
Computers & Industrial Engineering 171 (2022) 108332

Available online 24 June 2022
0360-8352/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An RUL-informed approach for life extension of high-value assets 

Sunday Ochella a, Mahmood Shafiee b,*, Chris Sansom a 

a Department of Energy and Power, Cranfield University, College Road, Bedfordshire MK43 0AL, UK 
b Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury CT2 7NT, UK   

A R T I C L E  I N F O   

Keywords: 
Remaining useful life (RUL) 
Life extension (LE) 
Prognostics and health management (PHM) 
Machine learning (ML) 
Reliability centered maintenance (RCM) 
Turbofan engines 

A B S T R A C T   

The conventional approaches for life-extension (LE) of industrial assets are largely qualitative and focus only on a 
few indicators at the end of an asset’s design life. However, an asset may consist of numerous individual com
ponents with different useful lives and therefore applying a single LE strategy to every component will not result 
in an efficient outcome. In recent years, many advanced analytics techniques have been proposed to estimate the 
remaining useful life (RUL) of the assets equipped with sensor technology. This paper proposes a data-driven 
model for LE decision-making based on RUL values predicted on a real-time basis during the asset’s opera
tional life. Our proposed LE model is conceptually targeted at the component, unit, or subsystem level; however, 
an asset-level decision is made by aggregating information across all components. Consequently, LE is viewed 
and assessed as a series of ongoing activities, albeit carefully orchestrated in a manner similar to operation and 
maintenance (O&M). The application of the model is demonstrated using the publicly available NASA C-MAPSS 
dataset for large commercial turbofan engines. This approach will be very beneficial to asset owners and 
maintenance engineers as it seamlessly weaves LE strategies into O&M activities, thus optimizing resources.   

1. Introduction 

There is an ever-increasing number of industrial assets approaching 
the end of their design lives, and quite a larger number have even 
exceeded their life expectancy. Many industrial assets are designed for a 
long service life. For instance, offshore oil and gas assets are typically 
designed to last for 20–25 years (Ersdal et al., 2018; Nezamian et al., 
2012). Wind turbines also have a design life of about 20–25 years (DNV- 
GL, 2016; Nielsen et al., 2019). The life of an aircraft in the aviation 
sector often varies between 20 and 25 years, depending on the flight 
cycles or flight hours (Jiang, 2013; Ghosh et al., 2018; Wang et al., 
2018). When the assets reach the end of their design lives, they will need 
to undergo an end-of-life (EOL) process. At a high level, the EoL stra
tegies of industrial assets can be divided into three major categories: in- 
situ abandonment, use-up and decommissioning, and life extension (LE) 
(Shafiee & Animah, 2017). The first EOL strategy, in-situ abandonment, 
entails leaving an asset in place at the site of operation upon attaining 
EoL, with the site prepared, made safe and all previously powered 
components de-energized. The second EOL strategy, use-up and 
decommissioning entails using the asset until failure or until the end of 
its design life and then decommissioning it by removing the asset from 
the site and restoring the site to its pristine condition. The third EoL 

strategy, LE, involves extending the operational life of an asset beyond 
the original design life and extracting more value from the asset. When 
opting for LE, the decision for either in-situ abandonment or decom
missioning is effectively deferred to a later date, depending on regula
tory requirements. 

The conventional approaches to LE for complex assets involve per
forming a series of activities by a project team on different components 
of an asset at the end of its design life. During the LE process, data is 
gathered through inspections and condition assessments and then some 
plans for Asset Integrity Management (AIM) and Structural Integrity 
Management (SIM) are prepared for LE implementation, subject to 
regulatory approval (Hua et al., 2017; Shafiee et al., 2016; Stacey, 
2011). A comprehensive review by Shafiee and Animah (2017) reported 
some other issues that must be considered during LE decision-making, 
including lack of good quality data, workforce ageing, obsolescence 
management, and robust RUL prediction methods. The project-like 
approach to LE may lean overly towards SIM; however, we will show 
that such an approach is anachronistic when put side-by-side the 
methods proposed in this paper, which are drawn on practices from 
reliability centered maintenance (RCM) and data-driven prognostics and 
health management (PHM). 

PHM involves four core areas, namely: data acquisition and 
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management; diagnostics; prognostics (which involves predicting the 
remaining useful life (RUL) of an asset); and decision-making (Lei et al., 
2018). There are in total three approaches to PHM: model-based, data- 
driven, and fusion approaches. The details of these three approaches can 
be found in the work by Ochella et al. (2022). Data-driven PHM, the 
approach used in this paper, involves using sensor data from various 
monitoring devices installed in an asset, along with machine learning 
(ML) algorithms, to determine the state of health of the asset and then 
predicting its RUL to make accurate maintenance decisions. However, it 
can be argued that sensors do not necessarily provide detailed infor
mation regarding failure modes of the monitored asset since such in
formation is typically obtained by a detailed Failure Mode, Effects and 
Criticality Analysis (FMECA) study. To overcome this challenge, Ochella 
et al. (2021) proposed a data-driven method which combined ML 
methods and RCM concepts to prioritize assets for LE consideration. The 
approach involved continuous monitoring of the asset via sensors, 
determination of their state of health using a condition indicator called 
the potential failure interval factor (PFIF), and subsequently, the 
grouping of different equipment with similar condition indicators 
together for the purpose of LE. These results contribute to the first phase 
of the LE decision-making model proposed in this study. 

The focus of LE decision-making approach will be on critical 
equipment (i.e., equipment that are close to EoL and their failure will 
result in unsafe conditions). In specific terms, we use a PHM metric 
called “alert time”, in combination with RUL predictions into which 
uncertainties have already been incorporated, to establish actionable 
decisions with implications for logistics planning and LE process. A 
novel criterion, called the acceptability criterion, is also proposed to 
address those aspects of LE decision-making involving regulatory ap
provals and certification by third-party bodies or classification societies. 
Furthermore, the decision-making approach proposed in this study 
considers the impact of AI-enabled PHM solutions and the associated 
regulatory environment on LE decisions. To the best of our knowledge, 
this is the first attempt at bringing these disparate research endeavors 
together as an integrated, end-to-end data-driven decision-making 
model. Our model has the capability to be adopted in different 

industries, as it relies heavily on data gathered from the operational 
assets, rather than the technicalities of a specific sector, industry, or class 
of assets. 

The remaining part of this paper is organized as follows. Section 2 
provides an overview of LE practices, culminating in the need for RUL- 
informed LE decision-making models. The details of our proposed 
decision-making model are presented in Section 3. A demonstration of 
the applicability of the entire approach is presented in Section 4, along 
with its limitations and suggestions for future work. Section 5 concludes 
the paper. 

2. Overview of LE practices 

The justifications that typically need to be made for LE are in two 
broad categories, technical and economic. The technical aspect includes 
safety, reliability, and availability of the asset, while the economic 
aspect looks at return on investment (ROI), overall asset life cycle cost 
(LCC) and benefit-to-cost ratio (BCR). At the core of this is the realiza
tion that an asset undergoing degradation requires a slightly different 
approach towards operation and maintenance (O&M). An overall asset 
can be grouped into different systems, subsystems, components and 
parts, so that the impact of degradation at any of these levels on the 
overall asset can be assessed. Assets are considered to have reached their 
EoL when a performance or degradation threshold is reached, as illus
trated in Fig. 1. 

