
Albuquerque, Eduardo Simoes de (1995) A architecture for MHEG objects.
 Doctor of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94162/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94162/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

AN ARCHITECTURE FOR MHEG OBJECTS

A THESIS SUBMITTED TO

T h e U n iv e r s it y o f Ke n t at C a n t e r b u r y

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By

Eduardo Simoes de Albuquerque

October 1995

0 ïbpl j

[^ a 3 % x
Atìvasn

NVW31dlW3i

i

LlZSOOjN/X«?

Contents

List of Tables ix

List of Figures xiii

Abstract xv

Acknowledgements xvi

Declaration xvii

1 Introduction 1

1.1 Hypertext, Multimedia and H yperm edia... 1

1.2 O b jec tiv es ... 3

1.3 Related Work ... 4

1.3.1 MAEstro ... 5

1.3.2 G u i d e .. 8

1.3.3 I d e x ... 10

1.3.4 M icrocosm 10

1.4 H yperC ard ... 14

1.5 P a n d o r a .. 15

1.6 Thesis o u t l i n e .. 17

2 Multimedia Interchange 19

ii

2.1 In tro d u c tio n ... 19

2.2 Content and Presentation In fo rm ation .. 20

2.3 Markup lan g u ag es 21

2.4 S G M L .. 23

2.4.1 A SGML d o c u m e n t... 24

2.4.2 Interchanging SGML d o c u m e n ts ... 26

2.4.3 Binary SGML (S G M L -B).. 26

2.4.4 Limitations of S G M L .. 27

2.5 H y T im e 27

2.5.1 Interchange in HyTime ... 31

2.5.2 The Standard Music Description Language (S M D L) 31

2.5.3 Final r e m a r k s ... 33

2.6 ODA .. 34

2.6.1 Document Processing in O D A 36

2.6.2 ODA document interchange 36

2.6.3 Extensions to O D A ... 37

2.7 D e x te r 38

2.7.1 Problems with the model ... 40

2.8 CWI Multimedia Interchange Format ... 40

2.9 The Amsterdam Hypermedia Model (A H M).. 42

2.9.1 Synchronisation in A H M 43

2.9.2 Link c o n te x t.. 43

2.9.3 C hannels... 44

2.9.4 Limitations of A H M 44

2.10 Q uickTim e... 45

2.11 Adobe A crobat.. 46

2.12 The World Wide W e b ... 48

iii

2.12.1 Uniform Resource Locators (U R L) ... 48

2.12.2 Hypertext Markup Language (H TM L)... 49

2.12.3 Virtual reality and the Web ... 51

2.13 Presentation Environment for Multimedia Objects (P R E M O).............. 52

2.14 Final remarks .. 52

3 MHEG 54

3.1 In tro d u c tio n .. 54

3.1.1 Standard O b jectives................. 55

3.1.2 Suitability of MHEG .. 55

3.2 Object Interchange.. 56

3.3 Structure of M H E G ... 57

3.4 Object Identification 58

3.4.1 N a m in g .. 58

3.4.2 Referencing ... 60

3.4.3 Tail re fe re n c in g ... 61

3.5 Representation of time and space 61

3.5.1 Synchronisations re la tions.. 62

3.6 Extensibility of the m o d e l .. 64

3.7 Final R e m a rk s ... 65

4 Requirements and Constraints 66

4.1 In tro d u c tio n ... 66

4.2 General requirements ... 69

4.2.1 Adding new media and d e v ic e s ... 70

4.3 Operating S y s te m ... 71

4.3.1 Cooperative vs Preemptive Operating S y s te m s 71

4.4 Future Operating S y s te m s .. 73

IV

4.4.1 CORBA 76

4.5 Windows 3.1 Operating S y s te m .. 77

4.5.1 Interprocess Communication under Windows 3.1 78

4.5.2 Dynamic Data Exchange (D D E)... 79

4.5.3 Object Linking and Embedding (OLE) 82

4.5.4 Clipboard .. . 82

4.5.5 Windows for Work Groups .. 83

4.5.6 Dynamic Link Libraries (D L L) .. 84

4.6 Naming .. 85

4.6.1 Name or Address, or Identifier? ... 85

4.6.2 The Global Name S e rv ic e 86

4.6.3 The X.500 directory .. 88

4.7 Final remarks .. 89

5 Architecture and implementation 91

5.1 Introduction .. 91

5.2 Architecture Overview ... 92

5.3 The k e r n e l ... 93

5.3.1 Link F ac to ry .. 94

5.3.2 The R egistry .. 95

5.3.3 The C lo c k 100

5.3.4 MHEG Engine Action Processor 102

5.4 Processes.. 103

5.4.1 Processing unit ... 106

5.4.2 The d e c o d e r ... 109

5.4.3 The link p rocesso r....................... 109

5.4.4 The spatial processor ... I l l

v

5.4.5 The media specific p ro c e s s o r ... 113

5.5 Exchanging messages between p ro c e s s e s ... 113

5.6 System orchestration.. 114

5.6.1 High level orchestration: process s e le c t io n 115

5.6.2 Process level orchestration: The main l o o p 115

5.7 The Link Factory ... 117

5.7.1 Link d eco d in g ... 118

5.7.2 Link T rig g e r in g .. 118

5.7.3 Link e ffe c t.. 120

5.8 Timestamping m essag es .. 121

5.9 A ctions.. 121

5.10 Final remarks ... 122

5.10.1 Support for extensions... 122

5.10.2 Considerations for a Preemptive O S .. 123

6 Performance measurements 124

6.1 Technique u sed .. 124

6.2 A typical p re sen ta tio n ... 125

6.2.1 Performance considerations... 125

6.3 The tim er.. 134

6.4 Effect of continuous m ed ia .. 136

6.4.1 Performance of non continuous media o n l y 137

6.5 Limits on the number of processes... 138

6.6 A highly interactive presentation.. 141

6.6.1 Complex link conditions.. 143

6.7 Final remarks .. 143

7 A Critical Analysis of MHEG 150

vi

7.1 The evolution of MHEG .. 150

7.1.1 Abstraction level of M H E G .. 153

7.2 Defining the look and feel of a p resen ta tio n .. 155

7.2.1 Final form representation of objects ... 156

7.2.2 Relationship to HyTime and PREMO . .. 158

7.3 MHEG e n g in e ... 160

7.3.1 Object orientation in M H E G ... 160

7.4 Final remarks ... 164

8 Conclusion 166

8.1 General com m ents.. 166

8.2 M H E G ... 167

8.3 A proposed architecture for MHEG objects ... 168

8.3.1 Extensibility ... 168

8.3.2 System perform ance... 170

8.4 Enhancements and further w o r k .. 171

8.5 Final remarks ... 172

A Overview of MHEG Classes 175

A .l M h -o b je c t.. 175

A.2 Action c l a s s ... 175

A.3 Link c l a s s ... 177

A.3.1 Characteristics of MHEG l i n k s ... 178

A.3.2 Link s tru c tu re .. 178

A.4 Model class ... 179

A.5 S crip tc lass .. 180

A.6 Descriptor c l a s s .. 180

A.7 Component c la s s ... 181

vii

A.8 Content c la s s .. 181

A.9 Multiplexed Content class . .. 181

A. 10 Composite c l a s s ... 182

A. 11 Container c la s s ... 182

Bibliography 184

viii

List of Tables

3.1 MHEG Referencing S um m ary 60

6.1 Measurements with processes yielding control within the main loop

(times in ms)— policy 1 nice behaviour/ (486-66).............................. . 130

6.2 Measurements with processes yielding control within the main loop

(times in ms)— policy 1 nice behaviour/ (486-33) 130

6.3 Measurements with processes performing all activities in the main loop

before yielding control (times in ms) — policy 2 (486-66) 131

6.4 Measurements with processes performing all activities in the main loop

before yielding control (times in m s)— policy 2 (486-33) 131

6.5 Average errors setting tim e s to n e s ... 132

6.6 Delay to retrieve a link triggered (creating triggered link process) . . . 133

6.7 Delay to retrieve a link triggered (triggered link process not created) . 133

6.8 Some slow a c tio n s 147

6.9 Times required to startup processes (times in ms) — (486/66) 148

IX

List of Figures

1.1 Text, hypertext, multimedia and hypermedia ... 3

1.2 Components of a Guide Object ... 9

1.3 Microcosm tasks (from [Fountain etal., 1990]) 12

1.4 The Microcosm Model (from [Multicosm, 1994]) 13

1.5 Pandora Connections (from [Jones and Hopper, 1993]) 16

2.1 Example of Procedural Markup . .. 21

2.2 Example of Logical Markup ... 22

2.3 Example of a Document Type Declaration for a type of document called

le t t e r ... 25

2.4 Example of an instance of a document of type letter (defined in figure 2.3) 26

2.5 HyTime Module In terdependencies... 29

2.6 Domain of description in SMDL .. 32

2.7 Cantus Structure in S M D L 33

2.8 Logical and Layout structures in O D A .. 35

2.9 Dexter Model .. 38

2.10 Document Structure Components in CMIF (from [Bulterman et a l,

1 9 9 1]) ... 41

2.11 Amsterdam Hypermedia M o d e l .. 43

2.12 Timing relations in A H M .. 44

2.13 QuickTime co m p o n en ts .. . 45

x

2.14 Example of a U R L .. 49

2.15 Example of an HTML docum ent.. 50

3.1 Scope of M H E G ... 56

3.2 MHEG C lasses... 58

3.3 Atomic Serial (1) and Parallel (r) Synchronisation.................................. 63

3.4 Sequential (1) and Parallel (r)Mode Synchronisation.............................. 63

3.5 Chained Synchronisation.. 64

3.6 Cyclic Synchronisation .. 64

4.1 A Multimedia S y s te m ... 67

4.2 A Distributed Multimedia E nv ironm ent... 68

4.3 DCE architecture (from [Berson, 1992]) ... 75

4.4 Example of a DDE S e rv e r .. 80

4.5 Example of a DDE Conversation ... 80

4.6 Example of a NetDDE Conversation.. 84

4.7 Example of a GNS Directory T r e e 87

4.8 X.500 Directory Information T r e e ... 88

5.1 High level system o v e rv ie w ... 92

5.2 Distributed co n tro l.. 93

5.3 System k e r n e l .. 94

5.4 Link Factory S tructu re ... 95

5.5 Distributed Message Passing ... 96

5.6 Components of R eg is try ... 98

5.7 Registry as seen from a using o b je c t... 100

5.8 Registry as seen from outside M H E G .. 100

5.9 Timing diagram of model object availability.. 103

5.10 Structure of a Process Running a Model O b je c t 104

5.11 Structure of a Process Running a rt-o b jec t... 105

xi

5.12 A composite with two media com po n en ts ... 107

5.13 A complex c o m p o s ite ... 108

5.14 (Sub-)composites of figure 5 . 1 3 .. 108

5.15 Example of a Composite Object with Four Com ponents........................ 110

5.16 Process Tree for Figure 5 .1 5 ... I l l

5.17 Example of a Link O b je c t ... 112

5.18 Link Condition T r e e .. 119

5.19 Link Processing O verview 120

5.20 Action O b je c t 121

6.1 A Snapshot of a presentation .. 126

6.2 Timestones set in c a _ w o rld run-time o b je c t 127

6.3 Behaviour of Windows timer using CPS s h e l l 134

6.4 Behaviour of Windows timer using Program Manager shell 135

6.5 Processes involved in dealing with a link .. 136

6.6 Effect of continuous media on a presentation. The arrows indicate

regions where the video was paused.. 137

6.7 Effect of continuous media on a non continuous object. The arrow

indicates the region where the video was paused; in the regions where

the w in m sg line is not visible, it is near zero.............. 138

6.8 Detail of figure 6.7 139

6.9 Behaviour of a presentation with graphics o n l y 140

6.10 Effect of continuous media on a non continuous object presentation . . 141

6.11 Distance between CPU slices ... 142

6.12 CPU time used by process (b i r d and comp are active processes) . . 143

6.13 Distance between CPU slices (80 links tr ig g e re d) 144

6.14 Error reaching tim e s to n e s ... 144

6.15 Distance between slices us Error reaching tim estones........................... 145

xii

6.16 Distance between CPU slices (200 links) ... 145

6.17 Error reaching tim e s to n es .. 146

6.18 Distance between CPU slices using rapid ticks (200 links) — the initial

peaks are due to the initial processes c re a t io n ... 146

6.19 Error reaching timestones (using rapid ticks) 147

7.1 MHEG Class Hierarchy in 1991 as in [MHEG, 1 9 9 1] 151

7.2 MHEG Class Hierarchy in 92 (/) and today (r) ... 152

7.3 MHEG 5 classes (from [MHEG, 1 9 9 5 b]) ... 155

7.4 Relationship between MHEG 1 and MHEG 5 classes (from [MHEG,

1 9 9 5 b]) 156

7.5 Processing sequence for a processing link (adapted from figure 6.5) . 158

7.6 MHEG, PREMO and HyTime relationship (adapted from [ISO, 1994a]) 159

7.7 Timing diagram of model object availability (in period 01 the object is

not known to the eng ine)... 161

1.1 MHEG Simple Action Object S tru c tu re 176

1.2 MHEG Elementary Action Structure.............. 176

1.3 Nested Action S tru c tu re ... 177

1.4 Macro Action S tru c tu re ... 177

1.5 Link Object S tru c tu re ... 179

xiii

To my family

Abstract

Hypermedia applications are one of the most recent and most demanding computer

uses. It is accepted that one of the main impediments to their widespread use is the lack

of standards, and the lack of Open Systems with the possibility of having documents

interchangeable between different hardware and software platforms.

Several standards are emerging, one of which is the one being developed by the

ISO/IEC WG12 known as the Multimedia and Hypermedia Information Coding Expert

Group (MHEG).

As desktop systems become more powerful, one of the main users of hypermedia

applications is the home market. Therefore it is important to have standards and

applications suitable for those platforms.

This work reviews existing proposals for hypermedia architectures and interchange

standards. It then assesses the suitability of the MHEG standard for use in open,

distributed, and extensible hypermedia systems. An architecture for the implementa­

tion of MHEG objects taking into account the limitations imposed by current desktop

computers is also proposed.

To assess the suitability of the proposed architecture, a prototype has been imple­

mented. An analysis of the performance obtained in the prototype is presented and

conclusions on the requirements for future implementations drawn.

Finally, some suggestions to improve the MHEG standard are made.

xv

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Peter Linington,

for his guidance, constructive criticism, constant attention, encouragement and support,

and for his example of hard working and discipline which were fundamental to the

development of this work.

I would also like to thank Professor Peter Brown for his encouragement and for the

privilege of having him as my supervisor in my first year at the University.

I am grateful to Djamel Sadok, Paulo Pinto, Chris Scott and Fred Cole for their

valuable help during the early stages of this work.

Many friends and colleagues have made my stay in the Computing Laboratory a

constant joy. I would specially like to thank Eduardo Rojas-Vega, Helena Rodrigues,

Geraldina Fernandes, Maria Pimentel, Carlos Ferraz and George Justo with whom I

shared an office. I would like also to express my gratitude to the Brazilian community

in Canterbury (too many to name!) for their comradeship and help.

I acknowledge the financial support of Conselho Nacional de Pesquisas (CNPq) and

Universidade Federal de Goias, Brasil.

And last but not least, I thank Ana, for always being supportive and for sharing all

those difficult moments.

xvi

Declaration

No portion of the work referred in this thesis has been submitted in support to an

application for another degree or qualification at this or any other university or other

institution of learning.

xvn

Chapter 1

Introduction

1.1 Hypertext, Multimedia and Hypermedia

Although hypertext, multimedia and hypermedia have been used for a long time, and

are buzzwords, it is still necessary to define their meanings. We could start by defining

the components that make up these words:

Text: One of the definitions for text in the Oxford Concise Dictionary is:

[2] main body of book opp. to notes, pictures, etc.

We can use a broader definition: text can be seen as a body of recorded infor­

mation. Text and document are synonyms and, although they contain basically

natural language, they can also have images (contrary to the above definition).

Books, recipes, articles, software documentation, for example, are special kinds

of text [Rada, 1991],

Medium: Medium is defined as:

[6] Means by which something is communicated. Material or form

used by artist, musical composer, etc.

1

CHAPTER 1. INTRODUCTION 2

The above definition is too broad and, for our purposes, we need to specialise it.

The MHEG [MHEG, 1995a] standard gives definitions for several applications

of media such as:

• Presentation Medium: The means used to reproduce information to a user

(output device) or to acquire information from a user (input device).

• Representation Medium: The type of interchanged data, which defines the

nature of the information as described by its coded form.

• Storage Medium: The means used to store information.

Multi: Again from the Oxford Concise Dictionary, the prefix multi- means:

comb, form many.

Hyper: The prefix hyper- means:

pref with senses ‘over, beyond, above’ (hypergamy, hyper physi­

cal), ‘exceeding’ (hyperbola, hypersonic), ‘excessive, above normal’

(hyperbole, hypersensitive)-, opp. HYPO

Using the above definitions, we define:

Hypertext: From the definitions of hyper and text, we can conclude that hypertext goes

beyond the concept of text. While text presents only one dimension (linear), a

hypertext has more than one dimension that Contains relationships amongst texts.

The usual example is an encyclopedia where each keyword is also a link to an

encyclopedia entry. In an encyclopedia, we can also see two levels of linking: one

is explicit, when the authors make an explicit cross reference; the second one is

implicit as the words used to define a term also have an entry in the encyclopedia.

Multimedia: something that is expressed using more than one perceived medium,

where “medium” has the sense defined above.

CHAPTER 1. INTRODUCTION 3

Hypermedia: using the same definition we used for hypertext, hypermedia can be

defined as multimedia plus an extra dimension that maintains the relationship

between the media. Interactive Multimedia (another buzzword) is an example of

hypermedia.

Graphically, we could see the above definitions as in figure 1.1. The kernel of the

figure is the text, when we add relational structure to text we have hypertext, when more

than one perceived medium is used we have multimedia and finally we can add relations

to the media and we have hypermedia (or interactive multimedia).

1.2 Objectives

The objective of this work is to analyse the practical use of Multimedia Interchange

standards, examine their suitability for use in Multimedia Systems and to propose an

architecture to be implemented in distributed desktop computers. The standard used for

the prototype implementation was MHEG which is described in detail in Chapter 3.

CHAPTER 1. INTRODUCTION 4

1.3 Related Work

Current hypertext/hypermedia systems can be broadly divided into categories depending

on their usage [Rada, 1991]:

• Small volume hypertext: the document is self contained, with explicit links be­

tween components. Most of the early hypertext systems fall in this category

(eg. Augmentation System [Howard Rheingold, 1985], ZOG [Akscyn and Mc­

Cracken, 1984] and Guide described in section 1.3.2);

• Large volume hypertext: in this category, systems emphasizes linking between

documents and not inside the document itself. Usually many users have doc­

uments within the system and there is an institution responsible for maintain­

ing the whole structure. Examples of systems in this category are the pioneer

Memex [Bush, 1945, Bush, 1967] and Xanadu [Nelson, 1987].

• Collaborative hypertext or grouptext: these are the systems that provide a frame­

work for activities where interaction between users and collaboration are required.

Examples of such systems are the Augmentation System and glbis [Conklin and

Begeman, 1987].

• Intelligent hypertext: in an intelligent hypertext, expertise is transferred to a

knowledge base with an inference mechanism. The transference happens by

storing knowledge in links and allowing the links to trigger arbitrary computation.

Intelligent systems can fall into any of the previous categories.

Systems being developed today tend to present features that fall into all the categories

above, with the ability to deal with more media than just plain text. In the following

sections, we present some current hypermedia systems. We also present some attempts

to standardise multimedia exchange and separate multimedia data and presentation

information. A deeper discussion on multimedia interchange standards is presented in

Chapter 2.

CHAPTER 1. INTRODUCTION 5

1.3.1 MAEstro

The MAEstro Multimedia System [Drapeau and Greenfield, 1991a, Drapeau and Green­

field, 1991b] is a Multimedia Authoring System initially developed at Stanford Uni­

versity, and now produced commercially. The system was designed for extensibility,

making it easy to add support for extra media.

The system is made up of four logical components:

1. Media Editors;

2. An authoring application;

3. An inter-application messaging system;

4. The PortManager Application.

Media Editors

The media editors are the applications that directly control media. Each application is

responsible for one medium.

The system includes the following media editors:

• QuoteMaker for working with text and titles. QuoteMaker can Work with either

ASCII text or scanned material captured through the ImageEdit editor

• cdEdit for controlling and editing music on CDs. cdEdit incorporates music and

sound from digital audio compact discs (CDs) into a multimedia presentation. It

also controls the CD player;

• VideoEdit for controlling and editing video disks. It captures and manipulates

video information from video disc players;

• DTR (Digital Tape Recorder) for recording and editing sound via the workstation’s

built-in digital audio capabilities. DTR plays back digitised audio using the

CHAPTER 1. INTRODUCTION 6

built in audio capabilities of the workstation. DTR accepts sound from audio

tape, microphones, VCR or videodisk and CDs. It can output audio to the

SPARCstation’s internal speaker, headphones or an external speaker;

• ShellEdit is a tool for selecting, timing and executing UNIX shell commands that

are to be incorporated into a time-line presentation;

• vcrEdit used to control the NEC PC-VCR, a computer controlled VHS videotape

player;

• vcrDub used to record video segments from one tape to another, and to re-arrange

the order of those segments;

• ImageEdit for showing images as part of a multimedia presentation. ImageEdit

supports the GIF and TIFF image formats;

• TimeLine builds the Multimedia presentation.

The Authoring Application

The TimeFine Editor Application presents documents as a number of “tracks" of time,

one track for each medium in the document. The TimeFine does not directly con­

trol media but controls the actions of the media editors which do the actual media

manipulation.

The Inter-application Messaging System

The MAEstro messaging system is implemented with Sun Remote Procedure Call

(RPC). Each application in the MAEstro environment uses the messaging system for

communication with other applications. A typical use of the protocol is for an authoring

application to request a media editor to open a document, select part of that document,

and play that selection.

CHAPTER 1. INTRODUCTION 7

The Port Manager Application

The PortManager serves as a rendezvous point for applications that wish to communicate

with each other. It listens to a TCP/IP protocol port for messages from applications that

wish to advertise their services, and keeps an internal list of the TCP/IP port numbers

passed in by the registering applications.

All applications in the MAEstro environment use the same set of RPCs, making

it easy for applications to communicate with new applications added at any time.

Applications can become aware of new services by querying the PortManager.

Problems of the model

The MAEstro environment presents some problems:

• MAEstro does not address the problem of synchronisation of media and guaran­

teed network delivery of continuous media. The environment is at the mercy of

slow media.

• The model does not allow the development of interactive applications. The

author defines how a presentation should happen but the model does not provide

for objects capable of receiving user input (eg. to follow a hypermedia link). The

system is, therefore, multimedia and not hypermedia and this limits its practical

usage.

• Documents in MAEstro tend to have too many components. This occurs because

each piece of information to be presented must be stored in a file, and the model

does not allow the use of parts of a file. In a presentation where there are, for

example, 100 lines of text to be used as captions, there will be 100 small files to

be maintained.

It does not address security issues.

CHAPTER 1. INTRODUCTION 8

1.3.2 Guide

The Guide system [Brown, 1987c, Brown, 1986, Brown, 1987a], one of the first

hypertext systems, started as a research project at the University of Kent at Canterbury

in 1982 by Professor Peter Brown. Guide was to be used as a tool for reading documents

in a computer. In Guide, there is no difference between author and reader to encourage

users also to be authors of the documents they are reading.

Since 1987 there has been a commercial version of Guide [OWL International, Inc,

1988, OWL International, Inc, 1992a] (which is the one described), implemented and

sold by Office Workstations Limited (OWL) (now InfoAccess Inc.) Guide is available

for Macintoshes and IBM-PC compatible machines. There is also an UNIX [Brown,

1987b] version of Guide used at the University of Kent.

A Guide document has an implicit tree structure that is invisible to the user who sees

the document as continuous and linear with the possibility of changing routes within

the document. Guide has a very simple user interface and does not demand a steep

learning curve for its new users.

Guide includes a full scripting language, LOGiiX [OWL International, Inc, 1992c,

OWL International, Inc, 1992b] that allows access to its hypertext engine. LOGiiX

allows, for example, the association of conditions to links providing for the creation

of one-to-many links. A LOGiiX script can also make use of Windows Dynamic Data

Exchange (see section 4.5.2) which allows links to have as destination any DDE-aware

application. LOGiiX also includes features for:

• Arithmetic and logical operations;

• Text string functions;

• Access to all Guide menu commands and some dialog box commands;

• Guide document manipulation;

• Looping constructs;

CHAPTER 1. INTRODUCTION 9

• Access to objects in Guide documents;

• File input and output.

In Guide, “just about anything that can be selected with your mouse can be made

into an object" [OWL International, Inc, 1992a].

Guide objects are made up of three components (figure 1.2):

1. Data component: the text or graphic that appears on the screen when the object

is displayed. It can also be a LOGiiX program;

2. Presentation Attributes: determine how the data is displayed and include text

styles and color. The Presentation Attributes apply to text objects.

3. Behavioral attributes: define the events that take place when an object is displayed

or activated using the mouse.

Object ID:

Object Name:

4356 Object Type:

Section 1

Figure 1.2: Components of a Guide Object

Several tools for converting SGML documents and documents created using other

word processors to Guide are also available on the market.

CHAPTER 1. INTRODUCTION 10

Limitations of Guide

Guide is based on the book metaphor, where each document is, to a certain extent,

self contained. It therefore does not provide facilities for network access, which is a

common problem in most early hypertext/hypermedia systems.

The design of Guide was focused on text and although extensions are available to

provide access to the multimedia features existing in the Windows environment through

the Media Control Interface (MCI), such as video and sound, the author does not have

full control over them.

1.3.3 Idex

Idex [Woodhead, 1991], sold by the same company that makes Guide, is its in-the-

large version. Idex runs on a network of computers and it has facilities for document

management, allowing authorship and reading in one or more shared collections of

documents. Idex allows processes such as document conversion, indexing and retrieval

of information. Idex has a layered structure that allows the substitution of compatible

processes for those implemented as standard, such as the retrieval engine [McAleese,

1993], At a higher level, it also allows the generation of tables of contents, tables of

figures, glossaries and citations [William, 1991].

Idex has some of the security features that are usually found in database management

systems. Documents are stored in a way similar to a library, and not directly in

files/directories; this allows users to focus their attention on the contents rather than the

location of the material.

1.3.4 Microcosm

The Microcosm [Fountain etal., 1990, Hill and Hall, 1994, Davis et al., 1994] hypertext

system started as a research project at Southampton University and is now available

commercially for IBM-PC platforms, and versions for Apple Macintosh and Unix

CHAPTER 1. INTRODUCTION 11

machines are being developed.

The Microcosm project aimed at developing and creating methods for hypertext

authoring on a large scale. Microcosm was designed around the following set of

principles:

• No distinction between author and user: all users are allowed to build links;

• Loosely coupled system: Microcosm is built up from a set of communicating

programs (or tasks) with a low level of interdependency in such a way that it is

not difficult to couple any other program into it.

• Modularity: as a research project, the idea was to have a design where elements

(such as a document viewer) could be replaced;

• Separation o f links from data objects: data objects and information describing

their relationships are kept separate from each other, allowing the definition of

different levels of abstraction for the same data.

Structure of Microcosm

Microcosm is made up of a set of autonomous processes that communicate with each

other using a message passing system. The main task in Microcosm is the Document

Control System (see figure 1.3) which is responsible for opening documents, routing

messages and supporting links. This task is not visible to the user, but in a session using

Microcosm there must be at least one visible window, a Document Viewer that displays

a document on the screen. There is a viewer for each type of document (text, graphics,

etc) and they communicate by sending messages that are routed through the Document

Control System.

The viewers are divided into three categories depending on how “aware” of the

system they are:

CHAPTER 1. INTRODUCTION 12

Figure 1.3: Microcosm tasks (from [Fountain et al., 1990])

1. Fully aware: a viewer that has been written to communicate with Microcosm

providing a bi-directional message channel with Microcosm;

2. Partially aware: a viewer that can be customised by the user, such as Word for

Windows. In general, any DDE (see section 4.5.2) aware application can be made

partially aware of Microcosm.

3. Unaware: a unaware viewer is one that has no direct communication with Mi­

crocosm, although it can be launched from Microcosm and some communication

via the clipboard (see section 4.5.4) is still supported.

The filter layer in the Microcosm architecture (figure 1.4) is composed of processes,

possibly chained, that receive messages, take any appropriate action and pass the

message on to the next filter [Hill et al., 1992], Among the existing filters are:

• Linkbases: that hold information referring to links. As more than one linkbase

may be installed, different views of the document can be provided;

• Show links: a filter that shows the links that do not have an anchor in the viewer;

this is particularly useful with unaware viewers;

CHAPTER 1. INTRODUCTION 13

User layer

Figure 1.4: The Microcosm Model (from [Multicosm, 1994])

• Compute links: that creates links automatically based, for example, on statistical

analysis of the content;

• Navigational aids: that include a history mechanism and a mimic filter that allows

the user to follow a pre-defined tour, to deviate from the tour and return to the

point that they left previously.

Final remarks

The Microcosm project is very recent and the developers had the opportunity to evaluate

existing systems, such as Guide and Idex. Since Microcosm was developed with

automatic authorship in mind, it is very powerful in converting existing documents to

its format, and it also can make use of existing tools.

However, in spite of its recent development, Microcosm does not include facilities

for distribution and the group responsible for its development it is currently researching

its integration with the World Wide Web [Carr et a i, 1995],

CHAPTER 1. INTRODUCTION 14

1.4 HyperCard

HyperCard is probably the best known hypermedia system today. Part of its success is

due to the fact the Apple has shipped a free copy with every Macintosh sold since 1989

when it was created.

HyperCard was initially projected as a graphical environment, not as a hypermedia

system, and many of its applications are not hypermedia, as defined early in this Chapter.

