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Abstract 

 

In order to reduce human losses and minimize social and economic disruption caused by large-

scale earthquakes, effective planning and operational decisions need to be made by responsible 

agencies and institutions across all pre- and post-disaster stages. Despite the volume and variety 

of Earthquake Operations Management (EOM) studies employing Operational Research (OR) 

methodologies, the development of widely applicable methodologies and frameworks emerges 

as a key insight in need of greater attention.  

The first purpose of this dissertation is to highlight and discuss main lines of research involving 

the use of OR techniques applied specifically to earthquakes disasters. In the light of this 

purpose, this dissertation reveals the current research gaps in existing OR methodologies in the 

context of EOM and provides a roadmap for future research by a comprehensive review study. 

Throughout, we precisely categorize studies based on the disaster stage(s) being dealt with, 

methodology(ies) applied, and specific planning/operational problem type. We also provide 

details about the extent of stakeholder involvement and information relating to case studies. 

Some important considerations are examined relating to realism, comprehensiveness, 

practicality, and user-friendliness that have been taken from the various problem definitions 

and solution methodologies described in the literature. Therefore, this dissertation provides 

important insights on enhancing the realism and applicability of the solution methodologies.  

This thesis secondly aims at providing an integrated modelling approach that incorporates 

mitigation and response stage operations. The key issue is to select optimally the roadway links 

to be strengthened in a road network by considering their effect on the response stage 

operations. Given the critical importance of connectivity between affected areas and critical 

response facilities (i.e., hospitals, fire stations, relief logistics centres) for disaster response 

operations, as well as the need to improve accessibility as a precautionary measure through link 

strengthening investments, this dissertation is expected to make a significant contribution to 

the disaster logistics literature by providing an efficient and practical method to optimize these 

mitigation decisions.  
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a Capacitated Network Strengthening Problem (CNSP), which involves optimizing pre-disaster 

mitigation decisions to strengthen road network links structurally to maximize the efficiency 

of post-earthquake evacuation operations, is formulated as a two-stage stochastic program. 

Existing studies that integrate decision making for mitigation and response stage operations 

include lack of consideration regarding post-earthquake resource availability (i.e., service 

capacity of hospitals). We take into account the service capacities of supplier facilities so that 

people can receive timely and necessary medical care. Existing studies have also used overly 

simplistic assumptions about infrastructure damage levels, operability/survivability of network 

links and the effectiveness of protection. In this study, operability basically depends on 

mitigation efforts, earthquake characteristics, and structure features.  

 

Due to the multi-objective structure of the CNSP, multi-objective approaches are first discussed 

to decide the best approach to solve the model. Second, the Sample Average Approximation 

(SAA) method is used to reduce the scenario set to a manageable size. The SAA procedure can 

be applied to solve the stochastic programs with a large number of scenarios, by which good 

solutions could be provided. Then, a heuristic algorithm based on the Greedy Randomized 

Adaptive Search Procedure (GRASP) is proposed to solve larger instances. By focusing on 

earthquakes, the necessary input parameters for the proposed model and solution approach are 

generated in a realistic setting. Computational experiments are conducted based on generated 

real-life data and instances adapted from the literature, both to demonstrate the use of the 

methods and to derive insights for decision authorities. 
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1. Introduction 

 

This chapter defines the general context for this dissertation, identifies the issues that have been 

researched, introduces the research topics that have been addressed, discusses the contributions 

to knowledge that have been made, and, ultimately, outlines the structure of this dissertation. 

1.1. Research Background  

 

Globally, geophysical disasters – primarily earthquakes – lead annually to the death of 

thousands of people, dislocate millions, and cause significant damage to buildings, roads, and 

other infrastructure. Between 2009 and 2020, there have been approximately 1800 large 

earthquakes (magnitude 6 or greater on the Richter scale) and nearly 366,000 fatalities caused 

by earthquakes across the globe (see Figure 1), more than all other natural disasters put together 

[1]. Information about the most devastating earthquakes during this period is presented in Table 

1. 

 

Figure 1. High magnitude earthquake occurrence and human fatalities 2009 to 2020 based on data from the Centre for 

Research on the Epidemiology of Disasters [1] 

Recent earthquake disasters have affected many parts of the world from Asia to the America 

Although a number of regions and countries are particularly prone to earthquakes, fatalities 

and other impacts can be highly variable depending on a range of factors such as geological 

conditions (i.e., presence of active faults and seismic vulnerability), earthquake characteristics 

(i.e., magnitude, focal depth, and epicentre location), area affected (i.e., city or region), level 

0

50

100

150

200

250

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

M
6

+
 E

a
rt

h
q

u
a

k
e

s

F
a

ta
lit

ie
s

Human fatalities No. of earthquakes



2 
 

of development (i.e., physical conditions of building and transportation networks), and 

preparedness level (i.e., early warning system and risk management measures) [2–5]. 

Table 1. Most devastating earthquakes 2009-2020 

Event Fatalities Magnitude Location 

2008 Sichuan earthquake 87,587 7.9 China 

2010 Haiti earthquake 316,000 7.0 Haiti 

2011 Tōhoku earthquake and tsunami 20,896 9.1 Japan 

2015 Nepal earthquake 8,964 7.8 Nepal 

2018 Sulawesi earthquake and tsunami 4,340 7.5 Indonesia 

 

Strategic and systematic mitigation actions can significantly reduce vulnerabilities to 

earthquake damage. For example, two major earthquakes – the 2004 Indian Ocean tsunami and 

the 2010 Haiti earthquake – both lead to hundreds of thousands of deaths, while a similar scale 

earthquake in New Zealand in 2010 affected 300,000 people but killed no one due to strict 

building codes and high level of preparedness [6]. Another example is the most recent disaster 

in September 2018, the 7.5 magnitude earthquake and subsequent tsunami that hit Palu and 

Donggala in central Sulawesi, Indonesia. While the number of deaths was comparatively small 

(4,340), the earthquake ended up displacing over 200,000 people and destroyed or damaged 

over 40,000 homes [7] as a result of power and communications lines being cut, which led to 

many residents not receiving tsunami warning messages. This disaster highlights the costs of 

not implementing a more sophisticated early warning system. 

‘Disaster Management’ is defined by The International Federation of Red Cross and Red 

Crescent Societies (IFRC) as: 

“the organization and management of resources and responsibilities for dealing with all 

humanitarian aspects of emergency situations under four stages: mitigation and 

preparedness for pre-disaster operations to decrease the negative influences as far as 

possible, and response and recovery for post-disaster activities in order to lessen the 

impact of disasters” [8]. 
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Figure 2. Disaster operations management stages and typical problems addressed in the OR literature 

 

Disaster Operations Management (DOM) involves four distinct stages. The first two focus on 

pre-disaster issues, the latter two deal with post-disaster measures [9]. Mitigation or prevention 

(stage 1) involves understanding what vulnerability to hazards exist along with protection 

measures to reduce risk and increase resilience. Preparedness (stage 2) assesses plans to save 

lives and organize response operations prior to a disaster occurring. The main aim is to reach a 

satisfactory level of readiness to respond to an emergency through development of programs 

that strengthen the technical and managerial capacity of governments, organizations, and 

communities (i.e., early warning systems and pre-position of supplies). Response operations 

(stage 3) aim to provide timely assistance to victims, relief, and evacuation of the affected 

population to a safe zone. Recovery (stage 4) takes place after an emergency and is primarily 

concerned with activities to remove debris, rebuild damaged buildings, and repair essential 

infrastructure. Figure 2 displays the four DOM stages and typical problems addressed in each 

stage. 

In order to minimize loss of life and social/economic disruption caused by earthquakes, 

effective planning at all stages of disaster management (i.e., mitigation, preparedness, response, 

recovery) is required. One analytical approach is the use of operations research (OR) 

techniques, which can help government agencies and nongovernmental organizations (NGOs) 

to develop sound and effective procedures and optimize the use of limited resources. The 

Institute for Operations Research and the Management Sciences (INFORMS) defines OR as: 
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“proven scientific, mathematical processes that enable organizations to turn complex 

challenges into substantial opportunities by transforming data into information, and 

information into insights that save lives, money and solve problems.” [10] 

OR encompasses a variety of quantitative and analytical methods for systematic decision 

making such as mathematical programming, simulation, and decision analysis. OR techniques 

have been successfully applied in various real-world application areas like supply chain 

management, logistics, transportation, healthcare, telecommunication, energy production and 

distribution, and disaster management. In the context of disaster management, a number of 

different OR based approaches have been proposed in the literature to find solutions to complex 

problems arising in different disaster management stages. 

Along with pre-earthquake preparedness, an effective response strategy can also drastically 

reduce human end economic losses [11,12]. Ineffectual management of the Haitian government 

enormously compounded the impact of the 2010 Haiti earthquake (magnitude 7). After 48-72 

hours, chances of finding survivors rapidly decrease. The Haitian government, however, failed 

to take any decisive action during this crucial phase of the emergency. International 

organizations quickly mobilized in response, but even this was hampered by the availability of 

a single-runway airport with a limited capacity and severe damage to the maritime port. As a 

result, it took several days for the population to start receiving vital supplies [13]. By 

comparison, in the case of the much larger 2010 Chile earthquake (magnitude 8.8), the Chilean 

government had in place detailed plans for responding quickly to such an event. Because of the 

government’s effective control over the situation, the impact of the disaster was greatly reduced 

(525 victims) and there was almost no need for international assistance [13]. 

The aftermath of an earthquake, roadway networks play an essential role in transportation 

systems because food, shelter, medical supplies, and first responders must be transferred 

swiftly and timely from supply facilities to affected areas. As an example, in the 1976 Tangshan 

earthquake and the 1995 Hanshin earthquake in Japan, first-day survivors were 81% and 80% 

percent, respectively, before dropping to 33.7 % and 36.8 % the next day [14]. Despite an 

abundance of goods, victims of the 2010 Haiti earthquake were unable to receive relief aids for 

a long time due to serious damage to the road network [15]. Following the 2011 Japan 

earthquake and tsunami, around three-fourths of the region's roadways were inoperable, 

causing emergency response activities to be hampered [16]. These experiences reveal the fact 

that the authorities should focus on the structural strengthening of roadway components, 
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especially for high-risk regions. Due to the limited budget, the key issue is prioritizing the 

vulnerable components of roadways considering the locations and inherited risk based on the 

presence of fault-lines.  

The first purpose of this thesis is to highlight and discuss main lines of research involving the 

use of OR techniques applied specifically to earthquake disasters. As part of this dissertation, 

existing research gaps are highlighted, and accordingly a roadmap is proposed to guide future 

work and enhance the real-world applicability of OR to earthquake operations management. 

 

This thesis secondly aims at providing an integrated modelling approach which combines the 

mitigation and response stage operations. The key issue is optimizing the decision-making in 

selecting the roadway links to be strengthen by considering their effect on the response stage 

operations, as it is described in a more in-depth way in Chapter 3. Given the importance of 

connectivity between the affected areas and critical response facilities (i.e., hospitals) for 

disaster response operations, as well as the need to improve accessibility as a precautionary 

measure through link strengthening investments, this dissertation is expected to make a 

significant contribution to the disaster logistics literature by providing an efficient and practical 

method to optimize these mitigation decisions. 

 

1.2. Research Topics and Motivations 

 

This dissertation has two main parts: (1) an extensive review study of earthquake operations 

management (EOM) papers published between 2009-2020 (see Chapter 2); (2) a 

methodological study introducing a Capacitated Network Strengthening Problem (CNSP) 

which involves optimizing pre-disaster mitigation decisions to strengthen road network links 

structurally to maximize the efficiency of post-earthquake evacuation operations. Within the 

scope of the CNSP, a two-stage stochastic program is formulated (see Chapter 3); solution 

methodologies including multi-objective solution approaches, Sample Average 

Approximation, and a GRASP-based heuristic algorithm to solve the CNSP are developed (see 

Chapter 4); finally, two case studies are implemented involving input data generations in a 

realistic setting (see Chapter 5) and computational experiments based on  the case studies are 

discussed (see Chapter 6).  
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This dissertation first aims at revealing the current research gaps in existing OR methodologies 

in the context of EOM and providing a roadmap for future research by a comprehensive review 

study. OR provides a powerful array of tools for effective and efficient decision making in 

EOM. However, despite the volume and variety of EOM studies employing OR methods, the 

development of widely applicable methodologies and frameworks emerges as a key insight in 

need of greater attention. We examine some important considerations relating to realism, 

comprehensiveness, practicality, and user-friendliness that have been taken from the various 

problem definitions and solution methodologies described in the literature. Therefore, this 

review provides important insights on enhancing the realism and applicability of the solution 

methodologies. The motivations assisting the need to address these specific topics are the 

following: 

- Each type of disaster has certain features that make it different from others, there is 

a requirement to tailor conceptualization to specific disasters. Earthquakes and 

tsunamis may share some similarities with hurricanes and volcanic eruptions when 

it comes to relief distribution, but they are nonetheless very different from other 

disasters like landslides, tornados, and wildfires, which are frequently more localized 

and tend to occur in specific seasons or following certain triggering events (i.e., 

heavy rain for landslides, lighting for wildfires). For instance, in the case of floods, 

evacuation has a very strong time element due to how rising waters dynamically 

impact different areas and eliminate certain escape routes. For earthquakes, the 

problem is very different – one is often dealing with a much larger scale problem 

involving large numbers of injured and more random blockage of routes due to 

rubble. In addition, earthquakes are rather distinct from other disasters given the 

higher likelihood of secondary disasters (i.e., aftershocks) and the often large number 

of injured involved. Apart from relief distribution, one type of response stage 

operations, there are also search and rescue (here earthquakes stand apart from other 

disasters) and evacuation (again very different for earthquakes due to the typically 

large numbers of injured, the accessibility on the roads, and the strong interlink with 

shelter site location).  

 

- Various DOM reviews have highlighted the importance of developing disaster 

specific models. Given that earthquakes impact a substantially larger number of 

people globally than any other disaster, it was surprising that there were no reviews 
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dedicated to specifically earthquakes. The aim is addressing this gap in the EOM 

literature. The conducted review also highlights facets of mitigation, preparedness, 

response, and recovery operations that are specific to earthquakes to help make it 

clearer regarding the ways EOM studies employing OR methods have addressed 

these.  

 

In line with the highlighted research gaps in the conducted review, an integrated model for 

optimizing pre-earthquake mitigation measures to improve the efficiency of evacuation 

operations is proposed. We attempt to optimize investment/protection strategies to enhance the 

resilience of road network components against earthquakes integrated by evacuation allocation 

decisions in post-earthquake conditions. The motivations behind the need to address these 

specific topics are as follows: 

- Developing realistic methodologies for EOM problems is often constrained by 

proper consideration of how different DOM stages interact with one another. The 

vast majority of OR based EOM studies (189 out of 211) were published in the 

previous 11 years focus on only one disaster stage.  

 

- Given interdependencies among EOM stages, greater effectiveness and efficiencies 

can often be achieved through integrated planning of various pre- and post-disaster 

activities. A few studies have examined problems that integrate the mitigation and 

response stages. However, to the best of our knowledge, there is no single study that 

investigates the implications of protection planning decisions on post-disaster 

response actions that considers capacitated suppliers. The proposed model identifies 

the mitigation decisions to strengthen roadway components considering their 

impacts on a post-disaster transport network accessibility between the critical 

capacitated supply and demand points. In this problem, critical supply and demand 

points refer to emergency response centres (ERCs) (i.e., hospitals, ports, hubs) and 

affected areas (i.e., evacuation zones), respectively. Finally, the model decides the 

set of mitigation strategies to be applied by simultaneously considering the 

operability of road components depending on the applied strategies and then the 

distribution of the affected people to the ERCs which have limited-service capacity 

as is the case in reality. 
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- One of the critical issues is to estimate whether the links are operational/survivable 

in the aftermath of an earthquake. Existing studies mostly have adopted a binary 

approach to define post-disaster link damage states (i.e., facilities and road links can 

be in one of two states: either fully operational/functional or not) and the 

effectiveness of protection (i.e., protection entirely prevents all damage to 

facilities/road links). In addition to the structural features of links, the operability 

should be estimated by taking into account the region in which links are located, as 

well as earthquake-related features (e.g., epicentre) which have a significant impact 

on the link's operability.  Although protection efforts enhance network links 

resilience against earthquakes, they cannot guarantee that there will be no damage at 

all. The degree/type of protection efforts is also critical. One of the key purposes of 

this study is to address the need for more realistic approaches that take into account 

a variety of factors related to the impact of protection. 

 

1.3. Research Contributions  
 

As mentioned in Section 1.2, firstly we exclusively review the papers addressing EOM or those 

that use an earthquake case study to analyse ways of modelling or conceptualizing decision-

making problems. This review is published in the International Journal of Disaster Risk 

Reduction (IJDRR) [17]. IJDRR publishes fundamental and practical research, critical reviews, 

policy papers, and case studies, with a special emphasis on multi-disciplinary research aimed 

at mitigating the impact of natural, technological, social, and intentional disasters.  

 

1.3.1. Research contributions related to the published EOM review paper  

 

1) We present a general overview of the OR literature dealing with EOM.  

 

- To the best of our knowledge, this review is the first attempt at investigating the use 

of OR techniques specifically for EOM.  
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2) We provide an in-depth discussion of the ways in which OR has been applied to 

enhance EOM and the common types of methodologies used.  

 

- As we limited our review to studies dealing with earthquake-oriented problem 

definitions or those involving the use of earthquake disaster case studies, our review 

stands apart from the other DOM review papers. Throughout, we precisely 

categorize studies based on the disaster stage(s) being dealt with, methodology(ies) 

applied, and specific planning/operational problem type. We also provide details 

about the extent of stakeholder involvement and information relating to case studies 

(i.e., type of infrastructure network examined, if any, and whether real or randomly 

generated data were used (see in Appendix C).  

 

3) We highlight some important research gaps of existing OR models and approaches and 

a roadmap for future research.  

 

- Based on our extensive analysis, we have identified current gaps in the field and 

outlined a roadmap for future research to enhance the real-world applicability of OR 

methods applied to EOM in particular and potentially to DOM more generally.  

 

1.3.2. Research contributions related to the proposed modelling approach 

 

As previously mentioned, the second part of the dissertation puts forward an integrated model 

for optimizing pre-earthquake mitigation measures to improve the efficiency of evacuation 

operations. In this model, we aim at selecting protection planning strategies for links in a 

roadway network to assure short and reliable paths between demand points (incident areas) and 

ERCs. The contributions of the second part of the dissertation are twofold: contributions related 

to the problem definition and model formulation (1); and contributions related to solution 

methodologies and case study implementations (2, 3, and 4). These are described below. 
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1) We propose an integrated protection and evacuation planning model involving realistic 

assumptions: i) capacitated suppliers; ii) different mitigation strategies with various 

impacts on resilience per link; iii) focus on enhancing resilience levels of links instead of 

an approach which guarantee that the link will be undamaged/operational. The model 

provides effective evacuation allocations of the affected people who need emergency 

medical care and ensures that only operational roads are used when transporting evacuees 

to the ERCs. Besides, we take into account the service capacities of ERCs so that people 

can receive timely and necessary medical care. Our model differs from previous studies in 

several ways: 

 

- Existing studies, which integrate decision making for mitigation and response stage 

operations, include lack of consideration regarding post-earthquake resource 

availability (i.e., service capacity of hospitals). In these studies, the objective is to assess 

the accessibility level of the roadway network; therefore, it is assumed that the supply 

points are uncapacitated.  

 

- As mentioned in Section 1.2, existing studies have also overly simplistic assumptions 

about infrastructure damage (i.e., facilities and road links can be in one of two states: 

either fully operational or not) and the effectiveness of protection (i.e., protection 

entirely prevents all damage to facilities/road links) (see Section 3.2). In this study, 

operability basically depends on mitigation efforts, earthquake characteristics, and 

structure features. In contrast with the existing literature, depending on the initial 

conditions of links, we consider multiple protection options for each link. In the 

proposed model, we define resilience levels to estimate survival states of links and 

assume that protection measures can improve the resilience levels of network links; 

however, they cannot guarantee that the link will be operational. We use a threshold 

value that designates operability condition for each link, and it is assumed that experts 

would provide this threshold value by considering seismic capacity, location of the link, 

and predicted traffic conditions at that moment. We believe that this approach is more 

realistic in terms of estimating survival states and assessing protection strategies. 
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2) Methodologically, the CNSP is challenging since it is formulated as a two-stage stochastic 

program: the first-stage investment decisions alter the network accessibility that affects the 

second stage decisions and the objective function. We first use the Sample Average 

Approximation (SAA) method to reduce the scenario set to a manageable size. The SAA 

procedure can be applied to solve the stochastic programs with a large number of scenarios, 

by which good solutions could be provided. Then, a heuristic algorithm based on the 

Greedy Randomized Adaptive Search Procedure (GRASP) is proposed to solve the larger 

instances.  

 

3) As a contribution to the practice, we describe how the suggested methodologies can be 

utilized in pre-disaster planning and mitigation and demonstrate a sample application using 

two case studies. By focusing on earthquakes, we demonstrate the inclusion of technical 

aspects and the generation of the necessary input parameters for the proposed model and 

solution approach in a realistic setting.  

 

 

4) Two case studies, based on a simplified and a detailed Istanbul roadway network, are 

conducted for an anticipated earthquake scenarios in Istanbul to provide practical insights 

to authorities. Computational experiments are conducted based on generated real-life data 

and instances or adapted from the literature, both to demonstrate the use of the methods 

and to derive insights for decision authorities. Case study applications contain two main 

parts: (1) the input generation and (2) the computational study.  

 

- We conduct two case studies by using a simplified and detailed real roadway 

network. Particularly, the data instance generation process is quite elaborate and 

involves using two different algorithms (the k-shortest path and the p-dispersion 

algorithms) for path generation. Each parameter value is generated well-grounded 

based on realistic perspectives. For instance, in estimating the link’s resilience levels, 

a previously used method is adapted for the detailed network. This method considers 

the seismic intensity and magnitude of the earthquake, the seismic risk factor 

depending on links’ coordination and epicentre of the earthquake and the earthquake 

vulnerability score based on the structures’ features. Additionally, different 

mitigation strategies for each link have been generated and it is assumed that the 

more costly ones are more effective in terms of enhancing resiliency. Likewise, there 
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may not be the same number of options for each structure type and, therefore, an 

approach is adopted that strategies should be varied for a structure that is known to 

show less resilience against a possible earthquake. The used method, which 

considers the cost-impact relationship for mitigation projects, is a novel approach in 

this field. 

 

- The Japan International Cooperation Agency’s (JICA) report proposes four 

earthquake scenarios which were created based on historical earthquakes and North 

Anatolian fault line. We conduct the case study implementations for an earthquake 

having a magnitude of 7.7, which is identified as the worst-case scenario in the JICA 

report. Some parameters (i.e., the seismic risk levels of links, casualty demand) are 

estimated based on the epicentre and magnitude of the anticipated earthquake in the 

JICA report. Thus, we use real earthquake data and information from government 

agency documents to analyse the solutions of our model in realistic earthquake 

scenarios.  

 

1.4. Outline  
 

The remainder of this dissertation is organized as follows.  

 

Chapter 2 provides a review on earthquake operations management (EOM) to highlight and 

discuss main lines of research involving the use of OR techniques applied specifically to 

earthquakes disasters. As part of the review, we identify existing research gaps and propose a 

roadmap to guide future work and enhance the real-world applicability of OR to earthquake 

operations management. The identified gaps and future research recommendations are 

summarized in Chapter 2.  

 

Chapter 3 introduces the Capacitated Network Strengthening Problem (CNSP) which 

integrates selecting mitigation strategies and evacuation allocation planning, describes the 

detailed problem statement with the problem assumptions and the model formulation which is 

a novel two-stage stochastic program for the CNSP.  
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Chapter 4 provides the proposed solution approaches. The multi-objective approaches are 

discussed to decide the best approach to solve the CNSP due to the model’s multi-objective 

structure. The Sample Average Approximation (SAA), which is frequently employed to solve 

large scale stochastic optimization problems, is proposed to solve the proposed model. Finally, 

a GRASP-based heuristic algorithm is developed to conduct analysis on the larger networks. 

 

Chapter 5 presents the input data generations for the case study implementations such as 

defining network components, estimating resilience levels of links, generating alternative 

routes connecting demand-supplier nodes, and scenario generation. Two case studies (the 

simplified and detailed networks) are developed using Istanbul roadway network datasets. The 

two data sets are generated using two geographical information system (GIS) programs: 

ArcGIS and GoogleMaps.  

 

Chapter 6 discusses the findings of the analysis. These include a comparison of the multi-

objective approaches and a discussion of the results generated by the SAA procedure for the 

simplified network. An analysis of the results obtained by the proposed heuristic algorithm on 

the simplified network is also included. The chapter concludes with an investigation of the 

results obtained by using the GRASP-based heuristic algorithm on the detailed network and a 

discussion of the managerial insights that can be derived from the solution analysis.  

 

Finally, Chapter 7 offers some concluding remarks and an outline of future research directions. 
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2. Use of OR in earthquake operations management: A review of the 

literature and roadmap for future research 

 

In this chapter, we provide a comprehensive review which addresses earthquake operations 

management (EOM) or those that use an earthquake case study to analyse ways of modelling 

or conceptualizing decision-making problems. 

In this review, we focus on how pre- and post-earthquake operations have been tackled and 

streamlined by using OR methodologies. Post- and pre-disaster planning may require specific 

approaches depending on the type of natural disaster. For instance, evacuation operations for 

disasters with little or no warning, such as earthquakes and nuclear accidents, begin 

immediately after the disaster, whereas short-notice disasters, like hurricanes and floods, 

typically provide a lead time of 24-72 hours for evacuation to occur [18]. In the case of 

earthquakes, which are near impossible to predict accurately, they may affect a wide area and 

often have compounding effects that lead to a series of disasters. Such issues need be taken 

into account when prioritizing post-earthquake operations. Required medical aid can also vary 

greatly depending on the type of disaster. Injuries tends to be more severe in earthquakes and 

include crushed limbs and spinal cord injuries requiring both emergency care and longer-term 

rehabilitation. It is widely agreed that disaster operations management (DOM) should be 

tailored to specific disasters, so as to capture the unique characteristics of each disaster type. . 

For this reason, this work only focuses on earthquakes, and we exclusively review papers 

addressing EOM or those that use an earthquake case study to analyse ways of modelling or 

conceptualizing decision-making problems. 

 

OR techniques have been applied to deal with DOM problems since the early 1980s [19]. The 

OR literature on disaster operations and humanitarian supply chain management is 

considerable, as evidenced by the number of recent survey papers published between 2015 and 

2020 [18,20–35]. Published survey papers that we examined are summarized in Table 2. 
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Table 2. Summary of reviewed disaster operations management papers 

Survey Article Stage* Focus† Review Period 

Bayram [18] Rs Optimization models for evacuation planning  1952-2016 

Galindo and Batta [20] All OR/MS literature related to DOM 2005-2010 

Hoyos et al. [21] All OR techniques with stochastic components 2006-2012 

Özdamar and Ertem [22] Rs + Rc Integration of OR with information systems and 

enabling technologies 

1993-2014 

Çelik [23] Rc Network restoration and recovery operations 2000-2016 

Amideo et al. [24] Rs Shelter location and evacuation routing 2013-2018 

Gupta et al. [25] All OR/MS literature related to DOM 1957-2014 

Zheng et al. [26] All  Evolutionary algorithms applied to disaster relief 

operations 

1996–2014 

Habib et al. [27] All Humanitarian supply chain management 2005-2015 

Gutjahr and Nolz [28] All Multi-criteria optimization for disaster aid operations 2007-2015 

Balcik et al. [29] P + Rs Humanitarian inventory planning and management 2006–2016 

Zhou et al. [30] All Emergency decision support systems 2000-2016 

Boonmee et al. [31] P + Rs Optimization models for facility location planning 1964-2016 

Behl and Dutta [32] M + P + Rs Humanitarian supply chain management 2011-2017 

Sabbaghtorkan et al. [33] P Prepositioning of assets and supplies 2000-2018 

Kovacs and Mosthtari [34] All Applied methodologies in humanitarian operations 2006-2018 

Farahani et al. [35] Rs Casualty management 1977-2019 

* M: Mitigation, P: Preparedness, Rs: Response, Rc: Recovery. 

† OR: Operations Research, MS: Management Science. 

The contribution of this review is multi-fold. First, we present a general overview of the OR 

literature dealing with DOM. Second, we provide an in-depth discussion the ways in which OR 

has been applied to enhance EOM and the common types of methodologies used. Third, we 

highlight some important research gaps of existing OR models and approaches and a roadmap 

for future research. A key insight of our review is the necessity of adopting a multidisciplinary 

approach to EOM that includes OR. 

The remainder of this chapter is organized as follows. Section 2.1 gives a general overview the 

role of OR in DOM by carrying out a meta-analysis of recent survey reviews. In Section 2.2, 

we review how EOM is addressed in the OR literature. Section 2.3 provides a classification 

and analysis of reviewed reviews. A roadmap for future research directions and some 

concluding remarks are outlined in Section 2.4 and 2.5, respectively. 
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2.1. Literature Review Methodology and Summary 

 

In the remainder of this study, we review studies that apply OR methods to address problems 

in EOM. We use a broad definition of OR, which includes mathematical programming, 

heuristics and metaheuristics, decision analysis, machine learning and artificial intelligence 

(AI), Soft OR, and expert systems. “Mathematical programming” or optimization aims at 

finding the most efficient (i.e., guaranteed best) allocation of limited resources in order to 

maximize or minimize some objective (i.e., total cost) subject to a set of constrains that limit 

which actions can be taken [36]. “Heuristics and metaheuristics” (hereafter heuristics) are 

algorithms which apply a series of rules (typically iterative) to quickly find approximate 

solutions to large and/or complex optimization problems [37]. Heuristics are called for when 

an exact approach cannot be used or would require an excessive amount of time to solve. 

“Decision analysis” includes a number of quantitative and graphical methods for identifying 

the best option among a defined (usually small) set of alternatives for complex or risky decision 

problems based on one or more evaluation criteria [38]. “Simulation” involves representing a 

real-world system (normally over time) using logic, mathematics, and computers for the 

purposes of predicting system behaviour (possibly stochastic) or evaluating performance of 

different plans for improving the system [39]. The main types of simulation include Monte 

Carlo simulation, discrete event simulation, system dynamics, and agent based modelling. 

“Stochastic modelling” is the application of probability theory to represent and predict the 

outcomes of stochastic processes [39]. “AI”, in relation to OR, includes a broad class of 

approaches designed to enable computer systems to automatically perform tasks that would 

normally require human intelligence, such as information processing, pattern recognition, and 

decision making [40]. “Machine learning,” a subclass of AI, include a wide range of 

mathematical models/algorithms which are trained to find patterns in data in order to make 

predictions or decisions [41]. “Soft OR” includes a variety of problem structuring and 

stakeholder facilitation methods to help frame messy, ill-defined, and complex problems in 

rigorous but non-mathematical way [42]. Soft OR primarily aims at promoting learning and 

shared understanding of a systems as opposed to specific ‘solution.’ Game theory studies 

situations involving conflict and cooperation “Game theory” is a branch of mathematics 

concerned with the analysis of strategies to competitive situations in which the payoff a 

participant receives depends on both his/her actions and the actions of other players [43]. 

Finally, “expert systems” are computer system that emulate the decision making ability of a 
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human expert [44]. They are usually designed to solve complex problems by reasoning about 

facts and assertions, mainly with if-then rules rather than through procedural code. 

We systematically reviewed the literature that included one or more of the following sets of 

keywords: 1) “earthquake’’, ‘‘disaster*’’, “catastroph*, “humanitarian logistic*”, or 

“emergency” and 2) “*modelling”, “*programming”, “optimization”, “decision theory”, 

“multi-criteria decision”, “multi-criteria analysis”, “problem structuring method”, “system 

thinking”, “Soft OR”, “agent based simulation”, “Monte Carlo simulation”, “discrete event 

simulation”, “system dynamics”, “expert systems”, “artificial intelligence”, “neural network”, 

“stochastic modelling”, “stochastic model”, “probabilistic model”, “game theory”, “heuristic” 

or “metaheuristic” and spelling variations (i.e., British English spellings). We limited the time 

interval for the review to 2009-20 and used Scopus databases covering various large publishers 

such as Elsevier, Springer, Taylor & Francis, and IEEE. Selection of articles was based on two 

main criteria; (i) whether a paper applied one or more OR techniques to DOM decision making 

and (ii) whether it specifically addressed EOM or did not necessarily focus on earthquakes but 

did have a case study involving earthquakes. After further manual processing, 211 papers, 

which satisfied these criteria, were finally selected. 

 

 

Figure 3. Number of OR papers applied to EOM by year (a) and by journal with five or more such papers (b) 

Figure 3 shows the number of articles published between 2009 and 2020 on OR applied to 

EOM and the journals that published five or more such papers. The top two journals in terms 

of number of publications are European Journal of Operational Research (EJOR), which 

publishes both theoretical and applied research in OR, and International Journal of Disaster 

Risk Reduction (IJDRR), which covers a broad set of disciplines aimed at reducing the impact 
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of natural, technological, and social disasters. A general observation is that many of the 

published EOM studies appear in OR focused journals (not unsurprising) and have bias towards 

transportation and other infrastructure related problems. Interestingly, more specialized 

journals in fields like seismology, engineering, and geography, which were included in our 

literature search, rarely publish OR based studies on EOM, hence why they do not appear in 

Figure 3b. 

Table 3. Summary statistics of EOM disaster stages addressed in the literature 

Disaster Stage(s) No. of papers Proportion (%) 

Mitigation 41 19.4 

Preparedness 62 29.4 

Response 66 31.3 

Recovery 20 9.5 

Integrated Stages 22 10.4 

Mitigation & Preparedness 1 4.5 

Mitigation & Response 2 9.1 

Mitigation & Recovery 1 4.5 

Mitigation, Preparedness & Response 1 4.5 

Preparedness & Response 9 40.9 

Preparedness, Response & Recovery 1 4.5 

Response & Recovery 7 31.8 

 

Statistics for reviewed papers are given in Tables 3 and 4. Of the 211 papers reviewed, the 

preparedness and response stages have received similar amounts of attention (29-31%), while 

mitigation has received comparatively less attention (19%), and recovery the least attention 

(9%). The vast majority of research (90%) has focused on a single disaster stage as opposed to 

the integration of operations from multiple stages (10%), which has generally appeared only 

more recently. Integration of either preparedness and response (41%) or response and recovery 

(32%) has received considerably more attention than any of the other combinations. In addition, 

not a single study addresses decision making in all four stages; usually only two stages are 

considered and only two studies consider three stages. As evident from Table 4, heuristics are 

the most frequently utilized OR method (33%), followed by mathematical programming 

(29%), simulation (11%), machine learning (10%), and decision analysis (3%). Few studies 

have involved the use of multiple methods (9%). 
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Table 4. Summary statistics of OR methodologies used in EOM 

Methodology No. of papers Proportion (%) 

Heuristic 70 33.2 

Mathematical programming 62 29.4 

Simulation 24 11.4 

Machine learning 21 10.0 

Decision analysis 7 3.3 

Soft OR 2 0.9 

Expert system 2 0.9 

AI 2 0.9 

Game theory 1 0.5 

Stochastic modelling 1 0.5 

Multiple methods 19 9.0 

 

 

2.2. Literature Review Classification and Analysis 

 

In the following subsections, we provide an in-depth analysis of the literature using the 

categorization shown in Figure 2. Within each category, we discuss each disaster stage in turn 

and the methodologies used to address them. Studies that address the integration of two DOM 

stages are reviewed and categorized in the final subsection. For the most used OR methods in 

each category, tables and figures are provided to gather additional insights. 

2.2.1. Mitigation Stage 

 

The mitigation stage involves strategic decision making to enhance the condition of buildings 

and critical infrastructure networks (i.e., electricity generation and distribution, transportation, 

water supply, telecommunication, hospitals, and fire stations). Primary mitigation measures 

include earthquake-resistant constructive, building retrofit, and upgrading components of 

critical infrastructure systems to make them resistant to seismic activity or/and ground motion. 

In comparison to other types of natural disasters, features specific to earthquake mitigation 

include the enormity of the challenge due to the extent of human habitation concentrated in 

seismically active areas, the relatively high cost to implement mitigation measures (to a large 

number structures spread over large areas), the typically long recurrence time (decades or 

more) between sizable quakes and, as a result, the greater amount of lead time to plan and take 

pre-emptive action. 
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Figure 4. Methodologies used in mitigation problems 

 

Mitigation problems can be divided into two main categories: 1) reliability and vulnerability 

analysis, which involves, for instance, estimating damage levels of infrastructure components 

(i.e., whether a road segment is operational or not) and 2) protection planning to reduce 

vulnerabilities and risks to critical infrastructure. A summary of OR methodologies applied to 

solve mitigation problems is shown in Figure 4. Three methodologies – simulation, decision 

analysis, and machine learning – have been used the most (36 papers) among the 41 reviewed 

papers. Expert systems, mathematical programming, and heuristics, in contrast, have been 

applied far less (11 papers). Other methodologies, such as Soft OR, game theory, and stochastic 

modelling, appear not to have been used at all to address mitigation problems. As is clear from 

Figure 4, reliability and vulnerability analysis has drawn the most attention, while 

comparatively little has focused on protection planning. Table 5 provides a detailed breakdown 

of studies in each category by problem type and methodologies used. 
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Table 5. Details of the types of problems addressed and methodologies used in the mitigation stage 

Problem Method References* 

Vulnerability and reliability analysis   

Seismic reliability analysis Simulation [45–56] 

 Machine learning [57] 

Seismic hazard mapping Decision analysis [58–63] 

 Machine learning [63] 

Building vulnerability analysis Simulation [64,65] 

 Machine learning  [66–71] 

 Decision analysis [69,70,72,73] 

Fatality estimation Simulation [65] 

 Machine learning [74,75] 

Earthquake characteristics prediction Expert system [76] 

 Machine learning [77] 

Protection planning   

Fortification of infrastructure networks and buildings Mathematical programming [51,78–83] 

 Heuristic [84–86] 

            * References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 

 

2.2.1.1. Vulnerability and Reliability Analysis 

 

Vulnerability and reliability are especially important when examining the operability of 

buildings and critical infrastructure. Murray and Grubesic [87] state: “While reliability focuses 

on the possibility of maintaining the performance of critical infrastructure elements, 

vulnerability focuses on the potential for disrupting critical infrastructure elements or 

degrading them to a point when performance is diminished.” Both vulnerability and reliability 

and are important for the continuity of critical infrastructure operations. 

Seismic reliability analysis of critical infrastructure plays an essential role in the mitigation 

stage. The primary aim is to compute a measure of reliability given failure probabilities for an 

individual component of a system or for the system as a whole. Simulation is the most used 

OR method in this category. Details of simulation models reviewed are provided in Table 6. 

Simulation models have been used to estimate earthquake induced failure probabilities of 

system components, damage levels caused by interruptions to system operations, and 

reliability/vulnerability measures. Examples include reservoir storage of hydropower systems 

[56], substations in electric power grids [47], energy pipelines [55], water supply systems 
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[45,53], and transportation networks [49,51,52,54]. In addition to specific types of 

infrastructure, simulation has been used to evaluate the susceptibility to landslides caused by 

earthquakes and heavy rainfall for regions of a large urban area [46,50]. Monte Carlo 

simulation appears to be the main simulation paradigm used for seismic reliability analysis, 

though there are a couple examples of system dynamics [45,56] and a very recent one using 

agent based modelling [48]. Besides simulation, Nabian and Meidani [57] investigate the use 

of deep neural networks, a machine learning method, for seismic reliability analysis. They use 

a case study of the California transportation network to demonstrate the effectiveness of the 

proposed method for accelerating earthquake reliability analysis. 

Table 6. Details of simulation models for reliability and vulnerability analysis 

Reference Model Type* Outputs/Findings 

Bagheri et al. (2010) [45] SD Failure probability for water supply systems 

Sun and Chen (2010) [46] 

Sun et al. (2011)  [50] 
MCS Failure probability of earthquake-induced landslides 

Li et al. (2019)  [47] MCS Failure probability of power systems 

Feng et al. (2020) [48] ABM Traffic flow characteristics 

Günneç & Salman (2011) [49] MCS Reliability measures for networks 

Chang et al. (2012) [51] MCS Earthquake intensity at each bridge location 

Gertsbakh & Shpungin (2012) [52] MCS Failure probabilities for links in a network 

Jin & Wang (2012) [53] MCS Seismic risk of water supply systems 

Mohaymany et al. (2012) [54] MCS Connectivity and reliability measures for networks 

Dadfar et al. (2018) [55] MCS Vulnerability functions for energy pipelines 

King et al. (2017) [56] SD System disturbances and failure states for hydropower systems 

Ahmad et al. (2012) [64] MCS Damage levels of structures 

Akpabot et al. (2018) [65] MCS Damage levels for buildings and casualty levels 

* MCS: Monte Carlo simulation, SD: system dynamics, ABM: agent based model. 

For studies on seismic hazard mapping the preferred approach is multi-criteria decision making 

(MCDM), a class of decision analysis techniques, implemented in a geographical information 

system (GIS). Examples of GIS-based MCDM include the generation of seismic physical 

vulnerability maps [46,47,53] and tsunami risk maps [60]. 

For building vulnerability analysis (i.e., analysis of individual buildings as opposed to 

infrastructure networks or urban/residential areas), machine learning is the most frequently 

used method for estimating risk/damage levels based on various independent variables like 

structure type, constructive quality, built area, and occupancy level [66,74]. Neural networks 

have been developed to inform post-earthquake activity planning by evaluating building 

collapse ratios using optical and satellite data [68] and to construct a composite social, 
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economic, environmental, and physical vulnerability index for seismically prone regions [69]. 

Simulation has also been used to estimate damage levels for bridges and buildings [64,65]. 

Another key strand of reliability and vulnerability analysis is estimating human fatalities and 

determining the distribution of casualties. One such study is Akpabot et al. [65], who address 

how to predict the post-earthquake status of buildings (collapsed or not) and casualty levels 

using Monte Carlo simulation. Another is Gul and Guneri [75], who apply a neural network to 

estimate casualty proportions based on earthquake occurrence time, earthquake magnitude, and 

population density. Aghamohammadi et al. [74] assume that damage levels for buildings are 

known in advance and apply a neural network to estimate casualty levels considering the same 

inputs as Gul and Guneri [75] along with damage levels. 

Finally, earthquake characteristics prediction (i.e., magnitude, depth, location, probability of 

occurrence, seismic energy release) has been carried out using both machine learning 

techniques [77] and expert systems [76]. The study by Ikram and Qamar [76] is interesting for 

trying to predict subsequent earthquakes based on most recent earthquake attributes, such as a 

defined range, depth, and location, and for validating their approach using real-life earthquake 

data. 

2.1.2.2. Protection Planning 

 

This subsection covers studies on protection planning for strategic pre-earthquake mitigation. 

Note that all of the studies reviewed employ either mathematical programming or heuristics to 

decide which infrastructure to fortify or upgrade in order to minimize system vulnerability or 

maximize reliability/resilience. Details are provided in Table 7. The majority of work has 

focused on protection of links in transportation networks in order to optimize one or more 

objectives such as maximizing post-earthquake connectivity [79,84], minimizing travel cost 

[79,80,85], minimizing investment/retrofitting cost [54,80,81,85], minimizing unsatisfied 

demand [80,85], and maximizing evacuation capacity [51]. Only a few studies have 

additionally or exclusively looked at retrofitting buildings [81,82,85]. Liberatore et al. [82], for 

example, decide which hospitals to fortify in order to minimize maximum reduction in medical 

service capacity (i.e., unmet demand) and patient assignment costs in the presence of 

propagating failures. 
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Table 7. Summary of protection planning studies 

Reference Decisions Objective(s) Case Study 

Chang et al. (2012) [51] Bridge retrofit standards  Maximize post-disaster network 

evacuation capacity given a limited 

budget 

Memphis, 

Tennessee, USA 

Mohaymany et al. (2012) [78] Transport links to invest 

in 

Minimize investment cost to satisfy 

connectivity reliability and travel 

time reliability requirements 

Sioux Falls, 

South Dakota, 

USA  

Peeta et al. (2010) [79] Road links to retrofit Maximize post-disaster connectivity 

and minimize traversal cost between 

origin and destination nodes given a 

limited budget 

Istanbul, Turkey 

Lu et al. (2018) [80] Bridge retrofit standards Minimize retrofitting cost, expected 

transport cost, transport cost risk, and 

unsatisfied demand 

Sioux Falls, 

South Dakota, 

USA 

Zolfaghari & Peyghaleh (2015) 

[81] 

Building retrofit 

standards 

Minimize mitigation expenditures 

and future reconstructive 

expenditures 

Tehran, Iran 

Liberatore et al. (2012) [82] Hospitals to retrofit Minimize cost of assigning patients to 

hospitals and unmet demand 

L’Aquila, Italy 

Aydin (2020) [83] Location of recycling 

and landfill areas for 

processing debris from 

end-of-life buildings 

Minimize recycling and landfill area 

set-up cost, cost of debris transport 

and processing and maximize revenue 

of recovered materials 

Istanbul, Turkey 

Chu & Chen (2016) [84] Road links to retrofit Maximize connectivity reliability for 

roadway networks 

- 

Döyen & Aras (2019) [85] Building retrofit 

standards and road links 

to retrofit 

Minimize building and road link 

retrofit costs, expected transport costs 

and unsatisfied demand for relief 

Istanbul, Turkey 

Edrisi & Askari (2019) [86] Road links to expand and 

stabilize 

Minimize travel time and expected 

fatalities 

Sioux Falls, 

South Dakota, 

USA 

 

As is typical with these studies, the authors first analyse the computational performance of their 

proposed model or solution approach and then apply it to a case study based on real-world data. 

