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Abstract Repair is a type of maintenance carried out on an item after it fails. A fail-
ure may occur any time, hence the times to repair cannot be pre-specified. Methods
used to model times to failures are normally stochastic processes such as the renewal
process and the homogeneous Poisson process, depending on the effectiveness of a
repair. Apparently, the effectiveness of repair will in turn affect the probability of
failures. As such, there have been developed many stochastic processes to model the
failure processes in the literature. This paper reviews existing failure process models
and discusses future development that is needed.
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1 Introduction

It is accepted that no technical systems can last for ever without any failures. As
such, repair is needed in order to restore a failed item to a working state. For an
asset management firm, it is vital to estimate the number of failures of a typical
technical system and then to estimate the capital expenditure spending on repair
and maintenance. For example, a water company may wish to estimate how many
failures of each asset such as a water pumper or a mixer will have in the next five
years, so it can plan their budget accordingly.
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To ensure a system to operate and to reduce the probability of failures, three
types of maintenance may be adopted: corrective maintenance, preventive main-
tenance and predictive maintenance. Corrective maintenance is a synonym of the
term repair; preventive maintenance is carried out at pre-specified time points in
order to reduce the probability of failure; and predictive maintenance is condition-
based maintenance, with which maintenance is performed once the condition of the
maintained system indicates the need for maintenance.

Once a failure occurs, repair upon the failure may end up with the following five
situations:

Better-than-perfect repair. In the case that the failed item is replaced with a new
item, which is not identical to the failed one and is more reliable than the failed
one, we say the repair is better than perfect. Due to technological advance, such
a situation may happen when a more advanced item is used to replace the failed
item.

Perfect repair. If the failed item is replaced with a new identical item, we say the
repair is perfect, or a perfect repair. That is, the item used to replace the failed
item has the same reliability as the failed one. In the reliability literature, perfect
repair is also called as good-as-new repair.

Minimal repair. The minimal repair can restore the failed item to the status just as
before it failed. In this case, the effectiveness of the repair is minimal as it simply
brings the item back to an operating status but it does not improve the reliabil-
ity of the repaired item. Hence, if the effectiveness of a preventive maintenance
is minimal, then the maintenance is not needed as the purpose of a preventive
maintenance is to improve the reliability of the maintained item.

Worse-than-minimal repair. If a repair unfortunately brings the maintained item
to a worse status than the status just before its failure, then the repair is a worse-
than-minimal repair. Such a repair may largely be caused by unskilled repairmen.

Imperfect repair. If the effectiveness of a repair is between that of the perfect re-
pair and that of the minimal repair, the repair is said imperfect repair. Imperfect
repair may occur more often than the above four scenarios. This is especially true
for a complex system that is composed of many components. If a component fails
and is then replaced, the reliability of the system is improved. That is, the repair
effectiveness is better than that of the minimal repair. However, since the entire
system is not replaced, the repair effectiveness is worse than the perfect repair.

Modelling the effectiveness of imperfect repair is an essential requirement in
various scenarios, for example, when people plan maintenance strategies, or esti-
mate the residual lifetime for some important systems, like nuclear power plants,
aeroplanes, trains. Sometimes, these systems seem to be still in normal working
conditions, when they come to the end of their planned life. To extend their func-
tioning life, one must justify some reliability requirements. One way to do so is to
take into account the effectiveness of repair actions or corrective maintenance. Re-
pair is carried out after a failure and intends to put the system into a state in which
it can perform its function again. Modelling the effect of these repair actions is of
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great practical interest and is the first step in order to be able to assess maintenance
efficiency [12].

In the reliability literature, widely used methods of estimating the number of
failures are stochastic processes. There are many models that have been proposed
to model the effectiveness of imperfect repair, for example, the Brown-Proschan
models [6], the virtual age models [18], and the geometric process models [39]. It is
noted that models for preventive maintenance and corrective maintenance are essen-
tially different in the sense that preventive maintenance is pre-scheduled and hence
the methods to model the effectiveness of a series of preventive maintenance on a
maintained item are deterministic models; corrective maintenance cannot be pre-
scheduled and hence the methods to model the effectiveness of a series of corrective
maintenance on a maintained item are stochastic processes [12]. Nevertheless, the
ways to depict the effectiveness of a maintenance action, no matter whether it is pre-
ventive or corrective maintenance, are similar. For example, age-reduction models
are used in both preventive maintenance modelling [38] and corrective maintenance
modelling [12].

