University of

"1l Kent Academic Repository

Albuguerque, Eduardo Simoes de (1995) A architecture for MHEG objects.
Doctor of Philosophy (PhD) thesis, University of Kent.

Downloaded from
https://kar.kent.ac.uk/94162/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open
Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)
licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line
with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%200pen%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94162/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

AN ARCHITECTURE FOR MHEG OBJECTS

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT AT CANTERBURY
IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By
Eduardo Simdes de Albuquerque
October 1995

Contents

List of Tables

List of Figures

Abstract

Acknowledgements

Declaration

1 Introduction

1.1 Hypertext, Multimedia and Hypermedia
1.2 Objectives e e e
1.3 Related Work

1.3.1 MAEstro
1.3.2 Guide . .
1.3.3 Idex . ..

1.3.4 Microcosm

1.4 HyperCard

1.5 Pandora

1.6 Thesisoutline

2 Multimedia Interchange

il

ix

xiii

XV

Xvi

XVii

2.1
2.2
2.3
24

2.5

2.6

2.7

2.8
2.9

2.10
2.11
212

Content and Presentation Information 20
Markup languages L L L 21
SGML: © 5 5 55 ¢ 0 56 8 55 5 0 5 cwmmo s ommeme e omew oo 23
241 ASGMLAOCUMENt « o s « « s 5 6 2 « s w 50 55 5 5 & » & 24
24.2 Interchanging SGML documents 26
243 Binary SGML(SGML-B) 26
244 Limitationsof SGML 27
HyTime 27
2.5.1 Interchangein HyTime 31
2.5.2 The Standard Music Description Language (SMDL) 31
253 Finalremarks 33
ODA . . . e 34
2.6.1 Document ProcessinginODA 36
2.6.2 ODA documentinterchange 36
2.6.3 ExtensionstoODA 37
DEXIBE & o o s s 1 5 2 ¥ 5 8 % 56 5 & % 9 5 5 8 % & 8§ § &6 6 6§ 5 @ 38
2.7.1 Problemswiththemodel 40
CWI Multimedia Interchange Format 40
The Amsterdam Hypermedia Model (AHM) 42
29.1 Synchronisationin AHM 43
292 Linkcontext T 43
293 Channels. L 44
294 Limitationsof AHM 44
OQUERTIME & « « s 5 2 5 5 5 8 5 8 ¥ & w5 4 § 6 8 6 8 0 ¢ 8 & & 6 5 § § 45
Adobe Acrobat 46
The World Wide Web & - s s 2 5 ¢ 5 5 5 5 ¢ 66 8 2 ¢ 5 8 2 50 0 5 48

111

2.12.1 Uniform Resource Locators (URL) 48

2.12.2 Hypertext Markup Language HTML) 49
2.12.3 Virtual realityandthe Web 51
2.13 Presentation Environment for Multimedia Objects (PREMO) 52
2.14 Finalremarks 52
MHEG 54
3.1 Introduction 54
3.1.1 Standard Objectives 55
3.1.2 Suitability of MHEG 55
3.2 ObjectInterchange L. 56
33 StructwredfMHEG . . . c w oo s s nsas s 65 a5 5 58 &ma s s 57
3.4 Object Identification 58
341 Naming 58
342 Referencing 60
343 TallTeferencing . « o« « : s « 9 v 3 5 s w6 9+ +8 8 5 5 & 5 61
3.5 Representation of time andspace 61
3.5.1 Synchronisationsrelations 62
3.6 Extensibility of themodel 64
37 FinalRemarks 65
Requirements and Constraints 66
4.1 Introduction o 66
4.2 General requirementso e e e 69
42.1 Adding new mediaand devices 70
4.3 Operating Systemo 71
4.3.1 Cooperative vs Preemptive Operating Systems 71
4.4 Future Operating Systems 73

v

441 COBBA ..o s inwunsssmnns s sasasssnsns 76

4.5 Windows 3.1 Operating System 77
4.5.1 Interprocess Communication under Windows 3.1 78
4.5.2 Dynamic Data Exchange (DDE) 79
4.5.3 Object Linking and Embedding (OLE) 82
454 Clipboard 82
4.5.5 Windows for Work Groups 83
4.5.6 Dynamic Link Libraries(DLL) 84
4.6 Naming o v i e e e e e e 85
4.6.1 Name or Address, or Identifier? 85
4.6.2 The Global Name Service 86
4.6.3 The X.500directory 88
47 Finalremarks L oo 89
Architecture and implementation 91
5.1 Imtroduction |
5.2 Architecture Overview Lo 92
53 Thekethel - o « o « o6 v 5 8 65 5 5 8 5 6 58 6§ a 4 & 5 5 66 8 50 » o 93
330 LIpkTFaelory « : : c 2 65 ¢ 9 % 2 98 45 8 65 s &8 6 57 § 6 94
532 TheRegistry i)
533 TheClock 100
5.3.4 MHEG Engine Action Processor 102
I Processel. « v s s & 55 5 @ % 6 5 § 5 8 B 5 I s B E S5 L&A B B 5 & s 103
341 Proco¥Sine it . » s 05 s 5 5 2 63 2 EE B3 s R A @ B 106
542 Thedecoder 109
543 ThelinkProcesBor : « s s + « «x @ & & & 5 5 8 8 56 45 & & « 109
5.4.4 The spatial processor 111

5.4.5 The media specific processor 113

5.5 Exchanging messages between processes 113
596 Syslomorchestraflon . « « « » s s w v €5 653 % 8 % 6% & 588 5 5 5 ¢ & 114
5.6.1 High level orchestration: process selection 115
5.6.2 Process level orchestration: The mainloop 115

20 TIRILInETaElaY . : « 05 55 « % 8 & s 1 S A 2 0 2 d @& & 5 o~ 117
370 Linkderodl o « « s« 9w & 55 65 9% 556 e R EE B A B 118

572 Link Triggering o i . 118

9chd LMEEHOCL - « 5 5 v s 8 4 85 v 558 8 &5 406 @5 2 d % a5 A 120

5.8 Timestamping messages« . . . ot e e u e e 121
39 ACHOAB . « « w v ¢ v 8 5 % v v 5« = 2 655 o ¥ 56 v uwwsnyswss 121
S0 PINMYSINHKS + v 56 05 55 v 2% 65 25 L8 & B2 A A Ed 2 H & Ao 122
5.10.]1 Supportforextensions . . v « v 5 s » s c s 55 v 2 95 5 & 5 7 122
5.10.2 Considerations for a Preemptive OS 123

6 Performance measurements 124
.1 Techiiquenseld, . » « s v + = 65 & ¢ 5 6 w > o m o o v mmwomoww s 124
G2 Alypical presenfalion o « « o v 5 # 5 5 % % 5 6 ¥ 5« & &8 & ¥ 5 W F 3 125
6.2.1 Performance considerations 125

U3 ThERnE. o s s o 0t s blsisnses thpadcakbs s - 134
64 Effectofcontinuonsmedia. « « + « o v s 5 5 # 2 5 65 ¢ © 2 5 55 5 3 136
6.4.1 Performance of non continuous mediaonly 137

65 Limitsonthe numberof processes « « « » » « s s s s « v v 5 % 5 5 5 3 138
6.6 A highly interactive presentation 141
00,1 Complexlinkeonditions . . « o « » 5 tw v e a s 5% 5 5 5 5 3 143

6.7 Finalremarks L 143
7 A Critical Analysis of MHEG 150

Vi

7.1 Theevolution of MHEG « & o « 4 o & 2 ¢ 5 8 5 6 5 8« o o w0 » « o
7.1.1 Abstractionlevelof MHEG
7.2 Defining the look and feel of a presentation
7.2.1 Final form representation of objects
7.2.2 Relationship to HyTime and PREMO
T3 MHBEGENSINE . ; « 5 5 5 ¢ ¢ 5 5 8 ¢ 5 2 ;mosm sv nmmmn o nomow o s
7.3.1 ObjectorientationinMHEG
74 Finalremarks
Conclusion
8.1 Generalcomments
B2Z MHEEG =« « o v v ¢ 5 5 5 5 €6 % 58 ¢ 5 95 5 8655 b s 5 655 6 a-s
8.3 A proposed architecture for MHEG objects
83.1 Extensibility
83.2 Systemperformance
8.4 Enhancements and furtherwork
85 Finalremarks

Overview of MHEG Classes

Al
A2
A3

A4
A5
A.6
A7

Mh-object
Actionclass o
Dtk Glass o o o 5 o 2 5 1 8 8 8 5 5 & 65 6 & 6 6 8 8 8 o momomomo oo
A.3.1 Characteristics of MHEG links
A32 LinkSITUSMUIe: & « o o 5 ¢ 5 5 €5 ¢ 0 o m m v v 4 wmmn o
Model class
Scriptclass oL L
DEseriplorClass o o o s v w o w5 ¢ 9 85 168 8 58 69 886« 0 o

Componentclass L o

vii

166
166
167
168
168
170
171
172

A.8 Contentclass 181

A.9 Multiplexed Contentclass 181
A.10 Compositeclass 182
A.1l Containerclass 182
Bibliography 184

viil

List of Tables

3.1
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

MHEG Referencing Summary 60
Measurements with processes yielding control within the main loop
(times in ms)— policy 1 nice behaviour/ (486-66) 130
Measurements with processes yielding control within the main loop
(times in. ms)— policy 1 nice behaviour/ (486-33) 130
Measurements with processes performing all activities in the main loop
before yielding control (times in ms) — policy 2 (486-66) 131

Measurements with processes performing all activities in the main loop

before yielding control (times in ms) — policy 2 (486-33) 131
Average errors setting timestones 132
Delay to retrieve a link triggered (creating triggered link process) . . . 133
Delay to retrieve a link triggered (triggered link process not created) . 133
Someslow actions Lo 147
Times required to startup processes (times in ms) — (486/66) 148

X

List of Figures

1.1
1.2
1.3
1.4
1.3
2,1
2.2

2.3

24
2.5
26
2.7
2.8
2.9
2.10

2.11
2.12
2.13

Text, hypertext, multimedia and hypermedia 3
Components of a Guide Object 9
Microcosm tasks (from [Fountainetal., 1990]) 12
The Microcosm Model (from [Multicosm, 1994]). 13
Pandora Connections (from [Jones and Hopper, 1993]) 16
Example of Procedural Markup 21
Example of Logical Markup 22
Example of a Document Type Declaration for a type of document called

letter e e e 25

Example of an instance of a document of type letter (defined in figure 2.3) 26

HyTime Module Interdependencies 29
Domain of descriptionin SMDL 32
Cantus Structure INSMDL & & « 5 ¢ 5 5 6 5 5 & % 8 5 5 ¢ 8 5 & 5 2 » = 33
Logical and Layout structuresin ODA 35
Dexter Model v wmowmawd k7 38
Document Structure Components in CMIF (from [Bulterman et al.,

TOILTY 5 ¢ ¢ 6 m 2 8 8 5 & 64 # 8 5 % 3 5 & & msnmommmo oo 41
Amsterdam HypermediaModel 43
Timing relationsin AHM 44
QuickTime components 45

2.14 ExampleofaURL 49

2.15 Example of an HTML document 50
3.1 Scopeof MHEG 56
32 MHEGCUIIREEE . « 5 0 » » o ¢ 6 6 & 4 4 5 i w w5 % v m;m w5 vy 5omm 58
3.3 Atomic Serial (I) and Parallel (r) Synchronisation 63
3.4 Sequential (1) and Parallel (r)Mode Synchronisation 63
3.5 Chained Synchronisation. 64
36 CyelicBynEIHOMmBSation . . . < v « 5 8 @ & & % & o8 & 5 & & 5 = = w5 64
4.1 AMullioledia SYHEIM. « » 2 « 5 o 5 5 0 % ¢ & ¥ 28 % w5 55 5 % %5 67
4.2 A Distributed Multimedia Environment 68
4.3 DCE architecture (from [Berson, 1992]) /5,
44 Example ofaDDESBIVEL « « ¢ s s ¢ 64 0 4 5 % 55 & ¢ & 4 & & & & & 80
4.5 Example of a DDE Conversation TR Y 80
46 Exampleof aNetDDE Conversation « » « « « « = = = » « s 5 o 1 » 4 « 84
4.7 Exampleof aGNSDirectoryTIee o « + « o » o 55 ¢ 5 0 5 5 5 5 4 & 87
4.8 X.500 Directory InformationTree 88
9.1 Highlevel ivslemOVEITIOW - . : « o 2 6 « 4 = 20 s 5 S5 2 25 5 5 & = 92
32 Distributedcontrol . . . o s« 2 v 5 « 55 5 2 A B2 e s EE A s s ko 93
5.3 Systemkernel 94
5.4 Link Factory Structure 935
3.5 Distributed Message Passing . « « » o s s «c s w55 5 5 5 a5 5 4 5 & 96
5.6 Components of Registry o 98
5.7 Repgistry asseenfromausingobjest » « « « &« s 5+ 5 « % 55 5 & & = 100
5.8 Registry asseen fromoutside MHEG ¢ « ¢ v o o v 55 v 5 « 100
5.9 Timing diagram of model object availability 103
5.10 Structure of a Process Running a Model Object 104
5.11 Structure of a Process Running art-object 105

X1

3.12
5.13
5.14
3:15
5.16
5.17
5.18
5.19
5.20
6.1
6.2
6.3
6.4
6.5
6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15

A composite with two media components

A complex composite L.l o Lo
(Sub-)composites of figure 5.13o
Example of a Composite Object with Four Components
Process Tree for Figure 5.15
Exampleofalink Object o . . ¢ oo ot i e v v an b
LinkiConditionTYee « « + v s o5 s s 6 6 6 8 ¢ 8 0w 23 5 @ 5 8 8 38 5 u
Link Processing Overview
ActionObject e
ASnapshotof apresentation « « « » 5 w s s s 8 v a5 s s w29+ & w
Timestones set in ca_world run-time object
Behaviour of Windows timer using CPSshell
Behaviour of Windows timer using Program Manager shell
Processes involved in dealing withalink
Effect of continuous media on a presentation. The arrows indicate
regions where the videowas paused. L.
Effect of continuous media on a non continuous object. The arrow
indicates the region where the video was paused; in the regions where
the win msg line is not visible, itisnearzero.
Detall af figure 6.7 5 : 5 s 505 s 5 8 6 # 5 s 8 ® « 4 5 28 5 % 5 & @
Behaviour of a presentation with graphicsonly
Effect of continuous media on a non continuous object presentation . .
Distance between CPU slices
CPU time used by pfocess (bird and comp are active processes)

Distance between CPU slices (80 links triggered)
Error reaching timestones Lo

Distance between slices vs Error reaching timestones

Xii

138

6.16
6.17
6.18

6.19
7.1
7.2
7.3
7.4

T
7.6
1.1

1.1
1.2
1.3
1.4

1.5

Distance between CPU slices (200 links) 145
Errorreaching timMestones . . o » « v s = % & s 5 s 5 & & » s + w o = 146

Distance between CPU slices using rapid ticks (200 links) — the initial

peaks are due to the initial processes creation 146
Error reaching timestones (using rapid ticks) 147
MHEG Class Hierarchy in 1991 as in [MHEG, 1991] 151
MHEG Class Hierarchy in 92 () and today (r) 152
MHERG 5 classes (from [MHEG, 1995b]) 155

Relationship between MHEG 1 and MHEG 5 classes (from [MHEG,

1995b]) 156
Processing sequence for a processing link (adapted from figure 6.5) . 158
MHEG, PREMO and HyTime relationship (adapted from [ISO, 1994a]) 159

Timing diagram of model object availability (in period 01 the object is

notknowntotheengine) 161
MHEG Simple Action Object Structure 176
MHEG Elementary Action Structure 176
Nested Action Structure 177
Macro Action STHEtUTe « & « v ¢ s s v s s o 8w 8 ¢ & @ 8 55 5 & o 177
Link Object Structure 179

Xiii

X1V

To my family

Abstract

Hypermedia applications are one of the most recent and most demanding computer
uses. Itis accepted that one of the main impediments to their widespread use is the lack
of standards, and the lack of Open Systems with the possibility of having documents
interchangeable between different hardware and software platforms.

Several standards are emerging, one of which is the one being developed by the
ISO/IEC WG12 known as the Multimedia and Hypermedia Information Coding Expert
Group (MHEG).