Such thresholds are usually determined through classical statistical 
approaches like accelerated life cycle tests, or in more recent times, 
using run-to-failure data and ML algorithms. Another way for an asset to 
reach EoL is through obsolescence, when the asset becomes unservice
able and thus economically and functionally impractical to operate and 
maintain (Macchi et al., 2018). Our study focuses on assets that have 
reached or are approaching EoL via degradation and are thus repairable, 
replaceable, or serviceable. Fig. 1 shows the impact of single and mul
tiple LE actions on an asset. From a data-driven PHM context, LE 
essentially restores the condition indicator for an asset from a state of 
“soon-to-fail” to a “healthy” or “good” state. Condition indicator charts 

Fig. 1. The impact of single and multiple life extension actions on an asset (adapted from Ochella et al., 2021).  
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will form a part of the decision-making model proposed in this paper. 
The following sub-sections, however, provide a review of conventional 
approaches to LE, and map a trend leading to the need for data-driven 
approaches, especially in the present era of big data and Industry 4.0. 

2.1. Approaches to LE 

As stated earlier, conventional LE practice involves setting up a 
project team, which then embarks on and drives the LE process. Typi
cally, an overall asset or fleet of assets, say an offshore platform for 
instance, will first be broken down into systems, subsystems, and com
ponents. The subdivisions are then further grouped into different cate
gories, depending on failure modes and criticality. Afterwards, the 
condition of the critical equipment and structures are assessed for the 
eventual application of suitable LE strategies. The detailed review of LE 
research by Shafiee and Animah (2017) showed that the LE process can 
be broadly grouped into five, viz: defining the premise and scope of the 
LE program, asset condition assessment, RUL prediction, evaluation and 
selection of LE strategies, and implementation. Obtaining regulatory 
approval, which is core to the whole activities, straddles the entire five 
processes because all activities must comply with standards and gov
ernment regulations. A high-level breakdown of the typical LE workflow 
is illustrated in Fig. 2. 

Two key technical aspects that inform decision-making are the 
condition assessment (which indicates the health state of the asset via a 
Health Index (HI)), and RUL prediction (which represents how much 
longer the equipment can operate before failure). To arrive at a health 
index that gives an indication of the technical condition for an equip
ment, techniques must be developed to appropriately weigh health 
factors (like testing/inspection frequency, degradation checks, mainte
nance, etc.) and history factors (like age, failure history, location/ 
terrain, operating environment, etc.) (Animah & Shafiee, 2016). The 
condition indicator used in this work, known as the potential failure 
interval factor (PFIF), was developed in our earlier paper (Ochella et al., 
2021). Other similar health indices in the literature include the grey 
health index proposed by Kalgren et al., (2006), the Asset Health Index 
proposed by De la Fuente et al. (2018) and the condition health and 
system refurbishment index proposed by Wang, Tian et al. (2015). 

2.1.1. Structural components of assets 
Although this study does not cover structures, conventional ap

proaches to LE tend to be more focused on structures, as they are 
considered to be the foundation or framework upon which the operation 
of other assets and equipment are built. The development of an SIM plan 
for use during the LE phase involves data collection, evaluation, 

remaining fatigue life prediction, inspection planning, obtaining regu
latory approval and the implementation of the approved LE and in
spection program (Boutrot & Legregeois, 2015; Galbraith et al., 2005; 
Gibbs & Graf, 2014; Rashad, 2017). A common approach is to use 
probabilistic methods to model fatigue damage accumulation by 
trending stress versus number of cycles (i.e., S-N curves) (Liu & Fran
gopol, 2019). As such, the structural degradation or damage mecha
nisms typically considered include fatigue due to repeated cyclic loading 
over the asset’s lifetime, various forms of corrosion, direct physical 
damage due to impacts like dropped objects or collisions, creep, and 
accumulated plastic deformation, amongst others (Aeran et al., 2016). 
When assessing a structure for LE, the variation of loads on the struc
tures over the lifetime is analyzed and modelled, including dead load, 
live load, wave load, current load, and wind load, as may be applicable 
to the asset under consideration (Aeran et al., 2017). These various loads 
are typically modelled to obtain a time-dependent damage index, which 
serves as an indicator for the condition of the structure and can then be 
used as the basis for making LE decisions. 

In recent times, practices similar to those used in the field of data- 
driven PHM have been extensively applied to Structural Health Moni
toring (SHM) to estimate the condition of structures and predict 
remaining fatigue life (Bull et al., 2021; Entezami et al., 2019; Entezami 
et al., 2021). Again, the data used for data-driven SHM and health 
condition assessment for asset structures are from sensors which typi
cally log vibration and environmental condition data (Bhowmik, 2020). 
With such data, knowledge about the health state of the asset’s structure 
at any time instant is available, hence enabling the determination of LE 
actions which are triggered only as necessary, based on predictions from 
ML models (Basso & Copello, 2019). 

2.1.2. Impact of uncertainties on LE decision-making 
RUL prediction is a core technical aspect of the LE process. However, 

there are always uncertainties involved in the prediction process. It is 
therefore important to be able to quantify the uncertainties in RUL 
prediction, and subsequently exploit such quantification in the process 
of LE decision-making. Most studies in the literature propose point es
timates of RUL; however, the predicted RUL values are often affected by 
uncertainties in the data, the model used, the environmental conditions 
and future loading conditions, amongst other factors. There are a few 
approaches for quantifying the uncertainty in RUL prediction, which 
yield RUL values as probability distributions rather than point estimates. 
The study by Elwany & Gebraeel (2008) used sensor data to predict RUL 
distributions for obtaining the parameters of an exponential degradation 
model as inputs to a spare parts replacement and inventory management 
decision-making model. Sensor-data was collected from accelerated 

Fig. 2. The general workflow for technical assessment during LE process.  
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degradation tests for rolling element bearings and used to compute the 
RUL distributions analytically. The performance of the sensor-based 
prognostic model in terms of number of failures and total maintenance 
costs was compared to that of a fixed-time-interval maintenance policy. 
However, the model was tested on a single-unit replacement and in
ventory model and did not consider the overall life-cycle costs. More
over, only the mean values were used in the RUL calculations and the 
variance information which addresses additional uncertainty was not 
fully exploited. A similar study was conducted by Wang, Hu et al. (2015) 
to formulate a prognostics-based spare parts ordering and system 
replacement policy for deteriorating systems. In their research, the lead 
time to order spare parts was modelled as a stochastic process with a 
probability density function rather than as a fixed value. The sensitivity 
of predictive replacement costs with respect to variations in lead time 
was derived, however it was only applied to non-reparable degrading 
systems and hence, the opportunities for LE were not fully explored. 

With regards to uncertainty management in LE, Ramírez and Utne 
(2015) used Dynamic Bayesian Networks (DBN) as a tool to support LE 
decision-making for ageing repairable systems. Several parametric 
models were proposed to describe the deterioration process, imperfect 
maintenance, safety and risk variables as well as evaluate costs during 
the LE period. The EoL options considered were use-up and replacement. 
In terms of the potential for failure during the LE phase, the study 
revealed that the use-up option had a higher level of uncertainty than 
the replacement option. However, the replacement option involved a 
higher capital cost which made the overall assessment to favor use-up, 
from a cost perspective. Spare parts inventory and lead times to order 
parts were not modelled in the study. 

2.1.3. LE strategies 
There are several LE strategies adopted by different industries to 

sustain acceptable levels of reliability and reliability during the LE 
phase. Table 1 lists and explains various LE strategies, along with their 
potential application cases. 

