more results contained in this most important paper of
R. Baer (| ). However, we have tried to consider only those results
which relate directly to the complete direct sum of an infinite number of
infinite cyclic groups. For more information consult the original paper
or L. Fuchs ( 27 ).

E. Specker in (24) considered formal sequences of integers as a
particular case of the complete direct sum of an infinite number of
infinite cyclic groups. His results are as follows: Let F be the
additive group of sequences 1dnY of integers. A growth-type is
any subset % of the totality j< of increasing sequences an}

of natural numbers such that

(> {pated  49-3 € X A%,é(sn = {gnle &
i) £pnlY, L 4nl e/@’ = €P,,+ci/n}e &

To each growth type % is associated a subgroup F;d & F
{a“3éaif { max fi)lqél);} e & . The growth

<N
type consisting of all bounded sequences in J< is denoted by Vl .
Then the following results are deducted.

N

(i) Totality of growth types has cardinal number <
(ii) F/a{ TV oayir # =¥

(iii) A1l subgroups of F  of cardinal number S\Z and all subgroups

F S

of F-y‘ of cardinal number §V, , are free abelian.
(iv) If ﬁ # '] . F'_;d has a non-free subgroup of cardinal number
N,

In 1952 G, Higman ( |3 ) published a paper in which he constructed the



-Free
unrestricted;product of a family of groups. We now give this

construction and discuss the salient features of that paper.

Let G: ., , X €A ,be af—amﬂa of groups indexed by
a set A . The finite subsets of A form a
directed set if ordered by inclusion. For each finite subset

: i of A ,construct Df— , the free product of

the groups 6‘]0( s xXEY" . If ke S are finite
subsets of A ,then a natural homomorphism of Ds

onto D,(.- is given .by mapping onto the identity those Glo(’s
with K & < , A ?{ "(\' .These homomorphisms and the directed
sets determine the inverse(or projective) limit of the groups

‘D\/\- and this is taken as the definition of the unrestricted
free product f-— of the . “ groups , é]x .

This is in analogy to the unrestricted direct product, which could
be constructed in a similar way using direct products.

The unrestricted free product F— contains the ordinary
free product F_(w )as a subgroup; F- and. ‘:-(UO) coincide
aly i % o ity et - % - 1a Easisitet - . can
be regarded as the completion of F’—‘W)in terms of the subgroup
topology of M.,Hall ( )| ) where we take as neighbourhoods of the
identity the kernels of the natural homomorphisms mapping l':'——
onto D ~x .

A number of results are found for the case in which F_ is

the unrestricted product of infinite cyclic groups . F is




not a free group. The derived group is not closed . F:—

contains a subgroup F:> which is not free but

is such that the only freely irreducible( that is, cannot be
written as the free product of proper subgroups) subgroups
of F:> F-=="] are infinite cyclic groups.
In 1953 G. Higman ( }4 ) put these results to good use

by disproving a conjecture of Takahasi., Takahasi asked.

'Ts every countable group CEQ which satisfies (i) C;

is locally free, (ii) C% possesses no fnfinite
properly ascending sequence of YW\ -generator subgroups,
for any fixed integer 2% ,a free group'. G.Higman
showed that the subgroup FZD of the unrestricted free

product of a countable number of infinite cyclic groups
satisfies (i) and (ii) ,but by his previous result given
above this subgroup is not free.

As recently as 1964 M. Burrow ( % ) showed that if F

is the
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unrestricted product of countably many free cyclic groups and C; is

a homomorphic image of F:' with a chain :
G’;NoDN'DNA ¢ 4 o e /\'n‘—'i
of subgroups N'L , such that de N-L and N,'-/NiHis free abelian,
then Ci is finitely generated.
A, Hulanicki, and M.F. Newman ( fé; ) 1963, obtained some specialised

information on an unrestricted direct product with one amalgamated subgroup.

They amalgamated a central subgroup I+ and showed that the unrestricted direct
product exists, if and only if, H is algebraically compact.

By an example the authors showed that when the product exist it need
not be unique, An error which occured in this paper was corrected by
A Hulanicki in ( r7 ). We mention in passing that A.Hulanicki and K.Golema
( 15 ), obtained some results on the structure of the factor group of
the unrestricted sum by the restricted sum of Abelian groups.
Following on the work of finding more general products off groups
S.Moran in (22), 1961 constructed the unrestricted regular product of
an arbitary family of groups, using the method developed by G.Higman ( \%)
when he constructed the unrestricted free product. The only change made
by S.Moran was that the free product was replaced by an associative regular
multiplication. The results obtained were the following.
(i) The regular product can be embedded as a subgroup in’the unrestricted

regular product,
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(ii) The unrestricted direct product,of the family of groups, is a
factor group of the unrestricted regular product.
Among the classes of associative regular multiplications introduced
by S.Moran are the verbal multiplications, and a definition of unrestricted

verbal product is given in terms of these. Several other properties of

The unrestricted free products were obtained .. For example: a group cannot be

decomposed into a restrictedand unrestricted freeproduct of proper
subgroups, |

In 1962 S.Moran (.23), turned his attention to unrestricted nipotent !
products. He defined the unrestricted verbal product, but mainly
concerned himself with the case when the verbal subgroup function determined
the M+1)-th term of the lower central series, each 60( was infinite cyclic
and A was countable. Under these conditions the corresponding

\/ -product is alfree nilpotent group of class Il and countable rank,
Now let us denoteby ,,Glthe corresponding unrestricted \/—product. The
following results were obtained.
(1) If H is a countable subgroup of (3  such that H modulo
its centre is finitely generated ,then H is isomorphic to a subgroup
of a free nilpotent group of class 4
(ii) The Mal'cev completion of G is isomorphic to the Mal'cev
completion of a subgroup of a free nilpotent group of clags ’/\ .

The Mal'cev completion of a torsion-free nilpotent group A is a

divisible and torsion-free group 8 , Which contains A\ , is nilpotent
of the same class as /A\ and is such that some positive power of every

element of & lies in A .
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(iii) If y is a homomorphism of 6 into a free nilpotent group
then ’"% maps the unrestricted product of all but a finite number of the
factors onto the unit element.

The proof of (ii) relies on the following fact : the unrestricted
Lie algebra over a field SL is a free Lie algebra over £ s, This
as far as we are concerned is of great importance and is taken as the
starting point of this thesis . However ,this will be' discussed further on,

In the last two sections of this paper the author investigates similar
problems for the unrestricted soluble products of infinite cycles (i.e.,
where the verbal subgroup function \/ determines some term of the derived
series) and the unrestricted 3rd. Burnside products of (a) infinite cycles
and (b) cycles of order three (verbal subgroup function determined by the
word "DC—3 ).
H.B. Griffith in ( 7 ',discuss/ed the unrestricted free product of a
sequence of groups { Gn?f . This is the inverse limit K of the free
product Kn of Gp (TL, --- -G{n with the homomorphisms !(,\H——) Kv‘
determined by G\hﬁ'ﬁ | . Tt is shown that in the natural topology for |’<
the derived group EK, K] is not closed.
This result rests on showing that in an ordinary free product the product
of more than |Z N—2 elements from distinct 6 IS is not a product
of N commutators.

~In a later paper ( 8 ) the author improves this latter result.
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It may be suspected that G. Higman's results given in ( | ) can be

applied to semi-groups with an identity. This was done by H.B. Griffiths
in ( 9 ). Some of the results obtained are as follows. Let a
semigroup mean a semigroup with identity. Then there is a natural
retraction of the free product of two semigroups on éither factor and the
unrestricted free product AH of the sequence {Aijof semigroups can be
defined in the same way as G.Higmen did in ( 13 ). Ir { 61’3 is a
§econd sequence of semigroups, and X{‘ is a homomorphism of 81;
into A-,‘, (= l, 2—/ .- - ) ‘there is a naturally defined homomorphism

b/.' BH - A . Even if each B’f{, is onto /A\.z

s -’%is not in general onto /A\H . In particular, if each E){/is
a free semigroup « a/ maps 6f+ onto a subsemigroup /A\—r e AH
which the author calls the "Topologists' Product". If Sn denotes the
subsemigroup of AH generated by A,,/'\lu— x5 ns ar{g”mir;:‘g:ct of
the sequence { A,\ﬂ:}, then AT can also be characterised as the inter-
-section of all S n o Lastly, if all the A‘L are all groups, Let X‘L
be a metric space having At as fundamental group, let the
diameter of ><_)~/ tend to zero as L increases. Let the Xf) have a single
point in common, at which each is in a suitable topology locally
connected ( & ). Then /\_l_is the fundamental group of their union.
There are some applications to the theory of local connectivity.

This review bringsus almost up to date ,in respect of the work done on
unrestricted products of groups. In 1966 0.N. (Macedonskaja (21)2 introduced
some results on polyverbal operations. In fact, those polyverbal operations GF

Macedonskaja were"honassociatiy'e. Various other writers in partimlar P.W. Stroud

(2S) 1965 discussed verbal and marginal subgroups. It seems likely that
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some of these generalisations may be applicable to the unrestricted

product.

UNRESTRTCTED FREE ALGEBRAS

We conclude this review of the literature with/a summary of results contained

in this thesis.

In section 1 we construct the unrestricted free nonassociative

algebra By
;\ is a free non-2ssociative algebra

In sections 2 and 3 we show the subalgebra!==9f all elements of finite degree in the
unrestricted free associative algebra L_. is a free associative algebra.

We make extensive use of results due to S.Moran ( 23 ), P.Con ( 5§ )
and the Poincareé-Birkhoff-Witt Theorem.

In section 4 we show the subalgebra S;;()f all elements of finite degree in, C:
is a free commutative algebra, using a coreollary of the Poincaré-Birkhoff-
Witt Theorem (P.B.W. Theorem).

In the fifth and final section we establish some results on the
cpmplefion of _52.-group following M. Hall ( 1] ) and then establish
a subalgebra theorem of 3. Feigelstock*( 6 )

We conclude

with this last result.
K

The reference to Feigelstock is in fact, a well known reéult, see for example P.Cohn

Universal Algebras, Harper Row, pp 125 Ex.5. (x3)

A\Jie show that the subalgebra A\ of all elements of finite degree in
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INTRODUCTORY REMARKS

Al]l the unrestricted algebras considered in this thesis are formed
from a countable number of factor algebras of increasing rank., It is
clear, however, that the results we obtain can be extended to an arbitary
family of factor algebras. This is not done explicitly in the text since
the notation is likely to become somewhat cumbersome.

The two main tools used throughout are the inverse (projective) limit
and the Poincare-Birkhoff-Witt Theorem: Theorem (2°9) in the text. It
was felt, therefore, that a proof of the Poincaré-Birkhof f-Witt Theorem,
should be included. This was done, the proof being that as given in
N, Jacobson, Lie Algebras, Interscience, 1962,

Excluding the survey of the literature on unrestricted products, the
work is divided into five main sections.

Notation
The standard notation of decimal point system of numbering of eqguations

is used throughout the text.




DEFINITION 1,1 An inverse system of sets

An inverse system of sets {: X) Tr_} over a directed set M
is a function which assigns to eachX &€ ™M ,a set Xo(- , and
to each pair « , /6 such that 0(<ﬁ a mapping
ﬂx/& . X/‘t, = Xo(
such that
FRaadiloniis 4 the identity on X<,
for (°<</5<‘b/) 7\_0(/67\%5: VAV Y . The mappings ﬂv&/@
are called the projections of the system.

DEFINITION 1.2 The projective or inverse limit

Let {'X)Tf} be an inverse system of sets over a directed set Py

The projective or inverse limit of the f X 5 Tl'.)! is the subset

of the cartesian product

/1 X,

oLeg ™ o]
consisting of those functions O2C = CJé)such that, for </6 in [\/\
el

We denote the projective limit by
p— L (Xx ) « Given a topology
for each ><0Kwe can assign a topology to p'\ ()g),na.mely the

Tychonoff topology induced by _

AY

<€ M



THE PROJECTIVE LIMIT OF FREE NONASSOCIATIVE ALGEBRAS

Let AKdenote the free nonassociative algebra of rank W having the
elements x,, X,,... x« @as its free generators over a field .