HyperCard is based on a card metaphor and a document is called a stack. Every stack

starts with a special card called home and the navigation depends on definitions by the

author [Danny Goodman, 1987],

HyperCard has an associated scripting language (hyperTalk), that can be used either

to generate scripts or to enter direct commands via a window (MessageBox). In both

cases, the script is interpreted. The whole system can in fact be seen as a high level

programming language, structured in blocks that manipulate a hypermedia environment.

HyperCard has a hierarchical structure of object categories:

1. Card: the card is the central object in the system. Each card may have an

individual lay-out and can perform graphical, computational, textual, QuickTime

video (see section 2.10) and audio functions;

2. Background: a background is above a set of cards in the hierarchy. Several

cards may have a common background which can also have the attributes that are

associated with a card;

3. Stack: a stack is a collection of cards and backgrounds. It is also possible to

define attributes common to all elements in a stack;

4. Home stack: the home stack is a special type of stack. It is the first one activated

when HyperCard is executed. The system requires the existence of a home stack

even if it consists only of an empty card. The home stack may be used as an index

to other stacks, in which case it must have anchors to trigger the activation of the

CHAPTER 1. INTRODUCTION 15

other stacks.

5. HyperCard: this is the highest level in the hierarchy. Messages that were not

dealt with in the lower levels must be processed by HyperCard. If the message is

not understood at this level, the system opens a dialog box informing the user.

There are also some more basic objects used in cards: buttons and fields that can

have a personalised layout and can have associated scripts. Buttons are objects that

usually deal with mouse events while fields are optimised for keyboard textual input.

All HyperCard anchors are graphical. To create a reference from a text, it is

necessary to define a rectangle delimiting the text and this prevents the anchor from

being edited in the future.

The main hyper-characteristic of HyperCard is the possibility of associating scripts

with anchors [Jakob Nielsen, 1990], Scripts are activated by events such as a mouse

click, or when the cursor enters a region or some temporal event is triggered.

HyperCard takes advantage of the Macintosh graphical interface, allowing links

between text and images.

Limitations of HyperCard

HyperCard does not provide facilities for converting existing documents into its format.

It has been used mainly to create small document. Like Guide, HyperCard was not

designed to run on a network or in a distributed environment.

1.5 Pandora

Developed at Olivetti Research Laboratory in Cambridge, UK, Pandora [Hopper, 1990,

Tebbutt, 1991, Jones and Hopper, 1993] was created to demonstrate the practicability

of adding real-time audio and video to the desktop via a general purpose Asynchronous

Transfer Mode (ATM) [Handel, 1991] network.

CHAPTER 1. INTRODUCTION 16

Figure 1.5: Pandora Connections (from [Jones and Hopper, 1993])

Pandora is based on a subsystem that handles the multimedia peripherals (the Pan­

dora’s box) as shown in figure 1.5. The Pandora box can be controlled by the host

workstation; it can intercept the workstation’s video output and add material from its

own framestore, digitise video from a camera, accept telephone or microphone inputs,

send output to telephones or loudspeakers and transmit and receive streams over a

dedicated ATM network connection.

The design of Pandora was aimed at allowing the highest possible loads, and to

achieve that goal it was based on the following principles:

• Outgoing priority: a box that is overloaded should be the first to notice the

degradation. Therefore incoming traffic is degraded first;

• Audio priority: it is better to have a lower quality video than degraded audio;

• New stream priority: as users do not have to shutdown one stream before starting

a new one, if necessary, older streams are degraded first;

• Command priority: commands should be executed even if time-critical activities

exceed system capacity;

• Upstream independence: when a stream is copied to more than one destination,

it is desirable that overload of one of the destinations should not affect the quality

of the other ones;

CHAPTER 1. INTRODUCTION 17

• Continuity during reconfiguration: the operation of adding or removing a desti­

nation to/from a stream should not disturb the other recipients of the stream (eg.

by causing jitter on the video);

• Minimize delay: delays in the data streams should be kept to a minimum to keep

audio and video synchronised and to avoid echoes in the audio stream;

• Local adaptation: decisions related to buffering and discarding data should be

made locally depending on conditions such as bandwidth and critical times.

As it stands today, Pandora allows a workstation to be used as a videophone or as a

video conferencing station, and supports video e-mail.

Limitations of Pandora

Pandora is a recent project and makes use of state-of-art technology. It provides a

framework upon which higher level applications can be built. It does not make use

of standards at the document level such as MHEG (see chapter 3), and there are no

reported uses to date to assess its viability to integrate large applications involving

highly interconnected documents.

Pandora also requires a large investment in terms of dedicated hardware.

1.6 Thesis outline

This chapter presented an overview of the areas influencing this work, examples of

related work and the motivation for developing this thesis.

Chapter 2 presents an overview of the state of the art in multimedia interchange and

the related standards.

Chapter 3 presents the MHEG standard on which this work is based. It is important

to note that during the development of this thesis, MHEG was still being defined. The

implementation described in chapter 5 incorporates the concepts present in the versions

CHAPTER 1. INTRODUCTION 18

published in 1993 [MHEG, 1993] and 1994 [MHEG, 1994a, MHEG, 1994b], Therefore

this work uses many ideas introduced by MHEG but it is not compliant with the 1995

version of the standard, and the description (markup) language used is not the one

defined by the standard but one intended to be closer to the ETgX language, which is

more like the English language.

Chapter 4 presents the requirements for a distributed hypermedia system capable of

handling portable documents.

The requirements presented in chapter 4 are used as guidelines for proposing an

architecture for implementing MHEG objects in chapter 5. This chapter also describes

the implementation of a prototype of the architecture proposed.

Chapter 6 presents performance measurements obtained from the prototype, and

discusses several strategies for improving performance, depending on the types of

objects and interaction being processed.

Chapter 7 presents an analysis of the MHEG standard and its suitability as a basis

for distributed multimedia systems. Enhancements to MHEG are also proposed in this

chapter.

Finally, chapter 8 summarises the conclusions, comments on the decisions taken for

the distribution and scheduling of processes and makes some further remarks on the

MHEG standard.

Chapter 2

Multimedia Interchange

2.1 Introduction

The Computer industry has been driven by technology rather than by the requirements

of its market [Gray, 1991]. Unlike markets such as the hi-fi industry where every

product plays the same type of tapes or CDs, and product differentiation is in terms of

price, performance and functionality, until very recently computing systems have been

proprietary: a product that was written for one system would not run on another one.

The incompatibility was both on the hardware and on the software level. However,

the high cost of producing computing systems, and the need to make applications

available on a wide variety of machines has led the industry to define standards, in spite

of the relative costs involved in terms of performance.

Multimedia, as one of the most recent applications of computing (and also one of the

most expensive and demanding) is one of the areas that has suffered from this problem.

It is commonly accepted that unless standards for multimedia interchange are defined

and widely adopted, the industry will not mature.

The industry has recently seen the development of media compression standards

such as JPEG and MPEG. The general acceptance of such standards has made it feasible

to have some of these algorithms implemented in hardware at an affordable cost for

19

CHAPTER 2. MULTIMEDIA INTERCHANGE 20

desktop computers users, reducing the storage and communication costs for multimedia

data. The performance now available at a desktop computer is also leading to the

development of sophisticated hypermedia applications that are available on a standard

home computer.

This chapter presents and discusses some of the problems related to Multimedia

Interchange and to the standards under development.

2.2 Content and Presentation Information

Most data that we receive carries information at two levels:

• Contents: the abstract data being transmitted and,

• Presentation: the form in which the information is presented and perceived.

The same contents may be presented in a completely different format depending

on the context. For example, a speech may be written for an audience with hearing

problems and may be spoken to a different audience. In each case, although the contents

is the same, the presentation information is very different. For portability, it is desirable

that contents and presentation information are kept in different structures. When format

and contents information are kept separately, it is easy to change the way information

is presented as we will discuss in the following sections.

Unfortunately computers, like humans, do not usually share the same language.

One of the most widely accepted standards is the one defined by ISO Standard 646

which defines the international reference version of the ASCII character set. ASCII is

7-bit coded and it is enough to represent English correctly. Other modern languages,

including several European languages, require an 8-bit system. Oriental languages such

as Chinese or Japanese require 16-bits or more. It is clear that a system such as ASCII,

unable even to represent many languages, is not powerful enough to describe the broad

spectrum that multimedia documents represent.

CHAPTER 2. MULTIMEDIA INTERCHANGE 21

As ASCII is used by virtually all computer systems, it is a good means for exchanging

information between computers. One method used to overcome the limitations imposed

by the small character set is to add tags within the the textual information. These tags

describe how the data contents is to be presented, as opposed to directly representing

the presentation. A common way of using tags is by the definition of markup languages

such as SGML.

2.3 Markup languages

(\Large 1 Markup languages}
\vspace{lmm}
\hspace{lcm}Here I have the first paragraph

in this section.
\vspace{1mm}
\hspace{lcm}Finally here comes the second

paragraph.
\vspace{2mm}
(\Large 2 Standards}
\vspace{lmm}
\vspace{1mm}
\hspace{lcm} Here we have the first paragraph

of the second section.

Figure 2.1: Example of Procedural Markup

Markup is some information that is added to a document to describe its structure

or formatting instructions. For example, the text in figure 2.1 contains instructions

(using a 1ATgX-fi'ke notation) on how it should be formatted. The markup describes

the instructions to format two sections of a document in a very rigid way {procedural

markup). If the user decides to alter the sections in a document, the section numbering

would have to be changed manually; if he decides to change the relative size of font

used for the section heading (defined as \ Large), all sections would have to be edited,

and the same applies to the spacing separating sections. In this case, the markup is

providing formatting instructions but no structure information.

CHAPTER 2. MULTIMEDIA INTERCHANGE 22

\section{Markup languages}
\1abe1{s_markup}
Here I have the first paragraph in this section.

Finally here comes the second paragraph.

\section{Standards}
Here we have the first paragraph of the second
section with a reference to section \ref{s_markup}
(Markup languages).

Figure 2.2: Example of Logical Markup

A more flexible approach to describe the same text is given in figure 2.2, again in

LkTpX format. The figure shows the contents and the structure of sections that could

be part of a book, or an article, etc. In the figure, markup is defined by a keyword

prefixed by \ and the marked contents is enclosed by {} (for example, the titles in the

sections) or just placed between two markers like the contents of each section which

is placed between the \ s e c t i o n { } markup instructions. There are no tags to mark

the beginning and ends of paragraphs; these are delimited by an empty line. The

tag \ la b e l{ s _ m a r k u p } provides information that can be used by a referencing or

indexing mechanism to retrieve the position of this piece of the overall structure.

How the sections will ultimately be formatted is not defined by the markup, which

only defines the logical structures. Processing functions performed on the logical

components that define the actual format of the document would be very different if the

sections were part of a book or part of a two column article.

The concept of logical markup can be extented to more abstract structures beyond

formatting ones, providing hooks for further processing. For example, a logical com­

ponent could specify a price which may be used for some computation; or a reference

such as the one in figure 2.2 or even to generate cross references within a text or a table

of contents.

CHAPTER 2. MULTIMEDIA INTERCHANGE 23

2.4 SGML

The Standard Generalised Markup Language (SGML) [ISO, 1986a, Goldfarb, 1990,

McArthur, 1995] is the standard ISO 8879. It is based on two postulates:

1. “Markup should describe a document’s structure and other attributes

rather than specify processing to be performed on it, as descriptive

markup need be done only once and will suffice for all future process­

ing.”

2. “Markup should be rigorous so that the techniques available for pro­

cessing rigorously-defined objects like programs and data bases can

be used for processing documents as well.”

The standard is also system and device independent in the sense that it deals with

virtual storage which can map onto different physical storage provided by different

vendors; language independent as the standard can be used even in languages that do

not use Latin based alphabets such as Greek; application independent as it is flexible

enough to encode both simple and complex documents, able to deal with documents

subject to frequent changes, and can also support the inclusion of data other than text.

It seems unlikely that a completely automatic publication process where human

intervention is not required will happen, so another criteria that was taken into account

when the standard was being developed was that the markup should be human readable.

SGML is like ODA (see section 2.6) in that it models documents as trees, but unlike

ODA, SGML describes only the document’s logical structure, not its layout semantics.

Logical items in SGML are called elements. Each element is delimited by tags

that indicate its beginning and end. The element’s contents (which may contain nested

elements) occurs between the tags. SGML also allows user defined attributes to be

added to elements.

CHAPTER 2. MULTIMEDIA INTERCHANGE 24

SGML is not a language as the markup itself is not standardised but it is a metalan­

guage that provides the means to define the markup rules to be used. It defines syntax

but no semantics.

2.4.1 A SGML document

A SGML document is made up of three parts:

1. The SGML declaration;

2. The Document Type Definition (DTD);

3. The document instance.

The SGML declaration

The SGML declaration includes information about the usage of characters sets, the

concrete syntax, capacity requirements and optional features.

The Document Type Definition (DTD)

The Document Type Definition (DTD) is the centre of SGML. It defines the rules that

apply to all documents of that type, including the names of the various elements (generic

identifiers) allowed, any attributes they may have, the number of times they may appear,

the order they must appear in, whether some markup (such as start- and end- tags) may

be omitted and the relationships of the elements.

A DTD does not have information on how to process a document or what it should

look like, but it allows users to define their own markup language depending on their

requirements. Figure 2.3 show a Document Type Declaration (which may include

several DTDs) where the items between [and] represent a DTD. The DTD defines

a document of class l e t t e r which must consist of a recipient’s name, a recipient’s

address, a senders’s name, a salutation, a date and one or more paragraphs in that order.

CHAPTER 2. MULTIMEDIA INTERCHANGE 25

<!DOCTYPE letter [
<!ELEMENT letter - - (rn, ra, sn, si, d, p+)>
<!-- letter components:

rn = recipient's name
ra = recipient's address
sn = senders's name
si = salutation
d = date
p = paragraph -->

<!ELEMENT (rn|ra|sn|si|d|p) - o (#PCD ATA)>
]>

Figure 2.3: Example of a Document Type Declaration for a type of document called
letter

A DTD defines three types of markup commands:

• Elements: which are marked up with symbols called the start-tag and end-tag.

For example, in figure 2.4 < rn > < / r n > is an element (in the simplest form

possible) whose start tag is “< rn > ”, end-tag is “< / r n > ” and with the generic

identifier (or tag name) “r n ”;

• Attributes: which provide extra information about the element that is being

specified. Attributes are similar to parameters in programming languages.

• Entities: which are character strings to mark locations in the text where external

material, such as figures, or mathematical symbols that cannot be entered directly

from the keyboard, must be placed.

The document instance

The document instance represents the document itself which is marked up according

to the rules established in the SGML declaration and the DTD. Figure 2.4 gives an

example of an instance of a SGML document.

CHAPTER 2. MULTIMEDIA INTERCHANGE 26

<!DOCTYPE LETTER SYSTEM "letter.dtd">
<letter>
<rn>The Editor - Summer Magazine</rn>
<ra>London - UK</ra>
<sn>E Albuquerque </sn>
<sl>Dear Sir,</sl>
<d> 10/ll/95</d>
<p>Please cancel my subscription to your

magazine.</p>
</letter>

Figure 2.4: Example of an instance of a document of type letter (defined in figure 2.3)

2.4.2 Interchanging SGML documents

SGML documents are interchanged using the SGML Document Interchange Format

(SDIF) (ISO 9069 [ISO, 1988]). SDIF was originally defined to provide the hooks to

enable an SGML document to be interchanged in the OSI environment.

A SGML document may be made up of several separate parts such as document

type definition, external entity definitions, etc, and the standard does not specify how

these parts are organised. SDIF defines how to pack the parts into a single data stream

with descriptors indicating how the parts are related to each other. The data stream

is encoded using ASN 1, allowing SGML to be compatible and used with network

standards [van Herwijnen, 1994] defined in terms of the OSI Reference Model.

2.4.3 Binary SGML (SGML-B)

SGML tags clearly add a large overhead to the data being transmitted. SGML-B is an

extension to the SGML standard to provide SGML binary encoding with bidirectional

convertibility between the text and binary forms. SGML-B uses minimised markup in

order to reduce storage.

CHAPTER 2. MULTIMEDIA INTERCHANGE 27

2.4.4 Limitations of SGML

One of the main limitations of SGML is that it does not actually specify documents.

It specifies DTDs, and incompatible DTDs defeat the purpose of universal document

exchange. Another shortcoming is that DTDs do not indicate how to process non-text

objects. When non-text objects are encountered, DTDs simply specify special markup

tags called “escapes” (sequences that suppress markup recognition when code extension

is in use) that cause the processing program to jump outside the SGML-defined process

to an application that can cope with the non-text object. It does not standardise either

how objects are tagged for transfer to these other applications or how these applications

will interpret those objects once they receive them.

A partial remedy for this weakness is the Hypermedia/Time-based (HyTime) struc­

turing language, described in the next section.

2.5 HyTime

The HyTime or Hypermedia Time-Based Structuring Language [ISO, 1992, Markey,

1991, Newcomb et al., 1991, Fujitsu and TechnoTeacher, 1995] is the result of a

project at the American National Standard Institute aimed at creating a Standard Music

Description Language (SMDL). HyTime became an ISO standard in April 1992.

HyTime is an application of SGML (and is said to be its future by Goldfarb) that

allows markup and DTDs to be used to describe the structure of multimedia documents.

The types of contents a document may have include:

• Digital audio recording;

• Digital motion video and dynamic graphics;

• Text fields;

• Musical notation;

CHAPTER 2. MULTIMEDIA INTERCHANGE 28

• Instrumental control;

• Control signals for external systems.

HyTime overcomes some of the limitations of SGML by providing a standard way

to tag text or non-text objects so that they can be rendered as a complete document or

processed as independent objects. HyTime does not specify how document objects are

encoded or interpreted by computer programs. However, by using standardised linking,

alignment, and addressing methods, it ensures that such objects are made available to

programs in a standardised way.

In order not to limit its expressive power, HyTime is not itself an SGML DTD,

but provides constructs and guidelines (“architectural forms") for making DTDs for

describing Hypermedia documents.

HyTime specifies how concepts common to all hypermedia documents can be rep­

resented using SGML. These concepts include [Adie, 1994]:

• association of objects within documents with hyperlinks;

• placement and interrelation of objects in space and time;

• logical structure of the document;

• inclusion of non-textual data in the document.

An “object" in HyTime is part of a document, and it is not medium dependent: it

may be video, audio, text, a program, graphics, etc.

HyTime consists of six modules (figure 2.5):

• The Base Module: provides the architectural form that makes up the document

itself (and therefore is required by all others modules), including a lexical model

describing element contents; facilities for identifying policies for coping with

changes to a document, or traversing a link (“activity tracking"); and the ability

to define “container entities" which can hold multiple data objects.

CHAPTER 2. MULTIMEDIA INTERCHANGE 29

Figure 2.5: HyTime Module Interdependencies

• The Measurement Module: provides documents with the ability to represent

concepts involving dimension, measurement and counting. It allows an object to

be located in time and/or space, or any other domain, which can be represented

by a finite coordinate space, within a bounding box called an “event", defined by

a set of coordinate points which may be expressed in any units.

• The Location Address Module: provides means, in addition to those specified

by SGML, to identify and refer to elements. This module provides a special

“named location address" architectural form which can be used to refer indirectly

to data which spans elements, or which is located in external entities. Data may

also be addressed indirectly through the use of “queries", which return addresses

of objects within some domain which have properties matching the query. If

the measurement module is used, locations can be specified which are numeric

addresses or indices along particular dimensions.

HyTime provides three kinds of addressing:

- Name-space Addressing (a unique name being provided);

- Co-ordinate addressing (relative to a given location);

CHAPTER 2. MULTIMEDIA INTERCHANGE 30

- Semantic addressing (by description).

• The Hyperlinks Module: supports the definition of links between parts of docu­

ments that can be traversed as a hypertext. The link endpoints may be location

addresses, measurement, or scheduling modules.

Two basic types of hyperlinks are defined: the contextual link (clink) which

has two anchors, one of which is embedded in a document to explicitly denote

the anchor location; and the independent link (ilink) which may have more than

two anchors, and does not require the anchors to be embedded in the document,

allowing structural information (hyperlinks) to be maintained outside the contents.

• The Scheduling Module: specifies how events in a source Finite Coordinate Space

(FCS) are to be mapped onto a target FCS. For instance, events on a time axis

could be projected onto a spatial axis for graphical display purposes, or a “virtual"

time axis as used in music could be projected onto a physical time axis. In another

example, if a map is to be rendered in say, a scale of 1:100000, it means that a

dimension of 1 Km in the origin FCS will be mapped to 1 cm in the target FCS.

If the event is applied to the whole map, it means that the same emphasis will be

given to all its parts. If however it is desired to have some parts with more detail,

more than one projector, with different scopes of action (p r o s c o p e s) may be

used. A schedule of p r o s c o p e s is called a baton and determines the rate at

which virtual units are converted into real units.

An FCS may contain any number of event schedules and each event schedule

may contain any number of events.

• The Rendition Module: allows for individual objects to be modified before ren­

dition, in an object-specific way. It specifies how events in one finite coordinate

space can be mapped to another finite coordinate space. One example is modifica­

tion of colours in an image so that it can be displayed using the currently-selected

CHAPTER 2. MULTIMEDIA INTERCHANGE 31

colour map on a graphics terminal, or changing the volume of an audio channel

according to a user’s requirements.

In this case, objects are modified within events and neither the semantics of

objects nor modifiers are defined by HyTime. In a similar way to a baton

described above, the scope of a modifier is expressed by a m ods c o p e and a

schedule of m ods c o p e s is called a wand.

Applications are not required to support all modules: only the portions of HyTime

that are appropriate for a given document have to be supported.

As it was defined as an exchange format, HyTime has great expressive power but is

not optimised for run-time efficiency.

HyTime engine

The HyTime engine is basically a program that recognises HyTime constructs in a

document. The HyTime standard does not specify how the engine works. There are still

few engines available: there is at least one commercial system: HyMinder developed by

TechnoTeacher [Adie, 1994]; and one developed by the Interactive Multimedia Group

at the University of Massachussets (Lowel) [Koegel et al., 1993].

2.5.1 Interchange in HyTime

As HyTime is an application of SGML, interchange is possible by using SDIF (sec­

tion 2.4.2).

2.5.2 The Standard Music Description Language (SMDL)

The Standard Music Description Language (SMDL) [Newcomb, 1991] is an application

of HyTime with the addition of tools for the representation of music. HyTime was

originally developed from a project aimed at representing music.

SMDL defines four domains of information (figure 2.6):

CHAPTER 2. MULTIMEDIA INTERCHANGE 32

Figure 2.6: Domain of description in SMDL

• Visual domain: contains the score information.

• Gestural domain: contains the performance information.

• Analytical domain: contains theoretical information and facilitates theoretical

and musicological discussions of musical structure, thematic transformation, per­

formance and engraving practices and analytic techniques.

• Logical domain (cantus): Cantus can be defined as “pitches (frequency) and

durations (timings)” and it contains the minimum information necessary for an

automaton to generate a printed score and a minimal synthetic performance.

A cantus can referred to by more than one performance (gestural domain) and

more than one score. A document can also contain more than one printable edition

of the music (visual domain).

In SMDL, a piece of music is seen as a combination of events. The events occur in

“thread” and “lyric” schedules (figure 2.7) in a finite time space, with a position

(start) and extent (duration). Start and duration can be defined by an explicit

position or by reference to other events.

CHAPTER 2. MULTIMEDIA INTERCHANGE 33

Cantus:
events scheduled in
virtual time

Figure 2.7: Cantus Structure in SMDL

To represent time units, which are not necessarily the same in music, SMDL uses

a HyTime baton. Other processing instantiations such as modifying and filtering

are specified by a HyTime wand in which all the modifier semantics are user

defined.

2.5.3 Final remarks

HyTime provides very powerful constructs to define complex documents with time

and synchronisation dependencies. Part of this strength is derived from the fact that it

started as a project intended to represent music. One of the most interesting features of

HyTime, which makes it specially suitable for representing hypermedia, is that it allows

the definition of hyperlinks based on contents data in addition to the definition of time

dependent constraints.

One weakness of HyTime, when used to represent hypermedia, comes directly from

its strength. Because it has a very strong expressive power, and allows the definition of

documents at a high level of abstraction, it requires a lot of processing and is thus not

very efficient in terms of rendering that information.

CHAPTER 2. MULTIMEDIA INTERCHANGE 34

2.6 ODA

ODA [ISO, 1989, Brown, 1989] is a standard for storing and interchanging documents.

It defines a hierarchical and object-oriented document model. An ODA document can

be seen as a tree in which the leaves contain the contents data and the shape defines

the document structure. The separation of structure and document contents makes the

handling and creation of multimedia documents easier. An object attribute is a property

of a document or of a document component. It represents a characteristic of a document

or a relation with one or more other documents.

An ODA document is described by two structures:

1. Logical structure: a document’s logical structure is based on its meaning, i.e. a

structure that makes sense to the writer and to the reader of the document. The

logical structure defines the relationship between logical components and contents

components. Examples of logical components are: chapters, sections, figures,

etc. Logical components may also specify specialised items such as dictionary

entries.

2. Layout structure: the layout structure defines the appearance of a document: how

it is formatted. Examples of layout objects are pages, frames (rectangular areas)

and blocks.

ODA also defines the concept of document classes which are analogous to DTDs

in SGML. A document class is defined by generic structures. Based on the concept of

document classes, the above structures can therefore be further divided into:

1. Generic (Logical and Layout) structures: which are associated with classes of

documents, and

2. Specific (Logical and Layout) structures: which are associated with an example

of the class.

CHAPTER 2. MULTIMEDIA INTERCHANGE 35

Logical
Structure

Layout
Structure

Figure 2.8: Logical and Layout structures in ODA

The separation of the logical and layout structure in ODA can be seen in figure 2.8.

The leaf objects contain an attribute that defines the type of the associated con­

tents. Each type of contents is handled differently by rules called content architectures.

Currently, ODA defines three content architectures:

• Character content architecture: made up of control and graphics characters.

Positioning and format of characters are controlled by a set of attributes and

characteristics. By default, characters are defined vertically, in lines from the top

of the block and progressing from left to right and top down. It is possible to

change attributes such as character and line progression direction, produce super

and subscripts, etc.

• Raster graphics content architecture: raster graphics contents represents a two

dimension image formed from a two dimension array of image elements (PEL,

Picture ELements). Several attributes can be changed, including: progression

direction of PELs within a line, line progression direction, starting point from

which the PELs are placed within a line, image size, etc.

CHAPTER 2. MULTIMEDIA INTERCHANGE 36

• Geometric graphics content architecture: This architecture is based on the CGM

(■Computer Graphics Metafile) standard. ODA attributes are used to provide

initial CGM values, such as line style, width and colour, size of final image, etc.

Each one of the above architectures define one or more classes similar to document

classes. These classes, in turn, may contain other classes offering different levels of

facilities, for example, to change the direction in which characters are placed in a

document.

2.6.1 Document Processing in ODA

In ODA, document processing is accomplished by three processes:

• The Editing Process: involves the process of creating and revising a document.

This process includes the structural and logical editing of a document.

• The Formatting Process: defines the position where each item in a document will

be placed. This process uses the logical and layout structures either generic or

specific.

• The Rendering Process: is concerned with presenting the document in a suitable

format to the user. This process displays a visual version of the document on

paper or on a screen, for example.

Although there may be some overlap in the two last processes, the Formatting

process is concerned with placing items while the Rendering process is concerned with

providing a visible presentation of the items.

2.6.2 ODA document interchange

ODA documents an be exchanged in several formats:

CHAPTER 2. MULTIMEDIA INTERCHANGE 37

• ODIF format: ODIF is an abstract syntax where components and attributes of a

document are represented by a hierarchy of data structures that appear in a certain

order.

• Office Document Language (ODL) format: ODL is a particular use of SGML to

represent ODA documents.

2.6.3 Extensions to ODA

Several extensions to ODA have been proposed to incorporate multimedia. The exten­

sions include:

• New content architecture features which:

- Allow voice messages and other forms of audio content to be attached to

ODA documents;

- Allow CCITT H.261, JPEG, MPEG-1 and MPEG-2 objects to be incorpo­

rated into ODA documents;

- Add attributes to ODA documents to allow the control of how images are

rendered such as control of contrast, brightness, saturation and hue;

- Allow the definition of markers within a video clip;

- Allow video sequences to be cropped both spatially and temporally to show

only part of a clip, for example.

• HyperODA: The Hypermedia Extensions to the Open Document Architecture are

aimed at incorporating audiovisual information into ODA documents. The main

characteristics of HyperODA are that it:

- Supports references to data held externally to the document;

- Supports non-linear structures, using contextual and independent hyperlinks

based on the HyTime model;

CHAPTER 2. MULTIMEDIA INTERCHANGE 38

- Supports temporal relationships between document components (e.g., se­

quential, parallel, cyclic, duration, start delay);

HyperODA has not yet become an International Standard.

2.7 Dexter

The Dexter Hypertext Reference Model [Halasz and Schwartz, 1990, Halasz and

Schwartz, 1994] is an attempt to unify the abstractions met in the various hypertext

systems and it is also a basis for the development of standards for interchange among

hypertext systems.

The model is the result of two workshops on hypertext. The first one happened at

the Dexter Inn, New Hampshire (USA), which is where its name comes from.

Dexter divides a hypertext system into three layers (figure 2.9):

Run-time Layer
Presentation of the hypertext;
user interaction; dynamics

Storage Layer
a ’database’ containing a
network of nodes and links
■ .

llillll horing
Within-Component Layer
the contents/strcuture inside the nodes

Focus of the
Dexter Model

Figure 2.9: Dexter Model

• Run-time layer: this layer provides functionality for the use, visualisation and

manipulation of the hypertext web. Dexter defines only a basic model and does

not cover user interaction. This is because tools to implement these facilities are

too varied.

CHAPTER 2. MULTIMEDIA INTERCHANGE 39

The main function of the run-time layer is the presentation (instantiation) of a

component to the user. When the component is instantiated, a copy is created and

all user operations are performed on this copy, which is later stored by the storage

layer.

It is possible to have more than one instance of the same component and to keep

track of these instances; the run time layer maintains a session that maintains a

mapping between instances and components.