In this article, the term item and the term system are exchangeable.
There has been a lot of research on modelling the failure process of a repairable

system, which mainly concentrates on modelling the repair effect of a repairable
system through considering: (1) the working time probability functions after repairs
(for example, the geometric process [19]); (2) the effective age of the maintained
item (for example, the virtual age models [18]); (3) the failure intensity of the main-
tained item (for example, the intensity modification model [12]), and (4) the virtual
component methods (for example, [36]). Those models can be categorised as the
following.

Basic models. This category includes the renewal process (RP) and the nonho-
mogeneous Poisson process (NHPP). The RP is used in modelling perfect repair
and the NHPP is used in modelling minimal repair. They are the bases of many
further developments. That is, to a certain degree, many failure process models
can be regarded as the extensions of those two models. The extensions of the RP
include: the geometric process introduced by Lam [19] and its many versions of
extensions [5, 33, 7, 4, 33]. The extensions of the NHPP include, for example,
[15] introduce an intensity function that can depict a failure process exhibiting the
bath-tub curve pattern; [27, 16] introduce segmented failure intensity functions;
[22] introduce the time-transformed renewal process (or the trend renewal pro-
cess) that have both the ordinary renewal process and the NHPP as special cases.
[21] introduce a new model that incorporates both time trends and renewal-type
behaviour.

Age reduction models. This class may have an intensity function (precisely, haz-
ard function) λ0(a1t + a2), where a1,a2 are estimable parameters, respectively.
The virtual age models [18, 35]. It also includes the two virtual age models
[18], and the ARA models [12]. Work that extends this subclass also includes
the model discussed in [11].
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Intensity modification models. In this class, its intensity function b1λ0(t) + b2.
This class mainly modifies the intensity function after repair. It includes the arith-
metic reduction of intensity (ARI) models.

Hybrid intensity models. In this class, an intensity function is obtained by com-
bining different intensity functions [6] or the same intensity with different ar-
guments [40, 24]. There is a widely studied type of models, i.e., the (p,1− p)
type, is originated from [6] who assume that at the time of each failure a per-
fect maintenance/repair occurs with probability p and a minimal repair occurs
with probability 1− p, independently of the previous history of repair and main-
tenance. [3] generalise the Brown-Proschan model by allowing the probability
of a perfect repair to depend on the age of the failed item: assuming that at the
time of each failure a perfect maintenance/repair occurs with probability p(t)
and a minimal repair occurs with probability 1− p(t). Other extensions of the
Brown-Proschan model have been made, see [40, 24] for examples.

Virtual component models. [36] proposed two models to model the failure process
of a repairable series system composed of multiple components. Both models
assume a real-world system can be analogised to virtual systems composed of
multiple virtual components. Correspondingly, the failure intensity of each model
is a mixture of two different failure intensities, which does not follow the (p,1−
p) rule.

Other types. There are other types of failure process models that may not be cat-
egorised into the above classes, for example, the superimposed renewal process
[17], the branching Poisson process [1], the Markovian models [2], etc.

2 Existing models of imperfect repair models

Table 1 Notations

Symbol Description

Tk The time of kth failure of a system.
N(t) The number of failures of the system up to time t.
Xk The time between (k−1)th and kth failures.
λ (t) The failure intensity function.
λI(t) The initial failure intensity function before the first failure.
F(.) Cumulative Distribution Function of a random variable.
f (.) Probability Distribution Function of a random variable.
ρ The effectiveness of repair on failure intensity of a system in ARI/ARA models.
Sk The effectiveness of the kth repair on failure intensity of a system in GRI/GRA

models.

In this section, we borrow the definitions of the symbols from [36].
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Denote the successive failure times of a repairable system by {Tk}k≥1, from
T0 = 0. Denote the times between failures by {Xk}k≥1 and {Xk = Tk−Tk−1}. As-
sume a repair task is performed after each failure and the repair times are negligible.
Let N(t) denote the number of failures of the system up to time t. The failure pro-
cess of the system can be defined equivalently by the random processes {Xk}k≥1 or
{N(t)}t≥0 and is characterised by the intensity function,

λ (t) = lim
∆ t→0

P{N(t +∆ t)−N(t)≥ 1|H (t)}
∆ t

, (1)

where P{N(t +∆ t)−N(t)≥ 1|H (t)} is the probability that the system fails within
the interval (t, t +∆ t), given the history of failures up to time t, H (t) [9].

Another basic assumption is that the initial intensity, i.e. the failure intensity
before the first failure, is a deterministic and continuous function of time, λI(t), and
the system is wear-out continuously, i.e. the initial intensity is strictly increasing.