As desktop systems become more powerful, one of the main users of hypermedia
applications is the home market. Therefore it is important to have standards and
applications suitable for those platforms.

This work reviews existing proposals for hypermedia architectures and interchange
standards. It then assesses the suitability of the MHEG standard for use in open,
distributed, and extensible hypermedia systems. An architecture for the implementa-
tion of MHEG objects taking into account the limitations imposed by current desktop
computers is also proposed.

To assess the suitability of the proposed architecture, a prototype has been imple-
mented. An analysis of the performance obtained in the prototype is presented and
conclusions on the requirements for future implementations drawn.

Finally, some suggestions to improve the MHEG standard are made.

XV

Acknowledgements

I'would like to express my sincere gratitude to my supervisor, Professor Peter Linington,
for his guidance, constructive criticism, constant attention, encouragement and support,
and for his example of hard working and discipline which were fundamental to the
development of this work.

I would also like to thank Professor Peter Brown for his encouragement and for the
privilege of having him as my supervisor in my first year at the University.

I am grateful to Djamel Sadok, Paulo Pinto, Chris Scott and Fred Cole for their
valuable help during the early stages of this work.

Many friends and colleagues have made my stay in the Computing Laboratory a
constant joy. I would specially like to thank Eduardo Rojas-Vega, Helena Rodrigues,
Geraldina Fernandes, Maria Pimentel, Carlos Ferraz and George Justo with whom I
shared an office. I would like also to express my gratitude to the Brazilian community
in Canterbury (too many to name!) for their comradeship and help.

I'acknowledge the financial support of Conselho Nacional de Pesquisas (CNPq) and
Universidade Federal de Goids, Brasil.

And last but not least, I thank Ana, for always being supportive and for sharing all

those difficult moments.

XVi

Declaration

No portion of the work referred in this thesis has been submitted in support to an
application for another degree or qualification at this or any other university or other

institution of learning.

XVii

Chapter 1

Introduction

1.1 Hypertext, Multimedia and Hypermedia

Although hypertext, multimedia and hypermedia have been used for a long time, and
are buzzwords, it is still necessary to define their meanings. We could start by defining

the components that make up these words:

Text: One of the definitions for fext in the Oxford Concise Dictionary is:
[2] main body of book opp. to notes, pictures, etc.

We can use a broader definition: text can be seen as a body of recorded infor-
mation. Text and document are synonyms and, although they contain basically
natural language, they can also have images (contrary to the above definition).
Books, recipes, articles, software documentation, for example, are special kinds

of text [Rada, 1991].
Medium: Medium is defined as:

[6] Means by which something is communicated. Material or form

used by artist, musical composer, etc.

CHAPTER 1. INTRODUCTION 2

The above definition is too broad and, for our purposes, we need to specialise it.
The MHEG [MHEG, 1995a] standard gives definitions for several applications

of media such as:

o Presentation Medium: The means used to reproduce information to a user

(output device) or to acquire information from a user (input device).

e Representation Medium: The type of interchanged data, which defines the

nature of the information as described by its coded form.

e Storage Medium: The means used to store information.

Multi: Again from the Oxford Concise Dictionary, the prefix multi- means:
comb. form many.
Hyper: The prefix Ayper- means:

pref with senses ‘over, beyond, above’ (hypergamy, hyper physi-
cal), ‘exceeding’ (hyperbola, hypersonic), ‘excessive, above normal’

(hyperbole, hypersensitive); opp. HYPO

Using the above definitions, we define:

Hypertext: From the definitions of Ayper and text, we can conclude that hypertext goes
beyond the concept of text. While fext presents only one dimension (linear), a
hypertext has more than one dimension that Contains relationships amongst fexts.
The usual example is an encyclopedia where each keyword is also a link to an
encyclopedia entry. In an encyclopedia, we can also see two levels of linking: one
is explicit, when the authors make an explicit cross reference; the second one is

implicit as the words used to define a term also have an entry in the encyclopedia.

Multimedia: something that is expressed using more than one perceived medium,

where “medium” has the sense defined above.

CHAPTER 1. INTRODUCTION 3

Hypermedia

Figure 1.1: Text, hypertext, multimedia and hypermedia

Hypermedia: using the same definition we used for hypertext, hypermedia can be
defined as multimedia plus an extra dimension that maintains the relationship
between the media. Interactive Multimedia (another buzzword) is an example of

hypermedia.

Graphically, we could see the above definitions as in figure 1.1. The kernel of the
figure is the fext; when we add relational structure to text we have hypertext; when more
than one perceived medium is used we have multimedia and finally we can add relations

to the media and we have hypermedia (or interactive multimedia).

1.2 Objectives

The objective of this work is to analyse the practical use of Multimedia Interchange
standards, examine their suitability for use in Multimedia Systems and to propose an
architecture to be implemented in distributed desktop computers. The standard used for

the prototype implementation was MHEG which is described in detail in Chapter 3.

CHAPTER 1. INTRODUCTION 4

1.3 Related Work

Current hypertext/hypermedia systems can be broadly divided into categories depending

on their usage [Rada, 1991]:

e Small volume hypertext: the document is self contained, with explicit links be-
tween components. Most of the early hypertext systems fall in this category
(eg. Augmentation System [Howard Rheingold, 1985], ZOG [Akscyn and Mc-
Cracken, 1984] and Guide described in section 1.3.2);

e Large volume hypertext: in this category, systems emphasizes linking between
documents and not inside the document itself. Usually many users have doc-
uments within the system and there is an institution responsible for maintain-
ing the whole structure. Examples of systems in this category are the pioneer

Memex [Bush, 1945, Bush, 1967] and Xanadu [Nelson, 1987].

e Collaborative hypertext or grouptext: these are the systems that provide a frame-
work for activities where interaction between users and collaboration are required.
Examples of such systems are the Augmentation System and glbis [Conklin and

Begeman, 1987].

o Intelligent hypertext: in an intelligent hypertext, expertise is transferred to a
knowledge base with an inference mechanism. The transference happens by
storing knowledge in links and allowing the links to trigger arbitrary computation.

Intelligent systems can fall into any of the previous categories.

Systems being developed today tend to present features that fall into all the categories
above, with the ability to deal with more media than just plain text. In the following
sections, we present some current hypermedia systems. We also present some attempts
to standardise multimedia exchange and separate multimedia data and presentation
information. A deeper discussion on multimedia interchange standards is presented in

Chapter 2.

CHAPTER 1. INTRODUCTION 5

1.3.1 MAEstro

The MAEstro Multimedia System [Drapeau and Greenfield, 1991a, Drapeau and Green-
field, 1991b] is a Multimedia Authoring System initially developed at Stanford Uni-
versity, and now produced commercially. The system was designed for extensibility,
making it easy to add support for extra media.

The system is made up of four logical components:
1. Media Editors;

2. An authoring application;

3. An inter-application messaging system;

4. The PortManager Application.

Media Editors

The media editors are the applications that directly control media. Each application is

responsible for one medium.

The system includes the following media editors:

QuoteMaker for working with text and titles. QuoteMaker can work with either

ASCII text or scanned material captured through the ImageEdit editor

e cdEdit for controlling and editing music on CDs. cdEdit incorporates music and
sound from digital audio compact discs (CDs) into a multimedia presentation. It

also controls the CD player;

e VideoEdit for controlling and editing video disks. It captures and manipulates

video information from video disc players;

e DTR(Digital Tape Recorder) for recording and editing sound via the workstation’s

built-in digital audio capabilities. DTR plays back digitised audio using the

CHAPTER 1. INTRODUCTION 6

built in audio capabilities of the workstation. DTR accepts sound from audio
tape, microphones, VCR or videodisk and CDs. It can output audio to the

SPARCstation’s internal speaker, headphones or an external speaker;

e ShellEdit is a tool for selecting, timing and executing UNIX shell commands that

are to be incorporated into a time-line presentation;

o vcrEdit used to control the NEC PC-VCR, a computer controlled VHS videotape

player;

e vcrDub used to record video segments from one tape to another, and to re-arrange

the order of those segments;

o [mageEdit for showing images as part of a multimedia presentation. ImageEdit

supports the GIF and TIFF image formats;

o TimeLine builds the Multimedia presentation.

The Authoring Application

The TimeLine Editor Application presents documents as a number of “tracks" of time,
one track for each medium in the document. The TimeLine does not directly con-
trol media but controls the actions of the media editors which do the actual media

manipulation.

The Inter-application Messaging System

The MAEstro messaging system is implemented with Sun Remote Procedure Call
(RPC). Each application in the MAEstro environment uses the messaging system for
communication with other applications. A typical use of the protocol is for an authoring
application to request a media editor to open a document, select part of that document,

and play that selection.

CHAPTER 1. INTRODUCTION 7

The Port Manager Application

The PortManager serves as arendezvous point for applications that wish to communicate
with each other. It listens to a TCP/IP protocol port for messages from applications that
wish to advertise their services, and keeps an internal list of the TCP/IP port numbers
passed in by the registering applications.

All applications in the MAEstro environment use the same set of RPCs, making
it easy for applications to communicate with new applications added at any time.

Applications can become aware of new services by querying the PortManager.

Problems of the model

The MAEstro environment presents some problems:

e MAESstro does not address the problem of synchronisation of media and guaran-
teed network delivery of continuous media. The environment is at the mercy of

slow media.

¢ The model does not allow the development of interactive applications. The
author defines how a presentation should happen but the model does not provide
for objects capable of receiving user input (eg. to follow a hypermedia link). The
system is, therefore, multimedia and not hypermedia and this limits its practical

usage.

e Documents in MAEstro tend to have too many components. This occurs because
each piece of information to be presented must be stored in a file, and the model
does not allow the use of parts of a file. In a presentation where there are, for
example, 100 lines of text to be used as captions, there will be 100 small files to

be maintained.

o [t does not address security issues.

CHAPTER 1. INTRODUCTION 8

1.3.2 Guide

The Guide system [Brown, 1987c, Brown, 1986, Brown, 1987a], one of the first
hypertext systems, started as a research project at the University of Kent at Canterbury
in 1982 by Professor Peter Brown. Guide was to be used as a tool for reading documents
in a computer. In Guide, there is no difference between author and reader to encourage
users also to be authors of the documents they are reading.

Since 1987 there has been a commercial version of Guide [OWL International, Inc,
1988, OWL International, Inc, 1992a] (which is the one described), implemented and
sold by Office Workstations Limited (OWL) (now InfoAccess Inc.) Guide is available
for Macintoshes and IBM-PC compatible machines. There is also an UNIX [Brown,
1987b] version of Guide used at the University of Kent.

A Guide document has an implicit tree structure that is invisible to the user who sees
the document as continuous and linear with the possibility of changing routes within
the document. Guide has a very simple user interface and does not demand a steep
learning curve for its new users.

Guide includes a full scripting language, LOGiiX [OWL International, Inc, 1992c,
OWL International, Inc, 1992b] that allows access to its hypertext engine. LOGiiX
allows, for example, the association of conditions to links providing for the creation
of one-to-many links. A LOGiiX script can also make use of Windows Dynamic Data
Exchange (see section 4.5.2) which allows links to have as destination any DDE-aware

application. LOGiiX also includes features for:

e Arithmetic and logical operations;

Text string functions;

Access to all Guide menu commands and some dialog box commands;

Guide document manipulation;

Looping constructs;

CHAPTER 1. INTRODUCTION 9

e Access to objects in Guide documents;
e File input and output.

In Guide, “just about anything that can be selected with your mouse can be made

into an object" [OWL International, Inc, 1992a].

Guide objects are made up of three components (figure 1.2):

1. Data component: the text or graphic that appears on the screen when the object

is displayed. It can also be a LOGiiX program;

2. Presentation Attributes: determine how the data is displayed and include text

styles and color. The Presentation Attributes apply to text objects.

3. Behavioral attributes: define the events that take place when an object is displayed

or activated using the mouse.

Object ID: Object Type: | |
Object Name:

Behaviour

| Atrributes

Presentation’

Attributes

Figure 1.2: Components of a Guide Object

Several tools for converting SGML documents and documents created using other

word processors to Guide are also available on the market.

CHAPTER 1. INTRODUCTION 10

Limitations of Guide

Guide is based on the book metaphor, where each document is, to a certain extent,
self contained. It therefore does not provide facilities for network access, which is a
common problem in most early hypertext/hypermedia systems.

The design of Guide was focused on text and although extensions are available to
provide access to the multimedia features existing in the Windows environment through
the Media Control Interface (MCI), such as video and sound, the author does not have

full control over them.

1.3.3 Idex

Idex [Woodhead, 1991], sold by the same company that makes Guide, is its in-the-
large version. Idex runs on a network of computers and it has facilities for document
management, allowing authorship and reading in one or more shared collections of
documents. Idex allows processes such as document conversion, indexing and retrieval
of information. Idex has a layered structure that allows the substitution of compatible
processes for those implemented as standard, such as the retrieval engine [McAleese,
1993]. At a higher level, it also allows the generation of tables of contents, tables of
figures, glossaries and citations [William, 1991].

Idex has some of the security features that are usually found in database management
systems. Documents are stored in a way similar to a library, and not directly in
files/directories; this allows users to focus their attention on the contents rather than the

location of the material.

1.3.4 Microcosm

The Microcosm [Fountain et al., 1990, Hill and Hall, 1994, Davis et al., 1994] hypertext
system started as a research project at Southampton University and is now available

commercially for IBM-PC platforms, and versions for Apple Macintosh and Unix

CHAPTER 1. INTRODUCTION 11

machines are being developed.
The Microcosm project aimed at developing and creating methods for hypertext
authoring on a large scale. Microcosm was designed around the following set of

principles:
e No distinction between author and user: all users are allowed to build links;

e Loosely coupled system: Microcosm is built up from a set of communicating
programs (or tasks) with a low level of interdependency in such a way that it is

not difficult to couple any other program into it.

e Modularity: as a research project, the idea was to have a design where elements

(such as a document viewer) could be replaced;

e Separation of links from data objects: data objects and information describing
their relationships are kept separate from each other, allowing the definition of

different levels of abstraction for the same data.

Structure of Microcosm

Microcosm is made up of a set of autonomous processes that communicate with each
other using a message passing system. The main task in Microcosm is the Document
Control System (see figure 1.3) which is responsible for opening documents, routing
messages and supporting links. This task is not visible to the user, but in a session using
Microcosm there must be at least one visible window, a Document Viewer that displays
a document on the screen. There is a viewer for each type of document (text, graphics,
etc) and they communicate by sending messages that are routed through the Document
Control System.

The viewers are divided into three categories depending on how “aware” of the

system they are:

CHAPTER 1. INTRODUCTION

Document
Viewer

Document
Viewer

Figure 1.3: Microcosm tasks (from [Fountain et al., 1990])

Document
Viewer

External
Windows
Applicatiion

W/

Document
Control
System

\

External
DOS
Application

12

1. Fully aware: a viewer that has been written to communicate with Microcosm

providing a bi-directional message channel with Microcosm;

2. Partially aware: a viewer that can be customised by the user, such as Word for

Windows. In general, any DDE (see section 4.5.2) aware application can be made

partially aware of Microcosm.

3. Unaware: a unaware viewer is one that has no direct communication with Mi-

crocosm, although it can be launched from Microcosm and some communication

via the clipboard (see section 4.5.4) is still supported.

The filter layer in the Microcosm architecture (figure 1.4) is composed of processes,

possibly chained, that receive messages, take any appropriate action and pass the

message on to the next filter [Hill et al., 1992]. Among the existing filters are:

e Linkbases: that hold information referring to links. As more than one linkbase

may be installed, different views of the document can be provided;

e Show links: afilter that shows the links that do not have an anchor in the viewer;

this is particularly useful with unaware viewers;

CHAPTER 1. INTRODUCTION 13

User layer

[DESKTlOP I |<

Content Selection and link requests

V|
' y '}

Application
dispgtch layer
selected doc

n appl. viewer

Viewer Viewer Viewer
I Applicn Applicn | Applicn
Y Y i
| DOCUMENT CONTROL SYSTEM |
" Link
DOCUMENT-LINK MESSAGES service
v layer
| ,FILTER MANAGEMENT SYSTEM]
\|I FILTEJR FlLTE'IL \|’
FILTER . ~
eg: linker eg linkbase eg: complinker | Filter:--
|
| Hyperbase
l storage
link bases filter—specific deaieris layer

tgbles/indices files

Figure 1.4: The Microcosm Model (from [Multicosm, 19941])

e Compute links: that creates links automatically based, for example, on statistical

analysis of the content;

e Navigational aids: that include a history mechanism and a mimic filter that allows
the user to follow a pre-defined tour, to deviate from the tour and return to the

point that they left previously.