Condition monitoring (CM) has gained increasing popularity as one 
of the methods of gathering data about the health of an equipment to 
help arrive at the right decision regarding when to implement LE ac
tions. Aside conventional CM methods which rely on asset data stored in 
databases, a concept that is rapidly evolving is the digital twin. Pro
posals have been made on how to deploy a digital twin as a decision- 
making tool for LE of ageing assets. To build a digital twin of an as
set’s structural components, a high-resolution modelling of the asset is 
conducted. Then, the model is updated using the data obtained by 
sensors and the remaining fatigue life is estimated on a continuous basis. 
This approach is currently being implemented on one of Shell’s oil and 
gas production platforms in the Southern North Sea (Knezevic et al., 
2019). As regards the integration of PHM with asset LE strategies, Varde 
et al. (2014) proposed a framework that evaluates refurbishment as a 
strategy for LE of electronic systems subjected to different failure modes. 
They derived the cost-to-benefit ratio and performed a detailed risk 
analysis to aid LE decision-making. Other studies exploring the full 
integration of PHM with asset LE strategies include **Lukens and 
Markham (2018) and Tiddens et al. (2015), who looked at issues around 
data quality, data analysis, integration of legacy assets with modern 
ones and engineers’ understanding of how to transition from conven
tional RCM practices to full PHM practices. 

2.2. Fundamental requirements for LE 

There are two broad requirements that drive asset LE decision- 
making; technical and economic requirements (Picard et al., 2007). 
On the technical side, the asset must maintain the required level of 
functionality, safety, reliability, availability, efficiency, compliance with 
changes in regulations and amenability to obsolescence management. 
On the economic side, the fundamental philosophy is that the overall 
asset LCC and the long-term cost of ownership and operation must be 

kept to a minimum, while continuing to extract value from the asset. 
These two broad categories of drivers should ideally be satisfied to 
achieve optimal outcomes. In the following sub-sections, some of the 
requirements are discussed further. 

2.2.1. Performance requirements 
One of the basic criteria for LE is that the asset must maintain an 

acceptable level of safety and reliability. In addition, the device must 
continue to meet or surpass a minimum threshold of functionality; 
otherwise, LE may become an unviable option. Although these basic 
criteria appear simplistic, it is challenging to achieve them for a 
degrading asset under constantly evolving environmental and process 
conditions, changing standards and regulatory requirements, and 
emerging uses of technology. This is why LE decisions must factor in the 
degradation process or changing health condition of the asset, future 
operating conditions, environmental loads, and several other parame
ters (Vaidya and Rausand, 2011). It is clear that since these critical 
factors which influence LE decisions are constantly evolving, collecting 
asset CM data to reflect this evolution and thereafter trending the future 
path is a potentially robust approach towards decision support. In order 
to help demonstrate whether or not the performance requirements for 
LE process have been satisfied, the data collected during the early 
operation as well as during the degradation process are harnessed to 
develop a condition indicator, which serves as a basis for determining 
safety thresholds, reliability thresholds, functionality thresholds, and 
other performance thresholds. 

Another key factor that influences an asset’s ability to continue to 
meet minimum performance requirements, and thus support LE, is 
obsolescence management. The stages of any technology’s evolution 
include introduction, growth, maturity, saturation, decline and phase- 
out (Jennings et al., 2016). Once phased-out, the ability for an asset 

Table 1 
Different life extension strategies with their meanings and potential application 
cases.  

LE strategy Meaning and application scenario 

Replacement/ 
repowering 

Mostly applicable to power generation units. Involves 
replacing an existing equipment with a new one or 
upgrading the system to a higher nameplate capacity. 
Typically returns equipment to “as good as new (AGAN)” 
condition. 

Reconditioning Involves actions such as cleaning, restoration of material 
properties, assembling, and fastening. Returns equipment 
to a better state than before but not up to AGAN. 

Repair Involves restoring a system to a functional condition, upon 
failure or on a planned maintenance. Applicable to 
components or subsystems of a more complex asset and 
typically carried out using new or existing parts. 

Remanufacturing Attempts to restore a system to original equipment 
manufacturer (OEM) functional specification with 
warranty. Integrates reconditioning, replacement, and 
repair. 

Retrofitting Involves replacing old components or equipment with 
modern equivalents, thus improving functionality, 
availability, and safety. This is a good strategy to combat 
early onset of obsolescence. 

Use-up Involves using a component or an equipment until the end 
of its economic life. This strategy is driven by economics; as 
such, it may be inappropriate for application to 
safety–critical assets. 

Refurbishment Applicable to components, equipment, or systems to return 
them to a higher level of functionality. Integrates partial 
replacement, reconditioning, and some elements of 
redesign. 

Reclaiming Applicable to systems requiring regular lubrication over 
their lifetime. Involves cleaning the oil through filtration 
and other means to eliminate contaminants and particles, 
and then reusing the same oil. 

Retrofilling Applicable to systems requiring regular lubrication over 
their lifetime. Involves changing out of the lubricant, for 
example, changing out of a transformer’s oil.  
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owner to continue to get the right support for operation and mainte
nance of the asset is greatly diminished. Thus, it is important to duly 
consider obsolescence forecasting and management as a critical factor 
that influences LE decision-making. 

2.2.2. Regulatory requirements 
The regulatory agencies in most countries have stringent re

quirements for granting approvals for LE programs. Most government 
regulations are targeted towards the oil and gas industry, the wind en
ergy sector (Ziegler et al., 2018), the nuclear energy sector, the aviation 
industry, and the transportation industry, particularly the rail transport 
sector. The philosophy behind government regulations places the onus 
on asset owners to demonstrate that continued operation of their assets 
will ensure safety, reliability, and environmental protection. Govern
ment regulatory agencies also rely on certification of assets by class 
societies like Det Norske Veritas Germanischer Lloyds (DNV-GL), 
American Bureau of Shipping (ABS), Lloyd’s Register (LR), and so on, for 
the approval of assets for LE, particularly offshore structures (Liu et al., 
2016). With such certifications obtained, regulatory agencies are more 
inclined to approve LE programs. However, in this present era of big 
data and industry 4.0, there are only a few standards and regulations to 
guide LE decision-making for systems implementing data-driven and AI- 
enabled PHM. In this paper, an acceptability criterion (Ac), which con
siders all the important factors and performance requirements, in the 
context of data-driven LE decision-making, and explores if all factors or 
requirements are satisfactorily met, is used to help determine suitability 
of an LE plan for regulatory approval. 

2.2.3. Other requirements 
The ultimate goal of applying PHM technologies is asset health 

management (Kalgren et al., 2006). Consequently, the final form of the 
output from a data-driven PHM system should be an actionable plan for 
LE implementation. The RUL prediction results, along with the confi
dence intervals to account for uncertainties, should be easily interpret
able into meaningful, real-life course of actions for asset managers 
regarding when to trigger an LE strategy and what the most suitable LE 
strategy should be. Lifetime prediction can also help with inventory and 
stock management optimization so that parts for equipment are not kept 
in storage in excess of required levels, thus taking up space, tying down 
the resources used to buy the excess spares, and potentially undergoing 
deterioration in storage. For instance, as revealed in the study by 
Andreacchio et al. (2019), in the aviation industry, the actual cost of 
aircraft maintenance, at any given time, is typically equivalent to the 
cost of spares maintained in the stock inventory, which usually trans
lates into a huge stock level to keep and amounts to poor use of re
sources. LE plans based on advanced analytics methods should be well 
implemented to help optimize the entire process. 