• Storage layer: this layer is where the model is focused. The storage layer

describes a data base made up of a hierarchy of components interconnected

by referential links. Components are regarded as generic data storage with no

distinction related to the medium used by the component.

Access to the components is performed by two functions: one is a resolver respon­

sible for resolving a component specification to give the Unique IDentifier (UID)

which is associated with each component; and one is to access the component

based on its UID.

• Within-component layer: components correspond to hypertext nodes. This layer

deals with the contents and internal structure of components within a hypertext

web. As a component can contain an unlimited range of contents and structure,

the model does not cover this part. Models for specific applications such as ODA

and SGML must be used to complete the definition of a hypertext as a whole.

The interface between the within-component layer and the storage layer is called

anchoring. It provides the means to address items within a component.

The interface between the run-time and the storage layers is called the presentation

specification and it is a mechanism that provides for the storage of information on how

a component should be presented to the user.

CHAPTER 2. MULTIMEDIA INTERCHANGE 40

2.7.1 Problems with the model

Dexter was one of the first attempts to standardise hypertext systems and although

it is relatively recent, it has not given enough attention to the additional problems

hypermedia adds to hypertext:

• Dexter has no notion of time which makes it unsuitable for expressing hypermedia

in general;

• It does not allow across hypertext links. It does not distinguish between contents

that are managed within the scope of the system and those managed by third party
»

applications;

• Composites are also limited as discussed in [Leggett and Schnase, 1994], in

particular with respect to composition, which is by copy rather than by reference,

preventing the reuse of content objects.

2.8 CWI Multimedia Interchange Format

The CWI Multimedia Interchange Format (CMIF) [Bulterman et a l, 1991] is used to

describe the temporal and structural relationships existing in multimedia documents.

The CMIF project had two goals:

1. To define a structure that separates the temporal, spatial, and content-based aspects

of multimedia documents;

2. To investigate ways of using the document description rather than the data contents

to control the interrogation and synchronisation of one or more document sets.

The project addresses three problems existing in multimedia applications:

• Elements manipulated within multimedia systems consist of raw data rather than

structured information, with little inherent meaning;

CHAPTER 2. MULTIMEDIA INTERCHANGE 41

• The representation and manipulation of such data is highly machine and/or device

dependent;

• The synchronisation within multimedia applications is often implicitly encoded

as a function of the speed of a particular system and interface, limiting the ways

interaction among elements can be expressed and implemented.

A CMIF document is a collection of several media and a set of structure and syn­

chronisation relationships describing how to present and manipulate these components

(figure 2.10).

Figure 2.10: Document Structure Components in CMIF (from [Bultermaneia/., 1991])

CMIF provides a powerful infrastructure to build hypermedia applications, in par­

ticular when expressing timing and synchronisation relationships. However, the model

does not provide a direct way to represent “hypermedia” as it lacks a general mechanism

to represent hyperlinks.

CHAPTER 2. MULTIMEDIA INTERCHANGE 42

2.9 The Amsterdam Hypermedia Model (AHM)

The Amsterdam Hypermedia Model (AHM) [Hardman et al., 1993, Hardman et al.,

1994] is a framework that can be used to describe hypermedia systems. The AHM

extends the Dexter hypertext model (see section 2.7) by adding to it notions of time as

defined by CMIF (described in the previous section).

AHM groups temporal relationships among data items in two groups:

1. Collection: the class of items related to the identification of components that are

to be presented together;

2. Synchronisation: the class of items that specify the relative order in which the

components are to be presented.

This contrasts with the Dexter model which provides support for collection via the

hierarchical definition of components. The set of atomic components can be modeled by

Dexter’s composite but it does not provide for specifying relative timing relationships

among components.

AHM separates contents data and presentation information by defining atomic and

composite components as shown in figure 2.11.

The atomic component contains information related to a specific data block including

duration, presentation specification and anchor identification while a composite contains

presentation information related to a collection of atomic or composite blocks. A

composite contains no contents data; such data must be either included or referenced in

an atomic component.

There are two types of composites:

1. Choice composite: at most one child is displayed;

2. Parallel composite: all components are displayed.

CHAPTER 2. MULTIMEDIA INTERCHANGE 43

Presentation Channel name
Specification Duration - Specified or implicit

Other comp. - specific pres. info.

Attributes Semantic information

Anchors Anchor ID -
Value

-------------------------- .--------------

Contents Data block or pointer to dati

Atomic Component

Composite Component

Figure 2.11: Amsterdam Hypermedia Model

2.9.1 Synchronisation in AHM

AHM supports two levels of synchronisation as shown in figure 2.12:

• Coarse-grained synchronisation: defines the constraints between the children in

a composite such as relative starting time of each child in a composite and this

information must be given explicitly with the child definition;

• Fine-grained synchronisation: defines constraints among children (which can be

nested) within a composite component and these constraints are specified using

synchronisation arcs.

2.9.2 Link context

AHM defines the concept of a link context to specify how components should behave

when a link is followed. A link context is a composite that contains a collection of

components affected by the activation of a link. A source context for a link is the part of

CHAPTER 2. MULTIMEDIA INTERCHANGE 44

S
0

Figure 2.12: Timing relations in AHM

the presentation affected by initiating a link and a destination context is the part affected

at the link arrival.

2.9.3 Channels

Channels provide for specifying global output attributes of documents. A channel can

specify, for example, the font and style for a text channel.

The concept of channel can also be used to specify, for example, the language to be

used to output speech or text in a multi-lingual document.

2.9.4 Limitations of AHM

The main current limitations of AHM are derived from the fact that the underlying

model (CMIF) does not support composite “anchors” therefore it is not possible to

define complex link conditions.

CHAPTER 2. MULTIMEDIA INTERCHANGE 45

2.10 QuickTime

The QuickTime Movie File (QMF) format [Apple, 1993], was developed by Apple

Computers originally for Apple Macintoshes, as an extension to System 7; it has now

been ported to MS-Windows.

QuickTime is a container for time-based data. It presents a model for the storage

and interchange of time-related media that is independent of a system’s built-in timing

and synchronisation capabilities.

A QuickTime movie is actually any dynamic data such as a movie, a slide show, an

animation, etc. A movie can have several tracks with different types of information but

it can only have one track with a specific medium (such as audio). A movie atom is

made up of track atoms which are made up of media atoms as described in figure 2.13,

from [Buford, 1994],

Movie with several tracks

A movie also includes the specification for a poster which is a single image to

represent a movie, such as an icon, and a preview which is a short segment of a

QuickTime movie also used to identify a movie.

CHAPTER 2. MULTIMEDIA INTERCHANGE 46

Components of QuickTime

A full version of QuickTime includes these components:

• Movie toolbox which is the authoring application for creating, editing and dis­

playing movies;

• Image compression manager that controls compression and decompression of

images in a movie. QuickTime uses four compression algorithms:

1. Apple Photo - JPEG for static images;

2. Apple Video and Apple Compact Video for video;

3. Apple graphics for graphics;

4. Apple Animations for animations.

• Component manager that provides an interface for adding compression/decompression

methods and device drivers.

• “Scrapbook” which is capable of storing movie clips to be pasted into applications

which use QuickTime.

Limitations of QuickTime

Although QuickTime provides for adding time based media to existing applications, it

does not provide mechanisms for creating hypermedia as it does not provide for links

being triggered from the media it handles.

2.11 Adobe Acrobat

Although Adobe Acrobat [Adobe, 1995] is not a standard for document interchange, it

was invented by the creators of the PDL (page-description language) PostScript which

is the de facto standard of the printer world. Adobe aims at achieving the same level

CHAPTER 2. MULTIMEDIA INTERCHANGE 47

of acceptance for electronic documents. Acrobat accomplishes this by using proven

technologies such as EPS (Encapsulated PostScript) and Multiple Masters fonts.

Acrobat’s PDF (Portable Document Format) uses a page description language (PDL)

based on PostScript to describe the text, graphics, and images in a file with additional

facilities for links and annotations. Because it is based on PostScript, a PDF file is

device and resolution-independent, so it will reproduce at the highest resolution that the

output device supports.

Adobe has published PDF as an open standard, allowing developers to support the

format in third-party applications.

Adobe Acrobat comprises a set of packages with specific objectives:

• Acrobat Exchange is the package to read and write portable documents;

• Acrobat Reader is only capable of reading documents created using the Exchange;

• Acrobat Distiller also used to create documents. It provides an easier way of

creating documents than the Exchange as it can take any level 2 PostScript

encapsulated PostScript created by another package and convert it to PDF format.

Acrobat provides for adding links, notes and book marks to documents although it

does not provide facilities to identify who added the marks.

Limitations of Acrobat

Although very powerful when converting existing documents in PostScript format,

Acrobat is not a general hypermedia tool, since it was not designed to take advantage

of distribution, and is not directly extensible to accommodate new media. Another

important limitation of Acrobat is that it is page based.

It seems that the natural environment for its usage will be the office, where it provides

a good solution to reduce the volume of paper, and not as a hypermedia tool in general,

because of its current lack of extensibility.

CHAPTER 2. MULTIMEDIA INTERCHANGE 48

2.12 The World Wide Web

The World Wide Web (WWW or W3 or just “the web”) is a wide-area client-server

architecture for retrieving hypermedia documents over the Internet. It started as a project

at CERN as a large scale distributed multimedia system to provide for the distribution of

documents related to high energy physics research. The web has since spread to other

areas and is probably the most well known and heavily used distributed multimedia

system available now, with browsers available for virtually all operating systems and

configurations from dumb terminals to high performance graphics systems.

The user sees the web as a collections of nodes (documents) and links between them.

Navigation is usually initiated by clicking with a mouse on an anchor that triggers the

associated link and causes the destination document to be retrieved. It also supports

a means of searching remote information sources, for example bibliographies, phone

directories and instruction manuals.

The web provide transparent interfaces to Gopher, Wais, or anonymous ftp, provid­

ing access to virtually all resources present in the Internet. Identification of resources

in the web is accomplished by Uniform Resource Locators which are described in the

next section.

2.12.1 Uniform Resource Locators (URL)

The World Wide Web uses a naming scheme called Uniform Resource Locators

(URL) [Berners-Lee, 1995] to represent hypermedia links and links to shared resources.

The URL syntax identifies documents in terms of the protocol to retrieve them, their

Internet host and path name (figure 2.14). Among the protocols supported are http,

telnet, (anonymous) ftp, NNTP, wais and gopher. One drawback of URLs is that they

generally depend on particular servers. Work is still in progress to provide widespread

support for lifetime identifiers that are location independent. This will make it possible

to provide automated directory services similar to X.500 [CCITT, 1988] for locating

CHAPTER 2. MULTIMEDIA INTERCHANGE 49

the nearest copy of a resource [Raggett, 1994a],

http://ukc.ac.uk/ukc/about_ukc.html/ /
/ /

/ /
Protocol Host path

Figure 2.14: Example of a URL

Universal Resource Numbers (URN)

Universal Resource Numbers (URN) are a proposed system for unique timeless iden­

tifiers of network-accessible files being developed by IETF Working Groups. URNs,

unlike URLs, do not contain information to retrieve nodes, and may be allocated to

nodes and represented in source anchors.

The objective of URN is to reduce network traffic and provide a more robust structure

where the location of a host is not encoded. The reader’s system does not need to retrieve

a node if it already has it. Implementation of caching mechanisms is facilitated; because

the identification does not change, any server with the object identified by the URN can

satisfy a request for it. On the other hand, if the node is changed, all links pointing to it

must be updated invalidating existing caches. This scheme is therefore useful only for

very large nodes, that impose a heavy transmission cost for their retrieval, and that are

unlikely to be updated.

2.12.2 Hypertext Markup Language (HTML)

The Hypertext Markup Language (HTML) [Berners-Lee, 1993], which is the language

used by the Web browsers, describes the organisation of documents so that structural

elements can be identified and accessed over the Internet.

An HTML document is an ASCII file marked up with tags, with a syntax based

on SGML (see example in figure 2.15), that provide a hierarchical structure to the

text [Barry, 1994]. HTML includes markup elements for:

http://ukc.ac.uk/ukc/about_ukc.html

CHAPTER 2. MULTIMEDIA INTERCHANGE 50

<TITLE> Here comes the documents' title </TITLE>
<H1>A heading with level 1 is herex/Hl>
<H2>A sub-heading is here</H2>
<P> And here comes the first paragraph.</P>
<H2>Another sub-heading is here</H2>
<P> Now we have the second paragraph...</P>
< P > T h i s i s a r e f e r e n c e t o t h e WWW

(World Wide Web)

< / P >
<P>This link will connect you to the Library

(UKC Library Catalogue: CATS)
</P>

Figure 2.15: Example of an HTML document

• Headers: six levels of header are supported and they are tagged from HI (the

most significant) to H6 (the least significant). Usually the level of significance

will define the font and size the header is displayed with;

• Paragraphs: normal texts automatically wrapped by the browser, and a paragraph

has in most cases one tag to define its beginning and one to mark its end. The

ending tag can be implicit;

• Various types of character highlighting;

• Character-like in-line images;

• Hypertext links: an HTML link defined by an URL (see section 2.12.1). Intheex-
ample above, the reference < A HREF="http://www.w3 . org/hypertext/
WWW/TheProject"> (World Wide Web) < / A > will connect the user to
the home page at www. w3 . org using the http protocol. The only part of the
reference that the browsers make visible to the reader is (World Wide Web)
which can be selected (e.g. with a mouse) to activate the link.

• Lists;

http://www.w3.org/hypertext/WWW/TheProject
http://www.w3

CHAPTER 2. MULTIMEDIA INTERCHANGE 51

• Preformatted text;

• Simple search facility;

HTML+

HTML+ [Raggett, 1993b, Raggett, 1993a, Raggett, 1994a] is a superset of HTML

adding extra features such as figures, tables and forms. It also generalises structures

present in HTML to facilitate the process of converting between HTML+ and other

formats. HTML+ formalises the concept of nested lists providing various list styles. It

also defines unordered lists that can be used to implement menu elements.

In addition to the elements supported by HTML, an HTML+ document supports the

following elements:

• Nested lists;

• Figures;

• Tables;

• Forms;

• Literal or Preformatted text;

• Mathematical formulae;

2.12.3 Virtual reality and the Web

Extensions to provide virtual reality via the Web are being investigated. Examples

include the Virtual Reality Markup Language (VRML) discussed in [Raggett, 1994b]

and [Pichler etal., 1995], The virtual reality extensions would also provide support for

a virtual teleconference. The first web browsers with virtual reality features, such as

VRweb [Pichler et al., 1995], were made available in 1995.

CHAPTER 2. MULTIMEDIA INTERCHANGE 52

2.13 Presentation Environment for Multimedia Objects

(PREMO)

The Presentation Environment for Multimedia Objects (PREMO) is being developed

by ISO/IEC JTC1/SC24 [ISO, 1994b, ISO, 1994a, Stenzel et al., 1994] which is the

group responsible for computer graphics and image processing. The main aim of the

project is to add presentation and interaction with more than one medium. PREMO

should therefore make use of standards for single-media already developed within ISO.

As PREMO deals primarily with presentation aspects of multimedia, it is distinguished

from and should be used in conjunction with, other ISO/IEC standards such as ODA

(described in section 2.6), HyTime (section 2.5) and MHEG (chapter 3) [Herman et al.,

1994, Stenzel et al., 1994].

PREMO is being designed to cope with the requirements of new multimedia ap­

plications and of new functionalities added to workstations. It is an open architecture

that provides facilities for customisation, extensions and configurations depending on

the needs of applications, and should satisfy the needs of various areas of application,

ranging from CAD/CAM to virtual reality.

PREMO is object oriented and based on the model proposed by the Object Man­

agement Group (OMG) [Digital Equipment et al., 1993]. This should make it portable

and usable in a distributed heterogeneous environment.

The work on PREMO is still in its early stages and it is not expected that PREMO

will become an international standard before 1997.

2.14 Final remarks

This chapter has given an overview of a number of existing and emerging standards for

structuring hypermedia applications. Of these, the most important are SGML, HyTime,

ODA, PREMO and Acrobat. Except for the last one, they are all “de jure” standards;

CHAPTER 2. MULTIMEDIA INTERCHANGE 53

Acrobat is a commercial product which is being proposed as a “de facto” standard.

Interest in SGML and HyTime applications seems to be booming, especially in the

publishing industry (where SGML was originated), while there seems to be a decrease

in interest in ODA.

PREMO is still not well known and it is not clear that a new standard that overlaps

with MHEG, HyTime and other graphics standards is required in the short term.

Although Acrobat is still a relatively new product, the fact that it is based on well

known technologies makes it a strong candidate to become a standard as Adobe intends.

Another important emerging “de jure” standard, not discussed in this chapter, is

MHEG, which is described in detail in the next chapter.

Chapter 3

MHEG

The Multimedia and Hypermedia information coding Expert Group (MHEG) is the ISO

Working Group WG12 of SC29. The standard being defined by the group is “the base

coded representation of final form multimedia and hypermedia information objects”

that will be interchanged as a whole within or across services and applications.

This chapter presents an overview of the MHEG standard as defined in [MHEG,

1994b]. An introduction to MHEG can be found in [Colaitis and Bertrand, 1994],

[Meyer-BoudnikandEffelsberg, 1995] and [Casey, 1994]. A critical analysis of MHEG

is presented in chapter 7 and an overview of MHEG classes is shown in Appendix A.

3.1 Introduction

The work being developed by MHEG, under the general title of Information Technology

— Coding o f Multimedia and Hypermedia Information, aims at producing the following

documents:

• 13522-1 MHEG Object Representation, Base notation (ASN.l): this is the most

advanced part of the work. The description of MHEG in this chapter is based on

this document. In the text below, unless explicitly stated, the term MHEG will

refer to this document;

54

CHAPTER 3. MHEG 55

• 13522-2 Alternate notation (SGML)-, this document will be developed further

once the base notation work is concluded;

• 13522-3 MHEG extensions for Scripting Language Support: this is still in its

early stages of development, as initially MHEG did not aim at providing support

for scripting languages;

• 13522-4 Registration Procedure for Format Identifiers: this is also still in an

early stage of development;

• 13522-5 MHEG Subset for Base Level Implementation : which is a new work

item added to the MHEG work in November 1994. MHEG 5 defines a subset

of MHEG to be applied to “simple applications” such as video on demand and

browsing systems. It is discussed in more detail in section 7.1.1

3.1.1 Standard Objectives

The standard focuses on the generic structuring aspects of the objects and takes into

account the following requirements:

• Use in systems with minimal resources;

• Interactivity and multimedia synchronisation;

• Real time presentation;

• Real time interchange;

• Final form representation.

3.1.2 Suitability of MHEG

MHEG defines objects in a non revisable form which makes it unsuitable for highly

interactive authoring applications. However, it is well suited for reading or browsing

CHAPTER 3. MHEG 56

systems. For example, an MHEG system is suitable for presenting a collection of

multimedia objects stored on a CD-ROM.

3.2 Object Interchange

Figure 3.1 shows the scope of MHEG. The figure shows levels where multimedia

interchange occur:

Figure 3.1: Scope of MHEG

1. Application level: the infinite varieties that can exist at the application level

makes it unsuitable for standardisation. An application may, however, use the

script level to exchange objects.

2. Script level: MHEG currently makes no attempt to standardise scripting lan­

guages. Scripting languages should use the MHEG level below to interchange

objects.

CHAPTER 3. MHEG 57

3. MHEG object level: this is the scope of MHEG.

4. Non-MHEG object level: this the level where standards for monomedia inter­

change are used. MHEG objects make use of standards at this level.

5. Other protocol element level: this is the lowest level of interchange. Protocols

for messages and acknowledgements are included in this level.

6. Object Representation: Objects are coded using ASN.l and an alternative repre­

sentation in SGML is being developed.

3.3 Structure of MHEG

MHEG is based on three concepts:

1. MHEG classes, MHEG objects: MHEG classes represent the objects that are

actually interchanged. The run time system may instantiate any number of

objects from a given object class;

2. Run-time objects (rt-objects): Run-time objects are not interchanged between

applications, but their existence is triggered dynamically by the run-time system.

Objects created from subclasses of Model (figure 3.2) may be reused in different

contexts. Each time such an object is created, a run-time object is instantiated.

For example, an image may be exchanged once but be used many times with

different attributes such as size and colour. Elements in a run-time composite are

called sockets.

3. Channels: channels define logical spaces in which run-time objects are presented

The standard defines an object oriented representation of multimedia entities, with

a single inheritance tree as shown in figure 3.2.

CHAPTER 3. MHEG 58

MH-OBJECT>
ACTION
LINK
MODEL>

SCRIPT
COMPONENT

CONTENT>
I MULTIPLEXED CONTENT

COMPOSITE

CONTAINER
DESCRIPTOR

Figure 3.2: MHEG Classes

The hierarchy defines data inheritance but the standard does not define class methods.

Neither does MHEG enforce or define an object-oriented approach for a MHEG system;

it makes no assumption on the internal representation of systems.

3.4 Object Identification

3.4.1 Naming

The standard provides three identification mechanisms:

1. External identification;

2. Internal identification;

3. Symbolic identification.

External identification

External identifiers are defined by the standards ISO 8879 Formal Public Identi­

fiers [ISO, 1986a] and ISO 9070 [ISO, 1986b] Registration procedures for public

text owner identifiers. They are not defined by the standard and are not encoded within

the MHEG object.

An external identification can be decoded without decoding the object. It is made

up of two parts: i) a public identifier which is a character string defined by ISO 8879;

CHAPTER 3. MHEG 59

and ii) a system identifier which is system dependent and is used to identify information

within a system and to identify the system itself.

The external identification is the only way to identify data not included in a content

object or in a script object.

Internal identification

Internal identifiers are encoded within the object. They cannot be retrieved without

decoding the object. An internal identification can be an identifier (used to identify an

MHEG Object, an rt-object, a channel, a multiplexed stream or null objects), or index

(used to identify a composition element, a container element or a socket).

• MHEG identifier: an optional identifier that can be assigned to each MHEG

object. It is made up of an Application Identifier which is a list of numerics

provided by the application designer and an Object Number.

It is the object designer’s responsibility to ensure that MHEG identifiers are

unique within the application.

• Rt-object identifier: a mandatory identifier assigned to each rt-object. The iden­

tifier is composed of a model object identification that identifies the model object,

and an rt-object number provided by the author (again, the author must ensure

that the number is unique).

• Channel identifier: a mandatory numeric identifier assigned to a channel. The

author must ensure that the number is unique within the composite.

• Stream identifier: a mandatory identifier assigned to each stream within a multi­

plexed content object. A stream identifier defines a list of numerics that give the

path from an outer stream to inner stream within the multiplexed data.

• Indexing: An index provides an identification for an element within a constructed

entity. In container objects an index can be created by the engine (they are

CHAPTER 3. MHEG 60

sequential) or by the author, in which case they do not need to be sequential.

In composite objects, indexes are provided by the author and do not need to be

sequential. In rt-composite objects, sockets are indexed from one, sequentially

and all indexes must be used.

Symbolic identification

Symbolic identification (aliasing) can be used to replace any other external or internal

identification. It is recommended that such an alias should conform to sub-clause 9.3

of ISO 8879 SGML.

3.4.2 Referencing

Referencing in MHEG is realised by the use of a Generic Reference which addresses

MHEG entities. Generic references can be constants or the result of a get action (see

section A.2).

Table 3.1 summarises the referencing that can be used in each context. Chapter 5

gives details of MHEG referencing.

Reference
Type

Alias Exter
id.

Cont
id.

MHEG
id.

Null Obj
+

tail

Model
+

rt-obj

rt-comp
+

socket
tail

Data • •
MHEG Object • • • • •
Container element • •
Rt-Object • • •
Socket •
Channel • • •
Stream • •

Table 3.1: MHEG Referencing Summary

CHAPTER 3. MHEG 61

3.4.3 Tail referencing

Tail referencing is used to identify an element within a container object or rt-composite.

It can be:

• Single tail: which describes the path from an outer entity to the desired inner one;

• Child tail: where the reference is made to the set of all child elements in the first

generation only;

• Descendant tail: where the reference is made to all descendants elements in all

generations.

3.5 Representation of time and space

The MHEG generic space

MHEG defines a generic space as being composed of four axes:

• The temporal axis (T): this axis is measured using a Generic Temporal Unit

(GTU). For rt-components, the range is [0 , o r i g i n a l . d u r a t i o n] where

o r i g i n a l _ d u r a t i o n is, for example, the length of a video clip.

The granularity of T is defined by a Generic Temporal Ratio (GTR) which defines

the number of consecutive unitary Generic Temporal Units intervals there are in

one second.

• Three spatial axes (X, Y, Z): which have the usual right handed mathematical

sense. Measures in these axes are expressed by Generic Spatial Units (GSU)

The granularity of each axis is defined by a Generic Space Ratio (GSR) which

defines the number of unitary Generic Spatial Units intervals there are in one

generic space.

CHAPTER 3. MHEG 62

Composition and projection in the generic space

The standard provides two independent mechanisms for the manipulation of time and

space:

1. The composition of MHEG objects that defines position points at which a pre­

sentation process will attach the reference points of the projectable objects; and

2. The projection of an MHEG object that specifies how content data is related to

its reference point.

The user process is responsible for converting MHEG generic space to real units.

The rate at which time units are mapped into real units can be changed by setting

different values of speed. Size can be changed by setting different aspect ratios (they

can be different for each axis).

MHEG does not have a generic mechanism such as HyTime’s wands that allows the

user to define the semantics of the mapping from one generic space to another generic

space or to real units.

3.5.1 Synchronisations relations

Six levels of synchronisations are provided:

1. Atomic Serial Synchronisation Relation (figure 3.3 left)

Object 01 is presented immediately after the activation time of a composite object

and object 02 after the end of presentation of object 01.

2. Atomic Parallel Synchronisation Relation (figure 3.3 right)

Objects 01 and 02 are presented both starting at the reference time.

3. Elementary Synchronisation Relation

Two types are defined:

CHAPTER 3. MHEG 63

T1 T1
l ------------------- 1--

T2 02 T2 02

i_____________ = t I

REF REF

Figure 3.3: Atomic Serial (1) and Parallel (r) Synchronisation

T1 01 T1 01

02 02

T2

REF T2 REF

Figure 3.4: Sequential (1) and Parallel (r)Mode Synchronisation

(a) Sequential mode (figure 3.4 left) where object 01 is presented at time T l

after the reference presentation time and object 02 is presented at time T2
after the end of 01;

(b) Parallel mode (figure 3.4 right) where object 01 is presented at time Tl
after the reference presentation time and object 02 is presented at time T2
after the reference presentation time.

4. Conditional Synchronisation Relation

The presentation of an object is linked to the satisfaction of a condition;

5. Chained Synchronisation Relation (figure 3.5)

The synchronisation occurs at marks.

6. Cyclic Synchronisation Relation (figure 3.6)

This is the type of synchronisation required by a chronometer for example.

The types of synchronisation provided are powerful enough to model most hyper­

media usages. Synchronisations that depend on the occurrence of complex conditions

CHAPTER 3. MHEG 64

mi Sync marks

T1 |ml
+--------

r
f -

mk

-i---------

r4-

mn

Audio
Video

REF
Sync at each change of M

Figure 3.5: Chained Synchronisation

T1 01 1

-------^

111------------
111111

°
11111_-tJ______

1
--------4---------------------- 1------------- 1----------
'2 1

REF

Figure 3.6: Cyclic Synchronisation

cannot be defined directly and must be handled by scripting languages that will generate

the actions defining synchronisation types supported by MHEG.

3.6 Extensibility of the model

MHEG allows applications to extend the model via three mechanisms:

1. Extension o f elementary actions: Elementary actions may be extended by i)

adding a parameter to an existing action; ii) extending actions by allowing the

inclusion of more powerful functionalities; iii) using dedicated implementations

that extend the elementary action — the actions are then tagged as ‘PRIVATE’

and do not conflict with elementary actions defined by the standard.

Basic MHEG engines ignore the extended actions.

CHAPTER 3. MHEG 65

2. Extension o f attributes o f an MHEG object: applications may create new classes

derived from MHEG classes (they are not considered MHEG classes), or new

elementary actions may be defined as described above.

3. Extension o f data types and classifications: MHEG proposes the existence of

an “MHEG data type registration authority” that is responsible for keeping the

“MHEG catalogue” to which new data types or classifications may be added.

Applications may also define a “proprietary catalogue” that will keep private data

types and classifications.

3.7 Final Remarks

This chapter provided a flavour of the MHEG standard. An analysis of its main

features in provided in chapter 7. However, as a standard that deals, mainly with

the presentation of multimedia objects, one of the main points that distinguishes an

MHEG implementation from other standards, such as HyTime, SGML or ODA, is the

requirement for efficiency. When a choice must be made between expressive power

and run-time efficiency, the latter must be emphasised.

Chapter 4

Requirements and Constraints

4.1 Introduction

Most hypermedia systems designed to date are centralised monolithic systems. These

systems provide built-in support for a limited set of media. The environment usually

has a poorer supporting interface to each medium than that of an application solely

dedicated to that medium.

As new media are constantly introduced to the market, monolithic systems are no

longer feasible. The introduction of new media, hardware and software tend to make

these centralised systems obsolete soon after they are released.

Multimedia environments should be easily extensible to accommodate technological

developments. The interoperation and interconnection of heterogeneous systems and

systems components should be easily and coherently extendible by the addition of

new components, defining an Open System model. The development of concepts

independent of the applications is needed for the handling of information in an Open

System environment.

Distributed processing of multimedia information will play a key role in applications

areas [Eckhard Moeller and Angela Scheller and Gerd Schtirmann, 1990] such as

office systems, publishing, health care, CAD, CAI, multimedia information bases, and

66

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 67

Figure 4.1: A Multimedia System

advertising. This will permit the development of new areas of communications and

information processing.

Most existing Hypermedia and Multimedia Communication Systems do not provide

an adequate solution for all applications. In these systems, the multimedia information

is integrated into a single multimedia stream where time and events are not involved.

Figure 4.1 shows a typical multimedia system. A central workstation controls

several special dedicated devices for presenting the different media. In the figure,

devices like a video disk can be used to display video on TV screens asynchronously.

The same video could be presented on the host’s monitor using a video card.