If m> K , there exist & natural homomorphism 71;'('“: A m—> Ak
which maps Xusi, Xux#2, ... Xm into the zero element of A b

For any given K , a basis for A k 1s given by the fundamental

monomials.,

DEFINITION 1.3 (Fundamental monomials and degree)

A fundamental monomial of AK is a suitably bracketed nonassociative
product in the free generators = X, X, . . . Xk . We assign an
integer to each fundamental monomial called the degree. Each of

Xy Ra - - - Ry has degree one and the degree of any other fundamental
monomial is obtained by adding up the degrees of the free generators which

occur in that fundamental monomial,

Under the homomorphisms A ,,: AM—-a»AK we form the projective limit of

the free nonassociative algebras {AKR and denote it by A =)%(AK)

z:l,d./- .-

The ‘tact that the subalgebra q of all elements of finite degreeis a free
nonassociative algebra is demonstrated below

-~

First we have some preliminary 1emmas’a construction and some notation.
NOTATION
*:
In what appears below Z and 2 , will denote the restricted
)
and unrestricted sum respectively. Cb( will denote the natural

projection homomorphism of /\ onto A\( obtained by mapping XK-H/ 3

| —

Xiypy---onto the zero element of / \« . The image of Q & /A\ under

(<)

&> e e
q) will be denoted by QL . Every element QA of A\ cen be

—
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written uniquely in the form
ke
& = =kt bie)
Q=| g
where Aye € S5 and the unrestricted summation runs over all

the fundamental monomials of fixed degree € in the free generators
Xy, ¥a2,.- + - o These monomials are denoted by ‘O.,;(e-) in the above
summation, For fixed «6 a fundamental monomial bl(@ ocecurs

before b, L@) in the unrestricted sum if for some positive integer K
40 “lbi(9)
CP )‘(Q) =°9 while 4,( # 0 , An element of the
>*
fourm, a = 1,2-« A, b,lj (€) is said to have degree { in A

{/A\ will denote all those elements of A which have degree not less
than € together with the zero element. LA is an ideal.

s e

CONSTRUCTION 1.4

First we notice that since ‘ZA/e+|A_ is a vector space over a field
Q , it must therefore have a basis, Let %, = <:| be a set of
elements of _/_\' that is linearly independent modulo 2 é . Suppose
that the sets Bv/ C'\) have already been defined for all V<K
where N> | and the elements of the sets v (V= L, ---. )
have been so ordered that an element of %v is greater than element
of By it V>V | We derine C,, to be the set of all fund-

-amental monomials on the elements of the sets B.,Ba_/ ... B _, which

n—i
belong to né\. but do not belong to 4 A . Finally, Bn is
a set of elements of n A which is linearly independent modulo the
subalgebra generated by 4| A and the set Cn .

Before we can apply this construction we prove the following.

LEMMA 1,5
Let @,,02,. . - & be elements of the unrestricted sum of a countably infinite
number of one dimensional vector spaces over a field = o Then a4,,4,, 4y may be

embedded in a direct summand of Fom T




2
©o
*
That is A=2.52 ; 28
» 2= 4T ~ A 1s the direct sum of a subspace containing

7*
aysdy 5 «ev a, and the subspace i QA' for some positive integer s.

Proof: Let /\ be the set of positive integers, Suppose for sach value
of A we have a fixed field S ( recall A is defined over _52) .
If we fovm the unrestricted sum of _/\_ copies of this field £
then every element OC of /A\ has a unique representation of the foem
T
(1.5.1) o 5 2 oLy («)€S2)
A2A -

The proof proceeds by induction on Y . If =\ , then we must

embed d, in }A\ . Let o()‘ be the first non-zero coefficient of Q.
—— i

in unrestricted representation corresponding to (1 .5.1) .
We write ;
A= fal + A

i
where U belongs to /A\ if and only if in the representation of
The summation is obviously direct. Suppose now that we have two
elements ., Aa , let 0(/\‘ - )\, be their corresponding non-
-zero coefficients in their corresponding representations, If )(‘74)\,_
then write
Ul

/A\ =fa, 4.} + 7\
where €@ belongs to A” if and only if in the representation of
oy 0()\=O for >\="/\\ and >\=>\1 LG /\‘=>\llet “()\'2 be the
next nonvanishing coefficient in the representation of @, , then

write

_/ﬁ:{a:,az,} s+ /A\

i
1

where Q. Dbelongs to /A\ if and only if in the representation of

X\A=0 for 5\=)\\)\ >\=>\I:. L

o
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Finally if we have elements 4, Qz,.,.arafter {"steps we obtain

A {a.,a,;.,_,— ard + A\

where Q- belongs to A if and only if in the representation of

A, , A\= O for a finite sequence of values of )\; /\.‘,‘,Aﬁlu- A‘v.
This completes the proof of lemma 1.5.
LEMMA 1.6
If B, 8., ..-. Ba- are finite sets, then C,, is a set
of linearly independent elements of - A_ modulo ﬁ+l A_ y Lor
n=t, Q./ :
Proof: We proceed by induction on T . The result is obviously true
by construction 1.4 when .=l ., Suppose that the result is true for
Cuca., e - Cn_. . Now as these sets are finite for every
m (1 sm £n~1), 3t is possible by the lemma 1.5 to use a direct
decomposition of the space{ %A and bring all the elements of the

=\,
sets 6‘,6)3, T 6

-
together with the fundamental monomials on
the elements of these sets through to a direct summand ofmé/én_/_\’(m-b-%--')

n=1

We now do this.
There exist elements d;{tm) O»EA and positive integers q{(M), N(w.}
such that HAm)

m A/MH Zfd(”)"‘ A,}) (Zfb(w‘)fmﬂA&)

V7N (m)
(1.6.1) 4/lm)

and (CW\U%.M +M.H/A\C<2{d m)*'m{'\,A.k)

=)
In (1.6.1) 2 Z: denote the restricted and unrestricted direct
=
sums respectively while is to mean those and only those
T> Mw)
fundamental monomials of degree WM on X, Xe,.--. occur in

the unrestricted direct sum which satisfy the condition



[N(w)+1) 2 2
(1.6.2) d) (b;(m)) =0 _

Suppose ° . contrary to our lemma, the elements of Cn are linearly
dependent modulo V\+|/.A_\ . This implies there exist scalars (not all

zero) such that

(1.6.3) C= Z‘%» Cam‘; belongs to a4 .f\_

Now let N = MM{N(I),NCZ)/ . NG:-}
™) )

consider the image under d} of (1.6.3). This yields

) ) -
(l.6,4) C = zw-%y C‘n‘; belongs to p4 A
This implies via the decomposition (1.6.1) that for some £ (<n-1)

)
the set CL Y 61 is a set of linearly dependent elements
of A modulo A

N oW
For if not, CQ J e is a linearly independent moduleﬂ/ I'A for

every e, . Further to this every subalgebra of a free nonassociative

algebra is then free v1de E. Witt ( 26) ana the elements of the set
)
g A B e
W)
freely generate a subalgebra of A < also by E. Witt ( 2 6).

No nontrivial relation of the form (1.6.4) exists between the elements of

the set
(N) (m @) vy )
B 6 -~ Bh-l . Hence the set Cl U 51
is a set of linearly dependent elements of LA modulo L+ /A\ .

This implies that there ex:Lst scalars (not all zero) such that:

L% &85 a:).—_ Z 82 L Z ELJC? € 4h re

@/) v =l d\ ( —
h b,. € % c® .
where L; "d = CZ /—[;],,&/.-_.\e); (a':l)),/_——'él)
Thus the element ‘e b

= f
(1.6.6) 0= = Bejlopy + 2 €2 Ce
vI| = d J

has the following properties
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(1) aL does not belong pre F X by the induction hypothesis in
the construction 1.4 and since 8{, is linearly independent modulo the
subalgebra generated by X CQ,- EERE

LHMQ

(11) a{ belongs to ( Z‘{d (€)+ Aﬁ)modulo el A by the

decomposition (1.6.1)
(111) a,_ belongs to (Z {‘OLIQ) ﬂAg)modulo A+ A by (1.6.6) and
(1.6.5).
But these properties of &L+L+l_/i\_ contradict the direct decomposition
given (1.6.1) of the vector space &,A/eﬂ R

This concludes the proof of lemma 1.6.

1.7  The subalgebra of all elements of finite degree in the unrestricted
nonassociative algebra is a free nonassociative ssialgebra.

Proof: Now choose B“ 8;_, - - - 6.1/ e to be maximal
sets satisfying the above construction. The elements of the set C are

linearly independent modulo{hwéi Hence the elements of the set u B
NEOR, o vy

are free generators for A . This proves theorem 1.7.

L —
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SECTION 2. Poincaré-Birkhoff-Witt Theorem, Free Associative Algebras.

INTRODUCTION

In the previous section we showed that the projective limit of free

nonassociative algebrascontains a free subalgebra We now try to

determine whether the projective limit of free associative algebras contains a
free finite degree subalgebra.., Our approach is indirect, It is well known

that we can associate with each Lie algebra a corresponding associative

algebra called the universal enveloping algebra. And then, if we have a

basis for the Lie algebra the Poincaré-Birkhoff-Witt Theorem(P,.B.W.Theorem)
states that a basis for the universal enveloping algebra is given by the
unit element and the ordered products of basis elements of the
corresponding Lie algebra. Thus in what follows with each free Lie
algebra of rank K , denoted by L___K , we associate the corresponding
e
free associative algebra denoted by k__v‘,(k:bzy.— - )
*
Now it was shown by S. Moran in (D), that the projective limit of

free Lie - algebras of increasing rank is a free Lie algebra called “Ehe

Unrestricted Free Lie Algebra, We denote this by JZ . Plainly, é; will
€
have a corresponding universal enveloping algebra, we denote this hy:§; .
© S
As it turns out , é;i is not large enough to contain all the elements
arising from the completion process inherent in the taking of the
projective 1limit of the Lie algebras L,_ w » Of increasing rank i‘<=‘,%w"”:
e, . . s :
We do show, however, that éz_ is contained in a larger algebraLgontalned in
e
(the projective limit of the L _« ) which contains the completion
e
elementy and the embedding of é; in L/— is injective., In fact |
e
ok the closure of Qi; is the associative algebra \__. o .
This result is incorrect . S.Moran showed that the subalgebra AT of "all elements of

—

finite degret is a free Lie algebra.
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UNIVERSAL ENVELOPING ALGEBRA, POINCARE—BIRKHOFF-WI’I‘T THEOREM.

CONVENTION. Throughout this section *'algebra' will be taken to
mean associative algebra with unity element 1 ,'subalgebra‘' will
mean a subalgebra of the associative algebra containing the unit
element 1 ,and *homomorphism' will be taken in the usual sense
for algebras, further it will be understood that the homomorphisms
map 1 dnto 1,

Notation AL_ denotes the Lie algebra of the algebra A obtained
by defining the product in A as the Lie product yor(additive)
commutator product [ yJ = Xy—42X for X, % in A%

DEFINITION 2,1 UNIVERSAL ENVELOPING ALGEBRA.

Let | _be a Lie algebra (arbitary dimension and characteristic).
A pair (E)’{_) where = is an algebra and 1 is a homomorphism of

L_ into E‘\_ is called a universal enveloping algebra (U.E.A,)

of L if the following holds. If A is any algebra and & is
a homomorphism of L into AL ,then there exist a unique homomor-

/ ‘.
-phism & of E. into A such that Q/L—'- 9 .Diagramatically, we

E = E_L
are given #
-4
(2.101) '\g e A: A;_
_

- | 5
where " and @ are homomorphisms of ]_ and we can complete this

diagram to the commutative diagram E=EL

N e,
- -

£2.1.2) Q’K
L A=AL

/
where S is a homomorphism of E_ into /A\ . As a consequence of

the definition 2,1 we have the following results.,




THEOREM 2,2 2 6
e . &P
Let (t'_ -1,) ( t L) be universal enveloping algebras for e .Then

there is a unique isomorphism 3_ of £ onto E/ such that

1= }1.

2, E. is generated by the image g8 L_

3+ Let ‘_1 7 L—z be Lie algebras with (E‘,’{, 1) ,(Ez) iz)respectively
universal enveloping algebras and let o be a homomorphism of

[_. into L_l .Then there is a unique homomorphism o<\: E rlp E—z_

j

: -
such that lzb(m{’l,lthat is ,we have a commutative diagram:

[t 2

. v

. /

».
-

1 B2
L, Let & be an ideal in L_and let K be the ideal in £ gen-

~erated by L. B> .If e Lthenj: (+8>1f+Kis a homomorphism of L/B
into Ei(E’z E/K)and (E/, }‘) is the U.E.A, for /B>,
Proof.
fle If we use the defining property of (E. i)and the homomorphism

8 'L- of L_ into E we obtain a unique homomorphism } of E—
into E:—/ such that 1 3’1, .Slmllarly, we have a homomorphlsm 9,
of E/ into =  such that 1= 31 . Hence 1= 3}7—' and ‘L 33L .
Butl j ’L and by uniqueness of the defining property of (E v )

A

applied to O = % we see that 3,} 1 s ,Similarly, 4} ’1 : thus }

is an isomorphism of l onto t— .




"

(E: Ev) | (A=A ) ; ( E’.}_E/I: E/k) 4is a homomorphism of [
Zni /
©

L
14 B8 1 £ -morphism YLI; E — A such that "(=?,é.
, From the definition of V) = if be &
Nb=0in A .Thusibozlafknd this
L. : L‘/B implies that KC M/\[q//) . Hence
we have an induced homomorphism G/I(HK‘%VL'M« of £/ into A .

27

2, Let E,be the subalgebra of & generated by il_ .The mapping
'i_ can be considered as a mapping of L. into E(_ .Hence there is
a unique homomorphism - E >E ;uch that 1<¥'7T  ,Since 1.- 1 1
and ’l;[ can be considered as a mapping of £ into E , the unique-
-ness condition gives U= 1(—: .Hence E=1€E=7’—/E By and E = E’ .
3. If o is a homomorphism of LI into L, ,then 1, o is a homo-
-morphism of L, into -2 __ o Hence there is a unique homomorphism
o(| of E, into £ 5 such thato('\i = ?,'7_0(.