2.1 Geometric process and its extensions

The GP and discusses its limitations in detail. We begin with an important definition
on stochastic order.

Assume that X and Y are two random variables. If for every real number r, the
inequality P(X ≥ r)≥ P(Y ≥ r) holds, then X is stochastically greater than or equal
to Y , or X ≥st Y . Equivalently, Y is stochastically less than or equal to X , or Y ≤st X
(p. 404 in [25]).

Given a sequence of non-negative random variables {Xk,k = 1,2, . . .}, if they are
independent and the cdf of Xk is given by F(ak−1t) for k = 1,2, . . . , where a is a
positive constant, then {Xk,k = 1,2, · · ·} is called a geometric process (GP) [19].

The above definition is given by Lam [19], although it is likely that this defini-
tion was around earlier. For example, in [26], it reads “we consider the situation in
which failing components are replaced by new ones with better statistical proper-
ties. Specifically, it is assumed that the nth replacement has a lifetime distribution
F(akt)” and also gives the GP-version renewal function. Nevertheless, most publi-
cations typically credit the geometric process to Lam [19].
{Xk,k = 1,2, · · ·} in the GP may be stochastically increasing (decreasing) if a< 1

(a > 1). If a = 1, then {Xk,k = 1,2, · · ·} reduces to a renewal process. That is, when
a 6= 1, the GP offers an alternative that can model the effectiveness of imperfect
maintenance.

Some authors either proposed similar definitions to that of the GP [14, 32] or
made an attempt to extend the GP [5, 34, 20]. Those different versions can be uni-
fied: they replace ak−1 with g(k), where g(k) is a function of k and is defined differ-
ently by different authors, as discussed below.

For a sequence of non-negative random variables {Xk,k = 1,2, . . .}, different
consideration has been laid on the distribution of Xk, as illustrated in the following
(in chronological order).
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(a). [14] proposes a process, named the general deteriorating renewal process, in
which the distribution of Xk is Fk(t), where Fk+1(t) ≤ Fk(t). A more specific
model is defined such that Fk(t) = F(akt) where 1 = a1 ≤ a2 ≤ a3 ≤ . . . and ak
are parameters. In this model, g(k) = ak.

(b). [32] defines a quasi-renewal process, which assumes X1 =W1, X2 = aW2, X3 =
a2W3, . . . , and the Wk are independently and identically distributed and a > 0 is
constant. Here, g(k) = a1−k.

(c). [5] proposes a variant, which assumes that the distribution of Xk is Fk(t) =
F(k−at), or g(k) = k−a. The authors argued that the expected number of event
counts before a given time, or analogously, the Mean Cumulative Function
(MCF) (or, the renewal function), does not exist for the decreasing GP. As
such, they propose the process as a complement.

(d). [34] set g(k) = αak−1 + βbk−1, where α , β , a and b are parameters. Their
intention is to extend the GP to model more complicated failure patterns such
as the bathtub shaped failure patterns.

(e). [7] extends the GP to the threshold GP: A stochastic process {Zn,n = 1,2, ...}
is said to be a threshold geometric process (threshold GP), if there exists real
numbers ai > 0, i = 1,2, ...,k and integers {1 = M1 < M2 < ... < Mk < Mk+1 =

∞} such that for each i = 1, ...,k, {an−Mi
i Zn,Mi ≤ n < Mi+1} forms a renewal

process.
(f). [4] set g(k)= abk (where a and bk are parameters) and discuss statistical proper-

ties of the process. The purpose of their extension is to overcome the limitation
that the GP only allows for logarithmic or explosive growth.

(g). [37] extend the GP by relaxing the assumption that {Xk,k = 1,2, . . .} are in-
dependent. They introduce a definition in which a sequence of non-negative
random variables {Xk,k = 1,2, . . .} in which {Xk,k = 1,2, . . .} are dependent
and the cdf of Xk is given by F(ak−1t) for k = 1,2, . . . .

(h). [33] proposes a definition, called doubly geometric process, in which a se-
quence of non-negative random variables {Xk,k = 1,2, . . .} in which {Xk,k =
1,2, . . .} are independent and the cdf of Xk is given by F(ak−1xh(k)) for
k = 1,2, . . . , where h(k) is a function of k and the likelihood of the parame-
ters in h(k) has a known closed form.