The workstation only has to start playing the video and all further processing can

proceed with no control from the central system. In the case of images stored on the

CD-ROM, the workstation must keep a closer control, retrieving the contents data and

controlling the display of the window that frames the images.

From figure 4.1, it can be seen that a multimedia system is inherently distributed and

that distribution transparency should be carefully planned: a file system can (usually)

be transparent to the user but although it may be desired to have the possibility of

presenting a content object on more than one device, it is required that the user defines

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 68

Figure 4.2: A Distributed Multimedia Environment

where the device is physically located. Figure 4.2 gives an idea of how a distributed

system may be structured.

It is also impossible to predict the availability of new media in the future, and a

multimedia model should be able to accommodate a new medium as seamlessly as

possible.

This chapter discusses some of the requirements that should be met by the imple­

mentation of such a system. The chapter is structured as follows:

• Initially the general requirements that all hypermedia systems should meet are

presented;

• Then the desirable features for the operating system are presented;

• The next section presents an overview of the operating system chosen (Windows

3.1) for the prototype implementation.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 69

• Finally, a summary of available naming schemes and existing naming servers is

presented.

4.2 General requirements

There is effectively a consensus in the scientific community that all hypermedia systems

should provide:

• Separation o f data and structure: raw data should be completely separated from

the structure that binds it together. When using mark up languages, the mark up

should not be embedded in the data. This principle should be applied not only

for logical structures such as hypertext links but also to presentation information.

The separation of content and structure allows users to have their personal view

of the contents by changing how documents are created, but it also has poten­

tial commercial implications as there is the possibility of purchasing different

structures for the same data. This is what happens today, for example with direc­

tory services that sell structure services over freely accessible information such

as telephone numbers, or even companies that sell directories of free software

accessible by anonymous ftp without actually providing the software themselves.

The requirement for separation of data and structure has serious implications

for the software that will manipulate this information, especially with regards

to software integration; if the content information is changed, all structure that

relates to it should also be updated.

• Reuse o f existing tools: every organisation has a considerable investment in

software which represents not only the cost of the software itself but also the cost

of training employees in its use and the value of the data represented by output

from existing (usually proprietary) systems. A new multimedia system should be

capable of making use of existing tools for manipulating individual media.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 70

• Distribution: distributed applications now are used not only at scientific and

military sites but even in medium sized companies. The widespread use of the

Internet is also adding extra requirements for “every day” applications.

Although some success can be achieved in adding distribution to existing systems,

as in [Brown, 1994], distribution and network access should be planned for

explicitly.

Distribution happens at the level of contents data, where a document may include

some contents stored anywhere in the world, and also at the presentation level

when a document may be run using several machines; for example, the audio

may be handled by a special midi device, video by another device and the whole

presentation process may be happening at more that one location simultaneously.

• Support for heterogeneity o f architecture: this is a side effect of the distribution

requirement. As most organisations make use of several different machine ar­

chitectures and it is desirable to have all machines interconnected, a multimedia

system should be planned to cope with different architectures, communication

protocols and network services.

• Extensibility: new services, hardware and even media are constantly being in­

troduced into the market. A new system should be flexible enough to be able to

accommodate the extra facilities without a great impact on existing documents

and software. As an example, access to the World Wide Web (described in

section 2.12) is today almost a mandatory requirement for a hypermedia sys­

tem. Existing systems, such as Microcosm (described in section 1.3.4) had to be

adapted to integrate to the Web.

4.2.1 Adding new media and devices

Any Open Hypermedia system must be able to accommodate new media and devices as

they appear. When new media or devices are added to an existing environment, some

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 71

general requirements must be analysed:

• The processing the device performs on its data: this determines the timing re­

quirements and constraints imposed/required by the device;

• The types of data that can be processed: this determines the format of interfaces

to devices or software controlling the new medium;

• The stream position and control vocabulary required: this determines if any

stream interface or position keys will be needed.

To be extensible, a system must be able to accept a wide range of devices and

media with different answers to the above points without requiring changes in its basic

structure.

4.3 Operating System

The implementation of run time support for a multimedia system with real time con­

straints and distribution sometimes makes the border between operating system and

application blurred.

In this section, the requirements of the application which affect the operating system

used are discussed.

4.3.1 Cooperative v s Preemptive Operating Systems

One of the main tasks of an operating system is to decide which process to run when

more than one is runnable. Several strategies for scheduling could be used [Tanenbaum,

1992a], including fairness, efficiency, response time, turnaround or throughput.

Two opposite strategies are:

• Preemptive scheduling: The scheduler gives a time slice of the CPU in turn to

all competing runnable processes. Priorities can be defined and the scheduler

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 72

can take advantage of events such as a process having to wait for I/O to optimise

CPU usage. An example of a preemptive operating system is the Unix operating

system.

• Run to completion scheduling: in this case, only one process is run until comple­

tion. This algorithm is simpler than a preemptive one and is nowadays restricted

to dedicated systems.

One scheduling strategy that falls in between these two is cooperative scheduling.

Under a cooperative operating system, more than one process can run, sharing the

computer resources. Unlike a preemptive system, in a cooperative scheduler, the

operating system does not enforce a division of CPU time between the processes but

relies on the behaviour of each process to yield control at certain points. A badly

behaved process can take over all resources until its completion. An example of a

cooperative operating system is MS-Windows 3.1, which is described in more detail in

section 4.5.

The choice of a cooperative or a preemptive operating system depends on the

application’s timing requirements and leads to distinct programming disciplines. The

non-preemptive approach is better in some cases; to use it we must be able to guarantee

an upper bound on the execution times of all threads (between points where a dispatching

system call is made), and this must be less than the minimum required response time

for any thread (the time from an interrupt occurring to the thread running). In many

cases this can be ensured for longer running threads by having them call a “reschedule"

system call every so often (that is, a call that permits the kernel to reschedule if a higher

priority thread is ready).

If these conditions are true, then non-preemptive scheduling offers some advantages

because:

• Scheduling issues are simplified as non-preemption eliminates most of the need for

explicit synchronisation and critical sections as a task can only lose the processor

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 73

at discrete points in its code.

Consequently it:

- reduces design and debug time as the number of critical sections are reduced

because atomicity of most operations on shared data is inherently ensured.

- improves code quality (less potential for nasty bugs).

- reduces OS run-time overhead as context changes due to task switching are

less frequent.

• Saves memory as the operating system needs to store less contextual information

for the running process when it is halted.

On the other hand, the programmer must be aware that each application must be

well behaved otherwise the feeling of multitasking is lost. Under certain conditions,

this may cause the code to be more complex as time consuming operations must be

interrupted frequently to give a chance for other applications to run, and the application

programmer is responsible for providing these interruptions. In the case of operations

such as reading or writing a large file, the I/O routine must be careful not to take control

for too long as I/O operations can be time demanding if there is no hardware support for

asynchronous operations [Silberschatz and Galvin, 1994]; this is commonly the case

with desktop computers.

4.4 Future Operating Systems

Open distributed Multimedia use is one of the forces driving the development of future

operating systems. Resource sharing needs to be widespread with machines required to

be both client and server at the same time, breaking the current model where a desktop

machine is usually the client of a larger remote machine.

Operating systems must be able to protect applications from each other. Because

the run to completion requirements are often not met by applications, an operating

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 74

system should also be able to provide a preemptive scheduling mechanism where all

applications are treated fairly. As processor costs are reduced, the operating system

should also be capable of supporting symmetric multiprocessing (SMP) hardware.

The world wide level of interconnection required by future applications places

heavier requirements on operating systems in the following areas [Orfali et al., 1995]

[Linington, 1992]:

• Location transparency: users, servers and resources should be able to move from

one place in the network to another without disruption;

• Name space transparency: names must resolve uniquely within a given context

or naming authority, but the operating system should provide support for a set of

federated name spaces;

• Administrative transparency: the operating system should be responsible for

synchronising clocks, and handling updates when replicated services are being

provided;

• Secured-access transparency: users should be able to access the resources they

are entitled to use from anywhere, even when using insecure telephone lines.

Authentication, using mechanisms such as Kerberos [Kohl et al., 1994], should

regulate users’ access;

• Communications transparency: users should not be aware of the protocols in­

volved in the communication. Mechanisms such as Remote Procedure Call (RPC)

provide transparency so that, from the client point of view, a call to a procedure

running on a machine thousands of miles away can be handled just like a call to

a local procedure;

• Consistency checking: the infrastructure should provide means to check consis­

tency between the human interface, programming interface and communication

protocols.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 75

Applications

PC Distributed Distributed
Integration Services Services

Secu
rity

DFS - Dlstrbuted File Services

| Naming
1 Service

Time
Service

Future Core
Services

Remote Procedure Calls

Presentation Services

Mana
gement

Threads Services

Operating Systems Services

Network Transport Services

Figure 4.3: DCE architecture (from [Berson, 1992])

The tendency, therefore, is for the development of an open distributed system.

Among the providers of such technologies today, the Open Software Foundation (OSF)

provides a moderately complete approach with the Distributed Computing Environment

(DCE) (figure 4.3) which consists of the following components [Berson, 1992]:

• Distributed file system;

• Directory service;

• Remote procedure call;

• Threads services;

• Time services.

Other components such as distributed file systems (e.g. the Andrew file system)

also provide desirable features to a distributed environment.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 76

4.4.1 CORBA

The most complete approach to open distributed systems today is offered by the Object

Management Group in the form of the Common Object Request Broker (CORBA) [Dig­

ital Equipment et al., 1993, Soley, 1990], OMG is a non profit international trade

association, composed of more than 400 members, including several large corporations

such as DEC, HP and NCR. Their objective is to define an open software architecture in

which object components written by different vendors can inter-operate across networks

and operating systems.

The Object Management Architecture provides an infrastructure for distributed

objects. It consists of the following components:

• The Object Request Broker (ORB): which provides the infrastructure for object

communication;

• The Object Services: which control the life cycle of objects, including functions

to create objects, and to control access to objects;

• The Common Facilities: which provide a set of configurable generic applications

such as printing facilities, electronic mail, etc;

• The Application Objects: which represent application objects. An application

object is usually derived from a set of basic object classes by using inheritance.

The latest version of CORBA (CORBA 2.0) includes the description of the Object

Request Broker and the definition of the Interface Definition Language that allows

interaction between objects in the same ORB. It also defines protocols for the interop­

eration of several ORBs, with two versions: a lightweight one based directly on IP and,

optionally, another based on DCE [Orfali et al., 1995].

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 77

4.5 Windows 3.1 Operating System

Although MS-Windows 3.1 provides few of the desirable features discussed above, it

was chosen as the platform on which to implement the prototype because of the size of

its installed base, and because one of the aims of this work is to define an architecture

for MHEG objects usable on desktop computers. The existence of several dedicated

pieces of hardware for multimedia, supported by MS-Windows 3.1, was another point

taken into account when the operating system was chosen.

MS-Windows 3.1 is not a full-fledged operating system, as it runs on top of MS-

DOS. However it provides the user with the feeling of a cooperative multitasking

operating system. The file system is still managed by MS-DOS while MS-Windows

3.1 handles the other pieces of hardware and is responsible for memory management,

program execution and scheduling [Charles Petzold, 1992].

Processing under windows is based on a Window Procedure and each process under

MS-Windows 3.1 is a window although not necessarily a visible window. The Window

Procedure is called by MS-Windows 3.1 and the process retains the CPU until it yields

control. A window, therefore, should not take control for a long time to give chance for

other processes to run. A program usually runs around the loop:

while (GetMessage((LPMSG) &msg, NULL, 0, 0))
{
TranslateMessage((LPMSG) &msg);
DispatchMessage((LPMSG) &msg);

}

that retrieves any messages to the Window that are to be processed by the Window

Procedure. At each GetMessage cycle, the window yields control to the operating

system which can then schedule a new process. The MS-Windows 3.1 environment

can, however, call the main window procedure directly, which makes the environment

a mixture of the message and call back paradigms.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 78

Windows messages

The loop above shows that an application will usually retrieve messages from a queue

managed by Windows, and will process each message internally. Typically, the process

will hold the CPU during the whole time it takes to process a message. The call

to GetMessage is an indication to the operating system that this process may be

suspended and another application scheduled. If the process is performing a very

demanding routine, it should frequently suspend itself by informing the operating

system, using a mechanism such as the above, so that another process may be run.

A window message is a simple structure defined as follows:

typedef struct tagMSG
{

HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

where WPARAM (an unsigned i n t) and LPARAM (a LONG) are used to transfer

parameters to the process. Typically the application receives messages directly from the

operating system (such as those concerned with mouse or keyboard events, or window

positioning) and not from other applications. From this structure, it can be seen that the

amount of information a message can carry is very limited. To provide communications

between processes, MS-Windows 3.1 defines other mechanisms, discussed below.

4.5.1 Interprocess Communication under Windows 3.1

Interprocess communication under MS-Windows 3.1 is based primarily around shared

memory. Typically applications communicate by three mechanisms:

1. Dynamic Data Exchange (DDE);

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 79

2. Object Linking and Embedding (OLE);

3. The Clipboard;

The following sections provide an overview of each of these mechanisms.

4.5.2 Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) is an interprocess communication method that uses

shared memory to exchange data between applications and implements a protocol to

synchronise the passing of data. DDE applications fall into four categories [Clark,

1992]:

1. Client: an application that requests data or services from another application;

2. Server: an application that responds to a client application with data or services;

3. Client/server: an application that is both a client and a server;

4. Monitor: a monitor is an application that can intercept DDE messages from other

DDE applications but cannot act on them.

A DDE application can have multiple concurrent conversations. Within a conver­

sation messages are handled synchronously but the application may switch between

applications asynchronously.

DDE applications must uniquely define all conversations. The conversation is

defined by the server and client applications windows’ handlers and each conversation

is managed by a hidden window. If a client application needs to have more than

one conversation with a server, a new (hidden) window must be created for each

conversation.

The DDE protocol defines a hierarchy to identify the desired data. DDE defines a

three-tiered identification scheme:

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 80

Application:

Topic

Figure 4.4: Example of a DDE Server

Figure 4.5: Example of a DDE Conversation

1. Application: this is the top level of the hierarchy and identifies the program, i.e.

the application that provides the service (the server);

2. Topic: each DDE server must provide at least one topic and it may provide several

topics.

3. Item: the application may provide several items within a topic.

For example, if we had an application that worked as a remote control for a Videodisk

and a VHS player, we could define the services it provides (figure 4.4) as:

• Application: r m t c t r l (the name of the program);

• Topic: there would be two topics: v d d s k and v h s ;

• Item: each topic would have the items r e s t a r t , p l a y , p a u s e , e j e c t .

There are three basic types of DDE conversations (figure 4.5) which are briefly

described:

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 81

1. The cold link: A cold link is established when a client application broadcasts a

message identifying the application and topic it requires. A server that provides

the topic acknowledges the message and then the client requests a specific item

which is acknowledged if the server supports it. If the server does not support the

item, it posts a negative acknowledgement. The conversation continues with the

client requesting items from the server. Either side of the conversation may end

the connection.

What characterises a cold link is that data is only transferred in response to clients

requests. If some data changes in the server, the client will only receive the

updated information if it make a new request.

2. The hot link: a hot link allows servers to inform clients that some data has

changed. When an item changes, the server posts a message notifying the client

of the update and transfers the new information.

3. The warm link: a warm link combines elements of hot and cold links. In this case,

the server notifies the client that some data has been updated but unlike the hot

link, the server does not automatically transfer the new information. The client

must then request the item if it so desires.

The protocol also allows a client to send unsolicited data to the server, and to send

a command string to be executed by the server.

The DDEML library

The DDEML provides an application programming interface (API) that simplifies the

task of adding DDE capabilities to a Windows application. Instead of sending, posting,

and processing DDE messages directly, an application uses the functions provided by

the DDEML to manage DDE conversations. The DDEML also provides a facility

for managing the strings and data that are shared among DDE applications. DDEML

provides a service that makes it possible for a server application to register the service

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 82

names that it supports. The names are broadcast to other applications in the system,

which can then use these names to connect to the server. The DDEML also ensures

compatibility among DDE applications by forcing them to implement the DDE protocol

in a consistent manner.

4.5.3 Object Linking and Embedding (OLE)

Object Linking and Embedding (OLE) is a mechanism for inter application commu­

nication. OLE introduced the idea of a document-centered approach instead of an

application-centered approach. In the document-centered approach, if there is a spread­

sheet embedded in a text document, and if the author wants to change its contents, he

will be able to activate a spreadsheet processor directly from the word processor to do

the processing instead of having independently to activate a spreadsheet, perform the

changes and then import the updated information into the word processor again.

The first version of OLE used the DDE protocol as the communication infrastructure.

A second version used a flavour of Remote Procedure Call (RPC) that Microsoft called

Light Remote Procedure Call (LRPC) [Microsoft, 1994] in the sense that it is based

on shared memory access and therefore only provides for communication between

processes running on the same machine. LRPC is not a communication protocol, as it

does not require a conversation to be established between the processes involved.

Future versions of OLE, Distributed OLE, should allow access to services such as

visual controls, multimedia services, data-access services, name services and distributed

security [Pleas, 1994],

4.5.4 Clipboard

The Clipboard is the standard Windows method of transferring data between a source

and a destination application. Data is transferred via the Clipboard by direct user

interaction, for example, when data is copied from one application (eg. a spreadsheet)

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 83

to another one (eg. a word processor).

There are several standard data formats used to transfer data via the clipboard. These

include metafiles, text, bitmaps, and others. An application can also define its own data

format.

Under Windows for Work Groups (discussed below), the clipboard may also be

shared allowing users to communicate data across the network.

4.5.5 Windows for Work Groups

Windows for Workgroups is a version of Windows 3.1 with added network capabilities.

It includes peer-to-peer file, printer, and clipboard sharing, mail capabilities, group

scheduling, chatting functions, and simple network-monitoring tools. The security

provided by Windows for Work Groups is very limited.

Network DDE

Network DDE (Net DDE) is an extension to DDE available for Windows for Work­

groups [Matthews and Dobson, 1993], It works on top of the existing DDE system and

monitors DDE conversations. If a conversation takes place with a remote system, Net

DDE routes the data over the network as shown in figure 4.6. Net DDE intercepts DDE

initiated messages targeted to a remote application; the message is then routed out to

the network where it is picked up by Net DDE on the server’s computer which then

translates it into a standard DDE initiate message.

Under Net DDE, client applications need to know the server’s name to establish a

conversation, which is still a problem for many applications running under Windows

where the server application name is hard coded. Net DDE also provides very little

protection for shared resources.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 84

Destination Source

Figure 4.6: Example of a NetDDE Conversation

4.5.6 Dynamic Link Libraries (DLL)

MS-Windows 3.1 uses Dynamic Link Libraries (DLL) to optimise resource usage. In a

DLL, memory is shared by all processes using it. There are two types of DLL:

1. Code libraries that contain executable code. Exported functions from these

libraries can be used by several processes. One example is a DLL to emulate the

floating point co-processor.

2. Resource-only libraries that may store, for example, bitmaps or fonts.

MS-Windows 3.1 system itself is basically built around three DLLs:

• KRNL386 responsible for memory management, loading and executing programs

and scheduling;

• User that manages the user interface and windowing;

• GDI that is responsible for the graphics.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 85

4.6 Naming

This is probably the most crucial aspect of design and standardisation in an open

hypermedia system. It is concerned with the syntax of a name by which a document or

part of a document is referenced from anywhere else in the world.

Since many protocols are currently used for information retrieval, the address

must be capable of encompassing many protocols, access methods or, indeed, nam­

ing schemes. For example, the WWW scheme uses a prefix to give the addressing

sub-scheme, and then a syntax dependent on the prefix used, in order to be open to any

new naming systems.

4.6.1 Name or Address, or Identifier?

Conventionally, a “name" has tended to mean a logical way of referring to an object

in some abstract name space, while the term “address" has been used for something

which specifies the physical location. The term “unique identifier" generally referred

to a name which was guaranteed to be unique but had little significance as regards the

logical name or physical address. A name server was used to convert names or unique

identifiers into addresses.

With wide-area distributed systems, this distinction is blurred. Locally, things

which at first look like physical addresses develop more and more levels of transla­

tion, so that they cease to give the actual location of the object. At the same time,

a logical name or a unique identifier must contain some information which allows

the name server to know where to start looking. In a global context, for exam­

ple " 1 2 3 7 1 5 9 2 4 2 3 4 6 2 4 4 2 3 4 2 3 2 3 4 2 3 4 2 4 2 3 4 6 8 7 6 2 3 4 2 3 6 8 " might well be

unique, but it contains insufficient (apparent) structure for a name server to look it up.

The name " i n f o . c e r n . ch" has a structure which allows a search to be made in

several stages. In fact, practical systems using unique identifiers generally hide within

them some clues for the name server, such as a node name.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 86

A hypertext link to a document ought to be specified using the most abstract name

possible, as opposed to a physical address. This is (almost) the only way of getting over

the problem of documents being physically moved. As the naming scheme becomes

more abstract, resolving the name becomes less of a simple look-up and more of a

search.

It is expected in practice that the translation of a document name will take several

stages as the name becomes less abstract and more physical.

Some document reference formats contain “hints" to the reader about the document,

such as server availability, copyright status, last known physical address and data

formats. It is very important not to confuse these with the document’s name, as the

hints have a shorter lifetime than the document.

If this direction is chosen for naming, it still leaves open the question of the format

of the address into which a document name will be translated. This must also be left as

open-ended as the set of protocols.

4.6.2 The Global Name Service

The The Global Name Service (GNS) was designed and implemented at DEC Systems

Research Center [Lampson, 1986], It was a descendent of Grapevine [Birrel et al.,

1982] which was one of the first extensible, multi-domain name services.

Some of the goals to be achieved in the GNS project were:

• Large size: the system should be capable of handling an essentially unlimited

number of names and to serve an arbitrary number of administrative organisations.

Its predecessor, Grapevine, was designed to be scalable over at least two orders

of magnitude in the size of the name space and the load of requests that it could

handle;

• Long lifetime: many changes will occur in the organisation of the name space

and in the components that implement the service during its lifetime;

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 87

Figure 4.7: Example of a GNS Directory Tree

• High availability: most other systems depend upon the name service; they cannot

work when it is broken;

• Fault isolation: local failures must not cause the entire service to fail;

• Tolerance o f mistrust: a large open system cannot have any component that must

be trusted by all the clients in the system.

In GNS, the user sees a hierarchy, like a file directory in an operating system such as

Unix. Figure 4.7 gives an example of a directory tree. Directories have unique identifiers

(DI) issued by a central host, and an arc labeled with a DI is a Directory Reference

(DR). In the figure, UKC is directory WORLD/Europe/GreatBritain/UKC or DI

#592. The Computing Lab can therefore be identified as either WORLD/Europe/-
GreatBritain/UKC/ComputingLab or #592/ComputingLab. The use of

DIs provides flexibility for change and growth of the naming structure, as a DI is

always correctly resolved in any environment and may be moved within a hierarchy. A

detailed explanation of the scheme can be found in [Needham, 1989].

This structure provides flexibility for change. If part of the tree moves to a different

place, it is only necessary to keep a “symbolic link" (i.e. an alias) pointing from where

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 88

it originally was to where it has moved to.

4.6.3 The X.500 directory

X500 Service(root)

France Great Britain Brazil •••

... BT PLC UKC •••

root

country

organization

organizational unit

CompStaff CompPosGrad-

Karen Rick John........Mary Ken.

organizational unit

person

Figure 4.8: X.500 Directory Information Tree

The X.500 [CCITT, 1988] directory service defines an abstract attribute-based name

space which is hierarchical as seen in figure 4.8 (adapted from [Coulouris et al., 1994]).

The whole tree is called the Directory Information Tree (DIT) and the associated

directory structure including the data is called the Directory Information Base.

X.500 allows objects such as organisations, people, and documents to be arranged

in a tree. Whereas the hierarchical structure might make it difficult to decide in which

of two locations to put an object (it’s not hypertext), this does allow a unique name to be

given for anything in the tree. X500 functionally seems to meet the needs of the logical

name space in a wide-area hypertext system. Implementations are still somewhat rare,

so it cannot be assumed as a general infrastructure. As of 1992 there were 177 servers,

holding a total of about 300,000 entries and serving 370 organisations connected to the

Internet [Coulouris et al., 1994],

As a directory service, X500 can be used to resolve resource names that are known

precisely and also to resolve imprecise queries such as to retrieve the names of users in

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 89

a given company, since nodes in the tree store a wide range of attributes.

A server in X.500 is called a Directory Service Agent (DSA) and a client is a

Directory User Agent (DUA). A client usually interacts with a server that in turn may

have to interact with other DSAs to resolve a query or redirect the client to another

server.

There are two methods of access to the directory:

1. Read: an absolute or relative name is given together with the attributes to be read.

The DSA locates the entry by navigating in the DIT, passing requests to other

DSAs if required and returning the requested attributes to the client;

2. Search: in this case, a filter is passed along with a base name that specifies the

node in the DIT where the search is to start. The filter (a boolean expression) is

evaluated by every node below the base node.

Additional attributes may be specified to limit the scope of the search in order to

reduce resource usage.

4.7 Final remarks

This Chapter has provided an overview of the requirements imposed on the design of

an open multimedia system and has also given an overview on the current available

technology.

The main points that should be taken into account are:

• The system must be open in the sense that it must make use of a heterogeneous

environment, and the design should be as independent of applications as possible;

• The system must be extensible, accommodating the addition of new technology

such as new media and new devices;

• It must be explicitly designed to make use of distribution, as later changes to the

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 90

system to accommodate distribution and make full use of networks are usually

difficult, and their results not perfect.

Chapter 5

Architecture and implementation

This chapter proposes an architecture for MHEG objects which meets the Requirements

and Constraints from chapter 4. The architecture is suitable for use in an environment

composed of desktop computers, running MS-Windows 3.1. The implementation of a

prototype of the architecture is also discussed.

5.1 Introduction

As discussed in chapter 3, there is a clear separation (for exchange purposes) in MHEG

between behaviour, content, interaction and composition of objects. Exchanged objects

are not themselves presented directly. Run time copies, adding dynamic behaviour,

are created from the exchanged objects. During rendering of the run time objects, the

contents and dynamic information are put together and managed by one process. This

process will also take care of user input, scrolling, etc. Therefore, we will always be

dealing with composite objects.

The environment used for the implementation is MS-Windows 3.1, and consequently

the design will be influenced by it. In MS-Windows 3.1, a process is always a window

(although not necessarily visible); therefore we have to define windows and the objects

they will handle. An overview of the MS-Windows 3.1 operating system was presented

91

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 92

in section 4.5.

5.2 Architecture Overview

At a high level, the system architecture proposed can be seen (figure 5.1) as being

made up of a system kernel (described in the next section); and several processes (see

section 5.4) (windows) that use the resources provided by the kernel for synchronisation

and communication.

Figure 5.1: High level system overview

Figure 5.1 represents the structure when only one host is being used. In the generic

case, more that one host will process the presentation and one kernel will be present in

each of them. All communication across hosts’ boundaries will be performed between

the kernels, as shown in figure 5.2. Typically, kernel processes running on more than one

host will exchange messages for clock synchronisation, name resolution and to request

remote execution of actions. The next sections will discuss the main components in the

system.

1 System kernel here means the main modules in the system, and not a kernel as used in Operating
Systems

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 93

Figure 5.2: Distributed control

5.3 The kernel

The kernel is responsible for system integration by providing communication between

components and external communication, name resolution and basic MHEG object

decoding. There is a copy of the kernel in each processing unit, which means a host

that is responsible for handling a set of objects. The kernel is basically an extension

to the operating system providing additional services for interprocess communication

(IPC), clock synchronisation and name resolution.

The system requires central services, such as a time server. It was decided that the

first kernel started (the one that will handle the first object) would be the controlling

one. Kernel processes started subsequently should use this kernel as a time server. The

first server is regarded as essential, probably running in the workstation where most of

the output is to be rendered, and if it fails, the whole presentation would be halted.

The kernel encapsulates the part of the system that needs to be changed if access to

external naming services is added. Since it makes use of IPC mechanisms available from

the underlying operating system to provide a transparent communication mechanism

to the users processes, the kernel is the only part of the system to be updated when

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 94

a new form of IPC is provided. For example, under Windows for Workgroups, all

process communication between hosts can be performed by using NetDDE (described

in section 4.5.5); when the system is ported to future versions of windows using more

efficient forms of communication, such as remote procedure calls, only the kernel

modules need to be updated.

The kernel, running in a single machine (figure 5.3), is made up of three DLLs: the

Registry, the Link Factory and the MHEG Engine action processor. The MHEG Engine

action processor performs basic MHEG operations such as creating a run time object

from a model object. There is also one process: the Clock, which provides a timer.

Figure 5.3: System kernel

The next sections will discuss these components in detail.

5.3.1 Link Factory

The Link Factory is made up of three main components (figure 5.4):

• Decoder: this is responsible for decoding all link objects. It reads each link in

the exchange format and creates a link object in the internal format.

• Storage: this is a temporary storage for links which have been decoded, but for

which the process holding the trigger condition has not yet been activated. A

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 95

T M ?d
ASN.I e

c
o

Windows
(processes)

d
e

starts triggered
links

trigerred link
processes

Figure 5.4: Link Factory Structure

reference to the link is kept by the registry for future retrieval by the appropriate

process.

• Triggered link starter: this module starts an independent module to handle the

link effect of a triggered link.

A link is stored in the link factory until it is explicitly destroyed, as it may be

triggered several times. Once a link is triggered, a process for handling its effects is

created. The dynamic behaviour of links is explained in detail in sections 5.7.2 and

The Link Factory is implemented as a DLL shared by all processes on the same

host. A DLL uses shared memory and the cost of activating its functions is the same as

a regular function call, making its use very efficient in a non-distributed system.

The registry provides a central point for message exchange. It was introduced as a result

of experience with alternative designs. This section initially presents the first designs,

the problems met in their implementations and then presents the final design.

5.7.3.