The aim here is to show how the model is capable of capturing all crucial network information 

and how the solution methodology generates robust solutions in acceptable computation time. 

As seen in Table 7, some use case studies of transportation networks located in seismically 

active areas. In addition, there are multi-methodology approaches combining two 

methodologies, such as simulation for estimating parameters related to vulnerability and 

reliability (i.e., damage state scenarios based on structural characteristics) and a mathematical 

programming model for optimizing protection decisions [51,54]. 
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2.2.2. Preparedness Stage 

 

The preparedness stage, the most studied of the four disaster stages in EOM, includes plans 

and preparations made in advance of an earthquake, such as logistical readiness to deal with 

adverse impacts of earthquakes, the development of response mechanisms and procedures, 

rehearsals, the development of long-term and short-term strategies, public education, and the 

implementation of early warning systems. The problems associated with the preparedness 

stage can be categorized as: 1) relief pre-positioning and resource planning (i.e., locating 

distribution centres, stocking relief supplies, emergency medical care staffing); 2) shelter site 

location; 3) emergency response and relief chain coordination; and 4) early warning systems. 

While preparedness is crucial for any type of natural disaster, the severity of damage caused 

by earthquakes and, crucially, the often complete lack of advanced warning about when and 

where an earthquake will strike (i.e., essentially instantaneous for earthquakes and minutes for 

tsunamis versus days for hurricanes, wildfires, and volcanic activity), underscore the 

importance and benefits of preparedness. 

 

Figure 5. Methodologies used in preparedness problems 

A summary of problem types and the OR methodologies used is preparedness planning is 

shown in Figure 5. Relief pre-positioning and resource planning is the most addressed problem 

type, accounting for 40 of the 62 studies. The other three categories, shelter site location, relief 

chain coordination, and early warning systems, have received significantly less attention, with 

11, 1, and 12 studies, respectively. In terms of methodologies, unlike with the mitigation stage, 
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nearly all methodologies, apart from expert systems, have been used to analyse and solve 

problems in this stage. However, mathematical programming and heuristics are by far the 

dominate techniques, having been applied in 46 (74%) of the 62 studies. Table 8 gives a 

detailed breakdown of preparedness related studies based on problem type and methodology 

used. 

Table 8. Details of the types of problems addressed and methodologies used in the preparedness stage. 

Problem Method References* 

Relief pre-positioning and resource planning   

Pre-positioning distribution centres Mathematical programming [88–104] 

 Heuristic [105–117] 

 Decision analysis [94,110] 

 Game theory [118] 

 AI [95]  

Pre-positioning medical centres Mathematical programming [119] 

Relief inventory management Mathematical programming [90,92–96,100–

104,113,120–122] 

 Heuristic [106–108,112–116] 

 AI [95] 

 Simulation [120] 

 Stochastic modelling [123] 

Staff planning Simulation [124–126] 

 Machine learning [126] 

 Heuristic [127] 

Shelter site location   

 Mathematical programming [98,128–133] 

 Heuristic [134–136] 

 Decision analysis [131] 

Emergency response & relief chain coordination   

 Soft OR [137] 

Early warning system   

Earthquake/tsunami prediction and notification Machine learning [138–145] 

Simulation [146,147] 

Sensor location Mathematical programming [148] 

 Heuristic [149] 

* References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 
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2.2.2.1. Relief Pre-Positioning and Resource Planning 

 

This category includes problems related to pre-positioning relief distribution centres (RDCs), 

medical centres, relief inventory management, and staff planning. RDCs play an indispensable 

role in relief logistics by receiving and consolidating relief supplies (i.e., food, water, clothing, 

temporary shelters, and medication) and then distributing them to affected populations. 

Strategic pre-positioning of RDCs prior to an earthquake can significantly affect the 

performance of the subsequent disaster response (i.e., in terms of response time, accessibility, 

and equity) [99]. Resource planning, meanwhile, plays a crucial role in the preparedness stage 

through effective stockpiling of supplies and determining staff requirements in order to avoid 

shortages, which could pose severe risks to human life if they were to occur. For clarity, most 

of the studies included here typically model aspects of the response stage (i.e., relief 

distribution), but do so only in a very simplified way for the purposes of determining where 

best to locate RDCs in order to satisfy anticipated demand for relief. Only if more complex 

decisions involving, for example, scheduling of rescue teams or loading and routing of relief, 

are the models considered integrated (i.e., preparedness and response, see Section 2.5). 

Mathematical programming and heuristics are far and away the most commonly used 

approaches, comprising 35 (85%) of the 41 studies addressing relief pre-positioning and 

resource planning (see Table 8). Table 9 presents details of these studies, including the types 

of decisions and objectives considered. As can be seen, the most common objectives in pre-

positioning RDCs and resource planning include the minimization of cost, transportation time, 

and demand shortages. In terms of cost components, some studies focus on fixed and variable 

operating costs (i.e., constructive of facilities and the procurement and holding of supplies) and 

or transportation costs (i.e., [100,103,112]), while others separately or additionally consider 

social costs (i.e., fatalities and deprivation cost) [91,113]. Minimization of transport time 

usually refers to distances/travel time between RDCs and local distribution points (i.e., 

[88,100,109]). Most of the studies reviewed consider distribution of multiple commodities but 

do not give specifics. One study looks specifically at medical supply distribution to hospitals 

[90]and a couple at blood distribution [95,96]. 
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Table 9. Details of mathematical programming and heuristic approaches for relief pre-positioning and resource planning 

problems 

Problem Decisions Objective(s) References* 

Pre-positioning 
distribution 
centres 

Locations of 
distribution centres  

Minimize cost [95,96,98,103] 

Minimize distance [110] 

Minimize transport time [109,111] 

Maximize coverage  [105] 

Minimize cost and transport time [88,112] 

Minimize cost and shortages [89,94,100,102] 

Minimize transport time and shortages  [90,104] 

Minimize cost and shortages and maximize equity [115] 

Minimize cost and maximize equity and reliability [106] 

Locations and 
capacities of 
distribution centres 

Maximize accessibility [99] 

Minimize cost and shortages [101,108] 

Minimize cost and victim travel time [114] 

Minimize cost and fatalities [91,113] 

Minimize cost and maximize equity [93,107] 

Minimize cost, transport time and shortages [116] 

Minimize cost, victim travel time and shortages [97] 

Minimize cost, transport time and shortages and 
maximize equity 

[92] 

Pre-positioning 
medical centres 

Location and capacity 
of medical centres 

Minimize travel time, underachievement of target 
waiting time, unused capacity and set-up time 

[119] 

Relief inventory 
management  

Inventory levels of 
relief supplies 

Minimize cost [95,96,103] 

Minimize cost and shortages [94,100–102,108] 

Minimize cost and transport time [112] 

Minimize cost and victim travel time [150] 

Minimize cost and fatalities [91,113] 

Minimize transport time and shortages  [90,104] 

Minimize cost and maximize equity [93,107] 

Minimize cost and shortages and maximize equity [115] 

Minimize cost, transport time and shortages [116] 

Minimize cost and maximize equity and reliability [106] 

Minimize cost, transport time and shortages and 
maximize equity 

[92] 

Maximize probability of satisfied demand [120] 

Maximize min. covered demand [121] 

Minimize cost and shortages and maximize lives saved [122] 

Staff planning Staffing levels Maximize expected number of functional operating 
rooms and minimize expected travel distance 

[127] 

* References highlighted in bold address multiple problem types. 

 

As highlighted by the Sphere Standards [151], RDCs should be established where they are safe 

and most convenient for affected populations. In addition, principles of equity should be 

considered to ensure every affected person receives equal opportunity to obtain relief. This 

highlights the importance of including accessibility and fairness as problem objectives. Some 
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studies consider ease of access from affected areas to relief distribution points and accordingly 

maximize equitable access [99]. More recent studies consider equitable allocation of relief to 

affected areas and local distribution points, in other words, fair relief distribution [92,93,106]. 

It is worth noting that a majority of studies adopt a multi-faceted approach that considers 

multiple objectives and multiple types of decisions, including locating RDCs and determining 

their inventory levels. For example, Tofighi et al. [116] optimize four objectives: (i) 

minimization of fixed and variable costs associated with setting up central warehouses and 

RDCs and holding relief, (ii) minimization of total and (iii) minimization of maximum time to 

ship relief from central warehouses to affected areas via RDCs, and (iv) minimization of a 

weighted combination of relief shortages and unused relief. Paul and Wang [91] meanwhile, 

not only consider decisions about the locations, capacities, and inventory levels of RDCs but 

also the risk of damage to RDCs and how potential loss of supplies may impact relief allocation 

decisions. 

In additional to mathematical programming and heuristic approaches, a few other 

methodologies have been applied to relief pre-positioning and resource planning. For instance, 

system dynamics was used by Wu et al. [120] to inform relief inventory planning, including 

stock holding and replenishment decisions, and by Xu et al. [124] to find best ratio of medical 

staff to rescue workers. Discrete event simulation has also been applied to assess the benefits 

of having an emergency plan in place as well as increasing staff and/or emergency room 

capacity [125]. A game theoretic approach is employed by Bell et al. [118] for locating RDCs 

in degradable road networks. Stochastic modelling has been used to find optimal reordering 

policies for relief goods given uncertainty about demand and lead-time [123]. Lastly, Bayesian 

belief networks (AI) was used by Chen and Wang [95] to model uncertainty about earthquake 

locations/intensity and number of injuries in need of blood when deciding about blood stocking 

levels. 

2.2.2.2. Shelter Site Location 

 

After a large earthquake, buildings may be damaged or destroyed and a large number (possibly 

hundreds of thousands) of people may become homeless. Affected residents will need to move 

to designated emergency housing termed shelters until the disaster recovery process is 

completed. Accordingly, pre-determined shelter areas should be strategically located, taking 

into account site suitability and access to relief supplies. Shelter areas must also be located 

within a reasonable distance from earthquake affected areas, accessible by safe travel routes, 
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and provisioned with or close to essential services (i.e., medical care). It should be clear that 

identifying optimal locations for shelters is a complex problem. In all, we found ten studies on 

shelter site location specifically looking at earthquakes. All employ mathematical 

programming or heuristics. 

A variety of factors have been considered when locating shelters. Bayram et al. [129], for 

example, focus on minimizing total evacuation time assuming evacuees travel to their nearest 

shelters via shortest or near shortest paths. Kınay et al. [133] instead locate shelters to maximize 

minimum site suitability based on criteria proposed by the Turkish Red Crescent, including 

distance to healthcare institutions, electrical infrastructure, and sanitary systems and terrain 

characteristics. Bayram and Yaman [130] apply a two-stage stochastic programming approach 

to incorporate uncertainty about evacuation demand and disruption to road and shelter site 

capacities. Hu et al. [135] employ particle swarm optimization, a metaheuristic approach, to 

locate shelters at minimum cost subject to capacity and distance constraints. Trivedi and Singh 

[131] propose a model for optimizing shelter sites based on victim travel distance, distance to 

relief and health centres, unmet demand, number of shelters, site risk (vulnerability to 

earthquakes, floods, landslides), and degree of public ownership. Other interesting aspects 

addressed in shelter location include risks associated with travelling to and remaining at 

shelters [128] and changes in both population size and spatial distribution [134] of those 

needing shelter. 

2.2.2.3. Emergency Response and Relief Chain Coordination 

 

Coordination and cooperation between emergency response and relief organizations (i.e., 

government agencies, emergency services, humanitarian organizations) is essential for 

responding in a timely and appropriate manner to earthquake disasters. Emergency response 

and relief chain coordination problems focus on the importance of effective and flexible 

structures that enhance interoperability, communication, and synchronized response of 

multiple EOM stakeholders to minimize human and economic losses in the aftermath of an 

earthquake. 

Despite the importance of multi-agency coordination, we found only one study dealing with 

the topic. Specifically, Preece et al. [137] model the complex interactions involved with 

stakeholder communication. The authors examine how application of the viable system model 

(VSM), a Soft OR method, can help identify key shortcomings and opportunities in 

communication systems. Using a case study of the Great Hanshin-Awaji Earthquake in 1995, 
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they demonstrate the utility of VSM structures to facilitate communication and coordination 

during a disaster. 

2.2.2.4. Early Warning Systems 

 

Earthquake early warning systems (EEWSs) form an essential part of the preparedness stage 

by providing timely and relevant information immediately following an earthquake. Effective 

EEWSs can help significantly to save lives and reduce damage. Two main problem types are 

discussed here:  earthquake/tsunami prediction and notification and earthquake/tsunami sensor 

location. 

Table 10. Details of studies addressing early warning systems 

Topic Method References 

Earthquake location/magnitude prediction Machine learning [138,140] 

Tsunami wave height prediction Machine learning [139,141] 

Reduction of false alarm rates Machine learning  [142–144] 

Earthquake detection Machine learning [145] 

Early warning lead time and reliability estimation Simulation [146] 

Ground motion prediction Simulation [147] 

Seismometer/tsunameter location Mathematical programming [148] 

 Heuristic [149] 

 

As seen in Table 10, machine learning is the most commonly used approach in EEWS 

prediction and performance, comprising 8 (67%) of the 12 studies reviewed here. An example 

application of machine learning is to reduce false alarms by rapidly and reliably discriminating 

real earthquake signals from other signals [142–144]. This is critical to improving the 

performance of EEWSs, as excessive false alarm rates cant impose a heavy cost in terms of 

service loss, undue panic, and diminishing confidence in EEWSs. Machine learning has also 

been used for initial detection of earthquakes from siesmic sensor data [142–144], advanced 

prediction of the location and magnitude of earthquakes [138,140], real-time classifcation of 

near- versus far-source earthquakes, and tsunami wave height estimation [139,141]. 

Somewhat surprisingly, only a couple examples of simulation being applied in EEWS were 

found in the literature. Wang et al. [147], for example, propose a Monte Carlo simulation 

approach to predict peak ground motion quickly and precisely given limited seismic data. 

Information about ground motion is crucial in early warning systems because a region’s peak 

ground motion provides an indication of the scale of the potential disaster in terms of building 

damage and threat to life. Meanwhile, Oliveria et al. [146] use Monte Carlo simulation to 
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estimate amount “lead time” between when an early warning is received and the earthquake 

arrives and the potential costs of false alarms from an end-user standpoint. 

Similarly, mathematical programming and heuristics have found only limited used in EEWS 

design. Oth et al. [149] propose the use of a genetic algorithm to optimize the location and 

calibration (trigger thresholds) of seismic sensors for a regional EEWS. Mulia et al. [148] 

investigate the use of dimensionality reduction techniques to identify an initial set of sensor 

locations for detecting multiple large-magnitude tsunami sources and then apply optimization 

to minimize forecasting error by removing redundant measurement locations. 

2.2.3. Response Stage 

 

In the aftermath of an earthquake, the primary concerns in the response stage are providing 

first-aid and rescuing trapped survivals, determining temporary shelter site locations, 

evacuating the affected population to safe zones, shelters, and medical centres, and providing 

emergency relief to victims. What often makes response so critical in the case of earthquakes 

versus other natural disasters is the scale of the problem. Whereas other types of natural 

disasters tend to be more localized and affect a smaller population, earthquakes can cause 

damage over wide areas (hundreds of thousands of square miles), resulting in enormous 

damage to properties and infrastructure (tens of billions of dollars), and lead to enormous 

casualties both in terms of number (hundreds of thousands of dead and injured) and severity. 

With this in mind, we focus on three main problem types within the earthquake response stage: 

1) search and rescue; 2) evacuation; and 3) relief distribution. A summary of the problem types 

and the OR methodologies used to solve response stage problems is provided in Table 11. 

 

Figure 6. Methodologies used in response problems 
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As can be seen, relief distribution problems have received the most interest among the three 

problem types. A handful of studies address the integration of relief distribution and 

evacuation. Two methodologies – mathematical programming and heuristics – dominate (used 

56 times) among the 66 response stage studies. Interestingly, simulation, which is used 

frequently in pre-earthquake stages (mitigation and preparedness), has rarely been used in post-

earthquake response problems. 

Table 11. Details of the types of problems addressed and methodologies used in the response stage 

Problem Method References* 

Search and rescue   

Rapid damage assessment Machine learning [152,153] 

 Expert system [154] 

 Heuristic [155] 

Rescue operations Mathematical programming [156,157] 

 Machine learning [158] 

 Expert system [154] 

 AI [159,160] 

Evacuation   

Routing and allocation Mathematical programming [161–170] 

 Heuristic [166,171–178] 

 Simulation [166] 

 Decision analysis [174] 

Human behaviour Simulation [179] 

Relief distribution   

Relief logistics Mathematical programming [161–165,180–191] 

 Heuristic [177,178,192–214] 

 Simulation [191,215] 

 Machine learning [163] 

 Decision analysis [191] 

 Soft OR [216] 

Road damage assessment Machine learning [217] 

* References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 

2.2.3.1. Search and Rescue 

 

Search and rescue, the response stage category least examined in the literature, includes 

problems related to rapid damage assessment and rescue operations. Rapid damage assessment 

aims to inform first responders and other operations personnel about the damage status of 

buildings and infrastructure following an earthquake. Rescue operations involve the 

deployment of specially trained rescue teams to provide first-aid and free survivors from 

rubble. Table 12 provides details of studies in this category, including the systems/tools 

developed, their aims, OR methods used, and case study applications. 
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Table 12. Details of studies addressing search and rescue problems 

Reference System/tool Aim Method Case Study 

Bai et al. (2017) [152] Remote sensing Building damage mapping Machine 

learning 

- 

Kim et al. (2020) [153] Seismic loss 

assessment 

Sensor location for near real-time 

assessment of building damage 

Machine 

learning 

- 

Schweier & Markus 

(2009) [154] 

Information 

system 

Support onsite search and rescue 

teams and building inspectors 

Expert 

system 

- 

Chu et al. (2015) [155] Participant 

selection 

Selection of volunteers for 

collection of crowdsourcing data 

Heuristic 2010 Haiti 

earthquake 

Chu & Zhong (2015) 

[156] 

Medical rescue 

team assignment 

Maximize number of saved 

casualties 

Mathematical 

programming 

2008 Sichuan 

earthquake 

Ahmadi et al. (2020) 

[157] 

Scheduling/routing 

of rescue teams 

Maximize min. demand coverage Mathematical 

programming 

Tehran, Iran 

Chaudhuri & Bose 

(2020) [158] 

Smart 

infrastructure 

image classifier 

Identification of survivors in 

debris  

Machine 

learning 

2011 Tōhoku 

and 2012 Emilia 

earthquakes 

Zheng et al. (2015) 

[159] 

Rescue wings Monitor and analyse the status of 

identified victims 

AI 2013 Ya'an 

earthquake 

Liu et al. (2016) [160] Rescue team task 

assignment  

Plan search and rescue operations 

given uncertain road damage 

AI 2014 Ludian 

earthquake 

 

Detecting the damage status of buildings quickly and accurately is vital to improving response 

times of rescue operations. Bai et al. [152] use a machine learning framework to compare the 

performance of using post-event remote sensing data versus multi-temporal images for 

estimating building damage ratios. Building damage ratio information is particularly useful for 

determining where damage is concentrated across a city or area and to efficiently concentrate 

response efforts. Schweier and Markus [154] develop two different integrated information 

systems involving the use of expert systems to inform both rescue operations and building 

damage assessment. The first generates advice for onsite search rescue teams about suitable 

procedures and equipment to use at a particular building collapse, while the second aids 

inspectors in determining whether a building is safe to use after an earthquake Accurate 

identification and classification of victims after an earthquake is crucial for improving rescue 

and evacuation efficiency. Chu and Zhong [156], meanwhile, propose a mathematical 

programming model for assigning medical rescue teams to affected areas in the very early stage 

after an earthquake to maximize the expected number of casualties that can be saved. Zheng et 

al. [159] describe a web-based system to classify potential earthquake victims according to 

priority of need based on profile data, vital signs, location, and environmental conditions. 

Finally, Chu et al. [155] propose a model and solution approach for making effective use of 
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crowd sourcing information by selecting volunteers to explore earthquake affected areas given 

the benefits and cost of deploying them. 

2.2.3.2. Evacuation 

 

Evacuation normally takes place during initial phase of the response stage to transfer the 

injured to medical centres and those in immediate danger or made homeless due to an 

earthquake to safe zones and temporary shelters [18]. Evacuation is the second most addressed 

problem in the response stage, comprising 19 of the 67 studies. The main decision making 

issues include the allocation of evacuees to medical facilities, integration of evacuee planning 

and location of temporary shelters following an earthquake, and investigation of the role of 

human behaviour on evacuation operations. 

Among studies using mathematical programming and heuristics, two basic decision 

frameworks have been considered: routing and allocation of affected people to safe zones by 

minimizing travel distance or evacuation time [171,175], sometimes in combination post-

disaster shelter site location [77,82,89], and recovery of injured and transfer to medical centres 

to minimize loss of life [162,163,166,168,174]. Forcael et al. [171], for example, find that 

optimized evacuation routes result in shorter evacuation times from tsunami prone areas based 

on validation from live evacuation drills. Chen et al. [172] investigate how GIS and global 

positioning system (GPS) technologies can be combined with heuristic methods to support 

evacuation decisions by identifying in real-time the location of people in need of evacuation 

and optimal paths (based on length and reliability) for emergency recuse teams to reach them. 

Rakes et al. [175] propose a model and solution approach for allocating individual families to 

temporary housing units. Unlike most other studies, they consider each family’s educational 

and healthcare support needs when making assignments. Kilci et al. [169] consider jointly 

where to locate shelters and allocate victims to shelters taking into account accessibility to 

critical infrastructure, terrain characteristics, and public ownership of shelter sites. Ozbay et al. 

[176] present a multi-stage approach for (i) locating shelter sites after an earthquake but before 

demand is known; (ii) allocating evacuees to their nearest shelters once demand is known; (iii) 

the need to open additional shelters due aftershocks creating more demand for shelters. 

Meanwhile, Mills et al. [166] consider patient survival rates and service times for different 

types of traumatic injuries when making ambulance and medical facility allocation decisions 

in order to maximize the expected number of survivors. Both Oksuz and Satoglu [168] and Liu 
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[174] look at where to locate temporary medical centres (aka field hospitals) to deal with the 

evacuation and treatment of mass casualties. 

Among the few studies using simulation is Liu et al. [179], who develop an agent based model 

to examine how building damage and human behaviour interact when people attempt to 

evacuate a building. A key aim of theirs is to understand how exit flow rates from buildings 

can be increased through better building design and the development of improved evacuation 

strategies. Mills et al. [166] also use a discrete event simulation approach but primarily as a 

way of assessing the performance of proposed heuristics that use limited up-to-date information 

when making dynamic ambulance assignments. 

 

2.2.3.2. Relief Distribution 

 

the immediate aftermath of an earthquake, supply chains and logistics operations need to be 

rapidly organized to transport and distribute significant quantities of relief to affected areas 

taking into account an initial assessment of demand and post-disaster conditions (i.e., 

functionality of the transportation network). Logistics steps typically involve receiving and 

consolidating relief supplies from external suppliers (ESs) at large central warehouses (CWs) 

located outside the affected zone (aka “hot” zone”), distributing relief from CWs to RDCs 

located in the hot zone, and then redistributing relief from RDCs to local relief distribution 

points within affected areas (AAs), which may include shelters, spot recue areas, hospitals, and 

individual residential areas. Sometimes CWs do not constitute a distinct element of the logistics 

network (either because CWs are not required or CWs also serve as RDCs), in which case it is 

assumed that relief supplies move directly from ESs to RDCs. 

As seen from Table 11, mathematical programming and heuristics stand out as the dominate 

methods for addressing relief distribution problems, making up 42 of the 45 studies in this 

category. An overview of these studies, including logistics activities, number of relief goods, 

and mode of transportation, is provided in Table 13 with further details provided in an 

Appendix A. A majority (27 out of 42) focus exclusively on distribution between RDCs and 

AAs; only a handful consider supply side logistics by including distribution from CWs (i.e., 

[187,193,198,199] ) to RDCs. A few recent papers have looked at even more complex multi-

echelon relief supply chains involving (i) distribution among ESs, CWs, RDCs, and AAs [189] 

and (ii) blood donation at local collection centres (LCCs), transfer to testing laboratories or 

regional blood centres (~CWs), and on to local blood centres (~RDCs) and regional/local 
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hospitals (~AAs) [163,181]. In addition, a majority of papers consider (i) multiple commodities 

(25 out of 42), as opposed to distribution of a single generic commodity, and (ii) multi-modal 

transport (27 out of 42) using a heterogeneous set of vehicles with different capacities and 

travel speeds, rather than with a fleet of identical vehicles. Vehicle types considered range from 

maritime ships [183] to road vehicles (i.e., [182,186,197,198]) through to helicopters 

[177,185,199]. In a few cases, submodels capture variants of vehicle routing problems in which 

capacitated vehicles complete tours to one or more AAs from a designated RDC 

(i.e.,[190,194,195,208]) or travel to AAs while resupplying at different RDCs (i.e., [161,197]). 

Note that less than half (17 out of 42) simultaneously consider multiple commodities and multi-

modal transport. 

Table 13. Summary of mathematical programming and heuristic approaches for relief distribution problems 

Logistics activities No. of Goods Mode of transport References 

RDC-RDC Multi Multi [188] 

RDC-AA Single Single [178,192,196,197,201,203,204] 

  Multi [183,187,196,202,204,205] 

 Multi Single [194,195,207,213] 

  Multi [161,164,180,185,186,198,203,206,208] 

CW-RDC-AA Multi Single [189,213] 

  Multi [191,198] 

ES-RDC-AA Single Multi [162] 

 Multi Single [165] 

  Multi [177,183,212] 

ES-CW-RDC-AA Multi Single [189] 

LCC-CW-RDC-AA Single Multi [163,181] 

Further analysis reveals that nearly all mathematical programming and heuristic studies for 

relief distribution adopt a multi-objective framework to capture different, possibly conflicting 

logistics performance indicators. Typical objectives and variations thereof include: minimizing 

the cost of transporting relief (i.e., [177,185,205,208], minimizing response time (i.e., 

[183,186,193,197]), minimizing unmet demand (i.e., [161,180,190,203]), and maximizing 

route reliability (i.e., [183,194,204,208]). Additionally, most of the studies, except five, apply 

their modelling framework to a case study, usually involving an historical earthquake. For 

example, Wang et al. [211] consider a multi-model transport fleet for distributing multiple 

commodities between RDCs and AAs to minimize both total cost and maximum time to 

distribute relief and maximize the minimum reliability of routes used by vehicles and then 
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apply their approach to the 2008 Wenchuan earthquake. Vitoriano et al. [182], meanwhile, only 

consider a single commodity but optimize no less than six different objectives (minimization 

of transport cost, maximum time to deliver relief, unmet demand, and maximize unmet demand 

and maximization of route link reliability and security), using a case study of the 2010 Haiti 

earthquake as a demonstration. More recent work has combined relief distribution with 

evacuation to shelters and or transport of injured to medical facilities [162–164,178]. 

Four other methods besides mathematical programming and heuristics have been applied to 

relief distribution. This includes: (i) a system dynamic model to analyse a relief distribution 

system built for the Longmen Shan fault, China, where many destructive earthquakes have 

occurred [215]; (ii) Soft OR for developing a conceptual model of post-disaster survivor 

perception-attitude-resilience relationships to inform emergency logistics operations in a way 

that takes into account perspectives of both government planners and the psychology of 

affected populations; (iii) machine learning (neural networks) for designing an efficient blood 

supply chain [163] and predict the structural status of road links when deploying relief [217]; 

and (iv) decision analysis to assess performance of relief distribution based on demand 

coverage, logistics costs, and response time [191]. 

2.2.4. Recovery Stage 

 

During recovery, the fourth stage of EOM, the overall aim is to return an affected community 

to normal after a major quake. Recovery begins right after the emergency. In the short-term, 

recovery is an extension of the response stage that deals with the restoration of basic services 

in the days and weeks after a disaster. In the long-term, recovery focuses on restoring economic 

activity and community wellbeing by rebuilding damaged facilities and housing, which can 

take years. 

 

Figure 7. Methodologies used in recovery problems 
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In view of this, we consider two basic types of recovery operations: 1) debris management and 

2) facility and infrastructure restoration. Debris management is initially concerned with quickly 

clearing debris from impacted urban areas and roads, thereby allowing rescue, evacuation, and 

relief distribution operations to proceed more efficiently [218]. Later on, debris needs to be 

collected and processed. Debris removal management after large-scale earthquakes can be one 

of the most complicated and time consuming activities of post-disaster operations. Facility and 

infrastructure restoration focuses on planning operations involved with repair and rebuilding 

of damaged buildings and critical infrastructure networks like water, electricity, and road 

transportation. This includes prioritization of buildings and infrastructure components and 

scheduling of restoration work teams based on criticality and the need to provide maximum 

network functionality. Like with response stage problems, the sheer scale of both debris 

management and facility and infrastructure restoration operations involved with earthquakes 

sets them apart from other types of natural disasters. 

 

Table 14. Details of the types of problems addressed and methodologies used in the recovery stage 

Problem Method References* 

Debris management   

Debris clearance, collection and processing Mathematical programming [218–220] 

 Heuristic [218,221–223] 

 Simulation [224] 

Facility and infrastructure restoration   

Planning repair work Mathematical programming [225–227] 

 Heuristic [228–234] 

 Simulation [224,225,235–237] 

 Game theory [227] 

* References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 

 

Recovery problems have received significantly less attention than the other stages with only 

20 studies reviewed. A summary of OR methodologies used for both problem types is shown 

in Figure 7. As can be seen, only four OR methods have been applied in recovery stage 

problems. Similar to the preparedness and response stages, mathematical programming and 

heuristics are the most frequently used OR methods. A limited number use simulation alone or 

in combination with mathematical programming and heuristics, while one study combines 

mathematical programming with game theory. Additional details about recovery problems are 

given in Table 14. 
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2.2.4.1. Debris Management 

 

Given limited resources, efficient and effective planning of debris clearance to improve 

connectivity between relief demand and supply is vital during disaster response. There are a 

few studies addressing debris clearance and relief distribution problems in an integrated 

manner, but details of these studies are given in Section 2.5. In this section, we only discuss 

studies that deal exclusively with debris clearance, collection, and processing operations. 

Mathematical programming and heuristic methods for debris management have considered a 

number of different objectives, such as maximizing road network accessibility by minimizing 

the time to reopen a predefined set of travel paths [219], minimizing the time to clear debris 

from a road network and restore full connectivity [218], minimizing the time to clear debris 

from a road network while maximizing connectivity between all origin and destination pairs 

over time [221] and minimizing a combination of logistics costs involved with processing 

debris (i.e., transporting, sorting, storage, and disposal of debris), environmental and 

operational risks from exposure to contaminated debris, and the psychological costs imposed 

on victims and residents from the waiting time to remove debris [220]. Apart from these, a 

system dynamics model was used by Hwang et al. [224] to adopt a more holistic perspective 

to recovery operations, including debris removal. A key finding is that consideration of the 

interdependencies among multiple recovery operations can lead to better understanding of the 

overall recover process and development of more effective recovery strategies. 

2.2.4.2. Facility and Infrastructure Restoration 

 

Problems dealing with the repair and rebuilding of facilities and critical infrastructure networks 

(i.e., road transportation, water, gas, and electricity networks) damaged by earthquakes mainly 

focus on resource allocation and scheduling/routing of emergency repair crews. Here, typical 

aims are to restore full functionality of infrastructure networks as quickly as possible following 

an earthquake, minimizing the number of people without service during repair, and minimizing 

reconstructive costs. A variety of different aspects of this basic problem have been considered, 

mostly involving the use of mathematical programming and heuristics (10 out of 13). 

For example, González et al. [225] consider a set of interdependent water, gas, and power 

networks and apply both mathematical programming and simulation to minimize repair and 

supply shortage costs by coordinating repair of multiple, different network elements collocated 

in the same area. Meanwhile, Nozhati et al. [228] employ approximate dynamic programming 
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(a hybrid mathematical programming and heuristic approach) to minimize the time to restore 

electricity to a specified fraction of the population, while maximizing the number of people 

with electricity service over time. In a series of papers, Yan, Shih, and colleagues explore the 

application of time-space network flow models and heuristic solution methodologies for 

scheduling the deployment of road repair crews in order to minimize the time of road repair 

operations [229,230] and distribution of essential supplies (i.e., fuel, machines, food) to repair 

crews at least cost [231,232]. Different problem variants include the need to adjust original 

schedules following demand and supply perturbations (i.e., aftershocks causing additional 

damage and additional repair crews being mobilized) and consideration of multiple vehicle 

types combined with stochastic travel times. Luna et al. [236] examine the use discrete event 

simulation to model the restoration time of a water distribution network under different seismic 

scenarios and help inform resource allocation planning. Besides repair of critical infrastructure 

networks, Gosavi et al. [237] address damage containment and restoration of urban areas using 

discrete even simulation. Longman and Miles [235] also use discrete event simulation to 

predict timelines for rebuilding damaged housing and inform resource requirements (i.e., 

inspectors and constructive workers) following the 2015 Nepal earthquake. 

2.2.5. Integrated Stages 

 

Given interdependencies among EOM stages, greater effectiveness and efficiencies can often 

be achieved through integrated planning of various pre- and post-disaster activities. The 

majority of research, however, has focused on a single EOM stage. Relatively few studies (22 

out of 211) have combined problems from different EOM stages in an integrative fashion. 

Integrated disaster management is clearly recognized as a key gap in the literature that needs 

be addressed moving forward. Figure 8 shows the different methods used in the integration of 

different EOM stages. As with most single stage studies, mathematical programming and 

heuristics are the most frequently used OR methods, accounting for no less than 19 (86%) of 

the 22 studies. 
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Figure 8. Methodologies used in integrated stages of EOM 
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casualties. Regarding relief distribution, Mete and Zabinsky [239] optimize the location, 

capacity, and inventory levels of RDCs at minimum cost in order to reduce the transport time 

of and unmet demand for medical supplies. Of note, they incorporate operational level 

decisions about vehicle loading and routing when devising an optimal relief distribution plan. 

0 1 2 3 4 5 6 7

AI

Simulation

Mathematical programming

Heuristics

Mitigation & Preparedness Mitigation & Response

Mitigation & Recovery Mitigation, Preparedness & Response

Preparedness & Response Preparedness, Response & Recovery

Response & Recovery



43 
 

Sitting of RDCs and relief distribution combined with vehicle routing has been considered by 

other authors as well [240,241]. In a few cases, studies RDC location has also been combined 

with evacuation [242,243]. Apart from mathematical programming and heuristic methods, 

Sahebjamnia et al. [244] develop a sophisticated hybrid simulation and AI decision support 

system for prepositioning RDCs and managing the allocation and distribution of relief by a 

humanitarian relief chain. Three main performance indicators – set-up/transport cost, relief 

shortages/excess, and response time – are used to evaluate tradeoffs of alternative relief chain 

configurations under different disaster scenarios, make iterative improvements, and finally 

make recommendations about the best configuration for any given post-disaster state. 

Table 15. Details of the types of problems addressed and methodologies used in integrated stages of EOM 

Stages Problems* Method(s) References 

Mitigation & Preparedness PP & P/RP Mathematical programming [245] 

Mitigation & Response PP & RD Heuristic [246] 

 RVA & SR Simulation [247] 

Mitigation & Recovery RVA & FIR Simulation [248] 

Mitigation, Preparedness & Response PP, P/RP & RD Heuristic [249] 

Preparedness & Response P/RP & E Mathematical programming  [238,242] 

 P/RP & RD Mathematical programming  [239,250,251] 

  Heuristic [240,241] 

  Simulation & AI [244] 

 P/RP, E & RD Mathematical programming  [243] 

Preparedness, Response & Recovery P/RP, RD & FIR Mathematical programming & simulation [252] 

Response & Recovery RD & DM Heuristic [253] 

 RD & FIR Mathematical programming [254] 

  Heuristic [255–259] 

* PP: Protection Planning, P/RP: Pre-positioning and/or Resource Planning, RD: Relief Distribution, RVA: Reliability and 

Vulnerability Analysis, SR: Search and Rescue, FIR: Facility and Infrastructure Restoration, E: Evacuation, DM: Debris 

Management. 

Relatively fewer studies have looked at combining both pre-disaster stages (1 study) or both 

post-disaster stages (8 studies). All have employed mathematical programming or heuristic 

methods. Hu et al. [245] examine the problem of reinforcing RDCs and roads (mitigation) as 

well as setting relief inventory levels (preparedness) in order to minimize total cost (protection 

plus relief procurement, holding, and transport), deaths, and demand shortages. Integration of 

response and recovery has been considered by a number of authors. For example, Çelik et al. 

[253] develop a heuristic for optimizing the clearance of road debris (recovery) and the 

distribution of relief from RDCs to AAs (response) over time. Meanwhile, various studies, 

including Yan and Shih [256], and Li and Teo [254], have looked at variations of how repair 

of damaged road links (recovery) can better support relief distribution (response) by reducing 

response time and increasing demand satisfaction, among other goals. 
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Table 16. Details of mathematical programming and heuristic approaches for integrated stages of EOM 

Stages* Decision(s) Objective(s) References 

M+P Reinforcement of buildings, reinforcement of 

the road network and relief inventory levels 

Minimize building reinforcement, road 

network reinforcement, procurement, and 

expected transport/holding costs, transport 

time, shortages and deaths 

[245] 

M+Rs Road link protection and distribution of relief 

items 

Minimize expected weighted average distances 

between supply and demand points 

[246] 

M+P+Rs Building retrofits, road link protection, 

capacity of emergency aid and distribution of 

relief items 

Minimize lives at risk and maximize number of 

people saved 

[249] 

P+Rs Location of field hospitals, number and 

allocation of ambulances and transport of 

casualties by ambulances 

Minimize casualty travel and waiting times [238] 

Location of medical supply centres and 

transfer points, allocation of medical supplies 

and transport of injured to hospitals via 

transfer points 

Minimize transportation time of injured and 

supplies and minimize set-up, transport and 

response time violation costs 

[242] 

Location and inventory levels of distribution 

centres and distribution of relief through a 

network 

Minimize set-up, procurement and transport 

costs, unused inventory and unmet demand 

[250] 

Location, capacity and inventory levels of 

distribution centres and distribution of relief 

by vehicle routing 

Minimize set-up costs, transport time and 

unmet demand 

[239] 

Location, capacity and inventory levels of 

distribution centres and distribution of relief 

by vehicle routing 

Minimize max. weighted unmet demand, 

transport time and set-up, procurement, 

transportation, inventory holding shortage costs 

[251] 

Location of distribution centres and 

distribution of relief by vehicle routing 

Minimize transport time, unmet demand and 

set-up costs 

[240] 

Location of distribution centres and 

distribution of relief by UAV trip 

assignments 

Minimize transport time of UAVs and travel 

time of people 

[241] 

Location and inventory levels of distribution 

centres, allocation of rescue vehicles and 

relief and transport of injured to medical 

facilities by vehicle trip assignment 

Minimized set-up, operational, transport and 

holding costs, cost variability, unmet demand 

and unrecovered injuries 

[243] 

P+Rs+Rc Location and capacity of distribution centres, 

restoration equipment inventory levels, 

distribution of relief through a network and 

repair of damaged road links 

Minimize set-up, restoration equipment 

procurement and expected transport costs and 

unmet demand 

[252] 

Rs+Rc Debris clearance from roads and distribution 

of relief 

Maximize satisfied demand for relief 

 

[253] 

Repair of damaged road links and distribution 

of relief through a network 

Maximize satisfied demand, security and 

reliability and minimize max. delivery time 

[254] 

Minimize delivery time [255] 

Minimize delivery time and time to repair [256] 

Repair of damaged road links and 

accessibility of affected areas from 

distribution centres 

Minimize time to reach affected areas [257] 

Repair of damaged road points and 

distribution of relief through a network  

Maximize cumulative accessibility and min. 

satisfied demand 

[258] 

Repair of damaged road links and distribution 

of relief by vehicle routing 

Minimize set-up, transport and road repair 

costs and response time and maximize route 

reliability 

[259] 

* M: Mitigation, P: Preparedness, Rs: Response, Rc: Recovery. 
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2.3. Roadmap for Future Research  

 

As should be clear from our review, OR provides a powerful array of tools for effective and 

efficient decision making in EOM. However, despite the volume and variety of EOM studies 

employing OR methods, the development of widely applicable modelling frameworks emerges 

as a key shortcoming in need of greater attention. As noted in previous surveys, applicability 

is critical in the field EOM owing to how any real-world decisions ultimately translate into 

direct impacts on communities and individuals. Below we examine some important 

considerations relating to realism, comprehensiveness, practicality, and user-friendliness that 

have been taken from the various problem definitions and solution methodologies described in 

the literature. Figure 9 summarizes these features as they relate to the development of 

applicable EOM planning frameworks. Our hope is that this will prove useful to informing 

future lines of research and continued advancement of the field. 

 

 

Figure 9. Key features for developing more applicable EOM methods 
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out, however, that most studies have analysed problem from a methodological and or 

theoretical perspective as opposed to real-world applicability and use. Frequently, studies fail 

to develop problem representations that are familiar to practitioners, instead opting to define 

novel problem formulations that differ greatly from practical and realistic ways of doings 

things. For OR methods to achieve greater applicability in EOM, it is essential that problem 

definitions be well-grounded in reality and context. To this end, we provide some 

recommendations that may serve to enhance the realism and, therefore, applicability of OR 

methods in EOM through better problem identification and specification, greater stakeholder 

involvement, further integration of different disaster stages, and enhancement of multi-agency 

coordination and cooperation. 

2.3.1.1. Disaster Type Specification 

 

DOM reviews thus far have not really touched on which specific disaster types may be more 

or less favourable to real-world application of OR methodologies. This is somewhat surprising, 

since in practice, disaster risk assessment and planning is usually performed separately (i.e., 

using software like Hazus [260]) for tsunamis, earthquakes, floods, hurricanes, and other 

disaster types. Contrary to this, we observed that only 138 of 211 studies in our review present 

a problem definition expressly focused on earthquakes and EOM decision making (see 

Appendix B). In only a few studies were emergency operations and stakeholder roles defined 

by field experts [131,215]. Interestingly, studies addressing reliability and vulnerability 

analysis and integrated disaster management have gone the furthest in terms of using 

earthquake-oriented problem specifications. Other EOM problem areas, however, tend to be 

more generic and theory-oriented and potentially less useful in real-world planning. We would 

argue that specifying which disaster type is being addressed would translate into greater 

transparency and precision in terms the problem that is being addressed and, in turn, lead to the 

development of more realistic and applicable models. 

With regard to EOM, the frequent neglect to identify a specific disaster type is perhaps one 

reason why problem descriptions usually ignore two key features of large earthquakes, namely 

the potential for and need to contend with 1) cascading or secondary effects [261] and 2) 

subsequent disasters caused by aftershocks [162,185]. Cascading events can occur as an 

indirect result of a major quake. For instance, an earthquake that ruptures gas supply pipelines 

can result in fires and explosions that dramatically increase urban damage and risk to life [262]. 

Other examples of secondary effects from earthquakes include landslides that occur long after 
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the event following heavy rainfall, flooding caused by breached dams and levees, and even the 

triggering of volcanic eruptions. In the case of earthquakes, which normally strike with no 

warning and affect a large area, the potential for cascading effects is often magnified in 

comparison other types of disasters. Aftershocks, meanwhile, are common following a large 

quake and not only can cause significant damage days or even weeks later, but can seriously 

hamper response and recovery operations. The 2011 Tōhoku (aka Great East Japan 

Earthquake), for example, caused extensive damage and left over 20,000 people dead. This was 

in large part because it was a compound disaster involving earthquakes, a tsunami, and a 

nuclear accident that widely impacted the whole nation [263]. As noted by Marano et al. [264], 

over 20% of deaths attributed to earthquakes over the past 40 years were a result of secondary 

causes (i.e., landslide, liquefaction, tsunami, and fire). 

 

2.3.1.2. Integrated Stages 

 

Besides a lack of disaster type specification, realism of EOM studies is often constrained by 

proper consideration of how different DOM stages interact with one another. Like other 

reviews, we found that the vast majority of OR based EOM studies (189 out of 211) published 

in the previous 11 years focus on only one disaster stage as opposed to the integration of 

multiple stages. The latter group has mostly appeared in the literature fairly recently. In this 

subsection, we identify a number of aspects of EOM that could be aptly addressed through 

integration of different DOM stages. 