2.3. Overview of decision-making models in asset LE 

Decision-making under the scenario of various competing strategies, 
multiple criteria or optimization objectives and inherent uncertainties is 
a complex process (Niknam et al., 2015). Maintenance decision-making 
and asset life-cycle management are examples of such a complex process 
because of the need to continuously ensure safety and reliability, elim
inate or minimize unexpected failures while deriving the best possible 
ROI from the asset. When LE processes are added to the mix, the 
decision-making problem even becomes more complex. A typical 
approach by most researchers and asset managers is to focus on the 
optimization of cost, from an economics perspective, using one or more 
of the following tools: benefit-to-cost analysis, life-cycle cost optimiza
tion or ROI analysis (Animah et al., 2018; Woodhouse, 2012; Herrmann 
et al., 2011; Gu et al., 2012; Jones & Zsidisin, 2008). Other approaches 
focus on technical aspects that mostly deal with SIM and AIM, with the 
core components being safety, reliability, and availability (Animah and 
Shafiee, 2018; Boutrot et al., 2017; Nielsen and Sørensen, 2021; 

Trampus, 2019). A few approaches combine both technical and eco
nomic aspects in the form of a techno-economic analysis, such as the 
work by Shafiee et al. (2016) and by other authors (Golmakani and 
Pouresmaeeli, 2014; Picard et al., 2007). Obviously, considering just one 
or two of the various criteria leads to a multiplicity of approaches. 
Consequently, some researchers have attempted approaches that aim at 
analyzing the various criteria and their interdependencies to obtain 
optimization models for LE decision-making, with the most common 
being multiple criteria decision analysis (MCDA) (Kabir et al., 2014; 
Niknam et al., 2015; Shafiee, 2015; Shafiee et al., 2019; Shafiee and 
Animah, 2020). Of course, most MCDA approaches try to balance the 
inherently competing objectives of minimizing overall LCC (i.e., maxi
mizing ROI) while ensuring high levels of safety, reliability, and avail
ability during the extended period of operation. 

From a PHM perspective, the concept of LE is not new. Reinertsen 
(1996) conducted an extensive review about diagnosis, RUL prediction 
and LE of technical systems. The review, which looked at methodologies 
for both repairable and non-repairable systems, revealed the inadequacy 
of the statistical methods in use and highlighted the need for further 
research in the area. Finkelstein et al., (2020) proposed a model for LE of 
degradable equipment by using the data gathered during preventive 
maintenance (PM). In their model, the failure threshold for the system 
was first considered to be deterministic, but then it was adapted as a 
random parameter. Although the information gathered during PM was 
used to trend the monotonically increasing degradation, the overall 
method used was analytical in nature, with the degradation process 
modelled as a Poisson process and then as a Gamma process. Overall, the 
idea of using data gathered during inspection and maintenance activities 
for the purpose of LE has been explored in the past (Labeau and Segovia, 
2011; Ratnayake, 2015). Nguyen and Medjaher (2019) proposed a dy
namic predictive maintenance framework comprising a prognostic 
process and a post-prognostic decision-making process. The methodol
ogy compared the cost-rate implication of adopting such DPM frame
work with a periodic maintenance policy and an ideal predicted 
maintenance, under a perfect maintenance scenario. The framework, 
which was tested on the NASA CMAPSS dataset, showed that decisions 
such as doing nothing, ordering of spares (if unavailable), taking urgent 
actions, etc., can be made based on the predicted probability that the 
RUL lies within a given range. 

Chen, Lu et al. (2021) proposed a risk-averse RUL estimation model, 
along with a post-prediction maintenance decision-making framework. 
The prediction model used a support vector regression (SVR), a long 
short-term memory (LSTM), and a hybrid of both techniques to make 
RUL predictions. A maintenance cost rate (MCR), which was formulated 
to consider the costs for two scenarios, namely, maintenance before 
failure (predictive) and repair after failure (corrective), was used as a 
metric to judge the performance of the overall approach. The study 
showed that the hybrid approach yielded RUL results that led to lower 
MCR while the MCR for predictive maintenance actions was consistently 
lower than that for corrective maintenance actions. In another study by 
Chen, Zhu et al. (2021), an ensemble of a deep autoencoder and a bi- 
directional LSTM was used for predicting the degradation, health 
states, and the RUL of industrial systems. The health states were divided 
into four states, namely, normal state, mild degradation, moderate 
degradation, and severe degradation. Based on the predicted health 
states, the effective RUL threshold for carrying out maintenance tasks 
and the optimal degradation level at which spare parts should be or
dered were determined. 

As observed, all the above reviewed studies used the maintenance 
cost per unit operating time (i.e., cost rate) as the basis for measuring the 
effectiveness of proposed approaches. As opposed to economic frame
works, this work focuses on the impact of using prognostic information 
as the basis for the technical analysis to make LE decisions, particularly 
using a condition indicator derived by ML algorithms, RUL predictions 
with uncertainty quantification, and the impact of emerging AI-enabled 
PHM regulations. 
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3. Methodology 

Optimization objectives for LE include maximization of operational 
lifetime and minimization of asset LCC while ensuring that reliability, 
availability and safety are not compromised (Cha and Finkelstein, 
2020). Our study puts forth a wide range of considerations that can be 
made in the process of conducting technical assessment for LE. At the 
core of our methodology is the use of a tool from RCM and CM known as 
the potential failure (P-F) curve, which illustrates the point P where 
failure can first be detected followed by point F when failure begins. 
Most of the other information required by the decision-making model 
are mapped onto the P-F curve. Some of the required information for the 
LE decision-making model include the potential failure interval factor 
(PFIF) which stands for the health index (HI), the RUL with uncertainty 
quantification expressed in terms of confidence intervals (CI) and the 
alert time (ta), which is a PHM metric that represents the minimum time 
needed for planning and executing the appropriate LE action. To set the 
stage for a clear understanding of the methodology, all the assumptions 
and prior preparations regarding the asset are laid out as follows. 

3.1. Assumptions, initial conditions, and background assessments 

As we stated earlier, this work assumes that a separate economic 
justification for LE has been conducted and thus focuses strictly on the 
technical aspects of LE decision-making. 

3.1.1. Integration of RCM and CM practices with PHM practices 
This methodology proposes and implicitly assumes the integration of 

RCM and CM practices with PHM technologies for the asset under 
consideration. Therefore, the asset undergoes a formal technical 
assessment process (typically FMECA or other similar analysis) which 
breaks it down into systems, subsystems, and components, all of which 
have sensors or other data acquisition devices installed on the 
equipment. 

3.1.2. Component-level and unit-level HIs 
Another implicit assumption is that run-to-failure data is available 

for the various components, units or systems that make up the asset. 
With such data, the P-F curve can be plotted for each unit as shown in 

Fig. 3. The instantaneous PFIF for each unit is calculated using Eq. (1) as 
defined by Ochella et al., (2021): 

PFIFi,t =
P − F Intervali,t

Unit Lifetimei
(1)  

where PFIFi,t is the PFIF of unit i at time t, P − F Intervali,t is the P-F 
interval of unit i at time t, and Unit Lifetimei is the design life of unit i. 
The P-F interval is the time from the detection of a fault to the point of 
functional failure (see Fig. 3). The PFIF is a useful indicator as it is a 
scale-independent quantity, which helps to ease grouping of equipment 
with different ranges of total lifetime, thereby serving as an indicator of 
the state of health of any unit under operation. 

To ensure that there is appropriate comparison of the predicted PFIF 
values with the true PFIF values, the true PFIF values should be scaled to 
achieve the same range [0,1] as the predicted PFIF values. The scaled 
true PFIF value (TruePFIFscaled) is obtained using the formula in Eq. (2), 
given as: 

TruePFIFscaled =
TruePFIF − min(TruePFIF)

max(TruePFIF) − min(TruePFIF)
(2) 

where max(.) and min(.) represent the arguments of the maximum 
and minimum, respectively. 