5.3.2 The Registry

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 96

First solution

In one of the first solutions built, the communication infrastructure was designed to be

completely distributed with no central point for message exchange. All communication

was performed directly between the processes2 involved using DDE. Communication

between parent and child was also performed using DDE. In this version of the prototype,

the root object (a composite) would be the first process created. For each component

within the composite, a process was created and two DDE conversations started between

the two processes, as both parent and child could be either server or client with respect

to the other. In this architecture, the only information each process had to know was

who was their father and who were all their children.

Figure 5.5: Distributed Message Passing

Figure 5.5 illustrates this situation. In the figure, suppose that the object represented

by node 0 . 1 . 1 . 1 needs to exchange message with the object represented by node

0 . 3 . Initially, it would have to request its father to locate the desired object. The

request would be propagated up to the root and down again to the other branches.

Eventually object 0 .3 is located and a DDE conversation is started directly between

0 . 1 . 1 . 1 and 0 . 3 . Actually, two conversations would be started as the destination

object could also send unsolicited information. If the source node had children, there

would also be a need to search for the destination node below its level.

2A s explained in the previous chapter, a process is a window under MS-Windows 3.1

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 97

If the identification of an object was changed (by an author), the object had to

communicate with all objects with which it had an open conversation and the author

would have to decide either to close that conversation or to update the identification to

the new value in all objects communicating with the object changed.

This approach had the advantage of allowing processes to communicate directly,

not relying on a central point. However, in many cases, an object needs to be informed

frequently about status changes in another process, for example to trigger a link.

Initially, it was thought that, although the cost of starting a conversation could be

high, there should not be so many components in a running session as to make the

location process prohibitive, and there was an apparent advantage of letting processes

communicate directly with no extra delay added by an intermediate process.

However, the limitation imposed by DDE that each conversation must be handled

by a process (a window), meant that even for a small number of objects, there would be

a very large number of active windows leading to unacceptable system performance.

The final design

The solution proposed, which resulted in a much improved performance, is to maintain

a central point where objects are registered (the Registry) and which is also used for

exchanging messages between processes.

The Registry, like the Link Factory, is a DLL loaded by all windows. There is one

central Registry that is loaded when the first object is activated.

For objects handled by different hosts, which cannot share memory, one registry for

each host exists and each secondary registry informs the central one about its existence.

All communication between hosts is kept within the boundaries of the registries and is

transparent to the objects communicating.

This approach has the following advantages:

• Clients are kept simple as they only have to be know how to communicate with

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 98

the registry via its interface;

• Information can be cached at the registry;

In addition, the system can easily be extended to provide:

• Access control: access rights can be maintained in the local registry, if required;

• Statistics: user profile information and general statistical data can also be gathered

locally, and on a per-session basis.

Processes also need to communicate to exchange status information, actions, objects

references, etc. The Registry keeps a post office to provide for communication between

objects and processes.

The components of the Registry are shown in figure 5.6; they are:

Figure 5.6: Components of Registry

• Post office: the place where messages exchanged between processes and objects

within processes are processed. The post office may have to communicate with a

remote office to have a message delivered;

• Registered windows: the handlers for all windows processed by the current host.

This information is used by the clock process to broadcast timer information;

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 99

• Registered objects: the identification of all objects managed by the local host.

The Registry keeps internal and external identifications, aliases (as defined by

MHEG), and handlers for the windows managing these objects.

The registry also keeps a cache for objects handled remotely but referenced

locally. The cache is loaded during the process of locating an object: when the

registry receives a request to locate the object, it first tries to find it locally in

the objects it handles directly; if the search fails, it will then consult the other

registries until the desired object is located. It will then “remember” the location

of the object for future messages. If the desired object has moved since the

last communication was established, the cache is invalidated and the process is

restarted;

• Remote hosts: this information is kept when more than one host is being used in

a session. It maintains the identification of all remote hosts, including the main

host (the first one started) that is the time server. This information is used by the

clock process for synchronisation and by the post office to deliver and retrieve

remote messages.

• External naming services: in order to locate an object identified by an external

name, the registry may make use of external naming services. This is the point

where access to these services is provided.

Interface to the world

From the point of view of objects using it, the Registry is seen as a central point

to resolve identifications (figure 5.7) and to send/receive messages. An object must

register the identification of all its content objects and the process (Window) handling

them.

The registry also has an interface to the outside world, as some identifications may

make references to network or database objects or to other registries running on different

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 100

u
s
E
R

Figure 5.7: Registry as seen from a using object

machines. An object does not know that objects with which it is communicating may

be remote. All external communication is handled by the local registry.

From outside MFiEG, the registry is seen as a cache of identifications in use by

the application with an external interface to other identification resolver processes, as

shown in figure 5.8. With this approach, the registry can also be extended to provide

name resolution capabilities to applications outside its scope, but which are interested

in objects under its control.

Figure 5.8: Registry as seen from outside MHEG

5.3.3 The Clock

Timers are scarce resources in the MS-Windows 3.1 environment. There is a limit of

32 active ones at any time. The maximum resolution provided is 55 ms. Setting a

timer to a resolution is not a guarantee that an interrupt will occur at the precise time, as

the operating system is not preemptive and a timer message is a regular Windows low

priority message (i.e. it is posted to the window message queue).

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 101

A timer message is posted to the process queue like a regular window message with

the guarantee that only one message will be queued at any time. This means that if

more than one timer interrupt occurs before the process owning the timer gets the CPU,

MS-Windows 3.1 will discard the redundant messages. The result is that if a process

holds control longer than a timer tick, the distance between the ticks will be longer than

the specified timer interval, and it could be shorter than that interval in some subsequent

tick. Chapter 6 presents time measurements for several scheduling algorithms.

Because it is not possible to have a large number of timers running, it is not possible

to propose a solution where every process uses a timer from the environment to provide

its timing. To cope with this limitation, one “clock” process was implemented that uses

one timer from the environment and this is the only timer provided by the environment

to the system. The clock is used to schedule all processes on the same host. This clock

uses information from the Registry to broadcast the derived messages to all registered

processes.

The clock process is also responsible for synchronising with other clocks when more

than one host is being used to present the objects. The first clock is loaded when the

first object is started. When the first windows starts running, MS-Windows 3.1 loads

the DLLs that are going to be used by this process, if they are not already loaded. The

registry startup code starts the clock when it is first loaded.

One of the main goals of the scheduler is to provide a smooth presentation of objects.

As we are using a non-preemptive operating system, the scheduler must avoid “clock

jumps”, ie., one process should not hold the CPU for a time long enough to cause the

feeling that the presentation is progressing in jumps.

Synchronising clocks

For an interactive, real time system, it is important to keep track not only of the ordering

of events but of the delays between them as well.

Although the system implements only one logical clock for each host, the existence

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 102

of dedicated cards with asynchronous control (like a video card) is similar to having

processes running in more than one host but is simplified because memory can be shared

and used for communication.

Tasks of the clock

Each timer message processed by the clock (i.e. every time the clock process holds the

CPU), results in two activities:

• Broadcast o f Timer messages to all processes registered in the registry. In this

case, Clock uses MS-Windows 3.1 Pos tMessage to send the message to all

windows.

This is the place where the higher level system scheduling (or orchestration)

happens. The different broadcasting policies can define higher level priorities

amongst processes. Process orchestration is discussed in section 5.6.

• Synchronise with other clocks. The clock process uses its CPU share to synchro­

nise with all other clocks. The first clock created is the time server and, as all

processes on different hosts are also registered in the registry, this information is

used to synchronise the various clocks.

Several mechanisms for synchronising clocks exist [Tanenbaum, 1992a] which

do not require a lot of communication or processing.

5.3.4 MHEG Engine Action Processor

As described in Chapter 3, MHEG objects have two distinct phases. Initially they are

unknown to the system (or engine) processing them, and in the second phase they are

available to the engine. The timing of an MHEG object’s availability can be seen in

figure 5.9:

• During phase 01 the object is not known to the engine, however, it may receive a

request to p r e p a r e the object;

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 103

Prepare Destroy

initial object preparation preparation status=ready preparation preparation status= not ready
availability status = initialisation of other status - destruction of other
behaviour processing

/ / / / / / frrv/////////.

object behaviour processing object behaviour

01 03 01

Time

Figure 5.9: Timing diagram of model object availability

• The engine then starts preparing the object (02), which involves resolving the

name of the requested object and it may involve retrieving data from a remote

location, or from a slow video disk;

• When the object is prepared (03) it is available to the engine, which may then

create run time instances from it;

• When the object is no longer required, it is destroyed (04) becoming unavailable

to the engine again (01).

The MHEG Engine Action Processor is the module for starting the process that

prepares an MHEG object. Once the object is identified, it will start a process to

perform the necessary tasks to make the object available to the engine. The process that

handles the preparation will then be responsible for creating runtime instances of that

model object which may, in some cases, require it to make a copy of the contents data.

5.4 Processes

The processes that make use of the services provided by the kernel can be classified as:

1. Model object processes: these are the processes (figure 5.10) that handle model

objects as defined in the MHEG class hierarchy, i.e. the actual MHEG objects

that are exchanged, and Container objects. These processes will usually be

transparent to the user and are responsible for preparing the object that will be

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 104

timestones are
’set’ by actions

status timestone
m anager m anager

keeps track of keeps track
n f timf»cfr\n<»c

action processor

Handles actions triggered in a link

Figure 5.10: Structure of a Process Running a Model Object

presented. A model object process is started when the MHEG Engine Action

Processor receive a request to prepare an object. Only one such process will exist

at a given time for a model object.

The structure of a process in this category is given by figure 5.10; it contains:

• The decoder: the module responsible for transforming the object from the

interchange format to the internal format (section 5.4.2);

• The scheduler: the module responsible for breaking up the decoded object

into components and internally scheduling the process activities so that the

process will not take too much CPU time in one cycle;

• The exception handler: deals with external exceptions such as devices

crashes;

• The dispatcher: the module responsible for all communication between the

process and the kernel.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 105

limestones are
’set’ by actions

scheduler

breaks objs into components
ide itif £s owners

exception handler

link processor

status timestone
manager manager

keeps track of keeps track
status iafomation-----of timf.stnne.s

action processor
Handles actions triggered m a link

M
e
d

Figure 5.11: Structure of a Process Running a rt-object

• The link processor: responsible for handling all link related activities as

described in section 5.4.3.

• The event handler: deals with external interruptions;

• The rt-object factory: creates run time instances of the object;

• The media specific (processor): the module that deals with the particulars

of each medium (section 5.4.5).

2. Run-time object processes: these are the processes that present model objects to

the user. Run time objects are created from model objects. For example, a model

object can be a video and one or more run time instances of the video sequence

may be used in a presentation but all instances will be created from the same

video model.

The structure of a run time process is slightly different from an MHEG object

process and is shown in figure 5.11. A run time process does not create other run

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 106

time objects therefore it does not have a Rt-object factory module, but it must

control its positioning in space which is accomplished by the spatial processor.

The basic differences between the two classes of processes is that a run-time process

should be able to deal with user input and the MHEG object process is responsible for

preparing objects, which may mean that it will decode exchanged objects transforming

them into the internal representation structure that will be used by the run time processes.

The MHEG object process is also capable of creating a run time instance from its contents

which is a model object.

The categories above also make structural distinctions for:

1. Multiple objects: these are the objects that may include or make reference to

more that one component. Examples of such objects are composite and container

objects which usually include several other objects. Actions upon such objects

usually broadcast their effects to all components. Run time composite objects do

not usually have any perceptible effect, and exist simply to maintain the structure

of the document.

2. Simple objects: these are objects with only one component, for example, a piece

of graphics or a video sequence. Run time instances of such objects are usually

perceivable.

5.4.1 Processing unit

In this section, we discuss processes which support run time objects. The overall

structure for all MHEG objects is similar, with differences only in the possible actions

and status.

The process unit within the system is a “monomedium composite”. For example,

a composite with content objects of two media (a text and a picture as in figure 5.12)

will have at least three open windows. One window will be the composite object itself

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 107

(an invisible window) and will handle global information for the components; and the

other two windows will be responsible for rendering the content information.

no presentable
object

Figure 5.12: A composite with two media components

A window will be visible when it is rendering contents data or invisible when it is

used for control only. Each visible window (a leaf in the tree structure) contains at least

one presentable (a run time object with e “visible” effect) and one content object. A

window is also responsible for scrolling, and for handling hypermedia anchors. The

window may also handle several link objects.

The number of windows may also be dependent on specific hardware; for example,

if the machine has hardware to play only one video sequence a time, there can be only

one instance of the process (window) that displays video. On the other hand, there

could be several instances of a “text” process as there are no hardware restrictions on

the number of text objects being presented at a certain moment. All interaction among

components is made via the Registry, as described in section 5.5.

A (reasonably) complex composite MHEG object can be seen in figure 5.13. The

composite presented will render six content objects (the leaves in the tree). It is

subdivided into five presentables (sub-)composites (figure 5.14). The hollow leaves

indicate a reference to another composite. Solid leaves represent presentables with

reference to a content object. Each sub-composite can be authored individually and

assembled to build up the whole composite. Within each sub-composite the components

are identified by sequential numbers starting from 1. The sequence of numbers in the box

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 108

A

Figure 5.13: A complex composite

Figure 5.14: (Sub-)composites of figure 5.13

at the root of each sub-composite indicate its identification within the whole composite.

For example the right leaf of sub-composite B will have identification 0.1.2 within the

composite.

Alternatively, the sub-composites may have been exchanged in individual compos­

ites (no inclusion used), in which case the identification of the same object as above

would be accomplished by using its external identifier and the component index (2).

The internal references in the figures described are only valid in the scope of the

full composite of figure 5.13. If, say, sub-composite E is detached from the whole

composite, its internal references would be changed as in figure 5.14 (right).

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 109

5.4.2 The decoder

The decoder is the component that transforms an object from the interchange format to

the internal format. It may receive the encoded data from outside the process via the

dispatcher or it may load it directly (eg. from a local disk).

Internally, the decoder communicates with the scheduler which breaks objects into

components and retrieves their identifications. Objects that are not handled by the

process are transferred to the kernel that will forward them to the correct destination.

Figure 5.15 shows an example of a composite object definition. The object has the

external identification c o m p l . cmp. It has references to two link objects, one reference

to a video object and one reference to a text object.

Figure 5.16 shows the process tree spawned when this composite is presented. At

the root we have the composite process itself. This process will decode and create

all the other processes, ie. the presentable processes (m sg. t x t and e s d a l . v id) .

The two links referenced by the composite (v i d l . I n k and v i d 2 . In k) are decoded

within the composite process but they will be processed (as described in section 5.3.1)

by the process that contains the trigger condition.

5.4.3 The link processor

The link processor is one of the most important modules in the system. The link

processor is made up of three basic components

1. Status manager that is responsible for keeping track of all status data for the

objects handled by the process. Status information is used for triggering links.

The status manager informs the link factory about any change in the internal

status for which there is a dependency in a link condition.

2. Timestone manager that exists for continuous media. This module checks the

media position and uses this information to change TIME STONE-STATUS infor­

mation.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 110

\begin{COMPOSITE}
\Description
-Name: CO-001
-Owner: ESDA
-Date: 9401121137Z
-Comments : 4 contents
\externalid compì.cmp
\Composition status:0
\Components: 4
\index: 1
\begin{CONTENT}
_Description: -Name: esdal.vid -Date: 9401121134Z
_MHEG ID : 80, 114, 111, 116, 95, 51, 52, 49, ; 9
_MHEG classification: Motion JPEG video
__HOOK: Encoding: proprietary EncodingDescription:
_Data:esdal.vid
_OriginalSize: X=19018 Y=34944 Z=0
_OriginalSpeed: true
\end{CONTENT}
\index: 2
\begin{CONTENT}
_MclId: 2
_Description: -Name: msg.txt -Date: 9401121134Z
_MHEG ID:80, 114, 111, 116, 95, 51, 52, 49, ; 10
_MHEG classification: ascii text
_HOOK: Encoding: ascii EncodingDescription:
_Data:msg.txt
_OriginalSize: X=21845 Y=36816 Z=0
_OriginalSpeed: false
\end{CONTENT}
\index: 3
\begin{CONTENT}
_Description: -Name: vidi.Ink -Date: 9401121134Z
_MHEG ID:80, 116, 115, 116, 95, 51, 52, 49, ; 9
_MHEG classification: link
_HOOK: Encoding:
_ EncodingDescription:
_Data: vidi.Ink
_OriginalSpeed: false
\end{CONTENT}
\index: 4
\begin{CONTENT}
_Description: -Name: vid2.Ink -Date: 9401121134Z
_MHEG ID : 80, 118, 118, 108, 181, 136, 52, 49, ; 9
_MHEG classification: link
_HOOK: Encoding: EncodingDescription:
_Data: vid2.Ink
_OriginalSpeed: false
\end{CONTENT}
\end{COMPOSITE}

Figure 5.15: Example of a Composite Object with Four Components

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 111

Link Factory

vidi.Ink
vid2.1nk

Figure 5.16: Process Tree for Figure 5.15

3. Action processor which is the module that schedules and processes an action that

has been triggered by a link.

A description of the main components of an MHEG link is presented in section A.3.

An example of a link is shown is figure 5.17. The link described in the figure would

be triggered when object d e m o l / b i r d . b m p# l reaches or passes timestone 2 (lines

6 to 11) and object d e m o l / c r e a t i v e . bmp#3 reaches timestone 1 (lines 14 to

19). The “effect” of the link is performed by one action object only (lines 27 to 32)

targeted at object d e m o l / b i r d . b m p# l and the only elementary action specified is

© s e t p o s i t i o n 100 0. If it was desired to have a set of actions happening in

parallel, more than one “serial targeted actions” ({ s e r t a r g a c t i o n s }) group should

be specified within the “parallel targeted actions” ({ p a r t a r g a c t i o n s }) . .

5.4.4 The spatial processor

This is the module that keeps track of window and media positions and size. Spatial

position are used within the process itself and to provide reference positioning for child

processes in the MHEG generic space.

The Spatial Processor, in summary, is the module responsible for mapping measures

from Generic Temporal Units and Generic Spatial Units to physical values.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 112

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

\begin{link}
\mhegid demo3/d3_13.Ink

\begin{linkcond}
\rule AND
\begin{constraint}
©source demol/bird.bmp#l
©trigvalue timestone_status
©beforevalue 0
©wasrel *
©becomesrel ge
©aftervalue 2

\end{constraint}
\begin{constraint}
©source demol/creative.bmp#3
©trigvalue timestone_status
©beforevalue 0
©wasrel *
©becomesrel eq
©aftervalue 1

\end{constraint}
\end{linkcond}
\begin{partargactions}

\begin{sertargactions}
\targets demol/bird.bmp#1
\performances 1
\transition 0
\begin{actionobj}
\mhegid ac_id_l
\begin{serialgroup}

©setposition 100 0
\end{serialgroup}

\end{actionobj}
\end{sertargactions}

\end{partargactions}
\end{link}

Figure 5.17: Example of a Link Object

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 113

5.4.5 The media specific processor

This is the part that should be individually written for each medium introduced. It

handles all processing that is unique to the medium and in some cases it may be

dependent on specific hardware. Status information specific to the media being handled

is also updated here.

For example, in the case of video, there is a dedicated motion JPEG card. The

media specific processor handles all communication between the card and the internal

process. When the displaying window is resized or moved, in addition to updating the

Windows window that provides the frame for displaying the images, the actual video

images should be moved by informing the video card of the changes.

5.5 Exchanging messages between processes

Amongst the types of interprocess communication facilities provided by the MS-

Windows 3.1 environment (as discussed in section 4.5), we use:

1. Windows messages: to broadcast timer messages within a processor. Windows

messages are also used for all user input and interaction with the interface such

as typing, moving and resizing windows, etc.

2. DLLs: are used for all inter process communication within one host; all its

processes share memory within a DLL.

All communication uses shared memory in the Registry DLL. A process, wishing

to post a message to another process, leaves the message at the post office main­

tained by the the registry. Each process must check at the post office for incoming

messages during the execution of its main loop.

As we perform most interprocess communication via the DLLs, we have the

flexibility to implement a scheduling algorithm that, within limits, provides a

seamless presentation.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 114

DLLs are also used for communicating with some dedicated hardware that is

released with dynamic libraries for system programming (e.g. motion JPEG

card).

3. DDE: is used in two cases:

• Integrating existing applications in the environment. Existing DDE aware

applications are integrated by the system as a media specific module in

figure 5.11. In this case, the actions exchanged between the link processor

and the media specific part is performed by a DDE conversation. An

example is the integration of the module Text-To-Speech (a program that

converts ASCII text to speech using a sound blaster card) [Labs, 1994] that

provides for text being spoken rather than displayed.

• Communication involving two hosts happens at kernel level and is object

transparent. When a process requests the kernel to transfer a message, the

registry is responsible for the delivery, and in the case where both ends are in

the same host, shared memory in the DLL will be used. If the parts involved

in the communication are being handled by different hosts, a net DDE link

is established. Currently, the implementation handles only objects in the

same host.

5.6 System orchestration

In order to tune performance to achieve defined bounds, we define two levels where

resource usage, in particular CPU time, is shared between processes:

• Process selection level: in the common case, there will be several processes

running on one host. The run time process must define which process is to have

CPU control.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 115

• Activity selection level: once the process is selected, we must define which of

the pending activities is to be performed. It must be kept in mind that in a non

preemptive operating system, the process must not take CPU control for a time

long enough to be noticed by the user.

In the following sections, we discuss the two levels of the orchestration scheme.

5.6.1 High level orchestration: process selection

As it has been said, the clock broadcasts timer messages for all registered processes. In

the higher level, priorities can be defined when selecting the next window to receive

the timer message. Higher priority can be given to a process that is expected to answer

a request for status information that may be used to trigger a link. On the other hand,

a process that is presenting a video using a dedicated hardware may have a lower

priority when no communication is pending to that window because the presentation

will proceed with no interruption even if CPU time is not scheduled to the process

(except, of course, if some event such as “end of media reached” happens).

Although several scheduling policies were tested (see Chapter 6), no single policy

is recommended as the requirements for clock granularity, skew and acceptable action

delays are application dependent and should be defined by the user.

5.6.2 Process level orchestration: The main loop

Processing within a window happens around a main loop that contains calls to routines

performed at each time tick. This is the place where the process must schedule itself

in order to optimise resources and provide for a smooth presentation. Under a non

preemptive operating system, the process must be as nice as possible by holding the

CPU for the shortest amount of time.

The activities performed by the main loop can be divided into two modules or

groups:

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 116

1. Generic activities: those that all processes should implement, such as positioning

and sizing windows, transferring objects, etc.; and

2. Media specific activities: those where processing depends on the media being

rendered, such as obtaining the position within the media, etc. These activities

may be complementary to the generic ones. For example, when a window is

moved in a video process, it is necessary to update both the position of the

window itself and the position where the video is being presented.

Generic activities

This module:

• Retrieves incoming messages and objects from the kernel. Usually these messages

are queries about the status of objects whose results are used to trigger links within

the window. The process also checks links whose trigger conditions are within

the window but which were decoded by another process. The process may also

receive an action to be performed internally which was triggered by an outside

process. An example of a query is “what is your preparation status?”, which can

be READY or NOTREADY;

• Transfers objects and messages to the kernel: this involves actions complemen-

taries to the previous ones. The process transfers to the kernel queries about the

status of remote objects, or actions to be handled by other windows. An example

of a message that a process has to transfer to the kernel is the answer to the query

about preparation status given in the previous example.

• Update link data: link information is handled by the link processor and involves

several activities:

- Check conditions that may trigger a link, such as change of any internal

status variable (e.g. timestone status, preparation status, etc.);

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 117

- For all triggered links being handled by the process, the links processor must

schedule an action to be performed in the time tick. This involves selecting

a link, and within the selected link scheduling the action to be performed

according to the definition from MHEG.

This step is required because the system is implemented under a non pre­

emptive operating system, and all processes must avoid taking over the CPU

for too long.

Media specific activities

This module:

• Updates the current time this applies to continuous media: the current position

within the medium must be either estimated or determined. When the cost of

determining the correct positioning within the medium is high, it is usually less

prejudicial to estimate the position. This happens, for instance, with a JPEG

motion card where a query such as “what is your position?’’ takes over the CPU

for approximately half a second, disrupting the whole presentation process if it is

performed frequently;

• Update presentation status such as timestones being achieved, end of media

reached, etc.

• Process actions that are specific to the medium, such as setting speed, fading,

setting volume, etc.

5.7 The Link Factory

The processing of links can be divided into three steps:

1. Link decoding that involves the decoding and transformation of the exchanged

object into the internal representation;

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 118

2. Link triggering that involves the period when the link is waiting for events that

will cause it to fire, and

3. Link effect which is the processing of actions triggered by the link.

5.7.1 Link decoding

The request for decoding a link happens when a composite or a container object con­

taining the link is prepared. The link factory decodes and stores un-triggered links and

it also maintains the triggering status of the link.

In the process of decoding a link, the link factory posts messages in the registry to

all processes upon which the link condition tree depends. The processes will then be

responsible for informing the link factory of changes in conditions. The link factory

does not need to poll processes in order to evaluate a link and it can assume that the

status information stored is valid up to the timing resolution that the run time system is

maintaining.

5.7.2 Link Triggering

MHEG links are event triggered with a general structure as shown in figure 5.18.

During the phase prior to its triggering, a link will be waiting for the events that will

satisfy the link condition. The link effect is not processed before the link is triggered.

The link must wait for status changes from all objects that are part of its link

condition. One of the problems that must be taken into account is the cost of checking

all conditions that are part of the link condition. Polling all objects to check for status

change would be very expensive in terms of resources. The solution proposed uses

the fact that the registry keeps a list of pending messages for every registered object.

When a link is decoded, and therefore created, messages are posted in the registry for all

objects referred to in the link condition. The messages are of the form d e s t i n a t i o n

(the internal identification of the link that expects a response) and c o n d i t i o n that

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 119

Figure 5.18: Link Condition Tree

defines the condition to be satisfied.

All processes check with the registry about events that should be reported during

their processing loop, as described in section 5.6.2. When a pending request evaluates

to true, it will cause an update in the condition tree. The process that generated the

event will use part of its CPU share to update the link condition tree. If it happens to

trigger the link, the link effect should be performed as described below.

A link must be fired as many times as its link condition evaluates to true, so the

whole process is restarted. Therefore, a link, once created, will be maintained by the

link factory until an explicit message for its destruction is issued.

Figure 5.19 makes the idea clearer. In the figure we see the Link Factory, the

Registry and processes videol and video2. Inside the link factory we have link object

Link! whose trigger condition is satisfied if videol reaches position 50 seconds or

video2 reaches frame 325. The Registry keeps communication queues for all objects

registered. One of the queues kept maintains requests for status or attributes. Therefore,

in the queue kept for videol there is a request to inform object linkl when condition

p o s i t i o n = 50 is true. For object video2, there is a request to inform object linkl

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 120

link factory registry Pending requests queue

destination condition SOURCE

l i n k l p o s i t i o n = 50s Videol

l in k 2 frame = 325 Video2

linkl

videol
(main loop)

check status report queue

video2
(main loop)

check status report queue

Figure 5.19: Link Processing Overview

when it passes frame 325. The video objects (videol and video2) check the registry

for pending requests during their main loops. When a request is satisfied, the tree of

conditions for the link in the Link Factory is immediately updated and the link may be

triggered, in which case a new Link Process is started.

5.7.3 Link effect

After the link is triggered the link effect is processed. From the point of view of the

processes handling the link effect, once triggering has occurred, the link condition is no

longer important. The link can however be triggered again because its processing within

the link factory remains unchanged, and processes will still test the link conditions.

The solution proposed to implement the processing of the link effect is to create an

independent process that will perform the actions. A link process is not visible and it is

a process whose location can be made completely transparent to the author or user. In

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 121

its main loop, a link process will deliver actions to the correct object using the registry.

In this sense, as far as the link process is concerned, it works like a remote control to

other objects that are affected by the link.

5.8 Timestamping messages

All communication between objects happens via the Registry. Messages are times-

tamped and the destination process can order all messages it receives by using its own

real-time clock, provided by the Clock (section 5.3.3) module. The implementation uses

the timer services provided by Windows multimedia extensions which provide a time

resolution of one millisecond to timestamp messages. However, the timer resolution

provided by the Clock process is still 55 ms.

5.9 Actions

Action objects have the structure shown in figure 5.20. Actions objects are part of the

link effect and are executed when the link is triggered.

Targets: object 1, video2
Delay: 2s

Actions to be
performed
sequentially

Set of actions to be performed in parallel

Figure 5.20: Action Object

The action object has a set of targets, defines a delay before its execution, and has

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 122

a list of actions that should happen in parallel. Within each list of parallel actions there

is a list of actions that should happen sequentially.

The internal messaging system stores messages as sequences of characters and it is

up to the destination process to interpret the action. Several strategies for optimising the

communication of actions can be implemented but the best results were obtained when

the link process transferred the entire set of actions targeted to an object as one chunk.

The destination process is then in charge of using its own resources to synchronise the

processing of actions.

5.10 Final remarks

This chapter has provided an overview of the proposed architecture and of the prototype

implementation. Some performance measurements and a discussion on how they were

used to tune the system are provided in the next chapter.

The system proposed is modular and can be extended with little difficulty, but it

would benefit from using a preemptive operating system as discussed below.

5.10.1 Support for extensions

The system allows extensions to be made at several levels:

• new actions can be added because the base system does not interpret the actions;

• the interprocess communication infrastructure can be updated to more efficient

mechanisms, such as RPC, since support for communication is centralised;

• existing applications that support some means of external communication, such

as DDE, can be integrated by using a process to provide remote control for them;

• a reconfigurable system based on filters/preprocessing of objects such as in [Hill

etal., 1992] could be provided, since these features can be added by changing the

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 123

behaviour of the MHEG engine module in the kernel (section 5.3.4), with little

effect on media dependent processes;

5.10.2 Considerations for a Preemptive OS

The implementation would greatly benefit from a preemptive operating system since

much of the burden currently placed on the programmer would then be left to the

underlying operating system:

• scheduling algorithms are simplified as there is no need to have well behaved

applications. The operating system guarantees a “smooth" presentation by not

allowing any process to use all the CPU time.

