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Abstract: A directed-graph-based cooperative control scheme is proposed, to improve the synchro-

nization performance and reduce its error under disturbance between multiple permanent magnet

synchronous traction motors in low-speed urban rail transit. First, each motor is supposed to an a-

gent of multi-agent system, and the information between multiple motors can be transmitted through

communication topology network, which ensure the consistency of the response of each agent. Then,

considering that the load torque of the motor is disturbed during operation, a finite-time disturbance-

observer is proposed to estimate the unknown load disturbance, thus guarantee the anti-disturbance

ability of the system. Besides, the nonlinear parts of the dynamic model are approximated by fuzzy

logic systems, and a second-order sliding mode differentiator is designed to avoid the direct derivation

of virtual control law and the problem of differential explosion. Finally, the system is proved to be

finite-time stable. The feasibility and effectiveness of the proposed control scheme are verified by the

hardware-in-the-loop platform.
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Nomenclature

ii.d, ii.q d− q axis stator currents

ui.d, ui.q d− q axis stator voltages

Rs Armature resistance

Ls Stator inductance

φf Permanent magnet flux

p Number of pole pairs

Ti.m Electromagnetic torque

J Equivalent inertia

F Viscous friction of the rotor

Vdc DC catenary voltage

ωi.g Rotor angular speed

Ti.L Load torque

Ti.d Disturbance torque

G Directed-graph of multi-agent systems

V Set of nodes

Y Set of edges

A Adjacency matrix

aij Weighted coefficient between node i and node j

L Laplacian matrix

lij Element of Laplacian matrix

D In-degree matrix

di In-degree of node

B Diagonal matrix

bi Weighted coefficient between leader and node

Wi.2, Wi.3 Unknown idea parameter vectors
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∂i.2, ∂i.3 Fuzzy basis function vectors

κi (x) Gaussian functions

αi.1d, αi.2d Control gains of disturbance-observer (DO)

ϕ̃i.δ Observation error of DO

xc1 Desired angular speed

ei.1 Angular speed tracking error

zi.1 Neighborhood synchronization error

zi.2, zi.3 Current tracking errors

xdi.2 Virtual control law

xci.2, x
c
i.3 Reference value of d− q axis currents

σi.1, σi.2 Control gains of second-order sliding mode differentiator (SOSMD)

ξi Error compensating signal

z̄i.1 Compensated tracking error

Si.q, Si.d Integral sliding mode surfaces

sig(.) Sigmoid function

˙̂
θi Adaptive law

I.Introduction

The traction system is the core part of urban rail transit (URT). In recent years, permanent magnet

synchronous motor (PMSM) with the advantages of high torque and power density, low maintenance

and low torque ripple, has become the development direction of the next generation of traction motor

in URT [1,3]. Among many modes of PMSM based URT, each train carriage contains multiple PMSMs

(multi-PMSMs), and there is no mechanical connection between rotors of each PMSM. In the process

of train operation, the linear speed of all wheels must be consistent. However, the working conditions

of each wheel and traction motor may be different, and the friction between wheel and rail changes

unsteadily due to the different load of each carriage. All these factors may cause idling and slipping

of wheel pairs. Therefore, the speed synchronous cooperative performance between multiple traction

motors in URT is of great significance.
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Some cooperative control schemes have been studied and reported to realize cooperative control of

multiple motors. In [4], a parallel structure was used to realize the cooperative control of multiple

motors. Therein, there was no coupling relationship between the motors, thus if the load of one

motor is disturbed, the synchronization accuracy cannot be guaranteed. In [5], the master-slave

structure was proposed to improved the synchronization performance. However, it had no feedback

link from the slave motor to the master motor [6]. Moreover, another disadvantage was losing the speed

synchronization performance when the load torque changed. Meanwhile, the disturbance in the master

motor would be transmitted to the slave motor, and the disturbance applied to the slave motor would

not affect the master motor or other connected slave motors. The cross-coupling structure was adopted

in the dual motor system to achieve accurate tracking performance [7]. The structure has strong anti-

disturbance ability, but it is not suitable for the systems with more than two motors [8]. In [9], a

relative coupling control was designed to realize the speed coupling between motors. Each motor

adopted the speed synchronization compensator to ensure the synchronization performance of the

system. However, the disadvantage of relative coupling control is that the speed compensation model

will become more complicated with an increase in the number of motors. In conclusion, a appropriate

cooperative control scheme is is urgently needed to guarantee the synchronization performance of

multiple motors.

In recent years, multi-agent system (MAS) based cooperative control has become a hot topic in

the control field. Generally, a single agent is regarded as a node, and the information interaction

between agents is regarded as an edge [10]. At this time, the graph theory can be used to analyze the

relationship between agents. In order to meet the consistency of multi-agent system, a leader agent

with reference trajectory should be defined. Other agents called followers track leader’s trajectory

to achieve consistent tracking [11]. Recently, MAS has been widely used in unmanned aerial vehicle,

spacecraft, mobile robot and other fields. In [12, 13], for a class of linear and nonlinear MAS, each

agent was controlled by a distributed proportion-integral-differential (PID) controller and the tracking

error of each agent can be converged to zero. However, the traditional PID speed controller was

unable to meet the requirements of overshoot and fast response at the same time. Therefore, for

the MAS, some advanced control strategies was adopted, such as fuzzy control, sliding mode control,

backstepping control, etc [14]. In [15], an attempt was made on multiple induction motors, and multi-

agent technology was applied to achieve the goal of speed synchronization. In [10], in order to solve the

speed cooperative control problem of traction system driven by multiple linear induction motors, the

multi-agent technology was introduced. However, in the field of cooperative control of multi-PMSMs,

there is no relevant literature on the use of multi-agent technology. In this paper, each PMSM in URT

is treated as an agent, and multi-PMSMs can be regarded as the MAS. The agent can communicate

with other agents via the established directed-graph to achieve cooperative control.