3.1.3. System-level HI 
The various component-level HIs can be aggregated based on a 

weighting scheme as used in a paper by Wang, Hu et al., (2015) to obtain 
a system-level HI. This is given by Eq. (3): 

HIsystem =
∑N

j=1
wjXj (3)  

where N is the number of components in the system, j represents the jth 

component, wj is the weight of the jth component, and Xj is the HI of the 
jth component. The value of HIsystem is in the range [0,1] and 

∑N
j=1wj = 1. 

The system-level HI, when plotted in real-time, yields a curve as shown 
in Fig. 4. Thus, an asset manager who chooses to use HI information as a 
preliminary basis or the sole basis for LE decision-making can find the 
optimal window to take LE action based on the acceptable HI threshold 
for the system. 

Fig. 3. Annotated P-F curve showing the important points during the degradation of a system (adapted from Kalgren et al., 2006).  
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3.2. Implication for logistics planning and LE action 

The HIs not only serve as useful indicators for the health condition of 
the units or asset but also have intrinsic implications for logistics plan
ning and the associated LE actions. Even though more rigorous tools will 
be used later to aid LE decision-making, at the HI assessment stage the 
asset managers are expected to have an idea of relevant actionable in
formation that can be extracted from the HI values. Fig. 5 shows a 
typical HI chart and the implications as it relates to logistics planning 
and LE. 

3.3. RUL prediction with uncertainty quantification 

After calculating the HIs of various systems, subsystems and com
ponents and grouping the equipment based on their HI values, the LE 
strategy can then focus on the most vulnerable groups, i.e., those with 
the lowest HIs. The RUL for the units in the most vulnerable groups can 
then be predicted using the CM data from the commencement of oper
ation up to the present time (i.e., the time at which the ML algorithm is 
used to make predictions). To account for the inherent uncertainties in 
the data, prediction model and environmental loading conditions, it is 

important to use methodologies that yield RUL predictions as proba
bility distributions having mean RUL values along with uncertainty 
bounds or confidence intervals (CI). One of such algorithms is Bayesian 
Neural Networks (BNNs), and the results used for the demonstration of 
this study were obtained using RUL values predicted by BNNs. Fig. 6 
shows how the failure probability increases with time for any given unit. 
Note that RUL is continuously predicted as CM data becomes available, 
thus predicting the EoL at any given time, along with confidence bounds. 
An accuracy metric would have previously been used to validate the 
algorithm, thus establishing confidence levels for the mean RUL falling 
within the range (EoL ± CI). 

For the purpose of this study, we use a PHM metric known as alert 
time (ta) which was first proposed by Leão et al. (2008) and is annotated 
in Fig. 6. The value of ta specifies the minimum time required to schedule 
LE tasks, order required parts, and execute LE. Since the predicted EoL 
does not always coincide with the true EoL, the importance of the CI is 
that it provides a buffer to help maintain ta within tolerable margins. It 
should be noted here that wasted life is also likely to occur if LE action is 
taken too early, while the unit or component still has reasonable lifetime 
left. Wasted life, as defined by Leão et al. (2008), is the additional time 
that a unit would have served if it is not taken out too early. So, in order 

Fig. 4. The system-level HI versus time, showing the critical intervention window to prevent failure.  

Fig. 5. HI values and the associated actionable decision support implications (adapted from Kalgren et al., 2006).  
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to find the sweet spot and ensure that LE action is taken before failure 
occurs, while at the same time minimizing wasted life, the mean RUL is 
continuously monitored to comply with Eq. (4): 

ta ≥ μRUL − CI (4) 

The LE action is initiated immediately upon observing the first point 
where the requirement in Eq. (4) is satisfied. The overall flow of the LE 
decision-making model, comprising both the RCM and CM modules as 
well as the AI-enabled online monitoring and RUL prediction module, is 
illustrated in detail in Fig. 7. 

3.4. Acceptability criterion for regulatory approval 

Reference was earlier made to the need to obtain regulatory approval 
for LE, which is indeed the case for most industries. Typically, regulatory 
authorities need the conviction that due diligence was made in estab
lishing the technical justification for LE and that minimum acceptable 
standards for safety and reliability must be maintained for all safety and 
environmentally critical elements (SECE) during the LE period. In this 
section, all the critical factors for the effective implementation of LE 
from a data-driven perspective are consolidated, thus proposing a uni
fying criterion for regulatory approval of the LE plan. The critical factors 
include safety and reliability, explainability, interpretability, accuracy 
of predictions, compliance with industry standards, actionability of AIM 
and SIM inspection plans, and third-party testing and verification of 
results. As part of the regulatory approval process, all the important 
factors mentioned should be checked off as either satisfactory or un
satisfactory. If the results from such a process are collated as an array, F, 
we propose an acceptability criterion, Ac, as given in Eq. (5): 

Ac = βF (5)  

where β is a normalizing array of 1 × n dimension which indicates the 
importance or weight assigned to each of the factors considered, while F 
is an array of n × 1 dimension whose elements are either 1 or 0, rep
resenting whether each factor is satisfactory or unsatisfactory, respec
tively. The value of Ac lies in the range [0,1]. The matrix product, βF, can 

be expressed as a sum, given in Eq. (6) as: 

Ac =
∑n

i=1
βi × Fi (6)  

where i is an index representing the number of factors considered, 
ranging from 1 to n; βi is the importance weight for the ith factor; and Fi 
represents whether the requirement for the ith factor is satisfied or not. 
The sum of the weights must be equal to 1, as given in Eq. (7): 
∑n

i=1
βi = 1. (7) 

The criterion is formulated to provide both robustness and flexibility, 
allowing for adjustments to the factors which are considered important, 
depending on the peculiarities of the asset and the subsisting regulatory 
environment or context. Fig. 8 shows an illustration of the entire process 
for implementing a data-driven LE plan involving AI-enabled PHM in
tegrated with RCM, including the stage of obtaining regulatory 
approval. 

4. Case studies 

In this section, the proposed model is tested on NASA’s publicly 
available C-MAPSS dataset (Saxena and Goebel, 2008) and the results 
are reported. 

4.1. Dataset description and mapping to asset portfolio 

C-MAPSS stands for Commercial Modular Aero-Propulsion System 
Simulation and the dataset consists of four different run-to-failure 
datasets under different fault modes and varying operational condi
tions. The training sets commence at a point where all units are in a 
healthy state and end at the point of failure of each unit. For the test sets, 
the data for all units commence at a healthy state and are terminated at 
an unknown point during each unit’s lifetime. This is similar to the 
scenario on a real multi-component or multi-system asset, with sub
systems and subcomponents, or the scenario for a fleet of similar systems 
being managed under the same portfolio by the same asset manager. The 

Fig. 6. Plot showing increasing failure probability as asset degrades with time. RUL at each point obtained as distributions.  
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intent here is to apply an LE strategy for a group of units that have been 
identified as vulnerable or at risk of failure. For more details about the 
dataset, the readers can refer to Saxena et al., (2008). For the purpose of 
this work, we used one of the datasets, FD001, containing a training set, 

a test set, and the ground truth RUL values. The training set comprises 
run-to-failure data for 100 identical turbofan engines subjected to 
similar failure modes and same operating conditions while the test set 
comprises data which begins from when each unit was put into 

Fig. 7. The overall flow of the LE decision-making model.  
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operation (i.e., healthy), up to a certain point during the operation of the 
engine (i.e., the present time, in the context of this work). Each of the 
100 engine units has a distinct lifetime, ti, with three columns repre
senting operating condition settings and another 21 columns repre
senting sensor data. These parameters, taken as the CM variables, are 
presented in Table 2. 