• the run time system depends on slow actions (painting a 1024x768 images with

256 colours can take almost 4 s). Here again, if the programmer is not disciplined,

a simple window repaint may have a huge impact on overall performance.

Chapter 6

Performance measurements

In this chapter, we present and discuss some performance measurements and how these

measurements were used to tune the system. Limitations imposed by the MS-Windows

3.1 environment are also discussed.

Initially, some performance graphs obtained for a small document are shown, and

then figures are presented for various kinds of extreme load on the system.

Identifying processing bottlenecks is especially important in an application running

under a non preemptive operating system as one badly behaved routine may cause the

whole system to come to a halt.

6.1 Technique used

The measurements were obtained by using a DLL to store the timing data in memory

and to transfer it to disk at the end of the run. The raw data was then processed off line.

The client processes transferred strings marking the points at which the measurements

have to be taken; each string is time stamped in the DLL for processing.

The DLL, when loaded, allocates a large enough amount of memory to store all

data for that run. The first version of the DLL dynamically allocated memory for the

strings but, as the time taken by Windows to allocate memory proved not to be constant,

124

CHAPTER 6. PERFORMANCE MEASUREMENTS 125

it was decided to allocate all memory before the beginning of the presentation. In a

typical run, the overhead introduced by the data collection was reduced by around 40

times by pre-allocating memory. The measured times dropped from over 5 ms for each

measurement string to about 8 strings/ms.

All time stamps were obtained using the function t im eG etT im e in the multimedia

extension DLL (m m sy stem . d l l) which provides a resolution of 1 ms.

6.2 A typical presentation

The first measurements were taken from a small complete multimedia presentation. A

screen snapshot of this presentation is shown in figure 6.1. In summary, the presentation

consisted of four bitmap images (b i r d , c r e a t i v e , h o u s e a n d j a p a n) and

an AVI video sequence c a _ w o r ld from a CD-ROM. Figure 6.2 shows a time line

with the main events after the run-time object to present c a .w o r ld is created. The

images are displayed when links are triggered by timestones set in the video sequence.

A timestone was also used to trigger links to destroy each run-time object. In figure 6.2,

the last run time objects (j a p a n and ca_w or Id) are destroyed at 60 s.

6.2.1 Performance considerations

The measurements taken were centered around the execution of the run-time object

main loop. As described in detail in section 5.6.2, the main activities performed during

the execution of the main loop are:

• Retrieve incoming messages from the registry;

• Update internal status variables;

• Perform actions targeted at the window;

• Check whether any change in the current status will trigger a link, and use the

link factory to trigger the link, if so.

CHAPTER 6. PERFORMANCE MEASUREMENTS 126

Figure 6.1 : A Snapshot of a presentation

Repainting may be requested outside the direct control of the engine if, for example,

a window is uncovered by user interaction. The time taken to repaint the window was

also measured. During the repaint process, only the window performing the repaint will

have CPU control, making this activity critical.

The measurements were taken on two Intel 486 based machines:

• 486-66: clock at 66MHZ, with a PCI S3-864 (1 MB DRAM) graphics card;

• 486-33: clock at 33MHZ, with a Western Digital (512 KB DRAM) graphics card

(vesa local bus). This machine is also equipped with a Video Logic motion JPEG

card.

Both machines are also equipped with a Panasonic 563 double speed CD-ROM drive

and a Creative Lab Sound Blaster 16 Value audio card.

CHAPTER 6. PERFORMANCE MEASUREMENTS 127

10
I-------T

target:
bird

run
rotate
rotate
rotate
rotate

20 30 40

tai
bi

de

rget:
rd

stroy

targ
cre<

des

et:
itive

troy

target: target
creative house

run run
rotate
rotate
rotate
rotate
rotate

target:
house

destro)

target
japan

run

50 60

targe
japat

destr

t

oy

target
ca_worli.

destroy

70 80

time (s)

Figure 6.2: Timestones set in c a _ w o r ld run-time object

In order to determine the frequency at which processes should release CPU control,

the measurements were organised as follows:

• Policy 1: in this case, the process performs a single activity in the main loop,

then releases control, providing a nice behaviour by holding the CPU for a very

small time slice. As the window that releases the control can receive a new clock

message before finishing the previous main loop, it is necessary to make the main

loop code protected, i.e. it will be restarted only after the previous cycle has

finished.

• Policy 2: each process performs all activities in the main loop before releasing

control. Only one action in each category is performed: e.g. it will retrieve at

most one message from registry; if there is an action object to be executed, only

one elementary action will be performed. However, the process will check all

link conditions that depend on status information updated since the previous time

it had control.

The items in the tables of measurements are as follows:

• Number o f times main loop was executed: the number of times the main loop was

fully executed: in the case of policy 1, this means the number of times the main

CHAPTER 6. PERFORMANCE MEASUREMENTS 128

loop is completely executed regardless of the number of times it was interrupted

to yield control to other processes.

• Average time slice: average CPU time used in each slice. To provide a smooth

presentation, this value should be as short as possible. The higher this value the

worse the presentation will be as only one process can take control of the CPU

at a time. The optimum value varies depending on the kinds of media being

presented (competing for resources).

• Longest time slice: the longest time for which the process took over the CPU.

For all graphics object the longest slice happened the first time the window had

to be painted. This value should also be minimised.

• Standard deviation (time slice): the standard deviation including the longest time

slice.

• Average time slice (ignoring the longest): this measure gives the average time

slice the process took ignoring the first time the window was painted (the longest

one).

• Standard deviation (ignoring the longest) is also the value ignoring the slice in

which the first paint happened.

• Longest time between slices: the longest gap between slices. The longer the

distance between the slices, the later internal status will be updated, causing

synchronisation problems.

• Number of times the window was re-painted: the window is painted when it is

started; in the case of images that were rotated, each rotation requires a re-paint.

• Average time used painting: the average time the process required to perform a

full repaint of the window.

CHAPTER 6. PERFORMANCE MEASUREMENTS 129

Tables 6.1 and 6.2 represents the measurements obtained using policy 1. It shows that

the average time slice used by the process when there are no activities to be performed

is very low, typically less than 1 ms per cycle (e.g. the case of the c r e a t i v e object

which is painted only once and is not the target of any action). Most of the time used

by this process was to repaint the window.

Tables 6.3 and 6.4 represent the measurements obtained using policy 2. Here again,

the time used by a process when there is no activity is less than 1 ms; and most of the

time was used repainting the window.

Comparing tables 6.3 with 6.1 and 6.4 with 6.2, it is clear that interrupting the

processes frequently brings a penalty to the overall performance. Each process on

average takes around 10% longer to perform a full loop. In the whole presentation, the

total number of times the main loop was fully executed is also reduced, which is not

desirable. On the other hand, the tables above do not give a full picture of what happens

since although yielding control more frequently means the time to perform the whole

set of actions each time slice is longer, the processes are interrupted more frequently.

It can be seen that raising the frequency with which the processes release control while

performing the activities within the main loop does not lead to an improvement in the

presentations “smoothness” as the longest time measured between the time slices is

not reduced significantly because it is primarily dependent on the execution of heavy

(or slow) actions. Therefore, all processes should try to break up heavy processing

activities in order not to affect other processes.

The measurements obtained with a 486-33 with a slow video card (tables 6.2 and

6.4) also shows that the response times obtained were not acceptable for a real applica­

tion, as the figures were above the desirable maximum delay which is in the order of

0.2 s [Shneiderman, 1984],

CHAPTER 6. PERFORMANCE MEASUREMENTS 130

Item Measured Object
ca_world bird creative house japan

Times main loop had control 490 250 337 382 574
Times main loop was executed 188 84 119 135 192
Time slice:
Average 5.96 1.88 0.48 2.76 0.34
Longest 996 190 144 147 151
Standard deviation 43.62 14.51 7.84 14.38 6.30
Ignoring longest slice:
Average time slice 0.42 0.08 0.05 2.38 0.08
Standard deviation 0.60 0.27 0.22 12.33 6.30
Time between slices:
Average 127.62 94.53 96.58 112.55 108.91
Standard deviation 159.64 127.26 119.75 144.80 135.20
Longest 995 771 698 799 837
Painting:
Number of Times 2 6 2 15 2
Average 1 149.45 128.90 137.93 124.98

Table 6.1: Measurements with processes yielding control within the main loop (times
in ms)— policy 1 nice behaviour/ (486-66)

Item Measured Object
ca_world bird creative house japan

Times main loop had control 223 112 142 166 334
Times main loop was executed 114 39 49 56 113
Time slice:
Average 5.83 8.62 3.20 7.20 1.51
Longest 1136 434 418 451 453
Standard deviation 76.05 47.32 35.10 40.49 24.81
Ignoring longest slice:
Average time slice 0.74 4.78 0.26 4.51 0.15
Standard deviation 2.08 24.38 1.70 20.94 1.23
Time between slices:
Average 410.93 237.09 239.20 282.02 270.23
Standard deviation 362.55 300.54 286.82 343.02 287.45
Longest 2272 1726 1728 1823 1933
Painting:
Number of Times 2 6 2 8 2
Average 4 434.00 362.52 412.23 409.33

Table 6.2: Measurements with processes yielding control within the main loop (times
in ms)— policy 1 nice behaviour/ (486-33)

CHAPTER 6. PERFORMANCE MEASUREMENTS 131

Item Measured Object
ca_world bird creative house japan

Times main loop was executed 195 87 121 137 194
Time slice:
Average 5.87 5.31 1.26 7.21 0.89
Longest 941 171 137 149 143
Standard deviation 67.31 23.51 12.44 22.19 10.26
Ignoring longest slice:
Average time slice 1.05 3.30 0.13 6.16 0.15
Standard deviation 216.52 14.21 0.34 18.54 0.36
Time between slices:
Average 320.53 262.89 269.43 312.63 321.43
Standard deviation 216.52 204.49 189.44 224.11 206.63
Longest 1135 935 935 950 983
Painting:
Number of Times 2 6 2 15 2
Average 1 142.33 129.00 134.53 134.00

Table 6.3: Measurements with processes performing all activities in the main loop
before yielding control (times in ms) — policy 2 (486-66)

Item Measured Object
cajworld bird creative house japan

Times main loop was executed 114 39 49 56 113
Time slice:
Average 11.90 23.28 8.41 19.63 4.41
Longest 1167 434 396 459 472
Standard deviation 109.15 76.61 56.53 68.12 44.38
Ignoring longest slice:
Average time slice 1.68 12.47 0.33 11.63 0.23
Standard deviation 1.19 36.23 0.47 32.64 0.42
Time between slices:
Average 786.35 663.82 707.73 827.78 789.05
Standard deviation 470.15 518.49 472.45 557.19 405.28
Longest 2679 1995 2045 2469 2726
Painting:
Number of Times 2 6 2 8 2
Average 3 414.17 359.50 414.63 412.50

Table 6.4: Measurements with processes performing all activities in the main loop
before yielding control (times in ms) — policy 2 (486-33)

CHAPTER 6. PERFORMANCE MEASUREMENTS 132

Timestone
Reached

Policy 1
(ms)

Policy 2
(ms)

1 168 98
2 132 65
3 198 198
4 198 269
5 237 163

Table 6.5: Average errors setting timestones

Table 6.5 shows the average error in the actual time of occurrence of the timestones

set for the video process. The longest error found (269 ms) happened when a window

was painted (taking 145 ms) between two time slices used by the j a p a n process. One

way of compensating for such errors is to establish an error margin for comparing times.

This value can be dynamically adjusted depending on the system load and in the above

example, a value of 200 ms is enough to guarantee that most timestones will be triggered

in time.

One conclusion that can be drawn from the above tables is that although processes

must be well behaved by not holding CPU control for a long time, they should also

avoid doing too few activities in one cycle as the overhead imposed by the operating

system for task switching will then affect the overall performance. The process must,

however, avoid performing more than one slow activity (e.g. repainting the window)

in the same cycle as the longest time between two CPU slices is more dependent on the

execution of slow actions (eg. painting) than on the frequency with which control is

released between fast actions. In the case of pictures, several alternatives for reducing

the load can be used [Bulterman, 1993] such as updating parts of the image at a time,

using reduced sized images, or even displaying a text description of the image.

Table 6.6 shows the average time the window (process) that will process the link

effect takes to retrieve a triggered link from the link factory. The times measured range

from 135 ms to 529 ms. A large proportion of this time is used creating the window that

will handle the triggered link: the values measured range from 90 ms to 430 ms. This

CHAPTER 6. PERFORMANCE MEASUREMENTS 133

Timestone
Reached

Measure 1
(ms)

Measure 2
(ms)

1 390 300
2 135 195
3 267 465
4 529 479
5 320 323

Table 6.6: Delay to retrieve a link triggered (creating triggered link process)

Timestone
Reached

Measure 1
(ms)

Measure 2
(ms)

1 151 98
2 83 28
3 57 157
4 63 39
5 8 10

Table 6.7: Delay to retrieve a link triggered (triggered link process not created)

values shows that the process of creating a window in Windows 3.1 is too heavy for

handling events that require a fast response time. In addition, the creation of an extra

process uses up the scarce resources, as discussed in section 6.5.

Table 6.7 reflects the times obtained when the processing of the link effect is within

the kernel and therefore avoids the creation of a process to handle it. The changes were

implemented in the link factory, when a link is triggered, instead of starting the process

to handle the effect, the link factory itself posts the effect to the destination objects.

The changes made, as a prototype, do not include all the functionality maintained by

the independent process, such as the ability to interrupt the processing of the link effect.

However, the times measured were around 200 ms faster than in the previous case. The

improvement obtained is due only to avoiding the overhead imposed by Windows 3.1

to start a process up. The disadvantage of the approach is that the processing of all

triggered links is kept within the link factory preventing distribution.

CHAPTER 6. PERFORMANCE MEASUREMENTS 134

6.3 The timer

The limitation imposed by MS-Windows 3.1 on the use of timers was discussed in

Chapter 5. Although the timer provides a maximum resolution of approximately 55 ms

(54.925 ms), in practice it was observed that the behaviour of the clock is not reliable.

Figures 6.3 and 6.4 show the measurements obtained for a process running a timer

only. In the first case, the shell (similar to a window manager under X) used was the

Central Point Software (CPS) shell and in the second the standard Program manager.

Although the CPS shell interferes with the overall behaviour of the clock, in both cases,

one clock tick is lost regularly.

LOG-205 Distance between clock ticks (timer = 20 ms)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Time (ms)

Figure 6.3: Behaviour of Windows timer using CPS shell

The behaviour observed shows that although it would be expected that a process

would be activated at every 55 ms (provided all processes are well behaved), in practice

that time ranges from around 20 ms to 80 ms. Values less than 55 ms are only obtained

if the previous tick was late, because Windows guarantees that not more than one timer

message is queued at any moment.

The first design to deal with links let the triggered link process schedule all action

CHAPTER 6. PERFORMANCE MEASUREMENTS 135

LOG-211 Distance between clock ticks (timer = 20 ms)PROG MANAGER

Figure 6.4: Behaviour of Windows timer using Program Manager shell

processing. The client processes then needed only to process elementary actions which

have a much simpler structure. However, the limitation imposed by the timer resolution

makes this approach infeasible as actions that should happen in sequence or in parallel

would have at least a delay of 55 ms. As implemented, the destination process of an

action object is responsible for its own internal scheduling to process the elementary

actions. Although the process becomes more complex, the response times are greatly

improved. Once a link is triggered, the process handling it is basically responsible for

informing destination processes that the link effect has been canceled. It can, therefore,

have a lower scheduling priority in the system kernel. Figure 6.5 illustrates the sequence

in which a link is triggered:

• Once the link is decoded, it is stored and handled by the link factory;

• processes that contain conditions that may trigger the link update the information

in the link factory;

• When a link is triggered, a process is created to handle its effect. It maintains

only the effects part of the link.

CHAPTER 6. PERFORMANCE MEASUREMENTS 136

Processes with
trigger

Process target
o f effect

[\

Figure 6.5: Processes involved in dealing with a link

• The triggered link process transfers the action objects to the processes that are

the target of the effect. As described in section A.2, the action object may hold

several elementary actions that should be scheduled for processing within the

destination process.

6.4 Effect of continuous media

The presentation of continuous media such as video or audio causes a considerable load

on the system. This load is high either when a sequence is played using Windows MCI

extensions or by using the dedicated motion JPEG card.

In order to evaluate the overload imposed by a continuous medium, we ran an altered

version of the previous document with an added interaction object in the form of a menu

that could pause and resume the video sequence.

Figure 6.6 shows the behaviour of the AVI video sequence. The video was stopped

at 24,680 ms (resumed at 31,986 ms), 39,200 ms (resumed at 46,170 ms) and at 58,167

ms (resumed at 70,795 ms). The graph shows clearly that when the video was stopped

(marked with vertical lines) the distance between slices and the time required to process

windows messages was greatly reduced, approaching 55 ms, i.e. once per clock tick.

If we take a closer look at the behaviour of object b i r d (figure 6.7) which was

being continuously rotated when the video was stopped for the first time (at 24 680 ms),

it can be seen that not only the distance between the slices was reduced but also the time

CHAPTER 6. PERFORMANCE MEASUREMENTS 137

1000

800

f 600(DE i-
400

200

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Elapsed Time (ms)

Figure 6.6: Effect of continuous media on a presentation. The arrows indicate regions
where the video was paused.

required to process windows messages. Figure 6.8 shows in more detail the system

behaviour in the interval between 20 s and 34 s.

The graphs show that just playing one continuous medium adds a heavy overhead

to the overall system response, with the measured distance between slices suffering at

least a 5 fold increase.

6.4.1 Performance of non continuous media only

If the video sequence in the previous example is removed, and more than one graphics

object allowed to be processed at the same time the distance between slices as shown

in figure 6.9 is obtained. The points with a large distance between slices are in regions

where the object is being requested to rotate the image it is displaying, which takes

around 140 ms for each image.

From the graph, it can be seen that when there is no painting activity, the distance

between the slices is reduced to the clock resolution of 55 ms. If we analyse the region

between 10,000 ms and 15,000 ms, we notice that the objects b i r d and c r e a t i v e are

CHAPTER 6. PERFORMANCE MEASUREMENTS 138

Figure 6.7: Effect of continuous media on a non continuous object. The arrow indicates
the region where the video was paused; in the regions where the w in m sg line is not
visible, it is near zero.

responsible for most of the activity going on. They are basically repainting the window

continuously. Figure 6.10 shows in detail the activity of b i r d between 10,000 ms and

15,000 ms, when it was very active and was, therefore, one of the main causes of the

the longer “distance between slices”.

The graphs show that non continuous media do not add a background overhead to

the system performance as happened with the continuous media. The distance between

slices is influenced by the time taken by specific activities such as repainting the window.

6.5 Limits on the number of processes

Under MS-Windows 3.1, the number of processes running depends not only on the

total amount of available memory, but also on the availability of system resources such

as “graphics pens”, icons, menus, etc. Windows provides only 64 Kbytes of resource

memory for all running applications. There is also a limit on the availability of memory

under the first 640Kb, as all processes use part of that memory. The final result is

CHAPTER 6. PERFORMANCE MEASUREMENTS 139

Figure 6.8: Detail of figure 6.7

that in general the environment runs out resource or “memory” even when megabytes

of extended memory are still available. This limitation also imposes restrictions on

creating a process to handle a triggered link, as many links may be active at the same

time. In order to tackle this limitation, there are two versions of the link process: in the

first case all link activity is handled by the link factory, even when a link is triggered;

and in the second version a process is created to deal with each triggered link.

This problem should not exist in future versions of the operating system which

should provide more resources for each process.

On average, it was found that the system runs out of conventional memory when

around 45 to 50 tasks are active. To explore the limits on the number of active tasks, a

very simple presentation was designed. The presentation contained one model object, a

250x250 bitmap object, and 36 run time instances of it were created, which was enough

to cause Windows to swap out memory.

The graph in figure 6.11 shows the behaviour found: The beginning of the graph

shows that there was a slight increase in the average distance between the times when

the process would have the CPU (S l i c e d i s t) as the number of instances was

CHAPTER 6. PERFORMANCE MEASUREMENTS 140

w£

2S
03
XI

(05

Distance Between Slices

Figure 6.9: Behaviour of a presentation with graphics only

increased. During this period, each instance created represented the creation of a

process (a Window), which had to access the disk to retrieve the bitmap. At around

7000 milliseconds, we notice a peak in the graph where for the first time Windows swaps

out some memory; then there is a short period with a good response time. Finally, and

when the memory usage reaches the limit of the RAM there is a major delay, with a lot

of disk activity, when Windows reorganises the memory. The main swap happens just

after the creation of the last run time instance. The same behaviour was found when

varying the total number of instances which indicates that windows tends to reorganise

memory when it becomes relatively unloaded.

Another measurement taken was of the time used by the processes to perform the

main loop (see figure 6.12). The time is usually less than 1 ms which proves that the

overhead for checking the queues in the registry is very low. The initial time taken to

start up the process is not represented in this graphic, and would represent a large peak

at the beginning of the graph.

CHAPTER 6. PERFORMANCE MEASUREMENTS 141

600

500

400

To E,
<d 300
6 h-

200

100

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Elapsed Time (ms)

Figure 6.10: Effect of continuous media on a non continuous object presentation

6.6 A highly interactive presentation

In order to assess how the system behaves with a document with a large number of

links, a document was defined with four run time objects and timestones set at 1 second

intervals for 20 seconds in each of these objects. Each timestone will trigger a link

whose effect will be a void action targeted at one of the run time objects. The reason for

using a void action is to prevent the time required to process the action from interfering

with the measurements related to link triggering.

Figure 6.13 shows the behaviour when 80 links are created and each process handles

conditions on 40 of them. In this situation, when any status variable is updated, the

process has to check 40 links that might be triggered by the change. Figure 6.14 shows

the average error in reaching a timestone. The system allows (in this experiment) a

timestone to be “reached” within 10 ms its due time. A positive value (i.e. a positive

“error”) indicates that the timestone was reached before the time it was due and a

negative value (i.e. a negative “error”) indicates a delay. If the curves with the error at

reaching the timestone and the distance between the clock ticks are plotted (figure 6.15),

BIRD summary

CHAPTER 6. PERFORMANCE MEASUREMENTS 142

Distance Between Slices (36 run time instances)

Figure 6.11: Distance between CPU slices

it can be seen that the peaks where the Windows timer is late cause an extra delay at

reaching the timestones.

Figures 6.16 and 6.17 shows similar graphs when the number of links is increased

to two hundred and each process handles one hundred link conditions.

The graphs shows that the behaviour of the timer is not very precise and at intervals

of about 3 seconds, there is a delay caused by its re-synchronisation. In order to verify

the effect of the clock resolution on the overall performance, the same document was

run using an altered version of the clock which will post timer messages as fast as it can.

The effect of is that the CPU load will be 100% during all presentation. Figures 6.18

and 6.19 shows the graphs when two hundred links are created. It can be noticed that

the distance between slices is greatly reduced and the timestones are reached with much

more precision than in the previous cases. This is even more noticeable when there are

no delays in the timer for re-synchronisation.

The final conclusion from the graphs is that although the resolution of 55 ms provided

by MS-Windows 3.1 is good enough for a large range of applications, its unreliability

make it unsuitable for many uses.

CHAPTER 6. PERFORMANCE MEASUREMENTS 143

Time to process messages

Figure 6.12: CPU time used by process (b i r d and comp are active processes)

6.6.1 Complex link conditions

As the link handling is implemented, the actual number of conditions in the link

condition has very little impact on the time it takes to trigger the link. As described in

section 5.7.2, the conditions in the link are in a tree and the processes that hold them are

responsible for keeping that information updated in the link factory. Therefore, when

one of the conditions is changed, it is very fast for the link factory to check whether

the trigger condition is satisfied as it can assume that all information has already been

updated. The time required to update each condition grows linearly with the number of

conditions.

6.7 Final remarks

In summary, the conclusions that can be drawn from the analysis presented in this

chapter are:

Er
ro

r (
m

s)

D
is

ta
nc

e
be

tw
ee

n
sl

ic
es

 (m
s)

CHAPTER 6. PERFORMANCE MEASUREMENTS 144

Distance Between Slices

Figure 6.13: Distance between CPU slices (80 links triggered)

Triggering error for limestone

Figure 6.14: Error reaching timestones

D
is

ta
nc

e
be

tw
ee

n
sl

ic
es

 (
m

s)

Ti
m

e
(m

s)

CHAPTER 6. PERFORMANCE MEASUREMENTS 145

150
Error Reaching Timestones x Clock Ticks

"i------- r~ -r——."i"

100 -

50 -

0 -

-50 -

slice distance
timestone error

pj ; | j | |W || | ^ | M j H i Ml
II pBPPPPwP II B *• IMi®Ii HBwI! n

irtr rW! « i t i !i

!» ¡i U, !» w *
Ik ki

-j_______ i— —i______________i______________i______________ i__

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Elapsed time (ms)

Figure 6.15: Distance between slices vs Error reaching timestones

200

180

160

140

120

100

80

60

40

20

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Time (ms)

Figure 6.16: Distance between CPU slices (200 links)

TT----------m-
Distance Between Time Slices “i-----1-----1-----1-----1----- r ~ ~i---—i—

cl DCk

tjjj|| Ugg im i I gno

_ i__________ i__________ i__________ i__________ i_________ i—

D
is

ta
nc

e
be

tw
ee

n
sl

ic
es

 (
m

s)

Er
ro

r (
m

s)

CHAPTER 6. PERFORMANCE MEASUREMENTS 146

Time (ms)

Figure 6.17: Error reaching timestones

Distance Between Time Slices

10000 15000 20000 25000
Time (ms)

30000 35000 40000

Figure 6.18: Distance between CPU slices using rapid ticks (200 links) — the initial
peaks are due to the initial processes creation

CHAPTER 6. PERFORMANCE MEASUREMENTS 147

Triggering error for Timestone

Figure 6.19: Error reaching timestones (using rapid ticks)

Item Measured Machine
486-66 486-33

Paint a 1024x768 pixels bitmap 1720 4320
Paint a 320x180 pixels bitmap 150 355
Mount and start an AVI file 1700 3100
Mount a motion JPEG file 1720
Get position of a motion JPEG file 960
Get position of an AVI file <1 <1

Table 6.8: Some slow actions

• It is not worth making the points where each process releases control to the

operating system too frequent as the overhead incurred does not compensate for

the improvement in the granularity of CPU usage by the processes.

The smoothness of a presentation is much more dependent on the execution of

“slow” actions than on the time used to update internal status and interact with

the registry. The processes, therefore, should avoid performing more than one

slow action within the same clock cycle. Table 6.8 shows the times measured for

some demanding operations, which should be broken up when possible in order

CHAPTER 6. PERFORMANCE MEASUREMENTS 148

to reduce their influence on the overall performance.

• Since the main factor influencing how the whole presentation performs is the time

it takes to process slow actions, it is more important to define the activities within

the main loop in each process carefully than to define overall process priorities;

interaction with the system kernel is very fast, not imposing a heavy overhead.

• The creation of processes also imposes extra delays to the system. Table 6.9

shows some figures for starting up processes. The huge difference between the

minimum and maximum times are due to the fact that the longest times are

usually obtained when the first instance of the process is started that requires

some dynamic libraries to be loaded.

Item Measured Minimum Maximum Average
Startup graphics window 95 2136 260
Startup triggered link 90 430 187
Startup AVI window 139 2420 265

Table 6.9: Times required to startup processes (times in ms) — (486/66)

• The total number of processes is limited not only by the total available memory

but also by “resources” and the amount of memory available in the first 640 KB.

The design should not therefore require large number of processes.

• The average clock resolution influenced how links are processed: it is worth

transferring a large group of actions to the target process rather than transferring

one action at a time;

• Programmers must be aware that the timer services provided by MS-Windows

3.1 are not reliable;

• The maximum CPU time a process can use can be configured dynamically depend­

ing on the system load although there is not much support provided to interrupt

“slow actions” that have to be atomic, such as interacting with the JPEG card.

CHAPTER 6. PERFORMANCE MEASUREMENTS 149

When there are several pending fast activities, such as retrieving triggered links

or link conditions from the link factory or executing actions, the process should

perform as many activities as possible within the CPU time limit.

• The use of a non preemptive operating system forces a programming style that

requires a very disciplined way of handling CPU usage by every process. This

requires the programmer to be much more careful with resource usage than is

necessary when developing programs for a preemptive operating system.

Chapter 7

A Critical Analysis of MHEG

This Chapter presents an overview of the evolution of the MHEG work, its current

status and limitations imposed by the model.

7.1 The evolution of MHEG

The MHEG standard has suffered several basic structural changes since the start of the

work of SG29 WG 12, and it has been a difficult task to to keep up with the frequent

changes. Figures 7.1 and 7.2 show the class hierarchies in 1991, 1992 and the present

edition.

The figures show how the hierarchy has become simpler as the standard evolved.

The hierarchy proposed in 1991 (figure 7.1) presented too many details, almost to the

level of a graphics widget set, defining forms of input and output. The structure was

also very limiting in the sense that media types were defined in the hierarchy (text,

graphics, picture, audio and audiovisual), therefore requiring the basic structure to be

changed when a new medium was added.

The hierarchy in 1992 (figure 7.2 left) was cleaner but the types of supported media

were still pre-defined providing poor support for extensions.