Tasks associated with recovery and mitigation partially overlap. Better understanding of the 

connections between protection strategies and damage states that result in lower recovery costs 

of a system is a key research theme that warrants greater consideration in decision modelling 

frameworks. Conversely, recovery can also be catalyst for mitigation. The motto ‘Build Back 

Better’, often heard in recent years, advocates the adoption of integrated disaster risk reduction 

measures into physical infrastructure restoration work following a disaster in order to enhance 

resilience of and minimize future risks to people, livelihoods, and the environment [263]. 

Despite the clear links between mitigation and recovery, we found only one study by Cho and 

Park [248] addressing this combination of DOM stages. Analysis of the trade-offs between 

investing in infrastructure protection and the associated economic and social costs of disruption 

and recovery is a clear gap in the literature. 
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Notably, recent work has examined problems that intersect with the mitigation and response 

stages. This includes the use of heuristics to optimize building/road link protection and post-

disaster relief distribution [246,249] and simulation to assess vulnerabilities to urban 

infrastructure and search and rescue effectiveness [247]. Invariably, simplifications need to be 

made with any model. Nonetheless, identified drawbacks with existing mitigation and response 

studies include lack of consideration regarding post-earthquake resource availability (i.e., 

personnel, vehicles, relief supplies) and potential reduction of resources due to earthquake 

damage, as well as overly simplistic assumptions about infrastructure damage (i.e., facilities 

and road links can be in one of two states: either fully operational or not) and the effectiveness 

of protection (i.e., protection entirely prevents all damage to facilities/road links). From a 

modelling perspective, incorporating protection-damage functions, in particular, is no easy 

task. However, future work on this aspect might take inspiration from Chang et al. [51], among 

others, who looked at using Monte Carlo simulation to better understand how for various bridge 

retrofit standards, uncertainty about earthquake intensity and bridge structural damage affected 

bridge traffic-carrying capacity based on established bridge fragility and damage-functionality 

relationships. 

Although relief pre-positioning and resource planning (preparedness) combined with relief 

distribution (response) has received relatively more attention than other types of integrated 

planning (see Table 15), additional lines of research within this area remain. Most researchers 

have concentrated on the impact of locating RDCs, while sometimes also considering decisions 

about capacity and inventory levels, on relief distribution effectiveness. However, to our 

knowledge, no studies have looked at simultaneously positioning RDCs, setting relief 

inventory levels, and locating shelter sites with relief distribution. Further research might 

address this gap as well as factor in the interplay between shelter site location and evacuation 

time/distance. 

Blocked roads and paths to affected areas are frequent in the aftermath of an earthquake. While 

some research has dealt with debris clearance to reestablish relief supply lines (see Table 15), 

there is an evident lack of research focused on how debris removal allows for evacuation from 

affected areas. Additionally, none have incorporated stochastic elements related to debris 

amount or resource requirements for clearance/repair. Finally, no research that we are aware 

of has combined preparedness and recovery, for example RDC location and resource planning 

considering likely road infrastructure damage and speed of debris clearance on relief 

distribution performance. 
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We acknowledge that from a modelling standpoint, development of integrated models often 

involves much a higher degree of complexity that can pose a serious challenge in terms of 

substantially increased computational time requirements. Nevertheless, greater use of 

integrated modelling can provide clear benefits (i.e., greater realism, enhanced coordination, 

more efficient use of limited resources) and issues related to solution time can at least partially 

be addressed by developing multiple inter-linked models and solving them in stages or using 

heuristics and approximation methods to solve realistically sized problem instances in 

reasonable computational time. 

2.3.1.3. Stakeholder Engagement 

 

There is broad recognition that in order to achieve buy-in and a measurable improvement in 

EOM performance, all key stakeholders need to be involved both in implementation and 

problem identification and modelling (not necessarily fine-grain details but at least general 

structure) [154,167,191,215]. Lack of stakeholder involvement in model conceptualization and 

development often leads to more theoretical and less realistic problem definitions, case studies 

that provide limited insights, and ultimately low likelihood of proposed methods ever being 

implemented [23]. 

To help understand the prevalence of stakeholder involvement in academic studies, the articles 

we reviewed were assigned one of three categories: 1) no involvement; 2) partial involvement 

(i.e., providing data and or general advice for case studies, including review and verification of 

model inputs); and 3) significant involvement (i.e., direct participation of an agency, NGO, or 

institution in the conceptualization and development of the modelling approach). Findings are 

detailed in Appendix B. Regrettably, despite the large body of EOM research reviewed, we 

found that only 19 (8%) of the 211 studies had significant stakeholder involvement and just 64 

(25%) had even partial stakeholder involvement. 

Focusing on studies that had “significant” stakeholder involvement, these can be further 

subdivided into various distinct groups. One group worked in close collaboration and co-design 

of the study through use of participatory approaches (i.e., interviews and workshops) to inform 

model conceptualization from the very beginning [88,208]. A second group engaged with 

stakeholders, mainly through interviews with emergency department personnel and EOM 

planners, to seek advice about specific issues relating to emergency response operations [125] 

or as part of defining qualitative or quantitative evaluation criteria (a.k.a. key performance 

indicators) of their decision support models [69,72,73,131]. Finally, a third group mainly 
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looked at post-disaster psychological metrics of local residents directly impacted by large-scale 

earthquakes based on interviews and questionnaires [215,216]. Only one study addressed a 

problem proposed by EOM practitioners themselves [115]. Although the level of stakeholder 

involvement does vary somewhat, a general observation about the afore mentioned studies (in 

comparison to those with no or partial stakeholder involvement) is that their assumptions and 

model features tend to show a greater degree of realism aimed at meeting the specific needs of 

EOM practitioners. 

To sum up, our analysis reveals that stakeholder involvement is for the most part an important 

but neglected aspect of OR studies applied to EOM, especially in the initial problem 

identification stage. Failure to identify earthquakes as the key focus of DOM research and 

involve EOM stakeholders from the start has resulted in modelling approaches that lack realism 

and real-world application by practitioners. Greater use of problem structuring (i.e., 

hierarchical process modelling) and other Soft OR methods as part of facilitated workshops 

involving one or more stakeholders, we would suggest, would go a long way toward addressing 

this shortcoming. Such approaches are commonly used in healthcare settings [265,266] when 

dealing with complex and unstructured problems and or where they may be multiple groups of 

stakeholders with potentially conflicting views about a problem. EOM shares much in common 

with healthcare and would likely benefit by adopting Soft OR conceptual frameworks. This is 

not to say that Soft OR should be the preferred or only approach to EOM, but simply that it 

should be used much more frequently as the starting point for subsequent Hard OR approaches 

(i.e., mathematical programming and heuristics) to ensure that they are well-grounded within 

a stakeholder perspective. 

2.3.1.4. Multi-Agency Coordination and Cooperation 

 

As noted by various authors, cooperation and coordination among multiple outside relief 

agencies and local and national government agencies is crucial to efficient EOM [20,265]. For 

example, in the case of the Indonesia Tsunami in 2018, foreign and local humanitarian 

organizations, including the Red Cross, other NGOs, and the United Nations (UN), were all in 

close communication with the Indonesian government to provide rapid support to the affected 

area of Sulawesi [268]. Foreign militaries actively participated in relief aid distribution with an 

average of 15-20 flights per day to the city of Palu. Supporting this effort was the UN Office 

for the Coordination of Humanitarian Affairs (OCHA), which assisted with information 

sharing and coordination of relief aid shipments. Similar to OCHA, the EU’s Emergency 
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Response Coordination Centre is responsible for collecting and analyses real-time information, 

devising response plans, and coordinating the EU’s disaster response efforts by matching offers 

of assistance to the needs of the disaster-stricken country [269]. 

In spite of the importance of multi-agency coordination and cooperation in real-world planning, 

surprisingly little research involving OR methods has been devoted to this subject. We found 

only one study focused specifically on emergency response and relief chain coordination [137] 

(preparedness) and a second that applies a sophisticated bi-level optimization framework to the 

problem of coordinating multiple, independent countries and aid agencies in relief distribution 

(response) [183]. Clearly, future research needs redress this gap in the literature. 

2.3.2. Further Refinement of OR Methods 

 

After defining a realistic and holistic problem description, ideally supported by stakeholder 

involvement, the next step should be the development of modelling frameworks and solution 

methodologies based on clearly defined model inputs (i.e., data, decision variables, and 

objectives or performance criteria). Depending on the specific problem and needs of decision 

makers, multi-methodology and interdisciplinary approaches may be called for. Below, we 

elaborate on these points. 

2.3.2.1. Definition of Clear and Realistic Inputs 

 

Lack of a clear problem description and assumptions has been highlighted by other DOM 

reviews [20,23]. Here we delve into this topic for the specific case of earthquake disasters, 

emphasizing the need to define clear and realistic inputs for various EOM problems. 

While reliability and vulnerability analysis has been successfully applied to a wide range of 

different types of infrastructure (see Table 6), including electricity grids [47,55], energy 

pipelines [55], water supply systems [49,51], and transportation networks [103,114], protection 

planning models have mainly focused on transportation networks (i.e., road links and bridges) 

[79,80] and occasionally buildings [81,82] (see Table 7). Often times, in the case of road 

network protection, rather abstract representations of the transport infrastructure have been 

applied without going into detail regarding the individual components of the network that can 

suffer damage (i.e., nodes, links, and pathways), the possibility some component are composed 

of multiple elements, the type of damage that can be sustained by different components, the 

degree of susceptibility to damage of each component, and what specific options are available 
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to mitigate against damage. For instance, the literature is rather vague about what constitutes a 

road link. If a particular section of road has an intervening bridge or tunnel, then by any normal 

standard it should be decomposed into three links even if there are no road junctions along the 

way. Further, little or no consideration is given to the causes and likelihood of link failures; is 

it due to say landslide blockage versus fracture, buckling, or subsidence? Finally, in most 

models there is no explicit consideration of what a protection action constitutes or its 

effectiveness in preventing damage [85,246]. 

Based on the above assessment, we offer two recommendations. The first is that there is a clear 

need to address protection of critical infrastructure networks besides just transport. Different 

infrastructure networks face unique risks from earthquakes and have very different types of 

protection strategies that can be practically implemented. It would be worthwhile to elucidate 

these differences and develop bespoke models for different infrastructure types. The second 

recommendation, regardless of the type of infrastructure network being considered, is that 

protection models should be combined more frequently with a preliminary reliability and 

vulnerability analysis, especially when it comes to case studies. We envision that reliability 

and vulnerability assessment models could form the basis for producing inputs to a protection 

model, including a detailed assessment of failure modes and probabilities and development of 

concrete protection strategies that are properly costed out and understood in terms of their 

physical/operational effects of damage prevention. 

Turning now to the preparedness stage, while there is a fair amount of research on relief pre-

positioning and resource planning, various limitations are evident based on our review of 

existing models. For one, a fair number of studies considered stocking of multiple commodities 

but do not give any specifics. It is not at all clear if non-perishable or perishable goods are 

involved or some combination thereof. For perishable goods, holding time (which is not usually 

considered) as well as transport time (which often is considered) becomes a key factor. Only a 

few studies relief pre-positioning and resource planning have looked at inventory holding and 

stock replenishment policies [103,120,123], which directly influence holding time. 

Additionally, with few exceptions (i.e., [92,100]), RDC location and inventory planning 

problems focus exclusively on relief distribution between RDCs and AAs, without considering 

supply from external suppliers or central warehouses. What is more, little or no mention of 

transport mode and vehicle availability is made in the literature on relief pre-positioning and 

resource planning. 



53 
 

A similar set of critiques apply to relief distribution models (response stage), except that multi-

modal transport and vehicle resources are often considered. Looking specifically at provision 

of emergency medical services, only limited work has dealt with duty allocation and scheduling 

[156,196], even though this is crucial factor in determining the number of earthquake victims 

that can be saved. Further research could also look at medical team composition (i.e., number 

of nurses, doctors, and first aid workers) depending on estimated casualty amounts. 

Evacuation planning, another response stage problem, has usually been based on defining 

routes to predetermined safe zones [128,171]. In practice, however, safe areas may need to be 

designated after an earthquake occurs, depending on the location of the epicentre, its 

magnitude, and damage to roads and buildings. Future work in this area needs to address the 

stochastic nature of earthquakes and the imperative of having contingent evacuation plans 

based on a range of different scenarios. Amideo et al. [24] emphasize paying greater attention 

to mass-transit-based evacuation and multi-modal evacuation approaches in DOM, which also 

applies to EOM. 

 

2.3.2.2. Interdisciplinary and Multi-Methodology Approaches 

 

A number of authors have pointed out the need for using interdisciplinary approaches in DOM. 

Amideo et al. [24], for example, suggest that use of techniques and concepts from different 

relevant disciplines would provide a more realistic frameworks for shelter location and 

evacuation routing. Hoyos et al. [21] provide some general recommendations about combining 

optimization with probabilistic or stochastic methods. Here, we aim to highlight how a multi-

methodology approach, in particular handling of information using multiple techniques and 

different disciplines, would help facilitate a more open and systematic decision making 

process. 

In the wider mitigation planning literature, the survival and damage levels of road networks 

and other infrastructure is typically determined by distance from epicentres or fault lines. In 

OR studies, however, few attempts have been made to accurately estimate post-disaster 

network failures as part of protection planning. Based on our review, Monte Carlo simulation 

is the most frequently used method to estimate infrastructure failure probabilities [51,54], 

though other techniques like Bayesian networks have also been applied [246]. In many cases, 

however, it is not clear how these probabilities relate to the geophysical properties of quakes 

(including epicentre distance, magnitude, and wave type) and infrastructure vulnerabilities. 
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Further research on infrastructure fortification would benefit from a multi-methodology 

approach combining optimization with seismic risk assessment and engineering in addition to 

simulation. Here, various techniques used in the field of seismology, including machine 

learning, might prove particularly useful in estimating damage levels [66,74] and human losses 

[75] based on key variables like structure type, constructive quality, built area, and occupancy 

level. Subsequent application of simulation to assess key uncertainties combined with 

earthquake engineering to specify feasible fortification/retrofit alternatives [272,273] could 

form the basis for developing more holistic and realistic mathematical programming or 

heuristic methods to efficiently allocate limited protection resources. Similar to protection 

planning type studies, greater use of forecasting methods from the seismology (i.e., for 

estimating the intensity and frequency of quakes) would significantly enhance the rigor of relief 

pre-positioning and resource planning models. A good example is a study by Battarra et al. 

[121]. While the mathematical programming model they present is fairly simplistic, their work 

is notable for adopting a multi-disciplinary approach to disaster preparedness, specifically the 

allocation of relief supplies among RDCs. 

Finally, better understanding of human behavioural responses would also greatly improve the 

realism of OR models, especially as part of response operations. Amideo et al. [24], for 

example, categorize evacuee behaviour based on five different dimensions that have an impact 

on evacuation effectiveness during an emergency: time of day, route diversions, demographics, 

route preference, and warning signals. One of their key findings is that time of day and 

demographics play a critical role in route diversion choice and, in turn, potential delays during 

an evacuation. In the case of EOM, however, only one study by Liu et al. [179] explicitly 

address aspects of human behaviour during evacuation. Similar to Amideo et al. [24], they find 

that mean evacuation time from buildings can be underestimated by at least 20% if social 

behaviours are not accounted for. We highlight this gap in EOM and suggest that future 

research should incorporate behavioural OR [274] and Soft OR [42] techniques to analyse 

individual and group responses as part of multi-methodology response planning. 

 

2.3.3. Implementation of Proposed Methods 

 

In the final stage of developing EOM methods applicable to real-world problems, it is important 

to consider: 1) validation via the use of case studies and 2) the frequently need to integrate 
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information systems to support real-time data acquisition and multi-agency coordination. 

Below we discuss these two key point in further detail. 

2.3.3.1. Case Studies 

 

Most studies we looked applied their modelling and solution framework to a real or semi-

realistic case study (see Appendix C) to demonstrate the utility of their proposed approach and 

derive new insights to support policy making and planning. This was typically carried out in 

two steps – first the generation of inputs to highlight data requirements and show how the 

proposed framework can be applied in practice and second a set of computational experiments 

to generate baseline results and carry out further what-if or sensitivity analysis. Here, we focus 

on the data generation phase and the common limitations of earthquake scenario development.  

The generation of problem data can sometimes be laborious and require the use of specialized 

GIS software, like ArcGIS and GoogleMaps. For other types of data, discussions and 

interviews with expert stakeholders (discussed in Section 2.5.1.2) are sometimes required. 

More often than not, simplified versions of infrastructure systems (i.e., transport networks and 

water supply systems) are developed from secondary data sources or based on randomly 

generated data (see Appendix C). Consequently, even when GIS tools are used to develop a 

network representation, they may not involve a high degree of detail (i.e., individual road 

segments and buildings). In addition, demand nodes are typically represented by whole cities 

or even provinces with level of demand proportional to population size (i.e., [111,185,245]). 

Resources, however, are sometimes defined in aggregate terms (i.e., total supply), instead of 

being distributed among individual locations with defined distances to demand nodes (i.e., 

[219,253]). Based on this we make a few seemingly obvious recommendations. These are 

particularly pertinent to protection planning, relief pre-positioning, shelter site location, 

evacuation, relief distribution, and recovery stage problems. Where possible, real network data 

of sufficient detail for planning purposed should be used. Linked to this, demand should 

generally be defined at district or neighbourhood level for large cities and by 

towns/communities when working at the scale of provinces. Finally, supply nodes and supply 

amounts should nearly always be included, ideally based on information provided by local 

authorities, to give a more realistic picture of how resources can be most effectively allocated. 

Besides basic network configuration and resource availability data, case studies must also 

invariably incorporate information about the anticipated impacts of an earthquake (i.e., 

casualties, infrastructure damage, traffic conditions). Our analysis shows that disaster scenario 
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development is mainly informed by two sources: 1) government and NGO technical reports 

and 2) software platforms (see Appendix C). Reports from agencies like the Japan International 

Cooperation Agency [275,276] often provide detailed analysis of likely earthquake 

occurrences and post-earthquake conditions, including predicted magnitudes, rupture locations 

and lengths [105,246], classification of at risk roadway components [218], and casualty rates 

and associated evacuation demand [130]. Software like Hazus [260] are also useful in 

forecasting the number of displaced households [194], the number of critically injured 

[166,194], and infrastructure damage levels [165]. Depending on the disaster stage and type of 

model, either the most probable scenario is examined [72,131,222] or multiple scenarios (that 

vary in terms of earthquake position/magnitude, time of occurrence, etc.) are considered in an 

effort to find sufficiently robust solutions [88,130,241]. We do not have any major critiques 

about how disaster scenarios are developed in the case studies we reviewed except to say that 

greater attention should be paid to properly assigning probabilities to each scenario when 

multiple scenarios are included. This mainly applies to mitigation and preparedness stage 

problems. Not infrequently, scenarios are given equal chance of occurrence. Clearly, more 

scientific approaches are needed, perhaps involving interdisciplinary methods. 

 

2.3.3.2. Integration with Information Systems 

 

In the context of EOM, information systems are invaluable for providing accurate data to all 

relevant actors and area experts involved in both pre-disaster mitigation and preparedness 

planning and post-disaster response and recovery activities. Usually, information systems are 

implemented using a combination of GIS software, remote sensing data, government databases, 

and other modern information technology systems. Such systems greatly enhance the decision 

making-process of EOM, including but not limited to relief chain coordination, search and 

rescue, evacuation, relief distribution, and debris clearance through better knowledge of where 

damage to buildings and infrastructure and location and needs of affected people. As with other 

reviews [20,21,23], we affirm the critical need for the development and deployment of user-

friendly information systems in EOM, as well as the potential of OR methods to enhance the 

capabilities of such systems. 

Especially important to enhancing the efficiency of humanitarian relief operations and guiding 

investment in preemptive measures to reduce earthquake risks is the availability of accurate 

real- and near real-time data. In more developed areas of the world, national- or regional-level 
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earthquake information systems have been created, which provide access to real- and near real-

time data for various types of analyses. An example of a near real-time system is Hazus, 

developed and maintained by the US Federal Emergency Management Agency (FEMA). 

Hazus integrates geographic and other types of data into a GIS-based software platform to 

estimate direct and indirect losses from hazards, including earthquakes [277]. A notable real-

time data information system is Turkey’s Rapid Earthquake Response System, which can 

estimate damage to facilities and the roadway network across Istanbul following an earthquake 

through collection of data from pre-installed seismic sensors [218]. In the absence of centrally 

managed earthquake information systems, as is common in many least economically developed 

countries, open-source, online platforms that make use of Volunteered Geographic Information 

(VGI) have sometimes been relied up by government agencies and NGOs. Following the 2010 

Haiti earthquake, for example, OpenStreetMap volunteers from around the world used satellite 

images to map the outlines of streets and buildings in the Port-au-Prince area. This effort was 

further supported by on-the-ground volunteers in Haiti who upload additional information 

using portable GPS devices [278]. We note that decentralized online and VGI systems like one 

used in Haiti are, in comparison to a centralized information system, less prone to being 

knocked out as a result of a large quake. 

We observe that a number of OR studies in the EOM literature have made use of outputs from 

near real-time information systems as part of case studies, typically when defining earthquake 

scenarios and estimating damage and casualty levels (i.e., [166,190,251]). A key difficulty 

potentially inhibiting wider integration of real- and near real-time data into OR based decision 

support tools may be the considerable amount of data processing required to translate data 

contained in an information system into a format that can be readily inputted into an OR model. 

More importantly, vital pieces of information needed by OR models are often missing or 

incomplete (i.e., due to inability to assess on-the-ground conditions), which invariably impacts 

the quality and usefulness of OR model outputs. In the worst case, data gaps can render 

solutions infeasible (i.e., when a bridge is shown to be intact from satellite images but no longer 

capable of bearing vehicles above a critical weight). This is especially concerning when 

deriving solutions for early stage response. There have been some attempts to address this. 

Yagci Sokat et al. [217], for example, propose a framework to estimate incomplete information 

on the status of a network following a disaster. Although promising, a significant amount of 

time for manual collection and data transformation is still needed. Future studies could consider 

automating these processes to quickly provide essential data in an appropriate format that can 
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be used by OR planning tools. Additionally, future research might look at new approaches for 

incorporating real-time data provided by UAVs, as well as social media or other user-generated 

data. Great use of UAVs in EOM would help to eliminate uncertainties about post-earthquake 

states by providing information to first responders and relief organization about which 

structures have been affected, the extent of damage, estimated numbers of people affected, the 

passability of roads, and so on, thus improving damage assessment, search and rescue, 

evacuation, relief distribution, and restoration activities. Similarly, social media data may be 

useful for quickly identifying the needs of victims and improving situational awareness of 

emergency response and relief efforts. However, given obvious concerns about the accuracy of 

such data, there is a clear need for formal frameworks to determine the best way of integrating 

social-media with more conventional data sources [204]. Finally, future research might look to 

move beyond the traditional paradigm of having a separate information system that 

subsequently feeds into standalone OR models for carrying out analyses. We believe there is 

enormous potential for greater integration of OR methods into real- and near real-time 

earthquake data information systems, either directly through collaboration with government 

agencies and NGOs or possibly by developing add-on modules for more widely used systems 

(i.e., OpenStreetMap). 

2.4. Conclusions 

 

To the best of our knowledge, this review is the first attempt at investigating the use of OR 

techniques specifically for EOM. Given that we limited our review to studies dealing with 

earthquake-oriented problem definitions or those involving the use of earthquake disaster case 

studies, our review stands apart from past and recent DOM review papers. Throughout, we 

have taken care to precisely categorize studies based on the disaster stage(s) being dealt with, 

methodology(ies) applied, and specific planning/operational problem type. We also provide 

details about the extent of stakeholder involvement and information relating to case studies 

(i.e., type of infrastructure network examined, if any, and whether real or randomly generated 

data were used). Basic findings are that most research has focused on a single EOM disaster 

stage, with preparedness and response problems receiving by far the most attention. More 

recent work has begun to look at the integration of two or more disaster stages. In terms of 

modelling and solution methodology, mathematical programming and heuristics are by far the 

most widely used for most problem types, though there are exceptions. Finally, most studies 

have little or no stakeholder involvement. 
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3. A model for optimizing pre-earthquake mitigation measures to improve 

the efficiency of evacuation operations  

 

This chapter presents a novel two-stage stochastic program for a network strengthening 

problem, called the Capacitated Network Strengthening Problem (CNSP), which integrates 

mitigating strategies’ selection and evacuation allocation planning. The CNSP mainly 

identifies the mitigation decisions for the roadway components considering their impacts on a 

post-disaster transport network accessibility between the critical supply and demand points. In 

this problem, critical supply and demand points refer to emergency response centres (ERCs) 

(i.e., hospitals) and affected areas (i.e., evacuation zones), respectively. The proposed model 

determines how to allocate demand (those in need of emergency medical care in the demand 

points) considering the network accessibility and supplier capacities by minimizing total unmet 

demand and travel distance. Unmet demand refers to the number of people who need medical 

care but cannot be transferred from affected areas to ERCs due to road conditions and/or 

capacity constraints. 

The remainder of this chapter is organized as follows. In Section 3.1, we give a brief 

introduction related to the problem background. Related work in the literature is given in 

Section 3.2. The problem description and the proposed integrated model formulation are 

presented in Section 3.3. 

 

3.1. Introduction 
 

Strategic and systematic mitigation actions can significantly reduce vulnerabilities to 

earthquake damage. Efficient mitigation strategies can minimise the impact of earthquake 

damage by reinforcing vulnerable components of transportation networks (bridges, tunnels, 

etc.) before they are likely to be disrupted. In comparison to other types of natural disasters, 

features specific to earthquake mitigation include human habitation concentrated in seismically 

active areas, high cost of implementing mitigation measures (too many structures spread over 

large areas), long recurrence time (decades or more) between sizable quakes and, as a result, 

the amount of lead time to plan and take pre-emptive action.  
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Decision-making during mitigation action planning must be conducted analytically and in a 

systematic manner while also considering the potential impacts of these decisions on the post-

earthquake situation. Typically, authorities are faced with the pre-disaster mitigation problem 

of deciding which links in the network should be structurally strengthened against the risk of 

earthquakes to ensure that the links are less likely to fail after an earthquake, and thereby 

improve network accessibility. As resources for pre-disaster operations are limited and 

strengthening the entire transportation network is not financially viable, it is crucial that 

mitigation investments are optimised to achieve maximum post-disaster response efficiency.  

For vulnerable components of critical infrastructures, the mitigating philosophy should either 

be that the structure is designed to have no damage/only minor damage which is repairable or 

that the structure can sustain some controlled structural damage so as to prevent collapse that 

can block accessibility. Damaged roads directly affect the delivery of time-sensitive response 

operations after an earthquake (i.e., providing first-aid and rescuing trapped survivals, 

evacuating the affected population to safe zones and medical centres, and providing emergency 

relief to victims).  For example, despite the abundance of supplies, victims of the 2010 Haiti 

earthquake could not receive relief items for a long period since the damage caused to the road 

network severely hampered transportation activities [279]. The subsequent tsunami caused 

extensive damage to roads and bridges, resulting in the paralysis of land transportation. 

Moreover, due to road destruction in Aceh After the 2004 Asian Tsunami, the long distance 

between hospitals and the patient transfer centres, and the time spent handling victims, it took 

longer than usual (>1 hour) to transfer patients to hospitals [280]. 

Roadways may become inoperable in the event of an earthquake. Earthquakes can cause cracks 

and deformations in roads obstructing the transportation. The collapse of roadside buildings, 

viaducts, bridges, and pedestrian overpasses on a roadway may halt traffic on that road. 

Transportation functionality may be measured as relative to accessibility, travel time, flow 

reliability, and traffic interruptions [279]. In practice, Level of Service (LOS) is a measurement 

(threshold) which is used to qualitatively describe the operating conditions of a roadway based 

on factors such as speed, travel time, delay, and safety [279]. On the basis of the LOS definition, 

we use a threshold value that designates operability condition for each link and it is assumed 

that experts would provide this threshold value by considering seismic capacity, location of the 

link, and predicted traffic conditions at that moment. We focus on accessibility on the network 

rather than traffic conditions at the time. In the proposed model, operability depends on 

mitigation efforts, earthquake characteristics (i.e., peak ground acceleration (PGA) level which 
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measures how intensive the ground shakes in a given geographic area, epicentre location, etc.), 

and structural features.  

Within the context of this problem, several mitigation strategies can be adopted, including 

strengthening the structure using cross braces and other reinforcements; using damping or 

structural isolation systems to prevent rigid structural components from banging into each 

other, which is a leading cause of earthquake damage; incorporating dampers that can absorb 

some of the forces that result from a seismic activity [281]. These strategies can be 

implemented with an aim to increase seismic resilience of vulnerable links and subsequently 

improve the post-earthquake survival status of roads. Seismic risk assessment for transportation 

infrastructure can guide the estimation processes of how the various components of a road 

network would be affected by seismic activity depending on hazard characteristics and initial 

resilience conditions of infrastructures. In practice, a structure’s response to seismic activity is 

estimated by the seismic assessment techniques using specific parameters such as seismic 

capacity, weaker sections/components and mode of failure [282]. In this study, we call 

resilience the ability to maintain transportation functionality in various levels in a 

network/roadway component. 

Selection of mitigation strategies requires the evaluation of the available options according to 

performance objectives. These objectives consist of providing a service level known as 

“operational” guaranteeing the occupation or the immediate use of the structure after a seismic 

event by reducing post-earthquake damage [279]. In practice, to assess the mitigation efforts, 

analytical and/or experimental techniques (i.e., quasi-static cyclic load testing techniques, 

shake table testing and pseudo-dynamic testing) are used to test and validate the system 

performance of structures against any earthquake occurrence [283]. In practice, the 

determination and design of applicable retrofit strategies requires preliminary assessment and 

detailed evaluation processes. For example, the ATC-6-2, developed by Applied Technology 

Council (ATC) in collaboration with the US Federal Highway Administration (FHWA), is a 

widely used preliminary assessment method for thoroughly analysing an existing bridge and 

potential retrofitting options for the most frequent seismic deficiencies. In this ATC 6-2 scoring 

method, three factors, which are vulnerability (bearing type, superstructure skew angle, 

minimum support length), seismicity (the geology and geotechnical surroundings of the 

structure), and structural importance (daily average traffic, the physical size of the structure, 

the population surrounding the structure, its usage), are considered to define the 
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bridge/viaducts’ vulnerability scores [284]. Therefore, in the proposed formulation, we assume 

that the impacts of mitigation strategies on resilience levels of infrastructures against a 

particular earthquake scenario can numerically be assessed by the analytical and/or 

experimental techniques. Post-earthquake survival states of network links are dependent on the 

current resilience levels with/without mitigation efforts in a particular earthquake scenario. 

Then, alternative short and reliable routes between critical supply (i.e., ERCs) and demand 

points (i.e., evacuation zones) are identified to measure network-wide accessibility. 

 

Emergency Response Centres (ERCs) including hospitals and temporary medical centres 

(could be built in airports and hubs) have an important role in serving casualties and preventing 

loss of lives after natural disasters. The disaster victims who need medical care should be 

transported from incident areas to ERCs through the road network after an earthquake. Each 

ERC has a limited-service capacity depending on the number of patients being currently served 

and the limited medical staff. Realistically, if the issue is that of evacuating injured people who 

need immediate medical care, it would undoubtedly be necessary to consider the ERCs. Besides 

road availability, ERCs have service capacities, and this should be considered in the casualty 

transportation. In the proposed model, we attempt to allocate people who need medical care by 

considering service capacity and road conditions.  

People, who are injured and in need of medical care, urgently need to be transferred from 

earthquake zones to medical care facilities. The information about which roads are operational 

for transportation after an earthquake is known by public authorities. If the injured people 

transfer takes place without considering the service load of hospitals, the patients will have to 

be transferred to other centres for emergency treatment. For example, after the 2004 Asian 

earthquake and tsunami, the nearest hospital was unable to service many injured persons 

evacuated from the impacted areas, therefore these people had to be relocated to various 

hospitals that were 40-50 kms away [285]. 

 

This research problem aims to optimize investment/protection strategies to enhance the 

resilience of components in a road network against earthquakes by considering evacuation 

allocation in post-earthquake conditions. Protection planning strategies are identified for 

specific road components in a roadway network for the purpose of ensuring short and reliable 

routes between demand points (incident areas) and ERCs.  
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We propose a two-stage stochastic programming model that combines mitigation planning to 

strengthen road network resilience against failure in the aftermath of an earthquake and post-

disaster evacuation planning. Therefore, we seek to address decision-making issues while 

selecting investment strategies to mitigate and enhance the resilience of road networks against 

earthquakes. The model decides the set of mitigation strategies to be applied by simultaneously 

considering the operability of links depending on the applied strategies and then the distribution 

of the affected people to the ERCs which have limited-service capacity.  

Let us summarise the proposed problem's contributions as two primary points: 

 

- We present a model of integrated protection and evacuation planning based on realistic 

assumptions: i) capacitated suppliers, ii) including various mitigation projects per link 

with varying impacts on resilience, iii) focused on improving resilience levels of links 

rather than an approach that guarantees the link will be undamaged/operational. 

 

- The approach ensures that only operable roadways are used to transport evacuees to 

ERCs and offers effective evacuation allocations of affected people. Furthermore, we 

consider the service capacities of medical facilities to ensure that individuals receive 

timely and essential medical care. 

 

3.2. Related Work 
 

To reduce the risk of inaccessibility between affected zones and ERCs, the weakest 

components of transportation infrastructures whose failure would have the greatest impact on 

accessibility should be identified and protected in the pre-disaster. Some of links in 

transportation networks should be selected to invest for enhancing their resilience against 

disasters to provide the best post-disaster response efficiency with respect to the limited 

protection budget. 

We review the studies which address the protection/investment planning to strengthen the links 

on transportation networks. Pre-disaster protection planning problems aim at selecting the links 

of the network to retrofit so that the chosen links are less likely to collapse/fail after a disaster, 

and therefore the network accessibility improves [246]. 
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The first approach is addressing only pre-disaster mitigation decisions (selecting the links to 

be invested/strengthened) with the objective of maximizing transportation network 

connectivity/accessibility in post-disaster. Peeta et al. [79] introduce a two-stage stochastic 

programming model for an investment problem to protect roadway networks affected by 

earthquakes with the objective of maximizing the post-disaster connectivity and minimizing 

traversal costs between multiple origin and destination (O–D) nodes. The planning problem 

only seeks connectivity between various O-D pairs and hence focuses on incapacitated supplier 

capacities and road conditions.  

Another approach is addressing to increase the link capacities by the retrofitting efforts. Link 

capacities refer to traffic capacity related to travel time. Du and Peeta [286] provide a bilevel 

stochastic model that, rather than evaluating a single disaster scenario, evaluates many disaster 

situations. The model includes retrofitting options that not only ensure connectivity but also 

increase traffic capacity while lowering retrofitting costs.  Hence, the model also considers 

partial investment options for link retrofitting rather than full or no-retrofitting so that the links 

can be strengthened at different levels. Another consideration for pre-disaster mitigation 

problems is improving link capacities. Mohaymany et al. [54] propose an optimization 

framework to identify link strengthening decisions using three post-disaster link survival 

statuses: normal, deteriorated, and failed. The link capacities are defined by a discrete 

performance function reflecting the occurrence probability corresponding to these survival 

stages. Furthermore, they assume that only one level of retrofitting improves the performance 

of each link. The reliability metrics are generated using a Monte-Carlo simulation method, and 

the problem is solved using a genetic algorithm.  

Some work investigates the trade-off between protection planning and post-disaster stage 

effort, implying that efficient protection planning attempts to reduce the requirement for 

additional post-disaster activities effort. There are several variations of transportation network 

protection problems that consider the impact on the response stage operations. Some 

researchers apply two-stage models where the first stage decisions indicate the assignments of 

retrofit strategies and the second stage simultaneously seeks response stage decisions. Lu et al. 

[80] formulate a mean-risk two-stage stochastic MINLP model, in which the first-stage 

decisions determine the optimal allocation of retrofit strategies for bridges, whereas the second-

stage decisions focus on post-disaster traffic assignment. Contrary to the majority of work in 

this area, they include multiple damage states and multiple retrofit strategies where binary 

decision variables are used to indicate whether a specific strategy/investment project is selected 
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for a bridge. The mean-risk two-stage stochastic programming model is formulated as a non-

convex MINLP, wherein the travel cost for bridge links is a non-convex nonlinear function of 

retrofit decisions. To solve the model, they propose a decomposition method based on the 

Benders Decomposition (BD). They apply a case study based on the benchmark Sioux Falls 

network.  

Another work on the integration of protection planning and post-disaster stage operations is by 

Yucel et al. [246], who optimise the expected post-disaster network accessibility by pre-

disaster structural improvements to selected network components by considering correlated 

link failures. They represent the dependency model using a Bayesian network and estimate the 

probability of any network scenario, given the conditional probabilities defined by the Bayesian 

network. They present a two-stage stochastic program in which a network accessibility measure 

is optimized with the objective of maximizing accessibility measures. For combining 

retrofitting planning for both links and buildings, Doyen and Aras [85] address additionally 

retrofitting decisions for buildings and links in the first stage and tackle relief distribution 

decisions in the second stage. Similarly, Edrissi et al. [249] integrate three main problems in 

their formulation: mitigating the impact of the disaster by renovating risky buildings, 

strengthening vulnerable links in the roadway network, and allocating/locating emergency aid 

levels. 

Some work assumes that the number of fatalities will be reduced by enhancing link capacities 

or decreasing failure probabilities, which will result in less travel time for providing relief item 

allocations or allowing rescue teams to save more people. Edrissi et al. [279] focus on investing 

in retrofitting critical transportation links with the objective of maximizing the retrofitted 

critical links that have high failure probabilities. They also aim at minimising the death toll 

correlating immediate relief item allocations.  A heuristic algorithm is proposed to solve real 

size problems and this method only considers the network scenarios in which a specified 

number of links may fail. Edrisi and Askari [86] propose a protection planning problem which 

allocates a protection budget for mitigation strategies such as capacity expansion and post-

disaster stabilisation for transportation network links. To solve the budget allocation problem, 

a bi-level optimisation procedure is introduced where the total travel time and the total number 

of casualties are minimised in the objective function. The model assumes that the number of 

fatalities reduce by improving capacity and resilience of links owing to the reduction in travel 

time for the rescue teams leading to the rescue of more people.  The first sub-problem level 
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allocates an available budget to pre-disaster capacity expansion while the second decides the 

level of stabilisation of each link. A Particle Swarm Optimization (PSO) algorithm is proposed 

to solve the optimisation problem.  

A few works in the literature consider the impacts of investment/strengthening actions on 

recovery operations (e.g., reconstructive or repair) in protection planning problems. Liu et al. 

[287] present a two-stage stochastic programming model to improve the resilience of roadway 

bridges with the objective of minimising expected cost and risk. They also assume that the 

impact of retrofit is quantified as savings in reconstructive and travel delay costs. In another 

similar work, Miller-Hooks et al. [288] posit that taking mitigation actions can reduce the 

implementation time of recovery actions. In their model, the first stage includes decisions on 

pre-disaster protection planning actions that would be taken prior to disaster scenario. The 

second stage seeks the decisions on the selection of post-disaster recovery actions to be taken 

in the aftermath of disruption, assuming that the impact of the disaster on arc capacities and 

traversal times is known. They solve the model with L-shaped method with Monte Carlo 

sampling.  

Protection planning studies address similar problem definitions, however, the assessment 

approaches of accessibility differ. These differences have an essential role in terms of 

practicality. For instance, two conditions are used to assess accessibility: the surviving states 

of links (i.e., intact or collapsed, operational or non-operational) and the impact of protection 

techniques on roadways (protected/non-protected). One of the critical issues is to estimate 

whether the links are operable/survivable aftermath of an earthquake. Most studies in literature 

have adopted a binary approach to define post-disaster link damage states (e.g., undamaged or 

collapsed, operational or non-operational). Instead of using binary representations 

(operational/non-operational) for the surviving states of links, some research has used various 

measures (i.e., link capacity, travel time reliability) to assess the post-disaster conditions in 

addressing network protection planning problems. Besides, different approaches of assessing 

impacts of mitigation actions on the link seismic capacity/survival probability/structural 

conditions have been adopted in the literature. Table 17 summarises the assumptions used in 

related studies, such as link survivability states, assessment of impacts (how to assess/measure 

the effects of mitigation efforts on operability/functionality of links), identified mitigation 

options (single or multiple) for each link, and incapacitated/capacitated suppliers. 
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Table 17. Details of related studies 

Study 

Assumptions 

Solution 

Method 
Case Studies 

Surviving states 
Assessment of 

mitigation 
impacts 

Mitigation 
choice per link 

Suppliers 

Mohaymany et al. (2012) 
[78] 

Link capacity mode 

(normal, degraded, 
failed) 

- Single U GA 
The Sioux Fall (N,E): 

(24,76) 

Peeta et al. (2010) [79] 
Binary 

(Functional/Not) 
- Single U SAA 

Istanbul roadway 
network (N,E): (25, 

30) 

       

Lu et al. (2018) [80] Link capacity 
Expansion on 
link capacity 

Multiple U BD 
The Sioux Fall (N,E): 

(24,76) 

       

Edrisi and Askari (2019) 
[86] 

Binary (Stabilized 
/Not) 

Expansion on 
link capacity 

Single U PSOA 
The Sioux Fall (N,E): 

(24,76) 

       

Yücel et al. (2018) [246] 
Binary 

(Functional/Not) 
- Single U TA 

Istanbul roadway 

network             (N,E): 
(60, 83) 

Edrissi et al. (2015) [279] 
Transportation time 

changes 

Reduction in 
failure 

probability 

Continuous 
[0,1] 

U HA 
Tehran city (N,E): Not 

Specified 

Du and Peeta (2014) 
[286] 

Transportation time 
changes 

Reduction in 

failure 
probability 

Multiple U DA 
The Sioux Fall (N,E): 

(24,76) 

Liu et al. (2009) [287] 
Binary (Damaged, 

not) 
- Single U BD 

The Sioux Fall (N,E): 

(24,76) 

Miller-Hooks et al. 
(2012) [288] 

Link capacity 
Expansion on 
link capacity 

Multiple U 
L-

Shaped 
DA 

Double-Stack 

Container Network 
(N,E): (8,46) 

Faturechi and Miller-
Hooks (2014) [289] 

Link capacity 
Expansion on 
link capacity 

Multiple U DA 
Random generated 

(N,E): (6,16) 

Current research 

Resilience level and 

survivability 

threshold dependent 

Increase in 

resilience 

levels 

Multiple C 
SAA and 

GRASP 

Istanbul highway 

network (N,E): (60, 

83) and (N,E): 

(349,689) 

* U: Uncapacitated, C: Capacitated 

*DA: Decomposition Algorithm, BD: Benders Decomposition, GA: Genetic Algorithm, TA: Tabu Algorithm, PSOA: Particle Swarm 
Optimization Algorithm, GRASP: Greedy, SAA: Sample Average Approximation, (N,E): (Number of nodes, Number of links) 

 

Some studies [80,86,288,289] have assessed mitigation activities as a factor to improve the 

pre-estimated link capacities in the aftermath of an earthquake relative to travel time. For 

instance, Edrissi et al. [279] use an LSO measurement to assess post-earthquake status based 

on travel time. If the effect of damage status on travel time is not considered in a defined 

problem, there are two assumptions in deciding whether a link is operational or not. First, if 

the link is strengthened, that link will be operational in post-earthquake. Second, a survival 
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probability or risk level is assigned to a link depending on the features such as the region where 

they are located and the risky structures they contain, and post-earthquake operability is 

decided based on these values. For example, Yücel et al. [246] define a survival probability for 

each link and these survival probabilities can be increased by the investments. If a link is not 

mitigated, it is assumed that a link fails or not based on a generated vector which contains a 

random number for each link from a uniform distribution between 0 and 1. If a link’s survival 

probability is less than that random number, the link will be operational and remain connected. 

If a link is mitigated, then the survival probability is set to 98%.  

Operability/Functionality is the most commonly used metric for describing system resilience 

[290]. In this study, we refer resilience to the ability to maintain transportation functionality in 

various levels in a network/ roadway component, therefore a link’s resilience level is one of 

the factors which affect operability. Post-earthquake damage states of roadway links would 

change due to the level of seismic actions and periodic strengthening [291]. Additionally, a 

link would be operational for transportation even if it has a minor/slight damage. In the 

proposed model, we define resilience levels to estimate survival states of links, and we assume 

that the protection operations can improve the resilience levels of network links; however, they 

cannot guarantee that there will be no damage at all. Hence, we assume that estimated post-

earthquake survival states of network links depend on the resilience level for a particular 

earthquake scenario (each link has a unique threshold value to be operational for each scenario). 

We believe that this approach is more realistic in terms of estimating survival states and 

assessment of protection strategies. 

As it is typical with these studies, authors first analyse the computational performance of their 

proposed model or solution approach and then apply it to a case study based on real-world data. 