2.2 Reduction of intensity models

The reduction of intensity models are used when the effect of repair is considered to
reduce the failure intensity. The reduction methods can be categorized into different
groups such as arithmetic reduction of intensity (ARI) [12], geometric reduction
[13], etc.

The basic idea of ARI considers that each repair activity can reduce the failure
intensity of an amount depending on the past of the failure process. In literature, the
ARI models are constructed with two assumptions [12]:
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1. Each maintenance action reduces the failure intensity by sub-tracking an amount
possibly depending on the past of the failure process;

2. after failure, the wear-out speed is the same as before failure.

By considering different effects of the past failure process on current failure inten-
sity, the ARI models can be classified into ARI∞, ARI1, and ARIm models. The
ARI∞ means the arithmetic reduction of intensity with infinite memory, which is
built with the assumption that repair reduces the failure rate of an amount propor-
tional to the current failure rate. With consideration of Assumption 1, the ARI∞

failure intensity is

λ (t) = λI(t)−ρ

Nt−1

∑
j=0

(1−ρ) j
λI(TNt− j). (2)

The ARI1 means the repair activity can only reduce the relative wear since the last
repair. This model is called the arithmetic reduction of intensity with memory one.
With consideration of Assumption 1, the ARI1 failure intensity is

λ (t) = λI(t)−ρλI(TNt ). (3)

The ARIm is called the arithmetic reduction of intensity model with memory m, it
means there are m previous failures are involved in the current failure rate. With
consideration of A1, the ARIm failure intensity is

λ (t) = λI(t)−ρ

Min(m−1,Nt−1)

∑
j=0

(1−ρ) j
λI(TNt− j). (4)

In the above models, the intensity is reduced arithmetically, they may not cop
with some scenarios very well such as strong slowdown of the wear. Then, the ge-
ometric reduction of intensity is introduced by [13], recently. To build a geometric
reduction of intensity (GRI) model, the subtractions and sums in ARI can be re-
placed by divisions and products, respectively. With consideration of Assumption 1,
the GRI∞ failure intensity is

λ (t) = λI(t)−
Nt−1

∑
j=1

1− 1
S j

∏
Nt−1
k− j+1 Sk

λI(Tj). (5)

2.3 Reduction of age models

This class of models principally consider that repair can restore the system’s age
as repair can reduce the failure intensity of the system at time t equal to the initial
intensity at time At , where At < t. This class of models is also called virtual age
models. In this class, the real age of a system is its functioning time t; and the virtual



8 Ming Luo, Shaomin Wu, Phil Scarf

age of a system is defined as a positive function of its real age, possibly depending
on past failures: At = A(t;Nt ,T1, ...,TNt ). The failure intensity is a function of its
virtual age: λt = λ (A). This idea that repair activities can reduce the virtual age
of the system is mainly based on Kijima’s virtual age models [30, 18], which are
on the basis of Generalized Renewal Process (GRP). In Kijima’s first model, the
nth repair is assumed can remove the wear incurred only during the time between
(n− 1)th and nth repairs, then the virtual age is An = An−1 +ρXn, where An is the
virtual age after the nth repair, Xn is the time between the nth and the (n− 1)th
repairs, and ρ is the effectiveness of repair. In Kijima’s second model, the nth repair
is assumed can reduce all wear accumulated up to the nth repair, then the virtual age
is An = ρ(An−1 +Xn). In Kijima’s models, when ρ = 0, the repair is perfect, when
ρ = 1, the repair is minimal.

According to [12], the reduction of age can also be arithmetic or geometric. The
arithmetic reduction of age (ARA) models can be classified into, by analogy with
the ARI models, arithmetic reduction of age model with infinite memory (ARA∞),
arithmetic reduction of age model with memory one (ARA1), and arithmetic reduc-
tion of age model with memory m (ARAm). The ARA1 model is similar to Kijima’s
first model, and the ARA∞ model is similar to Kijima’s second model.

The ARA∞ model assumes the nth repair can reduce the virtual age of the system
by an proportional amount of its age before the nth repair. Then, the failure intensity
of ARA∞ model is

λ (t) = λI

(
t−ρ

Nt−1

∑
j=0

(1−ρ) jTNt− j

)
. (6)

The ARA1 model assumes the nth repair can reduce the virtual age of the system
by an proportional amount of its age between the nth and the (n−1)th repair. Then,
the failure intensity of ARA1 model is

λ (t) = λI(t−ρTNt ). (7)

The ARAm model assumes the nth repair can reduce the virtual age of the system by
an proportional amount of its age between nth and (n−m) repairs. Then, the failure
intensity of ARAm model is