I
L4, We first note that the mapping [—> 1£ + K of L into 2l (’-‘ 5/K>
is a homomorphism of L into E_/\_ .S:'anef.BgKJBis mapped into

zero by this homomorphism, Hence we have an induced homomorphism

é"- ¢+ B —>1¢+ K, Now let etug‘"}AL, /X an algebra, Then n:¢ - B(¢+BR)

into AL JHence there is a homo-

Now §L(€)-n©)= 6L+ B) and 9'3'(€+5)=9?t€+l<)=t7'z'/0,nence

9:{ 95 as required., It remains to show that 9’ is unique. This
wiil follow by showing that 3(’—/5) generates = . Now by 2, &=

is generated by L\_- , Which implies that E-/ is generated by the
cosets L+ 1< . Since al(Q'fB)-‘iﬁKwe i £ 4 generated by

the set of elementsJ(@&) ,that is, byj(L/!g) .This proves the

theorem,
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We now give a construction of the U.E.A, But first we must

define the tensor algebra based on the vector space Lo s

DEFINITION 2,3 Tensor product of two Q-modules.

The tensor product A& B of two left K -modules(< commutative ring with unity

A and % is the K-module generated by the set of all pairs (4&,b)
aaA/bigwith relations
(a+ a,,b)-(a,b)-(a,,b)=0
(2.3.1) (a,b+ky)-(a,b)-(a,b.)=0
(fa,b)-1(a,b)=1(a,b) — (a,7b)=O

NowA@Sis obtained as follows , Let Q(A,B)be the free t/{-module
generated by the set of pairs (4,b) and let (A,B)be the least
subgroup of IQ(A/8> consisting of all the elements of the form
(2.3.2) (a+a,,b)- (a,b)-(a,,b) ; (a,brby)- @0 )-(a,w,)

(tra,b) -1 (a,b); (a,t~b)-mla,b)
then A®B= R(AIB)/JA,B). The element of AG) B which is the
image of the generators (a , b)) of TQ(A/B) will be denoted by
A®'® . These elements generate the group /A\G B  and the

relations are:

(A +a,)®b = a®@b + a,® b

(2.3.3) a@lb, +lbr)= a@b, + A b,

fFaY®b =T (a®b) = a®kb)
With the obvious gpecialisationwe can consider the tensor product
of vector spaces , over a field Q (=.D ). Further it is easily
seen that the product of any finite number of such spaces may be
defined, mutatis mutandis.

We mey regard a Lie algebra | over a field s2 , as a vector space.

For the purpose of our next definition we do this,
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DEFINITION 2.4 TENSOR ALGEBRA ON VECTOR SPACE.

The tensor algebra on a vector space L is

o) T=SUMMOLOL,G®. .. ® L@ .
where L_,—- , L= L—@L—®.@ L,’Ltimes, and S is the field.

The vector space operations in /T\ are as usual and multiplication

$n |  is dnddowbed By &8 aud is chavesterdssd by

(2.4.2) (1@ Lo - - @XHO(YO. & ?J)= X, @..,@X;@%n@y&,

Let K be an ideal in PT’ which is generated by all the elements

of the form

(2.4.3) fab] —a®@b + b a " a.,b belong to L__‘

and let £ = rTyK . Let ’L denote the restriction to L_:L.l of the

canonical homomorphism of rTl onto E . We have
(ablr-sai@br + bi®ai= ([ab] - agh + b@a I+ K=k, E

Hence /L is a homomorphism of L into E"L .

THEOREM 2.5 (E,\',) is a universal enveloping algebra for the Lie

algebra | .

Proof:., We recall first the basic property of the tensor algebra, that any

linear mapping 9'[_—9 A where A is an algebra can be extended to a

homomorphism of T‘ into A . Thus let {udfjij}f be a basis for L__ .

then it is well known that the distinct'monomials! L(J'|® L{f@ - ®u3*‘

of degree V)1 form a basis for L,, . Here MJQK&--@U}"‘: Ug® - - -@UK" if and

only if §"“ = \C,.f/ A=,2,-- . ,The elements <4 and the different

monomials of degrees ;2,3 .... formm a basis of IT[ . And it is easily seen

that a linear mapping 9“ 'T‘-> A such that 9”1*1 . ('uj;@,.@uém)e’z’ (‘43,9)(‘(3,'_9),«. ((Xj‘ﬂ&)_

is a homomorphism of 'T\ into A such that 62'—'—8’61 for all O\ZL@L.CT)

Now let € be a homomorphism of L_ into Al_and let 8” be its

extension to a
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homomorphism of [ into A JIf a , b belong to L 5

Ca©de™- (a8"Xb6")+(be")(a 6")=Ca bl6~ (a6)(b&)+ b 6)(ae)= a8 vsT- h6)ld)+ (W0)18)= O,
Hence the generators (2.4.3) of < belong to the kernel of 9”.

We therefore have an induced homomorphism 9/ of £  into A

such that 6'1(a)= G,/a-tl():@'é(:@a Thus ©§= ©'1  as required. The tensor
algebra m is generated by L  and this implies that o is
generated by Rl .Since two homomorphisms which coincide on the
generators are necessarily identical we have that the homomor-

-phism o' such that 1 O =6 is unique.

THE POINCA.RE, =BIRKHOFF-WITT THEOREM

NOTATION AND REMARKS

We have noted that if{u.g' lJiJ’_é,where J is a set,is a basis

for (the Lie algebra) | , then the monomials “?“j{'@%‘ of degree |\ form a
basis for L_,,,‘ .We suppose now that the set _| of indices is

ordered and we proceed to use this ordering to introduce a partial

order into the set of monomials of any given degree N7 |. We define

the index of a monomial.

DEFINITION 2.6 Index of a monomial.

The index of a monomialu@uy . @U¢ is defined thus. For Lk, 1L

set
"o { ENE
4> &
and define index
2.6.1) nd WO - Ruy)
(2.6.1) jOu - RUg)= 2. VLLK
Note that the Wwicl = Oif and only if }‘ } e 41

Monomials having this property will be called standard monomials.
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We now suppose that 3-K> }M and we wish to compare

md (wou .« Ouy,) and
md (u;,@ ", .. C%Kf) u}( @uk) , where the second

monomial is obtained by interchanging l/L}K 5 DL}KH Let YLQK denote

the Y\/S for the second monomial . Then we have V'/ - = ,;‘)' ,«'/6

9# i qw qm. Lk *»‘t<(];<Kg Y]-/\(J': r]tm}’r)““:f q“ (J>‘(H)
and Vlk»m V]K' E , Hence

md (w® uéz,».&) Up)= 1 + nd (w@..-Quy,, Qs -Guy..)
We apply these remarks to the study of the algebra E = FTI/ < for
which we prove first the following.
LEMMA 2.
Every element of ,T\ is congruent modulo K to a S2_=linear
combination of 7l and the standard monomials .
Proof:., It suffices to prove the statement for monomials ., We
order these by degree and for given degree by index. To prove
the assertion for a monomial [Ay@ Uz ~-- @(,Ly,, it suffices
to assume it for monomials of lower degree and for those of the
same degree N which are of lower index than the given monomial,
Assume the monomial is not standard and suppose that jK> J;(h.We

have

Wy, © Uy, - 7®U3;= We... Uy, &0 “f«’ @uj,, + W& Euk@u}“; u%@tﬁd,x@uﬂ

Since M}K® Mj‘éﬂ*- M}(éﬂ@ b(jt( = “1@ (/(ywﬂ] (mod K)

Uy ©..- © Ug= U, Q. QU © Ug - @+ YD Uy, OTUL UGy 12 W, mod (K)

The first term on the right-hand side is of lower index than the
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given monomial while the second is a linear combination of
monomials of lower degrees ,The result follows from the induct-
-ion hypothesis,

We wish to show that the cosets of 1 and the standard monomials
are linearly independent and so form a base for E Jor this we
introduce the vector space Br‘ with basis U, U ... . U’Lm( i:}f j_)
1‘,‘47‘,14“. si“,and the vector space = 21® B®B,. PORBR.®, .
The required independence will follow easily from the lemma 2.8
LEMMA 2.8
There exist a linear mepping 7 of ,T\ into _P) such that, -(4)=1
(2.8.1) (WA WU, .. QU )= Ui, Ui, .- Uin
(2.8.2) (U},@ Yga ... OWUjy = WO U - OUy D U, - @ Uy, )=

= (W@ B L Upend® .. Uy, I

Proof:. Set ¥(4):1 and let L n,}' be the subspace of | __,, spanned
by the monomials of degree v and index < /é .Suppose a linear
mapping 0~ has already been defined for 1@ [ ®L .. @ L,
satisfying (2.8.1), (2.8.2) for the monomials of this space. We
extend O~ 1linearly to Q4@ & DL, @D Lo by requir-
-ing that (u-h@ Udys - @WUL W U, Ue, --- Wi, for the standard mono-
-mials of degree W Next assume that ¢ has already been defined
for 24D, @ L,..Ln® L, i ,satisfying (2.8.1), (2.8.2)
for the monomials belonging to this space and let VJ}‘@'U}"L .® L(j,“
be of index 1| . Suppose }7}4‘ .Then we set
(2.8.3) (w}ob U, - - DUy o= ( u?® U ® uik.,@u}h)ﬂ_

A (WD, B Cug W] @ Uf )T
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This makes sense since the two terms on the right-hand side are
in Q4@ L. @ L. . L@ LlaiuWe first show that(2.8.3)

is independent of the choice of the pair (3k,3kﬂ) 1> 3 Let

K+|

(j“ j,*) be a second peir with } jth .There are essentially two

cases I, L >K+1 |, IT L=«+1 ,

LSet Wi =W ,Uc =V Um0

-esis permits us to write for the right-hand side (2.8.3)
(,..U@U...0 L@ SIE®...) 0 ..

5 ug'e»f,x s+ Then the induction hypoth-

socsctilie s s AP EOITE . AR CaS &L . T s
ol s OO s J DS e YO

b e A(L. .. ®UV] ., . ®LwlI®... )0
If we start with (33732«) we obtain
(... WOV. .. x®@w...)r+ (... udv...0Cox3Q...)0=
# (i VOW... @63 0u )b,

o (L. . OCuviI® ... x®W... )0, .

(. BOUOU® . .. ®CL2ID... )0,
4+ (¥ TuVI,, , Cowoxd®... YO

This is the same as the value obtained before.

II. Set Mé\: w, L(}L\F uﬂ L{&:‘(/o ,+1f we start by using the

induction hypothesis we can change the right-hand side of (2.8.3)

to

(2.8.4) (... w@vwu.. )0+ (... WWIQU.. )0 +(... V® Cuwl. gz
+( o Tuvl®uw.. .. o
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Similarly if we start with
(... u@VEV...)r+(...u®Cvwl...)d

we can end with

(2.8.5) (.-- vOU@U...)F 4+ (.. .w®Cuvl...)o..
iooH (o Cuwl®@ V... )o+(... uACvwl...)o

Hence we have to show that (™ annihilates the following elements

ofﬂ.i@L|@Ll,, @L——V\ e

(... Covwl®u...)= (... L®CTVWT...)...
(2.86) ... +(, .. vV®CURI...)—(,..Cudd®U...)._.

el o Twl®OW. L L) = (. as s ®TuVI L)
Now it follows easily from the properties of 0 in Q4®L,.. . & L,

that if (.-. a®b ..,)8 l._h‘_,,where 4 , b belong to L, ,
then (... a®@ b ... Yo~ (,.- b®a-..)0—(...Cal...)r=0

(2.8.7)
Hence U~ applied to (2.8.6) gives
(2.808) (" e Etij\&j")q—\"‘(» s - CVCMQ]}-,)W_

IPL. ok LR [CU\J‘JLQ] e L
Since CCvwIul+Cviuwil + [Cuvinls Tvwluls Cwulv] +Tuviwl=0
(2.8.8) has the value zero. Hence in this case, too, the right-
hand side of(2.8.3) is uniquely determined. We now apply (2.8.3)
to define 0~ for the monomials of degree 1 and index ~_ . The
linear extension of this mapping to the space L_,V"{, gives a map-
-ping on 24 ®OL &L, - .. L-n_(@ Ln . satisfying our conditions.
This completes the proof of the lemma.

We can now prove the following.
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THEOREM 2.9 (Poincaré-Birkhoff-Witt)

The cosets of 1 and the standard monomials form a basis for & = T/K
Proof:. Lemma2,7 shows that every coset is a linear combination 6}

4 + K and the cosets of the standard monomials . Lemma 2.8

gives a linear mapping 7 of,T\ into B satisfying (2.8.1)

and (2.8.2). It is easy to see that every element of the ideal

K is a linear combination of elements of the form

(WOW, - @Uj)- (1 Uy - @ Uy DUy BUL)...

N (H}@u-.@tuyuwlgl-@u}“) .Since U maps
these elements into zero we have ,U"(K) =0 and so 7 induces a
linear mapping ofE"Vl(into ® . Since (2.8.1) holds,the
induced mapping sends the cosets of 1 and the standard mono-
~mials Uy OWUi, . . & Uiy, into 4 and Wiy Uipo - Wiy
respectively. Since the images are linearly independent in 5 s
we have the linear independence in E of the cosets of 1 ena
the standard monomials ., This completes the proof.