On the other hand, during the operation of URT, the change of carriage load and the difference of

railway conditions will cause load disturbances, and the overload or underload of motors will affect
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the accuracy of cooperative control. To improve the anti-disturbance performance of the URT, an

effective method is to provide the estimated the load information to the controller in real-time [16].

Therefore, the disturbance-observer (DO) has been proposed, especially sliding mode disturbance

observer (SMDO) has the advantages of insensitivity to system parameter changes, which has been

widely studied by the academic community. An extended SMDO was proposed in [17] and an adaptive

reaching law was introduced, which verifies that the reaching law had advantages in suppressing

chattering. In addition, the SMDO in [18] used the nonlinear approaching law to solve the approaching

time and chattering problems. However, none of the above extended SMDO can guarantee that

the perturbation observation error converges in finite-time. In [19], a finite-time DO was proposed.

Nevertheless, this structure of DO has many parameters and needs to be designed reasonably, which

is not conducive to engineering application. Moreover, compared with traditional first-order SMDO,

high-order SMDO has better performance in chattering suppression [20]. Therefore, an super-twisting

algorithm (STA) based finite-time DO is designed in this paper to realize fast and accurate estimation

of disturbance.

Motivated by the analysis of previous research results, and combined with the characteristics of the

multi-PMSMs traction system in low-speed URT, a finite-time disturbance-observer-based fuzzy sliding

mode cooperative backstepping (FDFSM-CB) scheme is designed to reduce the synchronization error

under disturbance. Compared with the existing results, the main contributions are as follows:

1) The multi-PMSMs system is considered as a MAS, and the neighborhood synchronization errors

are defined to describe the mode of information transmission between neighboring PMSMs via

directed-graph theory.

2) A finite-time DO is proposed in this paper to estimate the load and disturbance torque of

PMSMs, which reduces the influence of disturbance and improves the speed synchronization

accuracy in actual operation.

3) The fuzzy logic systems (FLSs) are utilized to approximate the uncertain and nonlinear parts

of the PMSM dynamic model, which improve the robustness of the controller under uncertain

motor parameters.

This paper is structured as follows. In Section II, the dynamic model of PMSM is established, and

some used lemmas are given. In Section III, the FDFSM-CB scheme is designed based on the directed-

graph, and the finite-time stability of the system is proved. In Section IV, the hardware-in-the-loop

(HIL) results are given and analyzed. In Section V, the conclusions are summarized.
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II.Problem Formulation and Preliminaries

A.Dynamic Model of multi-PMSMs

The structure of a low-speed URT System is shown in Fig. 1. The train of URT obtains electricity

from the DC catenary through the pantograph. The URT train contains several PMSMs. There is no

mechanical connection between rotors of each PMSM, and one PMSM must be driven by one inverter

module. In Fig. 2, the DC power is converted into AC power by the traction inverter and transmitted

to the PMSM. Then, the motor speed is controlled by a traction control unit. In addition, each PMSM

is regarded as an agent, and the signals transmitted between adjacent PMSMs are realized through a

communication module. Thus, the multi-PMSMs can be regarded as the MAS.

DC catenary

Figure 1: Structure of low-speed URT Systems.

In low-speed URT, due to the short distance between stations, trains need to switch frequently between

startup, acceleration, deceleration and braking states. Therefore, traction motors need to have good

performance in the medium and low speed range. In this paper, the non-salient pole PMSM is selected

as the traction motor of low-speed URT, and the dynamic model of the i th (i = 1, 2, ..., n) non-salient

pole PMSM in d-q frame is expressed as follows [21],

dii.d
dt

= −Rs

Ls
ii.d + pωi.gii.q +

1

Ls
ui.d

dii.q
dt

= −Rs

Ls
ii.q − pωi.gii.d − pωi.g

φf

Ls
+

1

Ls
ui.q

Ti.m =
3

2
pφf ii.q

(1)

where ii.d, ii.q are d-q axis stator current of the i th PMSM, ui.d, ui.q are d-q axis control voltage of

the i th PMSM, p is the number of pole pairs, Rs represents the armature resistance, φf denotes the

permanent magnet flux, Ls denotes the stator inductance, and Ti.m is electromagnetic torque of the i

th PMSM.
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Besides, the mechanical dynamics of the i th PMSM can be expressed as

dωi.g

dt
=

1

J
(Ti.m − Fωi.g − Ti.L − Ti.d) (2)

where F denotes the rotor viscous friction, J represents the equivalent inertia, ωi.g denotes the i th rotor

angular speed, Ti.L and Ti.d represent load and disturbance torques of i th motor, and Ti.δ = Ti.d+Ti.L.

Define [xi.1, xi.2, xi.3]
T = [ωi.g, ii.q, ii.d]

T , ϕi.δ = −(Ti.δ)/J , (1) and (2) can be rewritten as

ẋi.1 =
1

J

(
3

2
pφfxi.2 − Fxi.1

)
+ ϕi.δ

ẋi.2 = −Rs

Ls
xi.2 − pxi.1xi.3 − pxi.1

φf

Ls
+

1

Ls
ui.q

ẋi.3 = −Rs

Ls
xi.3 + pxi.1xi.2 +

1

Ls
ui.d

(3)
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Figure 2: The circuit structure of ith PMSM in URT.