The current hierarchy (figure 7.2 right) is much more generic, providing the basic

150

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 151

MH-OBJECT
ALL-OBJECT>
CONTENT>
OUTPUT-CONTENT>
TEXT CONTENT
GRAPHICS CONTENT
STILL PICTURE CONTENT
AUDIO CONTENT
AUDIO VISUAL SEQUENCE CONTENT

INPUT CONTENT>
ACTION-BUTTON CONTENT
STAY-ON BUTTON CONTENT
ON-OFF BUTTON CONTENT
MENU SELECTION CONTENT
MULTIPLE SELECTION CONTENT
CHARACTER STRING CONTENT>
CHARACTER STRING BY TYPING CONTENT
CHARACTER STRING ON SELECTION CONTENT

MULTIPLE CHARACTER STRING CONTENT>
FORM FILLING CONTENT
MULTIPLE CHARACTER STRING ON SELECTION CONTENT

LOCATION CONTENT
NUMERICAL VALUE CONTENT

PROJECTOR>
OUTPUT PROJECTOR>
AREA PROJECTOR>
TEXT PROJECTOR
GRAPHICS PROJECTOR
STILL PICTURE PROJECTOR

AUDIO PROJECTOR
AUDIO VISUAL SEQUENCE PROJECTOR

INPUT PROJECTOR>
ACTION-BUTTON PROJECTOR
STAY-ON BUTTON PROJECTOR
ON-OFF BUTTON PROJECTOR
MENU SELECTION PROJECTOR
MULTIPLE SELECTION PROJECTOR
CHARACTER STRING PROJECTOR:
CHARACTER STRING BY TYPING PROJECTOR
CHARACTER STRING ON SELECTION PROJECTOR

MULTIPLE CHARACTER STRING PROJECTOR>
I FORM FILLING PROJECTOR

MULTIPLE CHARACTER STRING ON SELECTION PROJECTOR
LOCATION PROJECTOR
NUMERICAL VALUE PROJECTOR

COMPOSITE>
COMPOSITE OUTPUT
COMPOSITE INPUT
INTERACTIVE

NULL

Figure 7.1: MHEG Class Hierarchy in 1991 as in [MHEG, 1991]

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 152

MH-OBJECT>
HEADER>

MH-OBJECT>
ACTION
LINK
MODEL>
SCRIPT
COMPONENT

CONTENT>
MEDIA CONTENT>
TEXT CONTENT
GRAPHICS CONTENT
STILL CONTENT
AUDIO CONTENT
AUDIOVISUAL CONTENT

NUMERIC CONTENT
COMPOSITE

CONTAINER
DESCRIPTOR

CONTENT>
I MULTIPLEXED CONTENT

PROJECTOR>
SPATIAL PROJECTOR >
TEXT PROJECTOR
GRAPHICS PROJECTOR
STILL PROJECTOR
AUDIOVISUAL PROJECTOR

AUDIO PROJECTOR
NUMERIC PROJECTOR

PROJECTABLE
INTERACTION
LINK
COMPOSITE

NULL
CLOCK

Figure 7.2: MHEG Class Hierarchy in 92 (/) and today (r)

framework for extension: media types are not defined in the hierarchy; they are included

in subclasses of the Model class, therefore any new medium will be just a new instance

of a Content class. The model is now abstract enough to cope with new additions of

media on the exchange level.

The important point to be perceived from the evolution is that concepts gradually

became clearer: early hierarchies mixed up exchange with presentation resulting in a

less powerful format, with an undesired focus on implementation.

Another very important evolution in the standard was the definition of run-time

objects. Early versions of MHEG did not refer explicitly to run-time objects, although

their existence had to be inferred for the implementation of any run-time system. The

initial absence of run-time objects can be understood as it was initially thought that the

standard was dealing with information exchange rather than presentation and it could

be expected that the use of one content object (already exchanged) would be implicit.

The absence of explicit run time objects, however, led to a confusion in naming

where content reuse was attempted. For example, if a picture was to be used more than

once during a presentation, there was no way of distinguishing one instance from the

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 153

other as all references were made to what is (in the current hierarchy) a model object.

It was not clear how an application would make a distinction between instances; this

would require, in the worst case, an undesired multiple exchange of the model object

0content) so that the application could make the distinction in terms of the model. The

inclusion of run-time objects was enough to resolve the naming inconsistency.

7.1.1 Abstraction level of MHEG

As the class hierarchy became more abstract during the evolution of MHEG, modeling

“simple” applications became more complex. This is a natural evolution in defining

a standard. As a trade off between generality and expressive power, an interchange

format has to be able to represent different formats so it has to be as generic as possible

but this may lead to it not being simple to use (or even usable).

The decision on what should be included in an international standard is a very

difficult one. If the standard is too generic, it is almost impossible to define a minimum

level of compliance. On the other hand, if it tries to encompass the requirements of only

a certain group of applications, it may prove difficult to accommodate future extensions.

This led to discussions, even among members of MHEG, on how to define a simple

application, such as a hypertext. As a standard aimed at being general, MHEG does not

address specific types of applications (e.g. hypertext) and may therefore be too “heavy”

for some uses.

This is the specific case with hypertext. In hypertext, pieces of text can be used

as anchors for links. In order to have an adequate support for this kind of abstraction,

MHEG should support directly at least the concept of anchor or some similar mecha­

nism. However, when thought of as hypermedia in general, rather than hypertext, the

support provided is generic enough as any run time object can be made selectable and

therefore can be used as an anchor. In the case of a text only document in which it

is desired to have every word as an anchor, it is necessary to define each word as an

individual object, which may prove that the general approach does not have adequate

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 154

performance at such a high level of granularity.

The decision on what should be the scope of MHEG and consequently the definition

of its abstraction level has been one of the major tasks of the group and the difficulties

are reflected in the definition of the class hierarchy: there is a clear need to be very

general but on the other hand the necessity to cater for specific applications can not

be underestimated. However, there is at least one project — the Berkom Globally

Accessible Services (GLASS) [Fokus, 1995]— that proves that the structure proposed

by MHEG Part 1 is powerful enough to model hypertext/hypermedia.

A natural evolution of MHEG is the same as the one suffered by Dexter (discussed

in section 2.7). The standard initially proposed is generic enough to accommodate all

uses but it is not efficient for specific uses. To cater for some specialised applications,

specialised subsets of it will be defined. The MHEG itself has noticed this requirement

by proposing MHEG Part 5.

MHEG 5

13522-5 MHEG Subset for Base Level Implementation (MHEG 5 for short), was added

to the MHEG work in November 1994 with the objective of specifying “requirements

for a basic set of MHEG objects” [MHEG, 1995b] to be applied to the domain of

“simple multimedia applications” (e.g. video on demand, navigation and browsing

applications).

MHEG-5 defines a subset of MHEG-1 (discussed in Chapter 3) by specialising some

of its classes. The class hierarchy of MHEG 5 is shown in figure 7.3 and the relationship

with MHEG 1 is shown in figure 7.4

An MHEG 5 presentation consists of a set of scenes which are made up of presenta-

bles which represent the actual perceivable information (i.e. a run time instance of a

model object in MHEG 1); lists used to group up elements; fonts used within textual

presentables; links responsible for defining the reaction on events; script used to define

more complex behaviour than a link (link is just an abstract class, as “scripting” is

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 155

outside the scope of MHEG 5); variables which can hold the state of a scene ingredient,

and are used to exchange data with an outside entity.

Figure 7.3: MHEG 5 classes (from [MHEG, 1995b])

The class specialisation presented by MHEG 5 in a sense represents a return to

previous stages of MHEG providing less expressive power, but providing a more

efficient representation for a large (maybe the largest) group of hypermedia applications.

7.2 Defining the look and feel of a presentation

Defining the “look and feel” of a presentation is outside the scope of MHEG, although

very often desirable. More abstract classes as in MHEG 1 make it more difficult if not

impossible for authors to define how objects are presented.

A specialised hierarchy such as the one defined in MHEG 5 allows closer control

over how to present elements even if the final format of the objects is not defined (e.g.

the author can define a “push button” but not what it will actually look like).

If it is desirable to actually define how objects will be rendered, MHEG is not

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 156

Container

MHEG-1

MHEG-5

Link

MH-Object

I

0 OR
^ AND

Descriptor Model
o

Application —

__[)__ Composite

Scene

I

Component

Script Presentable List Font

!Action I Listltem

Content
5 "

Variable

Figure 7.4: Relationship between MHEG 1 and MHEG 5 classes (from [MHEG, 1995b])

suitable, although it may be used in conjunction with other standards with a focus on

graphics such as PREMO. However, it is important to note that not defining the “look

and feel” is not a handicap for many hypermedia applications. For a large number of

applications it is not necessary to define exactly how information will be presented at

the source level. This is the approach taken, for example, by HTML (section 2.12.2)

which defines the logical structures but allows each browser to present that structure

in a different way. It should also be noted that one of the main objectives of MHEG

is efficiency, and the higher level of abstraction provided by not transmitting the “look

and feel” improves efficiency.

7.2.1 Final form representation of objects

MHEG defines objects in final form , which means that they are no longer revisable.

Therefore, MHEG allows a content to be replaced but not edited. This behaviour,

CHAPTER 7. A CRITICAL ANALYSIS OL MHEG 157

although suitable for reading and browsing documents, is not adequate for highly

interactive authoring systems. From this point of view, it is expected that MHEG will

be used to run documents created by authoring tools based on other standards such as

PREMO and HyTime.

Here again efficiency is improved by having final form representation of objects.

However, another implication of “final form” is that links are structures fully resolved

in MHEG which, although it enhances performance, does not provide support for links

computed on-the-fly which are regarded as “complex” and therefore should be specified

by scripting languages outside the scope of MHEG. The author is of the opinion that

the existence of computable links is required by a large number of applications and that

MHEG should allow the definition of processing links, not leaving to external scripting

languages the whole task of defining relationships more complex than an end-to-end

link.

Links that require further processing before the execution of their effect can impose

severe overheads to the overall system performance, therefore some strict constraints

must be imposed. One reasonable constraint that can be imposed on processing links is

that the scope of their effect is limited to objects whose “preparation status” is “READY”.
This will limit the eventual search process that will be started by the link effect. The

author should always be aware of the performance degradation risk that such links can

impose. This limitation is reasonable, and seems to impose little extra effort on the

author. An example where such type of link would be useful is when, for example, it

is desired to “reduce the volume of all audio objects by 20%”. In this case, the link

process must locate all audio objects to process the link effect. The definition of more

complex interactions should still be left to external scripting languages, not only to

optimise performance but also because the definition (authoring) of such interactions

will require a higher level of abstraction than that provided by MHEG.

In the proposed architecture, the implementation of processing links that comply

with the above restrictions can be easily implemented and can be efficient because:

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 158

• The scope of the processing is limited to objects already “known” to the engine

(the ‘preparation status” is “READY”) avoiding the risk of a search of “all objects

in the world”.

• The registry and the link factory already keep several status information variables

about objects which can, in some cases, be the only information required to

compute the target of the link effect.

The implementation of processing links would require a change to the process that

deals with triggered links as shown in figure 7.5. The changes add a module to compute

the destination (targets) of the link before the link effect is processed. The module has

to interact with the link factory and the registry to identify the targets.

process link
effect

Figure 7.5: Processing sequence for a processing link (adapted from figure 6.5)

7.2.2 Relationship to HyTime and PREMO

The limitations on the definition of the “look and feel” and also on changing the

contents of objects makes MHEG suitable for use either as the output of authoring tool

based on PREMO and HyTime or for providing objects to be rendered by PREMO or

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 159

HyTime engines. Figure 7.6 shows a possible relationship between MHEG, HyTime

and PREMO, adapted from [ISO, 1994a],

Applications

Modeling

Operator & Hardware

Presentation level
of PREMO

Figure 7.6: MHEG, PREMO and HyTime relationship (adapted from [ISO, 1994a])

The view of the author is that the three standards can be used together, depending

on use:

• PREMO is very much implementation oriented, and is capable of allowing users

to define a look and feel for a presentation. However, PREMO does not provide

the general abstraction provided for MHEG for multimedia exchange, making it

less generic than MHEG.

• MHEG aims at providing efficient and generic forms for interchanging documents

in final form. The mechanisms for exchange are powerful but if it is desired to

define rigidly what a document should look like, MHEG is not adequate.

For documents aimed at browsing, the mechanisms provided by MHEG are not

only powerful but also powerful enough to allow local customisation: the reader

can specify how structural components are presented. This is the approach used

by the WWW with success.

• HyTime, in part because it is more mature than the two previous standards,

provides the most powerful abstractions for generic multimedia authoring. The

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 160

generic mechanisms provided for manipulating time and space (by the use of

batons and wands) is more powerful than the mechanisms provided by the other

standards. However, as it is at a high level of abstraction, it is not efficient in

terms of presentation.

The author expects that tools for translating documents created using HyTime to

MHEG will be created. Once the high level behaviour of a document is defined,

it is not too difficult to translate that to the more efficient, but less expressive

MHEG form, when, for example, a generic specification to define timing must be

translated into corresponding MHEG set of actions.

7.3 MHEG engine

The standard does not specify how the engine should be implemented but assumes that

it is capable of performing actions on objects. This is discussed in the next section.

7.3.1 Object orientation in MHEG

Limitations

MHEG defines classes of objects to denote the structure of interchangeable objects. It

does not define methods for the classes and therefore it uses a more restricted form

of object orientation than in a programming language [Cardelli and Wegner, 1985],

The standard regards MHEG objects as “passive information entities which have to

be interpreted by an appropriate presentation environment (i.e. the MHEG engine) to

realise behaviour” [MHEG, 1994b, section 6.2.1] The engine should be able to apply

actions to objects, and the behaviour of such actions is polymorphic: a ‘run’ action

targeted at a video run-time object has a different semantics from a ‘run’ action targeted

at a audio run-time object.

An action, as defined by the standard, is targeted at an object. If it is desired to

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 161

retrieve the speed at which the run-time video m y _ v id e o # l is being played, an action

such as g e t s p e e d would be targeted at the object m y _ v id e o # l . The target object

must be known to the engine in order to perform the action.

In the same way, MHEG defines that, in order to prepare a model object, an action

p r e p a r e should be targeted to the object. Although this seems to be providing a

uniform framework for delivering messages, in this case the target object is not known

to the engine and therefore the way the action is handled depends not only on identifying

the target but also on the type of the message. Similarly, a “new” action is targeted at

a run-time object which is not yet available. A new run-time object is created from a

model object that must be in phase 03 or 04 in the timing diagram shown in figure 7.7.

If the model object is not ready, there is an implicit prepare action targeted at it.

Prepare Destroy

initial object preparation preparation status=ready preparation preparation status= not ready
availability status = initialisation of other status - destruction of other
behaviour processing

//////rrry/ / / / / / / / / /

object behaviour processing object behaviour

01

Time

Figure 7.7: Timing diagram of model object availability (in period 01 the object is not
known to the engine)

If the engine is thought of as being monolithic, this causes no problem, because it will

have to identify the action and the target in order to perform the processing. However if,

as in our proposed architecture, the engine is a set of independent cooperative processes,

with a central registration and message routing point, this solution is inadequate; the

decision as to which process will handle an action depends not only on the target of that

action but also on the action itself, as shown in the examples below:

• an action is targeted to a model object in phase 03 or 04 (figure 7.7): the engine

will receive the request to process the action on the object identified. In this case

it will have to identify the process that handles that object and post the request to

it. The core of the engine (or the kernel in our case) does not have to know how

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 162

to process that message, which is a desired feature if we want the system to be

extensible.

• an action is targeted to a model object in phase 01: in this case, the object is not

yet available to the engine; therefore it must interpret the action to identify the

processing that should happen. If the action is p r e p a r e , the engine will process

it. Any other action is likely to be an error.

This case is different from the previous one in the sense that only the process

handling the engine itself can process an action targeted to an unknown object,

especially if this action aims at making the object available.

In our implementation, a p r e p a r e action is processed by the kernel, and all it

does is to start the process that knows how to prepare that type of object. When

a new medium is introduced, the kernel is simply reconfigured to be aware of the

medium and the process that should be invoked to prepare an object of that type.

• a new is targeted to a non existing run-time object: the standard defines that

the run-time object is created using the object defined by the model class. If the

model object is not ready it will be prepared. The author is of the view that an

action to create a run-time object should be targeted at the model object with the

run-time index as a parameter. The engine (or the process handling the model

object) has all the details to perform the creation of the object.

In our implementation, a new action is processed by the process that handles the

model object. The process of creating a run-time object varies according to the

type of the object (it is not covered by the standard) and in some cases requires

the contents of the model object to be copied to the run-time object.

Suggested improvement

Some of these difficulties arise from trying to incorporate only some of the concepts

of object oriented languages in MHEG. In a pure object oriented language (such as

CHAPTER 7. A CRITICAL ANALYSIS OL MHEG 163

Smalltalk [Goldberg and Robson, 1986]) all messages are directed to an object. Unlike

in an MHEG engine, in Smalltalk all objects are available to the environment (which

has a similar role to the MHEG engine). Therefore the run-time support system always

knows who should be the target of a given action. The object may not be capable of

handling a certain message and it then delegates the processing to its superclass. When

a new instance of an object is created, a message is sent to the class of that object

and not to the instance to be created itself. The environment stores all the information

required to create the instance object in objects belonging to a meta class. When a new

class of objects is created, a meta class describing those objects is defined providing the

information required to create instance objects.

The object is created by sending a message new to the class of the desired object,

which is at a higher level of abstraction than an object instance, and is fully resolved

when the message is sent. In most cases, that class will ask its super class to process the

new message and will send an initialisation message to the created instance. Eventually,

the class Ob j e c t (super class of all classes) will create the object using the information

of its meta class in a uniform way for all sub-classes of object.

As in the MHEG world we are not talking about pure object oriented languages

the uniformity of handling object creation is not possible or even desired. The current

approach assumes the existence of an engine and that this engine is capable of applying

actions to objects. If the existence of the engine is made explicit and if it must be able

to perform some actions, the authorship and implementation of engines and objects is

simpler to understand, particularly if a distributed approach is desired.

The changes implied can be demonstrated by the following examples:

• The p r e p a r e action should not be targeted at the object to be prepared, but

at the engine, which can be seen as a higher level object. The engine should

either know how to process the prepare action, or should know which process

will handle that type of object.

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 164

• The new action should be targeted at the model object with the run-time index as

parameter. The process handling the model object should know how to create the

run-time object. This approach would also prevent the implicit preparation of a

model object when a new action is targeted at an object that is not ready.

The above changes can lead to more efficient implementations (which is one of main

goals of MHEG) as it does not assume that the engine will be the only point for handling

actions, and that it will only have to sort messages depending on their destination: those

aimed at available objects; and those aimed at non available ones. As it is now, the

engine has not only to be aware of the availability of the destination object but also on

the type of message being transmitted. This approach requires a change to the system

structure when new media and actions are added, which is not desirable. The process

of adding or making an object available to the system will always require some special

treatment and should be explicitly addressed to the engine.

7.4 Final remarks

The strong and weak points of MHEG can be summarised as follows:

• Good for integrating 3rd party applications: MHEG does not deal with the

internal representation of contents data (the within component layer in Dexter’s

model (section 2.7) which makes it suitable for extensions and for accommodating

new types of objects.

• It is too generic: this is the case with MHEG part 1, which is abstract enough to

accommodate the various applications of hypermedia. It is expected that subsets

of the standard will be defined to deal with specific uses, as is already the case

with MHEG 5.

• Relationship with HyTime and PREMO: the view of the author is that MHEG

will be used together with PREMO and HyTime: HyTime is more abstract,

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 165

and therefore more powerful in terms of defining the high level behaviour of

hypermedia but is not efficient enough to cope with timing and QoS requirements;

PREMO is directed to the final presentation of multimedia and lacks the generic

mechanisms for document interchange.

• It overlaps with PREMO: the boundaries between the two standards are not yet

fully resolved and require more research to define their scope.

• It does not fully define the role o f the engine: MHEG assumes the existence of

an engine that it is capable of applying actions to objects but not that objects are

capable of performing actions on themselves in the sense used by object oriented

languages.

The view of the author is that although the standard should not define how the

engine should be implemented, it should define a set of actions that the engine

should understand. In particular, all actions targeted at objects not available to the

engine should be addressed to the engine itself and not to the object, as currently

happens.

This change would provide more efficient distributed implementations of the

MHEG engine and would not penalise a monolithic implementation.

• Final form representation o f objects: this leads to efficiency in the presentation

of objects as no further processing is required. However, MHEG is not suitable

for interactive uses and contents cannot be updated, only replaced.

• End-to-end links: In MHEG all links must be resolved, with no further processing

required. This is related to the previous point.

The view of the author is that this is not always desirable and MHEG should

provide two types of links: a resolved link as defined now; and a processing link

that requires some pre-processing. To avoid problems with security, an engine

may decide not to allow processing links.

Chapter 8

Conclusion

This last Chapter presents concluding remarks about the work performed. It starts with

a summary of the thesis, and a discussion of the proposed model and its implementa­

tion. The final part contains suggestions for enhancements to the work presented and

suggestions of future research.

8.1 General comments

As was said previously, one of the main impediments to the development of multimedia

and hypermedia applications has been the lack of standards. The investment required

to develop such applications is too high not to have portable systems and documents.

The standardisation process started with the development of standards for mono­

medium data such as JPEG for images and MPEG for video. However, standards for

the exchange of complete applications or documents are still under development.

Some of the requirements that such standard should take into account include:

• Extensibility: it is not possible to predict the future availability of new media or

technology;

• Openness: no standard should depend on technology controlled by one specific

166

CHAPTER 8. CONCLUSION 167

vendor. A standard should take advantage of networks and distribution and

provide means to interact with external services such as name servers;

• Separation o f data and structure: contents data must exist independently of its

structure, so that several “views” of that data may be created depending on user’s

need;

• Application independence: a standard, to be generic, should not focus on one

specific type of application.

This thesis analysed the suitability of one of the emerging standards for multimedia

exchanges (MHEG) and proposes an architecture for its implementation. One of the

main problems met during the development of this work was the constant changes to

the MHEG proposal. The prototype developed is, therefore, not up to date with the

latest version of MHEG.

8.2 MHEG

MHEG is the first attempt to develop an international standard to cater for the generic

requirements of multimedia interchange documents. As a standard which is not targeted

at a particular type of application, it is very generic and it is expected that several sub

sets of the standards will appear taking into account specific applications.

MHEG defines objects in final form, which make it efficient for dealing with docu­

ments that do not require changes but unsuitable for interactive authoring applications.

As documents do not require further processing to be presented, it is possible to imple­

ment very efficient systems based on the standard.

The standard does not define the look and feel of a presentation. Here again this

leads to efficient exchange, as less information has to be transmitted; it allows the look

and feel to be defined at the end point, but provides poor support for, say, an artistic

document where the look and feel is as important as the data itself. For this type of

CHAPTER 8. CONCLUSION 168

application, the point of view of the author is that MHEG will be used together with

other standards such as PREMO.

One fact that may jeopardize the adoption of MHEG is the time it is taking to make

it an International Standard. The work is at least one and a half years behind schedule,

and it is not expected that it will be concluded before 1996. It is also important to note

that during this period of time, it has suffered a lot of change in its structure, some of it

basic.

8.3 A proposed architecture for MHEG objects

The architecture proposed is based on a kernel that provides an extension to the operating

system and processes that interact with this kernel via interfaces.

The kernel is responsible for registering objects, name resolution, interprocess

communication and clock synchronisations. The manipulation of contents data is

performed by client processes specialised for one specific medium. This separation

provides extensibility at two different levels, as discussed below.

8.3.1 Extensibility

Extension is desirable at several levels:

• Communication level: the communication infrastructure may be upgraded to

new technologies, and it is desirable that this upgrade is insulated from the

client processes. In the architecture proposed, all interprocess communication is

performed via the kernel and a change in the infrastructure has to be dealt with

at that level alone. As long as the kernel interface to clients is the same, from

the point of view of a client process it is transparent whether the kernel is using

CORBA, direct RPC or DDE or if it is now able to access a new external naming

service.

CHAPTER 8. CONCLUSION 169

• Media processing level: adding new media, devices or actions to be performed

on them is expected to be a frequent operation.

In this case, it is desirable that only the processes that will be affected by the

changes will be updated; the kernel should not be responsible for dealing with

medium specific information. Here again, the architecture proposed provides

an adequate framework as only the specialised client — either dealing with a

model or a run time object (section 5.4) — “knows” and is responsible for dealing

with media specific requests. The kernel is unaware of how actions targeted at a

medium will affect media specific data, because it does not interpret this type of

information.

At this level it is also possible to add extensions that are specific to applications

(e.g. some specific action to be understood by a process).

• Pre-processing capabilities: although MHEG defines documents in final form

(discussed below), it may be desirable (for specific applications) to add mecha­

nisms to perform some sort of processing on data (e.g. to compute dynamic links

in a hypertext).

Here again the architecture proposed can cope with extensions in this directions

as this type of extension can be added to the process responsible for “preparing”

the object type to be pre-processed. This process then generates the appropriate

MHEG structures with no change being required at the kernel level.

• Adding new types o f media specific processes: extensions to the types of processes

capable of dealing with media will be made by programmers. It is required that

a minimum of programming effort is demanded. The architecture proposed for

processes provides for code reuse as only media specific code has to be written

(which may be the code to control a device).

The architecture also provides:

CHAPTER 8. CONCLUSION 170

• Default behaviour: although processes can be extended as discussed above, the

infrastructure provides default behaviour for several actions that are inherited by

all processes but that may be overridden by the programmer of a client process.

• Reuse o f existing tools: it is possible to integrate any tool that provides an external

controlling interface by implementing a process to deal with that tool as if it were

a new medium. An example of such integration was described for the inclusion

of the Text-To-Speech module. In particular, any application which is DDE aware

can be integrated by using a process to “remotely control” it.

8.3.2 System performance

The measurements obtained show that the architecture proposed is very efficient. The

overhead imposed by the system kernel for dispatching messages is very low. Typically,

using an entry level PC (486-66 IBM clone), an interaction with the kernel takes less

than one millisecond.

Performance bottlenecks are created by slow actions such as repainting large parts

of the screen or starting up a process such as a video clip. However, under normal

usage it is acceptable to have longer delays for an operation that causes a major change

to what the user is perceiving.

Also because location of output devices is important in most hypermedia presen­

tations, the system relies on a central point always being available. The machine that

starts up a presentation is the one that will host the central kernel, including the time

server, and is also responsible for registering other servers. In most cases location trans­

parency is not desired, because users need to be able to define the physical location of

output, and so the reliance on a central point makes the overall system control simpler,

improving performance.

CHAPTER 8. CONCLUSION 171

8.4 Enhancements and further work

The work started in this thesis can be extended in several direction:

• Update to final version ofMHEG: it is likely that MHEG will become an Inter­

national Standard next year. Updating the prototype to the final version is the

natural extension to this work.

• Operating system: the prototype was developed under Windows 3.1, which

presents a series of limitations as discussed in Chapters 5 and 6. The recent

release of a new version of Windows (Windows 95) which provides preemp­

tive multitasking, offers a more suitable environment for developing multimedia

applications for desktop computers.

The use of a preemptive operating system will require less in terms of program­

ming discipline for developing applications, as discussed in Chapter 5.

• Integration into a distributed system environment: as we previously discussed,

Windows provides poor inter-process communication features. A desirable ex­

tension to this work is to analyse how the structure behaves under a distributed

environment, such as the one provided by OMG’s CORBA, or Microsoft and

DEC’S COM.

• Authoring interface: the documents used for testing were manually created. It

is clear from that experience that MHEG needs a computer supported tool for

authorship.

One interesting research direction is to define an authoring tool based on the

emerging PREMO standard to generate MHEG documents. This work would

also be useful to help define the boundaries between the two standards that still

seem to have large parts which overlap. As PREMO is Object Oriented, providing

operation signatures for objects, it seems a natural standard to be used by an engine

CHAPTER 8. CONCLUSION 172

for MHEG, which is object based. However, a thorough assessment on how well

they can be integrated is not yet possible as PREMO is in a very early stage of

development.

HyTime is better developed and there are already some engines available; de­

veloping authoring tools based on HyTime to generate MHEG objects is also

important to assess how well the two standards can be used together.

• Integration with other tools: a future development of this work, in particular by

using a distributed environment would allow its integration with other multimedia

research being carried out at the University of Kent.

In particular, it is desirable to create MHEG documents representing video se­

quences with annotation, adapting the tool described in [Linington and Teixeira,

1993] to MHEG authoring; and to access the high speed ATM network and the

existing video [Henshaw, 1994] and audio servers [Li, 1994],

• Exposure to real-life problems: the tests carried out were based on artificial

situations. The best way to fine tune a system is to develop “real-life” applications.

The use of the tools discussed above and the development of applications accessed

by the public would provide invaluable data to assess the use of MHEG in practice.

8.5 Final remarks

The main points achieved by this work are summarised below:

The MHEG standard

Directly related to the work developed by ISO WG 12 this thesis has assessed:

• Expressiveness: MHEG has been shown to be capable of expressing “common”

hypermedia documents.

CHAPTER 8. CONCLUSION 173

• Extensions: MHEG has proved to be suitable for extension by providing a ho­

mogeneous structure into which new media can easily be accommodated.

This work also suggests that the engine should be explicit in the standard, and not

assumed to exist and that it should be capable of applying actions to objects. This

change makes the process of implementing a distributed architecture more efficient as

actions can be distributed to processes handling objects without having to decode them

twice as required by the current format. The need for double interpretation arises from

the fact that the process that will handle the action depends not only on the target of that

action but also on the type of action, as discussed in section 7.3.1.

The architecture proposed

The architecture proposed for implementing MHEG object has achieved the goals of:

• Extensibility: The architecture is extensible at several levels:

- Kernel: a central point is responsible for messaging, both internally and ex­

ternally. It provides transparency over the technology used for interprocess

communication.

- Client: processes are responsible for dealing with media specific data.

Therefore new devices, media, and actions may be added with no impact on

other parts of the system.

• Open architecture: third party applications may be used by the system allowing

data encoded by proprietary algorithms to be controlled by a native application

via a process acting as a “remote control”.

• Pre-processing hooks: the structure provides adequate hooks for adding pre­

processing to data made available to the system, although this feature is not

currently required by MHEG.

CHAPTER 8. CONCLUSION 174

These hooks can also be used by external scripting languages in order to define

complex relationships between elements.

• Software reuse: the structure proposed for defining processes allows a large

amount of software reuse when new media, devices and/or actions are intro­

duced. Typically, the programmer has only to write the media specific code when

extensions are added.

• Performance: the architecture does not add a significant overhead to the overall

performance. The values measured are compatible with the hardware used.

Appendix A

Overview of MHEG Classes

This section provides a summary of the main characteristics of the MHEG classes. The

quotation in italics in the beginning of each subsection is from the Working Group

document and gives a one sentence summary of that class.