COROLLARY 2,10

The mapping 1 of L into E is 1+ and 2L N1 l—:.O

Proof:, If (\43-) is a basis for | over (2 ,then 1 =Jd4+K and
the cosets ’L(\A‘}')‘= Mj+\< are linearly independent ., This implies
both statements,

REMARKS

We shall now simplify our notation in the following way . We write
the product in E in the usual way for associative algebras: 1‘3 .
We write 1 for the identity in L and we identify | with

its image 'i.\_ in E.- . This is a subalgebra of EL_ since the

identity mapping 1 is an isomorphism of L into E.\__ .
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Also L generates E_ and the P,B.W, Theorem states that
if{’(.(d'lé"tfj, J  ordered , is a basis for \|_. ,then the

elements 1 , u];‘ Wy oo - Wy, o by £ 0o 57«.% form a

basis for E- .In the light of these remarks the defining pro-
-perty of E. can be restated in the following way. If 6 is a
homomorphism of \__ into AL_, A an algebra , then & can be
extended to a unique homomorphism & (formerly Q/, see defn.2.1)
of E_ into /A\ .

FREE LIE ALGEBRAS

In order to construct a free Lie algebfa . We must first define
and construct a free associative algebra.

DEFINITION 2.11 Free Algebra (or :Free Lie Algebra).

The notion of a free algebra (or free Lie algebra ) generated by a

set X: {X.a (azT} can be formulated in a manner similar to that

of defn. 2.1 of a universal enveloping algebra of a Lie algebra.

We define this to consist of the pair(F—, ) (or ‘:(FLD ’L) )consisting
of analgebra F (or Lie algebra it W )and a mapping 1. of X into
F(or‘_i Fl__) such that if © is any mapping of >< into an algebra /A\
(orz'Lie algebra L ),then there exist a unique homomorphism @/ of F or

, 7+
(FL ) into /A\ (or "L— )such that &=61. Diagramatically,

= ) FL
. & . ‘ 9/
l'f \é\ or L‘} \
X A X w& (-

where both diagrams are,of course ,commutative.

CONSTRUCTION 2.12 Free Algebra generated by X .

To construct a free algebra generated by a set )< We form the

vector space M over a field J2 , with basis >< and then we
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form the tensor algebra | (=F )= 1@ M ®(r@h)... vased on M g
The mapping L is taken to be the injection of X into . Now
let O be a mapping of X into an algebra A\ . Since X is a
basis for 7\/\ » & can be extended to a unique linear mapping
of M into A and this can be extended to a unique homomorphism
B of I into A\ . Hence ~ and the injection mapping ofX into
fr is a free algebra generated by X .

CONSTRUCTION 2,13 Free Lie algebra generated by a set X .

The construction is indirect and uses the free algebra = generated
by X .Let FL denote the subalgebra of the Lie algebra I
generated by the set X ., Let & bea mapping of)( into a Lie alg-
-ebra |-  and let £ be the U.E.A. of | _ ,which by the P.B.W.
Theorem we suppose contains l_ .Then © can be considered as

a mapping of X into E ,50 this can be extended to a homomor-

-phism & of F into E . Moreover, & 1is a homomorphism of Fo
into EL and since O maps X into a subset L(QE) ,the restriction
of B to the subalgebra FL of F, L generated by X is a homomorphism
of F L into L_ .We have therefore shown that O can be extended to a
homomorphism of FL into \_ .Since X generates Fl—, © is unique .
Hence [~ L_ and the injection mapping of X into L is a free Lie
algebra generated by X .

THEOREM 2.1k (Witt)

Let X Dbe an arbitary set and let [~  denote the free algebra (free-
-ly) generated by )X . Let [ L_ denote the subalgebra of {— ,

generated by the elements of X .Then ‘:Lis a free Lie algebra generated

r—

vy 7YX and [ is the U.E.A. of L.,



Proof: Let 9 be a homomorphism FL into a Lie algebra AL, A an

algebra, Then there exist a homomorphism 6 orf F into A which
coincides with the restriction of & to X .Then G is a
homomorphism of FL_ into AL so the restriction elof 6 to FL

is a homomorphism of F;_ into /A\L. Since 6255): Gx) for =in X and X
generates FL ,it is clear that 6' coincides with the given
homomorphi sm © of FL into A‘__ .Thus we have extended the
homomorphism € toa homomorphism of = into A .S8ince FLL generates
F it is clear that the extension is unique . Hence F  is the

U.E.A. of FL .

DEFINITION 2.15 Lie element”

An element of Fis called a Lie element if the element belongs to FL ‘
REMARKS

We quote the Theorem 2.14 of E,Witt for sake: of completeness., For

our purposes it is necessary to have a basis for a free Lie algebra
constructed from the free generators X,,X.,... . We therefore construct

the standerd or basic monomials of M.Hall, see P.Serre ( 24 ) and

M.Hall ( 10 ).

DEFINITION 2.16 (BASIC MONOMIALS)

Let X = { XZJ‘ I }.i :rf,j ordered, be free generators for a free Lie
algebra FL over a field 52 . Then the free generators are taken as the
basic monomials of degree ’1_ . If we have defined the basic monomials
of degree |, 2,.. . (n—t) , and they are simply ordered in some way so
that W< V- if dtu)< A(v?) , where A is the degree function
mapping the elements WL, V_  into the positive integers. If d(w)=1"

d(\)’)?-Sand Y™+ S = o then [T_W V] is a basic monomial

e
Note;Lie elements are defined in terms of a fixed set of free generators; in our
case the set of generators is the set )< as given above.
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of degree V.- if both the following conditions hwtd

Bi>U L UV are basic monomials and WU > V.

B I—f = Lo ‘a_-_\ is the form of a basic monomial,
then VJ 2 2, . Thus we have defined the degree of all basic monomials,
If we now order the basic monomials of fixed degree lexicographically,
then the basic monomials are well ordered.

Now let L « denote the free lie algebra having the elements

X, X2, ._. X, as its free generators ,over the field S2
(=1, 2y 5wt --) And let (LC;K ,'l;.,q» denote the corresponding
universal enveloping algebra of l_..( . We construct the basic
monomials for L i and order them as indicated in the above definition.
Then if the basic monomials for | — w are denoted by \Oj(x.,fa/ ce X)), éijj

/7 / e
more briefly by ‘0} ) }ij 5 j ordered. A basis for L.Kis given
by the ordered products
bJ= b g, - LSERE . AL E ) ISRR

where capital 3  subscript always denotes the ordered set &(fz-. $‘g.5

for some & , Such a product b:r , Will be called a standard or basic

product . The degree of a standard product is defined as the sum of the
degrees of the separate basic monomials occuring in the said product.
If mi> K ,then there exist a natural homomorphism of L\m onto \—‘K‘

Hence it is possible to form the projective limit of the L—k . We denote

this by &o .



40

Consider the following diagram n
T
e i, Yo D P S e (e e S )

y T
'DK v~

(2.17)

/ / e /
<€ TV~
ey Tl LK T« " L_k_‘__‘_L.‘,...(L_)
It follows directly from theorem 2.2 part 3 that there exist a unique
/
homomorphism 77, which makes each of the above squares commutative,in
[ k) L 4
that TI'KLK:. ""(k“]"rm . Since the mapping of L_Minto l__kaI‘ m>K is
given by TT&..oﬂm using Theorem 2.2 part 3 again we can see that the whole

diagram is commutative. The uniqueness of the corresponding natural
( i / / & <

3 .

mapping ﬁK_ﬂo /T‘«l- R /1,.,__, 6 Moy gt L__M into L“K e

enables us to define the projective limit of LiK . We shall denote

this by L.. . Our next result shows that fg can be injectively

embedded in L_ .

But first we have a definition,

DEFINITION 2,17

We define 1 = PL—("»K\ where o L. C%—%‘ L

N 5 o BTN 4 ix(l&’)) for all xé&, JCQ()?/LK
Now let us suppose we have the discrete topology on each factor
Lk(é"—ck.))(‘(ﬂrzn-)of £ @'L) and goéL—) have the corresponding

induced Tychonoff topology. Then we can prove the following

THEOREM 2,18
r L= RL- (k) RN T (PR NN L ST

continuous injective homomorphi sm*
Proof:
(i) 1©> is injective. We first show that ken Ll = F?L-(kéktgl Let

a’I't is easily seen that 1 is a homomorphism
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, . N ) ()
x £ ken v then LO)=0 = ( VXY )= (0<)
Lz\ &
for all K , hence X Delongs to ken VL, for all Ik ., But for
A= P fSTIL Y 3 ENEE_ P _orlL(\C%i/Q)é lken v, . Hence XC belongs
N 1
to £ (Ken v ) . Similarly, if 2C belongs to PL'U@/LLK)

then- ZalX¥)=Ofor a11 K . Thus LX) = € Twx®) )= (O ana
xe wer 1L . Thus Ken b = PL.'C‘@L);yc). ’L is injective
since 7;K is for each W . |
(ii) 1.  is continusus,
We show that the inverse image of a member of a basis of neighbourhoods
of zero in L_ is a member of a basis of neighbourhoods of zero <€9 .
If /\/ is a neighbourhood of zero in |__ , then N is a union of
sets of the fowm

6={2‘- yéL X ?(V"=O forall W Sm §
where la@') is the image of ?é L under the projection d)o‘)(_."‘> Len
Now

THR)=Lx: xe§o Ki(x)=B}
and this st is a neighbourhood basis of zero in i) if for all fdc e '7.-'(-6)/

:x&é O for some M\ | depending on the element 2C . Since wx)e B
O=({‘LX))mg'or some M) e B
cb@'li(x):o: e o ‘

This implies LX) & |\ and from the definition

of L. we have (O= SM-—- Tm X , Lw is injective.
) sl \
Hence X =0 « Thus "L (B) is a member of a neighbourhood
Trxe
basis of zero in &9 . Aw — A e

gé“&’%‘i‘i\%c (k72 )

COROLLARY 2.18

From part (i) of the proof we deduce: For any homomorphism :#)K N AK‘—> 6.<
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kﬂ/b;sz FL'(KM,}Qwhere 47: PL(AK.) =D pl— (Q)K) and the { AK} n_we}

4
fBK, ﬁ'xp}are inverse systems of suitable algebraic structures in the same

category.

To summarise our results so far we have the following commutative diagfam

.

-..—-

where L and are 1n3ect1ve mapplngs 069 is a free Lie algebra)[23)

e
i_) is a free associative universal enveloping algebra of io

—

.\:: is an associative algebra,
LEMMA (2.19)
If ‘C}X: a’ip.} is a set of free generators for _&:_ 3
then' > ¢/}d) - %‘/ for all ¥y 5
¢ is as given in the above diagram.
Proof:
From the definition of U.E.A. f)e of £> we know that &e is

-

generated by {£) and. is a unique homomorphism.,
4

But 5%&(&)'1, o }‘l

from the injectiveness of 1 and J:’ the uniqueness of /(5

,Where j-" is defined onJ(&) Hence

£he lemma follows.
- - - - e
Our main aim is to show that ¢ is an injective homomorphism of cﬁ)

into L__ .

Before we proceed we give some information about L_ , the unrestricted

associative algebra formed from the projective limit of the free universal

. =
enveloping algebras L _ i .

From the definition of (__ we know that every element A  of \.__.

————

L is the subalgebra of L_ consisting of all elements of finite degree.
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can be written in the following form

o *
a = % % ¥ _ by (e)

where X,y € S2- , for all values of T & 4, bl(e, runs

through all the basic products on the free generators %,, Xa,--- -
(for fixed £ ) s
An element of the form
a= "o byie) (tz252)

is taken as having degree ‘e‘f . In the unrestricted sum the basic
products are so ordered that if d)(k)(bl(e}) = bl—(e) while
(t)(z)[b ((’_)):Ofor some positive integer W then the basic product

T ’

bile) appear before the basic product k%—(e) in the above unrestricted

sum Z,( .
NOTATION
Al]l the elements of _(.____ which involve only basic products @f degree
not less than {, (together with zero) in the above representation form
an ideal in L____ which we denote by /L_l—_—_ .
Throughout the following lemma (2.20) we let féb/: b/i F ?] denote
the free generators of &__ as constructed by S.Moran in (.Z 3).
LEMMA (2,20)
Ef é,‘, %z) A %\, is a finite subset of free generators

V) @) o
& '5-6'. Xi i Zl for &then for all sufficiently largen,’ 7&1 A -12

- -
AP ’\}1 "
generate a free Lie subalgebra of L.-—n .

-
Proof: Since we have a finite subset of the free generators Q}U: a’il .?, "

is a well ordered set. We can apply the usual decomposition to write L&A'%
: b e

(B 1,2 m) as a direct sum of two subspaces one of which 'is'”s‘p“anned by 3. 32,---%" ¢k

J,z;fu{. Let 8“—‘- C—. be the 8‘,}2,..—5,#711ich have degree one. The degree of
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an element ? of 2:’1 being defined in terms of the free generators
DAVE ST which are all taken to have degree one., We let Bn be
those ?/\\S belonging to 3, 3a,- -- %fwhich have degree . . We order
the elements of B, ®a, .. . B, , by agreeing that %, > %.'
if é&%,‘,£ 5'28? &i>3.
We define Cn to be the set of all basic monomials of degree V1 on the
elements of the sets 8., g:., . Ba-r.
Now as the sets C., Cz,/ .- . Cn are finite we have the following
decomposition. For every integer ™ (\ m<n) , there exist elements

d];(m) Eoc of degree v and positive integers Nim ) &K 51/('”1) such

that B

m &/l = (Zid cm)+§a3)+ (Z” {(otm>+m_3’)

v>Mwm)

g-(m)

X (CMU%M)*'M*.,%C (Zi;d (w) + mwg’)})

*
where 2 means those and only those basic monomials of degree W on

LN

X\,x;,,.-?.[ )occur in ‘i}:/a(em;lff‘;estricted direct sum which satisfy
d> ( 101; (w) )=

Now choose N= W\”VX{NU)/’V(Z«) G o e V(V\?}. and suppose the contrary
to our lemma,
Then y
(2.20.1) 2 o(w,c f\),‘,bw
where C@) belong to (N’ ¥ C

T
G) ('*/)
where \oc? belong to B() TH - PR © @H

and the V(',;N/ /@d\ N are not all zero.