Final remarks

The Microcosm project is very recent and the developers had the opportunity to evaluate
existing systems, such as Guide and Idex. Since Microcosm was developed with
automatic authorship in mind, it is very powerful in converting existing documents to
its format, and it also can make use of existing tools.

However, in spite of its recent development, Microcosm does not include facilities
for distribution and the group responsible for its development it is currently researching

its integration with the World Wide Web [Carr et al., 1995].

CHAPTER 1. INTRODUCTION 14

1.4 HyperCard

HyperCard is probably the best known hypermedia system today. Part of its success is
due to the fact the Apple has shipped a free copy with every Macintosh sold since 1989
when it was created.

HyperCard was initially projected as a graphical environment, not as a hypermedia
system, and many of its applications are not Aypermedia as defined early in this Chapter.
HyperCard is based on a card metaphor and a document is called a stack. Every stack
starts with a special card called home and the navigation depends on definitions by the
author [Danny Goodman, 1987].

HyperCard has an associated scripting language (hyperTalk), that can be used either
to generate scripts or to enter direct commands via a window (MessageBox). In both
cases, the script is interpreted. The whole system can in fact be seen as a high level
programming language, structured in blocks that manipulate a hypermedia environment.

HyperCard has a hierarchical structure of object categories:

1. Card: the card is the central object in the system. Each card may have an
individual lay-out and can perform graphical, computational, textual, QuickTime

video (see section 2.10) and audio functions;

2. Background: a background is above a set of cards in the hierarchy. Several
cards may have a common background which can also have the attributes that are

associated with a card;

3. Stack: a stack is a collection of cards and backgrounds. It is also possible to

define attributes common to all elements in a stack;

4. Home stack: the home stack is a special type of stack. It is the first one activated
when HyperCard is executed. The system requires the existence of a home stack
even if it consists only of an empty card. The home stack may be used as an index

to other stacks, in which case it must have anchors to trigger the activation of the

CHAPTER 1. INTRODUCTION 15

other stacks.

5. HyperCard: this is the highest level in the hierarchy. Messages that were not
dealt with in the lower levels must be processed by HyperCard. If the message is

not understood at this level, the system opens a dialog box informing the user.

There are also some more basic objects used in cards: buttons and fields that can
have a personalised layout and can have associated scripts. Buttons are objects that
usually deal with mouse events while fields are optimised for keyboard textual input.

All HyperCard anchors are graphical. To create a reference from a text, it is
necessary to define a rectangle delimiting the text and this prevents the anchor from
being edited in the future.

The main hyper-characteristic of HyperCard is the possibility of associating scripts
with anchors [Jakob Nielsen, 1990]. Scripts are activated by events such as a mouse
click, or when the cursor enters a region or some temporal event is triggered.

HyperCard takes advantage of the Macintosh graphical interface, allowing links

between text and images.

Limitations of HyperCard

HyperCard does not provide facilities for converting existing documents into its format.
It has been used mainly to create small document. Like Guide, HyperCard was not

designed to run on a network or in a distributed environment.

1.5 Pandora

Developed at Olivetti Research Laboratory in Cambridge, UK, Pandora [Hopper, 1990,
Tebbutt, 1991, Jones and Hopper, 1993] was created to demonstrate the practicability
of adding real-time audio and video to the desktop via a general purpose Asynchronous

Transfer Mode (ATM) [Handel, 1991] network.

CHAPTER 1. INTRODUCTION 16

<//\ > / Video

e v <
| ViDEO Pandora’s R

/7 Box -

A v Audio

// __/ \ 2
(Control s 0
A

(|

Figure 1.5: Pandora Connections (from [Jones and Hopper, 1993])

Pandora is based on a subsystem that handles the multimedia peripherals (the Pan-
dora’s box) as shown in figure 1.5. The Pandora box can be controlled by the host
workstation; it can intercept the workstation’s video output and add material from its
own framestore, digitise video from a camera, accept telephone or microphone inputs,
send output to telephones or loudspeakers and transmit and receive streams over a
dedicated ATM network connection.

The design of Pandora was aimed at allowing the highest possible loads, and to

achieve that goal it was based on the following principles:

e QOutgoing priority: a box that is overloaded should be the first to notice the

degradation. Therefore incoming traffic is degraded first;
e Audio priority: it is better to have a lower quality video than degraded audio;

o New stream priority: asusers do not have to shutdown one stream before starting

a new one, if necessary, older streams are degraded first;

e Command priority: commands should be executed even if time-critical activities

exceed system capacity;

e Upstream independence: when a stream is copied to more than one destination,
it is desirable that overload of one of the destinations should not affect the quality

of the other ones;

CHAPTER 1. INTRODUCTION 17

o Continuity during reconfiguration: the operation of adding or removing a desti-
nation to/from a stream should not disturb the other recipients of the stream (eg.

by causing jitter on the video);

e Minimize delay: delays in the data streams should be kept to a minimum to keep

audio and video synchronised and to avoid echoes in the audio stream;

o Local adaptation: decisions related to buffering and discarding data should be

made locally depending on conditions such as bandwidth and critical times.

As it stands today, Pandora allows a workstation to be used as a videophone or as a

video conferencing station, and supports video e-mail.

Limitations of Pandora

Pandora is a recent project and makes use of state-of-art technology. It provides a
framework upon which higher level applications can be built. It does not make use
of standards at the document level such as MHEG (see chapter 3), and there are no
reported uses to date to assess its viability to integrate large applications involving
highly interconnected documents.

Pandora also requires a large investment in terms of dedicated hardware.

1.6 Thesis outline

This chapter presented an overview of the areas influencing this work, examples of
related work and the motivation for developing this thesis.

Chapter 2 presents an overview of the state of the art in multimedia interchange and
the related standards.

Chapter 3 presents the MHEG standard on which this work is based. It is important
to note that during the development of this thesis, MHEG was still being defined. The

implementation described in chapter 5 incorporates the concepts present in the versions

CHAPTER 1. INTRODUCTION 18

published in 1993 [MHEG, 1993] and 1994 [MHEG, 1994a, MHEG, 1994b]. Therefore
this work uses many ideas introduced by MHEG but it is not compliant with the 1995
version of the standard, and the description (markup) language used is not the one
defined by the standard but one intended to be closer to the I&IzX language, which is
more like the English language.

Chapter 4 presents the requirements for a distributed hypermedia system capable of
handling portable documents.

The requirements presented in chapter 4 are used as guidelines for proposing an
architecture for implementing MHEG objects in chapter 5. This chapter also describes
the implementation of a prototype of the architecture proposed.

Chapter 6 presents performance measurements obtained from the prototype, and
discusses several strategies for improving performance, depending on the types of
objects and interaction being processed.

Chapter 7 presents an analysis of the MHEG standard and its suitability as a basis
for distributed multimedia systems. Enhancements to MHEG are also proposed in this
chapter.

Finally, chapter 8 summarises the conclusions, comments on the decisions taken for
the distribution and scheduling of processes and makes some further remarks on the

MHEG standard.

Chapter 2

Multimedia Interchange

2.1 Introduction

The Computer industry has been driven by technology rather than by the requirements
of its market [Gray, 1991]. Unlike markets such as the hi-fi industry where every
product plays the same type of tapes or CDs, and product differentiation is in terms of
price, performance and functionality, until very recently computing systems have been
proprietary: a product that was written for one system would not run on another one.

The incompatibility was both on the hardware and on the software level. However,
the high cost of producing computing systems, and the need to make applications
available on a wide variety of machines has led the industry to define standards, in spite
of the relative costs involved in terms of performance.

Multimedia, as one of the most recent applications of computing (and also one of the
most expensive and demanding) is one of the areas that has suffered from this problem.
It is commonly accepted that unless standards for multimedia interchange are defined
and widely adopted, the industry will not mature.

The industry has recently seen the development of media compression standards
such as JPEG and MPEG. The general acceptance of such standards has made it feasible

to have some of these algorithms implemented in hardware at an affordable cost for

19

CHAPTER 2. MULTIMEDIA INTERCHANGE 20

desktop computers users, reducing the storage and communication costs for multimedia
data. The performance now available at a desktop computer is also leading to the
development of sophisticated hypermedia applications that are available on a standard
home computer.

This chapter presents and discusses some of the problems related to Multimedia

Interchange and to the standards under development.

2.2 Content and Presentation Information
Most data that we receive carries information at two levels:

e Contents: the abstract data being transmitted and,

o Presentation: the form in which the information is presented and perceived.

The same contents may be presented in a completely different format depending
on the context. For example, a speech may be written for an audience with hearing
problems and may be spoken to a different audience. In each case, although the contents
is the same, the presentation information is very different. For portability, it is desirable
that contents and presentation information are kept in different structures. When format
and contents information are kept separately, it is easy to change the way information
is presented as we will discuss in the following sections.

Unfortunately computers, like humans, do not usually share the same language.
One of the most widely accepted standards is the one defined by ISO Standard 646
which defines the international reference version of the ASCII character set. ASCII is
7-bit coded and it is enough to represent English correctly. Other modern languages,
including several European languages, require an 8-bit system. Oriental languages such
as Chinese or Japanese require 16-bits or more. It is clear that a system such as ASCII,
unable even to represent many languages, is not powerful enough to describe the broad

spectrum that multimedia documents represent.

CHAPTER 2. MULTIMEDIA INTERCHANGE 21

As ASCII is used by virtually all computer systems, it is a good means for exchanging
information between computers. One method used to overcome the limitations imposed
by the small character set is to add tags within the the textual information. These tags
describe how the data contents is to be presented, as opposed to directly representing
the presentation. A common way of using tags is by the definition of markup languages

such as SGML.

2.3 Markup languages

{\Large 1 Markup languages}

\vspace{lmm}

\hspace{lcm}Here I have the first paragraph
in this section.

\vspace{lmm}

\hspace{lcm}Finally here comes the second
paragraph.

\vspace{2mm}

{\Large 2 Standards}

\vspace{lmm}

\vspace{lmm}

\hspace{lcm} Here we have the first paragraph

of the second section.

Figure 2.1: Example of Procedural Markup

Markup is some information that is added to a document to describe its structure
or formatting instructions. For example, the text in figure 2.1 contains instructions
(using a I&XIpX-like notation) on how it should be formatted. The markup describes
the instructions to format two sections of a document in a very rigid way (procedural
markup). If the user decides to alter the sections in a document, the section numbering
would have to be changed manually; if he decides to change the relative size of font
used for the section heading (defined as \ Large), all sections would have to be edited,
and the same applies to the spacing separating sections. In this case, the markup is

providing formatting instructions but no structure information.

CHAPTER 2. MULTIMEDIA INTERCHANGE 22

\section{Markup languages}
\label {s_markup}
Here I have the first paragraph in this section.

Finally here comes the second paragraph.

\section{Standards}

Here we have the first paragraph of the second
section with a reference to section \ref{s_markup}
(Markup languages) .

Figure 2.2: Example of Logical Markup

A more flexible approach to describe the same text is given in figure 2.2, again in
IAIEX format. The figure shows the contents and the structure of sections that could
be part of a book, or an article, etc. In the figure, markup is defined by a keyword
prefixed by \ and the marked contents is enclosed by {} (for example, the titles in the
sections) or just placed between two markers like the contents of each section which
is placed between the \section{} markup instructions. There are no tags to mark
the beginning and ends of paragraphs; these are delimited by an empty line. The
tag \label{smarkup} provides information that can be used by a referencing or
indexing mechanism to retrieve the position of this piece of the overall structure.

How the sections will ultimately be formatted is not defined by the markup, which
only defines the logical structures. Processing functions performed on the logical
components that define the actual format of the document would be very different if the
sections were part of a book or part of a two column article.

The concept of logical markup can be extented to morev abstract structures beyond
formatting ones, providing hooks for further processing. For example, a logical com-
ponent could specify a price which may be used for some computation; or a reference
such as the one in figure 2.2 or even to generate cross references within a text or a table

of contents.

CHAPTER 2. MULTIMEDIA INTERCHANGE 23

24 SGML

The Standard Generalised Markup Language (SGML) [ISO, 1986a, Goldfarb, 1990,
McArthur, 1995] is the standard ISO 8879. It is based on two postulates:

1. “Markup should describe a document’s structure and other attributes
rather than specify processing to be performed on it, as descriptive
markup need be done only once and will suffice for all future process-
ing.”

2. “Markup should be rigorous so that the techniques available for pro-

cessing rigorously-defined objects like programs and data bases can

be used for processing documents as well.”

The standard is also system and device independent in the sense that it deals with
virtual storage which can map onto different physical storage provided by different
vendors; language independent as the standard can be used even in languages that do
not use Latin based alphabets such as Greek; application independent as it is flexible
enough to encode both simple and complex documents, able to deal with documents
subject to frequent changes, and can also support the inclusion of data other than text.

It seems unlikely that a completely automatic publication process where human
intervention is not required will happen, so another criteria that was taken into account
when the standard was being developed was that the markup should be human readable.

SGML is like ODA (see section 2.6) in that it models documents as trees, but unlike
ODA, SGML describes only the document’s logical structure, not its layout semantics.

Logical items in SGML are called elements. Each element is delimited by tags
that indicate its beginning and end. The element’s contents (which may contain nested
elements) occurs between the tags. SGML also allows user defined attributes to be

added to elements.

CHAPTER 2. MULTIMEDIA INTERCHANGE 24

SGML is not a language as the markup itself is not standardised but it is a metalan-
guage that provides the means to define the markup rules to be used. It defines syntax

but no semantics.

2.4.1 A SGML document

A SGML document is made up of three parts:
1. The SGML declaration;
2. The Document Type Definition (DTD);

3. The document instance.

The SGML declaration

The SGML declaration includes information about the usage of characters sets, the

concrete syntax, capacity requirements and optional features.

The Document Type Definition (DTD)

The Document Type Definition (DTD) is the centre of SGML. It defines the rules that
apply to all documents of that type, including the names of the various elements (generic
identifiers) allowed, any attributes they may have, the number of times they may appear,
the order they must appear in, whether some markup (such as start- and end- tags) may
be omitted and the relationships of the elements.

A DTD does not have information on how to process a document or what it should
look like, but it allows users to define their own markup language depending on their
requirements. Figure 2.3 show a Document Type Declaration (which may include
several DTDs) where the items between [and] represent a DTD. The DTD defines
a document of class 1letter which must consist of a recipient’s name, a recibient’s

address, a senders’s name, a salutation, a date and one or more paragraphs in that order.

CHAPTER 2. MULTIMEDIA INTERCHANGE 23

<!DOCTYPE letter [

<!ELEMENT letter - - (rn, ra, sn, sl, d, p+)>
<!-- letter components:
rn = recipient’s name
ra = recipient’s address
sn = senders’s name
sl = salutation
d = date
jo) = paragraph -->
<!ELEMENT (rn|ra|sn|sl|d|p) - o (#PCDATA)>
1>

Figure 2.3: Example of a Document Type Declaration for a type of document called
letter

A DTD defines three types of markup commands:

o Elements: which are marked up with symbols called the start-tag and end-tag.
For example, in figure 2.4 <rn> </rn> is an element (in the simplest form
possible) whose start tag is “<rn>", end-tag is “</rn>" and with the generic

identifier (or tag name) “rn”;

o Attributes: which provide extra information about the element that is being

specified. Attributes are similar to parameters in programming languages.

e Entities: which are character strings to mark locations in the text where external
material, such as figures, or mathematical symbols that cannot be entered directly

from the keyboard, must be placed.

The document instance

The document instance represents the document itself which is marked up according
to the rules established in the SGML declaration and the DTD. Figure 2.4 gives an

example of an instance of a SGML document.