λ (t) = λI

(
t−ρ

Min(m−1,Nt−1)

∑
j=0

(1−ρ) jTNt− j

)
. (8)

Similar to the relationship between the ARI and GRI models, the ARA models
can also be extended to geometric reduction of age (GRA) models [13]. The GRA∞

failure intensity is [13]

λ (t) = λI

t−Tn−1 +
∑

n−1
j=1

[
∏

j−1
k=1 Sk

]
X j

∏
n−1
j=1 S j

 . (9)
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After introduced by [12], the ARI and ARA models have been widely used and
provided a good fit for many real maintenance data sets. [28] combine imperfect
repair models and proportional intensity models to build imperfect repair propor-
tional intensity models to cop with the field data consisting of times to failure and
covariate data.

[23] apply the ARA∞ model on the failure dataset from a fleet of six load-haul-
dump machines in a Swedish mine, as the model can help the researchers to quantify
the effect of repair on each machine and to take into account the effect of the early
missing data. The parameters are estimated through maximum likelihood method in
this research.

[29] model the imperfect repair by ARA models with incorporating the effect
of imperfect corrective and preventive maintenance. In this research, four virtual
age processes are introduce to describe the different repair patterns and restoration
degrees for corrective and preventive maintenance. The parameters are estimated
through maximum likelihood estimation.

[10] introduce a new imperfect maintenance model based on the ARI model. The
arithmetic reduction of intensity is assumed on the interarrival times of failures on
a system subject to recurrent failures instead of on the failure intensity.

The parameters of ARI and ARA models can be estimated through maximum
likelihood estimates [31]. [8] propose a Bayesian analysis of the ARA models and
discuss the choice of prior distributions and the computation of posterior distribu-
tions. In this research, a single reliable repairable system which only has very few
failures is considered. For this system, the quality of the maximum likelihood es-
timates is very poor because the number of observations is not enough. Then, the
Bayesian analysis is employed to improve the accuracy of parameter estimations, as
it can add the expert knowledge to operation feedback data. The expert knowledge
on the system aging and repair efficiency can be reflected by the prior distributions.

2.4 Virtual component models

In the literature, widely used failure process models such as the generalized re-
newal process (GRP), geometric process (GP) and non-homogeneous Poisson pro-
cess (NHPP) cannot distinguish the effect of repair upon failure of difference com-
ponents in a complex system, as they consider the system as a one-component sys-
tem [36]. To model the failure process of a multi-component system as a whole when
the lifetime distribution of each component is unknown, [36] introduce the concept
of a virtual component. The idea of [36] is: for a series system composed of multiple
components, if the system fails, the failed component is replaced with an identical
component and the replacement time is negligible. Assuming the times to failures
of the system are known but upon each failure, which component causes the system
to fail is unknown. With such data, it is not possible to estimate the failure process
model for each individual component. [36] assumes that the failure process of the
real system is equivalent to that of a virtual system composed of virtual components.
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Whenever the real system fails, the virtual system is assumed to fail simultaneously
and the failures are caused by the virtual components in turn. For example, assume
a real series system composed of three components A, B, and C. We assume that
the system is equivalent to a virtual series system composed of virtual components
a,b and c. If we know the times of the first n failures, T1, ...,T10, say. Then the fail-
ure process of the virtual system is assumed to be caused by virtual components
a,b,c,a,b,c,a,b,c, and a, respectively. Based on such assumptions, [36] introduce
two models and compares the performance of the models with several existing mod-
els on artistically simulated data. The results show that the proposed models have
smaller AIC (Akaike Information Criterion).

3 Conclusions and future development

This paper reviewed some existing methods of modelling imperfect repair. The Ge-
ometric process and its extensions can be adapted to model the effectiveness of
imperfect maintenance in various scenarios, as the g(k) can be defined differently.
However, the complexity of calculation (parameter estimation) should be considered
in practice. The Reduction of Intensity and Reduction of Age models are constructed
in a more intuitional way makes them more handy than the GP, but the strict assump-
tions should be minded and the interpretability of them in some complex scenarios
also should be considered. Regarding the Virtual Component models, they provide
a new gateway to model and interpret the reliability of multi-component systems,
they can be developed with considering various interplays among the components.

There is much work needing further development in the future. The focus may be
on the development of models for systems with different repair modes including: (1)
develop a method to model the failure process of a given complex system composed
of many repairable components, while the repair effectiveness of each component is
assumed unknown; (2) use modern machine learning techniques to model the failure
process.
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