Let

/ /
(2.20.2) bl XK en C(:{’ + Z—ﬂ)\”l{:{' o
v 3
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be the subsum of (2.20.1) containing the homogeneowg terms of least degree
which genuinely occur in (2,20.1) Note the 3. are homogeneous, see page 52.
v

By the decomposition we can write (2.20.2) as

= Z,LZOCLNCL + ;ﬂafqbé’ =0

However the 2y %1, Sy %‘- freely generate a free Lie subalgebra
of ofy BFEMitt{26 )
Thus all the in /ﬂa ~ occurring in (2,20,2) are zero. It

follows immediately that all the(xfm/éNoccurring in (2.20.1) are zero.
This contradiction proves our lemma 2.20,
THEOREM (2.21)
. e . . . .
The homomorphism }5«' i> —> |_ as given in the above commutative diagram,
is injective.
Proof:
By the P.B.W. Theorem if {%T‘. b/‘i rl} is a set of free generators

of (ﬁg 5 l_' well ordered, Bhen the basic products

C—

b= by = b elp) - g ) Bk <)
e

form a basis for <£) , Where the b@—{,(%) are the usual basic monomials.

Now if 4 (% #0) belongs to &e , we have

(2.21.1) %—- % °<k' \QK b (0(5(:2.32)

and only a finite number of the < i are different from zero.

Suppose that

(2.21.2) gf/é): O % X2 ‘OK(/QS(%))'—' ;o%bk%)m E

By lemma (2.19). Now only a finite number of the free generators say

occur in (2.21.2), Take the projection of (2.21.2) under
%l)%L' s %’f‘
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n)
Cb for large V\‘/}N . We have then

(2.21.3) O 2, bK(%"’) wm =,

Now by lemma (2.20), the 3‘("’ ”g:)

5,¢. are free generators for
a free Lie subalgebra of L—-N , for large N . Thus the bk (% J
form a basis for a subalgebra and the basic products EE[%) forma
basis for the universal enveloping algebra of this free Lie subalgebra.
Hence all the °<i¢ are zero. This contradiction proves our theorem
(2.21).

(A
We have just shown that cﬁ, can be injectively embedded in .\.___ . We now

- —

prove that there exist elements which belong to L  but do not belong
e
to <£7

THEOREM (2.22)

e WOMs XXX L . 4 Xy Xam , then W= (W)

—

is an element of _E: which does not belong to :.(_;_e
Proof: Let | i ,\g,d_ 1,( be an ordered base for the vector
space of elements of degree 4 in é__,
A typioal. Y, = 2 o2 . Then
b Eaa,,x»-w] y Exee ol D Ya el ¥ (i casg)
is a base for the vector space of the elements of degree two, the L YS
are Lie elements of ;2 of degree two. By the P,B.W. Theorem a basis

for the vector space of elements of degree two in the enveloping algebra
&e of fy is given by:
Ry Casts .1, CTigad Cuipel, X 'Zr’d (X Aoz ..
o u”“ﬂ"‘)’ (gdé}/&)} 5 (Ve CULR)




Now let us assume that /J belongs to _c_@_ 3 , then
W= Z Ayt 2ok D 00,1+ Zﬁz O
ot 2 e DYy + 20w X+ Z‘ﬁéﬁ.-,
et ZX“' a2 5,:(3(&.‘3,) +Z£t<(éju,;/;).

@)
Now W is given by

@w

( (2n) —
\l\/ah)= Z /\X %U/ st Zﬁ\( N‘:—-I”'Z,yo{] + ZQ/‘(Exhcgiuﬂ’].
At Z?)/a/ ‘:zﬁf‘gﬁ“g b T X .
_z |
WS ) GO LIt zcmzem)w“Z&(L;gfjJ +Z€L{ﬁ‘j§3

where the dashes over the summation signs indicates that some of the

summands may be zero.
e

If we now factor by the ideal generated in I—ln by the elements
@w ‘ : v @ Qw)
£357 Candiinnl, Lot [ya'gs"3
\
w

g}
then the image of 2V 4 ¢ , denoted by W has the form.

(2.22.1) B0 270(:( ;f\i-#- = L(\ét(w)ﬁ- ZX;(I;‘,‘Z{%
—_— = —_— / 2
o T F ) e 2T (920ve)

Now for 1arge7(2.22.1) will have constant rank as given by examining
the matrix of the quadrabkte form.
But

Q
(202201) W\@h):: w \‘\'2; X‘x3~+¥1¥'§ L I ><-2h~1 X.zh
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is easily“seen to have ra.nk . . Hence by increasing V1. we may make

aQn)
the rank arbitarily large in (2.22.2) whilst the rank of &9 in
(2.22,1) is constant for large ¥ . This contradiction proves the result.
Although in Theorem 2.22 we have only found an element of degree 2 which

e
< 13 _‘___ but not in é . It is not difficult to see that there exist

elements of arbitary degree having the property..
Notation

Let f‘/\/,g -"k?u'CB(U% be a set of homogeneous elements of degree 1
which form a basis for {____modulo the subalgebra generated by \pe ‘L_

and the assoc1at1ve monomials formed by takug cproducts of elements
from the setk {‘N"’)&B‘j)j%thwh have degree 7.

Lt a—

section 3 we introduce some of the work of P Cohn (5 whlch 3
~ s u
elopment of the ideas contained in this thesis, ) seﬁll T




A9

RING WITH A DEGREE FUNCTION, FREE SUBALGEBRAS OF FREE ASSOCIATIVE

ALGEBRAS,

We now set out to prove that the projective limit of the universal

enveloping algebras of increasing rank LEK contains 'a. free
associative subalgebra L:: . We were able to show that the projective

limit of nonassociative algebras ,/\‘é ,of increasing rank < -

. . . 8 2 .
(the /\K are ,of course,free )contains a free nonassoclative subalgcura/%

-—

And in so doing we made use of the result due to E.Witt( 2 o )
'every subalgebra of a free nonassociative algebra is free! Put
another way, free nonassociative algebras over a field form a

Schreier variety., However, the free associative algebras over a

field do not form a Schreier variety. For example, let 2. r=x]
denote the free associative algebra in a single variable X over

a field €20 ,then JZC‘(L];I)’j is a subalgebra of {/CZ]but {223 x*]
is not free, Hence any attempt to show that the associative algebra

L/, is free depends on characterising those subalgebras of free

associative algebras which are free.

This problem was discussed in a paper of P.Cohn( é; ) and many
of the results given there depend on a generalisation of Euclids'
algorithm to a ring with a degree function. See a previous paper of
P.Cohn( é?- ). For our purposes 'ring' will mean associative ring
different from zero, 'Field' will mean commutative field. Since we wish

to apply the results given by P,Cohn( 5{ ) to the associative algebra
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we must amend the definition of L_, to make it an algebra with unit

element i . Henceforth when we write __ we will understand (J?i)@L_;;,
All subalgebras will include the unit element,

DEFINITION 3.1(Ring with a degree function)

A ring with a degree function is a ring Q ,together with a degree
function d , which satisfies the following:

(i) For all . Dbelonging to R (X#0),d(x) is a non-negative
integer, d(0)=- 00O . l
(ii) d(xA?) < max ( d(X), d(y)/ (xl ? = < )
(iii) dtxw = dao +diy) “

Consider now a free associative algebra A on an arbitary
generating set X yover a field () . In P.Cohn( é— )an abstract
characterisation of free associative algebras is given which can
be used to obtain a criterion for subalgebras to be free. Unfortunately,
this criterion is not easily applicable since it depends on the extension
of a degree function defined on the subalgebra which may not be related to
a degree function for the whole algebra. The next definition gives some
indication of how this difficulty is overcome: we regard the algebra as
a module over the subalgebra,

DEFINITION 3.2( Right Q -module with a degree function)

Let R be any algebra over a field {2 with degree function d .
o o
A right K_ -module M (MxK->")is said to possess a degree
function if a non-negative integer C((L) is associated with each
> belonging to M ,(xx # O ),d(6)=-0,such that:

(1) d(’lv—})s max (d(x), cuuj)) ,(i1) dxa) = doo+dm), as Q%g%’\
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Thus ,for example, Q considered as a module over itself has
a degree function , namely d ,50 that the apparent ambiguity in
the terminology is resolved . More generally, let S be a sub-
-ring then S inherits the degree function from Q by restrict-
-ion., Then the original degree function on K may still be used
when fQ is considered as an S- module,

From (i) and(ii) of Definition 3.2 ,it follows that for any
W, in M , a, in K, A(Swia; )$max (dwai) | nis
introduces our next definition, ’

DEFINITION 3.3( Q-— independence in an Q-— module M\ with a degree function).

A fanily U={a, :74T{ of elements oz ™ is said to be
Q— independent, if for any f‘amily{ai, D1 iI} of elements of Q
almost all zero , o ( Zwa&):m?x{d“{dﬂ} .

We next introduce the concept of 'elementary transformations',
Suppose that >( is a finite subset of a free associative algebra
/—\ over a field (2 .

DEFINITION 3.k ( Elementary transformations)

An elementary transformation is understood to mean one of the
following applied to )<
(1) A non-singular linear transformation applied to X with coefficients

from the field Q o

(ii) An element 2L belonging to X is replaced by
fx‘f‘P(:’(uxz,-r«SfK)

where ’P is a non-commutating polynomial function in the elements

o A0 . & SN SR <. 1”3 of >< and X is distinct from the X.,X%, .

X w .
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DEFINITION 3,.5(An irreducible set)

1r U= fus [1£04PF is a finite subset contained in X
and dl( U)=§d(u;) ,we shall say that L)' fa dovebuctnin 0
(i) O does not belong to v p

(ii) We cannot reduce d U) by elementary transformations.

Our next result is the main theorem contained in P.Cohn( 'S ).

It enables us to characterise those subalgebras of free associative
algebras that are free,

THEOREM 'Let /A\ be a free associative algebra and let U be
a finite irreducible subset of homogenwus elements . Then % "
the subalgebra generated by U is free if and only if U is
right B — independent.'

We aim to show that L_.:_ ,the projective limit of the free
associative enveloping algebras l___e_. . ,of rank ( K=2;5,is free. In
order to demonstrate this we must decide what set of elements to take
as a possible free generating set; write down an arbitary polynomial
relation in an arbitary finite subset -of these free generators and show
that all the coefficients in this polynomial vanish., We now do precisely
this. Let l’\/ be the set of generators of __L__._._ , %T/ b\)/e. L
(as defined on page 48 ). The degree of these generators has already
been defined and it is easily seen that we can take the {%K-) b\)/o }
to be homogendus.

We now show that the generating set \/\/ of __L_____is a free generating set.
That is, \/\/ freely generates ‘L:___ as a free associative algebra over the

field S . However, we must verify the conditions of irreducibility and

right-independence,
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We first show irreducibility of this arbitary finite subset U
of l/\/ .Recall that the homomorphic projection Cboq) maps
elements of _L___ onto L_en .Denote by U(Wthe homomorphic
image of the subset U o

THEOREM 3.6

UO’D )
T is the homomorphic image under d> of an arbitary finite

subset U contained inW) then there exist N7 N for some larse N

. , )
(defined in the decomposition given below) such that u(
irreducible for all N 7 N .

Q)

{W»\é . An elementary transformation

Proof:. Suppose that U "
lé

which is non-singular , takes

(3.6.1) MU —> W= L oa) wh  (14vep)

where 1(0(«3)' #0 and O(.,'J'iﬂ R I/Jf LJ 1s not irreducible under such
a trans-formation , then for some -L , ( |< T < F)

(3.6.2) d(u™) > ACKD )= J( Z'OCU‘ a")) (et=p)
From the condition that ““3)]7‘0,we see that not all O(U are zero,
The aﬂJ are functions of V- . Now the inequality of (3.6.2)is
satisfied if,(i) cancellation occurs , (ii) a nonsingular transformation
exist which will reduce the degree. If cancellation occurs we may equate

terms of highest degree in the right hand side of( 3.6.2) to obtain the

homogenous expression
(CYA

= "
060 %C (/t/ — O
(3.6.3) Z.l< g
In a similar manner , we consider an elementary transformation of

the form »
) \&) ) ©) (n)
(3.6.4) U > W= ug +(3(u,,ub_., U Up 3
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by ) G @0
where \3 is a noncommutatlve polynomial in u,) Uy, u_,, TS L{P,

the circumflex indicating that the element 7A, ,', is omitted , If
Um is not irreducible under such a transformation, then for
some "i(!‘»‘l;&f’) we have Ey

(3.6.5) ALu®) > AUD) = d(u®+ peui” uf .. ul’))
This inequality implies that cancellation of the highest degree
terms occurs in the right hand side of (3.6.5). Equating the terms

of highest degree we obtain an homogenous expression

Gn) i v ) )
(30606) % 1/ - f> (M' - u‘b o Sl UP A

(
whe=s O is a subpolynomial of P

The proof of the theorem now proceeds in two parts : we use
a construction and decomposition to show that with a suitable
choice of k. cancellation cannot take place in.either of the
relations (3.6.2) or(3.6.5). Secondly, we show an elementary

transformation which is nonsingular cannot reduce the degree .