B.Directed-Graph Theory

The directed-graph G = (V ,Y , A) describes the communication direction of MAS [10,22,23]. Therein,

V = {ν1, ν2, ..., νn} denotes the set of nodes, and Y ⊆ V × V indicates the set of edges. The edge

(vi, vj) represents the communication direction form the node i to node j. The adjacency matrix

A = [aij ]n×n is used to indicate the information transmission direction between agents. If (vj , vi) ∈ Y ,

then aij = 1, otherwise aij = 0, and aii = 0 is always holds. Moreover, the Laplacian matrix is

established as L = [lij ]n×n = D−A, and D = diag (d1, d2, ..., dn) with di =
∑n

j=1 aij . To represent the

communication between each follower and leader, define the diagonal matrix B = diag (b1, b2, ..., bn),

and if the follower node i can get information form the leader node, bi = 1, otherwise bi = 0.

C.Some Lemmas

To design the FDFSM-CB scheme and stability analysis, the following Lemmas are introduced.
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Lemma 1 [24]: For a compact set ∆, if a continuous function ℓ (x) is delimited on ∆, there has the

FLS W T∂ (x) such that

sup
x∈∆

∣∣ℓ (x)−W T∂ (x)
∣∣ ≤ ς (4)

where ς is any positive constant, W = [W1, ...,WN ]T ∈ RN represents the weight vector, and ∂ (x) =

[κ1 (x) , κ2 (x) , ..., κN (x)]T /
∑N

i=1 κi (x) is the basis function vector. κi (x) is the Gaussian function

expressed as κi (x) = exp
[(

−(x− oi)
T (x− oi)

)/
ϖ2

i

]
, ϖi is the width, and oi = [oi1, oi2, ..., oin]

T is

the center vector.

Lemma 2 [25]: For positive scalar ι > 1/2, there has the inequality−ãâ ≤ [(− (2ι− 1))/2ι] ã2+(ι/2) a2,

where ã = â− a.

Lemma 3 [26]: For xi ∈ R, i = 1, 2, ..., n, 0 < q ≤ 1.(
n∑

i=1

|xi|

)q

≤
n∑

i=1

|xi|q ≤ n1−q

(
n∑

i=1

|xi|

)q

(5)

Lemma 4 [27]: The standard STA with a disturbance term can be expressed as

ϑ̇1 = −g1|ϑ1|1/2sign (ϑ1) + ϑ2

ϑ̇2 = −g2sign (ϑ1) + χ̇ (t)
(6)

where ϑ1 and ϑ2 are the state variables, g1 and g2 are designed positive gains, sign(.) represents

the symbolic function, χ (t) is the continuously differentiable and bounded disturbance term, and

∥χ̇ (t)∥ ≤ γ. If the gains of (6) meet the condition

MTP + PM + γ2CTC + PHHTP = −Q < 0 (7)

where P and Q are positive and symmetric definite matrixs, M =

 −1/2g1 1/2

−g2 0

, H =

 0

1

,
C =

[
1 0

]
, all trajectories of the system (6) can be converged in finite-time. Besides, the quadratic

form V (ϑ) = ζTPζ is the Lyapunov function for the system (6), and ζT =
[
|ϑ1|1/2sign (ϑ1) , ϑ2

]
. The

trajectory reaches the origin in a time smaller than

Td =
2

K (P )
V 1/2 (ϑ0) , K (P )

∆
=
λmin (Q)λ

1/2
min (P )

λmax (P )
(8)

where λmin {·} and λmax {·} are defined as the minimum and maximum eigenvalues of the matrix, ϑ0

is the initial state.

III.Design of the FDFSM-CB Scheme and Stability Analysis

In this section, based on the directed-graph, the FDFSM-CB scheme is designed for multi-PMSMs.

The subscript i (i = 1, 2, ..., n) represents the label of the i th PMSM. The controllers are completely
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distributed and interact with each other through the established communication topology, the control

goal is to track the speed of multi-PMSMs cooperatively. Throughout the controller design process,

define estimation error ∗̃=∗̂ − ∗, where ∗̂ is the estimation for the variable ∗. Based the proposed

distributed FDFSM-CB control scheme, the control structure of each PMSM controller is the same,

which is shown in Fig. 3.
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Figure 3: Control diagram of proposed FDFSM-CB control scheme.

A.Disturbance-Observer Design

To facilitate the design of DO, the state equation of the system (3) should be rewritten as

ẋ = f (x) + gu+ ϕ (t) (9)

where

x = [xi.1, xi.2, xi.3]
T , u = [ui.d, ui.q]

T ,

f (x) =


(
3
2pφfxi.2 − Fxi.1

)/
J

−Rsxi.2
Ls

− pxi.1xi.3 −
pφfxi.1

Ls

−Rs
Ls
xi.3 + pxi.1xi.2

 ,
g =

 0 1
Ls

0

0 0 1
Ls

T

, ϕ = [ϕi.δ, 0, 0]
T

(10)

Then, assume
∥∥∥ϕ̇ (t)∥∥∥ ≤ γd, the finite-time DO is designed as

˙̂x = f (x) + gu− αi.1dsgn
1/2 (x̂− x) + ϕ̂

˙̂
ϕ = −αi.2dsgn

0 (x̂− x)
(11)

where αi.1d and αi.2d are the positive observer gains, sgnb (x̂− x) =
[
sgnb (x̃1) , sgn

b (x̃2) , sgn
b (x̃3)

]T
,

and sgnb (x̃i) = |x̃i|bsign (x̃i), i = 1, 2, 3. The finite-time convergence of DO (11) is given by the

following corollary.
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Corollary 1: Consider the system (9) with disturbances, the DO (11) is applied and the appropriate

parameters are selected, the disturbance observation error vector zd = ϕ̂ − ϕ can be converged in

finite-time.