CHAPTER 2. MULTIMEDIA INTERCHANGE 26

<!DOCTYPE LETTER SYSTEM "letter.dtd">

<letter>

<rn>The Editor - Summer Magazine</rn>

<ra>London - UK</ra>

<sn>E Albuquerque </sn>

<sl>Dear Sir,</sl>

<d> 10/11/95</d>

<p>Please cancel my subscription to your
magazine.</p>

</letter>

Figure 2.4: Example of an instance of a document of type letter (defined in figure 2.3)
2.4.2 Interchanging SGML documents

SGML documents are interchanged using the SGML Document Interchange Format
(SDIF) (ISO 9069 [ISO, 1988]). SDIF was originally defined to provide the hooks to
enable an SGML document to be interchanged in the OSI environment.

A SGML document may be made up of several separate parts such as document
type definition, external entity definitions, etc, and the standard does not specify how
these parts are organised. SDIF defines how to pack the parts into a single data stream
with descriptors indicating how the parts are related to each other. The data stream
is encoded using ASN 1, allowing SGML to be compatible and used with network

standards [van Herwijnen, 1994] defined in terms of the OSI Reference Model.

2.4.3 Binary SGML (SGML-B)

SGML tags clearly add a large overhead to the data being transmitted. SGML-B is an
extension to the SGML standard to provide SGML binary encoding with bidirectional
convertibility between the text and binary forms. SGML-B uses minimised markup in

order to reduce storage.

CHAPTER 2. MULTIMEDIA INTERCHANGE 27

2.4.4 Limitations of SGML

One of the main limitations of SGML is that it does not actually specify documents.
It specifies DTDs, and incompatible DTDs defeat the purpose of universal document
exchange. Another shortcoming is that DTDs do not indicate how to process non-text
objects. When non-text objects are encountered, DTDs simply specify special markup
tags called “escapes” (sequences that suppress markup recognition when code extension
is in use) that cause the processing program to jump outside the SGML-defined process
to an application that can cope with the non-text object. It does not standardise either
how objects are tagged for transfer to these other applications or how these applications
will interpret those objects once they receive them.

A partial remedy for this weakness is the Hypermedia/Time-based (HyTime) struc-

turing language, described in the next section.

2.5 HyTime

The HyTime or Hypermedia Time-Based Structuring Language [ISO, 1992, Markey,
1991, Newcomb et al., 1991, Fujitsu and TechnoTeacher, 1995] is the result of a
project at the American National Standard Institute aimed at creating a Standard Music
Description Language (SMDL). HyTime became an ISO standard in April 1992.

HyTime is an application of SGML (and is said to be its future by Goldfarb) that
allows markup and DTDs to be used to describe the structure of multimedia documents.

The types of contents a document may have include:
e Digital audio recording;
¢ Digital motion video and dynamic graphics;
o Text fields;

e Musical notation;

CHAPTER 2. MULTIMEDIA INTERCHANGE 28

e Instrumental control;
e Control signals for external systems.

HyTime overcomes some of the limitations of SGML by providing a standard way
to tag text or non-text objects so that they can be rendered as a complete document or
processed as independent objects. HyTime does not specify how document objects are
encoded or interpreted by computer programs. However, by using standardised linking,
alignment, and addressing methods, it ensures that such objects are made available to
programs in a standardised way.

In order not to limit its expressive power, HyTime is not itself an SGML DTD,
but provides constructs and guidelines (“architectural forms") for making DTDs for
describing Hypermedia documents.

HyTime specifies how concepts common to all hypermedia documents can be rep-

resented using SGML. These concepts include [Adie, 1994]:
e association of objects within documents with hyperlinks;
e placement and interrelation of objects in space and time;
e logical structure of the document;
e inclusion of non-textual data in the document.

An “object" in HyTime is part of a document, and it is not medium dependent: it
may be video, audio, text, a program, graphics, etc.

HyTime consists of six modules (figure 2.5):

o The Base Module: provides the architectural form that makes up the document
itself (and therefore is required by all others modules), including a lexical model
describing element contents; facilities for identifying policies for coping with
changes to a document, or traversing a link (“activity tracking"); and the ability

to define “container entities" which can hold multiple data objects.

CHAPTER 2. MULTIMEDIA INTERCHANGE 29

Always dependent
Base
| Module __ Sometimes dependent
|
T S—
\\\\
o __ |Measurement
Location =" |Mipdule
Address -
Module I !
= Scheduling
~ [Module
Hyperlinks e
Module — \
L |

i Rendition
Module

Figure 2.5: HyTime Module Interdependencies

o The Measurement Module: provides documents with the ability to represent
concepts involving dimension, measurement and counting. It allows an object to
be located in time and/or space, or any other domain, which cém be represented
by a finite coordinate space, within a bounding box called an “event”, defined by

a set of coordinate points which may be expressed in any units.

The Location Address Module: provides means, in addition to those specified
by SGML, to identify and refer to elements. This module provides a special
“named location address" architectural form which can be used to refer indirectly
to data which spans elements, or which is located in external entities. Data may
also be addressed indirectly through the use of “queries", which return addresses
of objects within some domain which have properties matching the query. If
the measurement module is used, locations can be specified which are numeric

addresses or indices along particular dimensions.

HyTime provides three kinds of addressing:

— Name-space Addressing (a unique name being provided);

— Co-ordinate addressing (relative to a given location);

CHAPTER 2. MULTIMEDIA INTERCHANGE 30

— Semantic addressing (by description).

o The Hyperlinks Module: supports the definition of links between parts of docu-
ments that can be traversed as a hypertext. The link endpoints may be location

addresses, measurement, or scheduling modules.

Two basic types of hyperlinks are defined: the contextual link (clink) which
has two anchors, one of which is embedded in a document to explicitly denote
the anchor location; and the independent link (ilink) which may have more than
two anchors, and does not require the anchors to be embedded in the document,

allowing structural information (hyperlinks) to be maintained outside the contents.

o The Scheduling Module: specifies how events in a source Finite Coordinate Space
(FCS) are to be mapped onto a target FCS. For instance, events on a time axis
could be projected onto a spatial axis for graphical display purposes, or a “virtual"
time axis as used in music could be projected onto a physical time axis. In another
example, if a map is to be rendered in say, a scale of 1:100000, it means that a
dimension of 1 Km in the origin FCS will be mapped to 1 cm in the target FCS.
If the event is applied to the whole map, it means that the same emphasis will be
given to all its parts. If however it is desired to have some parts with more detail,
more than one projector, with different scopes of action (proscopes) may be
used. A schedule of proscopes is called a baton and determines the rate at

which virtual units are converted into real units.

An FCS may contain any number of event schedules and each event schedule

may contain any number of events.

o The Rendition Module: allows for individual objects to be modified before ren-
dition, in an object-specific way. It specifies how events in one finite coordinate
space can be mapped to another finite coordinate space. One example is modifica-

tion of colours in an image so that it can be displayed using the currently-selected

CHAPTER 2. MULTIMEDIA INTERCHANGE 31

colour map on a graphics terminal, or changing the volume of an audio channel

according to a user’s requirements.

In this case, objects are modified within events and neither the semantics of
objects nor modifiers are defined by HyTime. In a similar way to a baton
described above, the scope of a modifier is expressed by a modscope and a

schedule of modscopes is called a wand.

Applications are not required to support all modules: only the portions of HyTime
that are appropriate for a given document have to be supported.
As it was defined as an exchange format, HyTime has great expressive power but is

not optimised for run-time efficiency.

HyTime engine

The HyTime engine is basically a program that recognises HyTime constructs in a
document. The HyTime standard does not specify how the engine works. There are still
few engines available: there is at least one commercial system: HyMinder developed by
TechnoTeacher [Adie, 1994]; and one developed by the Interactive Multimedia Group

at the University of Massachussets (Lowel) [Koegel et al., 1993].

2.5.1 Interchange in HyTime

As HyTime is an application of SGML, interchange is possible by using SDIF (sec-
tion 2.4.2).

2.5.2 The Standard Music Description Language (SMDL)

The Standard Music Description Language (SMDL) [Newcomb, 1991] is an application
of HyTime with the addition of tools for the representation of music. HyTime was
originally developed from a project aimed at representing music.

SMDL defines four domains of information (figure 2.6):

CHAPTER 2. MULTIMEDIA INTERCHANGE 32

Analytical
Domain

Logical
Domain
(cantus)

Domain
Performance

Figure 2.6: Domain of description in SMDL
Visual domain: contains the score information.
Gestural domain; contains the performance information.

Analytical domain: contains theoretical information and facilitates theoretical
and musicological discussions of musical structure, thematic transformation, per-

formance and engraving practices and analytic techniques.

Logical domain (cantus): Cantus can be defined as “pitches (frequency) and
durations (timings)” and it contains the minimum information necessary for an

automaton to generate a printed score and a minimal synthetic performance.

A cantus can referred to by more than one performance (gestural domain) and
more than one score. A document can also contain more than one printable edition

of the music (visual domain).

In SMDL, a piece of music is seen as a combination of events. The events occur in
“thread” and “lyric” schedules (figure 2.7) in a finite time space, with a position
(start) and extent (duration). Start and duration can be defined by an explicit

position or by reference to other events.

CHAPTER 2.

MULTIMEDIA INTERCHANGE

Cantus:
events scheduled in
virtual time

THREADS:
notes
rests
chords

BATONS:

tempo
directives

LYRICS

lyric
syllables

WANDS:
modifiers

Figure 2.7: Cantus Structure in SMDL

33

To represent time units, which are not necessarily the same in music, SMDL uses

defined.

2.5.3 Fihal remarks

dependent constraints.

very efficient in terms of rendering that information.

a HyTime baton. Other processing instantiations such as modifying and filtering

are specified by a HyTime wand in which all the modifier semantics are user

HyTime provides very powerful constructs to define complex documents with time
and synchronisation dependencies. Part of this strength is derived from the fact that it
started as a project intended to represent music. One of the most interesting features of
HyTime, which makes it specially suitable for representing hypermedia, is that it allows

the definition of hyperlinks based on contents data in addition to the definition of time

One weakness of HyTime, when used to represent hypermedia, comes directly from
its strength. Because it has a very strong expressive power, and allows the definition of

documents at a high level of abstraction, it requires a lot of processing and is thus not

CHAPTER 2. MULTIMEDIA INTERCHANGE 34

2.6 ODA

ODA [ISO, 1989, Brown, 1989] is a standard for storing and interchanging documents.
It defines a hierarchical and object-oriented document model. An ODA document can
be seen as a tree in which the leaves contain the contents data and the shape defines
the document structure. The separation of structure and document contents makes the
handling and creation of multimedia documents easier. An object attribute is a property
of a document or of a document component. It represents a characteristic of a document
or a relation with one or more other documents.

An ODA document is described by two structures:

1. Logical structure: a document’s logical structure is based on its meaning, i.e. a
structure that makes sense to the writer and to the reader of the document. The
logical structure defines the relationship between logical components and contents
components. Examples of logical components are: chapters, sections, figures,
etc. Logical components may also specify specialised items such as dictionary

entries.

2. Layout structure: the layout structure defines the appearance of a document: how
it is formatted. Examples of layout objects are pages, frames (rectangular areas)

and blocks.

ODA also defines the concept of document classes which are analogous to DTDs
in SGML. A document class is defined by generic structures. Based on the concept of

document classes, the above structures can therefore be further divided into:

1. Generic (Logical and Layout) structures: which are associated with classes of

documents, and

2. Specific (Logical and Layout) structures: which are associated with an example

of the class.

CHAPTER 2. MULTIMEDIA INTERCHANGE 35

Logical .
Structure TN
| Section
| Subtitle | I;Paragraphw |Paragraph|
[Content | | Content l [Content I
| Block | | Block | [Block |
Layout
Structure

Figure 2.8: Logical and Layout structures in ODA

The separation of the logical and layout structure in ODA can be seen in figure 2.8.
The leaf objects contain an attribute that defines the type of the associated con-
tents. Each type of contents is handled differently by rules called content architectures.

Currently, ODA defines three content architectures:

o Character content architecture: made up of control and graphics characters.
Positioning and format of characters are controlled by a set of attributes and
characteristics. By default, characters are defined vertically, in lines from the top
of the block and progressing from left to right and top down. It is possible to
change attributes such as character and line progression direction, produce super

and subscripts, etc.

o Raster graphics content architecture: raster graphics contents represents a two
dimension image formed from a two dimension array of image elements (PEL,
Picture ELements). Several attributes can be changed, including: progression
direction of PELs within a line, line progression direction, starting point from

which the PELs are placed within a line, image size, etc.

CHAPTER 2. MULTIMEDIA INTERCHANGE 36

e Geometric graphics content architecture: This architecture is based on the CGM
(Computer Graphics Metafile) standard. ODA attributes are used to provide

initial CGM values, such as line style, width and colour, size of final image, etc.

Each one of the above architectures define one or more classes similar to document
classes. These classes, in turn, may contain other classes offering different levels of
facilities, for example, to change the direction in which characters are placed in a

document.

2.6.1 Document Processing in ODA

In ODA, document processing is accomplished by three processes:

e The Editing Process: involves the process of creating and revising a document.

This process includes the structural and logical editing of a document.

e The Formatting Process: defines the position where each item in a document will

be placed. This process uses the logical and layout structures either generic or

specific.

o The Rendering Process: is concerned with presenting the document in a suitable
format to the user. This process displays a visual version of the document on

paper or on a screen, for example.

Although there may be some overlap in the two last processes, the Formatting
process is concerned with placing items while the Rendering process is concerned with

providing a visible presentation of the items.

2.6.2 ODA document interchange

ODA documents an be exchanged in several formats:

CHAPTER 2. MULTIMEDIA INTERCHANGE 37

e ODIF format: ODIF is an abstract syntax where components and attributes of a
document are represented by a hierarchy of data structures that appear in a certain

order.

o Office Document Language (ODL) format: ODL is a particular use of SGML to

represent ODA documents.

2.6.3 Extensions to ODA

Several extensions to ODA have been proposed to incorporate multimedia. The exten-

sions include:
e New content architecture features which:
— Allow voice messages and other forms of audio content to be attached to

ODA documents;

— Allow CCITT H.261, JPEG, MPEG-1 and MPEG-2 objects to be incorpo-

rated into ODA documents;

— Add attributes to ODA documents to allow the control of how images are

rendered such as control of contrast, brightness, saturation and hue;
— Allow the definition of markers within a video clip;
— Allow video sequences to be cropped both spatially and temporally to show

only part of a clip, for example.

e HyperODA: The Hypermedia Extensions to the Open Document Architecture are
aimed at incorporating audiovisual information into ODA documents. The main

characteristics of HyperODA are that it:

— Supports references to data held externally to the document;

— Supports non-linear structures, using contextual and independent hyperlinks

based on the HyTime model;

CHAPTER 2. MULTIMEDIA INTERCHANGE 38

— Supports temporal relationships between document components (e.g., se-

quential, parallel, cyclic, duration, start delay);

HyperODA has not yet become an International Standard.

2.7 Dexter

The Dexter Hypertext Reference Model [Halasz and Schwartz, 1990, Halasz and
Schwartz, 1994] is an attempt to unify the abstractions met in the various hypertext
systems and it is also a basis for the development of standards for interchange among
hypertext systems.

The model is the result of two workshops on hypertext. The first one happened at
the Dexter Inn, New Hampshire (USA), which is where its name comes from.

Dexter divides a hypertext system into three layers (figure 2.9):

Run-time Layer
Presentation of the hypertext;
user interaction; dynamics

" 2 Focus of the
orage Layer Dexter Model

a ’database’ containing a
network of nodes and links

Within—-Component Layer

the contents/strcuture inside the nodes

Figure 2.9: Dexter Model

e Run-time layer: this layer provides functionality for the use, visualisation and
manipulation of the hypertext web. Dexter defines only a basic model and does
not cover user interaction. This is because tools to implement these facilities are

too varied.

CHAPTER 2. MULTIMEDIA INTERCHANGE 39

The main function of the run-time layer is the presentation (instantiation) of a
component to the user. When the component is instantiated, a copy is created and
all user operations are performed on this copy, which is later stored by the storage

layer.

It is possible to have more than one instance of the same component and to keep
track of these instances; the run time layer maintains a session that maintains a

mapping between instances and components.

e Storage layer: this layer is where the model is focused. The storage layer
describes a data base made up of a hierarchy of components interconnected
by referential links. Components are regarded as generic data storage with no

distinction related to the medium used by the component.