4.2. Data-driven condition assessment 

Using the sensor data and the ground truth RUL values, an ML al
gorithm was developed on MATLAB to fit a linear model to the data, thus 
obtaining a condition indicator for each of the 100 units. The full details 
of this were presented in a previous paper by the authors, Ochella et al. 
(2021), but Fig. 9 shows the condition indicators obtained for all 100 
units, which are, in essence, the P-F curves for each unit. 

The pseudocode for the algorithm used in the work by Ochella et al. 
(2021) is illustrated in below.  

Pseudocode for grouping units into different health states 

1: Data: CMAPSS_FD001 
2: /* Read and import training data*/ 

Xtrain ← train_FD001; 
3: /*Calculate group statistics: mean, median, variance, std dev*/ 

groupstats ← groupsummary(Xtrain, [‘var’, ‘std’, ‘mean’, ‘median’]) 
4: /*Eliminate variables with zero variance*/ 

Xtrain_reduced ← Xtrain (‘var’=0); 
5: /*Normalize data from selected sensors*/ 

Xtrain_reduced_norm ← (Xtrain_reduced – mean(Xtrain_reduced))/ std(Xtrain_reduced); 
6: Select data for most trendable sensors to obtain: Xcluster_data 
7:  /*Calculate each unit’s training PFIF*/ 

PFIFtrain ← (P − FInterval/Unit Lifetime)
8: /*Fuse sensors by fitting linear model on Xcluster_data*/ 

PFIFtrain←θo + Xcluster dataθ;  
(learner = ‘leastsquares’; regularization = ‘ridge’) 

9: /*Read and Import test data*/ 
Xtest ← test_FD001 

10: Prepare test data as in lines 3 to 7 to obtain: Xcluster_data 
11: /*Predict PFIF for units in test data as*/ 

PFIFtest←θo + Xtest clusterθ 
12: /*Extract last element of PFIFtest for each unit as the present health state for 

each unit*/ 
PFIFunit ← PFIFtest_unit(end) 

13: Result: /*Group engine units as below*/  
“Healthy” ← 0.75 < PFIFunit  
“Good – no action” ← 0.75 ≤ PFIFunit < 0.50  
“Good – monitor” ← 0.50 ≤ PFIFunit < 0.30  
“Soon-to-fail” ← 0.30 ≤ PFIFunit  

4.2.1. Unit-level HIs and unit groupings 
Having trained an ML algorithm and fit a linear model to the training 

data, the instantaneous PFIF for all the units were subsequently pre
dicted based on their sensor values at the present time, as captured in the 
test data. The units were then grouped using a four-stage HI division, as 
illustrated in the HI chart in Fig. 5. The HI division was achieved as 
follows; “Healthy”: 0.75 < PFIF ≤ 1.00; “Good”: 0.5 < PFIF ≤ 0.75; 
“Good – monitor”: 0.3 < PFIF ≤ 0.5; “Soon-to-fail”: 0.0 ≤ PFIF ≤ 0.3. 
These boundaries were defined for the purpose of this work, and may be 
made more stringent or less stringent, depending on the safety, 

Fig. 8. The process of implementing a data-driven LE plan involving AI- 
enabled PHM and regulatory approval requirements. 

Table 2 
Parameters in the C-MAPSS dataset.  

S/N Measured parameter Unit of measurement 

1 Unit number – 
2 Time cycles 
3 Operational setting 1 – 
4 Operational setting 2 – 
5 Operational setting 3 – 
6 Total temperature at fan inlet ◦R 
7 Total temperature at LPC outlet ◦R 
8 Total temperature at HPC outlet ◦R 
9 Total temperature at LPT outlet ◦R 
10 Pressure at fan inlet psia 
11 Total pressure in bypass-duct psia 
12 Total pressure at HPC outlet psia 
13 Physical fan speed rpm 
14 Physical core speed rpm 
15 Engine pressure ratio (P50/P2) – 
16 Static pressure at HPC outlet psia 
17 Ratio of fuel flow to Ps30 pps/psi 
18 Corrected fan speed rpm 
19 Corrected core speed rpm 
20 Bypass Ratio – 
21 Burner fuel–air ratio – 
22 Bleed Enthalpy – 
23 Demanded fan speed rpm 
24 Demanded corrected fan speed rpm 
25 HPT coolant bleed lbm/s 
26 LPT coolant bleed lbm/s  Fig. 9. P-F curves for 100 turbofan engines within the asset portfolio.  
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reliability and functional requirements of the specific unit or asset. For 
brevity, only a list of the units categorized as “healthy” and “good” are 
provided in this paper. Given that the focus is on candidate equipment 
for LE, results for all units categorized and “good – monitor” and “soon- 
to-fail” will be fully presented and discussed. 

4.2.2. True and predicted RUL 
The FD001 C-MAPSS dataset provides the ground truth RUL values 

for all 100 units under monitoring. However, the key task is to use the 
test data to arrive at predicted RUL values using advanced analytics 
techniques, and then use the true RUL values as bases for comparison. 
Given our interest in the predicted RUL values as distribution functions 
rather deterministic values, results from the study by Kim & Liu, (2021) 
will be extracted for the units identified as vulnerable units for LE, with 
the lifetime units rounded down to the nearest number of cycles. The 
study used a Bayesian Deep Learning algorithm to model the un
certainties in model parameters and the stochastic nature of the degra
dation process. RUL predictions were therefore obtained as probability 
distributions, with a mean RUL value, μRUL, along with confidence in
terval (CI) estimates, which are useful for the purpose of applying con
straints around the alert time (ta) in our decision-making model. The 
predicted μRUL and CI values are presented in Table 3 and Table 4 under 
Section 4.3.1. 

4.3. Results and discussion 

The application of the steps in the decision-making model, so far, 
leads to the identification, at every time instant, of the group of equip
ment that may be approaching failure based on the predicted HIs. Using 
the HI division boundaries stated in Section 4.2.1, a total of 31 units 
were predicted as “healthy” and they are: 1, 2, 6, 9, 11, 14, 15, 22, 25, 
26, 33, 39, 44, 47, 48, 50, 55, 59, 65, 67, 69, 71, 75, 78, 83, 85, 86, 87, 
88, 96, and 99. Similarly, a total of 31 units were predicted as “good – no 
action”, namely: 3, 4, 5, 7, 8, 12, 16, 19, 21, 23, 27, 28, 29, 30, 38, 45, 
51, 54, 57, 60, 63, 70, 73, 74, 79, 80, 89, 94, 95, 97 and 98. These 
groupings were in agreement with the ground truth RUL values, when 
used to calculate the scaled true PFIF values. It is important to note here 
that categorizing faulty units as “healthy” or “good” has dire implica
tions for the avoidance of unplanned or unforeseen failures, and each 
healthy or good prediction must be thoroughly scrutinized so that 
impending failures are not missed due to false negative predictions. 

4.3.1. Candidate units for LE 
Ultimately, the goal of the proposed decision-making model is to 

identify equipment that are close to their EoLs by using CM data and ML 
algorithms, so as to trigger an LE strategy in good time to extend their 
useful lives and avoid failure. The predicted PFIF values, the units’ 
lifetimes, as well as other lifetime parameters for the units grouped as 
“good - monitor” and “soon-to-fail” are presented in Table 3 and Table 4 
respectively. 