Here, the aim is to show how the model can capture all crucial network information and how 

the solution methodology generates robust solutions in acceptable computation times. As seen 

in Table 17, the majority of authors use the well-known hypothetical Sioux network data which 

is commonly used in transportation research. Conversely, in some studies, instances in case 

studies are generated from the transportation networks of historical earthquake areas/risky 

regions. We conduct two case studies by using a simplified and detailed Istanbul roadway 

network, the realistic input generation methods and case study implementation are explained 

in Section 5, in detail.  

 



69 
 

We review the previous work which address protection/investment planning to strengthen the 

links on transportation networks. While most of the work focuses on optimising post-disaster 

accessibility/connectivity by deciding which infrastructure to fortify or upgrade in order to 

minimise system vulnerability or maximise reliability/resilience, a few of them involve post-

earthquake operational decisions in addition to these mitigation decisions. These problems 

addressed so far in the literature differ from ours in two aspects: i.) we assume that mitigation 

strategies increase the resilience level by applying mitigation projects and each link has a 

threshold to be operational, which is determined considering earthquake characteristics and 

structural conditions; ii.) our goal is to provide access to people who may require medical care 

in the aftermath of an earthquake in the shortest possible time and also we take service capacity 

of suppliers into account. This is the first attempt to address the protection and evacuation 

planning in an integrated manner by maximising the efficiency in post-earthquake evacuation 

operations (minimising the unmet demand and travel time simultaneously) considering the 

capacitated ERCs.  

 

3.3. Problem Statement and Model Formulation 
 

This section starts by providing the problem statement with model assumptions and then moves 

on to the mathematical formulation.  

3.3.1. Problem Statement 

 

We propose a two-stage stochastic programming model which combines protection and 

evacuation planning decisions. An investment problem, which we call the Capacitated 

Network Strengthening Problem (CNSP), is introduced, and formulated as a two-stage 

stochastic program in which the objective is to minimize both unmet evacuation demand and 

travel distance. 

The model identifies the link strengthening decisions in the first-stage. In the second stage, our 

model decides on the allocation of evacuation demand to emergency response facilities in the 

network considering post-earthquake road conditions. The idea is to identify a protection plan 

not only to swiftly evacuate injured people from the affected areas to an emergency response 

facility, but also to ensure that they promptly receive health care. Therefore, we take into 

account facility capacities in the problem context. The proposed model has two main objectives 
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including minimizing unmet evacuation demand (the primary objective) and evacuation time 

(the secondary objective).  

The main aim of our study is not to solve a detailed evacuation planning problem but to 

investigate the trade-off between protection planning and response activities considering the 

effect of mitigation decisions on post-disaster actions. This model examines this problem at a 

strategic level and considers an integrated approach which combines pre-earthquake protection 

planning and a simplified version of post-earthquake evacuation plan.  

The road network is represented by an undirected connected graph 𝐺 = (𝑁, 𝐸) where N is the 

set of nodes including possible affected regions denoted by I and current medical facilities 

(suppliers) denoted by J, N=I ∪ 𝐽 and E is the set of links, specifically links connecting demand 

and supplier nodes. The highly populated residential areas, emergency response facilities and 

junction points are represented by nodes on the roadway system. We assume that all possible 

routes are known in advance and the set of routes between demand node 𝑖 𝜖 𝐼 and supplier node 

𝑗 𝜖 𝐽 is denoted by 𝑅𝑖𝑗. Travel distances are defined by 𝑙𝑟 for 𝑟 𝜖 𝑅 and 𝑙𝑚𝑎𝑥
𝑖  is the longest 

length of the routes which connects demand node 𝑖 𝜖 𝐼 and the supplier nodes. Each demand 

(affected area) node 𝑖 𝜖 𝐼 has a unique evacuation demand, denoted by 𝑑𝑖. This input parameter 

is estimated by considering the population affected in an anticipated disaster scenario. 

 

The CNSP specifically concentrates on enhancing the resilience of vulnerable road components 

(bridge/viaducts) against large-scale earthquakes by considering the connectivity/accessibility 

of a road network. In this study, we call resilience the ability of a link to maintain transportation 

accessibility. For each link 𝑒 𝜖 𝐸, we denote by 𝜌𝑒 its initial resilience level, i.e. its resilience 

level without the implementation of any mitigation project.  

 

Mitigation strategies are implemented to upgrade resilience levels of vulnerable links and 

subsequently improve the post-earthquake survival status of roads. We define a set of 

mitigation projects denoted by P. Each mitigation project 𝑝 ∈ 𝑃 has an associated cost 𝑐𝑝. The 

total cost of the selected protection projects cannot exceed a limited protection budget B. 
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We assume that the impact of the mitigation projects on the resilience level of a link can 

numerically be assessed and that there are different mitigating options (projects) that can be 

implemented on one link, with different impacts on the link resilience levels. We also assume 

that each mitigation project only affects one link and that only one mitigation project can be 

implemented on each link. This is a realistic assumption when considering mitigation measures 

for earthquakes, such as the retrofit of infrastructure components. Different retrofit projects 

with different impacts can be considered to strengthen a component, but only one of them can 

be implemented. We define a parameter 𝛿𝑝𝑒 that represents the amount of improvement in 

resilience level of a link 𝑒 𝜖 𝐸 when a mitigation project  𝑝 ∈ 𝑃 is implemented. After the 

mitigation decisions, the resilience levels should be updated by adding the corresponding 

improvement by the chosen project. The resulting resilience levels are referred to as the 

ultimate resilience levels in the formulation. In summary, the ultimate resilience level of a link 

depends on its initial resilience level and on the selection of the mitigation project affecting 

that link.  

 

A threshold value that designates operability condition for each link is used in the formulation, 

and it is assumed that experts would estimate this threshold value by considering seismic 

capacity and location of the link. A link may be mitigated to varied degrees but may still be 

inoperable after the earthquake due to the risk it carries. The operability status of each link, 

which is called survival status of a link in this model, depends on its ultimate resilience level 

and the survivability threshold. Each link has a unique threshold value. If a link’s ultimate 

resilience level is greater than or equal to the survivability threshold for that link, that link will 

be operational, i.e., available for transportation. We define network scenarios denoted by Ω , 

indexed by 𝑠. In each scenario, survivability threshold value for each link is denoted by 𝛽𝑒(𝑠) 

for link 𝑒 ∈ 𝐸 in scenario s. All second-stage decision variables are scenario-dependent.  

 

The operability status of each link, which represent the link availability for transportation, is 

captured by a binary variable, which takes value 1 if the link is operational and 0 otherwise. 

Uncertainties like unknown survivability conditions are captured through the use of a finite 

number of network scenarios. In this model, we include discrete scenarios which refer to 

uncertain survival threshold sets for links. This approach defines a minimum resilience level 

for each link to be operational. Let the random vector ξ describe the uncertain survivability 
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threshold values. Each realization ξ(s) define network operability scenarios with 𝑝𝑟𝑜𝑏(ξ) 

which is the probability distribution of uncertain parameters. 

 

As mentioned above, this model investigates the defined problem at a strategic level and uses 

a simplified post-earthquake evacuation planning problem to inform protection planning 

decisions. With regard to evacuation decisions, the model determines how to allocate demand 

(those in need of emergency medical care) to emergency response facilities considering their 

capacities and travel distance. However, it does not incorporate other operational aspects 

related to the availability of transfer vehicles and complex routing decisions. Regarding 

demand allocations from same demand points to different emergency response facilities, split 

delivery of evacuees is possible. 

 

 

3.3.2. Model Formulation  

 

Before presenting the model formulation, we summarize the notation for sets, parameters, and 

decision variables: 

Sets 

I = Set of demand nodes, indexed by i 

J= Set of supplier nodes, indexed by j 

P= Set of mitigation projects indexed by p, 𝑝′ 

E= Set of links, indexed by e  

𝑅𝑖𝑗= Set of the routes connecting demand node i and supplier node j, indexed by r 

𝐸𝑟= Set of links in route r  

Ω = Set of scenarios, indexed by s 

Parameters  

𝐵 = 𝐵𝑢𝑑𝑔𝑒𝑡 𝑓𝑜𝑟 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 

𝑐𝑝 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑝 
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𝜏𝑝𝑒 = {
1, 𝑖𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑝 ∈ 𝑃 𝑎𝑓𝑓𝑒𝑐𝑡𝑠  𝑙𝑖𝑛𝑘  𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

      

𝜌𝑒 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑒   

𝛿𝑝𝑒 = 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑒 𝑖𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡  𝑝 

 𝑖𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑           

𝛽𝑒(𝑠) = 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑜𝑟 𝑙𝑖𝑛𝑘 𝑒 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠    

𝑞𝑗 = 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗 

𝑑𝑖 = 𝐷𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖  

𝑙𝑟 = 𝑇𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒  𝑟   

𝑙𝑚𝑎𝑥
𝑖 =  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑤ℎ𝑖𝑐ℎ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑑𝑒𝑚𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑖 

𝑀 =  𝐵𝑖𝑔 𝑣𝑎𝑙𝑢𝑒 

First-stage decision variables 

𝑦𝑝 =  {
1, 𝑖𝑓 𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑝 𝑖𝑠 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           

 

Second-stage decision variables 

𝑥𝑖𝑗𝑟(𝑠) =  {
1, 𝑖𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑛𝑜𝑑𝑒  𝑖 𝑎𝑟𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 

𝑗  𝑢𝑠𝑖𝑛𝑔 𝑟𝑜𝑢𝑡𝑒  𝑟 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                      

   

𝑧𝑖𝑗𝑟(𝑠) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗 𝑢𝑠𝑖𝑛𝑔 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑖𝑛 

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

𝑣𝑒(𝑠) = 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑒 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

𝑜𝑒(𝑠) =  {
1, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑒 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     

 

𝑢𝑖(𝑠) = 𝑈𝑛𝑚𝑒𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

We formulate the CNSP, as a two-stage stochastic program, in which the objective is to 

minimize both unmet demand and travel distance over all possible scenarios. The two-stage 

stochastic programming (TS-SP) model provides the best decision about the selected protection 

strategies and the allocations of injured people to emergency response facilities.  
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The objective function of the first stage is to minimize the expected value of the objective 

functions defined in the second stage, 𝐸𝑝𝑟𝑜𝑏[𝑄(𝑦, ξ(s))]. Note that we assume that the 

probability distribution is known, and the expectation of the second-stage cost function is taken 

with respect to this probability distribution. For simplicity of notation, we use a weight notation 

for both objective functions. Weights are chosen in a way which guarantees that minimizing 

total unmet demand is the primary objective and minimizing total travel distance for a given 

unmet demand value is the secondary objective. Further discussion about this is carried out in 

the next chapter. 

 

With these notations, TS-SP model for the CNSP is as follows: 

TS-SP First stage: 𝑜𝑏𝑗𝑡𝑠𝑠𝑝 = min 𝐸𝑝𝑟𝑜𝑏[𝑄(𝑦, ξ(s))]  (3.1) 

𝑠. 𝑡. 

∑ 𝑐𝑝𝑦𝑝

𝑝 ∈ 𝑃

≤ 𝐵 

  

 

(3.2) 

 

∑ 𝜏𝑝𝑒𝑦𝑝

𝑝 ∈ 𝑃

≤ 1 ∀𝑒𝜖𝐸 
(3.3) 

𝑦𝑝 ∈ {0,1} ∀𝑝𝜖𝑃 
(3.4) 

TS-SP Second stage: 

 𝑄(𝑦, ξ(s)) = min(𝑤𝑒𝑖𝑔ℎ𝑡1 ∑ 𝑢𝑖(𝑠) + 𝑤𝑒𝑖𝑔ℎ𝑡2𝑖∈𝐼 ∑ ∑ ∑ 𝑧𝑖𝑗𝑟(𝑠)𝑙𝑟𝑟∈𝑅𝑖𝑗𝑗∈𝐽𝑖∈𝐼 ) 

(3.5) 

   

𝑥𝑖𝑗𝑟(𝑠) ≤ 𝑜𝑒(𝑠)          ∀𝑖 𝜖 𝐼, ∀𝑗 𝜖 𝐽, ∀𝑟 𝜖 𝑅𝑖𝑗 , ∀𝑒 𝜖 𝐸𝑟 (3.6) 

𝑣𝑒(𝑠) = ∑ 𝛿𝑝𝑒(𝑠)𝑦𝑝

𝑝 ∈ 𝑃

+  𝜌𝑒 ∀𝑒 𝜖 𝐸 
(3.7) 

𝑣𝑒(𝑠) − 𝛽𝑒(𝑠) − 𝑀𝑜𝑒(𝑠) ≤ 0 ∀𝑒 𝜖 𝐸 (3.8) 

𝑣𝑒(𝑠) − 𝛽𝑒(𝑠) + 𝑀(1 − 𝑜𝑒(𝑠)) ≥ 0 ∀𝑒 𝜖 𝐸 (3.9) 
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𝑧𝑖𝑗𝑟(𝑠) ≤ 𝑑𝑖𝑥𝑖𝑗𝑟(𝑠) ∀𝑖 𝜖 𝐼, ∀𝑗 𝜖 𝐽, ∀𝑟 𝜖 𝑅𝑖𝑗 (3.10) 

∑ ∑ 𝑧𝑖𝑗𝑟(𝑠) 𝑢𝑖(𝑠)

𝑟 ∈ 𝑅𝑖𝑗𝑖 ∈ 𝐼

= 𝑑𝑖 
∀𝑖 𝜖 𝐼 

(3.11) 

 

∑ ∑ 𝑧𝑖𝑗𝑟(𝑠)

𝑟 ∈ 𝑅𝑖𝑗𝑖 ∈ 𝐼

≤ 𝑞𝑗 
 ∀𝑗 𝜖 𝐽 

(3.12) 

𝑥𝑖𝑗𝑟(𝑠) ∈ {0,1} ∀𝑖𝜖𝐼, ∀𝑗𝜖𝐽, ∀𝑟𝜖𝑅𝑖𝑗 (3.13) 

𝑜𝑒(𝑠)  ∈ {0,1} ∀𝑒𝜖𝐸 (3.14) 

𝑧𝑖𝑗𝑟(𝑠) ∈ ℤ+ ∀𝑖𝜖𝐼, ∀𝑗𝜖𝐽, ∀𝑟𝜖𝑅𝑖𝑗 (3.15) 

𝑣𝑒(𝑠) ∈ ℤ+ ∀𝑒𝜖𝐸 (3.16) 

𝑢𝑖(𝑠)  ∈ ℤ+ ∀𝑖𝜖𝐼 (3.17) 

 

The first-stage objective function 𝑜𝑏𝑗𝑡𝑠𝑠𝑝 is the expected value of second stage objective 

function. Constraint (3.2) ensures that the budget limit B is not exceeded, and Constraints (3.3) 

force the model to choose at most one project for each link. Constraints (3.4) is binary 

restrictions on the protection strategy selection in the first stage of TS-SP model. 𝑄(𝑦, ξ(s)) is 

the objective function of the second stage, it is aimed to maximize the efficiency of evacuation 

operations in the immediate post-disaster response stage by implementing mitigation projects. 

Under a specific budget, while our primary objective is minimizing total unmet demand, the 

secondary objective is minimizing travel distance in evacuation operations. Multi-objective 

solution approaches are investigated in Section 4.1.  

Constraints (3.6) satisfy the condition which is route selection should be done if that route 

connects associated demand node and supplier node. It also specifies that if one of the links 

that in route r is not operational in scenario w, this route cannot be used for evacuation so the 

𝑥𝑖𝑗𝑟(𝑠) variable is forced to be zero. Constraints (3.7) determine the ultimate resilience levels 

for links according to the chosen projects. We assume that if a link's resilience is lower than 

the threshold value denoted by 𝛽𝑒(𝑠), this means that the link will not be operational for 

transportation post-earthquakes and the survival status variable denoted by 𝑜𝑒(𝑠) will be 0. 

This condition is enforced by Constraints (3.8) - (3.9). Constraints (3.10) ensure that if a 

demand area is not assigned to a supplier node, the number of evacuated people from that 

demand node to that supplier node should be 0. Constraints (3.11) determine unmet evacuation 
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demand based on the total number of evacuated people and estimated demand for each demand 

node. Constraints (3.12) shows that the service capacities of facilities limit the evacuation 

operations. Constraints (3.13), and (3.14) are binary restrictions on connectivity, and 

accessibility variables. Constraint (3.15), (3.16), and (3.17) ensure the decision variables take 

on non-negative integer values. 

 

The TS-SP model is hard to solve as it is difficult to evaluate the expected cost of second stage 

for a given 𝑦′, i.e., 𝐸𝑝𝑟𝑜𝑏[𝑄(𝑦′, ξ(s))]. For this reason, the TS-SP model can be explicitly 

reformulated by combining two stages together as a scenario-based (SB) model (the 

deterministic equivalent), which is referred as extensive form. Differently, SB model has the 

scenario index denoted by s of the set of scenario S for scenario-dependent parameters and 

decision variables and we keep the weight coefficients here. However, multi-objective solution 

methodologies are investigated in the following chapter. Let 𝛽𝑒
𝑠 denote the survival threshold 

value for each link 𝑒 for each scenario 𝑠. We assume that the probability that a scenario s occurs 

is denoted by 𝑝𝑟𝑜𝑏𝑠.  

 

 SB model formulation is as follows: 

𝑚𝑖𝑛 ∑ 𝑤𝑒𝑖𝑔ℎ𝑡1 ∑ 𝑢𝑖
𝑠

𝑖 ∈ 𝐼

+  𝑤𝑒𝑖𝑔ℎ𝑡2 ∑ ∑ ∑ 𝑧𝑖𝑗𝑟
𝑠 𝑙𝑟

𝑟 ∈ 𝑅𝑖𝑗𝑗 ∈𝐽𝑖 ∈ 𝐼𝑠 ∈ 𝑆

 

(3.18) 

𝑠𝑡. 

∑ 𝑐𝑝𝑦𝑝

𝑝 ∈ 𝑃

≤ 𝐵 

  

 

(3.19) 

 

∑ 𝜏𝑝𝑒𝑦𝑝

𝑝 ∈ 𝑃

≤ 1 ∀𝑒 𝜖 𝐸 
(3.20) 

   

𝑥𝑖𝑗𝑟
𝑠 ≤ 𝑜𝑒

𝑠          ∀𝑖𝜖𝐼, ∀𝑗𝜖𝐽, ∀𝑟𝜖𝑅𝑖𝑗, ∀𝑒𝜖𝐸𝑟 , ∀𝑠𝜖𝑆 (3.21) 

𝑣𝑒
𝑠 = ∑ 𝛿𝑝𝑒

𝑠 𝑦𝑝

𝑝 ∈ 𝑃

+ 𝜌𝑒 
∀𝑒𝜖𝐸, ∀𝑠𝜖𝑆 

(3.22) 
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𝑣𝑒
𝑠 − 𝛽𝑒

𝑠 − 𝑀𝑜𝑒
𝑠 ≤ 0 ∀𝑒𝜖𝐸, ∀𝑠𝜖𝑆 (3.23) 

𝑣𝑒
𝑠 − 𝛽𝑒

𝑠 + 𝑀(1 − 𝑜𝑒
𝑠) ≥ 0 ∀𝑒𝜖𝐸, ∀𝑠𝜖𝑆 (3.24) 

𝑧𝑖𝑗𝑟
𝑠 ≤ 𝑑𝑖𝑥𝑖𝑗𝑟

𝑠  ∀𝑖𝜖𝐼, ∀𝑗𝜖 𝐽, ∀𝑟𝜖𝑅𝑖𝑗, ∀𝑠 𝜖 𝑆 (3.25) 

∑ ∑ 𝑧𝑖𝑗𝑟
𝑠

𝑟 ∈ 𝑅𝑖𝑗𝑗 ∈ 𝐽

+ 𝑢𝑖
𝑠 = 𝑑𝑖 ∀𝑖 𝜖𝐼, ∀𝑠𝜖𝑆 

(3.26) 

∑ ∑ 𝑧𝑖𝑗𝑟
𝑠

𝑟 ∈ 𝑅𝑖𝑗𝑖 ∈ 𝐼

≤ 𝑞𝑗 
 ∀𝑗 𝜖 𝐽, ∀𝑠 𝜖 𝑆 

(3.27) 

 

𝑦𝑝 ∈ {0,1} ∀𝑝 𝜖 𝑃 (3.28) 

𝑥𝑖𝑗𝑟
𝑠 ∈ {0,1} ∀𝑖𝜖𝐼, ∀𝑗𝜖 𝐽, ∀𝑟𝜖𝑅𝑖𝑗, ∀𝑠𝜖𝑆 (3.29) 

𝑜𝑒
𝑠  ∈ {0,1} ∀𝑒𝜖𝐸, ∀𝑠𝜖𝑆 (3.30) 

𝑧𝑖𝑗𝑟
𝑠 ∈ ℤ+ ∀𝑖𝜖𝐼, ∀𝑗𝜖 𝐽, ∀𝑟𝜖𝑅𝑖𝑗, ∀𝑠𝜖𝑆 (3.31) 

𝑣𝑒
𝑠 ∈ ℤ+ ∀𝑒𝜖𝐸, ∀𝑠𝜖𝑆 (3.32) 

𝑢𝑖
𝑠  ∈ ℤ+ ∀𝑖𝜖𝐼, ∀𝑠𝜖𝑆 (3.33) 

 

To fully represent all combinations of survivability thresholds, an exponential number of 

scenarios are required depending on how many scenarios exist for 𝛽𝑒
𝑠 for each link. This 

condition does not allow directly solving the model with a standard mixed integer programming 

(MIP) solver, such as CPLEX OPL, for even a small network with all possible scenarios. 

Hence, it is necessary to develop more efficient algorithms to solve the CNSP exactly or 

approximately. In the next chapter, the multi-objective approaches will be explored.  

3.4. Conclusion 
 

 
This chapter has introduced a novel two-stage stochastic program TS-SP for the CNSP which 

integrates selecting mitigation strategies and evacuation allocation planning. To the best of my 

knowledge, this is the first integrated program which consider the capacitated suppliers. Since 

the second stage of TS-SP has two objectives such as minimizing unmet demand and travel 

time, it first requires to be chosen the multi-objective solution approach. To do that, the TS-SP 

model has been explicitly reformulated by combining two stages together in a scenario-based 

(SB) model (the deterministic equivalent), which is referred as extensive form.  
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4. Solution Approach 
 

In this chapter, we describe the different methodologies devised to solve the CNSP model. We 

first discuss two multi-objective approaches to address the model’s multi-objective structure. 

Sample Average Approximation (SAA), which is frequently employed to solve large scale 

stochastic optimization problems, is then proposed to solve the SB model described in Chapter 

3. Even though SAA reduces the problem size considerably compared to the original problem 

defined in Chapter 3, it still must solve a two-stage stochastic mixed integer problem which is 

computationally challenging for large-instances. To conduct analysis on larger networks, 

finally, we also propose a heuristic algorithm based on the Greedy Randomized Adaptive 

Search Procedure known as GRASP. 

 

4.1. Multi-objective Solution Approaches  
 

Multi-objective optimization is an important aspect of optimization activities because 

practically all real-world optimization issues are best suited to being described using multiple 

conflicting objectives [291]. The multi-objective optimization requires the simultaneous 

optimization of more than one objective functions [293]. Since the proposed SB model has two 

main objectives (minimizing the total unmet demand and travel distance), it can be categorised 

as a multi-objective optimization problem. In this section, the multi objective solution methods 

are investigated and most appropriate one would be chosen to solve the proposed model.  

 

Multi-objective problems (MOP) are more complex to solve than single-optimization problems 

(SOP) because there is no single solution; rather, there is a set of acceptable trade-off optimal 

solutions. This set is known as Pareto front. The concept of domination is used in most multi-

objective optimization solution methods. In these methods, two solutions are compared based 

on whether one dominates the other solution or not. The pareto dominance solution are usually 

achieved when one objective function cannot increase without reducing the other objective 

function [294].  
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Solving MOPs has traditionally consisted of converting all objectives into a single objective 

function such as the weighted sum method, lexicographic method and 𝜀-constraint method. In 

the case of the weighted-sum approach, the idea is to assign a weight (depicts the 

importance/priority of the objective) to each normalized objective function so that the problem 

is converted to a single objective problem with a scalar objective function [294]. The single 

objective is then solved subject to the constraints of all the objective functions. Lexicographic 

method is an effective way for prioritization of various objectives and this method guarantees 

that improving the objectives with lower priority does not deteriorate the performance of higher 

priority objectives [296]. In the ε-constraint method, one of the objective functions is optimized 

using the other objective functions as constraints, incorporating them in the constraint part of 

the model.  

The weighted-sum method has been successfully used to solve a variety of bi-objective models 

in different application areas, such as traffic assignment [295,296], energy management [297], 

and hazardous material transportation [298]. On the other hand, the lexicographic method also 

has been applied to solve a wide range of MOP in a variety of application domains, including 

road pricing [299], energy [300] and scheduling [301]. Finally, multi-objective optimization 

problems have been solved by using the 𝜀-constraint method in different research areas such 

as location-routing [302,303], energy efficiency [304], and job scheduling [305]. 

These methods, which are utilized as alternatives for one another, have some advantages and 

disadvantages when compared each other. Using the weighted-sum approach necessitates 

determining the relative value of the weight coefficients, which generally reflects the relative 

priority of the objectives. The solution is dependent on the chosen weighting coefficients. 

However, it is difficult to quantitatively measure the relative importance among the objectives. 

Therefore, the weighted-sum approach is simple to apply since it has a single objective 

function; however, it is not guaranteed to produce the complete Pareto front of non-dominated 

solutions. Similarly, in ε -constraint method, the ε vector must be chosen carefully so that it is 

within the minimum or maximum values of the individual objective function. With 

the lexicographic method, the solution is, theoretically, always Pareto optimal because each 

objective is treated independently [306]. On the other hand, applying this method is 

computationally expensive since it requires the solution of many single-objective problems to 

obtain just one solution point. 

https://www.sciencedirect.com/topics/mathematics/pareto-optimal
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Although the lexicographic method always provides the pareto optimal solution, the weighted-

sum method is both easy to implement and computationally better than the lexicographic 

method. As mentioned above, the issue is setting the relative values for the weight coefficients 

and the weights are defined for each objective function to depict the importance of different 

objectives. Since one unit decrease in 𝑢𝑖
𝑠 corresponds to one unit increase 𝑧𝑖𝑗𝑟

𝑠  at most and 𝑙𝑟 ≤

 𝑙𝑚𝑎𝑥
𝑖  in every condition, while the weight value for the first term 𝑢𝑖

𝑠 is 1, the weight value 
1

𝑙𝑚𝑎𝑥
𝑖   

for the second term in the objective function is chosen, which makes 
𝑙𝑟

𝑙𝑚𝑎𝑥
𝑖  less than 1 as applied 

in [307]. This weight value ensures that the minimization of the total unmet demand is the 

primary objective and travel distance is the secondary objective. Then, the lexicographic 

method will be used to validate the solutions obtained by the implementations of the weighted-

sum method.  

In the proposed model regarding the weighted-sum approach, all the objective functions are 

summed to a single-objective function, as shown in (4.1). We have modified the objective 

function by adding the secondary objective as follows: 

𝑚𝑖𝑛 ∑ 𝑝𝑟𝑜𝑏𝑠 ∑ ∑ ∑(𝑢𝑖
𝑠 + 𝑧𝑖𝑗𝑟

𝑠 𝑙𝑟

𝑙𝑚𝑎𝑥
𝑖

|𝑅|

𝑟

|𝐽|

𝑗

|𝐼|

𝑖

|𝑆|

𝑠

) 

(4.1) 

The modified model to apply the weighted-sum approach is as follows: 

(4.1) 

𝑠𝑡. 

(3.19-3.33);  

The lexicographic method is used to optimise objectives sequentially by firstly minimising the 

total unmet demand, and then minimizing total travel distance which is affected by the obtained 

value of the primary objective. We solve first the model as a single-objective problem with the 

primary objective which is 𝑚𝑖𝑛 ∑ ∑ 𝑢𝑖
𝑠|𝐼|

𝑖
|𝑆|
𝑠 . Then, the model is solved with the secondary 

objective which is ∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑟
𝑠 𝑙𝑟

|𝑅|
𝑟

|𝐽|
𝑗

|𝐼|
𝑖

|𝑆|
𝑠  with an added constraint defined as (4.2) in which 

∑ ∑ 𝑢∗
𝑖
𝑠|𝐼|

𝑖
|𝑆|
𝑠  is the optimal solution of the first objective function.  
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∑ ∑ 𝑢𝑖
𝑠

|𝐼|

𝑖

|𝑆|

𝑠

≤ ∑ ∑ 𝑢∗
𝑖
𝑠

|𝐼|

𝑖

|𝑆|

𝑠

  (4.2) 

In summary, the models are defined to apply the lexicographic method in the following: 

First model Second model 

min ∑ ∑ 𝑝𝑟𝑜𝑏𝑠𝑢𝑖
𝑠

|𝐼|

𝑖

|𝑆|

𝑠

 

𝑠𝑡. 

(3.3-3.17); 

min ∑ ∑ ∑ ∑ 𝑝𝑟𝑜𝑏𝑠𝑧𝑖𝑗𝑟
𝑠 𝑙𝑟  

|𝑅|

𝑟

|𝐽|

𝑗

|𝐼|

𝑖

|𝑆|

𝑠

 

𝑠𝑡. 

(3.3-3.17), (4.2); 

 

 

4.2. Sample Average Approximation (SAA) 
 

The basic idea behind Sample Average Approximation (SAA) is the expected objective value 

of the stochastic problem can be approximated by the corresponding value of the sampling 

problem [308]. In this study, we use the well-known SAA method, which is a Monte Carlo 

simulation-based method to solve stochastic discrete optimization problems. This method has 

been applied to solve various two-stage stochastic problems such as facility location problem 

by [308], container repositioning problem in maritime transportation by [309] and facility 

location and network restoration by [252]. 

 

In the SAA method, the expected objective function of a stochastic problem is approximated 

by a sample average using a random sample of S scenarios. Kleywegt et al. [310] propose a 

SAA method to solve stochastic programming models with integer decision variables. 

According to the convergence analysis carried out by [310], solving a SAA problem with a 

modest sample size yields a reasonable and good approximate solution for the true problem. 

The true problem, in this case, is the scenario-based model that includes all possible scenarios. 

In this study, we follow the SAA scheme presented in [309]. The SAA approach approximates 

the TS-SP model by the following SAA model. The SAA procedure is described as follows: 
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Step 1. Generate N independent samples each consisting of S scenarios. Solve the 

corresponding problem (SAA problem) for each sample: 

The SAA problem: 

min
1

𝑆
∑ 𝑄(𝑦,

𝑆

𝑠=1

 ξ(s)) 

s.t. 

(3.2)-(3.4); and (3.6)-(3.17); 

Let 𝑜𝑏𝑗𝑛, 𝑛 = 1, … . . , 𝑁, be the corresponding optimal objective value. 

Step 2.  Compute 𝑜𝑏𝑗𝑆
̅̅ ̅̅ ̅̅ =  

1

𝑁
∑ 𝑜𝑏𝑗𝑠

𝑛𝑁
𝑛=1   . It is well known that the expected value of 𝑜𝑏𝑗𝑆

̅̅ ̅̅ ̅̅  is 

less than or equal to the optimal value 𝑜𝑏𝑗∗ of the true problem. Therefore,  𝑜𝑏𝑗𝑆
̅̅ ̅̅ ̅̅   is a lower 

bound for the optimal value of the true problem.  

Step 3.  Choose one of the N solutions obtained in Step 1 which is a feasible solution 𝑦𝑛. 

Generate another independent sample of scenarios  where | | is much bigger than |𝑆|. This 

step involves solution of independent second-stage problem. Since 𝑦𝑛 is a feasible solution 

to the true problem, we have 𝑜𝑏𝑗𝑆′̂(𝑦𝑛) ≥  𝑜𝑏𝑗∗. Thus, 𝑜𝑏𝑗𝑆′̂(𝑦𝑛) is an estimate of an upper 

bound on 𝑜𝑏𝑗∗.   Find an upper bound on the optimal value of the true problem by evaluating 

the following function: 

𝑜𝑏𝑗̂𝑆′(𝑦𝑛) =  
1

𝑆′
∑ 𝑄(𝑦𝑛,

𝑆′

𝑠=1

 ξ(s)) 

Step 4. Compute 𝑜𝑏𝑗̂𝑆′(𝑦𝑛) −  𝑜𝑏𝑗𝑆
̅̅ ̅̅ ̅̅  to estimate the optimality gap of the solution 𝑦𝑛  

If the estimated optimality gap is too large, we increase the sample size |S| and we repeat steps 

1–4. Whenever the estimated gap are sufficiently small or enough iterations are made, we stop 

the algorithm and report the solution. Using this technique, a near-optimal solution can be 

obtained by solving the SAA problem with modest number of scenarios. 
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4.3. Heuristic Algorithm  
 

In this section, we propose a Greedy Randomized Adaptive Search Procedure (GRASP) to be 

able to solve larger instances of the problem. We also develop a procedure to design evacuation 

allocations considering total unmet demand and travel distance. In the following subsections, 

we introduce the details of the proposed methods.  

Feo and Resende [311] introduced the GRASP to address the limitations of solely greedy 

constructive algorithms. It is an iterative technique that builds up a solution at each step by 

randomly selecting elements from a dynamically built list. GRASP consists of two main 

procedures, namely constructive and local search. At each iteration of the GRASP, a feasible 

solution is constructed by applying the constructive phase, followed by the local 

search procedure in order to search for a locally optimal solution. The pseudo-code and 

flowchart for the proposed GRASP are provided in Figure 10 and 11 and explained in the 

following subsections. 

GRASP pseudo-code 

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← ∅;  𝑏𝑒𝑠𝑡𝑂𝑏𝑗 =  ∞; 𝑖𝑡𝑒𝑟 = 1 

while 𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do 

// Constructive Phase 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 ← ∅; 𝑜𝑏𝑗𝑖𝑡𝑒𝑟 = ∞; 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟)  

    while there are candidate projects do  

    𝑏𝑢𝑖𝑙𝑑𝑅𝐶𝐿(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) 

    Select randomly a project 𝑝′ from RCL;  

    Add 𝑝′ to 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 

    𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) 

    𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟)  

    end while 

 𝑈𝑝𝑑𝑎𝑡𝑒𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) 

 𝐶𝑟𝑒𝑎𝑡𝑒𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐿𝑖𝑠𝑡(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) 

 𝐹𝑖𝑛𝑑𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) 

 Save 𝑜𝑏𝑗𝑖𝑡𝑒𝑟 and 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) for 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 

𝐹𝑖𝑛𝑑𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 , 𝐶𝐿) 

// Local Phase 

𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟, 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝑂𝑏𝑗, 𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ) 

𝑖𝑡𝑒𝑟 ++ 

end while 

return 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝑂𝑏𝑗, 𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

end GRASP 

Figure 10. Pseudo-code of the proposed GRASP algorithm 
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4.3.1. Constructive Phase  

 

For the proposed problem, the constructing phase generates initial solutions. The quality of 

feasible solutions is defined with respect to the total unmet demand value and travel distance 

of the corresponding evacuation allocation. In the constructive phase, a set of best candidates 

(mitigation projects) considering the estimated contribution to the objective function (unmet 

demand and also travel distance) are stored in a dynamic list. In each iteration, the list is 

updated according to the benefits for the current network. Once an initial solution (a set of 

mitigation projects) is generated, evacuation allocations for the associated solution are found 

by a procedure to be explained in Section 4.3.3. Restricted Candidate List (RCL) is a 

dynamically built list storing a set of good candidates. RCL is made up of the beneficial 

mitigation projects to the evacuation planning. The following notations help to explain the 

constructive phase: 

Create 
Neighbours

Update 
Shortest 
Routes 

Find 
Evacuation 
Allocations 

Update 
𝑏𝑒𝑠𝑡𝑂𝑏𝑗
if needed  

Constructive Phase 

(Section 4.3.1) 

Local Search Phase 

(Section 4.3.2) 

Evacuation Allocation 

(Section 4.3.3) 

Generate 
initial solution 

(Mitigation 
project sets)

Update 
Shortest 
Routes 

Find 
Evacuation 
Allocations 

Save 𝑜𝑏𝑗𝑖𝑡𝑒𝑟
(total unmet 
value and 

travel 
distance) 

Find Critical 
Links

𝑖𝑡𝑒𝑟 = 1 

𝑖𝑡𝑒𝑟

< 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 

Report

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛,

𝑏𝑒𝑠𝑡𝑂𝑏𝑗,

𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

 

Yes 

No 

Figure 11. Flowchart for the proposed GRASP 
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▪ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝: benefit ratio for each 𝑝 ∈ 𝑅𝐶𝐿, which measures the contribution on 

accessibility between demand-supplier (d-s) pairs if project 𝑝 is added to the current 

solution 

▪ 𝑟𝑎𝑡𝑖𝑜𝑖𝑠: allocation chance measure for each demand node 𝑖 ∈ 𝐼 in scenario 𝑠 ∈

𝑆 considering the total capacity in accessible suppliers comparatively to total capacity 

in all suppliers 

▪ 𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥 : minimum and maximum 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝 ∈ 𝑅𝐶𝐿 

▪ RCL is associated with a threshold parameter 𝛼 ∈  [0,1] and formed by all 

projects which can be feasibly inserted into the partial solution under constructive and 

whose benefit is superior to the threshold value. Namely, project p’ is included in the 

RCL if 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝′ ∈ [𝑐𝑚𝑎𝑥 −  𝛼(𝑐𝑚𝑎𝑥 −  𝑐𝑚𝑖𝑛), 𝑐𝑚𝑎𝑥]. 

▪ 𝑖𝑡𝑒𝑟 is the iteration index 

▪ 𝑎𝑠𝑢𝑝𝑖𝑠
𝑖𝑡𝑒𝑟: list of accessible suppliers to demand node 𝑖 ∈ 𝐼  in scenario 𝑠 ∈ 𝑆 at 

iteration 𝑖𝑡𝑒𝑟 

▪ 𝑎𝑐𝑎𝑝𝑗𝑠
𝑖𝑡𝑒𝑟: available capacity at supplier 𝑗 ∈ 𝐽 in scenario 𝑠 ∈ 𝑆 at iteration 𝑖𝑡𝑒𝑟 

▪ 𝑢𝑖𝑠
𝑖𝑡𝑒𝑟 : unmet demand in demand node 𝑖 ∈ 𝐼  in scenario 𝑠 ∈ 𝑆 at iteration 𝑖𝑡𝑒𝑟 

▪ 𝑐𝑝 : cost of project 𝑝 ∈ 𝑅𝐶𝐿 

▪ 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 : The maximum number of iterations  

▪ 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑡𝑒𝑟, 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟), 𝑜𝑏𝑗𝑖𝑡𝑒𝑟 : the mitigation project 

selection, corresponding allocations, and objective values (total unmet demand and 

travel distance) obtained at iteration 𝑖𝑡𝑒𝑟 

▪ 𝐶𝐿 : stores the critical links for the local search 

 

Some expedients that have been adopted to improve the GRASP algorithm in terms of 

efficiency are explained in the following. For estimation of the quality of each candidate in the 

constructive phase, we devise a method to calculate a benefit value for each candidate project 

considering the impact on accessibility on the current network. This benefit value measures the 

possible contribution to improve evacuation allocations. For instance, if a project provides 

access between an isolated demand node and available supplier node, that would be a 

considerable contribution to the current situation. The GRASP algorithm implementation is 

explained by the following crucial subroutines: 
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𝑏𝑢𝑖𝑙𝑑𝑅𝐶𝐿(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) creates a list called Restricted Candidate List (RCL) which stores the 

set of these good candidates according to the 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝 value The probabilistic component of 

the constructive phase is in the random choice of one of the best candidates from this list; 

therefore, not necessarily the best candidate will be added.  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) updates the 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝 value obtained by adding project 𝑝 to 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟. The constructive of RCL is guided by the benefit ratio 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝 , 𝑝 ∈ 𝑅𝐶𝐿, 

which measures the contribution on accessibility between demand-supplier (i-j) pairs if project 

𝑝 is added to 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟. This is a sort of alternative way to have an idea how evacuation 

allocations would be affected, and this way is undoubtedly a less computationally expensive 

than finding evacuation allocations in every step. 

To evaluate projects based on their contribution to the accessibility between i-j pairs, we define 

a ratio which measures the allocation chance considering the total capacity in accessible 

suppliers comparatively to the total capacity in all suppliers, denoted by 𝑟𝑎𝑡𝑖𝑜𝑖𝑠 for each 

demand node 𝑖 and each scenario 𝑠 ∈ 𝑆 as computed by Equation 4.3 below. If a demand node 

has no access to any supplier, which means that demand node is fully isolated, 𝑟𝑎𝑡𝑖𝑜𝑖𝑠 would 

be equal to 0. On the other hand, if a demand node 𝑖 has access to at least one supplier, then 

𝑟𝑎𝑡𝑖𝑜𝑖𝑠 > 0. As the number of accessible suppliers increases, so does the chance of allocating 

the needed people. Especially in each iteration of project evaluation, these ratio values would 

be informative to calculate the benefits on evacuation allocations. The ratio values are 

separately calculated for each scenario 𝑠 ∈ 𝑆. 

𝑟𝑎𝑡𝑖𝑜𝑖𝑠 =
∑ 𝑞𝑗

𝐽
𝑗∈𝑎𝑠𝑢𝑝𝑖𝑠

∑ 𝑞𝑗
𝐽
𝑗∈𝐽

 ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐼                              (4.3) 

The routes connect the i-j pairs. A mitigation project is applied to increase a link’ resilience 

level, and that link would be operational depending on the scenario so a route or routes may 

turn into operational once the selected project is applied. Therefore, new accessible i-j routes 

or shorter routes between already connected i-j pairs would be added to the existing network. 

Three different cases may occur:  

(1) The newly added route/s allows the connection between demand i and supplier j (previously 

not connected), and demand node 𝑖 was not accessible from any other supplier in scenario 𝑠 ∈

𝑆 (𝑟𝑎𝑡𝑖𝑜𝑖𝑠 = 0),  
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(2) The newly added route/s allows the connection between demand i and supplier j (previously 

not connected), and demand node 𝑖 was accessible from at least one other supplier in scenario 

𝑠 ∈ 𝑆 (𝑟𝑎𝑡𝑖𝑜𝑖𝑠 > 0),  

(3) The newly added route is a shorter route connecting demand i and supplier j (already 

connected) in scenario 𝑠 ∈ 𝑆.   

Namely, let 𝑈𝑝𝑠
1  be the number of newly connected i-j pairs where demand i did not have access 

to any other supplier (case 1), 𝑈𝑝𝑠
2  be the number of newly connected i-j pairs where demand i 

had already access to at least one other supplier (case 2), 𝑈𝑝𝑠
3  be the number of new shortest 

routes between already connected i-j pairs (case 3) when project 𝑝 ∈ 𝑃 is chosen. Undoubtedly, 

the biggest impact on network accessibility would be generated by the first case and then 

respectively be decreased. We give a weight 𝜎 to each impact with 𝜎1  < 𝜎2 < 𝜎3. If a project 

does not affect the network operability, adding that project to the current solution would not 

have any impact on evacuation allocations. At each iteration, we calculate 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝 using 

Equation 4.4. 

 

𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑝  = ∑ 𝑝𝑟𝑜𝑏𝑠(𝜎1𝑈𝑝𝑠
1  + 𝜎2𝑈𝑝𝑠

2  +  𝜎3𝑈𝑝𝑠
3 )

|𝑆|
𝑠=1   (4.4) 

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) checks the mitigated links to see if their operability status 

has changed considering the new resilience levels once the projects in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 are 

implemented. Accordingly, the operability statuses of the routes with these links are updated. 

𝑈𝑝𝑑𝑎𝑡𝑒𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) finds the accessible (which means all links on routes 

are operational) shortest routes for the all i-j pairs subject to the operability status of the network 

links. The possible routes are generated by the k-shortest path and p-dispersion algorithm 

(explained in Section 5.2). The routes connecting i-j pairs are given to the algorithm as an input 

so if there is more than one accessible route for a i-j pair, it is ensured that the shortest one 

should be preferred.  

𝐶𝑟𝑒𝑎𝑡𝑒𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐿𝑖𝑠𝑡(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) keeps a list consisting of the accessible 

suppliers for each demand node. The lists should be updated once the shortest routes for all i-j 

pairs are updated by 𝑈𝑝𝑑𝑎𝑡𝑒𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟). 
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𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝐶𝐿(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) is used to keep track of the mitigation projects that can be added 

to 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 without violating the budget constraints. This set is updated at each stage so 

that it contains the most beneficial links for evacuation allocations. 

𝐹𝑖𝑛𝑑𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) is used to find the best allocations regarding the 

accessible supplier lists for each demand node and available capacities in these suppliers. The 

best allocations which give the least unmet demand with the minimum travel distance are saved 

as 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟). The procedure is explained in Section 4.3.3.  

𝐹𝑖𝑛𝑑𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 , 𝐶𝐿) checks the routes connecting unsatisfied demand nodes 

and available supplier nodes, identifies non-operational links on these routes for 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟. 