-
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-

ECOMPOS IT ION

et Ae denote the set of elements of degree & in an arbitrary finite subset U of
the generators of \n/ as defined on page 52) and let (_ ¢ denote the associative mon-
mials of degree ¢ formed from the elements of the sets A,,6 A, B i s

 elen p\&,_( v o The sets /—\& are finite in number
since U has an element of greatest degree . It is,therefore,
pos;sible to use a direct decomposition of the space L___, and

bring all the elements of IU ‘ through to a direct summand of L__ .
We now do this . There exist elements dl{-Q) of p L_—_—__ and positive

integers({((ﬂ) and N ({) such that: 4(e)

i s S (; {d;14) +)+',g)+ (kalleﬁ L=3)

I)A/le) A+

4ie)
<CeUA*)+;+|EC’ ( Z{dr(ﬁ) +ML§) (1<esm)

T
where ¥V is the degree of the highest degree element of the set

(3.6.7)

P

U ’ Z and Z denote the restricted and unrestricted sums,
— *

respectively while Z is to mean those and only those basic

ISME)
products of degree £  on %, Xz,---- which satisfy

(3.6.8) CP[M@M)('bL(e) =0 occur in the unrestricted
sum. Let Ne baux{Mi, N2 . Nom)3,

We now apply these results to the relations (3.6.3),(3.6.6)
If we replace V1 , in these relations,by N= ikl #wf Then

E )
(3.6.3) in particular can be written = Dslc ‘Mﬁ"< =0
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Using the above decompos:Ltlon this can be written 2 0(“3« "O.
That is, we have a linear relationship between the elements of A—&
for some L(IQIQSM) .Contradicting the definition.of A,( given in

the above decomposition In a similar manner relation(3.6.6)

can be written in one of the f orms

)
— 'z_‘ g

(3 6.9) W Z oa + Z A
(3.6410) Zf fa\(a;) =+ Zaﬂ e

for some £ &/not all ‘o L d or Jo\’;f are zero

By the decomposition (3 6 C}’S contredicts \( é definition of the generators ‘/\:
(see pep 52). o). 0//

Similarly if we write (3.6.10) in the form é f p ;ofj with allo(#A’

and co ;.der this relation for large N ) We see b—-a lemma (24 20) that for large
the aé form a set of free generators for |_ v :

/
“Now substitute for in terms of 2:}}ese : 0/ where no %a/ will appear,

then we obtain a relation of the form w) Y with X, Thi irad
lemma (2,20) 2 ¥ ﬂj(% ) a/‘f is contradicts

Finally, it remains to consider the possibility that there
exist a nonsingular transformation which reduces the degree of

@
the elements of U even when cancellation does not take place

in(3.6.2), If. d(u »d( 0\)) CQSO(U O’")where (M )}'7"10 .

Consider the system of equa.tions~

L )
(3.6.10) 2 (w ﬂ:/ ((evs ‘9) ,which can be

N
written M, i (h)

. Now recall that any non-singular
matrix can be written as a finite product of elementary matrices,
The elementary matrices are defined as follows :

(i) An elementary matrix is the identity matrix with two rows
interchanged , or(ii) an elementary matrix is the identity

matrix with one of its rows multiplied by a nonzero element of ——Q

or (iii) an elementary matrix is the identity matrix with one

now added to another,’. The elementary matrices are nonsingular
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(@)
A matrix of type (i) merely reorders the elements of U ,80 this

cannot reduce the degree. A matrix of type (ii) multiplies an
(&)
element of (./ by a nonzero scalar , so this cannot reduce the )
m
degree. Finally, a metrix of type (iii) adds two elements of u
together and since cancellation does not take this type of
elementary matrix cannot reduce the degree. Thus a finite sequence
) I UO")
of such elementary matrices applied to cannot reduce
()
the degree of U and we have proved our theorem.
) . B
We now show that the- set U is also right ~independent
where 6 is the subalgebra of the free associative enveloping
LE UCV‘) o P
algebra n ,g8enerated by .We shall make implicit use of

—

the construction and decomposition of Theorem 3.6.

THECREM (3.7)

Le) d = = = -
The set U is right 6-independent for sufficiently large 71 whe;"e-%

& )
is the subalgebra of \,_.._v\ generated by the set U

Proef:
)
Suppose that the set U is not right 6 ~independent., Then there

(n
exist elements b“i belonging to 6 , such that
P
Q )
(3.7.1) B e

where Ala®)< max § d (L)Y
a vy

By equating terms of the highest degree we obtain an homogenous
equation of the form o
Gnr) G
Wy =
S 22 WO ©

‘o(:"I)K belong to B . We recall that the elements { W'y i <5< P

are ordered according to increasing degree. Hence in relation (3.7.2)
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will be of least degree. The proof of our theorem now proceeds by
induction on the degree of b

r d (b (\4) )=0 , then b‘fi , is a field constant and (3.7.2)
implies that the set U(H) is not irreducible. However, for hz N=

Wm),,,Nmﬁthis contradicts theorem (3.6). Hence no such relation as (3.7.2)

exist for Oﬂ ) =0,

Now let us assume that (3.7.2) does not exist when Nn= N= waax {NO). . Nim)§
and the degree of (‘;‘V)Pl is less than .,

Consider

(3.7.3) F = Z (") bt =g

K=

G

where N NV and d (bm;/)"' M . Pince each of the bcqjx e B
they will be generated by the elements of the set UC”\) , thus we
may write ¥

) . )
(3.7.4) s 2 *fgq, L (w") XL

Y 2=t “

< )

where the ¢ are free generators for L_...,\ and the ta«i W )

are non commutative polynomial functions on the elements of some

) Q) .
which contains the set U We shall denote this

finite subset of l/r\/
W Cin ’U/z G
finite subset of VW also by u

(")
. Now substitute for the bﬂ/u( in (3.7.3) rearrange summations

and we have

(3.7.5) F o= Z (Z e T (35 JE

?‘. A=) K=

(w
HenceAUv;Wé' ,/(Um) 0 for 1=U23,. /s

By induction each_é A u“") 0 for Wk i, & "«(

Hence F is identically zero and this proves our Theorem.

U'(VO

The last two theorems enable us to deduce that freely generates
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=
a subalgebra of L_.. " for sufficiently large vL

We now show that L—-— is a free associative algebra over a field 2

Freely generated by the set \’\/

THECREM 3.8 The subalgebra of all elements of finite degree in-the unrestricted free
associative.algebra is a free associative‘subalgebra.

Proof:

Suppose the contrary. Then there exist a finite subset of the generators

\/\/ , which we denote by u, such that we have a non-commutative

polynomial relation of the form.
Z: O(L u,;‘uil....uw=0 C'L&;i U)
(0({, 851) and not all the o, are zero.

By the decomposition and constructien this is equivalent to

1 My M) (n)
for large V1 . Z °‘/L ’Y(q‘ ’L{'lu BN - EV 1 &
v
But this contradicts our result at the end of the previous theorem.

u(\f\\ e
Namely , freely generates a subalgebra of L_. ) for large V1

Hence we have proved theorem (3.8).
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We now define and study an unrestricted associative algebra which we denote by L_ :
Note that from now on our notation is not the same as was used above.

Consider the following three dimensional diagram.

i
€ Mw

arr a T ﬂ" AK

S = N n_""

\l

Where it is supposed we are given lie algebras L (=42,.-~ ) and homomorphisms.
et L g > L (= {2,.hich enable us to define the inverse limit, Jim(_ )
Similarly it is supposed we are given associative algebras A (i=2, Which form an
inverse limit under homomorphisms/7; Roflee132, - e and lie homomorphisms a‘ ”
fs'é | > A.(¢-1.2 yhich make the base of the above diagram commutative. ,

Mmoo

We now deduce that by the universal property there exist homomorphisms ;[k'—_w..)
which make the whole disgram commutative.

Where ¢ : L_e\(»)/"\\( and the /& _
are U- & A /{"ﬁ\’(‘i'-':iil; - ) / o

If we now denote the ]‘.z'l;mﬁ//*x*{by A,ﬁ_jg:,jby [ and Lim(LJby e alse
}\@ ( UJ: v 7lim LJ ®) }C’)L 3 }Z‘ = %{m(sé/_ ywe then have the commutative diagram.

I X iy

2o,
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where i') is a * Lie algebra, L_is associative algebra
and /A\ is an associative algebre,

By taking the discrete topology on each factor of the projective
limits L7£ and A and endowing each of L/ de) and /A\ with the
induced Tychonoff topology we see that:

(i) ¢ is continuous and unique since each 923‘ which makes up ¢ has
these properties (k=12,.-. )

(ii) 7, is injective and continuous since each ’2;“ is injective and
continuous (k=(,2,.-- )

(iii) 3, is an arbitary homomorphism since each ?K is such (w=12--.).

We call ( ’._) % ) a topological associative enveloping algebra of the

free Lie algebra éﬁ:. , or more briefly ( L_,; U ) is a T.E.A, of (ﬁo .

Proposition (3.9) The T.E.A. (L, ) ar &£, is unique.
P
Proof: Suppose ( L_,,’l,/ ) is another T.E.A, for &o i

Put (L/,Z.,/ ) = (A,/} ) in the above diagram. This gives rise to a

£ 5245955‘-' idefﬂwﬁon\_
o @'s Udentiliy i
Hence\..i"_‘-’\_. ¢ ¢ o

Proposition (3.10) ¢‘):(@ﬁ)genez‘ates topologically the T.E.A. L

unique ¢' such that

Proof:

Let -é be the proper subalgebra of Ly generated by 1&) . ol
The continuous mapping . has the property that T {go )glzg)61@>
by continuity and 7. : £ — %\__ d

Now 8\,_,: KE’J) and hence there is a unique continuous

“ = s .
homomorphism L @ . ~—> Bo such that 02 = L .
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- B i
‘& N * Since 151‘}:

>

/ g
s can be considered as a continuous homomorphism of L_ into ke 5

the uniqueness condition gives 'L/‘-' 11__ .

Hence | = 1.__0——-) = 'L/(L_>C_3 gu.
i‘e, é\_= L—-— Thus 'LKJ is dense in \__ .

Proposition (3.11) \_ has no zero divisburs
Proof: Suppose 1;‘3_ 35 IR M 5L > 5% (‘a # ) but

3(8'10 . Then by assumption there exist positive integers YL and n’

such that oy #0 for all M7V and ta@“)—72é @
for 21l w7 0’ .
(m) (
Let WN= max {n, 'k then (AYy) == acg"’g M)7éo
) (Gm)

e
Vi for m‘/’/N since each I@',Lé = L_é has no divisdésg of

zero - N, Jacobson ( I8 ) page 166. Hence D(é #0O . This contradiction
proves proposition &
This concludes the discussion of the topological enveloping algebra L oo

In the next section we consider the unrestricted commutative algebra.




COMMUTATIVE CASE

We now consider the projective limit C ,of free associative
commutative algebras of increasing rank , denotef by {C Kg . We show
‘ﬂ'\‘ 5"\5‘“&‘5"‘ K={,2,...
that/\___ is a free commutative associative algebra.
First, we develop some results we will require . In particular,
a corollary of the P,B.W. Theorem (2.9). We shall use the usual
convention given at the beginning of Section 2 regarding the words

algebra and subalgebra.

PRELTMINARY RESULTS

Recall that the P.B.W. Theorem (2.9) gives a characterisation of
the universal enveloping algebra in the following sense, Let c@
be a subalgebra of A\_ . A an algebra having the property
that if { b} l’é 'a:rk is a certain ordered basis for go
as a module, then the elements 1, &D{I ‘01;1.. b—';‘v_
(victz- .é?),-)&vhere o, by - - oy, is a basic product formed from the
ordered product of basic monomials)form a basis for A .
Under these conditions /\ and the identity mapping
form a U.E.A., e A for ERQ . There is therefore a

unique homomorphism 2 say, such that

63
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o E,~—>A and o(]{: 1, this implies that £ =~ /A . And asa
consequence /A\ may be taken as the U.E.A,

Now suppese that >  is an ideal in Lo  .Let ‘gloj,"{}/ﬁ Jt
be an ordered basis for ﬁs ,50 that the index set J" can be partitioned
inte disjoint subsets ™\ and L , with m< € irmeM, {< L,
We arrange for {lom lm e M B to be an ordered basis for & .
Now by Theorem (2.2) parts 3 and L4 we know E./=E/ K where WK is
an ideal in [ generated by ©> and the mapping g a+R > a+ K
defines a U,E.A. for &/E) " . is 1=1 mapping so we may identifly XJ/E)
with the subalgebra &‘*K )/ K of E’/L. .This subalgebra is the set
of cosets A+ K and it has as basis {bL“" W l Le L } .Hence by
the P.B.W.Theorem the cosets i’r\() lol' by, - - "o<e+ K (et . <)
form a basis for E./ o Thus if D is the subspace spanned by the
elements fl_ and the basic products b[, Lzll_ - (o,(b say, then Dﬂ K=0.

Finally, the basic preducts of the form

b bne - - owms b, b, . oe, s7ZI, £20
or more briefly, bhylo W#dare in (< and form a basis

for K .We note that the loh b,_ 's ana 1 and the ‘O‘A{S form a
basis for k. .