Proof: According to (9) and (11), the error dynamics are defined as

˙̃x = −αi.1dsgn
1/2 (x̃) + zd

żd = −αi.2dsgn
0 (x̃)− ϕ̇

(12)

Considering the condition
∥∥∥ϕ̇ (t)∥∥∥ ≤ γd and Lemma 4, the observer error zd can be converged in

finite-time.

Remark 1: The greater the observer gains αi.1d and αi.2d of DO (11), the faster convergence of

observation error. But too large gains may cause violent chattering. Thus, the selection of DO

parameters is a trade-off process, which needs to obtain the best value through repeated tests.

B.Construct the virtual control law and compensated tracking error

The angular speed tracking error of the i th PMSM is defined as

ei.1 = xi.1 − xc1 (13)

where xc1 is the desired angular speed of multi-PMSMs.

To describe the information interaction state between distributed controllers, based on directed-graph

theory in Section II-B, the neighborhood synchronization error zi.1 for i th agent is defined as

zi.1 =
n∑

j=1

aij (ei.1 − ej.1) + biei.1

=
n∑

j=1

aij (xi.1 − xj.1) + bi (xi.1 − xc1)

(14)

Then, construct Lyapunov function as

Vi.1 =
1

2
z2i.1 (15)

Combining (3) and (14), the derivative of Vi.1 is calculated as

V̇i.1 = zi.1

 n∑
j=1

aij (ẋi.1 − ẋj.1) + bi (ẋi.1 − ẋc1)


= −ki.1z2i.1 + zi.1

[
ki.1zi.1 −

n∑
j=1

aij ẋj.1 − biẋ
c
1 +

(di + bi)

(
3pφf

2J
xi.2 −

F

J
xi.1 + ϕi.δ

)]
(16)
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Based on (16), choose a virtual control law xdi.2 for i th PMSM as follows

xdi.2 =
2

3pφf (di + bi)

[
(di + bi)Fxi.1 − Jki.1zi.1

+ Jbiẋ
c
1−J (di + bi) ϕ̂i.δ + J

n∑
j=1

aij ẋj.1 − Jci.1z̄
β
i.1

] (17)

where ki.1, ci.1, β are positive constants, and 0 < β < 1. z̄i.1 is defined in (20).

The second-order sliding mode differentiator (SOSMD) is designed to estimate the derivative of the

virtual control law in finite-time, which reduces the noise caused by the direct derivation of (17). The

SOSMD is designed as

ψ̇i.1=ηi.1

ηi.1 = −Υi.1|ψi.1 − ςi.r|1/2sign (ψi.1 − ςi.r) + ψi.2

ψ̇i.2=−Υi.2sign (ψi.2 − ηi.1)

(18)

where Υi.1 and Υi.2 are positive gains, ςi.r is the input signal of SOSMD, ψi.1 = xci.2 and ηi.1 = ẋci.2

are the estimations for the ςi.r and ς̇i.r.

Remark 2 [28]: By adjusting the gains of Υi.1 and Υi.2, the derivative of the input signal can be

estimated within finite-time. Besides, the gains Υi.1 and Υi.2 should be large enough.

The error compensating signals ξi is defined as

ξ̇i = −ki.1ξi +
3pφf (di + bi)

2J

(
xci.2 − xdi.2

)
− lisign (ξi) (19)

where li > 0 is a designed constant.

Then, the compensated tracking error is defined as

z̄i.1 = zi.1 − ξi (20)

C.Construct the real control law and adaptive law

The current tracking errors of i th PMSM are defined as

zi.2 = xi.2 − xci.2, zi.3 = xi.3 − xci.3 (21)

where xci.2 and xci.3 = 0 represent the reference values of q-axis and d-axis currents.

According to (3), (17), (19) and (21) the derivative of (20) can be calculated as

˙̄zi.1 = żi.1 − ξ̇i =
3pφf (di + bi)

2J
zi.2 − ki.1z̄i.1

− (di + bi)ϕ̃i.δ + lisign (ξi)− ci.1z̄
β
i.1

(22)
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To stabilize error z̄i.1, the Lyapunov function is chosen as Vi.2 = z̄2i.1
/
2, and then the derivative of Vi.2

is calculated as

V̇i.2 = z̄i.1

[
−ki.1z̄i.1 +

3pφf (di + bi)

2J
zi.2

− (di + bi)ϕ̃i.δ + lisign (ξi)− ci.1z̄
β
i.1

] (23)

Define the integral sliding mode surface

Si.q = Si.2 = zi.2 + µi.2

∫ t

0
zi.2 (σ) dσ

Si.d = Si.3 = zi.3 + µi.3

∫ t

0
zi.3 (σ) dσ

(24)

where µi.2 and µi.3 are positive gains. Then, the sliding mode reaching law is defined as

Ṡi.2 = −hi.2sig (Si.2)− ρi.2S2

Ṡi.3 = −hi.3sig (Si.3)− ρi.3S3

(25)

where hi.2, hi.3, ρi.2 and ρi.3 are positive constants. The Sigmoid function sig(.) is used to reduce the

chattering of symbolic function, which is defined as

sig (x) =
2

1 + exp (−Qx)
− 1 (26)

where the positive constant Q represents the convergence rate.