Access to the components is performed by two functions: one is a resolver respon-
sible for resolving a component specification to give the Unique IDentifier (UID)
which is associated with each component; and one is to access the component

based on its UID.

o Within-component layer: components correspond to hypertext nodes. This layer
deals with the contents and internal structure of components within a hypertext
web. As a component can contain an unlimited range of contents and structure,
the model does not cover this part. Models for specific applications such as ODA

and SGML must be used to complete the definition of a hypertext as a whole.

The interface between the within-component layer and the storage layer is called
anchoring. It provides the means to address items within a component.

The interface between the run-time and the storage layers is called the presentation
specification and it is a mechanism that provides for the storage of information on how

a component should be presented to the user.

CHAPTER 2. MULTIMEDIA INTERCHANGE 40

2.7.1 Problems with the model

Dexter was one of the first attempts to standardise hypertext systems and although
it is relatively recent, it has not given enough attention to the additional problems

hypermedia adds to hypertext:

e Dexter has no notion of time which makes it unsuitable for expressing hypermedia

in general;

e It does not allow across hypertext links. It does not distinguish between contents
that are managed within the scope of the system and those managed by third party
]
applications;
e Composites are also limited as discussed in [Leggett and Schnase, 1994], in

particular with respect to composition, which is by copy rather than by reference,

preventing the reuse of content objects.

2.8 CWI Multimedia Interchange Format

The CWI Multimedia Interchange Format (CMIF) [Bulterman et al., 1991] is used to
describe the temporal and structural relationships existing in multimedia documents.

The CMIF project had two goals:

1. To define a structure that separates the temporal, spatial, and content-based aspects

of multimedia documents;

2. Toinvestigate ways of using the document description rather than the data contents

to control the interrogation and synchronisation of one or more document sets.
The project addresses three problems existing in multimedia applications:

¢ Elements manipulated within multimedia systems consist of raw data rather than

structured information, with little inherent meaning;

CHAPTER 2. MULTIMEDIA INTERCHANGE 41

e The representation and manipulation of such data is highly machine and/or device

dependent;

e The synchronisation within multimedia applications is often implicitly encoded
as a function of the speed of a particular system and interface, limiting the ways

interaction among elements can be expressed and implemented.

A CMIF document is a collection of several media and a set of structure and syn-
chronisation relationships describing how to present and manipulate these components

(figure 2.10).

e e %// \\\\“
N \ \ / \
& N\ N N % \
VN N e Y
/////////////
N N
‘ \\E I

B

ol

Figure 2.10: Document Structure Components in CMIF (from [Bulterman et al., 1991])

e

event descriptor

7

7

channel

CMIF provides a powerful infrastructure to build hypermedia applications, in par-
ticular when expressing timing and synchronisation relationships. However, the model
does not provide a direct way to represent “hypermedia” as it lacks a general mechanism

to represent hyperlinks.

CHAPTER 2. MULTIMEDIA INTERCHANGE 42

2.9 The Amsterdam Hypermedia Model (AHM)

The Amsterdam Hypermedia Model (AHM) [Hardman et al., 1993, Hardman et al.,
1994] is a framework that can be used to describe hypermedia systems. The AHM
extends the Dexter hypertext model (see section 2.7) by adding to it notions of time as
defined by CMIF (described in the previous section).

AHM groups temporal relationships among data items in two groups:

1. Collection: the class of items related to the identification of components that are

to be presented together;

2. Synchronisation: the class of items that specify the relative order in which the

components are to be presented.

This contrasts with the Dexter model which provides support for collection via the
hierarchical definition of components. The set of atomic components can be modeled by
Dexter’s composite but it does not provide for specifying relative timing relationships
among components.

AHM separates contents data and presentation information by defining atomic and
composite components as shown in figure 2.11.

The atomic component contains information related to a specific data block including
duration, presentation specification and anchor identification while a composite contains
presentation information related to a collection of atomic or composite blocks. A
composite contains no contents data; such data must be either included or referenced in
an atomic component.

There are two types of composites:
1. Choice composite: at most one child is displayed,;

2. Parallel composite: all components are displayed.

CHAPTER 2. MULTIMEDIA INTERCHANGE 43

Presentation
Specification

Channel name

Duration — Specified or implicit

Other comp. - specific pres. info.

g;%sc?f?égttiigg [Component—specific pres. infal

Sync.
Arcs

from_Component ID
to_component ID
Timing relation

Attributes Semantic information
Anchors Anchor ID
Value -H
t L
Contents

Data block or pointer to date}

Attributes l Semantic information |

Atomic Component

Anchors | Anchor ID
list of (Comp ID, Anchor ID)
IT
Composite type | Choice or paralell —|
Children | Component ID
Start time
[I;

Composite Component

Figure 2.11: Amsterdam Hypermedia Model

2.9.1 Synchronisation in AHM

AHM supports two levels of synchronisation as shown in figure 2.12:

e Coarse-grained synchronisation: defines the constraints between the children in

a composite such as relative starting time of each child in a composite and this

information must be given explicitly with the child definition;

e Fine-grained synchronisation: defines constraints among children (which can be

nested) within a composite component and these constraints are specified using

synchronisation arcs.

2.9.2 Link context

AHM defines the concept of a link context to specify how components should behave

when a link is followed. A link context is a composite that contains a collection of

components affected by the activation of a link. A source context for a link is the part of

CHAPTER 2. MULTIMEDIA INTERCHANGE 44

o

— anchor = link > synchronisation arc
~¢ Start offset I / l

Figure 2.12: Timing relations in AHM

the presentation affected by initiating a link and a destination context is the part affected

at the link arrival.

2.9.3 Channels

Channels provide for specifying global output attributes of documents. A channel can
specify, for example, the font and style for a text channel.
The concept of channel can also be used to specify, for example, the language to be

used to output speech or text in a multi-lingual document.

2.9.4 Limitations of AHM

The main current limitations of AHM are derived from the fact that the underlying
model (CMIF) does not support composite “anchors” therefore it is not possible to

define complex link conditions.

CHAPTER 2. MULTIMEDIA INTERCHANGE 45

2.10 QuickTime

The QuickTime Movie File (QMF) format [Apple, 1993], was developed by Apple
Computers originally for Apple Macintoshes, as an extension to System 7; it has now
been ported to MS-Windows.

QuickTime is a container for time-based data. It presents a model for the storage
and interchange of time-related media that is independent of a system’s built-in timing
and synchronisation capabilities.

A QuickTime movie is actually any dynamic data such as a movie, a slide show, an
animation, etc. A movie can have several tracks with different types of information but
it can only have one track with a specific medium (such as audio). A movie atom is

made up of track atoms which are made up of media atoms as described in figure 2.13,

from [Buford, 1994].

Movie with several tracks

77 /W///W//
i

PPN
Z WMWW/ e, Track with media atoms

\ —

L] 1 T | J

7~
|

| Mapping of media atom

B tp physical media
l l l l y

Figure 2.13: QuickTime componeﬁts

A movie also includes the specification for a poster which is a single image to
represent a movie, such as an icon, and a preview which is a short segment of a

QuickTime movie also used to identify a movie.

CHAPTER 2. MULTIMEDIA INTERCHANGE 46

Components of QuickTime

A full version of QuickTime includes these components:

e Movie toolbox which is the authoring application for creating, editing and dis-

playing movies;

e Image compression manager that controls compression and decompression of
images in a movie. QuickTime uses four compression algorithms:
1. Apple Photo - JPEG for static images;
2. Apple Video and Apple Compact Video for video;
3. Apple graphics for graphics;
4. Apple Animations for animations.

o Component manager that provides an interface for adding compression/decompression

methods and device drivers.
e “Scrapbook” which is capable of storing movie clips to be pasted into applications
which use QuickTime.
Limitations of QuickTime

Although QuickTime provides for adding time based media to existing applications, it
does not provide mechanisms for creating hypermedia as it does not provide for links

being triggered from the media it handles.

2.11 Adobe Acrobat

Although Adobe Acrobat [Adobe, 1995] is not a standard for document interchange, it
was invented by the creators of the PDL (page-description language) PostScript which

is the de facto standard of the printer world. Adobe aims at achieving the same level

CHAPTER 2. MULTIMEDIA INTERCHANGE 47

of acceptance for electronic documents. Acrobat accomplishes this by using proven
technologies such as EPS (Encapsulated PostScript) and Multiple Masters fonts.

Acrobat’s PDF (Portable Document Format) uses a page description language (PDL)
based on PostScript to describe the text, graphics, and images in a file with additional
facilities for links and annotations. Because it is based on PostScript, a PDF file is
device and resolution-independent, so it will reproduce at the highest resolution that the
output device supports.

Adobe has i)ublished PDF as an open standard, allowing developers to support the
format in third-party applications.

Adobe Acrobat comprises a set of packages with specific objectives:
e Acrobat Exchange is the package to read and write portable documents;
e Acrobat Reader is only capable of reading documents created using the Exchange;

e Acrobat Distiller also used to create documents. It provides an easier way of
creating documents than the Exchange as it can take any level 2 PostScript

encapsulated PostScript created by another package and convert it to PDF format.

Acrobat provides for adding links, notes and book marks to documents although it

does not provide facilities to identify who added the marks.

Limitations of Acrobat

Although very powerful when converting existing documents in PostScript format,
Acrobat is not a general hypermedia tool, since it was not designed to take advantage
of distribution, and is not directly extensible to accommodate new media. Another
important limitation of Acrobat is that it is page based.

It seems that the natural environment for its usage will be the office, where it provides
a good solution to reduce the volume of paper, and not as a hypermedia tool in general,

because of its current lack of extensibility.

CHAPTER 2. MULTIMEDIA INTERCHANGE 48

2.12 The World Wide Web

The World Wide Web (WWW or W3 or just “the web”) is a wide-area client-server
architecture for retrieving hypermedia documents over the Internet. It started as a project
at CERN as a large scale distributed multimedia system to provide for the distribution of
documents related to high energy physics research. The web has since spread to other
areas and is probably the most well known and heavily used distributed multimedia
system available now, with browsers available for virtually all operating systems and
configurations from dumb terminals to high performance graphics systems.

The user sees the web as a collections of nodes (documents) and links between them.
Navigation is usually initiated by clicking with a mouse on an anchor that triggers the
associated link and causes the destination document to be retrieved. It also supports
a means of searching remote information sources, for example bibliographies, phone
directories and instruction manuals.

The web provide transparent interfaces to Gopher, Wais, or anonymous ftp, provid-
ing access to virtually all resources present in the Internet. Identification of resources
in the web is accomplished by Uniform Resource Locators which are described in the

next section.

2.12.1 Uniform Resource Locators (URL)

The World Wide Web uses a naming scheme called Uniform Resource Locators
(URL) [Berners-Lee, 1995] to represent hypermedia links and links to shared resources.

The URL syntax identifies documents in terms of the pro.tocol to retrieve them, their
Internet host and path name (figure 2.14). Among the protocols supported are http,
telnet, (anonymous) ftp, NNTP, wais and gopher. One drawback of URLs is that they
generally depend on particular servers. Work is still in progress to provide widespread
support for lifetime identifiers that are location independent. This will make it possible

to provide automated directory services similar to X.500 [CCITT, 1988] for locating

CHAPTER 2. MULTIMEDIA INTERCHANGE 49

the nearest copy of a resource [Raggett, 1994a].

http://ukc.ac.uk/ukc/about_ukc.html

/
7

y S
Protocol Host Path

Figure 2.14: Example of a URL

Universal Resource Numbers (URN)

Universal Resource Numbers (URN) are a proposed system for unique timeless iden-
tifiers of network-accessible files being developed by IETF Working Groups. URNS,
unlike URLs, do not contain information to retrieve nodes, and may be allocated to
nodes and represented in source anchors.

The objective of URN is to reduce network traffic and provide a more robust structure
where the location of ahost is not encoded. The reader’s system does not need to retrieve
anode if it already has it. Implementation of caching mechanisms is facilitated; because
the identification does not change, any server with the object identified by the URN can
satisfy a request for it. On the other hand, if the node is changed, all links pointing to it
must be updated invalidating existing caches. This scheme is therefore useful only for
very large nodes, that impose a heavy transmission cost for their retrieval, and that are

unlikely to be updated.

2.12.2 Hypertext Markup Language (HTML)

The Hypertext Markup Language (HTML) [Berners-Lee, 1993], which is the language
used by the Web browsers, describes the organisation of documents so that structural
elements can be identified and accessed over the Internet.

An HTML document is an ASCII file marked up with tags, with a syntax based
on SGML (see example in figure 2.15), that provide a hierarchical structure to the

text [Barry, 1994]. HTML includes markup elements for:

http://ukc.ac.uk/ukc/about_ukc.html

CHAPTER 2. MULTIMEDIA INTERCHANGE 50

<TITLE> Here comes the documents’ title </TITLE>
<H1>A heading with level 1 is here></H1l>
<H2>A sub-heading is here</H2>
<P> And here comes the first paragraph.</P>
<H2>Another sub-heading is here</H2>
<P> Now we have the second paragraph...</P>
<P>This is a reference to the WWW

(World Wide Web)
</P>
<P>This link will connect you to the Library

(UKC Library Catalogue: CATS)
</P>

Figure 2.15: Example of an HTML document

e Headers: six levels of header are supported and they are tagged from H1 (the
most significant) to H6 (the least significant). Usually the level of significance

will define the font and size the header is displayed with;

e Paragraphs: normal texts automatically wrapped by the browser, and a paragraph
has in most cases one tag to define its beginning and one to mark its end. The

ending tag can be implicit;
o Various types of character highlighting;
o Character-like in-line images;

o Hypertext links: an HTML link defined by an URL (see section 2.12.1). In the ex-
ample above, thereference <A HREF="http://www.w3 .org/hypertext/
WWW/TheProject"> (World Wide Web) will connect the user to
the home page at www.w3 . org using the http protocol. The only part of the
reference that the browsers make visible to the reader is (World Wide Web)

which can be selected (e.g. with a mouse) to activate the link.

o Lists;

http://www.w3.org/hypertext/WWW/TheProject
http://www.w3

CHAPTER 2. MULTIMEDIA INTERCHANGE 51

e Preformatted text;

e Simple search facility;

HTML+

HTML+ [Raggett, 1993b, Raggett, 1993a, Raggett, 1994a] is a superset of HTML
adding extra features such as figures, tables and forms. It also generalises structures
present in HTML to facilitate the process of converting between HTML+ and other
formats. HTML+ formalises the concept of nested lists providing various list styles. It
also defines unordered lists that can be used to implement menu elements.

In addition to the elements supported by HTML, an HTML+ document supports the

following elements:

e Nested lists;

Figures;

e Tubles;

e Forms;

Literal or Preformatted text;

Mathematical formulae;

2.12.3 Virtual reality and the Web

Extensions to provide virtual reality via the Web are being investigated. Examples
include the Virtual Reality Markup Language (VRML) discussed in [Raggett, 1994b]
and [Pichler et al., 1995]. The virtual reality extensions would also provide support for
a virtual teleconference. The first web browsers with virtual reality features, such as

VRweb [Pichler et al., 1995], were made available in 1995.

CHAPTER 2. MULTIMEDIA INTERCHANGE 52

2.13 Presentation Environment for Multimedia Objects

(PREMO)

The Presentation Environment for Multimedia Objects (PREMO) is being developed
by ISO/IEC JTC1/SC24 [ISO, 1994b, ISO, 1994a, Stenzel et al., 1994] which is the
group responsible for computer graphics and image processing. The main aim of the
project is to add presentation and interaction with more than one medium. PREMO
should therefore make use of standards for single-media already developed within ISO.
As PREMO deals primarily with presentation aspects of multimedia, it is distinguished
from and should be used in conjunction with, other ISO/IEC standards such as ODA
(described in section 2.6), HyTime (section 2.5) and MHEG (chapter 3) [Herman et al.,
1994, Stenzel et al., 1994].

PREMO is being designed to cope with the requirements of new multimedia ap-
plications and of new functionalities added to workstations. It is an open architecture
that provides facilities for customisation, extensions and configurations depending on
the needs of applications, and should satisfy the needs of various areas of application,
ranging from CAD/CAM to virtual reality.