These non-operational links are referred to as critical links, and the projects which mitigate the 

critical links are identified and saved in a list referred to critical link list 𝐶𝐿 for the local search. 

The idea is to try and reduce the solution space which is explored during the local search; 

namely, the search to improve the current solution is restricted to a narrower area to increase 

the algorithm efficiency. 

4.3.2. Local Search Phase 

 

The local search procedure is applied to explore the neighbourhood of the initial solution which 

is produced in the constructive phase. For the neighbour solutions, the evacuation allocations 

are found by a procedure to be explained in Section 4.3.3. In the GRASP algorithm pseudo-

code shown in Figure 10, the local search procedure, denoted by 

𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 , 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝑂𝑏𝑗, 𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠)  aims to improve the 

constructed solution 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 by exploring feasible solutions in the neighbourhood. In the 

following, we explain the neighbour search method, acceptance and stopping criteria for the 

procedure. The following notation helps to explain the local search phase: 

▪ 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑏𝑒𝑠𝑡𝑂𝑏𝑗: refer to the best solution found, 

corresponding evacuation allocations and objective value including total unmet demand 

and travel distance 

▪ 𝜑: the number of iterations in the local search  

▪ 𝑖𝑡: iteration index in the local search 

▪  𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡: a neighbour solution set is produced by 

CreateNeighbour(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡)  

▪  𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛 : refers to the nth neighbour solution in the 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡 
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We define two different local search methods which are the one-step and multi-steps. The one-

step local search generates a new neighbour solution set in each iteration and the best one with 

the minimum unmet demand is chosen (best-improvement strategy) in each iteration. The 

multi-steps local search repeats the one-step local search multiple times until the solution is not 

improving once compared to the 𝑏𝑒𝑠𝑡𝑂𝑏𝑗. In the multi-steps local search, 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is 

updated in each step (each step contains 𝜑 iterations) and it is used as an initial solution for the 

next step. The local search procedure uses the following additional subroutine: 

CreateNeighbour (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡) checks if the initial solution would be 

improved by a move operator. The move, which is remove+insert, is used to generate the 

neighbour solutions as a combination of a drop project from the initial solution and add m 

projects from 𝐶𝐿 considering feasibility, respectively. Considering budget constraint and the 

cost of the project, which is dropped from the initial solution, m could be 1 or more. Feasible 

neighbours are generated, and the neighbour solutions are stored in 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡 in 

iteration 𝑖𝑡. 

To select the best local solution in terms of the primary objective function value (total unmet 

demand), the procedure 𝐹𝑖𝑛𝑑𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟) is used to find the 

evacuation allocation and accordingly the objective function value. 𝐶𝐿 is updated in each 

iteration (see 𝐹𝑖𝑛𝑑𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 , 𝐶𝐿)) .  

GRASP Local Search Pseudo-Code  

One Step Local Search  

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟;  𝑏𝑒𝑠𝑡𝑂𝑏𝑗 = 𝑜𝑏𝑗𝑖𝑡𝑒𝑟; 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 

𝑖𝑡 = 0 

while 𝑖𝑡 < 𝜑 do 

CreateNeighbour (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡) 

    for (each neighbour 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛 in 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡) 

    𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

    𝑈𝑝𝑑𝑎𝑡𝑒𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝑠(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

     𝐶𝑟𝑒𝑎𝑡𝑒𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐿𝑖𝑠𝑡(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

     𝐹𝑖𝑛𝑑𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

        if  𝑜𝑏𝑗𝑛 < 𝑏𝑒𝑠𝑡𝑂𝑏𝑗  

         𝑙𝑜𝑐𝑎𝑙𝑂𝑏𝑗 =  𝑜𝑏𝑗𝑛 

         𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ←  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑛  

         𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛 

        end if 

    end for 

Multi Steps Local Search  

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 , 𝑏𝑒𝑠𝑡𝑂𝑏𝑗 = 𝑜𝑏𝑗𝑖𝑡𝑒𝑟 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖𝑡𝑒𝑟 

𝑐ℎ𝑒𝑐𝑘 = 1 

while 𝑐ℎ𝑒𝑐𝑘 = 1 do // if the best solution is not improving after 

𝜑 iterations, check will be equal to 0 then the procedure will be 

terminated. 

𝑖𝑡 = 0 

𝑐ℎ𝑒𝑐𝑘 = 0 

while 𝑖𝑡 < 𝜑 do 

CreateNeighbour (𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 , 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡) 

    for (each neighbour 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛 in 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑡𝑖𝑡) 

    𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

    𝑈𝑝𝑑𝑎𝑡𝑒𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒𝑠(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

     𝐶𝑟𝑒𝑎𝑡𝑒𝐴𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝐿𝑖𝑠𝑡(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

     𝐹𝑖𝑛𝑑𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛) 

        if  𝑜𝑏𝑗𝑛 < 𝑏𝑒𝑠𝑡𝑂𝑏𝑗  
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𝑖𝑡  ++ 

end while 

return 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝑂𝑏𝑗, 𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠;   

end GRASP 

         𝑙𝑜𝑐𝑎𝑙𝑂𝑏𝑗 =  𝑜𝑏𝑗𝑛 

         𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ←  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑛  

         𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑛 

         𝑐ℎ𝑒𝑐𝑘 = 1 

        end if 

    end for 

𝑖𝑡  ++ 

end while 

if 𝑐ℎ𝑒𝑐𝑘 = 1 

𝐹𝑖𝑛𝑑𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑖𝑛𝑘𝑠(𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐶𝐿) 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

end if 

end while 

return 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝑂𝑏𝑗, 𝑏𝑒𝑠𝑡𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠;  

end GRASP 

Figure 12. Local Search procedure pseudo-code for the proposed GRASP 

 

4.3.3. Evacuation Allocations 

 

The efficiency of the solutions (mitigation project selection) in GRASP is determined by the 

overall unmet demand and travel distance resulting from the evacuation allocations. We use a 

two-step procedure to find evacuation allocations based on the current network conditions 

determined by the mitigation project selection. To begin, we use a greedy strategy (assign to 

the closest supplier) to generate an initial solution. Second, to improve the initial solutions, we 

apply an iterative improvement local search procedure. In the next sections, we will discuss 

these methods in further detail. 

4.3.3.1.Initial Solution Generation  

 

We apply a greedy strategy which is to assign each demand node to the closest available and 

accessible supplier to generate feasible initial solutions for evacuation allocations. The pseudo-

code for the proposed greedy strategy is provided in Figure 13 and explained in the following. 

In the proposed greedy strategy, demand nodes are assigned to nearest suppliers in an order 

that demand nodes which do have access to only one supplier come first. After deciding each 

allocation, the capacity availability for the assigned supplier is updated. Even if a demand node 

has access to a supplier, it might not be able to be assigned to that supplier due to lack of 

capacity condition. In this case, allocations are made in order of proximity. If the capacity of 

the assigned supplier is not entirely sufficient, the current capacity is allocated for that demand 
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node, the unmet demand is updated and then the procedure continues to check the available 

suppliers in order of proximity (see Figure 13). Once the last demand node is evaluated to be 

assigned to a supplier, the procedure is terminated.  

We keep two lists for each demand node 𝑖 ∈ 𝐼: accessible suppliers denoted by 𝑎𝑐𝑐𝑖 and 

available suppliers (which is 𝑎𝑐𝑎𝑝𝑗>0) denoted by 𝑎𝑣𝑎𝑖. Once the initial solution is generated 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, a list denoted by 𝑢𝑛𝑚 is used to store the demand nodes with unmet demand.  

procedure Initial Allocation Generation 

input 𝑢𝑖 , 𝑎𝑐𝑎𝑝𝑗 , 𝑎𝑐𝑐𝑖 ,  𝑎𝑣𝑎𝑖 , 𝑢𝑛𝑚 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ← ∅, 𝑢𝑛𝑚 ← ∅ 

Sort demand nodes 𝑖 ∈ 𝐼 ∶ 𝑎𝑣𝑎𝑖  ≠  ∅  (Ascending sort by the number of available suppliers for each demand node) 

while (all demand nodes 𝑖 ∈ 𝐼 ∶ 𝑎𝑣𝑎𝑖  ≠  ∅ are checked) 

        while (𝑢𝑖 ≠ 0 𝑎𝑛𝑑 𝑎𝑣𝑎𝑖 ≠  ∅  ) 

                 Sort suppliers 𝑗 ∈ 𝑎𝑣𝑎𝑖 in descending order of distance to demand node 𝑖 ∈ 𝐼 

                        if (𝑢𝑖 ≤  𝑎𝑐𝑎𝑝𝑗)  

                            Add allocation {i, j, 𝑢𝑖} in 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

                            𝑢𝑖 = 0      

                            𝑎𝑐𝑎𝑝𝑗 =  𝑎𝑐𝑎𝑝𝑗 − 𝑢𝑖 

                       end if 

                       if (𝑢𝑖 ≥  𝑎𝑐𝑎𝑝𝑗)  

                            Add allocation {i, j,𝑎𝑐𝑎𝑝𝑗} in 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

                            𝑢𝑖 = 𝑢𝑖 − 𝑎𝑐𝑎𝑝𝑗      

                            𝑎𝑐𝑎𝑝𝑗 =  0 

                            Remove supplier 𝑗 from 𝑎𝑣𝑎𝑖  𝑖 ∈ 𝐼 

                      end if 

         end while 

end while 

if (𝑢𝑖  > 0)  

Add demand node 𝑖 in 𝑢𝑛𝑚 

end if 

return 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

end Initial Allocation Generation 

Figure 13. Greedy strategy pseoudo-code 

 

4.3.3.2.Local Search Procedure 

 

This local search procedure uses the initial solutions provided by the greedy strategy and aims 

at improving the initial solution by searching the neighbourhood. The pseudo-code of the local 

search procedure is provided in Figure 14. The used neighbourhood search operators, 

acceptance/termination criterions, and the associated subroutines used in the local procedure 

are explained in the following. 
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procedure Local Search 

input 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← ∅; 

       while (all demand node 𝑖 ∈ 𝑢𝑛𝑚 are checked) 

                  if (𝑎𝑣𝑎𝑖  ≠  ∅)  

                             𝐼𝑛𝑠𝑒𝑟𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) 

                             𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ←  𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

                  end if 

                  if (𝑎𝑐𝑐𝑖  ≠  ∅)  

                              𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) 

                  end if 

      end while 

return 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

end Local Search 

Figure 14. Local search procedure 

 

We describe the neighbourhood search strategies used to improve evacuation planning. A new 

feasible solution (allocations set) is generated by an initial solution and the neighbour solutions 

are accepted only if a solution provides a better allocation plan with less unmet demand or 

same unmet demand with less travel distance. There are two search operators called 

𝐼𝑛𝑠𝑒𝑟𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 and 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 to generate a new (better) 

neighbour solution. The logic of these two operators is explained in the following. The local 

search procedure basically terminates when they reach a minimum objective function value 

where no neighbour has a better objective value. In other words, if the search operators check 

all the feasible options, the procedure terminates. 

The neighbourhood search uses the additional following subroutines: 

𝐼𝑛𝑠𝑒𝑟𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) evaluates if there is any 

feasible allocation to insert and improve 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 considering the available suppliers 

𝑗 ∈ 𝑎𝑣𝑎𝑖 for demand node 𝑖 ∈ 𝑢𝑛𝑚. If a demand node 𝑖 ∈ 𝑢𝑛𝑚 has access to an available 

supplier (which means 𝑎𝑣𝑎𝑖 ≠ ∅), an allocation between demand node 𝑖 and supplier node 𝑗 ∈

𝑎𝑣𝑎𝑖 is inserted in the current allocations. Additionally, if there is more than one available 

supplier for that demand node, the procedure chooses the supplier considering travel time 

between demand-supplier nodes until 𝑢𝑖 = 0 or 𝑎𝑣𝑎𝑖 = ∅. 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 are updated by adding 

the new allocations and saved as 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. In each insert move, the lists 

𝑎𝑐𝑐𝑖, 𝑎𝑣𝑎𝑖, 𝑎𝑛𝑑 𝑎𝑙𝑙𝑗 should be updated using 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. 

𝐼𝑛𝑠𝑒𝑟𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) simply adds new 

allocations considering only available suppliers for unsatisfied demand nodes. On the other 

hand, the second procedure considers potential remove + insert moves on allocations while 
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taking into account all accessible suppliers. We call this neighbourhood search procedure 

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛).  

𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) considers all accessible suppliers 

for demand nodes 𝑖 ∈ 𝑢𝑛𝑚. There are cases where there is no available capacity at accessible 

suppliers (which means 𝑎𝑣𝑎𝑖 = ∅, 𝑎𝑐𝑐𝑖 ≠ ∅ ), because these accessible suppliers serve other 

demand nodes. Here, the idea is creating available capacity in suppliers 𝑗 ∈ 𝑎𝑐𝑐𝑖 which are 

accessible but are not able to serve due to insufficient capacity for demand node 𝑖 ∈ 𝑢𝑛𝑚. To 

create capacity on the suppliers 𝑗 ∈ 𝑎𝑐𝑐𝑖, it is necessary to change allocations made to these 

suppliers. 

The operator used in the 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is remove+insert. Specific conditions (swap 

criteria) should be satisfied to remove an allocation and insert a new one for each demand node 

𝑖 ∈ 𝑢𝑛𝑚. For 𝑖 ∈ 𝑢𝑛𝑚, ∀𝑗 ∈ 𝑎𝑐𝑐𝑖, ∀𝑖′ ∈ 𝑎𝑙𝑙𝑗. There are two main cases under these 

conditions and the check procedures are named by Exchange Allocation Check-1 and 

Exchange Allocation Check-2 (see Figure 15 and 16): 

 

• If 𝑎𝑣𝑎𝑖′ ≠ ∅ (meaning that demand node 𝑖′ has access to other available suppliers 

rather than 𝑗), then demand node 𝑖′ should be allocated to another supplier 𝑗′ ∈ 𝑎𝑣𝑎𝑖′ 

(if there is more than one supplier in 𝑎𝑣𝑎𝑖′, the one with the minimum travel distance 

should be chosen). In this case, the exisiting allocation between 𝑖′ and 𝑗 are removed or 

updated depending on the the available capacities of the associated suppliers and the 

new allocation between 𝑖′  and 𝑗′ are inserted to the solution as given in Figure 14. 

Existing allocation between 𝑖′ and 𝑗 is denoted by {𝑖′, 𝑗,   𝑡} and 𝑡 represents the number 

of transferred people from node 𝑖′ to 𝑗. 
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• If 𝑎𝑣𝑎𝑖′ = ∅ 𝑎𝑛𝑑 𝑎𝑐𝑐𝑖′ ≠ ∅   (meaning that demand node 𝑖′ does access to at least 

one supplier but not any available supplier), the accessible suppliers 𝑗′′ ∈ 𝑎𝑐𝑐𝑖′ for 

demand node 𝑖′ should be checked whether some space would be opened by changing 

allocations. All demand nodes 𝑖′′ ∈ 𝑎𝑙𝑙𝑗′′ are checked to see if 𝑎𝑣𝑎𝑖′′  ≠ ∅. If the 

demand node 𝑖′′ has access to an available supplier, then demand node 𝑖′′ should be 

allocated to the supplier 𝑗′′′ ∈ 𝑎𝑣𝑎𝑖′′  (if there is more than one supplier in 𝑎𝑣𝑎𝑖′′′, the 

one with the minimum travel distance should be chosen). Existing allocation between 

𝑖′′ and 𝑗′′ is denoted by {𝑖′′, 𝑗′′,  𝑡1} and 𝑡1 represents the number of transferred 

people from node 𝑖′′ to 𝑗′′. Another existing allocation between 𝑖′ and 𝑗 is denoted by 

{𝑖′, 𝑗, 𝑡2} and 𝑡2 represents the number of transferred people from node 𝑖′ to 𝑗. Same 

as the previous case, the corresponding allocations are removed or updated and 

inserted depending on the associated suppliers and the available capacities of these 

suppliers as given in Figure 15.  

𝑢𝑖 ≤ 𝑎𝑐𝑎𝑝𝑗′

𝑎𝑐𝑎𝑝𝑗′ ≥ 𝑡

{𝑖′, 𝑗, 𝑡} is removed, 

{𝑖′, 𝑗′, 𝑡} and {𝑖, 𝑗, 𝑢𝑖} are added

𝑎𝑐𝑎𝑝𝑗′= 𝑎𝑐𝑎𝑝𝑗′- t and 𝑢𝑖 = 0

{𝑖′, 𝑗, 𝑡} is updated as {𝑖′, 𝑗, 𝑡 − 𝑎𝑐𝑎𝑝𝑗′},

{𝑖′, 𝑗′, 𝑎𝑐𝑎𝑝𝑗′} and {𝑖, 𝑗, 𝑢𝑖} are added

𝑎𝑐𝑎𝑝𝑗′ = 0 and 𝑢𝑖=0

𝑎𝑐𝑎𝑝𝑗′ ≥ 𝑡

{𝑖′, 𝑗, 𝑡} is removed,  {𝑖′, 𝑗′, 𝑡} and {𝑖, 𝑗, 𝑡} 
are added

𝑎𝑐𝑎𝑝𝑗′= 𝑎𝑐𝑎𝑝𝑗′- 𝑡 and 𝑢𝑖 = 𝑢𝑖 − 𝑡

{𝑖′, 𝑗, 𝑡} is updated as {𝑖′, 𝑗, 𝑡 − 𝑎𝑐𝑎𝑝𝑗′},

{𝑖′, 𝑗′, 𝑎𝑐𝑎𝑝𝑗′} and {𝑖, 𝑗, 𝑎𝑐𝑎𝑝𝑗′} are added

𝑢𝑖 = 𝑢𝑖 − 𝑎𝑐𝑎𝑝𝑗′ and  𝑎𝑐𝑎𝑝𝑗′= 0

Figure 15. Exchange Allocation Check-1 

Yes 

Yes 

Yes No 

No 

No 
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𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 are updated by the check procedure given Figure 15 and 16 and saved as 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. Then, the available capacities and unmet demand values are 

updated regarding 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. In each insert move, the lists 

𝑎𝑐𝑐𝑖, 𝑎𝑣𝑎𝑖, 𝑎𝑛𝑑 𝑎𝑙𝑙𝑗 should be updated regarding 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. Figure 17 

illustrates the pseudo-code of the exchange allocations operator.  

procedure Exchange Allocations Operator 

input 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛; 

Check if there is any feasible allocation change for demand node 𝑖 ∈ 𝑢𝑛𝑚                   

     while (all accessible suppliers 𝑗 ∈  𝑎𝑐𝑐𝑖 are checked or 𝑢𝑖 = 0) 

                           while (there is demand node 𝑖′  ∈ all𝑗 to be checked and 𝑢𝑖 ≠ 0) 

                                     if (𝑎𝑣𝑎𝑖′  ≠  ∅, 𝑗′ ∈  𝑎𝑣𝑎𝑖′  )  

                                      Update the allocations according to the rule in Exchange Allocation Check-1 

                                      A𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ←  𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

                                     end if 

                                     else if (𝑎𝑣𝑎𝑖′ =  ∅ and 𝑎𝑐𝑐𝑖′  ≠  ∅ ) 

                                              while (there is accessible supplier 𝑗′′ ∈  𝑎𝑐𝑐𝑖′ to be checked and 𝑢𝑖 ≠ 0) 

                                                      while (there is demand node 𝑖′′  ∈ all𝑗′′ to be checked or 𝑢𝑖 ≠ 0) 

                                                            if (𝑎𝑣𝑎𝑖′′  ≠  ∅, 𝑗′′′ ∈  𝑎𝑣𝑎𝑖′′  )  

                                                               Update the allocations according to the rule in Exchange Allocation Check-2 

                                                               A𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ←  𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

                                                              end if 

                                                               end while 

                                               end while 

                                      end else 

                                  end while     

                        end while 

A𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ←  𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

return 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

end Exchange Allocation Operator 

 

Figure 17. Exchange Allocations Operator 

𝑡1 ≤ 𝑎𝑐𝑎𝑝𝑗′′′

{𝑖′′, 𝑗′′, 𝑡1} is removed, 
{𝑖′′, 𝑗′′′, 𝑡1} is added 
𝑎𝑐𝑎𝑝𝑗′′= 𝑡1 𝑎𝑛𝑑

𝑎𝑐𝑎𝑝𝑗′′′ = 𝑎𝑐𝑎𝑝𝑗′′′ − 𝑡1

𝑡2 ≤ 𝑎𝑐𝑎𝑝𝑗′′

{𝑖′, 𝑗, 𝑡2} is removed, 

{𝑖′, 𝑗′′, 𝑡2} is added 
𝑎𝑐𝑎𝑝𝑗′′= 𝑎𝑐𝑎𝑝𝑗′′- 𝑡2

𝑎𝑐𝑎𝑝𝑗= 𝑡2

𝑢𝑖 ≤ 𝑎𝑐𝑎𝑝𝑗

Add allocation 
{𝑖, 𝑗, 𝑢𝑖}

𝑎𝑐𝑎𝑝𝑗= 𝑎𝑐𝑎𝑝𝑗- 𝑢𝑖

and 𝑢𝑖 = 0

Add allocation 
{𝑖, 𝑗, 𝑎𝑐𝑎𝑝𝑗}

𝑢𝑖= 𝑢𝑖 − 𝑎𝑐𝑎𝑝𝑗

and 𝑎𝑐𝑎𝑝𝑗=0

{𝑖′, 𝑗′′, 𝑎𝑐𝑎𝑝𝑗′′} is added,

{𝑖′, 𝑗, 𝑡2} is updated as  
{𝑖′, 𝑗, 𝑡2-𝑎𝑐𝑎𝑝𝑗′′}

𝑎𝑐𝑎𝑝𝑗′′= 0

{𝑖′′, 𝑗′′, 𝑡1} is updated as   
{𝑖′′, 𝑗′′, 𝑡1 − 𝑎𝑐𝑎𝑝𝑗′′′} , 

{𝑖′′, 𝑗′′′, 𝑎𝑐𝑎𝑝𝑗′′′} is added 
𝑎𝑐𝑎𝑝𝑗′′= 𝑎𝑐𝑎𝑝𝑗′′′

𝑎𝑐𝑎𝑝𝑗′′′ = 0

No

Yes 

No 

Yes 

No 

Yes 

Figure 16. Exchange Allocation Check-2 
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An illustrative example is provided in the following to explain the neighbourhood search 

operators in the local search. Figure 18 shows an initial solution for evacuation allocations. 

Demand nodes  Supplier nodes  Allocations 

No 𝑎𝑣𝑎𝑖  𝑎𝑐𝑐𝑖 𝑑𝑖 𝑢𝑖   No 𝑎𝑐𝑎𝑝𝑗  No i j # 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 

1 - {4} 100 100  1 100  1 2 2 300 

2 {1,3} {2} 300 -  2 -  2 3 3 100 

3 {3} {4} 100 -  3 100  3 5 4 200 

4 {1} {2} 100 100  4 -  4 6 1 100 

5 {3} {2,4} 200 -         

6 {1} {2,4} 100 -         

 

 

The proposed procedure first evaluates the available suppliers for the demand node with unmet 

demand and insert a feasible allocations for these demand nodes by 

𝐼𝑛𝑠𝑒𝑟𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛). Demand node 1 and 4 

have unmet demand and demand node 4 has access to an available supplier which is supplier 

1. With the insert operator, {4, 1, 100} allocation is added to the current solution. Then, the 

allocations, available capacities and unmet demand are updated as in Figure 19. 

 

 

 

 

 

 

 

There is only one demand node has unmet demand in the situation shown in Figure 19. Demand 

node 1 does not have access to any available supplier. For this reason, the second 

neighbourhood search operator which is 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) should be used to see if there is any move that could improve the current 

solution. Demand node 1 has only access to supplier 4 then the allocations which are made to 

supplier 4 should be evaluated. Demand node 5 is allocated to supplier 4 and it is checked if 

Figure 18. An example of local search for evacuation allocations (1) 

Demand node  Supplier node  Allocations 

No 𝑎𝑣𝑎𝑖  𝑎𝑐𝑐𝑖 𝑑𝑖 𝑢𝑖   No 𝑎𝑐𝑎𝑝𝑗  No i j # 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 

1 - {4} 100 100  1 -  1 2 2 300 

2 {3} {2} 300 -  2 -  2 3 3 100 

3 {3} {4} 100 -  3 100  3 5 4 200 

4 - {2} 100 -  4 -  4 6 1 100 

5 - {2,4} 200 -     5 4 1 100 

6 - {2,4} 100 -         

Figure 19. An example of local search for evacuation allocations (2) 
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demand node 5 can be allocated to any available supplier. Demand node 5 has access to supplier 

2 but supplier 2 has no available capacity with the current allocations. In this case, to create 

available capacity in the supplier 2, the method checks all the allocations which are made to 

this supplier. Demand node 2 is allocated to supplier 2 although the demand node has access 

to supplier 3 which has available capacity. {2, 2, 300} is removed and {2, 2, 200} and {2, 3, 

100} are added to the current solution. {5, 4, 200} is removed and {5, 4, 100} and {5, 2, 100} 

allocations are added to the current solution. In this case, with the remove+insert operator, 

Then, the available capacities and unmet demand are updated. 

Demand node  Supplier node  Allocations 

No 𝑎𝑣𝑎𝑖  𝑎𝑐𝑐𝑖 𝑑𝑖 𝑢𝑖   No 𝑎𝑐𝑎𝑝𝑗  No i j # 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 

1 {4}  100 100  1 -  1 2 2 200 

2 - {2, 3} 300 -  2 -  2 3 3 100 

3 - {3} 100 -  3 -  3 5 4 100 

4 - {2} 100 -  4 100  4 6 1 100 

5 {4} {2} 200 -     5 4 1 100 

6 {4} {2} 100 -     6 2 3 100 

         7 5 2 100 

 

After the last arrangements on the allocations, supplier 4 has available capacity to cover the 

demand at demand node 1. The last move should be inserting an allocation as {1, 4, 100} so 

there is no unmet demand, and the procedure is stopped.  

 

4.4. Conclusion 

 

In this chapter, three different solution approaches have been proposed to solve the CNSP. To 

begin with, multi-objective solution approaches such as lexicographic and weighted-sum 

methods were evaluated to determine the best method to apply for the analysis. The weighted-

sum method outperforms the lexicographic method, returning the same solutions while 

requiring less processing time. As a result, the weighted-sum has been employed for the rest of 

the analysis.  

The proposed stochastic problem is hard to solve as it is difficult to evaluate the expected cost 

of the second stage. It requires the solutions of a large number of second stage optimization 

Figure 20. An example of local search for evacuation allocations (3) 
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problems as the number of possible scenarios is very large for the proposed problem. The 

scenario-based (deterministic equivalent) model of the stochastic problem has an exponential 

number of scenarios, which make it impractical to solve directly. Hence, a Sample Average 

Approximation Algorithm (SAA) is proposed to solve the problem. To estimate the 

performance of the SAA method, we first solve a small-scale case. The proposed SAA requires 

solving a considerable number of second-stage models so this method may not be appropriate 

for the larger instances.  

A GRASP-based algorithm has been developed to be able to solve larger instances of the 

problem. To find evacuation allocations for the feasible solutions in the GRASP, we also 

propose a procedure combining a greedy approach for generating initial solutions and an 

iterative improvement algorithm for the local search.  
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5. Case Study with Istanbul Roadway networks 
 

This chapter provides the case study implementation stages. Basically, the input data 

generations are explained such as defining network components, estimating resilience levels of 

links, generating alternative routes connecting demand-supplier nodes, and scenario 

generation.  

Two case studies are applied using Istanbul roadway network datasets. Two data sets are used 

based on Istanbul Road network which are generated using two geographical information 

system (GIS) programs; ArcGIS and GoogleMaps. The city of Istanbul is located in a first-

degree seismic zone and has experienced several earthquakes throughout its history. With 

around 15 million inhabitants, the city is spread 500 km2 on either side of the Bosphorus strait.  

The performance of the proposed methods is evaluated with the data of the expected earthquake 

scenarios of Istanbul. According to the research of JICA (Japan International Cooperation 

Agency), there are four possible earthquake scenarios for Istanbul which are Model A, B, C, 

and D, respectively. Model A is the most probable and Model C is the worst-case scenario 

[276]. Model C has a longer broken line, and accordingly, it leads to higher damage. Model B 

is similar to Model A, and Model D is similar to Model C. The JICA and IMM (Istanbul 

Metropolitan Municipality) reports provide the estimation of casualty numbers of each district 

for these two scenarios (Model A and C). We conduct two case studies of the Istanbul roadway 

network data (the simplified and detailed network) under the earthquake having a magnitude 

of 7.7, which is identified as the worst-case scenario (Model C) in the JICA report.  

The first data set, which is named as the simplified network data of Istanbul roadway with 60 

nodes and 83 links, is generated by Yucel et al. [246]. Figure 21 illustrates the simplified 

roadway network, which is mainly composed of two motorways, O1 and O2, which run along 

the east-west direction of the city. The secondary roads along the north-south direction, which 

are connected to motorways O1 and O2, expand the roadway network throughout the city.  
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Figure 21. The simplified roadway network representation of Istanbul [246] 

The second data set is based on a more detailed Istanbul roadway network with 349 nodes and 

1295 links generated using ArcGIS and Google Earth by Akbari and Salman [312]. Figure 22 

displays the components of the detailed network and the active North Anatolian Fault line that 

is under the Marmara Sea that lies to the south of Istanbul. The links are categorized into groups 

with the risk separator due to their proximity to the epicentre of the earthquake according to 

the scenarios predicted in the JICA report.  

 

 

Figure 22. The detailed roadway network representation of Istanbul [312] 
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5.3. Defining Demand and Supplier Nodes  
 

In the aftermath of an earthquake, extricating people and providing access to health care 

facilities are the top priorities followed by access to emergency operations infrastructures such 

as the emergency operations centres and supply distribution centres.  

The simplified network consists of 60 nodes (26 demand nodes, 8 supplier nodes and 26 

transhipment nodes) (see in Appendix D.1). For the simplified network, except for four 

districts, Beykoz, Sile, Çatalca, and Silivri, that have low populations and low earthquake risks 

according to JICA report, every other district is represented by a node. Some of the districts 

are identified as supplier locations including Bakırköy, Üsküdar, Sisli, Fatih, Kadıköy, 

Bahçelievler, Zeytinburnu, and Beyoglu, where the healthcare capacity is concentrated 

considering the number of hospitals and polyclinics as well as the number of beds in each 

district (see in Appendix D.2). The remaining districts, where the number of healthcare 

facilities is not sufficient to serve the casualties in the post-disaster stage, are identified as 

casualty demand locations. Therefore, these casualties would be transported to the identified 

supplier locations. The number of estimated casualties in each demand district is calculated by 

the casualty rates given in the JICA report, as listed in Appendix D.3.  

For the detailed network, each district is represented by a different number of nodes based on 

the existing population densities of demand nodes (i.e., two nodes for Silivri, six nodes for 

Bahcelievler). Unlike the simplified network data, the supplier nodes represent the location of 

hospitals, depots, and airports rather than districts. The detailed network consists of 349 nodes 

(16 supply nodes, 154 demand nodes, and 170 transhipment nodes). Same as in the simplified 

network, the casualty demand is generated by using the casualty rates given in the JICA report 

and it is distributed equally for the demand nodes in each district (see in Appendix E.2). 

5.2. Generation of Initial Resilience Levels  
 

Roadway may become inoperable in the event of an earthquake. Earthquakes can cause cracks 

and deformations in roads obstructing the transportation. roadways are not equally vulnerable 

to an earthquake. Roads with a high regional seismic risk, for example, are more vulnerable to 

earthquake-related damage, whereas roads with a low regional seismic risk are more reliable. 

Furthermore, the structural qualities of bridges and viaducts define their earthquake risk, as 

well as the seismic vulnerability of the roads that carry these structures. 
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For a vulnerability assessment of the highway network, we need to estimate the 

reliability/resilience of individual links. To estimate the resilience levels, we use the survival 

probabilities calculated by Yucel et al. [246] for the simplified network. For the simplicity in 

scenario generation, we multiply the survival probabilities by 10 to compute the initial 

resilience levels so we assume that initial levels are in the range [1,10]. Accordingly, a link 

with a resilience level of 10 is the most resilient link, whereas a link with a resilience level of 

1 is the riskiest and weakest. 

In the following, we explain how survival probabilities are estimated and what components are 

considered (for additional details see [246]). The estimation of links’ survival probabilities for 

the simplified network takes into account the seismic intensity and magnitude of the earthquake 

and the collapse of structures on the roadway. Survival probabilities, denoted by 𝑝𝑟𝑜𝑏𝑒 for 

each link 𝑒, are computed using equation 5.3. Three components are considered in the 

estimation of the link survival probabilities: 𝑃𝐺𝐴𝑒 is the peak ground acceleration level at link 

𝑒 depending on the magnitude, 𝑓𝑒 is the seismic risk factor where link 𝑒 is placed and epicentre 

of the earthquake, 𝜑𝑒 represents the earthquake vulnerability score based on the structures on 

link 𝑒.  

𝑝𝑟𝑜𝑏𝑒 = 1 − 𝑓𝑒𝑃𝐺𝐴𝑒 − 𝜑𝑒 (5.1) 

Yucel et al. [246] define the seismic intensity in terms of peak ground acceleration (PGA) level 

which measures how intensive the ground shakes in a given geographic area. Three risk levels 

are defined by PGA levels based on the consultation with an expert from the Turkish Federal 

Highway Administration (TFHA), where risk level 1 (corresponding to a 0.3–0.4 g PGA 

interval) shows the region with high seismic risk, risk level 2 (corresponding to a 0.2–0.3 g 

PGA interval) is the region with average seismic risk and risk level 3 (corresponding to a 0.1–

0.2 g PGA interval) is the region with low seismic risk given in [276]. A link can be located in 

more than a single region, and it will be non-operational if one of its adjacent nodes fails. 

Therefore, the seismic risk level of a link is taken as the maximum seismic risk level of its 

adjacent nodes. The seismic risk factors of the links should lie between (0.95, 1], (0.9, 0.95], 

and (0.85, 0.9] for risk levels 1, 2, and 3, respectively, for an earthquake having a magnitude 

of 7.7, which is identified as the worst-case scenario in the JICA report. The seismic risk 

factor 𝑓𝑒 of each link e is generated randomly in the interval specified for the corresponding 

risk level.  
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Yucel et al. [246] partition the links in each region according to the earthquake vulnerability 

of the vulnerable structures (bridges/viaducts) on them and estimate the earthquake 

vulnerability score of each link. To estimate vulnerability scores of bridges/viaducts, the 

preliminary earthquake risk assessment of bridges/viaducts are done by conducting with the 

scoring method of ATC 6-2 which is one of the widely used methods for the preliminary 

assessment and priority listing of structures. The network links, on which these structures are 

located, are identified using GoogleMaps and ArcGIS. 

In this ATC 6-2, three factors, which are vulnerability, seismicity, and structural importance, 

are equally considered in estimation of vulnerability score of these structures. Vulnerability is 

related to structural parameters (bearing type, superstructure skew angle, minimum support 

length); seismicity represents the magnitude of the earthquake as well as the geology and 

geotechnical surroundings of the structure. Finally, the structure's importance is related to the 

daily average traffic, the physical size of the structure, the population surrounding the structure, 

its usage, and the structure's function in transit to key facilities such as hospitals and fire 

stations. Yucel et al. [246] exclude structural importance factor since they assume that all 

structures are equally important. For each bridge/viaduct, each factor is examined and assigned 

a score between 1 and 10. The scores are then multiplied by 3.33 (since they are equally 

essential) and summed to get the final score as seen in the equation 5.2.  

5 ∗ (
𝑇𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 − 3.33 ∗ (𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒)

3.33
) 

(5.2) 

As a result, a bridge/viaduct with a total score of 100 is the riskiest structure, whereas a 

bridge/viaduct with a total score of 0 is risk-free. If a total score in the interval [70, 100] 

indicates that the structure is at high danger; a total score in the interval [55, 70] indicates that 

the structure is at medium risk; and a total score less than 55 indicates that the structure is at 

moderate risk. The earthquake vulnerability score (𝜑𝑒) will be 0.3, 0.2, an 0.1 correspond to 

the intervals [70, 100], [55, 70], and less than 55, respectively. 

For the detailed network, we use the same procedure as applied for the simplified network to 

generate the initial resilience levels. The coordinates of detailed network links are available; 

therefore, we could identify the PGA and risk levels of the links. The bridges/viaducts and the 

coordinates of these structures are given in [313]. Arsik [313] estimate the vulnerability scores 

for each structure by using the same scoring method ATC 6-2. The vulnerability scores are 
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taken from their research for the detailed network. We first identify network links on which 

these structures are located with GoogleMaps. Then, we estimate the resilience levels of 

detailed network links considering PGA levels, risk levels and vulnerability scores by using 

the formula given in 5.1.  

 

5.3. Defining Routes  
 

The selection of emergency routes is essential in pre-disaster planning activities. Finding the 

shortest route from each demand node to each supplier node is crucial in the planning stage. 

However, in the post-earthquake, the shortest route between demand and supplier nodes may 

not always be operational since the links on the shortest routes may be collapsed.  

In the literature, there are various methods to generate a set of routes. The most-known one is 

the k-shortest route algorithm, which produces k shortest routes from one node to another node 

in a network [314]. An ordered list of k alternative routes connecting demand and supplier 

nodes are provided by k-shortest route algorithm. The drawback of this method is that it may 

generate similar routes with common links. If a common link of the two generated routes fails, 

then both routes fail. However, another route with a slightly higher distance may survive. Thus, 

it is more realistic to include a set of routes instead of only the shortest route into consideration. 

Yucel et al. [246] generate the routes (having no cycles) for the simplified network by using 

the k-shortest route algorithm and then eliminate the similar routes by the modified p-dispersion 

method [315].  In the p-dispersion method, the procedure selects a set of p routes out of a set 

of m candidate routes between demand and supplier nodes is selected with the objective of 

maximizing the minimum dissimilarity between any two selected routes. In the dissimilar route 

generation procedure, 𝑑𝑖𝑠𝑟′𝑟′′ corresponds to the dissimilarity between route 𝑟′and 𝑟′′. This 

dissimilarity is expressed in terms of the similarity index given below.  

 

𝑆(𝑟′, 𝑟′′) =

𝑙(𝑟′ ∩ 𝑟′′)
𝑙(𝑟′)

+
𝑙(𝑟′ ∩ 𝑟′′)

𝑙(𝑟′′)

2
 

(5.3) 
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where 𝑙(𝑟′) is the length of route 𝑟′ and 𝑆(𝑟′, 𝑟′′) is the similarity index between route 𝑟′and 

𝑟′′. Then, the dissimilarity is equal to: 

 

𝑑𝑖𝑠𝑟′𝑟′′ = 1 − 𝑆(𝑟′, 𝑟′′) (5.4) 

The modified p-dispersion method finds the most dissimilar p routes by ensuring the shortest 

route is included. Therefore, Yucel et al. [246] generated a set of routes through the p-

dispersion method that merges the set of k-shortest routes from a demand point to each supply 

point. They find 1132 alternative routes and we use these routes in the computational 

experiments. 

For the detailed Istanbul roadway network, we generate the set of routes between demand and 

emergency facility locations. Overall, 10506 alternative routes, considering 1295 undirected 

links, are generated by using the k-shortest path algorithm. The routes have a considerable 

number of links: some of them have nearly 50 links whereas the average is 18 links. This case 

is different than the simplified network so the similarity of the routes may be high but that does 

not mean they need to be excluded. Therefore, for the detailed network, we include all these 

routes, but the proposed solution approaches use the shortest accessible ones for each demand-

supplier pair.  

 

5.4. Generation of Mitigation Projects 

As mentioned previously in the Chapter 1, several mitigation strategies can be used, such as 

strengthening structures (bridges/viaducts) with cross braces and other reinforcements that can 

absorb some of the forces resulting from a seismic activity. These measures can be applied 

with the aim of improving the seismic resilience of susceptible links and, as a result, the post-

earthquake survival status of roadways.  

We assume that when a link is strengthened in the pre-disaster stage, its resilience level 

increases. In this study, resilience levels show the ability of a network/ roadway component to 

retain transportation functionality at varying levels. Yucel et al. [246]  assume that strengthened 

links are much less likely to fail after an earthquake, therefore, the strengthened link survival 

probabilities are set to 98% in their analysis. Differently, we assume that a link will be mitigated 

to varied degrees but may still be inoperable after the earthquake due to the risk it carries. We 
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include the projects with various levels of improvement on resilience levels because different 

mitigating options may be available for each link. Additionally, we consider the impacts of 

mitigation projects as being is dependent on the initial conditions of links. As stated in Section 

5.2, resilience levels are identified considering where the links are located on and what 

structures exist on them. Therefore, if a link has a high risk level and a vulnerable component 

on it, in other words if a link has low resilience level compared to others, more emphasis on 

retrofitting projects is required for that link.  

The cost of each project is determined based on the levels of improvement. We assume that 

there may be more than one project that can be implemented on a link 𝑒 ∈ 𝐸 and the number 

of projects depends on its initial resilience level 𝜌𝑒. The links are divided into three groups 

according to their initial resilience level; link e in scenario s is in group 1 if 𝜌𝑒 ≤ 3, link e in 

scenario s is in group 2 if 3 < 𝜌𝑒 ≤ 6, and lastly link e in scenario s is in group 3 if 6 < 𝜌𝑒 ≤

10. The links in group 1 have three project options having high, medium, and low impact 

levels. Similarly, if a link belongs to group 2, it has two projects and lastly, links in group 3, 

have just one project. After defining the impacts on resilience levels and the number of projects, 

cost values are generated based on degrees of improvement in resilience level and the initial 

resilience level. The pseudo-code showing the general concept of generating data relative to 

the mitigation projects is illustrated in Appendix F. For the coefficient for calculation of project 

cost is set to 25 for both network data sets.  

 

5.5. Scenario Generation 

 

In this section, we explain how to generate network scenarios for the representative data sets. 

For each scenario 𝑠 ∈ 𝑆, there will be unique survivability threshold 𝛽𝑒
𝑠 value for each link e 

∈ 𝐸. Therefore, each scenario would have different available routes in the network realizations 

for the initial state (without mitigation project application). For the computational experiments, 

we assume that the occurrence probabilities 𝑝𝑟𝑜𝑏𝑠 are identical so we do not consider the 

probabilities in the case studies, and we calculate the objective functions as the average of all 

scenarios’ objectives.  
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In our approach, we assume that if the link’s resilience levels are lower than the survivability 

thresholds which are dependent on the scenario, the link fails and will not be operational. For 

both networks, the links are classified as high, medium, or low-risk due to their proximity to 

the epicentre of the earthquake and based on the presence of a vulnerable structure to the worst-

case earthquake scenario described in the JICA report [276]. For the detailed network, as seen 

in Figure 22, low-risk links are those above the upper horizontal line, medium-risk links are 

those between the two horizontal lines, and high-risk links are those below the lower horizontal 

line. If nodes of a link are located in two different risk-level groups, it is placed that particular 

link in the riskier group. In order to eliminate less likely network scenarios, the risk levels of 

the links are taken into account in generating scenarios based the fact is the links with high-

risk levels must be more resilient to survive.  

Table 18. Risk levels and associated threshold values for the simplified network 

Risk levels Threshold values 

Risk level 1 (high seismic risk) 7 or 6 

Risk level 2 (average seismic risk) 6 or 5 

Risk level 3 (low seismic risk) 5 or 4 

 

Various earthquake-induced parameters as explained in Section 5.2 are considered while 

estimating the resilience levels. For this reason, we assume that links which have very high 

resilience levels (>7) will always be operational, even if they are classified as in high seismic 

risk level. Similarly, if a link has a very low resilience level (<4), it will be non-operational 

regardless of its risk level. On the basis of this assumption, we define two potential threshold 

values for each risk level (e.g., for risk level 1, the threshold can be either 6 or 7). Either one 

of these values can be selected as the survivability threshold for each link in a given scenario. 

As a result, there exist 283 and 21295 different scenarios for the simplified and detailed network, 

respectively.  

Eliminating scenarios that are redundant in terms of survivability thresholds based on initial 

resilience levels would be beneficial for the computational time. As stated above, if the link e 

has a high initial resilience level, which is 𝜌𝑒 ≥ 7, that link will be operational for all scenarios. 

With the same reasoning, if the initial resilience levels are higher than maximum threshold 

values which are 6 for risk level 2 and 5 for risk level 3, these links will be operational for all 

scenarios. Links that match these criteria do not need to be considered when generating 
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scenarios. After applying this reduction, we have 221 (2,097,152) scenarios instead of 283 for 

the defined initial resilience levels for the simplified network (see in Appendix A.3). The 

number of scenarios is till quite significant. We therefore implement the SAA algorithm 

described in Section 4.2.  