Now consider the comm/utative diagram:
e
* o a '_'—$ L\( ____’_‘-__—“—a L? —_— - - -

l ¢»< . L ’575“"

e e
-44--—»\—‘4/1«—7-\_5——) L-“"/:Ex»l——§‘»‘
We recall the projective limit of the tep row is denoted by l._- .

In the diagram the IK denote the ideals generated by the Lie
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elements { L. X; 13] \iﬁll(;‘ < K} where %, Y%, --- X« are the free
generators for the Lie elgebra of rank 1< , \__ « +Under the induced
mappings TT/: we denote the projective limit of the bottom row

by C .« From the arguments given above we know that g basis

(x)

for Ix consists of all ascending products L)L_ of basic monomials,

(le)
where at least one bt* in the product is not -equal to any one of

v
Koo Yo vee ')Lk.'
4
A basis for . /I consists therefore of all distinct elements of the
K

form
N g h.( !
- 71 )(J_ P — Xk + W

where n s «.. My are non-negative integers

1T woutftive algebra o Xy, Ao, . By Corollary 2,18
if % P(_ (}[K) then L= L@L¢ AL (W/\ ¢‘<)Hence we conclude from this lemma
that C ~ \—-/I_ . We know that elements of _l_:_.__ can be written
as finite sums of elements of the form
Z*O(\_lOL.“' Z\%H t0»\ b (h+o©)
where the unrestricted summation extends over basic products 10\__ ’

bﬁ‘o‘_g’\#o) of fixed degree . Elements of the form

Containing T maof degree;l
will be a basis for . Hence the natural mapping of L_ into L_/I_

defined by

Z.’:/\,.\OL.+ Z/zl“!’oﬂ ‘Ok. —— Z:/\—\Ql._’f‘l

is surjective . From this result we see that it is sufficient to tuke
\(\/: SX{,%,U ‘4)/6?1 as generators for C ,as these elements do
not contain Lie terms or the completion of Lie terms . We show next that

the generators ‘C Xy ) \éd /"\%33 l'\/ are free generators for _C__ .
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To show that C is a free commutative algebra over a field S 3
we apply the usual decomposition and construction to a finite
subset of elements of \’\/ as given below,

CONSTRUCTION (4.1)

First we notice that, with an obvious notation, /L.C_:/'i/—u Q_ is a
vector space over el , for 211 2. , and hence it is possible
to construct the following sets Ai and %’;. Let A, = 6‘ be a
set of elements of Q that is linearly independent modulo _,_g_.
Suppose that the sets Av, EDV have already been defined for

V<L (n>1) and an element of Av is greater than an element of Al i§

\)>\7‘. We define %V, to be the set of all commutative monomials on

the elements of the sets A., A:., - - - An—| (By a2 commutative

monomial we understand a power product which contains a finite number

of commutative elements) which belong to h C. but do not belong

to w41 C . Finally, Anis s set of elements of ng_ which

—

is linearly independent modulo the subalgebra generated by ~r+\ C

—

and the set &\q v

DECOMPOSTTION (4.2)

If we have a finite set of elements in each of the sets /A\(,A;_/ AVI
then we can bring these elements and the elements of 8“ %*-/' y %'\ dﬁ “L”f"“(
(as defined in the comstruction (4.1), above) through to a direct
summand of C/C (Mc(/i/-» = n)
M’W“H —
Proof':
By a slight modification of lemma (1.5) we see that it is possible
to bring a finite number of elements -ofn‘%chrough to a direct summand.

Thus there exist elements O\i(w\) of W\g.. for 211 M (1€ wvi < 29,
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antebdinmie tntegera - Im) 4! g 0w such that )

ey PN (%.Mfdm)»rmcz%“(zj%mﬂw a3) \

Al B (G S g:)io( (=) + wém& !

TR T s e is to mean those and only those ‘
T >V O

commutative monomials lo,‘;(m) of degree wv on the free generators

X,,Xy,-- - oOccur in the unrestricted direct sum which satisfy the < ‘

condition . .
- Cb (‘O Lw))

Now by choosing N 2 N = maxiN().._ N 5, we can insure

that 211 the elements of the sets A,, AL_, An)' E.,@,_ Sy /e 06“7% M
are brought through to a direct summand oftt\ g(_i_} This completes the
proof of the decomposition. s ottt

We now take an arbitary finite subset of the generators N: Ezf,‘gu,w/e,f

and denote this by U , in conformity with our usual notation.

By the above construction and decomposition we can bring through the

set U to a direct summand of{wq.'C}ﬁ":"* w). ‘
Gn) ()
Let v denote the image of U under (13 C_ > ”/IV\ .

THEOREM (4.3)
e
If UGM is a finite subset of b, n /Iv\ , then for sufficiently

large (L., the subalgebra 3 of the ccgmg:tative algebra L.W / -I%
is freely generated by this set |

Proof’:

Consider the polynomial expression,

(hedet) Z o bilod .. mp))= 0 pet (2 RND=0
where the \Q ( “)) are commutative monomials on the elements UCM)':—'

gu 3 ’1/«. },We may assume without loss of generality, that (4.3.1.) is

B

is the subalgebra generated by the set U for some integer 1
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an homogepnous equation. The proof now proceed by induction on the
degree of (4.3.1). If (4.3.1) has degree 1, then since the:elements

of degree 4 im U(V')m {IL'/ (1;1‘)5' and these elements are linearly
independent by the construction and decomposition when N7 N =

W?NG),,..M(M)I. We have a contradiction in that all the «; are not zero.

Now suppose that non trivial rolation of the form 2

i€z (i// Z3 )
(h3:2) =W(UE) UL )T (U ) “0
exists and (4.3.2) is homogeneous.

If=1= for some term is the sumnmation then we get a contradiction of the

choice of the ’M:VS using the decomposition (4.2) and the linear independence of the
elements of the sets A B, ., P,

We now apply induction to the degree of (4.3.2) and we write the above expression
in the form. 7

Gy s (W) i ‘
(4e303) 2 ﬁ (//n’/v',))( %’L }/ S,
(/m 4}\/ / (o /:
Where ', is a /(-of largest degree which genuinely occurs in (4e3s2). Now differentiate

(4e303) with respect to some free generator giving.

wsw 2 [ J,mi’// - 1.9 24 Mgty

Y s DX ; W)
On equating coefﬁcients of fixed powers of ¢ we have
(40305) +. f% Vf - O for - C) {. s 5 3 [/7//)
S+t 2, £28 1,
and
(4e346) r;’ v _ 0.

44}
If we do this for each free generator, i.e. m= ,-2,.. . A/ Then (4e3.6) implies
w)
that ;,/(/ /is a constant,
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Now consider -
) = . r 0\1)
sty | Z%m(205 4 G g 2L )= ©
rnet 02 v D

This gives using Euler's Theorem for homogeneous functions

™’ o y Ny . Wi
(43.8) M}(u”) RGO 4 (W) = o

v ¥ ( )

Where 540‘ a(h-1) A is the degree of 9& , Mis the degree up . However,

(4o3e6) and (4e32.8) together imply thatﬁ Lx) /j mn)is constant for (4.3.8) then implies

()

that each (/ 5 can be expressed as a Q) (LL )) for('\ =<, V) This contradicts

the choice of the U for large /V | and our Theorem is proved

Note the above proof wﬂ] not work for a field of characteristic (p > o)
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e now deduce that the subalgebra (C of all elements of finite degeee in (C is a free
commutative algebra, o

THEOREM (1.1
is a free commutative and a.ssociat:f.ve algebra on the setw as free generators

-

over the field Q o¥ Ckamc*evisféc 3evo.
Suppose (: is not free on the generating set L\/ , then write down an
arbitary polynomial relation
(bolia?) Z ol { M, My, . Nne,,=0 and not all A:=0 .
s
This relation defines a finite set of elements Lj contained in \A/
and by the decomposition and construction given above (4.1) is equivalent to
dn) )
(beodsr2) = v, .- WD =0
v

for large N

\ By theorem (4.3) we have an immediate contradiction, Hence all the
X = o . This proves our theorem.
It is to be noted that we could have proved that the gubalgebra £== of the
associative algebra L wes free, by the same method as used here,
However, it is of interest to work within the context of the paper ( f; )
of P.Cohn,

This concludes section 4.




Q-GROUPS . SUBALGEBRAS OF UNIVERSAL ALGEBRAS. PROJECTIVE LIMIT OF

UNIVERSAL ALGEBRAS

We now derive some results of general interest involving S) -groups.
In particular we define the completion of an S2=~group and show
some of its properties. This is largely a generalisation of the
work of M,Hall ( || ) on the completion of free groups. Only
the more fundamental properties of .() -groups are developed ; we
do indicate , however, how the more technical results required
in the following may be obtained. For a comprehensive account
see P.J. Higgins ( |22 ) or,less detailed,A.G. Kurosh ( 20 ).

We shall use the concept of completion of a group,considered
as a uniform space, as developed originally by A.Weil. A good account
of this appears in N.Bourbaki ( 2 ).
DEFINITION £.1( Sl -group ).
.etL/G' be a non-null set , An n-ary operation &) is defined on & (where
Vv1is a non-negative integer ) if to every ordered system of "
elements &, ,az, - - - An of (5 there is a uniquely determined
element of the same set , written: QAQx--An O for all
\n=ary operations W in 0 LIr 6 also satisfies the axioms:
G.1 (5 is a group ( not necessarily commutative ) with respect
to (A, =) .
G.2 & admits the set S) of finitary operationms.
G.3 For all & in 5L y OO0 .- O =00,where O is the zero
element of (5 .Then & is an S)-group.

DEFINITION &.2 ( S -subgroup)

Let 6‘ be an S ~group A non=void sﬁbset AC. G is callgd an Q—subgroup.
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of @\ if for every yL=-ary operation ¢4 mQ it always follows
that given A &g, - - O inA y AQar -~ On D 18 in }A‘ .

DEFINITION 5.3(Homomorphisms of 5)=-groups )

Let &, 61/ be two S)-groups of the same type (i.e., both
groups have the same of operations S1).If ‘\Qi G — &' iza
mapping where for all a,/&'z,, s R and Vl-ary operations ¢ in £
(@2 @ Q)P = QL )(42) - - -(Anp) (O JThen ¢ is called a homo-
-morphism. The usual modifications enable one to define an iso-,
endo-, auto- ,morphism,

DEFINITION §.4( Equivalence relation )

An equivalence relation fZ in the set GS{ is termed a congruence
relation or congruence in the Sl—group é ,1f whenever (IL Xy )f Q
(for 4=1,2,. .- 1) then (X(X,. . Ta, !X, -- L,’,oq) belongs to ’Q .
By (. 0 )eRis meant that . and ¢ belong to the same <
equivalence class.

DEFINITION §.5 (Quotient group)

&/Q the quotient group of the ﬂ-group 6 by a congruence R
denotes the S)_—group @/Q Where the elements of the set G/K

are denoted by X Q , Y2 (3§ ;and Xx Q is the set {a E(i‘ql (f)(;‘lj)i’ﬁgi

and the operations on the Ksare defined as follows

@Q‘Q)(X;Q)_ ()= (X xz - - DC»»OD)Q.

DEFINITION &.6 (An ideal in an Slgroup )

An ideal in an \Q -group ()7is a subset /Sc of 61 with the follow-
-ing properties:
(i) }A\ is a normal subgroup of the additive group of the Q-group.

(ii) When (o 2\22 is an arbitary V] -ary operation, (% an arbitary
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element of A sand 4., F 2, -~. A are arbitary elements of G, ‘

then the following inclusion relation must always hold for = =12 --- 1N
—(84%,_ . 8‘,\)0\3 4-(84%2._. (’cu»%b)(l)iﬁ- . 84,\)!& = A

It is now easily shown that there is a 1-1 correspondence between

the decomposition of an arbitary ) -group with respect to its

ideals and the congruences on (= vide( 2O ).Thusw can speak

of the _S2 ~factor group with respect to the ideal /A( ,namely Q/A

as opposed to the S2 -factor group with respect to the congruence

iQd CS//Q . The ideal A is ,of course, the zero element of the

2 —f{ictor group 67//\ =

Now let(~, be the free 7 -group generated by a countable number of.

free generators{ X, X2, - - X -- - } . Let (HM) denote the family

m< T

¢
of kernels of the natural projections 4‘\‘42 G > @jm ,Where 6 e 18
the free .Q ~-group generated by gm/XL, ~ _Xu b We show that this

family (HM) is a family of ideals , We verify the second condition
e

of Definition 8.6, the former is obvious.
Let \'\4_ -Hw‘f‘or some Wy ,then let

3:“(8491“ %W)mq— (?l_ﬂ <9L+L‘)‘"' 9n)03 . Map both
)

sides under and we get

Q= CP@E)'O) = ‘(¢(94)j&31)-~}£(‘5%5)"0* /)5/;1) r"%@,))‘,ésince @M(k):o
This establishes our contention.