Based on (3), the derivation of (24) can be obtained

Ṡi.2 = żi.2 + µi.2zi.2 = −Rs

Ls
xi.2 − pxi.1xi.3−

pxi.1
φf

Ls
+

1

Ls
ui.q − ẋci.2 + µi.2zi.2

(27)

Ṡi.3 = żi.3 + µi.3zi.3 = −Rs

Ls
xi.3 + pxi.1xi.2+

1

Ls
ui.d + µi.3zi.3

(28)

Then, construct Lyapunov function as

Vi.3 = Vi.2 +
1

2
S2
i.2 (29)

According to (27), the derivative of (29) can be obtained

V̇i.3 = V̇i.2 − hi.2Si.2sig (Si.2)− ρi.2S
2
i.2 + Si.2

(
fi.2 (Zi.2)

+
1

Ls
ui.q − ẋci.2 + µi.2zi.2 + hi.2sig (Si.2) + ρi.2Si.2

) (30)

where fi.2 (Zi.2) = −Rs
Ls
xi.2 − pxi.1xi.3 − pxi.1

φf

Ls
, Zi.2 = [xi.1, xi.2, xi.3]

T . Following the Lemma 1, for

fi.2 (Zi.2), there is an FLS W T
i.2∂i.2 (Zi.2) that satisfies

fi.2 (Zi.2) =W T
i.2∂i.2 (Zi.2) + ℘i.2 (Zi.2) (31)

12



where ℘i.2 (Zi.2) denotes the FLS approximation error and |℘i.2 (Zi.2)| ≤ υi.2. According to Young’s

inequality, we have

Si.2fi.2 ≤
1

2λ2i.2
S2
i.2∥Wi.2∥2∂Ti.2∂i.2+

1

2
λ2i.2 +

1

2
S2
i.2 +

1

2
υ2i.2

(32)

where λi.2 is the positive constant, ∥Wi.2∥ is the norm of Wi.2.

Substituting (32) into (30), one has

V̇i.3 ≤ V̇i.2 +

[
Si.2

(
1

2λ2i.2
Si.2∥Wi.2∥2∂Ti.2∂i.2 +

1

2
Si.2+

hi.2sig (Si.2) + ρi.2Si.2 + µi.2zi.2 − ẋci.2 +
1

Ls
ui.q

)]
− hi.2Si.2sig (Si.2)− ρi.2S

2
i.2 +

1

2
λ2i.2 +

1

2
υ2i.2

(33)

Then, design the real control law ui.q for i th PMSM as

ui.q = Ls

[
−ρi.2Si.2 − hi.2sig (Si.2)−

1

2
Si.2−

1

2λ2i.2
Si.2θ̂i∂

T
i.2∂i.2 + ẋci.2 − µi.2zi.2 − ci.2S

β
i.2

] (34)

where θ̂i is the estimation for the θi, which will be determined later. Substituting (34) into (33) gives

V̇i.3 ≤ V̇i.2 − hi.2Si.2sig (Si.2)− ρi.2S
2
i.2 − ci.2S

β+1
i.2 +

1

2λ2i.2
S2
i.2

(
∥Wi.2∥2 − θ̂i

)
∂Ti.2∂i.2 +

1

2
λ2i.2 +

1

2
υ2i.2 = R

(35)

Further, to construct the controller ui.d, select the Lyapunov function is

Vi.4 = Vi.3 +
1

2
S2
i.3 (36)

According to (28), the derivative of Vi.4 can be calculated as

V̇i.4 ≤ R + Si.3

(
hi.3sig (Si.3)+µi.3zi.3 + fi.3 (Zi.3)

+
1

Ls
ui.q + ρi.3Si.3

)
− hi.3Si.3sig (Si.3)− ρi.3S

2
i.3

(37)

where fi.3 (Zi.3) = −Rs
Ls
xi.3+ pxi.1xi.2, Zi.3=Zi.2. Similar to (31), based on Lemma 1, fi.3 (Zi.3) can be

approximated by an FLS W T
i.3∂i.3 (Zi.3). For given υi.3 > 0, one obtains

Si.3fi.3 ≤
1

2λ2i.3
S2
i.3∥Wi.3∥2∂Ti.3∂i.3+

1

2
λ2i.3 +

1

2
S2
i.3 +

1

2
υ2i.3

(38)

where constant λi.3 > 0, ∥Wi.3∥ is the norm of Wi.3.

13



Combining (38), (37) can be rewritten as

V̇i.4 ≤
[
Si.3

(
1

2λ2i.3
Si.3∥Wi.3∥2∂Ti.3∂i.3 +

1

2
Si.3+

hi.3sig (Si.3) + ρi.2Si.3 + µi.3zi.3 +
1

Ls
ui.d

)]
− hi.3Si.3sig (Si.3)− ρi.3S

2
i.3 +

1

2
λ2i.3 +

1

2
υ2i.3 + R

(39)

Then, the real control law of i th PMSM ui.d is designed as

ui.d = Ls

[
−ρi.3Si.3 − hi.3sig (Si.3)−

1

2
Si.3−

1

2λ2i.3
Si.3θ̂i∂

T
i.3∂i.3 − µi.3zi.3 − ci.3S

β
i.3

] (40)

Define θi = max
{
∥Wi.2∥2, ∥Wi.3∥2

}
. Combining (16), (39) and (40), we have

V̇i.4 ≤ −ki.1z̄2i.1 +

3∑
m=2

(
1

2
λ2i.m +

1

2
υ2i.m

)
− ci.1z̄

β+1
i.1

+

3∑
m=2

1

2λ2i.m
S2
i.m∂

T
i.m∂i.m

(
θi − θ̂i

)
−

3∑
m=2

ci.mS
β+1
i.m

+ z̄i.1lisign (ξi)− z̄i.1ϕ̃i.δ(di + bi) +
3pφf (di + bi) z̄i.1zi.2

2J

−
3∑

m=2

[
hi.mSi.msig (Si.m) + ρi.mS

2
i.m

]
(41)

To choose the adaptive law θ̂i, we construct the Lyapunov function as

Vi.5 = Vi.4 +
θ̃2i
2ri

(42)

where ri > 0.