In the case of grouped units to be considered for LE due to low HIs, 
false positive results, which involve wrongfully grouping healthy units 
as “soon-to-fail”, do not have any safety implications because a healthy 
unit wrongly thought to be about failing will not fail. However, false 
positive categorizations have economic implications since otherwise 
healthy units may be taken out of service, thereby leading to either 
wasted life in terms of the unit or wasted resources in terms of the time 
and personnel that would have been allocated for work on a healthy unit 
wrongfully classified as faulty. So, overall, the accuracy of predictions 
remains an important factor that should be satisfied in order to end up 
with a viable LE plan. 

4.3.2. Lead time for LE scheduling 
From the ground truth values for the 100 units in the FD001 dataset, 

the overall lifetime for the units range from a minimum of 141 cycles for 
unit #41 to a maximum of 341 cycles for unit #12, with an average 
operational lifetime of about 206 cycles before failure. Given that these 
lifetime values were obtained from accelerated degradation tests, let us 
assume broadly, for the purpose of this work, that the minimum time 
needed to schedule for LE, order spare parts and implement the appro
priate LE strategy is 20 cycles. This is the value of ta, which will be 
similar for all units since the units within the asset or fleet of assets are 
identical or homogeneous. From Eq. (2), to take LE actions before any 
failure occurs, the condition ta ≥ (μRUL – CI) must be satisfied. The 
governing constraint to ensure timely LE action is therefore (ta + CI) ≥
μRUL. So, the values for (ta + CI) greater than μRUL in Table 3 and Table 4 
indicate units for which there is enough window to schedule for LE. For 
such units, an opportunistic window can also be used to trigger and 
implement LE strategy, since an LE plan will already exist. However, for 
units which the governing constraint has been satisfied and the values of 
(ta + CI) are less than μRUL, there is no longer enough window to plan in 
advance since even the tolerance built into the RUL values through 
uncertainty quantification in terms of the confidence intervals has been 
used up. From Fig. 5, the logistics and LE implications for such units are 
“emergency logistics sparing and parts requirements” and “take LE 

Table 3 
Units grouped as “good – monitor” (19 units) (measurement units for lifetime, including RUL, CI and ta are in number of cycles).  

Unit Predicted HI (PFIF) Unit Lifetime True 
μRUL 

Predicted μRUL Predicted σRUL 95% CI* (±1.96σRUL) (ta + CI) Implication for LE 

10  0.47 288 96 80 16 31 51 Schedule LE or opportunistic action 
13  0.46 290 95 89 16 31 51 Schedule LE or opportunistic action 
17  0.38 215 50 49 10 19 39 Schedule LE or opportunistic action 
18  0.32 161 28 25 7 13 33 Take LE action now 
32  0.43 193 48 49 13 25 45 Schedule LE or opportunistic action 
36  0.36 145 19 19 7 13 33 Take LE action now 
40  0.43 161 28 25 7 13 33 Take LE action now 
43  0.47 231 59 65 16 31 51 Schedule LE or opportunistic action 
46  0.42 193 47 35 8 15 35 Schedule LE or opportunistic action 
53  0.32 190 26 27 7 13 33 Take LE action now 
56  0.34 151 15 14 5 9 29 Take LE action now 
66  0.37 161 14 14 4 7 27 Take LE action now 
72  0.44 181 50 51 13 25 45 Schedule LE or opportunistic action 
84  0.41 230 58 65 16 31 51 Schedule LE or opportunistic action 
90  0.37 174 28 20 7 13 33 Take LE action now 
91  0.34 272 38 29 10 19 39 Take LE action now 
92  0.32 170 20 19 5 9 29 Take LE action now 
93  0.42 329 85 54 12 23 43 Schedule LE or opportunistic action 
100  0.31 180 20 21 7 13 33 Take LE action now  

* RUL distribution was modelled as a normal distribution; hence 95% confidence interval was computed as ± 1.96σRUL. 
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action now” respectively. These are also shown on Table 3 and Table 4. 
Note that the initial grouping of equipment into “good – monitor” 

and “soon-to-fail” was done using only the predicted HIs. From the 
calculated mean RUL values, the 95% confidence intervals and the 
application of the alert time metric, it can be observed that most of the 
recommended decisions are in agreement with the initial group as
signments based on just the HIs. This demonstrates that using the HIs is 
indeed a good basis for prioritizing the equipment for closer monitoring, 
before eventually calculating the RULs and CIs for the vulnerable set. 

4.3.3. Acceptability criterion for regulatory approval 
Regulatory approvals need to be sought for the implementation of LE 

programs. To grant approvals, most regulatory agencies will not only 
actively participate in the process of drawing out an LE plan, but also 
rely on compliance to known standards or on certification by classifi
cation societies. To determine whether all the critical factors have been 
duly considered, importance or weight assignments are given to each 
factor, based on the peculiarity of the industry and the operating envi
ronment. For this case study, the weights of the critical factors have been 
ranked in descending order and shown in Table 5. Out of the seven 
factors considered, safety and reliability were considered the most 
important and assigned a weight of 0.3, while explainability was ranked 
least important with a weight of 0.05. These weights, of course, do not 
undermine the actual need for any AI-enabled PHM system to have all 
these critical factors addressed. The weights assigned in Table 5 were 
arrived at based on the judgement of the authors and the factors were 
assessed in a manner similar to the guidance in the International Or
ganization for Standardization (ISO) standard, ISO 13381–1:2015. For 
real-life applications, a team of engineers would typically arrive at these 

weights based on more detailed analysis, expert judgement, and 
experience. 

Given the weight assignments in Table 5, the acceptability criterion 
is calculated using the formula in Eq. (2) to obtain Ac = 0.85. An 
appropriate acceptance threshold can then be determined by the regu
latory agency or certification body, for instance Ac ≥ 0.9 may be the 
requirement for accepting the LE plan, depending on how safety–critical 
the industrial sector is (oil and gas or nuclear, for example). To achieve 
certification, therefore, the critical factors which have not been satisfied, 
namely explainability and third-party testing and verification in this 
case, must be revised and improved to a satisfactory level, such that the 
value of Ac meets or exceeds the minimum threshold. For instance, 
further improvements in the LE plan by subjecting it to a successful 
third-party verification, for the illustration given, will raise the Ac score 
to 0.95, which is greater than 0.9, thus meeting acceptance and approval 
requirements. This demonstration, albeit simplistic, shows how flexibly 
the acceptability criterion can be applied and contextualized. Further
more, its robustness property stems from its amenability to different 
levels of scrutiny, which may be very high level, or very detailed. 

4.4. Additional comments and future work 

The model proposed in this paper addresses LE decision-making, 
end-to-end, from a strictly data-driven perspective. The dataset used 
to demonstrate the use of this model, which comprises run-to-failure 
data for a multi-unit system, similar to real-life assets, has been used 
by a number of authors in the literature for both RUL prediction as well 
as post-prognostic decision-making purposes. The dynamic predictive 
maintenance framework proposed by Nguyen & Medjaher (2019) used a 
probability confusion matrix, which measures the probability that the 
predicted RUL falls within a given time window, hence typical prog
nostics metrics like the RMSE, MAE, etc., could not be used. The per
formance was therefore measured by comparison to the true RUL, and 
when the probability is high that the RUL is within a given range or less 
than a given value, different actions are triggered, such as doing 
nothing, ordering spares (if unavailable), using stock if available, or 
taking urgent action. The cost of maintenance decision is then deter
mined on the basis of availability or unavailability of spares and the 
maintenance action taken. Chen, Lu et al. (2021) used the MCR criterion 
to assess the effectivity of online prognostics, where the predicted RUL 
that yielded the lowest MCR was considered to have better performance. 
Chen, Zhu et al. (2021) also combined the dynamic predictive mainte
nance strategy, measurement of performance using the probability 
confusion matrix and the concept of MCR to determine the effectiveness 

Table 4 
Units grouped as “soon-to-fail” (19 units) (measurement units for lifetime, including RUL, CI and ta are in number of cycles).  