PREMO is object oriented and based on the model proposed by the Object Man-
agement Group (OMG) [Digital Equipment et al., 1993]. This should make it portable
and usable in a distributed heterogeneous environment.

The work on PREMO is still in its early stages and it is not expected that PREMO

will become an international standard before 1997.

2.14 Final remarks

This chapter has given an overview of a number of existing and emerging standards for
structuring hypermedia applications. Of these, the most important are SGML, HyTime,

ODA, PREMO and Acrobat. Except for the last one, they are all “de jure” standards;

CHAPTER 2. MULTIMEDIA INTERCHANGE 53

Acrobat is a commercial product which is being proposed as a “de facto” standard.
Interest in SGML and HyTime applications seems to be booming, especially in the
publishing industry (where SGML was originated), while there seems to be a decrease
in interest in ODA.
PREMO is still not well known and it is not clear that a new standard that overlaps
with MHEG, HyTime and other graphics standards is required in the short term.
Although Acrobat is still a relatively new product, the fact that it is based on well
known technologies makes it a strong candidate to become a standard as Adobe intends.
Another important emerging “de jure” standard, not discussed in this chapter, is

MHEG, which is described in detail in the next chapter.

Chapter 3

MHEG

The Multimedia and Hypermedia information coding Expert Group (MHEG) is the ISO
Working Group WG12 of SC29. The standard being defined by the group is “the base
coded representation of final form multimedia and hypermedia information objects”
that will be interchanged as a whole within or across services and applications.

This chapter presents an overview of the MHEG standard as defined in [MHEG,
1994b]. An introduction to MHEG can be found in [Colaitis and Bertrand, 1994],
[Meyer-Boudnik and Effelsberg, 1995] and [Casey, 1994]. A critical analysis of MHEG

is presented in chapter 7 and an overview of MHEG classes is shown in Appendix A.

3.1 Introduction

The work being developed by MHEG, under the general title of Information Technology
— Coding of Multimedia and Hypermedia Information, aims at producing the following

documents:

e [3522-1 MHEG Object Representation, Base notation (ASN.1): this is the most
advanced part of the work. The description of MHEG in this chapter is based on
this document. In the text below, unless explicitly stated, the term MHEG will

refer to this document;

54

CHAPTER 3. MHEG 55

13522-2 Alternate notation (SGML): this document will be developed further

once the base notation work is concluded;

o [3522-3 MHEG extensions for Scripting Language Support: this is still in its
early stages of development, as initially MHEG did not aim at providing support

for scripting languages;

o [3522-4 Registration Procedure for Format Identifiers: this is also still in an

early stage of development;

o [3522-5 MHEG Subset for Base Level Implementation : which is a new work
item added to the MHEG work in November 1994. MHEG 5 defines a subset
of MHEG to be applied to “simple applications” such as video on demand and

browsing systems. It is discussed in more detail in section 7.1.1

3.1.1 Standard Objectives

The standard focuses on the generic structuring aspects of the objects and takes into

account the following requirements:

e Use in systems with minimal resources;

Interactivity and multimedia synchronisation;

Real time presentation;

Real time interchange;

Final form representation.

3.1.2 Suitability of MHEG

MHEG defines objects in a non revisable form which makes it unsuitable for highly

interactive authoring applications. However, it is well suited for reading or browsing

CHAPTER 3. MHEG

56

systems. For example, an MHEG system is suitable for presenting a collection of

multimedia objects stored on a CD-ROM.

3.2 Object Interchange

Figure 3.1 shows the scope of MHEG. The figure shows levels where multimedia

interchange occur:

Interchange

Application — —|Appl |- —

——[S }—-

Non MHEG
content data

Other protocol
element

Non MHEG
content data

Application

Other protocol

element

Figure 3.1: Scope of MHEG

1. Application level: the infinite varieties that can exist at the application level

makes it unsuitable for standardisation. An application may, however, use the

script level to exchange objects.

2. Script level: MHEG currently makes no attempt to standardise scripting lan-

guages. Scripting languages should use the MHEG level below to interchange

objects.

CHAPTER 3. MHEG 57

3. MHEG object level: this is the scope of MHEG.

4. Non-MHEG object level: this the level where standards for monomedia inter-

change are used. MHEG objects make use of standards at this level.

5. Other protocol element level: this is the lowest level of interchange. Protocols

for messages and acknowledgements are included in this level.

6. Object Representation: Objects are coded using ASN.1 and an alternative repre-

sentation in SGML is being developed.

3.3 Structure of MHEG

MHEG is based on three concepts:

1. MHEG classes, MHEG abjects: MHEG classes represent the objects that are
actually interchanged. The run time system may instantiate any number of

objects from a given object class;

2. Run-time objects (rt-objects): Run-time objects are not interchanged between
applications, but their existence is triggered dynamically by the run-time system.
Objects created from subclasses of Model (figure 3.2) may be reused in different
contexts. Each time such an object is created, a run-time object is instantiated.
For example, an image may be exchanged once but be used many times with
different attributes such as size and colour. Elements in a run-time composite are

called sockets.
3. Channels: channels define logical spaces in which run-time objects are presented

The standard defines an object oriented representation of multimedia entities, with

a single inheritance tree as shown in figure 3.2.

CHAPTER 3. MHEG 58

MH-OBJECT>
ACTION
LINK
MODEL>
SCRIPT
COMPONENT>
CONTENT>
| MULTIPLEXED CONTENT
COMPOSITE

CONTAINER
DESCRIPTOR

Figure 3.2: MHEG Classes

The hierarchy defines data inheritance but the standard does not define class methods.

Neither does MHEG enforce or define an object-oriented approach for a MHEG system;

I

it makes no assumption on the internal representation of systems.

3.4 Object Identification

3.4.1 Naming

The standard provides three identification mechanisms:
1. External identification;
2. Internal identification;

3. Symbolic identification.

External identification

External identifiers are defined by the standards ISO 8879 Formal Public Identi-
fiers [ISO, 1986a] and ISO 9070 [ISO, 1986b] Registration procedures for public
text owner identifiers. They are not defined by the standard and are not encoded within
the MHEG object.

An external identification can be decoded without decoding the object. It is made

up of two parts: i) a public identifier which is a character string defined by ISO 8879;

CHAPTER 3. MHEG 59

and ii) a system identifier which is system dependent and is used to identify information
within a system and to identify the system itself.
The external identification is the only way to identify data not included in a content

object or in a script object.

Internal identification

Internal identifiers are encoded within the object. They cannot be retrieved without
decoding the object. An internal identification can be an identifier (used to identify an
MHEG Object, an rt-object, a channel, a multiplexed stream or null objects), or index

(used to identify a composition element, a container element or a socket).

o MHEG identifier: an optional identifier that can be assigned to each MHEG
object. It is made up of an Application Identifier which is a list of numerics

provided by the application designer and an Object Number.

It is the object designer’s responsibility to ensure that MHEG identifiers are

unique within the application.

e Rt-object identifier: a mandatory identifier assigned to each rt-object. The iden-
tifier is composed of a model object identification that identifies the model object,
and an rt-object number provided by the author (again, the author must ensure

that the number is unique).

o Channel identifier: a mandatory numeric identifier assigned to a channel. The

author must ensure that the number is unique within the composite.

o Stream identifier: a mandatory identifier assigned to each stream within a multi-
plexed content object. A stream identifier defines a list of numerics that give the

path from an outer stream to inner stream within the multiplexed data.

o Indexing: Anindex provides an identification for an element within a constructed

entity. In container objects an index can be created by the engine (they are

CHAPTER 3. MHEG

60

sequential) or by the author, in which case they do not need to be sequential.

In composite objects, indexes are provided by the author and do not need to be

sequential. In rt-composite objects, sockets are indexed from one, sequentially

and all indexes must be used.

Symbolic identification

Symbolic identification (aliasing) can be used to replace any other external or internal

identification. It is recommended that such an alias should conform to sub-clause 9.3

of ISO 8879 SGML.

3.4.2 Referencing

Referencing in MHEG is realised by the use of a Generic Reference which addresses

MHEG entities. Generic references can be constants or the result of a get action (see

section A.2).

Table 3.1 summarises the referencing that can be used in each context. Chapter 5

gives details of MHEG referencing.

Reference
Type

Alias | Exter
id.

Cont
id.

MHEG
id.

Null

Obj

tail

Model

rt-obj

rt-comp
+
socket
tail

Data

MHEG Object
Container element
Rt-Object

Socket

Channel

Stream

Table 3.1: MHEG Referencing Summary

CHAPTER 3. MHEG 61

3.4.3 Tail referencing

Tail referencing is used to identify an element within a container object or rt-composite.

It can be:
e Single tail: which describes the path from an outer entity to the desired inner one;

e Child tail: where the reference is made to the set of all child elements in the first

generation only;

e Descendant tail: where the reference is made to all descendants elements in all

generations.

3.5 Representation of time and space

The MHEG generic space

MHEG defines a generic space as being composed of four axes:

e The temporal axis (T): this axis is measured using a Generic Temporal Unit
(GTU). For rt-components, the range is [0, original_duration] where

original_duration is, for example, the length of a video clip.

The granularity of T is defined by a Generic Temporal Ratio (GTR) which defines
the number of consecutive unitary Generic Temporal Units intervals there are in

one second.

e Three spatial axes (X, Y, Z): which have the usual right handed mathematical

sense. Measures in these axes are expressed by Generic Spatial Units (GSU)

The granularity of each axis is defined by a Generic Space Ratio (GSR) which
defines the number of unitary Generic Spatial Units intervals there are in one

generic space.

CHAPTER 3. MHEG 62

Composition and projection in the generic space

The standard provides two independent mechanisms for the manipulation of time and

space:

1. The composition of MHEG objects that defines position points at which a pre-

sentation process will attach the reference points of the projectable objects; and

2. The projection of an MHEG object that specifies how content data 1s related to

its reference point.

The user process is responsible for converting MHEG generic space to real units.
The rate at which time units are mapped into real units can be changed by setting
different values of speed. Size can be changed by setting different aspect ratios (they
can be different for each axis).

MHEG does not have a generic mechanism such as HyTime’s wands that allows the
user to define the semantics of the mapping from one generic space to another generic

space or to real units.

3.5.1 Synchronisations relations

Six levels of synchronisations are provided:

1. Atomic Serial Synchronisation Relation (figure 3.3 left)
Object 01 is presented immediately after the activation time of a composite object

and object 02 after the end of presentation of object 01.

2. Atomic Parallel Synchronisation Relation (figure 3.3 right)

Objects 01 and 02 are presented both starting at the reference time.

3. Elementary Synchronisation Relation

Two types are defined:

CHAPTER 3. MHEG 63

01 01
e e e e e el st
T2 02 T2 02
— e — — — — — — — 3 — — — — —
REF REF

REF T2 REF

Figure 3.4: Sequential (1) and Parallel (r)Mode Synchronisation

(a) Sequential mode (figure 3.4 left) where object 01 is presented at time T1
after the reference presentation time and object 02 is presented at time T2

after the end of 01;

(b) Parallel mode (figure 3.4 right) where object 01 is presented at time T1
after the reference presentation time and object 02 is presented at time T2

after the reference presentation time.

4. Conditional Synchronisation Relation

The presentation of an object is linked to the satisfaction of a condition;

5. Chained Synchronisation Relation (figure 3.5)

The synchronisation occurs at marks.

6. Cyclic Synchronisation Relation (figure 3.6)

This is the type of synchronisation required by a chronometer for example.

The types of synchronisation provided are powerful enough to model most hyper-

media usages. Synchronisations that depend on the occurrence of complex conditions

CHAPTER 3. MHEG 64

mi Sync marks

T1 Iml [m2 ‘ mk mn
SIS SR THE—— =y

\ i \

l l ; |

| ‘ | Audio
_______ e
—th**v*i————F————i Video

REF
Sync at each change of M
M

Figure 3.5: Chained Synchronisation

L ‘
|
— e +——
= 1 |
| 02 |
———t e —— b ——
2 \
REF

Figure 3.6: Cyclic Synchronisation

cannot be defined directly and must be handled by scripting languages that will generate

the actions defining synchronisation types supported by MHEG.

3.6 Extensibility of the model

MHEG allows applications to extend the model via three mechanisms:

1. Extension of elementary actions: Elementary actions may be extended by i)
adding a parameter to an existing action; ii) extending actions by allowing the
inclusion of more powerful functionalities; ii7) using dedicated implementations
that extend the elementary action — the actions are then tagged as ‘PRIVATE’

and do not conflict with elementary actions defined by the standard.

Basic MHEG engines ignore the extended actions.

CHAPTER 3. MHEG 65

2. Extension of attributes of an MHEG object: applications may create new classes
derived from MHEG classes (they are not considered MHEG classes), or new

elementary actions may be defined as described above.

3. Extension of data types and classifications: MHEG proposes the existence of
an “MHEG data type registration authority” that is responsible for keeping the

“MHEG catalogue” to which new data types or classifications may be added.

Applications may also define a “proprietary catalogue” that will keep private data

types and classifications.

3.7 Final Remarks

This chapter provided a flavour of the MHEG standard. An analysis of its main
features in provided in chapter 7. However, as a standard that deals. mainly with
the presentation of multimedia objects, one of the main points that distinguishes an
MHEG implementation from other standards, such as HyTime, SGML or ODA, is the
requirement for efficiency. When a choice must be made between expressive power

and run-time efficiency, the latter must be emphasised.

Chapter 4

Requirements and Constraints

4.1 Introduction

Most hypermedia systems designed to date are centralised monolithic systems. These
systems provide built-in support for a limited set of media. The environment usually
has a poorer supporting interface to each medium than that of an application solely
dedicated to that medium.

As new media are constantly introduced to the market, monolithic systems are no
longer feasible. The introduction of new media, hardware and software tend to make
these centralised systems obsolete soon after they are released.

Multimedia environments should be easily extensible to accommodate technological
developments. The interoperation and interconnection of heterogeneous systems and
systems components should be easily and coherently extendible by the addition of
new components, defining an Open System model. The development of concepts
independent of the applications is needed for the handling of information in an Open
System environment.

Distributed processing of multimedia information will play a key role in applications
areas [Eckhard Moeller and Angela Scheller and Gerd Schiirmann, 1990] such as

office systems, publishing, health care, CAD, CAI, multimedia information bases, and

66

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 67

Dedicated \m -

Hardware e /
A A
e 7
=] -
CD-ROM Workstation S > Video Disk

N\

TV Screens

Figure 4.1: A Multimedia System

advertising. This will permit the development of new areas of communications and
information processing.

Most existing Hypermedia and Multimedia Communication Systems do not provide
an adequate solution for all applications. In these systems, the multimedia information
is integrated into a single multimedia stream where time and events are not involved.

Figure 4.1 shows a typical multimedia system. A central workstation controls
several special dedicated devices for presenting the different media. In the figure,
devices like a video disk can be used to display video on TV screens asynchronously.
The same video could be presented on the host’s monitor using a video card.

The workstation only has to start playing the video and all further processing can
proceed with no control from the central system. In the case of images stored on the
CD-ROM, the workstation must keep a closer control, retrieving the contents data and
controlling the display of the window that frames the images.

From figure 4.1, it can be seen that a multimedia system is inherently distributed and
that distribution transparency should be carefully planned: a file system can (usually)
be transparent to the user but although it may be desired to have the possibility of

presenting a content object on more than one device, it is required that the user defines

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 68

' Source o o
) g ~ Media >
7 S Ty < >

Metropolitan
Area
Network

" Media ™\
Source)

—
~

Q\pplication)

. _ el
il Wide Area S
; Network e
ile
_ Server
/’_/

T g

“Media) (e)

N\

Media \>

\\ P
Media <rocessor

Media
Destination

7" Media
(Source ;
\\/7

Figure 4.2: A Distributed Multimedia Environment

where the device is physically located. Figure 4.2 gives an idea of how a distributed
system may be structured.
It is also impossible to predict the availability of new media in the future, and a

multimedia model should be able to accommodate a new medium as seamlessly as

possible.
This chapter discusses some of the requirements that should be met by the imple-

mentation of such a system. The chapter is structured as follows:

o Initially the general requirements that all hypermedia systems should meet are

presented;
o Then the desirable features for the operating system are presented;

e The next section presents an overview of the operating system chosen (Windows

3.1) for the prototype implementation.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 69

e Finally, a summary of available naming schemes and existing naming servers is

presented.