Then, the derivative of (42) can be obtained

V̇i.5 ≤ −ki.1z̄2i.1 − ci.1z̄
β+1
i.1 +

3∑
m=2

(
1

2
λ2i.m +

1

2
υ2i.m

)

− z̄i.1ϕ̃i.δ(di + bi) + z̄i.1zi.2
3pφf (di + bi)

2J
−

3∑
m=2

ci.mS
β+1
i.m

+ z̄i.1lisign (ξi) +
θ̃i
ri

[
˙̂
θi −

3∑
m=2

ri
2λ2i.m

S2
i.m∂

T
i.m∂i.m

]

−
3∑

m=2

[
hi.mSi.msig (Si.m) + ρi.mS

2
i.m

]
(43)

Thus, the adaptive law of i th PMSM is designed as

˙̂
θi =

3∑
m=2

ri
2λ2i.m

S2
i.m∂

T
i.m∂i.m − 2riεiθ̂i (44)

where λi.m, ri, εi are positive constants.
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D.Stability analysis

Construct the Lyapunov function

V =

n∑
i=1

Vi.4 +
1

2

n∑
i=1

θ̃2i
ri

(45)

According to the properties of sig(.) function, we have
3∑

m=2
[hi.mSi.msig (Si.m)] ≥ 0. Then, combining

(44), the derivative of (45) is calculated as

V̇ ≤ −
n∑

i=1

ki.1z̄
2
i.1 −

n∑
i=1

3∑
m=2

(
ρi.mS

2
i.m + ci.mS

β+1
i.m

)
+

n∑
i=1

3∑
m=2

(
1

2
λ2i.m +

1

2
υ2i.m

)
+

n∑
i=1

z̄i.1zi.2
3pφf (di + bi)

2J

+
n∑

i=1

[
z̄i.1lisign (ξi)− 2εiθ̃iθ̂i − z̄i.1ϕ̃i.δ(di + bi)− ci.1z̄

β+1
i.1

]
(46)

By using Young’s inequality, we have

z̄i.1lisign (ξi) ≤
li
2
z̄2i.1 +

li
2
[sign (ξi)]

2 ≤ li
2
z̄2i.1 +

li
2

− (di + bi)ϕ̃i.δ ≤ oi.δ

(47)

where ϕ̃i.δ is the observation error of DO. According to Corollary 1, the observation error ϕ̃i.δ converges

to neighborhood oi.δ in finite-time, i.e.,
∣∣∣ϕ̃i.δ∣∣∣ ≤ oi.δ.

In addition, to eliminate the coupling term z̄i.1zi.2
3pφf (di+bi)

2J , define 0 < τi < 1, one obtains

− ki.1z̄
2
i.1 + z̄i.1zi.2

3pφf (di + bi)

2J
≤ −ki.1τi|z̄i.1|2

− ki.1 (1− τi) z̄
2
i.1 +

3pφf (di + bi)

2J
|z̄i.1| |zi.2|

(48)

Assuming
3pφf (di+bi)

2J |z̄i.1| |zi.2| − ki.1τi|z̄i.1|2 ≤ 0, i.e., |z̄i.1| ≥
3pφf (di+bi)|zi.2|

2ki.1τiJ
, the inequality (48) can

be given as

−ki.1z̄2i.1 +
3pφf (di + bi)

2J
z̄i.1zi.2 ≤ −ki.1 (1− τi) z̄

2
i.1

(49)

Obviously, this condition can be achieved by adjusting the parameter of ki.1.

Based on Lemma 2, we have −εiθ̃iθ̂i ≤ [(−εi (2ιi − 1))/2ιi] θ̃
2
i + (εiιi/2) θi

2, ιi > (1/2).
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Then, according to (47) and (49), (46) can be expressed as

V̇ ≤ −
n∑

i=1

[(
ki.1 (1− τi)−

li
2

)
z̄2i.1−

ςi
ri
θ̃2i

]

−
n∑

i=1

(
ci.1z̄

β+1
i.1 + ci.2S

β+1
i.2 + ci.3S

β+1
i.3

)
+ n

+

n∑
i=1

3∑
m=2

(
1

2
λ2i.m +

1

2
υ2i.m

)
−

n∑
i=1

3∑
m=2

ρi.mS
2
i.m

−
n∑

i=1

(
ςi
ri
θ̃i

)β+1
2

+

n∑
i=1

(
εiιiθ

2
i +

li
2
+oi.δ

)
(50)

where ςi = ri [εi (2ιi − 1) /2ιi]. If
ςi
ri
θ̃2i ≥ 1, we have

(
ςi
ri
θ̃2i

)β+1
2 − ςi

ri
θ̃2i +εiιiθi

2 ≤ εiιiθi
2, and if ςi

ri
θ̃2i < 1,

we have
(

ςi
ri
θ̃2i

)β+1
2 − ςi

ri
θ̃2i + εiιiθi

2 ≤ 1+εiιiθi
2. Then, according to Lemma 3, (50) can be expressed

as

V̇ ≤ −A V − BV
β+1
2 + C (51)

where A = min {2ki.1 (1− τi)− li, 2ρi.2, 2ρi.3, 2ςi},

B = min
{
ci.q · 2(β+1)/2, (2ςi)

(β+1)/2
}
, q = 1, 2, 3,

C =
n∑

i=1

3∑
m=2

(
λ2
i.m+υ2

i.m
2

)
+

n∑
i=1

(
εiιiθ

2
i +

li
2 + oi.δ

)
+ n.