A.l Mh-object

“Mh-object class provides the identification o f MHEG objects”

Mh-object is an abstract class; i.e. no objects are instantiated from it but only from its

subclasses. Mh-object provides (by inheritance) identification for all objects in MHEG

hierarchy, such as the identification of the standard and its version, identification of

the objects class, MHEG identifier of the MHEG object and general object information

(name, owner, version, date, keywords, copyright, license and comments).

A.2 Action class

“Action class objects are used within a link object to describe the link

effect”.

The general structure of an action class object is shown in figure 1.1.

175

APPENDIX A. OVERVIEW OF MHEG CLASSES 176

Action object "simple"

(Sybchro indicator. Default: serial)
(Nb. of performances. Default: 1)

Target = T

synchronised actions

- elementary action 1
- elementary action 2

Figure 1.1: MHEG Simple Action Object Structure

Elementary action

. Target set (optional)

. Transition duration (optional)

. Specific parameters defined for
each elementary action.

Figure 1.2: MHEG Elementary Action Structure

An action class object provides the following information:

• Synchro indicator: valid values are parallel or serial. The synchro indicator

specifies the type of processing of the synchronised actions.

• Target set: an optional attribute that specifies the targets of the actions.

• Number of performances: specifies the number of performances of the synchro­

nised actions. The default is one.

• Synchronised actions: the set of elementary actions (figure 1.2) and/or action

objects (figure 1.1).

Actions may also be nested (figure 1.3). Targets of nested actions default to the

targets defined by the outer object. The attribute synchro indicator applies to all actions.

APPENDIX A. OVERVIEW OF MHEG CLASSES 111

-j Action object "nest“}

— j synchronised actions-

- elementary action 1

(Sybchro indicator. Default: serial)
(Nb. of performances. Default: 1)

Target = T

Action object “nested“
(Sybchro indicator. Default: serial)
(Nb. of performances. Default: 1)

Target = S

synchronised actions
■ elementary action A
■ elementary action BTarget = R

- elementary action 2

Figure 1.3: Nested Action Structure

-jMacro action------------------
Nb. of performances: PERF
Synchro indicator: SYN
Target set: omitted

- prepare TARGET1
- new TARGET 2
- set speed TARGET2(RATE)
- run TARGET 2
- stop TARGET 2

Figure 1.4: Macro Action Structure

The standard also defines macro actions (figure 1.4) to optimise the coding of

complex or frequently used actions. Macros also provide for the sharing and reuse of

complex behaviour. In the figure, the parameters to the macro are written in capitals.

A.3 Link class

“The link class defines a structure which defines a set o f relationships. ”

MHEG links are used in two situations:

1. In composite objects where links can provide positions for other objects in time

and space;

APPENDIX A. OVERVIEW OF MHEG CLASSES 178

2. In a stand alone manner to allow creation and modification of general inter-object

relations;

A.3.1 Characteristics of MHEG links

MHEG links have the following characteristics:

• Directional: they connect one object to one or more objects;

• Conditional: the actions defined are processed only if the conditions are satisfied.

The conditions can be on the dynamic attributes of the source object or on external

objects.

All conditions are assumed to apply at the same time and the specification of the

application should take into account the effects of sequential testing.

A.3.2 Link structure

A link is divided into two parts (figure 1.5):

1. Link condition: this describes the conditions that should be satisfied to provoke

the link effect. The link condition specifies trigger conditions and constraint

conditions.

Constraint conditions define contextual conditions, such as speed or audible

volume for example, that should be valid at the moment the link is triggered.

Another difference between trigger conditions and constraint conditions is that a

trigger condition specifies a “before” and an “after” condition while the constraint

condition requires only the “moment” satisfaction of conditions.

The following events may trigger a link:

• Temporal events caused by timestones or delay;

• Action events derived from any MHEG action;

APPENDIX A. OVERVIEW OF MHEG CLASSES 179

Link object

Figure 1.5: Link Object Structure

• Interaction events caused by user interaction.

2. Link effect: specify the processing that should occur when the link condition is

satisfied.

A.4 Model class

The model class is an abstract class. The subclasses of model are the classes that define

objects that are interchanged and that can be instantiated (possibly more than once)

taking the class as a template. For example, a content object that contains an image

is exchanged once but it may be instantiated more than once (different rt-objects) in

several contexts. The creation of an rt-object does not affect the model object.

APPENDIX A. OVERVIEW OF MHEG CLASSES 180

A.5 Script class

“The script class defines a container for complex relationships between

MHEG objects and run-time objects, defined by a non-MHEG language. ”

Scripting languages are outside the scope of MHEG. Languages for specifying

complex behaviour or compositions, such as in [Pinto, 1993] should be used, although

in the future MHEG should add extensions for scripting language support. The standard,

however, provides for the exchange of script objects. A script object contains:

• The script classification: an optional parameter that can be used to identify the

type of script data.

• A script hook: which allows the identification of the external scripting language

used. The script hook composed of an scripting language identification and a

scripting language description.

• The script data: a inclusion or reference to the script itself.

A.6 Descriptor class

“The descriptor class defines a structure for the interchange o f resource

information about a set o f other interchanged objects. ”

This class allows the description of interchanged documents so that presentation

systems are able to adapt the available resources to the requirements for a given object,

and it also allows an MHEG engine to determine whether it is capable or not of

proceeding with a presentation.

It is not required that all interchanged objects also have a corresponding descriptor

object.

APPENDIX A. OVERVIEW OF MHEG CLASSES 181

A.7 Component class

“The component class models objects that may be interchanged within

or across using applications. ”

The component class is an abstract class inherited by content class and composite class.

It contains no information and is in the hierarchy for clarity only.

A.8 Content class

“The content class contains or refers to the coded representation of

media information together with a parameter set containing information

required for content presentation. ”

Content class is a model class object, i.e. it is interchanged by applications and it is

used as a template for rt-component objects. A content object contains the following

information:

• Data classification: an optional parameter that provides assistance in determining

the type of the perceived media data.

• Content original perception: an optional parameter that provides the original

spatial and temporal perception (e.g. original size, duration, etc.), and the original

audible perception (e.g. volume and volume range).

• Content hook: the encoding/decoding mechanism used to represent the data.

• Content data: inclusion or reference to the actual data.

A.9 Multiplexed Content class

“The Multiplexed content class contains or refers to the coded repre­

sentation o f multiplexed media data together with a description of each

APPENDIX A. OVERVIEW OF MHEG CLASSES 182

multiplexed stream. ”

A multiplexed content object contains all the information a content object does, and

in addition it provides:

• Stream list: an ordered list that describes the streams in the multiplexed data.

A.10 Composite class

“The composite class provides the support for associating multimedia

and hypermedia objects. ”

A composite object contains the following information:

• Composite behaviour: a description of the sequencing and interrelationships

between the elements of the composite, including initial behaviour.

• The number o f elements in the composition;

• List o f composition elements: a list of all sibling elements in the composition.

An element of a run time composite (r t - c o m p o s i t e) is called a socket. A socket

can be:

• Empty: when a null rt-component is plugged into it;

• Presentable: when an rt-component or rt-multiplexed content is plugged into it;

or

• Structural: when a rt-composite is plugged into it.

A .ll Container class

“The container class provides support for regrouping multimedia and

hypermedia data in order to interchange them as a whole set”

APPENDIX A. OVERVIEW OF MHEG CLASSES 183

The objective of regrouping objects is to facilitate interchange in the sense that a

group of objects may be transferred as one set. Because the interchange is done in

one object only, the use of a container ensures that all components are included. A

container object is not a model object, therefore no run-time instances can be created

from a container.

Bibliography

[Adie, 1994] C. Adie. Network Access to Multimedia Information. Request for Com­

ments (RFC) 1614, May 1994.

[Adobe, 1995] Adobe. Acrobat. Adobe Magazine — British Edition, (1): 14-16, 1995.

[Aho et a l, 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques and Tools. Addison-Wesley, 1986.

[Akscyn and McCracken, 1984] Robert M. Akscyn and Donald L. McCracken. ZOG

and the USS CARL VINSON: Lessons in System Development. Technical Report

CMU-CS-84-127, Camegie-Mellon University, Pittsburgh-PA, 1984.

[Apple, 1993] Apple Corporation. Inside Macintosh: QuickTime, Apple Technical

Library. Addison Wesley Publishing Company, 1993.

[Barry, 1994] Jeff Barry. The HyperText Markup Language (HTML) and the World

Wide Web: Raising ASCII Text to a New Level of Usability. The Public-Access

Computer Systems Review 5, 5(5):5-62, 1994.

[Berners-Lee, 1993] Tim Berners-Lee. Hypertext Markup Language (HTML). Internet

Draft URL=f tp/ / info . cern. ch/pub/www/doc/htmlspec . ps, 1993.

[Berners-Lee, 1995] (Editor) Tim Berners-Lee. URL Uniform Resource Locators.

Internet Draft available at URL: http: //www.w3 .org/hypertext/WWW/-
Adressing/URL/url-spec. h tm l , 1995.

184

http://www.w3

BIBLIOGRAPHY 185

[Berson, 1992] AlexBerson. Client/Server Architecture. McGraw-Hill Series on Com­

puter Communications, 1992.

[Birrel et al., 1982] A. D. Birrel, R. Levin, R. M. Needham, and M. D. Schroeder.

Grapevine: An exercise in distributed Computing. Communications o f the ACM,

25(4):260-273, Apr 1982.

[Brown, 1986] R J. Brown. On-line Documentation. Personal communication, Apr

1986.

[Brown, 1987a] P. J. Brown. Hypertext: The way forward. Technical report, University

of Kent, Canterbury, Kent, 1987.

[Brown, 1987b] P. J. Brown. The differences between UNIX guide and OWL Guide.

Personal communication, 1987.

[Brown, 1987c] P. J. Brown. Turning Ideas Into Products: The Guide System. In

Hypertext’87 Proceedings, pages 33-40, Chapel Hill, NC, Nov 13-15 1987.

[Brown, 1989] Heather Brown. Standards for Structured Documents. The Computer

Journal, 32(6):505-514, 1989.

[Brown, 1994] P. J. Brown. Adding Value to a Network Hypertext: can it be done trans­

parently? In European Conference on Hypermedia Technology 1994 Proceedings,

pages 51-58, Edinburgh, UK, Sep 18-23 1994.

[Buford, 1994] John F. Koegel Buford. Multimedia Systems. Prentice Hall, 1994.

[Bulterman etal., 1991] Dick C. A. Bulterman, Guido van Rossum, and Robert van

Liere. A Structure for Transportable, Dynamic Multimedia Documents. In Usenix

Summer Conference Proceedings, pages 137-156, Nashville, Tennessee, June 1991.

[Bulterman, 1993] Dick C. A. Bulterman. Retrieving (JPEG) Pictures in Portable

Hypermedia Documents. In Tat-Seng Chua and Tosiyasu L. Kunii, editor, Multimedia

BIBLIOGRAPHY 186

Modeling, pages 217-226. World Scientific, Nov 1993. Proceedings of the First

International Conference on Multi-Media Modeling.

[Bush, 1945] Vannevar Bush. As we may think. Atlantic Monthly, 1945.

[Bush, 1967] Vannevar Bush. Memex revisited. Evolution of an Information Society,

1967.

[Cardelli and Wegner, 1985] L. Cardelli and P. Wegner. On understanding types, data

abstraction, and polymorphism. Computing Surveys, ACM, 17(4):471-522, Dec

1985.

[Carr et a i, 1995] Les Carr, Wendy Hall, Hugh Davis, and Rupert Hollom. The Mi­

crocosm Link Service and its Application to the World Wide Web. Personal Com­

munication, 1995.

[Casey, 1994] Thomas Casey. MHEG, Scripts, and Standardisation Issues. In Wolfgand

Hersnrer and Frank Kappe, editors, Multimedia/Hypermedia in Open Distributed

Environments (Proceedings o f the Eurographics Symposium), pages 29—43, Graz,

Austria, June 1994.

[CCITT, 1988] CCITT. Recommendation X.500: The Directory — Overview o f Con­

cepts, Models and Service. International Telecommunications Union, Place des

Nations 1211 Geneva, Switzerland, 1988.

[Charles Petzold, 1992] Charles Petzold. Programming Windows 3.1. Microsoft Press,

1992.

[Clark, 1992] Jeffrey D. Clark. Windows Programmers Guide to OLE/DDE. SAMS,

1992.

[Colaitis and Bertrand, 1994] F. Colaitis and F. Bertrand. The MHEG Standard: Prin­

ciples and Examples of Applications. In Wolfgand Hersnrer and Frank Kappe,

BIBLIOGRAPHY 187

editors, Multimedia/Hypermedia in Open Distributed Environments (Proceedings of

the Eurographics Symposium), pages 3-17, Graz, Austria, June 1994.

[Conklin and Begeman, 1987] Jeff Conklin and Michael L. Begeman. gIBIS: A Hy­

pertext Tool for Team Design Deliberation. In Hypertext’87 Proceedings, pages

247-252, Chapel Hill, NC, Nov 13-15 1987.

[Coulouris et a l, 1994] George Coulouris, Jean Dollimore, and Tim Kinderberg. Dis­

tributed Systems: Concepts and Design. Addison-Wesley, 1994. Second edition.

[Danny Goodman, 1987] Danny Goodman. The Complete HyperCard Handbook. Ban­

tam Books, 1987.

[Davis et a l, 1994] Hugh C. Davis, Simon Knight, and Wendy Hall. Light Hyperme­

dia Link Services: A Study of Third Party Application Integration. In European

Conference on Hypermedia Technology 1994 Proceedings, pages 41-50, Edinburgh,

UK, Sep 18-23 1994.

[Digital Equipment et a l, 1993] Digital Equipment Corporation, Hewlett-Packard

Company, HyperDesk Corporation, NCR Corporation, Object Design Inc., and Sun­

Soft Inc. The Common Object Request Broker: Architecture and Specification.

OMG Document 93.xx.yy Revision 1.2, Object Management Group (OMG), Dec

1993.

[Drapeau and Greenfield, 1991a] George D. Drapeau and Howard Greenfield. MAE-

stro — A Distributed Multimedia Authoring Environment. In Usenix Summer Con­

ference Proceedings, pages 315-328, Nashville, Tennessee, June 1991.

[Drapeau and Greenfield, 1991b] George D. Drapeau and Howard Greenfield. MAE­

stro User’s Guide, 1991.

BIBLIOGRAPHY 188

[Eckhard Moeller and Angela Scheller and Gerd Schürmann, 1990] Eckhard Moeller

and Angela Scheller and Gerd Schürmann. Distributed Multimedia Information

Handling. Computer Communications, 13(4):232-242, May 1990.

[Fokus, 1995] GMD Fokus. GLASS - Globally Accessible Services — An

Interactive Distributed Multimedia Presentation System. Available at URL:

h t t p : //w w w . f o c u s .g m d .d e /o v m a , 1995.

[Fountain et a l, 1990] A. Fountain, W. Hall, I. Heath, andH. C. Davis. MICROCOSM:

An open model for hypermedia with dynamic linking. In A. Rizk, N. Streitz, and

J. André, editors, Hypertext: Concepts, Systems and Applications (Proceedings of

the European Conference on Hypertext), pages 298-311, INRIA, France, Nov 1990.

[Fujitsu and TechnoTeacher, 1995] Open Systems Solutions Fujitsu and Tech-

noTeacher Inc. HyTime Application Development Guide, May 1995.

[Goldberg and Robson, 1986] A. Goldberg and D. Robson. Smalltalk-80 / The Lan­

guage. Addison-Wesley Publishing Company, 1986.

[Goldfarb, 1990] Charles F. Goldfarb. The SGML Handbook. Clarendon Press, 1990.

[Gray, 1991] Pamela Gray. Open Systems: A Business Strategy for the 1990s. McGraw-

Hill Book Company (UK) Limited, 1991.

[Halasz and Schwartz, 1994] Frank Halasz and Mayer Schwartz. The Dexter Hypertext

Reference Model. Communications of the ACM, 37(2):30-39, Feb 1994. Edited by

Kaj Gronbæk and Randall H. Trigg.

[Halasz and Schwartz, 1990] Frank Halasz and Mayer Schwartz. The Dexter Hypertext

Reference Model. In D. Benigni J. Molina and J. Baronas, editors, Proceedings of

the Hypertext Standardization Workshop, pages 95-133. NIST Special Publ., Jan

1990.

BIBLIOGRAPHY 189

[Handel, 1991] Rainer Handel. Integrated broadband networks: an introduction to

ATM-based networks. Addison-Wesley, 1991.

[Hardman et al., 1993] Lynda Hardman, Dick C. A. Bulterman, and Guido van

Rossum. The Amsterdam Hypermedia Model: Extending Hypertext to Support

Real Multimedia . Hypermedia, 5(l):47-69, 1993.

[Hardman et al., 1994] Lynda Hardman, Dick C. A. Bulterman, and Guido van

Rossum. The Amsterdam Hypermedia Model: Adding Time and Context to the

Dexter Model. Communications o f the ACM, 37(2):50-63, Feb 1994.

[Henshaw, 1994] Paul Henshaw. UKC ATM Video Filestore Application. Working

paper, University of Kent at Canterbury, 1994.

[Herman et al., 1994] I. Herman, G. S. Carsonn, J. Davy, D. A. Duce, P. J. W. ten

Hagen, W. T. Hewitt, K. Kansy, B. J. Lurvey, R. Puk, G. J. Reynolds, and H. Stenzel.

PREMO: An ISO Standard for a Presentation Environment for Multimedia Objects.

In Proceedings o f the ACM Multimedia’94 Conference. ACM Press, Oct 1994.

Available by anonymous ftp.

[Hill and Hall, 1994] Gary Hill and Wendy Hall. Extending the Microcosm Model to a

Distributed Environment. In European Conference on Hypermedia Technology 1994

Proceedings, pages 32^-0, Edinburgh, UK, Sep 18-23 1994.

[Hill et al., 1992] Gary Hill, Rob Wilkins, and Wendy Hall. Open and Reconfigurable

Hypermedia Systems: A Filter-based Model. Technical Report CSTR 92-12, Uni­

versity of Southhampton, 1992.

[Hopper, 1990] Andrew Hopper. Pandora: An Experimental System for Multimedia

Applications. ACM Operating Systems Review, 24(2), Apr 1990.

[Howard Rheingold, 1985] Howard Rheingold. Tools for Thought. Computer Book

Division/Simon & Schuster, 1985.

BIBLIOGRAPHY 190

[ISO, 1986a] ISO. ISO-8879: Formal Public Identifiers, 1986.

[ISO, 1986b] ISO. IS09070: Registration procedures for public text owner identifiers,

1986.

[ISO, 1988] ISO. ISO 9069 Information Processing — SGML Support Facilities —

SGML Document Interchange Format (SDIF), Sep 1988.

[ISO, 1989] ISO. ISO 8613 Information Processing - Text and Office Systems - Office

Document Architecture (ODA) and Interchange Format. 1989.

[ISO, 1992] ISO. ISO/IEC DIS 10744 Information Technology — Hypermedia/Time-

Based Structuring Language (HyTime), 1992.

[ISO, 1994a] ISO. Information Processing Systems — Computer Graphics and Image

Processing — Presentation Environments for Multimedia Objects (PREMO) ISO/IEC

JTC1/SC24 Comittee Draft 14478-4.1, Jul 1994. Part 1: Fundamentals of Premo.

[ISO, 1994b] ISO. PREMO Multimedia Systems Services Working Draft ISO/IEC

14478-4.2/199x(E), 1994. Second Draft September 1994.

[Jakob Nielsen, 1990] Jakob Nielsen. Hypertext and Hypermedia. Academic Press,

Inc, 1990.

[Jones and Hopper, 1993] Alan Jones and Andrew Hopper. Handling Audio and Video

Streams in a Distributed Environment. Operating Systems Review, 27(5):231-243,

Dec 1993.

[Koegel et a l, 1993] John Koegel, Lloyd W. Rutledge, John L. Rutledge, and Can

Keskin. HyOctane: A HyTime Engine for an MMIS. In Proceedings o f ACM

Multimedia 93, Aug 1993. Available by anonymous ftp.

[Kohl et a l, 1994] J. T. Kohl, B. C. Neuman, and T. Y. Ts’o. The Evolution of the

Kerberos Authentication Service. In F. M. T. Brazier and D. Johansen, editor,

Distributed Open Systems, pages 78-95. IEEE Computer Society Press, 1994.

BIBLIOGRAPHY 191

[Labs, 1994] Creative Labs. Text-to-Speech User Manual, 1994.

[Lampson, 1986] B. E. Lampson. Designing a Global Name Service. In Proceedings

o f the Fifth ACM annual Symposium on Principles o f Distributed Computing, pages

1-10, Calgary, Canada, 1986.

[Leggett and Schnase, 1994] John J. Leggett and John L. Schnase. Viewing Dexter

with Open Eyes. Communications of the ACM, 37(2):76—86, Feb 1994. Edited by

Kaj Gronbaek and Randall H. Trigg.

[Li, 1994] N. Li. A Distributed Audio System. In Wolfgand Hersnrer and Frank Kappe,

editors, Multimedia/Hypermedia in Open Distributed Environments (Proceedings of

the Eurographics Symposium), pages 109-121, Graz, Austria, June 1994.

[Linington and Teixeira, 1993] R Linington and C. Teixeira. Exploiting interactive

Video and Animation in Distributed Environments for the Design of Hypermedia

and and Graphical User Interfaces. In Proceedings of the VI SIBIGRAPI, pages

213-220, Recife, Brazil, Oct 1993.

[Linington, 1992] Peter F. Linington. Introduction to the Open Distributed Procesing

Basic Reference Model. In J. de Meer and V. Heymer and R. Roth, editor, Open

Distributed Processing, pages 3-13. Elsevier, 1992.

[Markey, 1991] Brian D. Markey. Emerging Hypermedia Standards - Hypermedia

Marketplace Prepares for HyTime and MHEG. In Usenix Summer Conference

Proceedings, pages 59-1 A, Nashville, Tenessee, June 1991.

[Matthews and Dobson, 1993] Martin Matthews and Bruce Dobson. Networking Win­

dows for Workgroups. Osborne Me Graw Hill, 1993.

[McAleese, 1993] Ray McAleese. Hypertext: Theory into Practice. Intellect Books,

1993.

BIBLIOGRAPHY 192

[McArthur, 1995] Jeffrey McArthur. SGML Frequent Asked Questions. Frequently

posted to comp . t e x t . sg m l newsgroup, 1995.

[Meyer-Boudnik and Effelsberg, 1995] Thomas Meyer-Boudnik and Wolfgang Effels­

berg. MHEG Explained. IEEE Multimedia, 2(1):26—38, 1995.

[MHEG, 1991] Multimedia and Hypermedia Information Coding Expert Group

MHEG. Information Processing - Coded Representation of Multimedia and Hy­

permedia Information Objects. Technical Report Working Document S.4, ISO/IEC,

Oct 1991.

[MHEG, 1993] Multimedia and Hypermedia Information Coding Expert Group

MHEG. Information Technology - Coded Representation of Multimedia and Hy­

permedia Information Objects (MHEG) - Part I: Base Notation (ASN.l). Technical

Report Working Draft Version: 1.0, ISO/IEC JTC1/SC29/WG12, Feb 1993.

[MHEG, 1994a] Multimedia and Hypermedia Information Coding Expert Group

MHEG. Information Technology - Coded Representation of Multimedia and Hy­

permedia Information Objects (MHEG) - Part I: Base Notation (ASN.l). Technical

Report Preparation Document for DIS, ISO/IEC JTC1/SC29/WG12, Feb 1994. Ver­

sion: VO - Rennes Meeting.

[MHEG, 1994b] Multimedia and Hypermedia Information Coding Expert Group

MHEG. Information Technology - Coded Representation of Multimedia and Hy­

permedia Information Objects (MHEG) - Part I: MHEG object representation; Base

Notation (ASN.l). Technical Report Draft International Standard 13522-1, ISO/IEC

JTC1/SC29/WG12, Dec 1994.

[MHEG, 1995a] Multimedia and Hypermedia Information Coding Expert Group

MHEG. International Standard ISO/IEC DIS 13522-1 — Information Technol­

ogy - Coded Representation of Multimedia and Hypermedia Information Objects

BIBLIOGRAPHY 193

(MHEG) - Part I: MHEG Object Representation; Base Notation (ASN.l). Technical

report, ISO/IEC JTC1/SC29AVG12, Aug 1995. Draft Version: Tokyo Meeting.

[MHEG, 1995b] Multimedia and Hypermedia Information Coding Expert Group

MHEG. International Standard ISO/IEC DIS 13522-1 — Information Technology -

Coding of Multimedia and Hypermedia Information Objects - Part 5: MHEG Subset

for Base Level Implementation. Technical report, ISO/IEC JTC1/SC29/WG12, Aug

1995. Working Draft 13522-5.

[Microsoft, 1994] Microsoft. Microsoft Visual C++ version 1.5 Books on Line, 1994.

[Mullender, 1989] Sape Muhender. Distributed Systems. Addison-Wesley Publishing

Company, 1989.

[Mullender, 1993] Sape Mullender. Distributed Systems. Addison-Wesley, 1993. Sec­

ond edition.

[Multicosm, 1994] Inc. Multicosm. Microcosm: a Technical Overview. Technical

Note, 1994.

[Needham, 1989] R. M. Needham. Names. In Sape Mullender, editor, Distributed

Systems, pages 89-101. Addison Weslley - ACM Press Frontier Series, 1989.

[Nelson, 1987] Theodor Holm Nelson. Literary machines. Prentice Hall, 1987.

[Newcomb et al., 1991] Steven R. Newcomb, Neil A. Kipp, and Victoria T. Newcomb.

The “HyTime” Hypermedia/Time-based Document Structuring Language. Commu­

nications of the ACM, 34(11):67—82, Nov 1991.

[Newcomb, 1991] Steven R. Newcomb. Standard Music Description Language com­

plies with hypermedia standard. IEEE Computer, 24(7):76-79, July 1991.

[Orfali et al., 1995] Robert Orfali, Dan Harkey, and Jeri Edwards. Intergalactic

Client/Server Computing . Byte, pages 108-122, Apr 1995.

BIBLIOGRAPHY 194

[OWL International, Inc, 1988] OWL International, Inc. Guide: Hypertext for the PC,

1988.

[OWL International, Inc, 1992a] OWL International, Inc. Guide User Manual, 1992.

[OWL International, Inc, 1992b] OWL International, Inc. Logiix Command Reference,

1992.

[OWL International, Inc, 1992c] OWL International, Inc. Logiix User Manual, 1992.

[Pichler et al., 1995] Michael Pichler, Gerbert Orasche, Keith Andrews, Ed Grossman,

and Mark McCahill. VRweb: A Multi-System VRLM Viewer. In The First Annual

Symposium on the Virtual Reality Modeling Language (VRML 95) Proceedings (To

appear), San Diego, California, December 1995.

[Pinto, 1993] Paulo Fonseca Pinto. An Interaction Model for Multimedia Composition.

PhD thesis, University of Kent at Canterbury, 1993.

[Pleas, 1994] Keith Pleas. Distributed OLE promises cross-platform remote capabili­

ties for linking component software. Byte, Nov 1994.

[Rada, 1991] Roy Rada. Hypertext: From Text to Expertext. McGraw-Hill, 1991.

[Raggett, 1993a] David Raggett. HTML+(Hypertext markup format). Internet Draft

available at URL: f t p : / / f t p . n i s c . s r i . c o m /

d r a f t - r a g g e t - w w w - h t m l - 0 0 . p s , July 1993.

[Raggett, 1993b] David Raggett. HTML+(Hypertext markup language). A proposed

standard for light weight presentation independent delivery format for browsing and

querying information across the Internet, July 1993.

[Raggett, 1994a] David Raggett. A Review of the HTML+ Document Format.

In Proceedings o f the First International Conference on the World-Wide Web

(W3). Elsevier Science, 1994. Also available at h t t p : / / w w w l . c e r n . c h / -

P a p e r s / W W W 9 4 / d s r . p s .

http://wwwl.cern.ch/-Papers/WWW94/dsr.ps
http://wwwl.cern.ch/-Papers/WWW94/dsr.ps

BIBLIOGRAPHY 195

[Raggett, 1994b] David Raggett. Extending WWW to support Platform Independent

Virtual Reality. In Proceedings ofINET’94, pages 242-247, 1994.

[Shneiderman, 1984] Ben Shneiderman. Response Time and Display Rate in Human

Performance with Computers. Comp. Surveys, 16:0-1, 1984.

[Silberschatz and Galvin, 1994] Abraham Silberschatz and Peter B. Galvin. Operating

System Concepts. Addison-Wesley, 1994.

[Soley, 1990] Richard Mark Soley. Object Management Architecture Guide. OMGTC

Document 90-9-1, Object Management Group, Framingham, MA, Nov 1990.

[Stenzel et a l, 1994] H. Stenzel, G. S. Carson, I. Herman, and K. Kansy. PREMO:

An Architecture for Presentation of Multimedia Objects in an Open Environment.

In Wolfgand Hersnrer and Frank Kappe, editors, Multimedia/Hypermedia in Open

Distributed Environments (Proceedings o f the Eurographics Symposium), pages 77-

96, Graz, Austria, June 1994.

[Tanenbaum, 1992a] Andrew S Tanenbaum. Modem Operating Systems. Prentice

Hall, 1992.

[Tanenbaum, 1992b] Andrew S Tanenbaum. Operating Systems: Design and Imple­

mentation. Prentice-Hall International Editions, 1992.

[Tebbutt, 1991] David Tebbutt. “Inside Pandora’s Box”. BYTE, 16(12): 116IS-59-

116IS-66, Nov 1991.

[van Herwijnen, 1994] Eric van Herwijnen. Practical SGML. Kluwer Academic Pub­

lishers, 1994.

[William, 1991] Ian William. Hypermedia for Multi-User Technical Documentation.

In Heather Brown, editor, Hypermedia/Hypertext and Object-Oriented Databases,

pages 201-217. Chapman and Hall, 1991.

BIBLIOGRAPHY 196

[Woodhead, 1991] Nigel Woodhead. Hypertext & Hypermedia: Theory and Applica­

tions. Addison-Wesley Publishing Company, 1991.