4.2 General requirements

There is effectively a consensus in the scientific community that all hypermedia systems

should provide:

e Separation of data and structure: raw data should be completely separated from
the structure that binds it together. When using mark up languages, the mark up
should not be embedded in the data. This principle should be applied not only

for logical structures such as hypertext links but also to presentation information.

The separation of content and structure allows users to have their personal view
of the contents by changing how-documents are created, but it also has poten-
tial commercial implications as there is the possibility of purchasing different
structures for the same data. This is what happens today, for example with direc-
tory services that sell structure services over freely accessible information such
as telephone numbers, or even companies that sell directories of free software

accessible by anonymous ftp without actually providing the software themselves.

The requirement for separation of data and structure has serious implications
for the software that will manipulate this information, especially with regards
to software integration; if the content information is changed, all structure that

relates to it should also be updated.

e Reuse of existing tools: every organisation has a considerable investment in
software which represents not only the cost of the software itself but also the cost
of training employees in its use and the value of the data represented by output
from existing (usually proprietary) systems. A new multimedia system should be

capable of making use of existing tools for manipulating individual media.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 70

e Distribution: distributed applications now are used not only at scientific and
military sites but even in medium sized companies. The widespread use of the

Internet is also adding extra requirements for “every day” applications.

Although some success can be achieved in adding distribution to existing systems,
as in [Brown, 1994], distribution and network access should be planned for

explicitly.

Distribution happens at the level of contents data, where a document may include
some contents stored anywhere in the world, and also at the presentation level
when a document may be run using several machines; for example, the audio
may be handled by a special midi device, video by another device and the whole

presentation process may be happening at more that one location simultaneously.

e Support for heterogeneity of architecture: this is a side effect of the distribution
requirement. As most organisations make use of several different machine ar-
chitectures and it is desirable to have all machines interconnected, a multimedia
system should be planned to cope with different architectures, communication

protocols and network services.

o Extensibility: new services, hardware and even media are constantly being in-
troduced into the market. A new system should be flexible enough to be able to
accommodate the extra facilities without a great impact on existing documents
and software. As an example, access to the World Wide Web (described in
section 2.12) is today almost a mandatory requirement for a hypermedia sys-
tem. Existing systems, such as Microcosm (described in section 1.3.4) had to be

adapted to integrate to the Web.

4.2.1 Adding new media and devices

Any Open Hypermedia system must be able to accommodate new media and devices as

they appear. When new media or devices are added to an existing environment, some

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 71

general requirements must be analysed:

o The processing the device performs on its data: this determines the timing re-

quirements and constraints imposed/required by the device;

o The types of data that can be processed: this determines the format of interfaces

to devices or software controlling the new medium;

e The stream position and control vocabulary required: this determines if any

stream interface or position keys will be needed.

To be extensible, a system must be able to accept a wide range of devices and
media with different answers to the above points without requiring changes in its basic

structure.

4.3 Operating System

The implementation of run time support for a multimedia system with real time con-
straints and distribution sometimes makes the border between operating system and
application blurred.

In this section, the requirements of the application which affect the operating system

used are discussed.

4.3.1 Cooperative vs Preemptive Operating Systems

One of the main tasks of an operating system is to decide which process to run when
more than one is runnable. Several strategies for scheduling could be used [Tanenbaum,

1992a], including fairness, efficiency, response time, turnaround or throughput.

Two opposite strategies are:

e Preemptive scheduling: The scheduler gives a time slice of the CPU in turn to

all competing runnable processes. Priorities can be defined and the scheduler

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 72

can take advantage of events such as a process having to wait for I/O to optimise
CPU usage. An example of a preemptive operating system is the Unix operating

system.

e Run to completion scheduling: in this case, only one process is run until comple-
tion. This algorithm is simpler than a preemptive one and is nowadays restricted

to dedicated systems.

One scheduling strategy that falls in between these two is cooperative scheduling.
Under a cooperative operating system, more than one process can run, sharing the
computer resources. Unlike a preemptive system, in a cooperative scheduler, the
operating system does not enforce a division of CPU time between the processes but
relies on the behaviour of each process to yield control at certain points. A badly
behaved process can take over all resources until its completion. An example of a
cooperative operating system is MS-Windows 3.1, which is described in more detail in
section 4.5.

The choice of a cooperative or a preemptive operating system depends on the
application’s timing requirements and leads to distinct programming disciplines. The
non-preemptive approach is better in some cases; to use it we must be able to guarantee
an upper bound on the execution times of all threads (between points where a dispatching
system call is made), and this must be less than the minimum required response time
for any thread (the time from an interrupt occurring to the thread running). In many
cases this can be ensured for longer running threads by having them call a “reschedule”
system call every so often (that is, a call that permits the kernel to reschedule if a higher
priority thread is ready).

If these conditions are true, then non-preemptive scheduling offers some advantages

because:

e Scheduling issues are simplified as non-preemption eliminates most of the need for

explicit synchronisation and critical sections as a task can only lose the processor

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 73

at discrete points in its code.

Consequently it:

— reduces design and debug time as the number of critical sections are reduced

because atomicity of most operations on shared data is inherently ensured.
— improves code quality (less potential for nasty bugs).

— reduces OS run-time overhead as context changes due to task switching are

less frequent.

e Saves memory as the operating system needs to store less contextual information

for the running process when it is halted.

On the other hand, the programmer must be aware that each application must be
well behaved otherwise the feeling of multitasking is lost. Under certain conditions,
this may cause the code to be more complex as time consuming operations must be
interrupted frequently to give a chance for other applications to run, and the application
programmer is responsible for providing these interruptions. In the case of operations
such as reading or writing a large file, the I/O routine must be careful not to take control
for too long as I/O operations can be time demanding if there is no hardware support for
asynchronous operations [Silberschatz and Galvin, 1994]; this is commonly the case

with desktop computers.

4.4 Future Operating Systems

Open distributed Multimedia use is one of the forces driving the development of future
operating systems. Resource sharing needs to be widespread with machines required to
be both client and server at the same time, breaking the current model where a desktop
machine is usually the client of a larger remote machine.

Operating systems must be able to protect applications from each other. Because

the run to completion requirements are often not met by applications, an operating

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 74

system should also be able to provide a preemptive scheduling mechanism where all
applications are treated fairly. As processor costs are reduced, the operating system
should also be capable of supporting symmetric multiprocessing (SMP) hardware.
The world wide level of interconnection required by future applications places
heavier requirements on operating systems in the following areas [Orfali et al., 1995]

[Linington, 1992]:

e Location transparency: users, servers and resources should be able to move from

one place in the network to another without disruption;

e Name space transparency: names must resolve uniquely within a given context
or naming authority, but the operating system should provide support for a set of

federated name spaces;

o Administrative transparency: the operating system should be responsible for
synchronising clocks, and handling updates when replicated services are being

provided;

e Secured-access transparency: users should be able to access the resources they
are entitled to use from anywhere, even when using insecure telephone lines.
Authentication, using mechanisms such as Kerberos [Kohl ez al., 1994], should

regulate users’ access;

o Communications transparency: users should not be aware of the protocols in-
volved in the communication. Mechanisms such as Remote Procedure Call (RPC)
provide transparency so that, from the client point of view, a call to a procedure
running on a machine thousands of miles away can be handled just like a call to

a local procedure;

o Consistency checking: the infrastructure should provide means to check consis-
tency between the human interface, programming interface and communication

protocols.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 75

Applications ‘
PC Distributed | Distributed
Integration IServices Services
Sy ’ DFS - Distrbuted File Services]
rity Mana
Naming Time Future Core gement
Service Service Services
/ ’ Remote Procedure Calls ’ \\\
/ N
/,// { Presentation Services ‘ \\

Threads Services

Operating Systems Services

Network Transport Services

Figure 4.3: DCE architecture (from [Berson, 1992])

The tendency, therefore, is for the development of an open distributed system.
Among the providers of such technologies today, the Open Software Foundation (OSF)
provides a moderately complete approach with the Distributed Computing Environment

(DCE) (figure 4.3) which consists of the following components [Berson, 1992]:
e Distributed file system;
e Directory service;
¢ Remote procedure call;
e Threads services;
e Time services.

Other components such as distributed file systems (e.g. the Andrew file system)

also provide desirable features to a distributed environment.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 76

44.1 CORBA

The most complete approach to open distributed systems today is offered by the Object
Management Group in the form of the Common Object Request Broker (CORBA) [Dig-
ital Equipment et al., 1993, Soley, 1990]. OMG is a non profit international trade
association, composed of more than 400 members, including several large corporations
such as DEC, HP and NCR. Their objective is to define an open software architecture in
which object components written by different vendors can inter-operate across networks
and operating systems.

The Object Management Architecture provides an infrastructure for distributed

objects. It consists of the following components:

e The Object Request Broker (ORB): which provides the infrastructure for object

communication;

e The Object Services: which control the life cycle of objects, including functions

to create objects, and to control access to objects;

e The Common Facilities: which provide a set of configurable generic applications

such as printing facilities, electronic mail, etc;

e The Application Objects: which represent application objects. An application

object is usually derived from a set of basic object classes by using inheritance.

The latest version of CORBA (CORBA 2.0) includes the description of the Object
Request Broker and the definition of the Interface Definition Language that allows
interaction between objects in the same ORB. It also defines protocols for the interop-

eration of several ORBs, with two versions: a lightweight one based directly on IP and,

optionally, another based on DCE [Orfali et al., 1995].

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 77

4.5 Windows 3.1 Operating System

Although MS-Windows 3.1 provides few of the desirable features discussed above, it
was chosen as the platform on which to implement the prototype because of the size of
its installed base, and because one of the aims of this work is to define an architecture
for MHEG objects usable on desktop computers. The existence of several dedicated
pieces of hardware for multimedia, supported by MS-Windows 3.1, was another point
taken into account when the operating system was chosen.

MS-Windows 3.1 1s not a full-fledged operating system, as it runs on top of MS-
DOS. However it provides the user with the feeling of a cooperative multitasking
operating system. The file system is still managed by MS-DOS while MS-Windows
3.1 handles the other pieces of hardware and is responsible for memory management,
program execution and scheduling [Charles Petzold, 1992].

Processing under windows is based on a Window Procedure and each process under
MS-Windows 3.1 is a window although not necessarily a visible window. The Window
Procedure is called by MS-Windows 3.1 and the process retains the CPU until it yields
control. A window, therefore, should not take control for a long time to give chance for

other processes to run. A program usually runs around the loop:

while (GetMessage ((LPMSG) &msg, NULL, 0, 0))
£
TranslateMessage ((LPMSG) &msg) ;
DispatchMessage ((LPMSG) &msg) ;
}

that retrieves any messages to the Window that are to be.processed by the Window
Procedure. At each GetMessage cycle, the window yields control to the operating
system which can then schedule a new process. The MS-Windows 3.1 environment
can, however, call the main window procedure directly, which makes the environment

a mixture of the message and call back paradigms.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 78

Windows messages

The loop above shows that an application will usually retrieve messages from a queue
managed by Windows, and will process each message internally. Typically, the process
will hold the CPU during the whole time it takes to process a message. The call
to GetMessage is an indication to the operating system that this process may be
suspended and another application scheduled. If the process is performing a very
demanding routine, it should frequently suspend itself by informing the operating
system, using a mechanism such as the above, so that another process may be run.

A window message is a simple structure defined as follows:

typedef struct tagMSG

{
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM 1lParam;
DWORD time;
POINT pts

} MSG;

where WPARAM (an unsigned int) and LPARAM (a LONG) are used to transfer
parameters to the process. Typically the application receives messages directly from the
operating system (such as those concerned with mouse or keyboard events, or window
positioning) and not from other applications. From this structure, it can be seen that the
amount of information a message can carry is very limited. To provide communications

between processes, MS-Windows 3.1 defines other mechanisms, discussed below.

4.5.1 Interprocess Communication under Windows 3.1

Interprocess communication under MS-Windows 3.1 is based primarily around shared

memory. Typically applications communicate by three mechanisms:

1. Dynamic Data Exchange (DDE);

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS [

2. Object Linking and Embedding (OLE);
3. The Clipboard;

The following sections provide an overview of each of these mechanisms.

4.5.2 Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) is an interprocess communication method that uses
shared memory to exchange data between applications and implements a protocol to

synchronise the passing of data. DDE applications fall into four categories [Clark,

1992]:
1. Client: an application that requests data or services from another application;
2. Server: an application that responds to a client application with data or services;
3. Client/server: an application that is both a client and a server;

4. Monitor: a monitor is an application that can intercept DDE messages from other

DDE applications but cannot act on them.

A DDE application can have multiple concurrent conversations. Within a conver-
sation messages are handled synchronously but the application may switch between
applications asynchronously.

DDE applications must uniquely define all conversations. The conversation is
defined by the server and client applications windows’ handlers and each conversation
is managed by a hidden window. If a client application needs to have more than
one conversation with a server, a new (hidden) window must be created for each
conversation.

The DDE protocol defines a hierarchy to identify the desired data. DDE defines a

three-tiered identification scheme:

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS

Application:
rmtctrl
P // R \\

Topic / \\\

28 N\

vddsk vhs
— } N \\ \
Item e : .Y \ N S
/ v v \ N\ \; \\

o //ﬂ/\\, g T

Figure 4.4: Example of a DDE Server

80

— DDE Windows ‘
 Destiation Viessaging
’ Application Initiate System / DDEM PP

Figure 4.5: Example of a DDE Conversation

1. Application: this is the top level of the hierarchy and identifies the program, i.e.

the application that provides the service (the server);

2. Topic: each DDE server must provide at least one topic and it may provide several

topics.
3. Item: the application may provide several items within a topic.

Forexample, if we had an application that worked as a remote control for a Videodisk

and a VHS player, we could define the services it provides (figure 4.4) as:
e Application: rmtctrl (the name of the program);
e Topic: there would be two topics: vddsk and vhs;
e [tem: each topic would have the items restart, play, pause,

eject.

There are three basic types of DDE conversations (figure 4.5) which are briefly

described:

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 81

1. The cold link: A cold link is established when a client application broadcasts a
message identifying the application and topic it requires. A server that provides
the topic acknowledges the message and then the client requests a specific item
which is acknowledged if the server supports it. If the server does not support the
item, it posts a negative acknowledgement. The conversation continues with the
client requesting items from the server. Either side of the conversation may end

the connection.

What characterises a cold link is that data is only transferred in response to clients
requests. If some data changes in the server, the client will only receive the

updated information if it make a new request.

2. The hot link: a hot link allows servers to inform clients that some data has
changed. When an item changes, the server posts a message notifying the client

of the update and transfers the new information.

3. The warm link: a warm link combines elements of hot and cold links. In this case,
the server notifies the client that some data has been updated but unlike the hot
link, the server does not automatically transfer the new information. The client

must then request the item if it so desires.

The protocol also allows a client to send unsolicited data to the server, and to send

a command string to be executed by the server.

The DDEML library

The DDEML provides an application programming interface (API) that simplifies the
task of adding DDE capabilities to a Windows application. Instead of sending, posting,
and processing DDE messages directly, an application uses the functions provided by
the DDEML to manage DDE conversations. The DDEML also provides a facility
for managing the strings and data that are shared among DDE applications. DDEML

provides a service that makes it possible for a server application to register the service

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 82

names that it supports. The names are broadcast to other applications in the system,
which can then use these names to connect to the server. The DDEML also ensures
compatibility among DDE applications by forcing them to implement the DDE protocol

in a consistent manner.

4.5.3 Object Linking and Embedding (OLE)

Object Linking and Embedding (OLE) is a mechanism for inter application commu-
nication. OLE introduced the idea of a document-centered approach instead of an
application-centered approach. In the document-centered approach, if there is a spread-
sheet embedded in a text document, and if the author wants to change its contents, he
will be able to activate a spreadsheet processor directly from the word processor to do
the processing instead of having independently to activate a spreadsheet, perform the
changes and then import the updated information into the word processor again.