Based on [29], z̄i.1, zi.2, zi.3 can be converged in finite-time.

Moreover, to prove the stability of compensating signals ξi, define the Lyapunov function as

Vc =
1

2

n∑
i=1

ξ2i (52)

By (19), we have

V̇c =
n∑

i=1

[
−ki.1ξ2i − liξisign (ξi)+ξi

3pφf (di + bi)

2J

(
xci.2 − xdi.2

)]

≤
n∑

i=1

[
−ki.1ξ2i − li |ξi|+

3pφf (di + bi) |ξi|
2J

∣∣∣xci.2 − xdi.2

∣∣∣] (53)

From [28],
∣∣xci.2 − xdi.2

∣∣ ≤ λ̄i can be achieved in finite-time tc, so (53) can be rewritten as

V̇c ≤ −E Vc −
(
F −

√
2~
)
V 1/2
c (54)

where E = min{2ki.1}, F =
√
2min {li}, ~ = max

{
3pφf (di+bi)λ̄i

2J

}
. According to [30], when

(
F −

√
2~
)
>

0, the ξi will be converged in finite-time.

IV.Results and Analysis

To clarify about the implementation of the proposed FDFSM-CB scheme, a multi-PMSMs HIL

platform is built. The HIL platform is composed of field-programmable gate array (FPGA) and
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dSPACE, which can be seen in Fig. 4. Therein, each FPGA board mainly contains a Cyclone IV E:

EP4CE115F23I7 chip, several 12-bit digital to analog converter (DAC) channels and general-purpose

input/output (GPIO) interfaces, and a 48MHz clock. Based on the powerful parallel computing func-

tion of FPGA, each FPGA board describes the working principle of a single inverter-PMSM system in

detail, the stator voltage, current, angular speed, electromagnetic torque are calculated in real-time,

and then four FPGA boards constitute a multi-PMSM system [31]. In addition, in order to make HIL

results more realistic, the transistor voltage drop and inverter dead-time are also described in FPGA

board. The dSPACE consists of the DS1302 I/O board and DS1202 base board, and it realizes the

real-time calculation of the cooperative controller.
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Analog I/O Interface 

dSPACE

1202 

M
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M
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M
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 1
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Figure 4: (a) HIL platform setup, (b) Topology of the HIL platform.

The workflow of multi-PMSMs HIL platform is as follows: 1) FPGA board #1-#4 calculate the state

variables of PMSM #1-#4 according to the space vector pulse width modulation (SVPWM) signals

received by GPIO interfaces; 2) DAC converts multi-channel state variables from digital signals to

analog signals and then transmits them to dSPACE; 3) dSPACE realizes the data exchange of state
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Table 1: Parameters of the PMSM in URT

Name Symbol Value

Armature resistance Rs 0.05Ω

Stator inductance Ls 2mH

Permanent magnet flux φf 1/3Wb

Number of poles p 2

Equivalent inertia J 0.033kg ·m2

Viscous friction coefficient F 0.0003Nms

DC catenary voltage Vdc 1500V

Table 2: Parameters of cooperative control scheme in HIL platform

Parameter Value Parameter Value Parameter Value

ki.1 100 ci.1, ci.2, ci.3 30 β 0.35

li 0.1 Υi.1 80000 Υi.2 200

µi.2, µi.3 1000 ρi.2, hi.2 30000 ρi.3, hi.3 20000

λi.2, λi.3 0.5 ri 10 εi 0.005

αi.2d 5× 106 αi.1d 10000

0 2 4 6 8 10 12
Time(s)

40

60

80

100

120

140
PMSM#1 PMSM#2 PMSM#3 PMSM#4

Figure 5: Load disturbance of multi-PMSMs.

variables between controllers #1-#4 according to the established directed communication topology,

and constructs the neighborhood synchronization error; 4) dSPACE calculates the output of controllers

#1-#4 and generate SVPWM signals, then input them into GPIO interfaces of FPGA boards.

The established directed-graph is shown in Fig. 3. The fuzzy membership functions are selected as

κji = exp
[
−(xi − o)2/2

]
, i = 1, 2, 3, j = 1, 2, ..., 5, o = −2,−1, 0, 1, 2. The parameters of the PMSM

and the cooperative control scheme are listed in Table 1 and Table 2, respectively. The sampling time

is selected as 100µs, the turn-on voltage drop of insulated gate bipolar transistor (IGBT) and diode

are set to 1.8V and 0.7V respectively, the dead-time of the inverter is set to 2µs.
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Figure 6: FDFSM-CB for multi-PMSMs: (a)

Reference and actual speed, (b) Tracking er-

rors of each PMSM, (c) Synchronization er-

ror between PMSM#1 and PMSM#2/#3/#4,

(d) Synchronization error between PMSM#2,

PMSM#3 and PMSM#4.
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Figure 7: Method in [13] for multi-PMSMs:

(a) Reference and actual speed, (b) Tracking

errors of each PMSM, (c) Synchronization er-

ror between PMSM#1 and PMSM#2/#3/#4,

(d) Synchronization error between PMSM#2,

PMSM#3 and PMSM#4.

Remark 3: To verify the superiority of the FDFSM-CB scheme, the control performance is compared

with the cooperative scheme in [13]. At present, PID cooperative controllers based on electrical cou-

pling are mostly used in actual low-speed URT trains. Moreover, from the dynamic model of PMSM,

it can be seen that PMSM has the characteristics of strong coupling, uncertainty and nonlinearity.

Reference [13] propose a PID theory and design method for a class of multi-agent uncertain nonlinear

systems, this is the same as the characteristics of the PMSM studied in this paper. For the above

reasons, the control scheme in [13] is cited as the comparison scheme.
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Figure 8: Actual and estimated disturbance: (a) PMSM#1, (b) PMSM#2, (c) PMSM#3, (d)

PMSM#4.