 

5.6. Conclusion 

 

This chapter explains the generation of the representative networks, selection of demand and 

supplier locations (nodes), link resilience levels, determination of mitigation projects, route 

generation, and scenario generation method for the case study. The input data generation is 

done for two different Istanbul roadway networks which is a simplified and detailed with 60 

nodes, 83 links and 349 nodes, 1295 links, respectively. Specifically for estimating resilience 

levels, it was really challenging to conduct the previously introduced approach considering 

three different components (𝑃𝐺𝐴𝑒 is the peak ground acceleration level at link 𝑒, 𝑓𝑒 is the 

seismic risk factor, 𝜑𝑒 represents the earthquake vulnerability score) for the detailed network. 

These three components are estimated based on the coordination information of the links and 

the vulnerable infrastructure’s vulnerability scores. This was the first attempt to use such a 

large network NSPs in the OR literature. While the primary goal is to validate the developed 

solution methodologies for the next chapter, it would be possible to drive insights considering 

as many realistic parameters as feasible through this chapter. 

To generate the alternative routes between demand-supplier nodes, the k-shortest route 

algorithm and p-dispersion algorithm are used. We include the projects with various levels of 

improvement on resilience levels because different mitigating options may be available for 

each link. The impacts of mitigation projects are considered as being is dependent on the initial 

conditions of links. Additionally, each scenario would have different available routes for the 

initial state. We assume that if the link’s resilience levels are lower than the survivability 

thresholds which are dependent on the scenario, the link fails and will not be operational for 

the transportation. The threshold values are estimated considering the link risk levels as high, 

medium, or low-risk due to their proximity to the epicentre of the earthquake according and 

contains a vulnerable structure to the worst-case earthquake scenario described in the JICA 

report.  
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6. Results and Analysis 
 

In this chapter, we first compare the two multi-objective approaches. We then apply the SAA 

procedure to the simplified network and use the proposed heuristic algorithm to solve the 

problem with the simplified netwrok. Finally, we utilize the heuristic algorithm to solve the 

problem with the detailed network to assess its efficiency on a larger instance. Figure 23 depicts 

the simplified network's demand and supply nodes. Some results in the following analysis are 

given using node numbers. We defined the budget levels by some preliminary analysis. 

Experiments have been performed for different budget levels for the simplified network, 

starting from 10% of the protection budget (the total cost of candidate projects) and increasing 

by 2.5% at each stage. Since the detailed network is significantly larger in terms of the number 

of links to be strengthned than the simplified network, we employ the budget levels starting 

from 2.5% and increasing by 2.5% at each step to draw more insights. These experiments 

continued until we reached the budget level at which all demand would be met to draw further 

insights for the simplified network. 

 

Figure 23. Demand and supplier nodes for the simplified network 
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The solution approaches were implemented using IBM ILOG OPL modelling language and 

solved with CPLEX OPL 20.1.0 solver and C++, on a computer with Intel Core 7, 2.80 GHz, 

32 GB of RAM under a 64bit operating system. 

6.1.  Comparisons of the Multi-objective Approaches  
 

The proposed model is implemented using two multi-objective approaches: the lexicographic 

and weight-sum based methods. We compare these two methods using the simplified Istanbul 

roadway network data with input parameters (including demand, capacity, initial resilience 

levels, project cost and impacts values) as detailed in Appendix D. 10 different scenarios for 

each replication are generated with the scenario generation method explained in Section 5.5.  

Each scenario 𝑠 ∈ 𝑆 has its own set of survivability threshold 𝛽𝑒
𝑠 for each link 𝑒. We test the 

multi-objective approaches in terms of their impacts on primary and secondary objective 

values.  

A new scenario set consisting of 10 different scenarios is created in each replication. We 

replicate 10 times with 10 scenarios for two budget levels including 15% and 20% and report 

the percentage of uncovered demand (UD%) (primary objective), average travel distance per 

evacuee (secondary objective) and solution time (CPU) in the Table 19 for both approaches. 

We calculate the average travel distance per evacuee as the total travel distance in evacuation 

operations divided by the total number of evacuated people using the following formula: 

𝐴𝑣𝑟𝑒𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑒𝑣𝑎𝑐𝑢𝑒𝑒 =
∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑟

𝑠 𝑙𝑟
|𝑅|
𝑟

|𝐽|
𝑗

|𝐼|
𝑖

|𝑆|
𝑠

∑ ∑ ∑ ∑ 𝑧𝑖𝑗𝑟
𝑠|𝑅|

𝑟
|𝐽|
𝑗

|𝐼|
𝑖

|𝑆|
𝑠

 

The impact of the solution approaches on the mitigation decisions and objective function values 

is analysed. In both solution options, the chosen projects are identical and listed in Table 19. 

Both primary and secondary objective function values are equal in each replication for both 

methods. The lexicographic approach ensures to provide the optimal allocation decisions for 

both minimum total unmet demand and travel distance by solving two different mathematical 

models. The weighted-sum approach prioritizes minimizing total unmet demand while 

minimizing total travel distances as a secondary objective. As a result, the weighted-sum 

method achieves the same outcomes while taking less time to solve the model in each 

replication. 



111 
 

Table 19. Comparison of multi-objective solution approaches 

 

Rep Chosen Projects 
UD% per 

scenario 

Average 

travel 

distance (km) 

CPU (secs) 

Budget 

levels 

Weighted-

sum method 

Lexicographic 

method 

15% 

1 16, 29, 33, 53, 64 2.85 27.85 130.37 193.42 

2 16, 30, 33, 53, 64,72 3.39 26.27 157.29 201.61 

3 16, 29, 33, 53, 64 2.21 28.64 138.17 207.49 

4 16, 29, 33, 53, 64 2.53 27.75 65.66 163.5 

5 16, 29, 33, 53, 64 3.51 27.90 136.37 205.17 

6 16, 29, 33, 53, 64 2.53 27.70 125.58 185.80 

7 1, 29, 30, 33, 53, 64 2.49 27.47 142.76 204.09 

8 1, 29, 30, 33, 53, 64 2.49 28.97 121.49 193.91 

9 16, 29, 33, 53, 64 2.86 27.55 112.37 182.41 

10 14, 16, 33, 53, 64,72 3.29 28.09 153.09 222.5 

Average 2.82 27.82 128.32 195.99 

20% 

1 1, 29, 30, 33, 53, 64,82 0.85 29.70 90.66 216.50 

2 16, 29, 33, 53, 64, 82 1.52 27.42 176.99 200.31 

3 16, 29, 33, 53, 64, 82 1.01 27.40 93.61 180.01 

4 16, 29, 33, 53, 64, 82 0.37 27.49 84.16 173.40 

5 16, 29, 33, 53, 64, 82 1.2 27.74 78.07 234.97 

6 16, 29, 33, 53, 64, 82 1.52 27.43 105.43 153.80 

7 16, 30, 33, 53, 64, 72, 82 0.93 26.76 79.17 180.90 

8 16, 29, 33, 53, 64, 82 0.37 28.21 91.79 164.31 

9 16, 29, 33, 53, 64, 82 0.97 28.09 84.42 157.52 

10 14, 16, 33, 53, 64, 72, 82 1.09 26.20 85.52 214.17 

Average 0.98 27.644 96.982 187.58 

            *Rep: Replication number 

Since the project selections are identical, the available routes are the same in each scenario for 

each replication. On the other hand, evacuation allocations in the solutions of the methods are 

not the same for each scenario, indicating that alternative optimal solutions exist. We give an 

example including the results with same unmet demand and travel distance with slightly 

different allocations for both methods in Appendix G. Appendix G.1 and G.2 show the 

allocations in the 8th scenario of replication 10 provided by the lexicographic and weighted-

sum methods. We observe that the evacuation demand for a few of demand points is allocated 

to different suppliers. For this particular scenario on replication 10, the allocations which are 

different are provided in Table 20 (the remaining allocations are the same in both methods). 

As seen in Table 20, while demand node 3 is allocated to supplier 8 only in the lexicographic 

method, two different supplier nodes (1 and 8) serve demand node 3 in the weighted-sum 
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method. As another example, evacuees from demand node 18 are evacuated to supplier 1 in 

the lexicographic method’s results whereas they are allocated to supplier 8 in the weighted-

sum method’s results. Despite these small difference in the allocations, the outcome, which is 

total unmet demand and travel time, remains the same so the average travel time per evacuee 

is the same in the optimal evacuation planning by both methods.  

Table 20. Different allocations in both methods 

Demand 
node 

Supplier node 
Route 

no 
Evacuated 

people 
Route length 

Total travel 
distance 

Lexicographic Method 

3 8 98 1988 34.87 69317.58 

12 8 513 108 42.48 4588.164 

12 1 532 93 53.49 4974.105 

18 1 836 834 32.26 26902.34 

  Total: 3023 

 

105782.2 

Weighted-Sum Method 

3 8 98 1262 34.87 44003.42 

3 1 105 726 45.87 33301.62 

12 1 532 201 53.49 10750.49 

18 8 830 834 21.255 17726.67 

  Total: 3023  105782.2 

 

When it comes to strategic decisions, minor allocation disparities are irrelevant as long as the 

unmet demand and travel distance are the same. The weighted-sum approach is used in the 

following analyses because it finds optimal results in less time than the lexicographic method. 

 

6.2. SAA Results  
 

Recall from Section 4.2 that the SAA method requires the solution of N replications of the 

approximate the stochastic programming model, each involving S sampled scenarios. The 

objective function is subsequently evaluated using S' sampled scenarios for statistical 

validation of a proposed solution. This experimental work attempts to quantify the quality of 

the solution. Lower bound and upper bound of the solutions are estimated by the SAA 

procedure to evaluate the quality of the solutions. We implement the SAA procedure for the 

simplified network and report the results for various samples for a specific budget level which 

is %20. We begin with S=10 sample size and increase by 10 in each iteration until CPLEX 
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OPL is unable to solve the problem or the optimality gap is less than 𝜀. We use S’= 1000 

scenarios to evaluate the expected objective function for a given solution. In each iteration, we 

generate new instances in the same manner as explained in Section 5.4. 

We use 10 replications (N = 10) for every choice of sample size (S), and we define our stopping 

criteria as 𝜀 = 0.1 meaning that if the optimality gap is lower than 𝜀 then we terminate the 

algorithm. We start our algorithm with S=10, that is, we generate 10 scenarios and solve the 

corresponding SAA model optimally in each replication. Once all replications are done, we use 

the solution with the best objective value. We use the optimal values of the first-stage decision 

variables, 𝑦𝑝 which represents the mitigation project selection decision, as in the best solution 

over all replications. In this step, S’= 1000 independent second-stage problems are solved and 

the estimated upper bound is found. We continue to increase by 10 the sample size and apply 

the same procedure until the stopping criterion is satisfied. 

Table 21 shows the deterministic equivalents of the SAA models corresponding to different 

values of S to emphasize the difficulty of solving the SAA model. With S=10, 20, 30, and 40, 

the SAA model can be solved, however CPLEX OPL gives a memory error once the sample 

size reaches 50. As a result, once the iteration, which has a sample size of 40, is completed, we 

terminate the SAA procedure even if the optimality gap is not lower than 𝜀. 

Table 21. Size of the deterministic equivalent of the SAA problem 

Sample size Constraints Variables CPU interval 

(secs) 
Binary Integer 

S=10 22,153,094 2,355,505 2,355,650 [80,100] 

S=20 44,306,104 4,710,895 4,711,300 [200,450] 

S=30 66,459,114 7,066,285 7,066,950 [350, 700] 

S=40 88,612,124 9,421,675 9,422,600 [800,2000] 

 

Table 22 provides the objective function values of 10 replications obtained by the SAA 

algorithm for the given sample size values. The mitigation project selections are given in Table 

23. The minimum objective function values determine the solution which is used to find the 

upper bound and the associated mitigation project selections are highlighted in Table 23. 
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Table 22. Objective function values for 𝑆=10, 20, 30, 40 scenarios and budget=20% 

 Replications 

Sample 
size 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 

S=10 1379752 2449453 1632637 1594897 1926133 2444926 1502049 1595108 1564921 1757252 

S=20 1813809 1350744 1948732 1360372 2062018 3020437 1407805 3085745 1587484 1406822 

S=30 2209234 1332108 1469101 2130820 1363521 1799932 1709411 2913213 2693094 1527489 

S=40 1715671 2544958 1616044 2508412 1553979 1395979 2423177 1953245 2485795 2090078 

 

 

Table 23. Mitigation project selections in the SAA algorithm for 𝑆=10, 20, 30, 40 scenarios and budget=20% 

Replications S=10 S=20 S=30 S=40 

n=1 1, 29, 30, 33, 53, 64,82 14, 16, 33, 53, 64, 72, 82 16, 29, 33, 53, 64, 82 1, 29, 30, 33, 53, 64, 82 

n=2 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 1, 29, 30, 33, 53, 64, 82 

n=3 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 

n=4 16, 29, 33, 53, 64, 82 1, 29, 30, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 

n=5 16, 29, 33, 53, 64, 82 14, 16, 33, 53, 64, 72, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 

n=6 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 

n=7 16, 30, 33, 53, 64, 72, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 1, 29, 30, 33, 53, 64, 82 

n=8 16, 29, 33, 53, 64, 82 14, 16, 33, 53, 64, 72, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 

n=9 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 

n=10 14, 16, 33, 53, 64, 72, 82 16, 29, 33, 53, 64, 82 1, 29, 30, 33, 53, 64, 82 16, 29, 33, 53, 64, 82 

 

Table 24 shows the estimated gap between the upper and lower bounds for different number of 

sample size. We can see that as we increase the sample size, the estimated optimality gap 

between the upper bound and the lower bound decreases. As mentioned earlier, we terminate 

the SAA algorithm for S=40 scenarios as the SAA model with the bigger sample size (S=50) 

is not able to solve by CPLEX OPL. Even though the targeted optimal gap has not been 

reached, the best estimated gap value is less than 5% as seen in Table 24. 

 

 

 



115 
 

Table 24. Estimated gap for different choices of S and 20% budget level 

Number of 

scenarios 

Estimated 

lower bound 

Estimated 

upper bound 

Optimality 

gap (%) 

S=10 1784713 3069128 41.8 

S=20 1904397 2100275 9.3 

S=30 1914792 2043220 6.28 

S=40 2028734 2038586 4.83 

 

Table 25 provides the unmet demand values for demand nodes over 40 scenarios in the best 

bound solution when we set the budget level equal to 20%. In this solution (S=40), there is 

unmet demand in only 18 out of 40 scenarios and evacuees at demand node 15 could not be 

transferred to a medical centre in 9 out of these 18 scenarios. In general, there are 3 demand 

nodes (8,9,15) where all evacuation demand cannot be met over the scenarios.  

Table 25. Best upper bound solution for 40 scenarios 

Scenario Demand node Unmet demand 

1 15 573 

2 15 573 

6 15 573 

11 15 573 

12 8 399 

16 9 25 

17 8 25 

20 15 573 

21 9 25 

22 9 399 

22 15 573 

23 15 573 

27 9 25 

28 9 25 

31 15 573 

35 9 25 

36 15 573 

40 9 25 
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The estimated optimality gap values are the smaller relative to the lower bound and upper 

bound values when the sample sizes are large enough, demonstrating that the SAA can identify 

satisfactory solutions for the simplified Istanbul network. The proposed SAA approach is not 

applicable for large instances (the detailed network) which we cannot solve optimally in 

CPLEX OPL even with modest sample size values. 

6.3.  Heuristic Algorithm Results 
 

The GRASP algorithm is utilised for the simplified and detailed network. The GRASP 

algorithm’s efficiency is validated by the optimal results obtained by CPLEX OPL for the 

simplified network. The algorithm is then used for the detailed network that CPLEX OPL is 

unable to solve. The analysis results and derived insights are presented in the following.  

6.3.1. GRASP Parameter Setting 

 

We perform the computational tests to determine the best values for all the parameters of the 

GRASP. For parameter setting, the simplified roadway network data is used with various 

budget levels. Each parameter set is tested with 5 different budget levels (15%, 17.5%, 20%, 

22.5%, and 25%) and 40 different scenarios since the maximum sample size is 40 that we could 

acquire optimal results by CPLEX OPL. The levels for each parameter are listed in Table 26.   

Table 26. Levels of parameters 

Parameters Levels 

𝛼 (Coefficient to determine RCL) 0.1, 0.2, 0.3, 0.4, 0.5 

 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 (Maximum iterations for constructive phase) 10, 20, 30 

 

15 different parameter combinations (𝛼 (5 levels) and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 (3 levels)) are tested for 5 

different budget levels and 40 different scenarios. These levels are chosen according to the 

result of preliminary tests. Once 𝛼 is higher than 0.5, the quality of results significantly 

decreases so the levels (0.1, 0.2, 0.3, 0.4, 0.5) are selected for the parameter calibration tests. 

Since a large number of neighbour solutions were produced for each initial solution, the optimal 

result could be achieved in a small number of iterations. The parameter levels are chosen to be 

able to provide optimal solutions while CPU remains reasonable after preliminary tests. Each 

combination is solved for three different scenario sets (each scenario set has 40 scenarios). 

Figure 24 illustrates the parameter combinations according to the average and maximum % gap 
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between the heuristic solution’ and the optimal solution’s primary objective function value for 

each budget level.  

 

Figure 24. Error % of parameter combinations 

The performance of each parameter combination is measured in terms of the average gap% 

from optimal results and the CPU time and we selected the best parameter combination that 

leads to minimum gap% and solution time from these combinations. The best parameter 

combinations for GRASP are 𝛼 (0.4), 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 (20) and 𝛼 (0.4), 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 (30). We selected 

the parameter combination (0.4, 20) that leads to an average error of 0.2% and a maximum 

error of 3.70% with less CPU. This combination finds the optimal solution (the mitigation 

project selections with the optimal unmet demand value) except one scenario with a budget 

level which means 1 out of 15 problems. Although it could not provide the optimal solution, it 

finds a good-quality solution which the gap in the primary objective is only 3.70%. Average 

CPU is 184 seconds. This combination is used for the rest of computation experiments.  

6.3.2. Simplified Network Results 

 

We first evaluate the performance of the proposed GRASP algorithm by comparing with the 

CPLEX OPL solutions. For various scenarios, we conducted experiments for varying budget 

levels on the simplified Istanbul roadway network.  

We first conducted 10 experiments (replications) with 20 and 40 scenarios for a budget level 

of 20% to validate the GRASP procedure's performance using the optimal results provided by 

CPLEX OPL. Tables 27 and 28 show the projects that were chosen (mitigation decisions), the 

unmet demand ratio over all scenarios (UD%), the average travel distance per evacuee, and the 

solution time (CPU). Since the GRASP procedure finds the same mitigation decisions and 

unmet demand values as in optimal solutions, these are reported in one column only. 
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Table 27. Results for S=20 and B=20% 

 

Rep 
Chosen Projects 

Optimal 
UD% 

Average travel distance 

(km) 
CPU (secs) 

Budget 

levels 

% 

Optimal GRASP Optimal GRASP 

20 

1 14, 16, 33, 53, 64, 72, 82 1.24 26.06 28.69 388 62 

2 16, 29, 33, 53, 64, 82 0.84 28.05 30.42 287 61 

3 16, 29, 33, 53, 64, 82 1.21 27.6 29.77 298 139 

4 1, 29, 30, 33, 53, 64, 82 0.59 29.33 31.72 440 195 

5 14, 16, 33, 53, 64, 72, 82 1.28 26.36 29.66 247 132 

6 16, 29, 33, 53, 64, 82 2.13 28.23 30.54 233 176 

7 16, 29, 33, 53, 64, 82 0.87 28.09 30.17 201 140 

8 14, 16, 33, 53, 64, 72, 82 2.03 26.30 29.15 463 253 

9 16, 29, 33, 53, 64, 82 0.98 27.84 29.89 229 146 

10 16, 29, 33, 53, 64, 82 0.63 27.97 30.57 289 185 

Average        1.18 27.58 30.05 307.5 148.9 

 

Table 28. Results for S=40 and B=20% 

 

Rep 

Chosen Projects 

UD% 

Average travel distance 

(km) 
CPU (secs) 

Budget 

levels 

% 

Optimal Optimal GRASP Optimal GRASP 

20 

1 1, 29, 30, 33, 53, 64, 82 1.07 28.01 30.55 1224 627 

2 
1, 29, 30, 33, 53, 64, 82 

1.58 
28.10 30.53 878 

585 
1, 14, 29, 33, 53, 64, 82 - 30.73  

3 16, 29, 33, 53, 64, 82 1.00 27.95 29.77 922 280 

4 16, 29, 33, 53, 64, 82 1.56 27.76 30.13 627 368 

5 16, 29, 33, 53, 64, 82 0.97 27.84 30.10 1068 257 

6 16, 29, 33, 53, 64, 82 0.87 27.90 30.34 653 388 

7 1, 29, 30, 33, 53, 64, 82 1.51 28.16 30.54 798 329 

8 16, 29, 33, 53, 64, 82 1.21 27.55 30.13 1092 371 

9 16, 29, 33, 53, 64, 82 1.55 27.84 30.15 646 605 

10 16, 29, 33, 53, 64, 82 1.30 27.88 30.45 961 783 

Average 1.26 27.90 30.29 886.9 459.3 

 

The GRASP algorithm performs very well in terms of primary objective and solution time 

(CPU). It yielded optimal results regarding the primary objective (unmet demand) much faster 

than CPLEX OPL for each replication. This is significant while solving problems with a large 

number of scenarios in GRASP. For each replication, the GRASP algorithm identifies the 
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evacuation allocations that produce the same UD% with the optimal solutions. We compare 

the average travel distance per evacuee for each solution given by CPLEX OPL and the GRASP 

algorithm. For all replications, evacuation allocations are not identical so the average travel 

distance which is found by the GRASP algorithm is slightly more than the optimal solutions 

regardless of whether the chosen mitigation projects are the same.  

Since this problem is handled at the strategic level, the most crucial decision is to determine 

which links to mitigate. In the case for S=40 (see Table 28), the average travel distance per 

evacuee resulting from GRASP's evacuation allocations is 2.4 km longer than the optimal 

results on average, but this discrepancy has no impact on choosing the best mitigation project 

sets. Since it is not an operational-level problem, the slight differences on the allocations do 

not matter regarding the strategic decisions as long as it finds the best strategic decisions. 

CPLEX OPL can easily identify optimal evacuation allocations for these selections as long as 

we find the best mitigation decisions. 

There would be alternative protection planning decisions that provide the same UD% with the 

optimal solution. The GRASP algorithm reports all alternative solutions with the same UD%. 

For 40 sample size tests, two different project selections providing the same UD% are found 

in the second replication (see Table 28). {1, 28, 29, 33, 53, 64, 82} is the optimal solution 

whereas the other is an alternative solution {1, 14, 29, 33, 53, 64, 82}. Since the optimal project 

selection provides a better solution in terms of travel distance with a minor difference, the 

chosen solution is the same as in the optimal project selection in the GRASP algorithm as well. 

However, it demonstrates that other mitigation decisions would provide optimal solutions if 

minimising UD% would be considered as an only objective. 

The GRASP algorithm performs very well for the problem with 40 sample size when B=20%. 

The algorithm’s performance is also tested with various budget levels (7 levels) and compared 

to the optimal results in terms of the ability of finding the optimal mitigation project selections, 

the associated objective function values, and CPUs for 40 sample size. Table 29 provides the 

UD% and average travel time per evacuee for both the GRASP algorithm and CPLEX OPL 

results. The GRASP algorithm finds the optimal mitigation decisions for every budget level. 

For each budget level, the GRASP algorithm allocates the evacuation demand resulted with the 

UD% with the optimal solutions. On the other hand, average travel distance per evacuee in the 

GRASP’s solutions is slightly more than the optimal results. Overall, the GRASP algorithm 
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finds the optimal mitigation decisions with the allocations resulted with the same UD% in 

considerably less solution time.  

Table 29. Comparison of GRASP and optimal results for various budget levels for S=40 

Budget 

levels % 

 UD% 
Average travel distance  

per evacuee 
CPU (secs) 

CPLEX OPL GRASP CPLEX OPL GRASP CPLEX OPL GRASP 

10  8.1% 8.1% 27.85 30.19 713 152 

12.5  5.4% 5.4% 27.3 29.77 1244 246 

15  3.1% 3.1% 27.94 30.31 1286 202 

17.5  2.2% 2.2% 26.78 29.87 1280 559 

20  1% 1% 27.83 30.21 950 425 

22.5  0.03% 0.03% 28.75 30.5 1248 315 

25  - - 25.41 29.31 1420 618 

*UD%: Uncovered demand percentage in all demand  

We assess the GRASP algorithm's performance and confirm its efficiency on the problems with 

20 and 40 sample sizes. As previously indicated, the maximum sample size for optimal results 

by CPLEX OPL is 40. Since the number of possible scenarios is rather large, we use the 

GRASP algorithm to solve problems that require a larger number of scenarios (1000 sample 

size). It is also explored how the sample size influences mitigation project selections at each 

budget level. Table 30 displays the selected projects as well as the objective function values 

for each budget level for 40 and 1000 sample sizes. The CPLEX OPL is unable to produce a 

solution for a sample size of 1000, so only the GRASP solutions are provided for that sample 

size. It can be seen that the ratio of covered demand increases when the budget level is raised. 

Except for one budget level which is B=10%, the mitigation decisions are the same across three 

other budget levels. This fact reveals the necessity of conducting experiments with the 

problems containing larger sample sizes.  
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Table 30. Results for S=40 and S=1000 

 
Budget 

levels % 

Chosen Projects 

UD% 

Average travel 

distance (km) 
CPU (secs) 

S Optimal Optimal GRASP Optimal GRASP 

40 

10 16, 29, 53 1434 (8.1%) 27.85 30.19 713 152 

15 16, 29, 33, 53, 64 550 (3.1%) 27.94 30.31 1286 202 

 20 16, 29, 33, 53, 64, 82 181 (1%) 27.83 30.21 950 425 

25 1, 16, 29, 30, 33, 48, 53, 72, 64, 82 - 25.41 29.31 1420 618 

1000 

10 14, 53, 64, 72 1503 (8.5%) - 28.97 - 1923 

15 16, 29, 33, 53, 64 559 (3.2%) - 30.32 - 5573 

 20 16, 29, 33, 53, 64, 82 210 (1.2%) - 30.23 - 9940 

25 1, 16, 29, 30, 33, 48, 53, 72, 64, 82 - - 30.10 - 12946 

*UD%: Uncovered demand percentage in all demand 

 

Table 31 shows the impacts of the budget levels on the UD%, minimum and maximum UD% 

over 1000 scenarios. In these scenarios, if no mitigation project is implemented, on average 

20% of demand will not be evacuated. In fact, in some demand areas, this rate can reach 30%. 

With the lowest budget level which is B=10%, mitigation projects are implemented for 4 links, 

and as a result, this rate decreases to 8% on average. Additionally, it has been noticed that the 

UD% has gradually decreased in budget rises. 

Table 31. Unmet demand values for various budget levels for S=1000 

Budget 

level % 

Average unmet 

demand per scenario 

(UD%) 

Min unmet 

demand 

(UD%) 

Max unmet 

demand  

(UD%) 

0 3471 (19.7%) 2319 (13.1%) 5322 (30.1%) 

10  1503 (8.5%) 796 (4.5%) 3226 (18.2%) 

12.5  949 (5.4%) 796 (4.5%) 1525 (8.6%) 

15  559 (3.2%) 392 (2.2%) 1525 (8.6%) 

17.5  403 (2.3%) 392 (2.2%) 952 (5.4%) 

20  210 (1.2%) 0 1525 (8.6%) 

22.5  46 (0.26 %) 0 952 (5.4%) 

25  0 0 0 

*UD%: Uncovered demand percentage in all demand 
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Table 32 provides the details about the chosen projects, such as mitigated link, its initial 

resilience level, projects’ impact, and seismic risk level depending on where that link is located, 

for various budget levels and a sample size equal to 1000. 

Table 32. Mitigation decisions for various budget levels for S=1000 

  Chosen Projects 

  1 14 16 29 30 33 48 53 64 72 82 

Mitigated link 1 10 11 22 23 26 36 40 49 55 62 

Seismic-risk level High High High High High Medium Medium Low Medium Medium Low 

Initial resilience level 6 6 6 6 6 4 4 3 4 4 3 

Project impact 1 1 1 1 1 2 1 2 2 1 3 
Ultimate resilience levels 7 7 7 7 7 6 5 5 6 5 6 

 10  ✓      ✓ ✓ ✓  

Budget 
levels (%) 

12.5   ✓ ✓    ✓ ✓   

15   ✓ ✓  ✓  ✓ ✓   

17.5  ✓ ✓ ✓  ✓  ✓ ✓   

20   ✓ ✓  ✓  ✓ ✓  ✓ 

22.5  ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓ 

25 ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

We explore how the mitigation decisions differ at various budget levels. For instance, while 

links 40 and 49 (project 53 and 64) are selected to mitigate for all budget levels, links 11, 22 

and 26 are always mitigated if the budget is more than 12%. Link 62 is only chosen in higher 

budget levels B=20%, 22.5%, and 25%. Link 1 and 36 are only chosen to mitigate when B= 

25%.  

Looking at the ultimate resilience levels of the selected links, all mitigated links will be 

operational in every scenario (based on the survivability thresholds), with the exception of links 

36 and 55. Since these links are located in a medium seismic risk region, their resilience level 

should be more than 5 or 6 to be operational according to the scenario. The ultimate resilience 

level of links 36 and 55 is 5. This means that whether this link is operational or not depends on 

the scenario. 

Protecting a link may change the accessibility conditions on routes. Therefore, the entire 

evacuation plan should be modified to take into account the updated network condition. Table 

33 provides the frequency of unmet demand for particular intervals over 1000 scenarios. These 

results are helpful to assess the benefits of increasing the available protection budget in terms 

of reducing the unmet demand. We present the graphs including the total unmet demand 

frequencies over 1000 scenarios for these budget levels in Appendix H.  

Ideally, a decision should be made to meet all demands in all scenarios. This is achieved by 

increasing the budget level to 25%. With this upgrade to the protection plan, project 1 and 48, 

which were not previously included in the protection plan for other budget levels, are chosen. 
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Project 72 is also included in the protection plan; this project was only chosen for two budget 

levels which are B=10% and 25%.  

Table 33. Results details various budget levels for S=1000  

Budget 

levels % 
Chosen Projects 

UD% frequencies  
Average travel 

distance (km) 
CPU (secs) 

>0 >%3 >%6 >%10 

0 - 1000 1000 1000 1000 - - 

10  14, 53, 64, 72 1000 1000 434 319 28.97 1923 

12.5  16, 29, 53, 64 1000 1000 264 - 29.78 8930 

15  16, 29, 33, 53, 64 1000 277 15 - 30.32 5573 

17.5  14, 16, 29, 33, 53, 64 1000 19 - - 30.52 9582 

20  16, 29, 33, 53, 64, 82 486 277 15 - 30.23 9940 

22.5  14, 16, 29, 33, 53, 64, 82 304 19 - - 30.41 11932 

25  1, 16, 29, 30, 33, 48, 53, 64, 72, 82 - - - - 30.10 12946 

 

We choose one of best and worst-case among 1000 scenarios for each budget level to evaluate 

how the best and worst situation are for various budget levels. In the following, these best and 

worst cases are visualised on maps. Demand and supplier nodes are identified with blue and 

orange round shapes with node numbers, respectively. The isolated demand nodes where have 

no access to any supplier are highligted with red circles. The demand nodes where the demand 

is partially met but not totally are highligted with green circles. Allocations between a demand-

supplier nodes are shown with blue straight lines. 

 

 

 

 

 

 

 

 

 
Figure 25. A representative result of the worst case for budget=10 %, UD=18.2% 
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Once B=10%, we see that the unmet demand is above 10% in roughly 30% of the scenarios. 

One of the worst cases among 1000 scenarios in terms of the rate of unmet demand is presented 

in Figure 25. None of the victims in three demand nodes (3, 5, and 24) is evacuated and the 

demand in other three areas (4, 8, and 18) is not entirely met. While some suppliers (1 and 4) 

only serve to only one demand node, some suppliers serve with full capacity (3, 8, and 7).   

 

Figure 26. A representative result of the best case for budget=10% and 12.5%, UD=4.5% 

There are no scenarios with UD% above 10% when the budget level is 12.5%. The best case 

for both budget levels (B=10% and 12.5%) is the same and shown in Figure 26. There are two 

demand nodes (5 and 24) which are isolated. Figure 27 shows one of the worst-case scenarios 

when B=12.5%. Compared to the previous case, while there are 4 demand nodes which are not 

met the demand when B=12.5%, there are 6 demand nodes with unmet demand when B=10%. 

Basaksehir (demand node 5) and Sultangazi (demand node 24) remain as isolated. On the other 

hand, the evacuees in Avcilar (demand node 3) are transferred to two suppliers (Bakirkoy and 

Beyoglu) while no one could be evacuated from Avcilar when the budget level is 10%.  
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Figure 27. A representative result of worst-cases for budget=12.5%, UD=8.6% 

Project 33 mitigating link 23 is added to the previously selected projects when the budget is 

increased from 12.5% to 15%. With this link being operational for each scenario, the number 

of scenarios with more than 6% UD% drops from 264 to only 15. The worst-case scenario for 

B=15% results in the same amount of unmet demand with the budget level being equal to 

12.5%. However, the allocations are not identical, so while there are 3 demand nodes (8, 15, 

and 24) with unmet demand for B=15% (see Figure 28), there are four demand nodes (5, 8, 15, 

and 24) with unmet demand for B=12.5%. Once the budget level is increased, the allocations 

are updated regarding the accessibility between i-j (5-3) pairs and the people at Basaksehir 

(demand node 5) are transferred to Avcilar (supplier node 3). In the best case when B=15%, 

there is only one demand node (24, Sultangazi) which is isolated as seen in Figure 29. 
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Figure 28. A representative result of the worst-cases for budget=15%, UD=8.6% 

 

 

Figure 29. A representative result of the best-cases for budget=15%, UD=2.2% 

The unmet demand ratio never exceeds 6% in any scenario when the budget is increased to 

17.5%. When B=20%, the selected project 14 is removed, and project 82 is added in its place. 

All demand is met in more than 50% of the scenarios. The number of scenarios, where in the 

UD% is above 6%, has increased compared to the situation where the budget is 17.5%. 

However, since the algorithm focuses on minimising the total unmet demand over scenarios, 

we see that increasing the budget by 2.5% reduces the unmet demand by nearly half (see in 

Table 31). This increase in the budget level from 20% to 22.5% enables to mitigate two more 
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links. Link 10 and 23 are operational in all scenarios. Eventually, all people in need can be 

evacuated in approximately 70% of the scenarios and the UD% is more than 3% in only 19 

scenarios. 

 

Figure 30. A representative result of the best-cases for budget=22.5 %, UD=0 

Typically, the evaluation of a candidate solution requires considering all scenarios. We 

conducted the experiments for the previously utilised budget levels to evaluate the effect of 

sample size (S) on solution quality. We increase the sample size by 1000 in each iteration for 

the previously used budget levels. In Table 34, we report the chosen projects, the percentage 

of unmet demand (column UD%), and the elapsed CPU time (seconds) required to obtain the 

solution. It shows that there is no significant change in UD% as S varies. Additionally, the 

proposed algorithm chooses the same mitigation projects regardless of S. However, when the 

sample size is increased, the CPU time rises considerably.  
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Table 34. Sample size analysis 

Sample size 
Budget 

levels% 

UD% 
Chosen Projects CPU (secs) 

1000 

10  8.5 14, 53, 64, 72 1923 

12.5  5.4 16, 29, 33, 53 8930 

15  3.2 16, 29, 33, 53, 64 5573 

17.5   2.3 14, 16, 29, 33, 53, 64 9582 

20  1.2 16, 29, 33, 53, 64, 82 9940 

22.5  0.26 14, 16, 29, 33, 53, 64, 82 11932 

25  - 1, 16, 29, 30, 33, 48, 53, 64, 72, 82 12946 

2000 

10  8.6 14, 53, 64, 72 4234 

12.5  5.4 16, 29, 53, 62 13880 

15  3.2 16, 29, 33, 53, 64 12763 

17.5  2.3 14, 16, 29, 33, 53, 64 25407 

20  1.2 16, 29, 33, 53, 64, 82 20307 

22.5  0.26 14, 16, 29, 33, 53, 64, 82 26759 

25  - 1, 16, 29, 30, 33, 48, 53, 64, 72, 82 28007 

3000 

10  8.5 14, 53, 64, 72 8332 

12.5  5.4 16, 29, 53, 62 20197 

15  3.2 16, 29, 33, 53, 64 19007 

17.5  2.3 14, 16, 29, 33, 53, 64 37785 

20  1.2 16, 29, 33, 53, 64, 82 32355 

22.5  0.22 14, 16, 29, 33, 53, 64, 82 37515 

25  - 1, 16, 29, 30, 33, 48, 53, 64, 72, 82 41717 

*UD%: Uncovered demand percentage in all demand 

 

In summary, the GRASP algorithm's efficiency is evaluated by comparing it to the ideal 

solutions for the problems with small sample sizes. The GRASP algorithm finds the optimal 

mitigation decisions with the optimal unmet demand values for each budget level. Afterwards, 

the impact of the sample size on the solution is investigated by increasing sample size to 1000, 

2000, and 3000.  The mitigation decisions with 1000, 2000, and 3000 sample sizes are identical 

for seven budget levels. As can be concluded from this, the solution reached for the problem 

involving 1000 scenarios for the simplified network is potentially the optimal for the problem 

involving all scenarios.  
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6.3.3. Detailed Network Results 

 

CPLEX OPL cannot solve the proposed model with the detailed network instance even for a 

single scenario. Here, the GRASP algorithm is applied to select which links in the detailed 

Istanbul roadway network should be mitigated considering how the demand is allocated in 

different scenarios. Due to the high solution times, we only employ five scenarios including 

one best-case, three medium-case, and one worst-case. The best-case scenario has the following 

minimum threshold levels for each link: 6 for high-risk level links, 5 for middle-risk level links, 

and 4 for low-risk level links. The medium-case scenarios are randomly generated as each 

scenario having one of two potential threshold values: 6 or 7 for high-risk level linkages, 6 or 

5 for middle-risk level links, and 5 or 4 for low-risk level links. The highest threshold levels 

are chosen for each link in the worst-case scenario as 7 for high-risk level links, 6 for middle-

risk level links, and 5 for low-risk level links. We defined the budget levels by some 

preliminary analysis. Experiments have been performed for different budget levels for the 

detailed network, starting from 2.5% of the protection budget (the total cost of candidate 

projects). We employ six budget levels starting from 2.5% and increasing by 2.5% at each step 

to draw more insights. These experiments continued until we reached the budget level at which 

all demand would be met to draw further insights. B = 0 corresponds to the current situation 

without any mitigation efforts.  

There are 1295 network links on the detailed network and there is no need for mitigation 

projects for some links if a link’s resilience level is high (>6) and/or in a low-seismic risk 

region. Therefore, for the detailed network, 364 projects are defined to strengthen the network 

links and accordingly improve the accessibility. The defined mitigation projects are provided 

in Appendix I.  

In the computational experiments employing the simplified network, One-Step Local Search 

(LS) was used, and it has produced high-quality solutions. Multi-Step LS has not been 

evaluated for the experiments with the simplified network since the problem comprises a 

significant number of scenarios. In addition, One Step LS has found the optimal results for the 

problems involving a modest size of scenarios, for all budget levels. Since the number of 

scenarios in the analyses to be performed with the detailed network is not high, it has been 

decided to compare the two local search strategies on the solution quality. Table 35 reports the 

GRASP results with One-Step and Multi-Step LS methods for various budget levels. As 

observed in the UD% for each budget level, the GRASP algorithm with Multi-Step LS 
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outperforms the version using the One-Step procedure. For the problem capturing these five 

scenarios, we start the computational experiments with B=2.5% and increase by 2.5% in each 

experiment. Once B=2.5%, 6 out of 10 projects are common in the results with both local 

search method. When B=15%, for both methods, 60 projects are chosen and 54 out of 60 

projects are common. These differences in the mitigation decisions have impacts on the 

network accessibility and accordingly on the different allocations. Even though the UD% is 

only slightly different between the two LS methods, since each demand refers to the transfer 

of a person who needs medical care, these differences are undoubtedly significant. When the 

Multi-Step LS is implemented, the solution time is accordingly increased as expected but still 

reasonable for this problem. 

Table 35. Comparison of local search methods for the detailed network 

Budget 

levels % 

Chosen Projects 

Ratio of unmet demand  

(UD%) 
CPU (secs) 

One Step LS Multi Step LS 
One 

Step LS 

Multi Step 

LS 

One Step 

LS 

Multi Step 

LS 

2.5  
12, 41, 43, 50, 119, 124, 140, 

145, 156, 332 

43, 46, 48, 50, 62, 124, 140, 156, 

178, 332 
10.11  8.9 3797 7822 

5 

4, 7, 9, 12, 41, 43, 50, 53, 62, 

80, 119, 124, 140, 145, 156, 

178, 207, 286, 332, 357 

3, 4, 7, 12, 28, 43, 44, 46, 48, 50, 

62, 80, 124, 140, 145, 156, 178, 

207, 223, 332 

7.78  6.1 5442 11811 

7.5 

3, 4, 7, 9, 12, 18, 28, 41, 43, 

50, 53, 56, 62, 80, 108, 113, 

119, 124, 140, 145, 147, 156, 

178, 207, 223, 239, 270, 332, 

357 

4, 7, 12, 28, 41, 43, 44, 46, 48, 

50, 53, 56, 62, 80, 108, 110, 113, 

124, 140, 145, 147, 156, 178, 

207, 223, 239, 270, 302, 332 

 5.6  4.3 7156 13655 

10 

4, 7, 12, 18, 28, 41, 43, 44, 

46, 48, 50, 53, 56, 57, 62, 77, 

80, 85, 96, 104, 108, 110, 

113, 124, 140, 145, 147, 156, 

178, 207, 223, 230, 239, 270, 

275, 291, 302, 329, 332, 357 

3, 4, 7, 9, 12, 28, 37, 41, 43, 44, 

46, 48, 50, 53, 56, 57, 62, 77, 80, 

104, 108, 110, 113, 124, 140, 

143, 145, 147, 156, 178, 188, 

223, 230, 239, 270, 275, 291, 

302, 332, 357 

 3.33  2.5 9391 15612 

12.5 

3, 4, 7, 9, 12, 28, 37, 41, 43, 

44, 46, 48, 50, 53, 56, 57, 61, 

62, 71, 77, 80, 83, 104, 108, 

110, 113, 120, 124, 140, 143, 

145, 147, 156, 178, 188, 199, 

203, 212, 223, 230, 239, 256, 

270, 275, 286, 291, 302, 329, 

332, 357 

3, 4, 7, 9, 12, 18, 28, 37, 41, 43, 

44, 46, 48, 50, 53, 56, 57, 62, 71, 

77, 80, 83, 104, 108, 110, 113, 

119, 120, 124, 140, 143, 145, 

147, 156, 178, 188, 199, 212, 

223, 230, 239, 256, 270, 275, 

286, 291, 302, 329, 332, 357 

 1.7  1.5 10057 16721 

15 

3, 4, 7, 9, 12, 18, 28, 37, 41, 

43, 44, 46, 48, 50, 53, 56, 57, 

61, 62, 71, 75, 77, 80, 83, 85, 

96, 104, 108, 110, 113, 117, 

119, 120, 121, 124, 140, 143, 

145, 147, 156, 167, 178, 188, 

199, 203, 212, 217, 223, 230, 

239, 256, 270, 275, 286, 291, 

302, 329, 332, 354, 357 

3, 4, 7, 9, 12, 28, 37, 39, 41, 43, 

44, 46, 48, 50, 53, 56, 57, 62, 69, 

71, 73, 75, 77, 80, 83, 96, 103, 

108, 110, 113, 117, 119, 120, 

121, 124, 140, 143, 145, 147, 

156, 167, 178, 188, 199, 203, 

207, 212, 217, 223, 230, 237, 

239, 256, 270, 275, 291, 302, 

329, 332, 354 

 0.9  0.6 14042 19798 

*Different projects in the results of both LS methods are highlighted in bold. 
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On the detailed Istanbul roadway network, we conduct experiments with varied budget levels 

for the mentioned five scenarios. In average, 20% of the total demand could not be evacuated 

in the initial state due to the accessibility difficulties according to the considered scenarios. 

Implementing 10 out of 364 projects with B=2.5% leads to a considerable improvement in 

UD% which drops from 20.1% to 8.9%. As expected, more links are mitigated as the budget 

increases, and the UD% eventually decreases as accessibility improves.  

Table 36. UD% in the scenarios for various budget levels 

Budget levels% Worst Middle 1 Middle 2 Middle 3 Best 

0 27.7 17.1 16.1 17.9 - 

2.5 19.5 6.9 6.9 11.1 - 

5 15.7 3.1 5.6 6.3 - 

7.5 10.9 2.2 4.5 4.1 - 

10 6.1 1.7 1.3 3.1 - 

12.5 4.7 0.4 0.9 1.6 - 

15 0.3 - - - - 

15.25 - - - - - 

 

We evaluate how the worst, middle, and best scenarios differ for various budget levels in terms 

of UD%. Since the survival states of links vary between the scenarios, the UD% for each 

scenario would be different. As in the proposed model, the chosen links are selected to 

minimize the average of total unmet demand in all scenarios. Table 36 provides the UD% in 

each scenario for the initial state and seven different budget levels. For the best scenario, there 

is no unmet demand in the initial state. We observe that while the unmet demand rate is 28% 

in the worst-case scenario, it is about 17% on average for the middle scenarios in the initial 

state. Even a small investment (B=2.5%) in strengthening links leads to significant 

improvement in evacuation allocation efficiency especially for the medium-case scenarios. 