The following properties of the family of ideals G‘\'M 2\»«4I are
obvious from the definition of the family :

(1) Ha2H. L nem, (31) O H. =(O3 ,(iii) the T, are normal

subgroups of (6/)4- \) .
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: T =y 2 s @ 7
The cosets ¢+ -, 3 of the family of ideals ¢ .. 4 then provide us with a basis

for a topology. We call this topology the ideal topology it is

T e

analogous
to M.Hall's subgroup topology ( [[ ). Following M.Hall ( 1] ),
we define a uniformity of the ideal topology in terms of the sets
HTU(MYN 9E Hut P4 ,noting that if X 4a, - Xw € H "
we have, by definition of a congruence I (Xax- - XrwJ & H h4.
We have therefore that the operations ¢O in £ are continuous.
Now with each Hwthere is associated the factor Q =-Zroup é/H'("‘
It is easily seen that the }*wq are open and closed, thus the
topology induced in.éivg é$/¥kﬂis the discrete topology. Also
the indices Wi { are the positive integers so that we can define the pro-
~jective limit of the factor groups Cfshﬂ;this will be an.iz-group F;> .
The discrete topology on the Cssvv\ will determine a topology on F:> s
the neighbourhoods of an element X< F:)being all the elements of FD
with the same X, for a finite number of VVé;.
THEOREM §.7
An _fZZ-group (§\ with an ideal topology defined by a family ? L4vu§
of ideals is totally disconnected .If we take the (5 , factor
152.-groups é?/LL“the indices form a directed set if whenever l~4w4CZ F}n
we write wi> vy . A natural homomorphism is determined Ct;wa B> Q.
via the relation 67/1—\-”: é/Hm/HV\/ Hw.In terms of
these homomorphisms and the discrete topology in the é;vn ,the
projective limit F) is defined .The group F> is the completion
~—\ A\
of & (denoted by &) by Cauchy sequences. (& is totally dis-
A
—-connected . C% will be compact if and only if the ideals

regarded as normal subgroups of (Ea are of finite index.
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Proof:. Since QT—HM‘>QO$ ,for any g—#o there is an Hmwhich
does not contain % .Hence as Hmis open and closed , ca. does not
belong to the component of zero, Hence C\ is totally disconnected.
Let x g 6 and X —)IMbe the homomorphism G—= (bm .Then p
is a subdirect product Pf— EQM,where if Hv—.)'H’h ,then the ™M
and "\ components W.. and U,, are related by the homomorphism
c%m(nlﬂ)v):(g‘?lfor every O # O in (5 , the element ( 3)is an
element o;f“ P s@lso non-zero,These elements form a subgro'up of
isomorphic to the _Q—group 6. and will be identified with (& .
Since the topology for the éw‘is the discrete topology a neigh-
-bourhood in P is given by all elements W with a finite
number of the ’M““) fixed. Let f\/ be a neighbourhood determined by
fixing ’M(,j‘f”‘ for m=wm, mz, -m, Then an V1 exist following all
these ¢ .Suppose for some W in N the f{)component is k/l‘) JHere
U%“ Iis completely deteminesl ’M‘” for wvi=wi, ma,. . m, JMoreover ,for
some X in & p LD Llnz (A“?,.Hence OC considered as an element
of ‘\9 belongs to N .Since every neighbourhood contains an element
of 67 » and the neighbourhoods are a basis for open sets, (3 is
everywhere dense in P .Also, the tbpology induced in é)ﬁ as a

subgroup of p is precisely the ideal topology defined by the { Hmk

A
with cosets of the HM as a basis of open sets ., To show that P: (3
(M)
it is sufficient show that P is complete( Z. ).In W = ' /l/k

i

i)
if M..=O for a particular h ,these v\\S form an ideal of P which
includes Hm .This follows from the definition of the HM.The ideal
so formed is HM the closure of the ideal Hw\in P ,Since

every element in P is the limit of elements in G) and any
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Y
(m)
element of w must be the limit of elements with ({ =0 ,we see

w

a limit of H‘W\/)G‘r = Hm .The sets H in FXP consist of pairs

(p ;V) where 4. Hw\—t—F .Hence F> and [1/ have the same W1
v
component l,Q’_Y\’ .Since a Cauchy sequence contains'small'sets ( 2 )s

(2%
givena sequence {CL\Z] in P there is a set C{, with (P/f]/)i H
for any Pi—C’ g C’L whence all elements in C have the same Wy

f
component M”" ‘) « Since CL ﬂC is not null every set C} of the

. (n)
sequence contains elements )Y with v component "M~ .Hence a Cauchy
')
sequence in p determines a unique component 1/1(’ . for every mwm

() )
If wm <4< wn there will be 2 L{, in some C< with components W and U-

determined by the Cauchy sequence whence (#Mn lf”) (_/1’ &) Here the element

feri] ("
= (u)where each W, 1is determined by the é‘C; } is an element of
P since its components satis-fy the requirements of the homomorphisms.
Hence A is the limit of the Cauchy sequence and p is the completion
of é7 .« The topology induced by p is the ideal topology of the
family{gmf .Hence a is totally disconnected . If any 6MIS
infinite a sequence of elements from different cosets will have no limit
point in é\ .But if every @Mis finite then the GM unrestricted

N\
direct product is compact, and 6 as a closed subgroup of this product

is also compact.



UNIVERSAL ALGEBRAS: A SUBALGEBRA THEOREM

In reference ( (g ) S.Feigelstock established a subalgebra
theorem for an abstract class of universal algebras(the definition
of abstract class is given below, defn. §.16). We use this result
to show that the projective limit of algebras belonging to this
same class is free(as an algebra).
First we have some definitions from the above paper.
DEFINITION &.8(wn =ary operation )
An vl -ary operation «J5 1in a set X is a mapping of Xh into X s
written : X\ Xz -- AL O ,where (K),f>, - --- Xw ) belongs to XV‘
and 22X .- XLnd belongs to x .These operations are defined
for all positive integral values V7 on the whole of >< h.
DEFINITION 5.9 (Algebra)
An algebra /A\ is a pair A: (X; Q) where >< is non-empty

and is called the carrier of /A\ ,denoted by ]A \ sand S2 is

the set of operations defined on )< p

DEFINITION &.10 (Subalgebra)

An algebra 8 is a subalgebra of an algebra A ,denoted by 8 Q)A\,
if \8 | < [A\ and for all ¥, % .. -Y. in (Beand all Ay ~ary
operations (O in Q y Xz - --AntD is in = .

DEFINITION $.11 (Cartesian product algebra)

Let ‘{A»c%= { ( X\z,-SZ]J ) be a family of algebras with _Q the

same set of operations for each algebra A i< o The cartesian

product algebra is denoted by 7T /\\4 and it consist of all
te 2]
'vectors' A= (Ul(k}> sWhere a®® belongs to AK . The operations

) (k)
in 7‘\— AK are defined componentwise i.e., ¢, az- v = (le\f a., »o)
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DEFINITION &.12(Homomorphism of algebras)

If A CX Q) and 6 L\/ﬁ 52) then the mapping ;Z X — Y

is a homomorphism from >< to Y if for every |[L =ary operation ¢)D

and for all ¥, Tz, - - L belonging to X,
L Ty - oo Xmo];z{ = (xnbXxsF. . c‘zmp/)cb

If ¢ X*—P \\/ is a homomorphism which is also 1-1= and onto. We
say that QZS is an isomorphism.

We now consider the possibility of generating an algebra
given a set. In particular , we note that the intersection of
a family of algebras is defined if the intersection of their
corresponding carriers is not void.

DEFINITION &.13%(Generating set)

% < f/A\\ is a generator ,or more precisely a generating set, of
the algebra./A\ if /\ {%,8§AX S< 18] B’ = A i.e., the
smallest subalgebra containing S in its carrier is /A\ itself,
The algebra generated by A\  is denoted by <A\ ).

We come now to two important concepts that of an abstract
class and a variety .

DEFINITION 5.14(Abstract class, variety)

A family i ,of algebras is called an abstract class of algebras,
2t /A\ belongs to 'é and A is isomorphic to 8 implies that
B belongs to 'é . An abstract class which is closed under the
formation of subalgebras, quotient algebras and cartesian products

iscalled a variety.
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DEFINITION &.15( ‘(i -free algebra)

Let ’@ be an abstract class of algebras. An algebra A belonging
to \f is "é ~free if it satisfies the following two conditions:
(1)There is a set XQ(AI such that >< generates A .

(ii) For all g belonging to the abstract class ‘é ,and for
every mapping 9.’ X-> ‘Bl ;there is an extension of this mapping to
a homomorphism @IA — 5 .The X refered to in(i), (ii)
above is called a vé ~free generator of A .

A more natural definition of what a free algebra is,will be
realized in the following lemma,

LEMA .16

Ifr z is the variety of all _Q -algebras,(i.e., the algebras having
£ as their set of operations )then given any set X# L , X
generates \é ~-freely an algebra /Agé f.

The algebra /~\ which will be constructed in the proof Lemma 5.16

the set >< .
Wi n
Proof: Let XD:X .Define ><'i/k—1: X-Lgoxx%-(zn where 2 in nis an
[0\
V. =ary operation., Put V: U ><.If \3' belongs to \l/ ,then there is
ATO A
an 2 such that 3 belongs to X’L LIf >0 ,then é': Vo kél,,\l/\')
where 9& belongs to ><1- ‘ ,(12 V2, -- vl ),or \6“ belongs toX‘ .
- 1=
G g Y- ghbelong to Y and @ belongs to Qw,then %‘b&."&ﬂwis def-
-ined,because there is an |w such that \&3. belongs to ><w\ ,(j:(,z/.“ V\);
- %)
therefore Ay o In J belongs to XMX‘)—lhwhich is contained in \/
and A"— <\(/) 52) is an algebra.

It must now be shown that >< satisfies conditions (i),(ii) of

Definition &.15.
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(1) Tt will be shown inductively that )X gemerates A\ . It is

obvious that XOQ— \<><\>\ . Suppose that XLQ KX7(. 1L 34,37; : 8««

belong to ><’; and &  belong to S 24, ,then DY Y W is in \<X>\

which implies that ><i+| is in ]<2<>\ . Therefore we have \<X>‘=A.
(i1)It will be shown that )< is a free generator of A .

Let %:(Z_/Q_)belong to the variety 'é ,and let ] ZX-—'> 2 .

Put B= O, ,and define 97; as the mapping from >< . into Z- b X

v

is in >§H\ X ,then X = higa ..av\w,and me is defined to be

(‘3(94' Zj;e"v‘ (3“‘621'3 Jf oz ds in X,‘, , then @QI: QI;JL .Define a

mapping 55-_— U 9,; ,such that for 2 in Y > 7{(9’ is defined to

VT
be 9,;? if Y is in >, . Let Gur 4y, - Y belong to X - ,and let
t> be in S ., then:

CopY-- Yoo 1L = (3.63(?&3. b= G -GuBd

Hence Sj is a homomorphism,and the lemma is proved.

Corolla}_yﬁ.lé} Y -

( Each fre: anarchic g-algebra is isomorphic to a free Q-algebra.
LEWIA §.17
if /A\: (X/Q,)ls a free anarchic algebra ,then
A Xa. .. XnWO = X A D Toe XL (1= L2 )
Proof: Lemma J/.17 follows directly from the construction of the
free anarchic algebra given in Lemma §.16
THEOREM 4.18
Subalgebras of free anarchic algebras are free,

Proof. Let us take algebras A= (E,Q), B-= (*q:/ -Jrz) where Bis

a subalgebra of A\ ,symbolically: B< A . Let/lA,/H;) /Z(K

be an arbitary finite subset of
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elements of ,Q. ~Wit}7"c an Vv, -ary operation .Let Mél@\ be
the element arising from the operation/qx ,then there exist

Y. - - . %, belonging to VA such that i Xa-- “w‘yb\K: U<,
Define 4,  as irreducible in B if x5 4 B for some L=l2 - N,
Define the length ’{ of an element of ’A\ ( or ‘L%I )as the number

of weede® symbols in the element i.e.,
w

Atue) = |+ = Alxy) €00
3=
Define the set 1 =%Z]2is irreducible in B ¥ .To prove the
Theorem if is sufficient to show that /T‘ generates 6 freely. We
must verify conditions (i), (ii) of Definition §.15.
Condition (i)
5\T\ generates % . Let U, belong to [6\ Jf W« is irreducible
then Ny belongs to /T\ .If not ,then A belongs to l%l for

evesia= 1,2, - - -~ VI Now A(X )<L (e )L 08 ;therefore inductively

there exist an A  belonging to \/A\‘\ in Wwc such that & is

irreducible in (%\ . VT\ therefore generates E .
Condition (ii)

VP generates % freely., Let FF fbe a set in 1-1 correspondence
with m ,such that 6*——9 i ,and let E;% be a free anarchic
algebra on /\F* .Let & beampO: s Extend &  to
an epimorphism 55 of E)Xon’co B . We show by induction that @/

*
is a 1=1 map of B onto 6 . Assume that ¢ is 1=1 map on

*
the elements of % of length < N ,wnto S . By the 1-1 corres=-

X rr\
-pondence between /T‘ and , We may assume that 1) is greater
»® x

than A . Suppose that L belongs to 5 and is of length N4 | .

x4 <t i % s , KL
Let © =< (xffxzb,.,.. s x’,\.‘/u(( where l'—(/&.j(lé' )<ﬂfor

i
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(;‘ﬂ, 2, .. sny) . Suppose la*}l\/= lo*l¢ , then :

+*) | | i - 2 ;| * 2 p "‘xz . :=
b)é-: (Il Xz.-.-‘xw.z) ,,(rlf.-.- 1..\.‘> @~ b /d‘b xa— }for(a, be-..

g ld-*l

by Lemma 4.17 this implies that %) Thus VT‘ is a

free generator of % , and the proof of the theorem is complete,

Ne 7
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