The load torque disturbances of four PMSMs are considered to verify synchronization and anti-

disturbance performance of the multi-PMSMs, which are shown in Fig. 5. The reference angular

speed is set as a step signal to simulate the instantaneous acceleration and braking of low-speed URT.

The HIL result analysis of speed tracking performance and synchronization error accuracy under the

two control strategies are shown in Fig. 6 and Fig. 7. The proposed FDFSM-CB scheme has better

dynamic and steady performance. In Fig. 6 (a)-(b) and Fig. 7 (a)-(b), it can be seen the control

method in [13] has significant overshoot, and the proposed method has almost no overshoot. Moreover,

when the load disturbances suffer abrupt changes, the proposed scheme can suppress the influence of

the disturbance on the tracking trajectory more effectively, and the tracking error can be stabilized

within an extremely brief period. The HIL results of synchronization error comparison are shown

in Fig. 6 (c)-(d) and Fig. 7 (c)-(d). It is found that the FDFSM-CB scheme can offer a smaller

synchronization error compared with the control method in [13]. Especially when the reference signal

is stepped, this advantage is more obvious.

The reference disturbance and estimated disturbance are shown in Fig. 8. In the face of the ap-

plied load disturbance, the proposed DO can observe the load torque quickly and accurately, which

effectively compensates the change of load torque.

To verify the robustness under uncertain PMSM parameters, the following tests are designed. In

FPGA boards, the stator resistance, stator inductance and magnetic flux linkage of PMSMs are

set as R′
s = 1.2Rs, L

′
s = 0.8Ls, φ

′
s = 0.85φs to simulate the uncertainty of parameters. Then, the

control performance between the proposed FDFSM-CB scheme and the FDFSM-CB without FLS

is compared. Fig. 9 illustrates the control performance of FDFSM-CB scheme under uncertain

PMSM parameters. Due to the proposed FDFSM-CB scheme uses FLSs to approximate the nonlinear

dynamics of the PMSM dynamic model, thus the FDFSM-CB scheme is not sensitive to the uncertain

parameters. On the contrary, Fig. 10 shows the control performance of FDFSM-CB scheme without
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Figure 9: FDFSM-CB scheme under uncertain

PMSM parameters: (a) Reference and actual

speed, (b) Tracking errors of each PMSM, (c)

Synchronization error between PMSM#1 and

PMSM#2/#3/#4, (d) Synchronization error

between PMSM#2, PMSM#3 and PMSM#4.
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Figure 10: FDFSM-CB scheme without FLS

under uncertain PMSM parameters: (a) Refer-

ence and actual speed, (b) Tracking errors of

each PMSM, (c) Synchronization error between

PMSM#1 and PMSM#2/#3/#4, (d) Synchro-

nization error between PMSM#2, PMSM#3

and PMSM#4.

FLS under uncertain PMSM parameters. It can be seen that the influence of parameter uncertainty

on synchronization error is not obvious, but tracking error will deviate slightly during operation and

disturbance, which makes the speed unable to accurately track the reference speed. This is because

the controller cannot get accurate dynamic model information. In conclusion, the robustness of the

proposed controller under uncertain PMSM parameters is verified.

The influence of communication delay and communication interruption on the robustness of the con-
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Figure 11: The influence of communication delay: (a) Synchronization error between PMSM#1 and

PMSM#2/#3/#4, (b) Synchronization error between PMSM#2, PMSM#3 and PMSM#4.
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Figure 12: The influence of communication interruption: (a) Synchronization error between PMSM#1

and PMSM#2/#3/#4, (b) Synchronization error between PMSM#2, PMSM#3 and PMSM#4.

troller is studied in Fig. 11 and Fig. 12. It is shown that when the delay increases to 0.1ms, 1ms,

and 10ms, the synchronization errors can still be kept within a relatively small range. Only when the

URT accelerates or decelerates instantaneously, there is a slightly visible increase in synchronization

errors. However, the synchronization errors are much lower than the method in [13]. In addition, the

performance of the controller will not change significantly due to communication interruption. There-

fore, it can be concluded that, in the face of communication degradation, the proposed FDFSM-CB

scheme has better robustness.

V.Conclusion

In this paper, a speed cooperative control scheme is proposed for multi-PMSMs in low-speed URT,

that tries to reduce the neighborhood synchronization error and improve the anti-disturbance perfor-

mance. First, each PMSM is regarded as an agent, and the multi-PMSMs system is considered as a

MAS. The information of adjacent PMSMs can be transmitted through the communication topolo-

gy network, which ensures the response consistency of each PMSM. Then, considering the influence

of load disturbance on synchronization accuracy, a finite-time DO is designed to provide estimated

disturbance information to the controller in finite-time. Moreover, the FLSs are used to reduce the

dependence of control effect on the accuracy of dynamic model, and the SOSMD is designed to re-

22



duce the noise caused by the direct derivation of virtual control law. Finally, the system is proved

to be finite-time stable. The HIL validation results show that the multi-PMSMs under the proposed

FDFSM-CB control scheme has better dynamic tracking performance with no overshoot, faster conver-

gence. In terms of cooperative performance, the proposed control scheme has higher synchronization

accuracy, and when the disturbance occurs, the synchronization state of each PMSM can be restored

faster. Moreover, the robustness under uncertain PMSM parameters is verified. In our future works,

a real high-power multi-PMSMs experimental platform will be built. Meanwhile, the control method

will be combined with flux weakening algorithm and applied to high-speed trains.
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