When B=5%, the UD% reduced by half compared to the initial state in the worst-case scenario 

but still has a high value at around 15%. In the middle scenarios, the UD% decreased to 3% in 

the first scenario, and it was around 6% in the other medium-case scenarios. By raising B to 

10%, the UD% decreased to 6% in the worst-case scenario. In other middle scenarios, the 

minimum and maximum UD% were 1.3% and 3.1%, respectively.  
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When B is increased to 15%, only one node’s demand is not met in the worst-case scenario and 

the other demand is entirely met in the other scenarios. Instead of increasing the budget, we 

first determine the critical links which are not operational and connect this demand node and 

suppliers. There was only one link which is not operational and connects the associated demand 

node and suppliers. It has been seen that if only one additional project which is 18 is involved 

in the solution, all demand will be met for all scenarios. One-Step Local Search is applied by 

assigning this project as a single element in the CL and at the end, no better version of the 

solution is found. As a result, there was no other option but to increase the budget for this 

project to reach full coverage. Project 18 is implemented once B=15.25% so by upgrading the 

network accessibility all demand is met for all scenarios including the worst scenario with 61 

out of 364 projects implementations (see last row of Table 36). 

The solutions for some budget levels and scenarios are visualised on maps in the following. In 

these map representations, which include the worst-case and one of the three medium-case 

scenarios, each supplier node is represented by a different colour. The demand nodes allocated 

with these suppliers are likewise highlighted in the colour associated with that supplier. If a 

demand node is served by more than one supplier, that demand node is highlighted by the 

supplier colour where the majority of demand is transferred. If the demand at the demand nodes 

could not be met, these demand points are denoted by a different symbol in the maps (circle 

with a cross).  

The disparity between scenarios is more obvious, especially when there is a limited budget for 

protection projects. Due to inaccessibility to the number of affected areas, there are more 

isolated demand nodes in the worst-case scenarios. For instance, when B=2.5%, 30 out of 154 

affected areas are isolated and no one can be evacuated from these areas in the worst-case 

scenario as seen in Figure 31. In the medium-case scenario given in Figure 31, 19 affected 

areas are isolated, which is still quite high. While no one can be transferred to suppliers 1 and 

2 from any demand node in the worst-case scenario, evacuation activities are carried out to 

Sabiha Gokcen Airport (supplier 1) from 2 demand nodes and to Ataturk Airport (supplier 2) 

from 6 demand nodes, respectively in the given medium case scenario.  

When the budget level is increased to 5%, 25 out of 154 affected areas are isolated and no one 

can be evacuated from these areas in the worst-case scenario. Additionally, there was no 

evacuation from any region to supplier 1 in the worst-case scenario, as with the previous budget 

level. However, since the roads connecting supplier 2 and affected areas were strengthened by 
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the projects, evacuation activities are carried out to supplier 2 from 6 affected areas even in the 

worst-case scenario. 

When B=7.5%, 19 out of 154 affected areas are isolated and no one could be evacuated from 

these areas in the worst-case scenario. In one of the medium-case scenarios, 7 affected areas 

are isolated. When the budget is increased to 7.5%, 3 in the worst-case scenario, and 7, 6, and 

6 affected areas in the middle case scenarios are allocated by supplier 1, that had not been 

evacuated from any region with the previous budget levels.  

 

 

Figure 32 represents the worst- and a medium-case scenario solutions for B=10%. With 10% 

budget level, the demand of 11 out of 154 demand regions could not be met in the worst-case 

scenario. Looking at the medium case scenarios, we see that the evacuation demand for 2, 4, 

Figure 31. Worst- and medium-case scenario for B=2.5% 

Worst-case scenario 

Medium-case scenario 

scenario 
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and 5 (given in Figure 32) affected areas could not be met. By increasing the budget by an 

additional 2.5%, the number of affected areas whose demand could not be met decreased to 5 

in the worst-case scenario (B=12.5%). While all demand is met in one of the medium-case 

scenarios, demand for 1 and 2 demand areas cannot be met in the other medium-case scenarios. 

 

Figure 32. Worst- and medium-case scenario for B=10% 

Worst-case scenario 

Medium-case scenario 
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Figure 33. Worst- and medium-case scenario for B=15% 

Finally, Figure 33 presents the worst- and a medium-case scenario solutions for B=15%. Some 

allocations differ between scenarios. For example, in the worst-case scenario, only the injured 

people in 4 demand nodes were evacuated to Istanbul Goztepe Hospital (supplier 11), while in 

the other 3 middle scenarios, 7, 6 and 7 were evacuated, respectively. On the other hand, 

disaster areas transferred to Istanbul Bagcilar Hospital (supplier 13) are the same in all 

scenarios, as accessibility is generally good. Since one of the critical links (roads) is non-

operational, there is a demand node that has no access to any supplier in the worst-case 

scenario, even though it is extremely close to a supplier as shown on the solution in Figure 33. 

Eventually, this affected area has no connection to the identified suppliers, so no one is 

evacuated from that area in the worst-case scenario. 

We observe that the affected areas where evacuation demand is not met are concentrated in 

specific regions. As illustrated in Figure 22 (see Chapter 5 and Appendix J), these regions are 

Medium-case scenairo 

scenario 

Worst-case scenario 
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located in the high-risk areas and the effect of this fact is clearly noticeable in the findings. 

Evacuation from the earthquake-affected areas in these regions could not be carried out without 

necessary protection projects due to road inaccessibility.  

6.4. Conclusion 

 

In this chapter, we first compare the multi-objective approaches. The weighted-sum method 

finds the same results as the lexicographic method while taking less time to solve the model. 

Since the solution is theoretically always Pareto optimal with the lexicographic method, it has 

been decided to utilize the weighted-sum method in the following analyses. 

Secondly, we apply the SAA method to reduce the scenario set to a manageable size. When 

sample numbers are large enough, the estimated optimality gap values are nearly 5%, 

suggesting that the SAA can find good solutions for the simplified Istanbul network. The SAA 

approach is inapplicable for large instances (the Istanbul detailed network), which we cannot 

solve optimally in CPLEX OPL even with small sample size values since we need to solve the 

model optimally with a suitable sample size. 

Thirdly, the optimal results obtained by CPLEX OPL for the simplified network verify the 

efficiency of the GRASP algorithm for modest scenario sizes. The GRASP algorithm finds the 

optimal mitigation decisions with the optimal unmet demand values for each budget level for 

S=40. The effect of sample size on the solution is next studied by increasing the sample size to 

1000, 2000, and 3000. For seven budget levels, the mitigation decisions with 1000, 2000, and 

3000 sample sizes are equal. As a result, the solution found for the problem involving 1000 

scenarios for the simplified network is potentially the optimal mitigation selections for the 

problem involving all scenarios.  

Fourthly, the GRASP algorithm is applied to select which links in the detailed Istanbul roadway 

network should be mitigated considering how the demand is allocated in different scenarios. 

Due to the high solution times, we only employ five scenarios including one best-case, three 

medium-case, and one worst-case for the detailed network. We compare the situations for 

various budget levels through the results and map representations. The affected areas where 

evacuation demand is not met are concentrated in the regions which have high seismic intensity 

in the anticipated earthquake scenario (Model C in JICA report, see Appendix J). The findings 

show that, especially in low-budget protection planning cases, evacuation operations from 

these areas mostly could not be carried out due to road inaccessibility.  
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Different findings have been obtained in the computational experiments performed using two 

different networks belonging to the same geographical region. For example, in the simplified 

network results, there was no unmet demand arising from any accessibility issues even with 

the low budget levels, on the Anatolian side which has high-seismic regions. On the other hand, 

in the detailed network results, the affected areas with unmet demand were mostly on the 

Anatolian side, at almost all budget levels.  
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7. Conclusions  
 

 

This chapter is split into two sub sections. Section 7.1 provides an overview of the entire thesis 

and highlights key findings. Section 7.2 discusses some of the limitations to this research and 

the future research recommendations.  

7.1.  Research Summary 

 

At the start of this thesis, the conducted review stands apart from past and recent DOM review 

papers, given that we review studies dealing with earthquake-oriented problem definitions or 

those involving the use of earthquake disaster case studies. Throughout, we have precisely 

categorized studies based on the disaster stage(s) being dealt with, methodology(ies) applied, 

and specific planning/operational problem type. We also provide details about the extent of 

stakeholder involvement (see Appendix B) and information relating to case studies (i.e., type 

of infrastructure network examined, if any, and whether real or randomly generated data were 

used) (see Appendix C). The main conclusions were that most studies have concentrated on a 

particular stage of an EOM disaster, with preparedness and response problems receiving by far 

the most attention. Recent research has begun to investigate the merging of two or more disaster 

stages. In terms of modelling and solution methodology, mathematical programming and 

heuristics are by far the most widely used for most problem types, though there are exceptions. 

Finally, most studies have little or no stakeholder involvement. 

To fill some of the highlighted research gaps in the first part of the dissertation, a Capacitated 

Network Strengthening Problem (CNSP) was formulated as a two-stage stochastic 

programming model in Chapter 3. This model offers several advances over existing works. The 

proposed model was the first attempt to address the protection and evacuation planning in an 

integrated manner by maximising the efficiency in post-earthquake evacuation operations 

(minimising the unmet demand and travel time simultaneously). We define resilience levels to 

estimate survival states of links, and we assume that the protection operations can improve the 

resilience levels of network links; however, they cannot guarantee that there will be no damage 

at all. Hence, we assume that estimated post-earthquake survival states of network links depend 

on the resilience level for a particular earthquake scenario. We believe that this approach is 

more realistic in terms of estimating survival states and assessment of protection strategies. In 

addition, the model considers the capacitated ERCs which has not been addressed in the 
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literature before. If there is a backlog in the ERCs serving in certain locations, an already 

difficult situation may devolve into chaos so no one will be able to receive medical care. As a 

result, the capacity constraint is critical in this case. 

In order to solve the CNSP, due to the model’s multi-objective structure, multi-objective 

solution approaches such as lexicographic and weighted-sum methods were evaluated to 

determine the best method to apply for the analysis. The proposed stochastic problem is hard 

to solve as it is difficult to evaluate the expected cost of the second stage and it requires the 

solutions of a large number of second stage optimization problems as the number of possible 

scenarios is very large for the proposed problem. The scenario-based (deterministic equivalent) 

model of the stochastic problem has an exponential number of scenarios, which make it 

impractical to solve directly. Hence, a sample average approximation algorithm (SAA) is 

proposed to solve the problem. To estimate the performance of the SAA method, we first solve 

a small-scale case.  The proposed SAA requires solving a considerable number of second-stage 

models so this method was not appropriate for the larger instances. Therefore, a GRASP-based 

algorithm has been developed to be able to solve larger instances of the problem. The GRASP 

algorithm uses a procedure combining a greedy approach for generating initial solutions and 

iterative improvement algorithm for local search to find evacuation allocations for the feasible 

solutions.  

Two case studies are conducted using Istanbul roadway network datasets (the simplified and 

detailed network) under the earthquake having a magnitude of 7.7, which is identified as the 

worst-case scenario in the JICA report. Experimental results using the simplified network data 

have proven that the weighted-sum method outperforms the lexicographic method while 

requiring less processing time, so the weighted-sum has been employed for the rest of the 

analysis.  In the experiments for the application of the SAA, when sample numbers are 

sufficient, the estimated optimality gap values are nearly 5%, suggesting that the SAA can find 

good solutions for the simplified Istanbul network. The GRASP-based heuristic algorithm was 

able to find the optimal mitigation decision obtained by CPLEX OPL for the simplified 

network for modest scenario sizes (S=40). The effect of sample size on the solution is next 

analysed by increasing the sample size to 1000, 2000, and 3000. The mitigation decisions with 

1000, 2000, and 3000 sample sizes were equal at varied budget levels. As a result, the solution 

developed for the problem involving 1000 scenarios for the simplified network could be 

considered the best mitigation decisions for the problem including all scenarios. Lastly, the 



140 
 

heuristic algorithm is applied to select the links to strengthened in the detailed Istanbul roadway 

network. Due to the high solution times, we have employed only five scenarios including one 

best-case, three medium-case, and one worst-case scenario for the detailed network. According 

to the results, the affected areas where evacuation demand is not met are concentrated in the 

regions which have high seismic intensity in the anticipated earthquake scenario (Model C in 

JICA report, see Appendix J). The findings show that, especially in low-budget protection 

planning cases, evacuation operations from these areas mostly could not be carried out due to 

road inaccessibility in the detailed network. Different findings have been obtained in the 

computational experiments performed using two different networks belonging to the same 

geographical region. This fact reveals that more reliable findings can be obtained since the 

detailed network covers other roads besides highway roads. For instance, in the simplified 

network results, there was no unmet demand arising from any accessibility issues even with 

the low budget levels, on the Anatolian side which has high-seismic regions. On the other hand, 

the affected areas with unmet demand were mostly on the Anatolian side, at almost all budget 

levels in the detailed network results. As a nutshell, the level of detail with which the used 

network is handled, as well as the supplier and demand locations identified, have a considerable 

impact on the solution. 

 

7.2. Future Research Directions 

 

Based on our extensive analysis of the conducted review in Chapter 2, we have identified the 

current gaps in the field and outlined a roadmap for future research to enhance the real-world 

applicability of OR methods applied to EOM in particular and potentially to DOM more 

generally. Some of these reaffirm findings and recommendations derived in previous surveys 

on OR applied to DOM, like the need for (i) more integrated planning that involves decision 

making across multiple disaster stages, such as infrastructure protection planning (mitigation) 

combined with relief distribution or evacuation (response) or shelter site location and RDC pre-

positioning and inventory management (preparedness) combined with evacuation and relief 

distribution (response); (ii) more emphasis on and enabling of stakeholder and multi-agency 

coordination; (iii) integration of OR methods with information systems that provide real- and 

near real-time data, including the use of data provided by UAVs and social media; (iv) defining 

clear and realistic model inputs/assumptions; and (v) greater use of interdisciplinary and multi-

methodology approaches, including behavioural OR to more accurately represent human 
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behavioural responses. Other recommendation we provide, however, are new or much less 

emphasized in previous reviews. For example, we observe that in many studies, problem 

specifications are framed in terms of generic disasters as opposed to being specifically focused 

on earthquakes. This has resulted in a general failure to address the importance of cascading 

effects and secondary disasters caused by aftershocks. We also highlight the frequent lack of 

stakeholder involvement in problem identification and methodological approach, leading to 

less realistic problem definitions and uptake by practitioners. We argue that stakeholder 

involvement from the beginning and the use of Soft OR for problem structuring and conceptual 

modelling would help ensure that any Hard OR methods being developed are well-grounded 

within a stakeholder perspective. Finally, we observe that case studies could be improved by 

better data generation and earthquake scenario development, for example defining data inputs 

appropriate to the spatial scale being analysed and more precisely assigning probabilities to 

earthquake scenarios. 

From a modelling prespective, this dissertation has a Capacitated Network Strengthening 

Problem but the proposed model is still far from being comprehensive and could be extended 

in a number of ways. For example, while the CNSP only deals with mitigation decisions for 

strengtehing road networks, it is assumed that the facilities, which serve the affected 

population, do not suffer capacity loss due to damage that may occur in the aftermath of an 

earthquake. In summary, protection strategies on the suppliers could be included to the problem 

context and formulation as an extension of this research that would mitigate the possible 

damage which would prevent them from working at full capacity. These projects would have 

impacts on the service capacity; hence, the service capacity would be changed according to the 

mitigation decisions. Another possible extension for future research can be the split of 

protection budget for these mitigation activities for transportation links and critical facilities.  

In the proposed problem definition, we exclude the possibility of road blockage due to the 

collapse of roadside buildings. On the other hand, earthquake-caused road damage can be 

classified as direct or indirect. The term "direct damage" refers to road system damage caused 

by seismic activity, whereas "indirect damage" refers to road system impediments generated 

by other effects on the road system [316]. Therefore, even if the road is not damaged, it may 

be blocked due to debris of collapsed buildings. Consequently, more research including various 

protection techniques including both reinforcing the vulnerable components of the roadways 

(e.g., bridges/viaducts) and incorporating roadside structures (e.g., buildings) is required.  
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In this study, we estimate the resilience levels of links considering the seismic intensity of the 

earthquake and the collapse of structures on the roadway. Specifically for estimating resilience 

levels, it was challenging to carry out the previously described strategy while considering the 

distinct components (𝑃𝐺𝐴𝑒 is the peak ground acceleration level at link 𝑒, 𝑓𝑒 is the seismic risk 

factor, 𝜑𝑒 represents the earthquake vulnerability score) for the detailed network. These three 

components are estimated based on the coordination information of the links and the vulnerable 

infrastructure’s vulnerability scores estimated by [313]. Future research may consider 

involving various seismology techniques which may be particularly beneficial in assessing 

damage levels in this case as in [176,254]. 

 

The proposed CNSP does not consider the potential of subsequent aftershock damage and in 

spite of their importance, only a small handful of papers we reviewed explicitly consider 

cascading or secondary effects or subsequent disasters caused by aftershocks. Liberatore et al. 

[82] for example develop a multi-level optimization model for deciding which hospitals to 

reinforce given the presence of propagating damage across a network. Work by Ozbay et al. 

[176] on shelter site location, Zhang et al. [185]on evacuation planning, and Yan et al. [230] 

on road infrastructure restoration is notable for incorporating uncertain damage from 

aftershocks to improve the robustness of proposed solutions. Clearly, there is need for future 

EOM research to treat and analyse earthquakes more holistically, both in the mitigation and 

preparedness stages by hedging against cascading and secondary effects and in the response 

and recovery stages by recognizing the importance of aftershocks and the need for adaptive 

planning. 

 

Different integrated models combining different DOM stages should be addressed to fill the 

gap in the literature. For instance, it is critical to reach the affected areas for providing search 

and rescue operations and the second stage of the problem could have included decisions to get 

rescue workers to the site. Future models could consider that the number of rescue workers 

would be dependent on the estimated demand and the locations of these workers could be 

defined as another type of supplier which is different than the critical facilities in the current 

model. As stated in Chapter 2, tasks related with recovery and mitigation overlap in certain 

ways. A better understanding of the relationships between protection methods and damage 

states that result in lower recovery costs is an important research issue that deserves more 

attention in OR literature. Recovery operations, on the other hand, can function as a catalyst 
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for mitigation. Despite the strong linkages between mitigation and recovery, we discovered 

only one study addressing this combination of DOM phases, by Cho and Park [248]. There is 

clear need to investigate the trade-offs between investing in infrastructure protection and the 

related economic and social costs of disruption and recovery. Furthermore, integrating three 

DOM stages, namely mitigation, response, and recovery, would provide a broader and more 

insightful decision-making viewpoint for determining protection planning strategies while 

taking into account the impact on post-disaster operations. Specifically, future research may 

incorporate the facility and infrastructure restoration decisions into the proposed two-stage 

stochastic programming model in this dissertation. 

From a methodological perspective, some modifications could be performed to increase the 

performance of the GRASP on large data sets. Particularly for the detailed network, the number 

of links in each route may be very high so mitigating one of them would not affect accessibility 

since a route may have several non-operational links. Therefore, the devised method to estimate 

contribution of a project to accessibility in the constructive phase of the GRASP remains 

limited here. Estimating benefit of projects by grouping can be considered for non-operational 

links on the same route. Furthermore, alternative local search method could be assessed to 

avoid local optima in the neighbourhood exploration.  

Computational experiments have been performed on a limited number of scenarios, particularly 

for the detailed network. To perform more analysis, the proposed algorithm should be faster 

and more efficient. Instead of determining evacuation allocations for each neighbour solution 

produced in the local search, a mechanism similar to the one we devised in the constructive 

phase of the GRASP can be used to anticipate whether or not the solution will improve the 

current existing solution. As a result, there would be no need to find evacuation allocations for 

neighbour solutions which are certain to have no positive effect on the solution, so the 

procedure would be computationally improved.  

It is obvious that the scenario definition in this research limits the comprehensiveness of the 

findings and insights. Various network scenarios that could occur in the anticipated earthquake 

scenario have been investigated. The reason for considering only an earthquake scenario was 

that the information regarding the seismic intensity of regions depending on where fault line 

would break was provided in the report. Therefore, it was possible to obtain these parameters 

to be used to estimate resilience levels. To avoid these limitations, future research may consider 

involving different scenarios prepared by experts into their case studies, rather than using 
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scenarios provided in existing reports or articles. In addition, the scenario generation approach 

would exclude possible network realizations for the sake of fast computation. As mentioned in 

Section 2.3.3.1, greater attention should be paid to properly assigning probabilities to each 

scenario when multiple scenarios are included since scenarios are not infrequently given equal 

chance of occurrence. Clearly, more scientific approaches are needed, perhaps involving 

interdisciplinary methods in scenario generation, and also for estimating the scenario 

occurrence probabilities. Neural network approaches (i.e., Bayesian networks) could be used 

to estimate the more likely scenarios according to the ground-motion predictions so the 

occurrence probability can be assigned to each scenario based on the neural network 

applications. 

Different findings have been obtained in the analyses using two different network datasets for 

the same geographical region. It has been concluded that the results obtained using the detailed 

network are more realiable and informative for real life decision making. This finding has 

confirmed the requirement of using real network data of sufficient detail, as highlighted in 

Chapter 2. Future research should consider defining the demand and supply nodes, links, and 

critical facilities ideally based on information provided by local authorities, to give a more 

realistic picture. 
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Appendicies 

Appendix A. Details of mathematical programming and heuristic approaches for relief distribution 

problems. 

Reference 

Decision(s) 

Objective(s) Case Study 

Logistics 

activities Goods 

Mode of 

transport 

Najafi et al. 

[161] 

RDC-AA Multi Multi Minimize unserved injured people, unmet 

demand, and number of vehicles required 

- 

Mohammadi et 

al. [162] 

ES-RDC-AA Single Multi Minimize set-up and transport costs of 

relief, transport cost of injured, variability 

in transport cost (both) and transport time 

(both) 

2017 Iran-Iraq 

earthquake 

Khalilpourazari 

et al. [163] 

LCC-CW-

RDC-AA 

Single Multi Minimize set-up, procurement, transport 

and holding costs and transport time of 

blood and transport cost and time of injured 

2017 Iran-Iraq 

earthquake 

Mansoori et al. 

[164] 

RDC-AA Multi Multi Minimize unmet demand for relief and 

number of people not evacuated to shelters 

or hospitals 

Tehran, Iran 

Fereiduni et al. 

[165] 

ES-RDC-AA Multi Single Minimize transport, operation, holding and 

evacuation costs 

Tehran, Iran 

Liu & Guo 

[177] 

ES-RDC-AA Multi Multi Maximize min. fill rate, fill rate difference 

and set-up, procurement and transport costs 

2008 Wenchuan 

earthquake 

Sabouhi et al. 

[178] 

RDC-AA Single Single Minimize transport time of relief and 

evacuees to shelters 

Tehran, Iran 

Liu et al. [178] RDC-AA Multi Multi Minimize total weighted unmet demand 2008 Wenchuan 

earthquake 

Baharmand et 

al.[190] 

CW-RDC-AA Multi Multi Minimize operating, staff and transport 

costs, response time and unmet demand 

2015 Nepal 

earthquake 

Safaei et al. 

[189] 

ES-CW-RDC-

AA 

Multi Single Minimize set-up, procurement, holding and 

transport costs, unmet demand and supply 

risk 

Mazandaran, 

Iran 

Khare et al. 

[214] 

RDC-AA Multi Multi Minimize transport cost and unmet demand 2015 Nepal 

earthquake 

Hosseini-

Motlagh et al. 

[187] 

CW-RDC-AA Multi Single Minimize procurement, holding and 

wastage costs of blood, set-up cost of 

emergency shelters and expected unmet 

demand for blood 

Kermanshah, 

Iran 

Gao [188] RDC-RDC Multi Multi Minimize supply shortages and transport 

time 

2008 Sichuan 

earthquake  

Fazli-Khalaf et 

al. [181] 

LCC-CW-

RDC-AA 

Single Multi Minimize set-up, blood collection/testing 

and fixed/variable transport costs and 

transport time and maximize reliability of 

testing 

2003 Bam 

earthquake 

Vitoriano et al. 

[182] 

RDC-AA Single Multi Minimize transport cost, max. response 

time, unmet demand and max. unmet 

demand and maximize route link reliability 

& security 

2010 Haiti 

earthquake 

Camacho-

Vallejo et al. 

[183] 

ES-RDC-AA Multi Multi Minimize response time and transport cost 2010 Chile 

earthquake  

Cao et al. [184] RDC-AA Multi Multi Minimize set-up and processing costs, task 

completion time and carbon emissions  

- 

Zhang et al. 

[185] 

RDC-AA Multi Multi Minimize expected response time, transport 

cost and unmet demand 

2008 Wenchuan 

earthquake 

Ferrer et al. 

[186] 

RDC-AA Single Multi Minimize transport cost, max. response 

time, unmet demand and max. unmet 

demand and maximize route link reliability 

& security 

2010 Haiti 

earthquake 
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Hu et al. [212] RDC-AA Multi Single Maximize overall utility of relief and min. 

utility satisfaction rate 

2008 Wenchuan 

earthquake 

Balcik [192] RDC-AA Single Single Maximize min. coverage ratio 2011 Van 

earthquakes 

Cao et al. [193] CW-RDC-AA Multi Single Maximize min. satisfaction at each 

response substage and minimize max. 

deviation in satisfaction at each substage 

and across substages 

2008 Wenchuan 

earthquake 

Lin et al. [189] RDC-AA Multi Single Minimize unmet demand, response time, 

transport cost and maximize equity 

1994 Northridge 

earthquake 

Wang & Sun 

[195] 

RDC-AA Multi Single Minimize fixed/variable transport costs and 

unmet demand 

2013 Ya'an 

earthquake 

Lei et al. [196] RDC-AA Single Single Minimize tardiness of medical operations 2011 Tōhoku 

earthquake 

Nedjati et al. 

[197] 

RDC-AA Single Single Minimize unmet demand and response time - 

Vahdani et al. 

[198] 

CW-RDC-AA Multi Multi Minimize set-up, holding, unused inventory 

and transport costs, vehicle travel time and 

route reliability 

- 

Xiong et al. 

[199] 

CW-RDC-AA Single Multi Minimize response time and max. response 

time 

- 

Rezaei et al. 

[200] 

RDC-AA Single Multi Minimize unmet demand and variability in 

unmet demand 

Yazd City, Iran 

Nolz et al. [201] RDC-AA Single Single Minimize victim travel distance, unmet 

demand, transport cost and max. response 

time 

Manabí, 

Ecuador 

Zahedi et al. 

[202] 

RDC-AA Multi Multi Minimize procurement and transport costs 

and unmet demand 

2017 Iran-Iraq 

earthquake 

Bruni et al. 

[203] 

RDC-AA Single Single Minimize waiting time and variability in 

waiting time 

2010 Haiti 

earthquake 

Hu et al. [213] ES-RDC-AA Multi Multi Minimize vehicle rental, transport and 

handling costs and unmet demand 

2013 Ya'an 

earthquake 

Kirac & Bennett 

[204] 

RDC-AA Single Single Maximize accurate satisfied demand 2010 Haiti 

earthquake 

Chang et al. 

[205] 

RDC-AA Single Multi Minimize unmet demand, response time 

and transport cost 

1999 Chi-Chi 

earthquake 

Zheng et al. 

[206] 

RDC-AA Multi Multi Minimize response time and unmet demand 2013 Dingxi 
earthquake 

Ferrer et al. 

[207] 

RDC-AA Single Multi Minimize fixed/variable transport costs, 

response time and unmet demand and 

maximize equity and route link reliability & 

security 

2010 Haiti 

earthquake 

Penna et al. 

[208] 

RDC-AA Single Multi Minimize transport cost 2010 Haiti 

earthquake 

Liu et al. [209] RDC-AA Multi Multi Maximize expected fill rate and minimize 

set-up, procurement and transport costs 

2008 Wenchuan 

earthquake 

Ma et al. [210] RDC-AA Multi Single Minimize unmet demand for blood products 2008 Wenchuan 

earthquake 

Wang et al. 

[211] 

RDC-AA Multi Multi Minimize set-up and transport costs and 

max. response time and maximize min. 

route reliability 

2008 Wenchuan 

earthquake 
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Appendix B: List of studies which are either focus on earthquakes in their problem description or have 

partial or significant stakeholder involvement. 

 

Study 
Focus on 

Earthquakes 

Stakeholder Involvement 

No 

involvement 

Partial 

involvement 

Significant 

involvement 

Mitigation Stage 

Bagheri et al.  [45] ✓ ✓   

Sun & Chen [46] ✓ ✓   

Li et al.  [47] ✓ ✓   

Feng et al.  [48] ✓ ✓   

Sun et al.  [49] ✓ ✓   

Chang et al.  [50] ✓  ✓  

Gertsbakh & Shpungin [51] ✓ ✓   

Jin & Wang [52] ✓ ✓   

Dadfar et al. [54] ✓ ✓   

King et al. [55] ✓  ✓  

Nabian & Meidani [56] ✓ ✓   

Sinaga et al. [57] ✓ ✓   

Akin et al.  [58] ✓ ✓   

Cankaya et al. [59] ✓  ✓  

Moradi et al. [60] ✓  ✓  

Kumlu & Tudes [61] ✓  ✓  

Yariyan et al.  [62] ✓   ✓ 

Ahmad et al. [63] ✓ ✓   

Akpabot et al. [64] ✓ ✓   

Carreño et al. [65] ✓  ✓  

Tayfur & Bektas [66] ✓ ✓   

Piscini et al. [67] ✓ ✓   

Alizadeh et al. [68] ✓   ✓ 

Janalipour & Taleai [69] ✓ ✓   

Mangalathu et al. [70] ✓ ✓   

Sadrykia et al. [71] ✓   ✓ 

Ranjbar & Nekooie [72] ✓   ✓ 

Aghamohammadi et al. [73] ✓ ✓   

Gul & Guneri [74] ✓  ✓  

Ikram & Qamar [75] ✓ ✓   

Asim et al. [76] ✓ ✓   

Zolfaghari & Peyghaleh [80] ✓ ✓   

Aydin [82] ✓  ✓  

Chu & Chen [83] ✓  ✓  

Döyen & Aras [84] ✓ ✓   

Edrissi et al.  [85] ✓ ✓   

Preparedness Stage 

Görmez et al. [88] ✓   ✓ 

Khojasteh & Macit [90] ✓ ✓   

Paul & Wang [91] ✓ ✓   

Boostani et al. [93] ✓  ✓  

Rezaei et al.  [95] ✓  ✓  

Chen & Wang  [95] ✓ ✓   

Salehi et al.  [96] ✓  ✓  

Cavdur et al.  [97] ✓  ✓  

Noyan et al. [99] ✓ ✓   

Charles & Lauras [100]   ✓  

Bozorgi-Amiri et al. [101]   ✓  

Mahootchi & Golmohammadi [102] ✓  ✓  
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Lejeune [103]   ✓  

Salman & Yucel [105]   ✓  

Molladavoodi et al. [106] ✓  ✓  

Haghi et al. [107] ✓ ✓   

Ghasemi et al. [108] ✓ ✓   

Saeidian et al. [110] ✓  ✓  

Verma and Gaukler [111] ✓ ✓   

Xing [112] ✓   ✓ 

Paul & MacDonald [113] ✓ ✓   

Javadian  et al. [114]   ✓  

Mohammadi et al. [115] ✓   ✓ 

Tofighi et al. [116] ✓ ✓   

Bell et al. [117] ✓ ✓   

Acar et al. [118] ✓ ✓   

Battarra et al. [120] ✓   ✓ 

Yang et al. [121] ✓  ✓  

Das & Hanoka  [122] ✓ ✓   

Xu et al.  [123]   ✓  

Cimellaro et al.  [124] ✓   ✓ 

Gul et al.  [125] ✓  ✓  

Shavarani et al.  [127] ✓ ✓   

Bayram et al.  [129]   ✓  

Bayram & Yaman [130]   ✓  

Trivedi & Singh [131] ✓   ✓ 

Zhao et al.  [134] ✓  ✓  

Hu et al. [135] ✓ ✓   

Xu et al.  [136] ✓  ✓  

Preece et al. [137] ✓   ✓ 

Rafiei et al. [138] ✓ ✓   

Srivichai et al. [139] ✓ ✓   

Kuyuk et al. [140] ✓ ✓   

Mase et al. [141] ✓ ✓   

Li et al.  [142] ✓ ✓   

Mousavi et al. [143] ✓ ✓   

Chin et al. [144] ✓  ✓  

Lee at al. [145] ✓ ✓   

Oliveira et al. [146] ✓  ✓  

Wang et al.  [147] ✓ ✓   

Mulia et al.  [148] ✓  ✓  

Oth et al.  [149] ✓ ✓   

Response Stage 

Bai et al.  [152] ✓ ✓   

Kim et al.  [153] ✓ ✓   

Schweier & Markus [154] ✓   ✓ 

Chu & Zhong [156] ✓ ✓   

Ahmadi et al.  [157] ✓ ✓   

Chaudhuri & Bose [158] ✓  ✓  

Najafi et al.  [161] ✓ ✓   

Mohammadi et al.  [162] ✓ ✓   

Khalilpourazari et al.  [163] ✓  ✓  

Mansoori et al.  [164] ✓  ✓  

Mills et al.  [166]   ✓  

Caunhye & Xie [167] ✓   ✓ 

Oksuz & Satoglu [168]   ✓  

Kilci et al.  [169] ✓  ✓  
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Pérez-Galarce et al.  [170] ✓ ✓   

Forcael et al.  [171] ✓ ✓   

Chen et al.  [172] ✓ ✓   

Liu [174] ✓ ✓   

Ozbay et al.  [176] ✓ ✓   

Liu & Guo [177] ✓ ✓   

Liu et al.  [179] ✓   ✓ 

Liu et al.  [180] ✓  ✓  

Baharmand et al.  [190] ✓   ✓ 

Fazli Khalaf et al.  [181] ✓  ✓  

Camacho -Vallejo et al.  [183]   ✓  

Zhang et al.  [185]   ✓  

Ferrer et al.  [186]   ✓  

Lin et al.  [194]   ✓  

Nedjati et al.  [197] ✓  ✓  

Vahdani et al.  [198] ✓ ✓   

Xiong et al.  [199] ✓ ✓   

Rezaei et al.  [200] ✓ ✓   

Zahedi et al.  [202] ✓ ✓   

Penna et al.  [208] ✓  ✓  

Liu et al.  [209] ✓   ✓ 

Wang et al.  [211] ✓ ✓   

Xu et al.  [213] ✓ ✓   

Sheu [216] ✓   ✓ 

Yagci et al.  [217] ✓ ✓   

Recovery Stage 

Kasaei & Salman [218] ✓ ✓   

Hu & Sheu [220] ✓  ✓  

Onan et al. [221]   ✓  

Hwang et al. [224]   ✓  

González et al. [225] ✓ ✓   

Caunhye et al. [226] ✓ ✓   

Nozhati et al. [228] ✓ ✓   

Yan et al. [229] ✓ ✓   

Yan et al. [230]   ✓  

Yan et al. [231]   ✓  

Longman & Miles [235]   ✓  

Luna et al. [236] ✓  ✓  

Gosavi et al. [237] ✓  ✓  

Integrated Stages 

Yucel et al.  [246]   ✓  

Edrissi et al.  [249] ✓ ✓   

Salman & Gul [238]   ✓  

Mohamadi & Yaghoubi [242] ✓  ✓  

Ni et al.  [250] ✓ ✓   

Mete & Zabinsky [239] ✓  ✓  

Ahmadi et al.  [240] ✓ ✓   

Golabi et al.  [241]   ✓  

Sahebjamnia et al.  [244]   ✓  

Xu et al.  [255] ✓  ✓  

Yan & Shih [256] ✓ ✓   

Sakuraba et al.  [257] ✓ ✓   

Li & Teo [258] ✓ ✓   
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Appendix C. Details of applied case studies involving the use of infrastructure network data. 

Study 
Earthquake 

Scenario 
Infrastructure Type 

Transportation Electricity Water 

Mitigation Stage 
Bagheri et al.  [45] W/ERS     Real 

Li et al.  [47] Random   Real   

Günneç & Salman [49] W/ERS Real     

Jin & Wang [52] W/ERS   Real 

Mohaymany et al. [54] Random Random     

Dadfar et al. [55] W/ERS   Real 

King et al. [56] W/ERS     Real 

Nabian & Meidani [57] W/ERS Real   

Peeta et al. [79] W/ERS Real     

Lu et al. [80] Random Random   

Liberatore et al. [82] W/ERS Real   

Aydin [83] W/ERS Real   

Chu & Chen [84] W/ERS Real     

Döyen & Aras [85] Random Random   

Edrissi et al. [86] W/ERS Random   

Preparedness Stage 

Görmez et al. [88] W/ERS Real   

Zokaee et al. [89] Random Real   

Khojasteh & Macit [90] W/ERS Real   

Paul & Wang [91] W/ERS Real   

Rahafrooz & Alinaghian [92] Random Random   

Boostani et al. [93] Random Real   

Rezai et al. [94] W/ERS Real   

Chen & Wang [95] Random Real   

Salehi et al. [96] W/ERS Real   

Cavdur et al. [97] W/ERS Real   

Yahyaei & Bozorgi-Amiri [98] W/ERS Real   

Noyan et al. [99] W/ERS Real   

Bozorgi-Amiri et al. [101] W/ERS Real   

Mahootchi & Golmohammadi [102] W/ERS Real   

Renkli & Duran [104] W/ERS Real   

Salman & Yucel [105] W/ERS Real   

Molladavoodi et al. [106] W/ERS Real   

Ghasemi et al. [108] W/ERS Real   

Lu [109] Random Random   

Saeidian et al. [110] W/ERS Real   

Verma & Gaukler [111] Random Real   

Paul & MacDonald  [113] W/ERS Real   

Mohammadi et al. [115] W/ERS Real   

Tofighi et al. [116] W/ERS Real   

Bell et al. [118] Random Real   

Acar et al. [119] W/ERS Real   

Yang et al. [122] W/ERS Real   

Xu et al. [124] W/ERS Real   

Shavarani et al. [127] W/ERS Real   

Coutinho-Rodrigues  et al. [128] Random Real   

Bayram et al. [129] W/ERS Real   

Bayram & Yaman [130] W/ERS Real   

Trivedi & Singh [131] W/ERS Real   

Kınay et al. [132] W/ERS Real   

Xu et al. [136] W/ERS Real   

Response Stage 

Ahmadi et al. [157] W/ERS Real   

Najafi et al. [161] Random Random   
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Mohammadi et al. [162] W/ERS Real   

Khalilpourazari et al. [163] W/ERS Real   

Mansoori et al. [164] Random Real   

Caunhye & Nie [167] W/ERS Real   

Oksuz & Satoglu [168] W/ERS Real   

Kilci et al. [169] Random Real   

Pérez-Galarce et al. [170] Random Real    

Forcael et al. [171] Random Real   

Liu [179] W/ERS Real   

Liu & Guo [177] Random Real   

Sabouhi et al. [178] Random Real   

Liu et al. [180] W/ERS Real   

Baharmand et al. [191] W/ERS Real   

Safaei et al. [189] W/ERS Real   

Khare et al. [214] W/ERS Real   

Hosseini-Motlagh et al. [187] W/ERS Real   

Gao [188] Random Real   

Baharmand et al. [190] W/ERS Real   

Fazli Khalaf et al. [181] Random Real   

Vitoriano et al.[182] W/ERS Real   

Camacho -Vallejo et al. [183] W/ERS Real   

Cao et al. [184] W/ERS Real   

Zhang et al. [185] Random Real   

Ferrer et al. [186] W/ERS Real   

Hu et al. [212] W/ERS Real   

Balcik [192] W/ERS Real   

Cao et al. [193] W/ERS Real   

Lin et al. [194] W/ERS Real   

Wang & Sun [195] W/ERS Real   

Lei et al. [196] W/ERS Real   

Nedjati et al. [197] Random Random   

Vahdani et al. [198] Random Random   

Xiong et al. [199] Random Real   

Rezaei et al. [200] W/ERS Real   

Zahedi et al. [202] W/ERS Real   

Bruni et al. [203] W/ERS Real   

Hu et al. [213] W/ERS Real   

Chang et al [205] W/ERS Real   

Zheng et al. [206] W/ERS Real   

Penna et al. [208] W/ERS Real   

Liu et al. [209] Random Real   

Wang et al. [211] W/ERS Real   

Xu et al. [215] Random Real   

Yagci et al. [217] W/ERS Real   

Recovery Stage 

Kasaei & Salman [218] W/ERS Real     

Tüzün Aksu & Özdamar [219]  Random Real     

Hu & Sheu [220] W/ERS Real   

Özdamar et al. [221] Random Real     

Ajam et al. [223] W/ERS Real   

González et al. [225] W/ERS   Real Real 

Caunhye et al. [226] Random Real     

Smith et al. [227] Random  Real Real 

Nozhati et al. [228] W/ERS   Real   

Yan et al. [229] Random Real     

Yan et al. [230] Random Real     

Yan et al. [231] Random Real     

Rey & Bar-Gera [233] Random Real   
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Luna et al. [236] W/ERS    Real 

Gosavi et al. [237] Random Real     

Integrated Stages 

Hu et al. [245] W/ERS Real   

Yucel et al. [246] W/ERS Real   

Edrissi et al. [249] Random Random   

Salman & Gul [238] W/ERS Real   

Mohamadi & Yaghoubi [242] W/ERS Real   

Ni et al. [250] W/ERS Real   

Mete & Zabinsky [239] W/ERS Real   

Bozorgi et al. [251] W/ERS Real    

Ahmadi et al. [240] Random Real   

Golabi et al. [241] W/ERS Real   

Sahebjamnia et al. [244] Random Real   

Fereiduni et al. [243] Random Real   

Çelik et al. [253] W/ERS Real   

Liberatore et al. [254] W/ERS Real   

Xu & Song [254] Random Real   

Yan & Shih  [256] Random Real   

Sakuraba et al. [257] W/ERS Real   

Li & Teo [258] Random Real   
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Appendix D. Details of the simplified Istanbul highway network data 

Appendix D.1. The details of the simplified Istanbul highway network nodes 

Node No District Name Node Type Node No District Name Node Type 

1 Arnavutkoy Demand 31 Tuzla Demand 

2 Atasehir Demand 32 Umraniye Demand 

3 Avcilar Demand 33 Uskudar Supplier 

4 Bagcilar Demand 34 Zeytinburnu Supplier 

5 Bahcelievler Supplier 35 J1 Transhipment 

6 Bakirkoy Supplier 36 J2 Transhipment 

7 Basaksehir Demand 37 J3 Transhipment 

8 Bayrampasa Demand 38 J4 Transhipment 

9 Besiktas Demand 39 J5 Transhipment 

10 Beylikduzu Demand 40 J6 Transhipment 

11 Beyoglu Supplier 41 J7 Transhipment 

12 Buyukcekmece Demand 42 J8 Transhipment 

13 Cekmekoy Demand 43 J9 Transhipment 

14 Esenler Demand 44 J10 Transhipment 

15 Esenyurt Demand 45 J11 Transhipment 

16 Eyup Demand 46 J12 Transhipment 

17 Fatih Supplier 47 J13 Transhipment 

18 Gaziosmanpasa Demand 48 J14 Transhipment 

19 Gungoren Demand 49 J15 Transhipment 

20 Kadikoy Supplier 50 J16 Transhipment 

21 Kagithane Demand 51 J17 Transhipment 

22 Kartal Demand 52 J18 Transhipment 

23 Kucukcekmece Demand 53 J19 Transhipment 

24 Maltepe Demand 54 J20 Transhipment 

25 Pendik Demand 55 J21 Transhipment 

26 Sancaktepe Demand 56 J22 Transhipment 

27 Sariyer Demand 57 J23 Transhipment 

28 Sisli Supplier 58 J24 Transhipment 

29 Sultanbeyli Demand 59 J25 Transhipment 

30 Sultangazi Demand 60 J26 Transhipment 
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  Appendix D.2. The number of hospitals, policlinics, and beds on the supplier points 