Unit Predicted HI (PFIF) Unit Lifetime True 
μRUL 

Predicted μRUL Predicted σRUL 95% CI (±1.96σRUL) (ta + CI) Implication for LE 

20  0.19 200 16 15 6 11 31 Take LE action now 
24  0.21 206 20 20 6 11 31 Take LE action now 
31  0.09 204 8 6 5 9 29 Take LE action now 
34  0.06 210 7 6 3 5 25 Take LE action now 
35  0.22 209 11 11 5 9 29 Take LE action now 
37  0.25 142 21 20 7 13 33 Take LE action now 
41  0.27 141 18 18 8 15 35 Take LE action now 
42  0.16 166 10 8 4 7 27 Take LE action now 
49  0.09 324 21 18 6 11 31 Take LE action now 
52  0.23 218 29 29 9 17 37 Take LE action now 
58  0.30 213 37 31 9 17 37 Take LE action now 
61  0.24 180 21 21 7 13 13 Take LE action now 
62  0.29 286 54 46 9 17 37 Schedule LE or opportunistic action 
64  0.28 196 28 27 7 13 33 Take LE action now 
68  0.13 195 8 7 4 7 27 Take LE action now 
76  0.09 215 10 9 4 7 27 Take LE action now 
77  0.27 196 34 26 8 15 35 Take LE action now 
81  0.09 221 8 7 4 7 27 Take LE action now 
82  0.14 171 9 9 5 9 29 Take LE action now  

Table 5 
Typical application of acceptability criterion (Ac).  

i Factor Satisfied? F Weight, 
β 

βF 

1 Safety and reliability Yes 1  0.30  0.30 
2 Algorithm produces accurate 

predictions 
Yes 1  0.20  0.20 

3 Workable of AIM and SIM inspection 
plan 

Yes 1  0.20  0.20 

4 Interpretable results and outputs Yes 1  0.15  0.15 
5 Compliance with industry standards Yes 1  0.10  0.10 
6 Third party testing and verification of 

results 
No 0  0.05  0.00 

7 Explainable AI methods used No 0  0.05  0.00 
Ac (i.e., ΣβF) = 0.85  
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of the proposed strategy. 
From the foregoing, it is apparent that direct comparison between 

the performance of the proposed approach and other frameworks is 
inexpedient. Moreover, most decision-making models are unique, and, 
in the demonstration provided in this work, the ground truth RUL values 
which were available for the dataset used, served as a guide to evaluate 
the timeliness for initiating LE plans for the units within the asset 
portfolio. On that note, the timeliness metric may be an appropriate 
metric that can be explored to benchmark the performance of data- 
driven decision-making approaches. In which case, how timely de
cisions are made for specific engine units can therefore be compared. 

For real-life assets, it will be interesting to find out how the 
component-level HIs can be aggregated to subsystem or system-level HIs 
using Eq. (3), before eventually grouping units, and applying the model 
to determine suitable LE strategies. System level HIs were not calculated 
in the case study because CM data for components were not available 
and the units were considered to be independent homogeneous units. 
For a scenario where an equipment has different degradable sub- 
components and the data for each component is collected via sensors, 
and where each component has different lifetimes and required reli
ability levels, system-level HIs can be calculated based on the individual 
HIs for the sub-components. An LE scenario for such an equipment may 
involve applying the appropriate strategy, such as replacement or repair, 
to just one sub-component of the equipment, in order to improve the HI 
for the equipment and extend its overall useful life. 

Another area that will need to be assessed more critically is the 
determination of the various factors that can affect the alert time, ta. A 
deterministic value was used to demonstrate the application of the 
model, however, ta is stochastic in nature and its value can be influenced 
by factors such as whether the unit has redundancies, the specific part 
needed to implement the LE strategy, the availability of the part either as 
a warehouse item, as an off-the-shelf purchase or as a special-order part. 
Other factors that can influence the alert time include the specific LE 
strategy to be implemented, given that repair, replacement, or refur
bishment times can vary. A deterministic alert time, like the one used in 
this work, will only work when the LE strategy is the same and all other 
conditions which may affect parts ordering and availability of engineers 
are assumed to be the same, which is hardly the case. Another inherent 
challenge with advanced analytics approaches to PHM is the availability 
of real-life run-to-failure data for the equipment. For real-life opera
tional assets, a practical advanced analytics approach will involve using 
design data, a digital twin of the asset, and continuous online monitoring 
and PHM model updating. 

Knowledge retention and ageing workforce are well known chal
lenges with conventional LE and later life operation of old assets. Data 
storage capabilities necessary for the use of advanced analytics ap
proaches, along with the continuous monitoring and trending associated 
with it, provides a potential path towards solving the loss-of-knowledge 
conundrum. Such systems will have long usage histories, trends, and 
accompanying baseline and operations data for each monitored system, 
subsystem, or component, which can easily be recalled and analyzed as 
required. The important aspect, from a staffing perspective, is that the 
advanced analytics-based PHM systems should be easily interpretable by 
new staff with minimal training, and should have direct correlation to 
decision-making, as was demonstrated in this work. 

5. Conclusion 

This paper proposes an advanced analytics approach for asset life 
extension (LE) decision-making. At its core, the approach involves the 
integration of practices from reliability-centered maintenance (RCM) 
and data-driven prognostics and health management (PHM). This 
approach of LE decision-making, which considers LE as an ongoing ac
tivity during an asset’s operational lifetime, is more relevant to the 
present era of big data and Industry 4.0, as against conventional LE 
approaches that involve setting up a project team at the end of an asset’s 

overall design life. The proposed approach is more intuitive, as different 
equipment or units within an overall asset often have varying design 
lives and will thus benefit from a philosophy which views LE as an 
ongoing strategy, similar to operations and maintenance. 

The proposed approach focuses on the technical assessments that 
need to be made to justify LE. The process involves the prediction of 
health indices for each unit, grouping the units according to their health 
indices, focusing on units with low health indices, predicting their 
remaining useful life (RUL), and then making LE decisions based on 
uncertainty quantification and a key PHM metric known as alert time. A 
sample application case using a publicly available asset degradation 
dataset for multiple units showed that the integrated approach led to 
interpretable results and actionable outcomes, which would help ensure 
that the useful life of each unit on an asset was extended before it was 
due to fail – this will inevitably lead to the extension of the overall as
set’s lifetime. An acceptability criterion, which was developed to aid 
regulatory agencies and certification bodies in approving LE plans, was 
also presented and its application was demonstrated. The acceptability 
criterion was designed to ensure that the critical aspects of an AI- 
enabled or advanced analytics-based PHM system are duly considered 
and satisfied. Satisfying such factors, which include safety, reliability, 
compliance with standards and regulations, ensuring interpretability, 
and so on, helps the asset owner demonstrate that the asset is able to 
meet the minimum safety and health condition requirements during the 
LE phase, while continuing to deliver value to the owner, which is the 
ultimate aim of LE. 
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