District Number of Hospitals Number of policlinics Number of beds 

Sisli 21 0 1,597 

Kadikoy 20 42 1,127 

Uskudar 17 16 2,036 

Fatih 16 16 1,081 

Bahcelievler 12 0 1,126 

Gaziosmanpasa 11 0 491 

Bakirkoy 10 10 4,229 

Beyoglu 8 15 861 

Gungoren 6 1 207 

Bayrampasa 6 12 259 

Kartal 6 9 918 

Zeytinburnu 6 10 1,325 

Maltepe 5 2 85 

Pendik 5 11 244 

Avcilar 5 6 323 

Eyup 4 10 75 

Umraniye 4 24 87 

Buyukcekmece 4 0 134 

Besiktas 4 0 173 

Bagcilar 4 23 177 

Kucukcekmece 4 23 177 

Esenler 3 11 147 

Silivri 3 0 147 

Kagithane 3 0 285 

Beykoz 3 6 300 

Sariyer 3 15 510 

Catalca 1 0 50 

Tuzla 0 0 0 
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Appendix D.3. Number of casualties (demand values) at demand nodes 

Node No District name Population Casualty rate Demand 

1 Arnavutkoy 197,271 1.3 2565 

2 Atasehir 290,818 1.1 3199 

3 Avcilar 490,630 2.7 13247 

4 Bagcilar 741,909 1.1 8161 

7 Basaksehir 206,846 1.3 2689 

8 Bayrampasa 294,292 2.4 7063 

9 Besiktas 365,083 1.2 4381 

10 Beylikduzu 222,357 2.8 6226 

12 Buyukcekmece 183,208 4.8 8794 

13 Cekmekoy 141,400 0.5 707 

14 Esenler 541,250 1.2 6495 

15 Esenyurt 102,692 1.3 1335 

16 Eyup 302,214 1.4 4231 

18 Gaziosmanpasa 434,167 0.6 2605 

19 Gungoren 212,016 1.8 3816 

21 Kagithane 395,000 0.8 3160 

22 Kartal 429,615 1.3 5585 

23 Kucukcekmece 647,077 1.3 8412 

24 Maltepe 438,727 1.1 4826 

25 Pendik 516,667 1.2 6200 

26 Sancaktepe 148,200 0.5 741 

27 Sariyer 222,333 0.3 667 

29 Sultanbeyli 256,545 1.1 2822 

30 Sultangazi 434,500 0.6 2607 

31 Tuzla 143,185 2.7 3866 

32 Umraniye 664,800 0.5 3324 
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Appendix D.4. The simplified Istanbul highway network links and resilience levels 

 

Link 

No 
Node 1 Node 2 

Resilience 

level 

Link 

No 

 
Node 1 Node 2 

Resilience 

level 

1 Bagcilar Bahcelievler 6 48  Umraniye J13 6 

2 Bahcelievler Bakirkoy 6 49  Atasehir J14 4 

3 Arnavutkoy Besiktas 6 50  Sultanbeyli J15 6 

4 Avcilar Beylikduzu 6 51  Sultanbeyli J16 7 

5 Beylikduzu Buyukcekmece 7 52  Tuzla J17 6 

6 Avcilar Esenyurt 6 53  J15 J17 6 

7 Beylikduzu Esenyurt 7 54  Bayrampasa J18 7 

8 Beyoglu Fatih 7 55  J2 J18 4 

9 Bayrampasa Gaziosmanpasa 8 56  J3 J18 6 

10 Bahelievler Gungoren 6 57  Kagithane J19 8 

11 Avcilar Kucukcekmece 6 58  Sisli J19 9 

12 Bahcelievler Kucukcekmece 6 59  J8 J19 5 

13 Bakirkoy Kucukcekmece 7 60  J10 J19 5 

14 Kartal Maltepe 8 61  Gaziosmanpasa J20 9 

15 Cekmekoy Sancaktepe 7 62  Sultangazi J20 3 

16 Pendik Sancaktepe 7 63  J7 J20 9 

17 Eyup Sariyer 9 64  J12 J20 5 

18 Sariyer Sisli 8 65  Uskudar J22 7 

19 Kartal Tuzla 9 66  J5 J22 2 

20 Umraniye Uskudar 7 67  J14 J22 2 

21 Bakirkoy Zeytinburnu 7 68  J21 J22 2 

22 Fatih Zeytinburnu 6 69  Kadikoy J23 7 

23 Gungoren Zeytinburnu 6 70  Maltepe J23 7 

24 Esenyurt J1 7 71  J14 J23 2 

25 Bagcilar J2 8 72  J21 J23 7 

26 Basaksehir J2 4 73  J10 J24 5 

27 J1 J2 7 74  J13 J24 6 

28 Esenler J3 6 75  Cekmekoy J25 9 

29 Beyoglu J4 8 76  J13 J25 7 

30 Besiktas J5 9 77  J14 J25 6 

31 J4 J6 5 78  Kartal J26 7 

32 Eyup J7 8 79  J14 J26 8 
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33 Eyup J8 8 80  J16 J26 7 

34 Kagithane J8 8 81  J15 Pendik 6 

35 J4 J8 2 82  J2 Kucukcekmece 7 

36 J7 J8 4 83  J1 Buyukcekmece 7 

37 Beyoglu J9 7      

38 Kagithane J9 9      

39 J4 J9 7      

40 J5 J9 3      

41 Sariyer J10 8      

42 Sisli J10 9      

43 Bayrampasa J11 7      

44 Fatih J11 7      

45 J6 J11 7      

46 Gaziosmanpasa J12 8      

47 J3 J12 9      
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Appendix E. Details of the detailed Istanbul highway network data 

Appendix E.1. The details of the detailed Istanbul highway network nodes 

 

Node No longitude  latitude Node Type Node Population Node Description 

1 28.73042435 41.19620204 Demand 176735 Arnavutköy 

2 28.63054586 41.14141311 Demand 38796 Arnavutköy 

3 28.87289137 41.05710333 Demand 133870 Esenler 

4 28.88459599 41.07372069 Demand 106173 Esenler 

5 28.86264679 41.06676192 Demand 46162 Esenler 

6 28.87943377 41.03963888 Demand 175416 Esenler 

7 28.70861753 40.98484372 Demand 130317 Avcılar 

8 28.70401148 41.00636023 Demand 109955 Avcılar 

9 28.69708323 41.02810681 Demand 126244 Avcılar 

10 28.71233866 41.05985982 Demand 40724 Avcılar 

11 28.82603922 41.03735406 Demand 157973 Bağcılar 

12 28.82603954 41.05264153 Demand 22568 Bağcılar 

13 28.83580208 41.04582377 Demand 75225 Bağcılar 

14 28.84796939 41.05375763 Demand 97793 Bağcılar 

15 28.8451874 41.04076859 Demand 112838 Bağcılar 

16 28.81348406 41.04698208 Demand 15045 Bağcılar 

17 28.859753 41.04722211 Demand 90270 Bağcılar 

18 28.85512843 41.03059192 Demand 180540 Bağcılar 

19 28.83491034 41.02442695 Demand 90440 Bahçelievler 

20 28.85183218 41.01750725 Demand 114557 Bahçelievler 

21 28.82006505 41.01946826 Demand 18088 Bahçelievler 

22 28.83741704 41.00765634 Demand 174850 Bahçelievler 

23 28.8559592 41.00175034 Demand 162791 Bahçelievler 

24 28.8251008 41.00566389 Demand 42205 Bahçelievler 

25 28.80585378 40.97318872 Demand 121536 Bakırköy 

26 28.83624196 40.96830188 Demand 99438 Bakırköy 

27 28.68513192 41.06502291 Demand 126558 Başakşehir 

28 28.75720258 41.09220291 Demand 96584 Başakşehir 

29 28.79873407 41.08463038 Demand 109906 Başakşehir 

30 28.90006955 41.05866595 Demand 113264 Bayrampaşa 

31 28.90510223 41.04469265 Demand 80903 Bayrampaşa 

32 28.91108905 41.03275937 Demand 75510 Bayrampaşa 

33 29.02976715 41.06532485 Demand 136196 Beşiktaş 

34 29.00186332 41.04659138 Demand 50374 Beşiktaş 

35 28.63843293 41.00101466 Demand 78323 Beylikdüzü 

36 28.66662757 40.98674024 Demand 80770 Beylikdüzü 

37 28.62109631 40.98478412 Demand 85666 Beylikdüzü 

38 28.9782243 41.03132716 Demand 68661 Beyoğlu 

39 28.97092004 41.03843174 Demand 73566 Beyoğlu 

40 28.96034503 41.04480166 Demand 102992 Beyoğlu 

41 28.59557811 41.02245914 Demand 116050 Büyükçekmece 
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42 28.54518899 41.01751035 Demand 94950 Büyükçekmece 

43 28.64605836 41.03749455 Demand 93710 Esenyurt 

44 28.63484966 41.05568196 Demand 18742 Esenyurt 

45 28.65874431 41.04280286 Demand 112452 Esenyurt 

46 28.64305615 41.02238292 Demand 43731 Esenyurt 

47 28.66991183 41.01737263 Demand 118699 Esenyurt 

48 28.67405508 41.03713901 Demand 149936 Esenyurt 

49 28.66369049 41.0293318 Demand 87463 Esenyurt 

50 28.88643779 41.17832406 Demand 32538 Eyüp 

51 28.93046985 41.0853483 Demand 126536 Eyüp 

52 28.92917685 41.04173268 Demand 108459 Eyüp 

53 28.94185957 41.06842433 Demand 93998 Eyüp 

54 28.95653995 41.02118119 Demand 72397 Fatih 

55 28.94172333 41.03035461 Demand 89432 Fatih 

56 28.93317057 41.00811554 Demand 106466 Fatih 

57 28.97605815 41.01031066 Demand 38328 Fatih 

58 28.93717219 41.01883599 Demand 63880 Fatih 

59 28.95444754 41.00883623 Demand 55362 Fatih 

60 28.89334416 41.07943246 Demand 69301 Gaziosmanpaşa 

61 28.89676465 41.07020413 Demand 118801 Gaziosmanpaşa 

62 28.90764902 41.06982293 Demand 99001 Gaziosmanpaşa 

63 28.91108073 41.06216769 Demand 123752 Gaziosmanpaşa 

64 28.92594578 41.06227216 Demand 84151 Gaziosmanpaşa 

65 28.87325763 41.02849141 Demand 98193 Güngören 

66 28.866769 41.01482044 Demand 162633 Güngören 

67 28.89538519 41.01452443 Demand 46028 Güngören 

68 28.97096437 41.07527873 Demand 51451 Kağıthane 

69 28.96617373 41.06499884 Demand 72888 Kağıthane 

70 28.98314047 41.06965141 Demand 85751 Kağıthane 

71 29.00153848 41.07176933 Demand 94326 Kağıthane 

72 28.98352296 41.07908757 Demand 124339 Kağıthane 

73 28.78337722 40.9883292 Demand 122115 Küçükçekmece 

74 28.77309225 40.9967847 Demand 144318 Küçükçekmece 

75 28.78758746 40.99895656 Demand 103612 Küçükçekmece 

76 28.88815564 41.00020561 Demand 52616 Zeytinburnu 

77 28.86883001 40.98321148 Demand 114002 Zeytinburnu 

78 28.90791009 40.99098747 Demand 125695 Zeytinburnu 

79 29.06071521 41.03644303 Demand 69503 Üsküdar 

80 29.03020209 40.99377863 Demand 64156 Üsküdar 

81 29.03234273 41.02733708 Demand 112274 Üsküdar 

82 29.06618407 41.0554634 Demand 101581 Üsküdar 

83 29.0730137 41.00715359 Demand 96234 Üsküdar 

84 29.04870212 41.01273062 Demand 90888 Üsküdar 

85 29.14030059 41.02213784 Demand 66012 Ümraniye 

86 29.14078282 41.00437961 Demand 125424 Ümraniye 

87 29.08813362 41.03212085 Demand 118822 Ümraniye 
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88 29.10921735 41.04497616 Demand 72614 Ümraniye 

89 29.09836535 41.01427364 Demand 138626 Ümraniye 

90 29.16644141 41.01990935 Demand 85816 Ümraniye 

91 29.09031753 41.05922923 Demand 52810 Ümraniye 

92 29.38893927 40.90998593 Demand 89787 Tuzla 

93 29.34917977 40.87943965 Demand 119020 Tuzla 

94 29.58599384 41.14994887 Demand 31718 Şile 

95 29.2836127 40.94998394 Demand 133019 Sultanbeyli 

96 29.27527302 40.98363154 Demand 95898 Sultanbeyli 

97 29.25062535 40.96957542 Demand 80430 Sultanbeyli 

98 29.28744503 41.03014115 Demand 30441 Sancaktepe 

99 29.19728141 40.98311049 Demand 73057 Sancaktepe 

100 29.24816921 41.0042591 Demand 200908 Sancaktepe 

101 29.32830178 40.99810388 Demand 12928 Pendik 

102 29.35650745 40.96552346 Demand 6464 Pendik 

103 29.3673244 41.00672667 Demand 12928 Pendik 

104 29.31644034 40.93182374 Demand 103420 Pendik 

105 29.26148689 40.91377175 Demand 168058 Pendik 

106 29.29663446 40.90348506 Demand 116348 Pendik 

107 29.26940684 40.87798321 Demand 226231 Pendik 

108 29.11655259 40.94261058 Demand 113054 Maltepe 

109 29.13029346 40.92814183 Demand 108344 Maltepe 

110 29.15103377 40.95646852 Demand 51816 Maltepe 

111 29.16659698 40.93946629 Demand 103633 Maltepe 

112 29.15485616 40.91678687 Demand 94212 Maltepe 

113 29.16839266 40.90295223 Demand 98364 Kartal 

114 29.19120712 40.91497504 Demand 93893 Kartal 

115 29.22197756 40.92669991 Demand 71538 Kartal 

116 29.22586153 40.9098041 Demand 89422 Kartal 

117 29.20219354 40.89363259 Demand 93893 Kartal 

118 29.05662154 40.98762141 Demand 81007 Kadıköy 

119 29.07884182 40.98531006 Demand 86070 Kadıköy 

120 29.06012014 40.97261238 Demand 116447 Kadıköy 

121 29.09562214 40.97218045 Demand 101259 Kadıköy 

122 29.0864512 40.96012657 Demand 121510 Kadıköy 

123 29.24983204 41.07273951 Demand 126560 Çekmeköy 

124 29.3197628 41.10280059 Demand 80916 Çekmeköy 

125 29.12713782 41.08985751 Demand 71936 Beykoz 

126 29.23522431 41.20963657 Demand 42170 Beykoz 

127 29.27789616 41.13886859 Demand 39689 Beykoz 

128 29.13710526 41.20231189 Demand 27286 Beykoz 

129 29.08920778 41.1500362 Demand 66975 Beykoz 

130 29.16743469 40.98436521 Demand 77135 Ataşehir 

131 29.13835242 40.98996323 Demand 81195 Ataşehir 

132 29.11261211 40.98297312 Demand 113673 Ataşehir 

133 29.12738627 40.96868098 Demand 133971 Ataşehir 
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134 28.79726149 41.00828429 Demand 92512 Küçükçekmece 

135 28.78015237 41.01173332 Demand 103613 Küçükçekmece 

136 28.79530576 41.02148389 Demand 85111 Küçükçekmece 

137 28.7981652 41.04150869 Demand 62908 Küçükçekmece 

138 28.76221 41.05762829 Demand 25903 Küçükçekmece 

139 29.04173129 41.10154661 Demand 77188 Sarıyer 

140 29.04473844 41.12188149 Demand 107391 Sarıyer 

141 29.03536466 41.15070353 Demand 60408 Sarıyer 

142 29.04961802 41.18015731 Demand 90611 Sarıyer 

143 28.18843901 41.08350015 Demand 93554 Silivri 

144 28.29242169 41.07889299 Demand 62369 Silivri 

145 28.90627316 41.09506625 Demand 101038 Sultangazi 

146 28.87570985 41.0935349 Demand 116194 Sultangazi 

147 28.89050465 41.10705753 Demand 55571 Sultangazi 

148 28.86820147 41.10233677 Demand 136401 Sultangazi 

149 28.85876244 41.11259976 Demand 95986 Sultangazi 

150 28.99758336 41.09851741 Demand 49396 Şişli 

151 28.99867531 41.08314949 Demand 82326 Şişli 

152 28.99906704 41.05901646 Demand 76838 Şişli 

153 28.9784608 41.05365516 Demand 65861 Şişli 

154 29.05708267 41.1672824 Junction 0 
 

155 29.02798208 41.1398396 Junction 0 
 

156 29.05392874 41.13828533 Junction 0 
 

157 29.00433828 41.10042955 Junction 0 
 

158 29.0253937 41.09351274 Junction 0 
 

159 29.03994222 41.09079268 Junction 0 
 

160 29.00931019 41.08289898 Junction 0 
 

161 28.95510194 41.09874306 Junction 0 
 

162 29.01339849 41.06554889 Junction 0 
 

163 29.0209029 41.05645701 Junction 0 
 

164 29.00909552 41.05348655 Junction 0 
 

165 28.97826473 41.06703576 Junction 0 
 

166 28.96036531 41.0556959 Junction 0 
 

167 28.96866581 41.05210999 Junction 0 
 

168 29.00681051 41.04158279 Junction 0 
 

169 28.98497152 41.03686436 Junction 0 
 

170 28.96788873 41.0252104 Junction 0 
 

171 28.97507697 41.02319596 Junction 0 
 

172 28.94495786 41.04750064 Junction 0 
 

173 29.02696166 41.07631071 Junction 0 
 

174 28.9067811 41.08998289 Junction 0 
 

175 28.87313911 41.07963139 Junction 0 
 

176 28.84755884 41.11079473 Junction 0 
 

177 28.95309002 41.06373677 Junction 0 
 

178 28.93691054 41.03824551 Junction 0 
 

179 28.95941183 41.02084123 Junction 0 
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180 28.97030094 41.01654537 Junction 0 
 

181 28.97360016 41.00213294 Junction 0 
 

182 28.92385351 41.02815745 Junction 0 
 

183 28.90485918 41.01222302 Junction 0 
 

184 28.92354425 40.99024487 Junction 0 
 

185 28.92308762 41.0194537 Junction 0 
 

186 28.88479934 41.0010907 Junction 0 
 

187 28.87823241 41.0156036 Junction 0 
 

188 28.88465879 41.04462418 Junction 0 
 

189 28.84308184 41.06028541 Junction 0 
 

190 28.81152003 41.06035485 Junction 0 
 

191 28.7436946 41.06179247 Junction 0 
 

192 28.6825963 41.05463823 Junction 0 
 

193 28.63496338 41.08755979 Junction 0 
 

194 28.68707047 41.02988029 Junction 0 
 

195 28.67793615 41.00501038 Junction 0 
 

196 28.75915927 40.98198017 Junction 0 
 

197 28.62849671 41.0206834 Junction 0 
 

198 28.64882439 40.98551598 Junction 0 
 

199 28.56328458 41.01814586 Junction 0 
 

200 28.8187737 40.99280259 Junction 0 
 

201 28.82173758 40.98340903 Junction 0 
 

202 28.79285058 40.98927432 Junction 0 
 

203 28.81089676 41.02725242 Junction 0 
 

204 28.85084449 40.99207377 Junction 0 
 

205 28.84753146 41.02437237 Junction 0 
 

206 28.84909352 41.04317171 Junction 0 
 

207 28.79337733 41.05045506 Junction 0 
 

208 28.80788435 41.04594018 Junction 0 
 

209 28.72243053 40.98570594 Junction 0 
 

210 28.67896698 40.99140816 Junction 0 
 

211 29.04444326 41.03478087 Junction 0 
 

212 29.04866719 41.02244419 Junction 0 
 

213 29.02563868 41.00587174 Junction 0 
 

214 29.056573 40.99909041 Junction 0 
 

215 29.07298524 40.99249636 Junction 0 
 

216 29.09485452 40.98134355 Junction 0 
 

217 29.11640171 40.99588553 Junction 0 
 

218 29.12064216 41.03033854 Junction 0 
 

219 29.07479443 41.0207589 Junction 0 
 

220 29.08327539 41.09213092 Junction 0 
 

221 29.09098426 41.08892738 Junction 0 
 

222 29.09623743 41.09457606 Junction 0 
 

223 29.17536506 41.16296051 Junction 0 
 

224 29.13113337 41.12246348 Junction 0 
 

225 29.08538865 41.06046324 Junction 0 
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226 29.10517686 41.02920761 Junction 0 
 

227 29.08580706 41.02862468 Junction 0 
 

228 29.06201756 41.00844334 Junction 0 
 

229 29.06681976 40.979141 Junction 0 
 

230 29.10478802 40.96436745 Junction 0 
 

231 29.12044625 40.95089679 Junction 0 
 

232 29.1294812 40.94310465 Junction 0 
 

233 29.13864766 40.93570154 Junction 0 
 

234 29.14573773 40.93051374 Junction 0 
 

235 29.15243242 40.92482699 Junction 0 
 

236 29.17240433 40.91884027 Junction 0 
 

237 29.18951943 40.91326785 Junction 0 
 

238 29.21162466 40.90630164 Junction 0 
 

239 29.23838884 40.88842307 Junction 0 
 

240 29.2618025 40.87806784 Junction 0 
 

241 29.27223556 40.86704734 Junction 0 
 

242 29.31358452 40.87943936 Junction 0 
 

243 29.32436223 40.9144191 Junction 0 
 

244 29.21525898 40.94565349 Junction 0 
 

245 29.25770927 40.97173118 Junction 0 
 

246 29.20628789 40.98217114 Junction 0 
 

247 29.15509471 40.99440844 Junction 0 
 

248 29.12609385 40.97906539 Junction 0 
 

249 29.29698968 40.9535236 Junction 0 
 

250 29.27386006 41.04195237 Junction 0 
 

251 28.46253713 41.14156296 Demand 65811 Çatalca 

252 29.27117278 41.16096834 Junction 0 
 

253 29.43750596 41.11785114 Junction 0 
 

254 29.34420706 41.00525515 Junction 0 
 

255 29.34596736 40.92941147 Junction 0 
 

256 29.36733201 40.90051099 Junction 0 
 

257 29.28636213 40.91782227 Junction 0 
 

258 29.2601609 40.89868519 Junction 0 
 

259 29.23732878 40.87593714 Junction 0 
 

260 29.18483954 40.88594994 Junction 0 
 

261 29.13904099 40.90697563 Junction 0 
 

262 29.11708537 40.93279446 Junction 0 
 

263 29.09706586 40.95180171 Junction 0 
 

264 29.05511418 40.96779109 Junction 0 
 

265 29.04111255 40.9765492 Junction 0 
 

266 29.03759025 40.98906177 Junction 0 
 

267 29.05531074 41.04931327 Junction 0 
 

268 29.03780368 41.04227388 Junction 0 
 

269 29.03054842 41.04920997 Junction 0 
 

270 29.06686031 41.09165497 Junction 0 
 

271 29.05559749 41.09118951 Junction 0 
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272 29.20458518 41.01574622 Junction 0 
 

273 29.18251773 41.01626781 Junction 0 
 

274 29.21422997 41.00822202 Junction 0 
 

275 29.22880971 40.9904646 Junction 0 
 

276 29.24088399 41.00813435 Junction 0 
 

277 29.23500863 41.02701144 Junction 0 
 

278 29.27363964 41.01196042 Junction 0 
 

279 29.18095154 40.95943716 Junction 0 
 

280 29.15402458 40.9747435 Junction 0 
 

281 29.12188195 41.01124194 Junction 0 
 

282 29.09758722 41.00692358 Junction 0 
 

283 29.08946326 40.99754646 Junction 0 
 

284 29.08702574 41.01512654 Junction 0 
 

285 29.07643195 41.04564889 Junction 0 
 

286 29.09514218 41.04411692 Junction 0 
 

287 29.12110642 41.05012037 Junction 0 
 

288 29.10674256 41.06961446 Junction 0 
 

289 29.06799661 41.08166752 Junction 0 
 

290 29.08039987 41.08107439 Junction 0 
 

291 29.03745778 41.15376391 Junction 0 
 

292 29.05407539 41.11357072 Junction 0 
 

293 29.07096085 41.12532507 Junction 0 
 

294 29.0489618 41.096738 Junction 0 
 

295 29.04328822 41.07507143 Junction 0 
 

296 29.03984027 41.06246559 Junction 0 
 

297 28.85237848 40.97616021 Junction 0 
 

298 28.76919478 41.03386077 Junction 0 
 

299 28.77014531 41.06223745 Junction 0 
 

300 28.77135887 41.08197859 Junction 0 
 

301 28.94428905 41.12971796 Junction 0 
 

302 28.89264686 41.1620525 Junction 0 
 

303 28.91639744 41.0820999 Junction 0 
 

304 28.9355018 41.0803198 Junction 0 
 

305 28.92670867 41.07141046 Junction 0 
 

306 28.91895403 41.05018711 Junction 0 
 

307 28.90066018 41.02070725 Junction 0 
 

308 28.89605517 41.0341562 Junction 0 
 

309 28.86733075 41.03473037 Junction 0 
 

310 28.90472456 40.99794159 Junction 0 
 

311 28.88469371 40.97811542 Junction 0 
 

312 28.81751504 40.96421523 Junction 0 
 

313 28.73854354 40.97744761 Junction 0 
 

314 28.60492697 40.99753978 Junction 0 
 

315 28.65976161 41.00848898 Junction 0 
 

316 28.71092874 41.01898287 Junction 0 
 

317 28.36859865 41.05877091 Junction 0 
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318 28.46459904 41.05779801 Junction 0 
 

319 28.50882499 41.08922102 Junction 0 
 

320 28.66496632 41.15931435 Junction 0 
 

321 28.51323317 41.17851045 Junction 0 
 

322 28.79518234 41.23094152 Junction 0 
 

323 28.7870273 41.15181787 Junction 0 
 

324 29.31092385 40.9014117 Supply 
 

Sabiha Gokcen 

Airport 

325 28.82058332 40.9820251 Supply 
 

Ataturk Airport 

326 29.01268828 41.00551556 Supply 
 

Kadıkoy Harbour & 

Haydarpasa Train 

Station 

327 28.96252402 41.08799177 Supply 
 

AKOM & AFAD 

328 28.95406457 41.00237773 Supply 
 

Yenikapı Harbour 

329 29.18949605 40.90773898 Supply 
 

Kizilay Marmara 

Disaster 

Coordination Center 

330 28.99040444 41.05788316 Supply 
 

Sisli Etfal Hospital 

331 28.97493187 41.06459566 Supply 
 

Okmeydani Hospital 

332 28.97989873 41.01571168 Supply 
 

Sirkeci Train Station 

333 28.76664543 41.01785044 Supply 
 

Halkali Logistics 

Support Center 

334 29.05686753 40.98504032 Supply 
 

Istanbul Goztepe 

Hospital 

335 28.91526139 41.00266826 Supply 
 

Istanbul Yedikule 

Hospital 

336 28.870421 41.029948 Supply 
 

Istanbul Bagcilar 

Hospital 

337 29.10089175 41.03331937 Supply 
 

Istanbul Umraniye 

Hospital 

338 28.64073723 41.11654366 Supply 
 

Hadimkoy 

339 29.26757049 40.98162785 Supply 
 

Sultanbeyli Fire 

Station 

340 29.01561291 41.02582821 Junction 0 
 

341 28.95202047 41.08518516 Junction 0 
 

342 28.80453945 41.00062336 Junction 0 
 

343 28.92793296 41.0001139 Junction 0 
 

344 29.05469652 41.08130964 Junction 0 
 

345 29.02445596 41.06055885 Junction 0 
 

346 29.06991018 40.96605119 Junction 0 
 

347 29.11183247 40.958546 Junction 0 
 

348 29.05376173 41.0354348 Junction 0 
 

349 29.01526765 41.09680771 Junction 0 
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Appendix E.2. The casualty rates and demand values for demand nodes of the detailed network 

 

Node Type 
Node 

Population 
Node Description 

Casualty 
Rate 

Population Demand 

Demand 176735 Arnavutköy 1.3 141244 1837 

Demand 38796 Arnavutköy 1.3 141244 1837 

Demand 133870 Esenler 1.2 112586 1352 

Demand 106173 Esenler 1.2 112586 1352 

Demand 46162 Esenler 1.2 112586 1352 

Demand 175416 Esenler 1.2 112586 1352 

Demand 130317 Avcılar 2.7 112220.5 3030 

Demand 109955 Avcılar 2.7 112220.5 3030 

Demand 126244 Avcılar 2.7 112220.5 3030 

Demand 40724 Avcılar 2.7 112220.5 3030 

Demand 157973 Bağcılar 1.1 93140.625 1025 

Demand 22568 Bağcılar 1.1 93140.625 1025 

Demand 75225 Bağcılar 1.1 93140.625 1025 

Demand 97793 Bağcılar 1.1 93140.625 1025 

Demand 112838 Bağcılar 1.1 93140.625 1025 

Demand 15045 Bağcılar 1.1 93140.625 1025 

Demand 90270 Bağcılar 1.1 93140.625 1025 

Demand 180540 Bağcılar 1.1 93140.625 1025 

Demand 126558 Başakşehir 1.3 153419.667 1995 

Demand 96584 Başakşehir 1.3 153419.667 1995 

Demand 109906 Başakşehir 1.3 153419.667 1995 

Demand 113264 Bayrampaşa 2.4 91578.3333 2198 

Demand 80903 Bayrampaşa 2.4 91578.3333 2198 

Demand 75510 Bayrampaşa 2.4 91578.3333 2198 

Demand 136196 Beşiktaş 1.2 91324.5 1096 

Demand 50374 Beşiktaş 1.2 91324.5 1096 

Demand 78323 Beylikdüzü 2.8 117470.667 3290 

Demand 80770 Beylikdüzü 2.8 117470.667 3290 

Demand 85666 Beylikdüzü 2.8 117470.667 3290 

Demand 116050 Büyükçekmece 4.8 127051.5 6099 

Demand 94950 Büyükçekmece 4.8 127051.5 6099 

Demand 93710 Esenyurt 1.3 136368.429 1773 

Demand 18742 Esenyurt 1.3 136368.429 1773 

Demand 112452 Esenyurt 1.3 136368.429 1773 
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Demand 43731 Esenyurt 1.3 136368.429 1773 

Demand 118699 Esenyurt 1.3 136368.429 1773 

Demand 149936 Esenyurt 1.3 136368.429 1773 

Demand 87463 Esenyurt 1.3 136368.429 1773 

Demand 32538 Eyüp 1.4 100128.25 1402 

Demand 126536 Eyüp 1.4 100128.25 1402 

Demand 108459 Eyüp 1.4 100128.25 1402 

Demand 93998 Eyüp 1.4 100128.25 1402 

Demand 72397 Fatih 1.4 7384.83333 104 

Demand 89432 Fatih 1.4 7384.83333 104 

Demand 106466 Fatih 1.4 7384.83333 104 

Demand 38328 Fatih 1.4 7384.83333 104 

Demand 63880 Fatih 1.4 7384.83333 104 

Demand 55362 Fatih 1.4 7384.83333 104 

Demand 69301 Gaziosmanpaşa 0.6 98392.4 591 

Demand 118801 Gaziosmanpaşa 0.6 98392.4 591 

Demand 99001 Gaziosmanpaşa 0.6 98392.4 591 

Demand 123752 Gaziosmanpaşa 0.6 98392.4 591 

Demand 84151 Gaziosmanpaşa 0.6 98392.4 591 

Demand 98193 Güngören 1.8 96480.3333 1737 

Demand 162633 Güngören 1.8 96480.3333 1737 

Demand 46028 Güngören 1.8 96480.3333 1737 

Demand 51451 Kağıthane 0.8 89605 717 

Demand 72888 Kağıthane 0.8 89605 717 

Demand 85751 Kağıthane 0.8 89605 717 

Demand 94326 Kağıthane 0.8 89605 717 

Demand 124339 Kağıthane 0.8 89605 717 

Demand 122115 Küçükçekmece 1.3 99102.625 1289 

Demand 144318 Küçükçekmece 1.3 99102.625 1289 

Demand 103612 Küçükçekmece 1.3 99102.625 1289 

Demand 66012 Ümraniye 0.5 10146.8571 51 

Demand 125424 Ümraniye 0.5 10146.8571 51 

Demand 118822 Ümraniye 0.5 10146.8571 51 

Demand 72614 Ümraniye 0.5 10146.8571 51 

Demand 138626 Ümraniye 0.5 10146.8571 51 

Demand 85816 Ümraniye 0.5 10146.8571 51 

Demand 52810 Ümraniye 0.5 10146.8571 51 

Demand 89787 Tuzla 2.7 1337 37 

Demand 119020 Tuzla 2.7 1337 37 

Demand 133019 Sultanbeyli 0.5 112007 561 

Demand 95898 Sultanbeyli 0.5 112007 561 

Demand 80430 Sultanbeyli 0.5 112007 561 

Demand 30441 Sancaktepe 0.5 145577.667 728 

Demand 73057 Sancaktepe 0.5 145577.667 728 

Demand 200908 Sancaktepe 0.5 145577.667 728 

Demand 12928 Pendik 1.2 101699.143 1221 



187 
 

Demand 6464 Pendik 1.2 101699.143 1221 

Demand 12928 Pendik 1.2 101699.143 1221 

Demand 103420 Pendik 1.2 101699.143 1221 

Demand 168058 Pendik 1.2 101699.143 1221 

Demand 116348 Pendik 1.2 101699.143 1221 

Demand 226231 Pendik 1.2 101699.143 1221 

Demand 113054 Maltepe 1.1 102663.2 1130 

Demand 108344 Maltepe 1.1 102663.2 1130 

Demand 51816 Maltepe 1.1 102663.2 1130 

Demand 103633 Maltepe 1.1 102663.2 1130 

Demand 94212 Maltepe 1.1 102663.2 1130 

Demand 98364 Kartal 1.3 94.1352 2 

Demand 93893 Kartal 1.3 94.1352 2 

Demand 71538 Kartal 1.3 94.1352 2 

Demand 89422 Kartal 1.3 94.1352 2 

Demand 93893 Kartal 1.3 94.1352 2 

Demand 126560 Çekmeköy 0.5 132254 662 

Demand 80916 Çekmeköy 0.5 132254 662 

Demand 77135 Ataşehir 1.1 106273.5 1170 

Demand 81195 Ataşehir 1.1 106273.5 1170 

Demand 113673 Ataşehir 1.1 106273.5 1170 

Demand 133971 Ataşehir 1.1 106273.5 1170 

Demand 92512 Küçükçekmece 1.3 99102.625 1289 

Demand 103613 Küçükçekmece 1.3 99102.625 1289 

Demand 85111 Küçükçekmece 1.3 99102.625 1289 

Demand 62908 Küçükçekmece 1.3 99102.625 1289 

Demand 25903 Küçükçekmece 1.3 99102.625 1289 

Demand 77188 Sarıyer 0.3 86803.5 261 

Demand 107391 Sarıyer 0.3 86803.5 261 

Demand 60408 Sarıyer 0.3 86803.5 261 

Demand 90611 Sarıyer 0.3 86803.5 261 

Demand 101038 Sultangazi 0.6 106913 642 

Demand 116194 Sultangazi 0.6 106913 642 

Demand 55571 Sultangazi 0.6 106913 642 

Demand 136401 Sultangazi 0.6 106913 642 

Demand 95986 Sultangazi 0.6 106913 642 
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Appendix F. Algorithm for calculating the impact and cost of mitigation projects  

 

 

 

 

 

 

 

 

Algorithm for calculating the impact and cost of mitigation projects  

Inputs: 𝜌𝑒: initial resilience level, C: coefficient for calculation of project cost  

Outputs: 𝛿𝑝𝑒: improvement on resilience level of link e when project p is implemented  

 𝑐𝑝: cost of project p 

 

For e=1 to E 

For s=1 to S 

 

If 𝜌𝑒 ≤ 3, then  

Step 1: Generate random number 𝜑 between 1 and (10 -𝜌𝑒) 

Step 2: Generate three (low, medium, high impact) projects for link e in scenario s: 

Project 1 (low): generate random number 𝜎1 between 1 and (1- 𝜑)/3 and update 𝛿𝑝𝑒 = 𝜎1  

Project 2 (medium): generate random number 𝜎2 between (1- 𝜑)/3 and 2(1- 𝜑)/3 and update 𝛿𝑝𝑒 = 𝜎2 

Project 3 (high): generate random number 𝜎3 between 2(1- 𝜑)/3 and (1- 𝜑) and update 𝛿𝑝𝑒 = 𝜎3 

Step 3 : Calculate the cost of for all generated projects; 𝑐𝑝 = 𝛿𝑝𝑒 ∗ 𝐶 

 

Else If 𝜌𝑒 ≤ 6, then  

Step 1: Generate random number 𝜑 between 1 and (10 -𝜌𝑒) 

Step 2: Generate two projects for link e in scenario s: 

Project 1: generate random number 𝜎1 between 1 and (1- 𝜑)/2 and update 𝛿𝑝𝑒 = 𝜎1  

Project 2: generate random number 𝜎2 between (1- 𝜑)/2 and (1- 𝜑) and update 𝛿𝑝𝑒
𝑠 = 𝜎2 

Step 3 : Calculate the cost of for all generated projects; 𝑐𝑝 = 𝛿𝑝𝑒 ∗ 𝐶 

 

Else then  

Step 1: Generate random number 𝜑 between 1 and (10 -𝜌𝑒) 

Step 2: Generate a project for link e in scenario s: 

Project 1: generate random number 𝜎 between 1 and (1- 𝜑)/2 and update 𝛿𝑝𝑒
𝑠 = 𝜎  

Step 3 : Calculate the cost of for all generated projects; 𝑐𝑝 = 𝛿𝑝𝑒
𝑠 ∗ 𝐶 

 

EndIf 

EndIf 

EndFor 

EndFor 
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Appendix G. Multi-objective approaches results (same unmet demand and travel distance with 

different allocations) 

Appendix G.1. Lexicographic method’s results for replication 8 for b=400 

Demand 
node 

Supplier node Route no 
Evacuated 

people 
Route length 

Total travel 
distance 

1 3 2 385 19.58 7537.145 

2 7 54 480 15.97 7667.04 

3 8 98 1988 34.87 69317.58 

4 2 129 1225 22.79 27916.53 

5 8 191 404 38.76 15658.23 

6 4 226 1060 7.18 7609.74 

7 3 306 658 17.66 11621.6 

8 2 359 347 40.54 14068.42 

10 7 413 107 19.30 2065.207 

11 6 442 975 26.98 26305.5 

12 8 513 108 42.48 4588.164 

12 1 532 93 53.49 4974.105 

13 6 544 635 22.30 14162.41 

14 4 608 391 12.93 5054.457 

15 1 688 573 6.32 3620.214 

16 3 736 474 11.15 5283.678 

17 5 807 838 25.73 21565.09 

18 2 825 428 8.79 3759.98 

18 1 836 834 32.26 26902.34 

19 5 877 724 12.67 9174.528 

20 7 906 930 40.20 37383.21 

21 7 918 112 31.27 3502.576 

22 6 932 101 15.98 1613.778 

23 7 980 424 27.97 11860.55 

24 6 995 392 19.78 7753.368 

25 5 1074 438 46.58 20400.29 

25 7 1079 142 54.52 7741.13 

26 7 1084 499 5.57 2780.927 

  Total: 15765  381887.8 

   
Average travel distance per 

evacuee: 
24.22377 
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Appendix G.2. Weighted-sum method’s results for replication 8 for b=400 

Demand 
node 

Supplier 
node 

Route no 
Evacuated 

people 
Route length 

Total travel 
distance 

1 3 2 385 19.58 7537.145 

2 7 54 480 15.97 7667.04 

3 8 98 1262 34.87 44003.42 

3 1 105 726 45.87 33301.62 

4 2 129 1225 22.79 27916.53 

5 8 191 404 38.76 15658.23 

6 4 226 1060 7.18 7609.74 

7 3 306 658 17.66 11621.6 

8 2 359 347 40.54 14068.42 

10 7 413 107 19.30 2065.207 

11 6 442 975 26.98 26305.5 

12 1 532 201 53.49 10750.49 

13 6 544 635 22.30 14162.41 

14 4 608 391 12.93 5054.457 

15 1 688 573 6.32 3620.214 

16 3 736 474 11.15 5283.678 

17 5 807 838 25.73 21565.09 

18 2 825 428 8.79 3759.98 

18 8 830 834 21.255 17726.67 

19 5 877 724 12.67 9174.528 

20 7 906 930 40.20 37383.21 

21 7 918 112 31.27 3502.576 

22 6 932 101 15.98 1613.778 

23 7 980 424 27.97 11860.55 

24 6 995 392 19.78 7753.368 

25 5 1074 438 46.58 20400.29 

25 7 1079 142 54.52 7741.13 

26 7 1084 499 5.57 2780.927 

  Total: 15765  381887.8 

   
Average travel distance per 

evacuee: 
24.22377 
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Appendix H. Total unmet frequencies for S=1000 and B= 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 

25% (Total demand per scenario=17672) 
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Appendix I. Mitigation Projects for Detailed network  

 

Project 

No 

Strengthe

n Link 

Project 

No 

Strengthe

n Link 

Project 

No 

Strengthen 

Link 

Project 

No 

Strengthe

n Link 

Project 

No 

Strengthe

n Link 

1 13 41 392 81 442 121 498 161 818 

2 15 42 394 82 443 122 499 162 820 

3 22 43 395 83 444 123 500 163 821 

4 23 44 396 84 445 124 530 164 822 

5 116 45 398 85 446 125 534 165 824 

6 117 46 401 86 447 126 574 166 825 

7 118 47 402 87 448 127 576 167 826 

8 119 48 403 88 449 128 584 168 827 

9 120 49 408 89 450 129 588 169 828 

10 157 50 409 90 451 130 599 170 829 

11 158 51 412 91 452 131 599 171 830 

12 159 52 413 92 453 132 600 172 831 

13 160 53 414 93 454 133 604 173 834 

14 296 54 415 94 455 134 607 174 835 

15 302 55 416 95 456 135 608 175 836 

16 306 56 417 96 457 136 609 176 844 

17 312 57 418 97 458 137 652 177 848 

18 313 58 419 98 459 138 690 178 863 

19 320 59 420 99 460 139 693 179 866 

20 321 60 421 100 461 140 716 180 873 

21 322 61 422 101 462 141 738 181 874 

22 323 62 423 102 463 142 739 182 875 

23 324 63 424 103 464 143 740 183 876 

24 326 64 425 104 465 144 745 184 877 

25 327 65 426 105 466 145 746 185 878 

26 328 66 427 106 467 146 750 186 879 

27 336 67 428 107 468 147 753 187 880 

28 337 68 429 108 469 148 755 188 881 

29 338 69 430 109 470 149 756 189 882 

30 339 70 431 110 471 150 757 190 883 

31 341 71 432 111 472 151 759 191 884 

32 348 72 433 112 473 152 761 192 885 

33 350 73 434 113 489 153 770 193 886 

34 353 74 435 114 490 154 771 194 887 

35 374 75 436 115 491 155 772 195 888 

36 376 76 437 116 493 156 793 196 889 

37 388 77 438 117 494 157 794 197 890 

38 389 78 439 118 495 158 797 198 891 

39 390 79 440 119 496 159 803 199 892 

40 391 80 441 120 497 160 817 200 893 
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Project 

No 

Strengthen 

Link 

Project 

No 

Strengthen 

Link 

Project 

No 

Strengthen 

Link 

Project 

No 

Strengthen 

Link 

Project 

No 

Strengthen 

Link 

201 894 241 934 281 987 321 1111 361 1287 

202 895 242 935 282 988 322 1112 362 1288 

203 896 243 936 283 989 323 1113 363 1289 

204 897 244 937 284 990 324 1114 364 1294 

205 898 245 938 285 991 325 1167   

206 899 246 939 286 992 326 1172   

207 900 247 940 287 993 327 1174   

208 901 248 941 288 994 328 1175   

209 902 249 942 289 995 329 1176   

210 903 250 943 290 996 330 1177   

211 904 251 944 291 997 331 1178   

212 905 252 946 292 998 332 1179   

213 906 253 947 293 999 333 1180   

214 907 254 948 294 1000 334 1181   

215 908 255 949 295 1001 335 1205   

216 909 256 950 296 1002 336 1206   

217 910 257 951 297 1003 337 1207   

218 911 258 952 298 1004 338 1208   

219 912 259 953 299 1005 339 1217   

220 913 260 954 300 1006 340 1218   

221 914 261 955 301 1007 341 1219   

222 915 262 956 302 1008 342 1226   

223 916 263 957 303 1009 343 1227   

224 917 264 969 304 1010 344 1236   

225 918 265 970 305 1011 345 1237   

226 919 266 971 306 1012 346 1238   

227 920 267 972 307 1013 347 1239   

228 921 268 974 308 1015 348 1240   

229 922 269 975 309 1023 349 1241   

230 923 270 976 310 1023 350 1256   

231 924 271 977 311 1048 351 1257   

232 925 272 978 312 1049 352 1260   

233 926 273 979 313 1050 353 1261   

234 927 274 980 314 1051 354 1280   

235 928 275 981 315 1052 355 1281   

236 929 276 982 316 1066 356 1282   

237 930 277 983 317 1083 357 1283   

238 931 278 984 318 1085 358 1284   

239 932 279 985 319 1086 359 1285   

240 933 280 986 320 1088 360 1286   
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Appendix J. Seismic Intensity Map for Worst-case (Model C) in JICA report  

 