The first version of OLE used the DDE protocol as the communication infrastructure.
A second version used a flavour of Remote Procedure Call (RPC) that Microsoft called
Light Remote Procedure Call (LRPC) [Microsoft, 1994] in the sense that it is based
on shared memory access and therefore only provides for communication between
processes running on the same machine. LRPC is not a communication protocol, as it
does not require a conversation to be established between the processes involved.

Future versions of OLE, Distributed OLE, should allow access to services such as

visual controls, multimedia services, data-access services, name services and distributed

security [Pleas, 1994].

4.5.4 Clipboard

The Clipboard is the standard Windows method of transferring data between a source
and a destination application. Data is transferred via the Clipboard by direct user

interaction, for example, when data is copied from one application (eg. a spreadsheet)

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 83

to another one (eg. a word processor).

There are several standard data formats used to transfer data via the clipboard. These
include metafiles, text, bitmaps, and others. An application can also define its own data
format.

Under Windows for Work Groups (discussed below), the clipboard may also be

shared allowing users to communicate data across the network.

4.5.5 Windows for Work Groups

Windows for Workgroups is a version of Windows 3.1 with added network capabilities.
It includes peer-to-peer file, printer, and clipboard sharing, mail capabilities, group
scheduling, chatting functions, and simple network-monitoring tools. The security

provided by Windows for Work Groups is very limited.

Network DDE

Network DDE (Net DDE) is an extension to DDE available for Windows for Work-
groups [Matthews and Dobson, 1993]. It works on top of the existing DDE system and
monitors DDE conversations. If a conversation takes place with a remote system, Net
DDE routes the data over the network as shown in figure 4.6. Net DDE intercepts DDE
initiated messages targeted to a remote application; the message is then routed out to
the network where it is picked up by Net DDE on the server’s computer which then
translates it into a standard DDE initiate message.

Under Net DDE, client applications need to know the server’s name to establish a
conversation, which is still a problem for many applications running under Windows
where the server application name is hard coded. Net DDE also provides very little

protection for shared resources.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 84

Destination DDE Hirslows Windows DDE Source
Application i Messaging Messaging * Application
PP Initiate System T System Initiate
Network Network geDtEv ok Network
Driver DDE Driver
Network
Qgg Connection <;
Destination Source

Figure 4.6: Example of a NetDDE Conversation
4.5.6 Dynamic Link Libraries (DLL)

MS-Windows 3.1 uses Dynamic Link Libraries (DLL) to optimise resource usage. In a

DLL, memory is shared by all processes using it. There are two types of DLL:

1. Code libraries that contain executable code. Exported functions from these
libraries can be used by several processes. One example is a DLL to emulate the

floating point co-processor.
2. Resource-only libraries that may store, for example, bitmaps or fonts.

MS-Windows 3.1 system itself is basically built around three DLLs:

e KRNL386 responsible for memory management, loading and executing programs

and scheduling;
e User that manages the user interface and windowing;

e GDI that is responsible for the graphics.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 85

4.6 Naming

This is probably the most crucial aspect of design and standardisation in an open
hypermedia system. It is concerned with the syntax of a name by which a document or
part of a document is referenced from anywhere else in the world.

Since many protocols are currently used for information retrieval, the address
must be capable of encompassing many protocols, access methods or, indeed, nam-
ing schemes. For example, the WWW scheme uses a prefix to give the addressing
sub-scheme, and then a syntax dependent on the prefix used, in order to be open to any

new naming systems.

4.6.1 Name or Address, or Identifier?

Conventionally, a “name" has tended to mean a logical way of referring to an object
in some abstract name space, while the term “address" has been used for something
which specifies the physical location. The term “unique identifier" generally referred
to a name which was guaranteed to be unique but had little significance as regards the
logical name or physical address. A name server was used to convert names or unique
identifiers into addresses.

With wide-area distributed systems, this distinction is blurred. Locally, things
which at first look like physical addresses develop more and more levels of transla-
tion, so that they cease to give the actual location of the object. At the same time,
a logical name or a unique identifier must contain some information which allows
the name server to know where to start looking. In a global context, for exam-
ple "1237159242346244234232342342423468762342368" might well be
unique, but it contains insufficient (apparent) structure for a name server to look it up.
The name "info.cern.ch" has a structure which allows a search to be made in
several stages. In fact, practical systems using unique identifiers generally hide within

them some clues for the name server, such as a node name.

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 86

A hypertext link to a document ought to be specified using the most abstract name
possible, as opposed to a physical address. This is (almost) the only way of getting over
the problem of documents being physically moved. As the naming scheme becomes
more abstract, resolving the name becomes less of a simple look-up and more of a
search.

It is expected in practice that the translation of a document name will take several
stages as the name becomes less abstract and more physical.

Some document reference formats contain “hints" to the reader about the document,
such as server availability, copyright status, last known physical address and data
formats. It is very important not to confuse these with the document’s name, as the
hints have a shorter lifetime than the document.

If this direction is chosen for naming, it still leaves open the question of the format
of the address into which a document name will be translated. This must also be left as

open-ended as the set of protocols.

4.6.2 The Global Name Service

The The Global Name Service (GNS) was designed and implemented at DEC Systems
Research Center [Lampson, 1986]. It was a descendent of Grapevine [Birrel et al,
1982] which was one of the first extensible, multi-domain name services.

Some of the goals to be achieved in the GNS project were:

e Large size: the system should be capable of handling an essentially unlimited
number of names and to serve an arbitrary number of administrative organisations.
Its predecessor, Grapevine, was designed to be scalable over at least two orders
of magnitude in the size of the name space and the load of requests that it could

handle;

e Long lifetime: many changes will occur in the organisation of the name space

and in the components that implement the service during its lifetime;

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 87

WORLD#765

France #024

Great Britain #654

(

Figure 4.7: Example of a GNS Directory Tree

e High availability: most other systems depend upon the name service; they cannot

work when it is broken;
e Fault isolation: local failures must not cause the entire service to fail;

e Tolerance of mistrust: alarge open system cannot have any component that must

be trusted by all the clients in the system.

In GNS, the user sees a hierarchy, like a file directory in an operating system such as
Unix. Figure 4.7 gives an example of a directory tree. Directories have unique identifiers
(DJ) issued by a central host, and an arc labeled with a DI is a Directory Reference
(DR). In the figure, UKC is directory WORLD/Europe/GreatBritain/UKC or DI
#592. The Computing Lab can therefore be identified as either WORLD/Europe/ -
GreatBritain/UKC/ComputingLab or #592/ComputingLab. The use of
DIs provides flexibility for change and growth of the naming structure, as a DI is
always correctly resolved in any environment and may be moved within a hierarchy. A
detailed explanation of the scheme can be found in [Needham, 1989].

This structure provides flexibility for change. If part of the tree moves to a different

place, it is only necessary to keep a “symbolic link" (i.e. an alias) pointing from where

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 88

it originally was to where it has moved to.

4.6.3 The X.500 directory

X500 Service(root) root
France Great Britain Brazil *- country
BT PLC UKC e organization

C’om/pom\g?)E\ecronics Lab - organizational unit
%Staﬁ Comp PosGrad - organizational unit

Karen Rick Johnes= = Mary Ken... person

Figure 4.8: X.500 Directory Information Tree

The X.500 [CCITT, 1988] directory service defines an abstract attribute-based name
space which is hierarchical as seen in figure 4.8 (adapted from [Coulouris et al., 1994]).
The whole tree is called the Directory Information Tree (DIT) and the associated
directory structure including the data is called the Directory Information Base.

X.500 allows objects such as organisations, people, and documents to be arranged
in a tree. Whereas the hierarchical structure might make it difficult to decide in which
of two locations to put an object (it’s not hypertext), this does allow a unique name to be
given for anything in the tree. X500 functionally seems to meet the needs of the logical
name space in a wide-area hypertext system. Implementations are still somewhat rare,
so it cannot be assumed as a general infrastructure. As of 1992 there were 177 servers,
holding a total of about 300,000 entries and serving 370 organisations connected to the
Internet [Coulouris et al., 1994].

As a directory service, X500 can be used to resolve resource names that are known

precisely and also to resolve imprecise queries such as to retrieve the names of users in

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 89

a given company, since nodes in the tree store a wide range of attributes.

A server in X.500 is called a Directory Service Agent (DSA) and a client is a
Directory User Agent (DUA). A client usually interacts with a server that in turn may
have to interact with other DSAs to resolve a query or redirect the client to another
Server.

There are two methods of access to the directory:

1. Read: an absolute or relative name is given together with the attributes to be read.
The DSA locates the entry by navigating in the DIT, passing requests to other

DSAs if required and returning the requested attributes to the client;

2. Search: in this case, a filter is passed along with a base name that specifies the
node in the DIT where the search is to start. The filter (a boolean expression) is

evaluated by every node below the base node.

Additional attributes may be specified to limit the scope of the search in order to

reduce resource usage.

4.7 Final remarks

This Chapter has provided an overview of the requirements imposed on the design of
an open multimedia system and has also given an overview on the current available
technology.

The main points that should be taken into account are:

e The system must be open in the sense that it must make use of a heterogeneous

environment, and the design should be as independent of applications as possible;

e The system must be extensible, accommodating the addition of new technology

such as new media and new devices;

o It must be explicitly designed to make use of distribution, as later changes to the

CHAPTER 4. REQUIREMENTS AND CONSTRAINTS 90

system to accommodate distribution and make full use of networks are usually

difficult, and their results not perfect.

Chapter 5

Architecture and implementation

This chapter proposes an architecture for MHEG objects which meets the Requirements
and Constraints from chapter 4. The architecture is suitable for use in an environment
composed of desktop computers, running MS-Windows 3.1. The implementation of a

prototype of the architecture is also discussed.

5.1 Introduction

As discussed in chapter 3, there is a clear separation (for exchange purposes) in MHEG
between behaviour, content, interaction and composition of objects. Exchanged objects
are not themselves presented directly. Run time copies, adding dynamic behaviour,
are created from the exchanged objects. During rendering of the run time objects, the
contents and dynamic information are put together and managed by one process. This
process will also take care of user input, scrolling, etc. Therefore, we will always be
dealing with composite objects.

The environment used for the implementation is MS-Windows 3.1, and consequently
the design will be influenced by it. In MS-Windows 3.1, a process is always a window
(although not necessarily visible); therefore we have to define windows and the objects

they will handle. An overview of the MS-Windows 3.1 operating system was presented

91

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 92

in section 4.5.

5.2 Architecture Overview

At a high level, the system architecture proposed can be seen (figure 5.1) as being
made up of a system kernel' (described in the next section); and several processes (see
section 5.4) (windows) that use the resources provided by the kernel for synchronisation

and communication.

%

%

R

e s
e ‘

% arf

b

Figure 5.1: High level system overview

Figure 5.1 represents the structure when only one host is being used. In the generic
case, more that one host will process the presentation and one kernel will be present in
each of them. All communication across hosts’ boundaries will be performed between
the kernels, as shown in figure 5.2. Typically, kernel processes running on more than one
host will exchange messages for clock synchronisation, name resolution and to request
remote execution of actions. The next sections will discuss the main components in the

system.

1System kernel here means the main modules in the system, and not a kernel as used in Operating
Systems

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 93

Figure 5.2: Distributed control

5.3 The kernel

The kernel is responsible for system integration by providing communication between
components and external communication, name resolution and basic MHEG object
decoding. There is a copy of the kernel in each processing unit, which means a host
that is responsible for handling a set of objects. The kernel is basically an extension
to the operating system providing additional services for interprocess communication
(IPC), clock synchronisation and name resolution.

The system requires central services, such as a time server. It was decided that the
first kernel started (the one that will handle the first object) would be the controlling
one. Kernel processes started subsequently should use this kernel as a time server. The
first server is regarded as essential, probably running in the workstation where most of
the output is to be rendered, and if it fails, the whole presentation would be halted.

The kernel encapsulates the part of the system that needs to be changed if access to
external naming services is added. Since it makes use of IPC mechanisms available from
the underlying operating system to provide a transparent communication mechanism

to the users processes, the kernel is the only part of the system to be updated when

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 94

a new form of IPC is provided. For example, under Windows for Workgroups, all
process communication between hosts can be performed by using NetDDE (described
in section 4.5.5); when the system is ported to future versions of windows using more
efficient forms of communication, such as remote procedure calls, only the kernel
modules need to be updated.

The kernel, running in a single machine (figure 5.3), is made up of three DLLs: the
Registry, the Link Factory and the MHEG Engine action processor. The MHEG Engine
action processor performs basic MHEG operations such as creating a run time object

from a model object. There is also one process: the Clock, which provides a timer.

Registry

Figure 5.3: System kernel

The next sections will discuss these components in detail.

5.3.1 Link Factory

The Link Factory is made up of three main components (figure 5.4):

e Decoder: this is responsible for decoding all link objects. It reads each link in

the exchange format and creates a link object in the internal format.

e Storage: this is a temporary storage for links which have been decoded, but for

which the process holding the trigger condition has not yet been activated. A

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 99

d
ASN.1 € Windows
c (processes)
0
d

\

|

/
/
/

L

starts triggered
r links

= trigerred link
processes

Figure 5.4: Link Factory Structure

reference to the link is kept by the registry for future retrieval by the appropriate

process.

o Triggered link starter: this module starts an independent module to handle the

link effect of a triggered link.

A link is stored in the link factory until it is explicitly destroyed, as it may be
triggered several times. Once a link is triggered, a process for handling its effects is
created. The dynamic behaviour of links is explained in detail in sections 5.7.2 and
3.73;

The Link Factory is implemented as a DLL shared by all processes on the same
host. A DLL uses shared memory and the cost of activating its functions is the same as

a regular function call, making its use very efficient in a non-distributed system.

5.3.2 The Registry

The registry provides a central point for message exchange. It was introduced as a result
of experience with alternative designs. This section initially presents the first designs,

the problems met in their implementations and then presents the final design.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 96

First solution

In one of the first solutions built, the communication infrastructure was designed to be
completely distributed with no central point for message exchange. All communication
was performed directly between the processes” involved using DDE. Communication
between parent and child was also performed using DDE. In this yersion of the prototype,
the root object (a composite) would be the first process created. For each component
within the composite, a process was created and two DDE conversations started between
the two processes, as both parent and child could be either server or client with respect
to the other. In this architecture, the only information each process had to know was
who was their father and who were all their children.
® ° 0

e
0.1 #02|

/\ ” 01 ~02 \\\ 03
® ® O

- W
\ / \ // /\\ / \

i
p
0.l @ol2@ @ @032 011 ./oﬁ,g‘ ® O 3
Ve /X

@

~

o \ /
; \
A \ ///\
0.1.1.' ‘0-1-1'2 O.I.I.O/ \‘0.1.1.2

Figure 5.5: Distributed Message Passing

Figure 5.5 illustrates this situation. In the figure, suppose that the object represented
by node 0.1.1.1 needs to exchange message with the object represented by node
0.3. Initially, it would have to request its father to locate the desired object. The
request would be propagated up to the root and down again to the other branches.
Eventually object 0. 3 is located and a DDE conversation is started directly between
0.1.1.1 and 0.3. Actually, two conversations would be started as the destination
object could also send unsolicited information. If the source node had children, there

would also be a need to search for the destination node below its level.

2As explained in the previous chapter, a process is a window under MS-Windows 3.1

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 97

If the identification of an object was changed (by an author), the object had to
communicate with all objects with which it had an open conversation and the author
would have to decide either to close that conversation or to update the identification to
the new value in all objects communicating with the object changed.

This approach had the advantage of allowing processes to communicate directly,
not relying on a central point. However, in many cases, an object needs to be informed
frequently about status changes in another process, for example to trigger a link.

Initially, it was thought that, although the cost of starting a conversation could be
high, there should not be so many components in a running session as to make the
location process prohibitive, and there was an apparent advantage of letting processes
communicate directly with no extra delay added by an intermediate process.

However, the limitation imposed by DDE that each conversation must be handled
by a process (a window), meant that even for a small number of objects, there would be

a very large number of active windows leading to unacceptable system performance.

The final design

The solution proposed, which resulted in a much improved performance, is to maintain
a central point where objects are registered (the Registry) and which is also used for
exchanging messages between processes.

The Registry, like the Link Factory, is a DLL loaded by all windows. There is one
central Registry that is loaded when the first object is activated.

For objects handled by different hosts, which cannot share memory, one registry for
each host exists and each secondary registry informs the central one about its existence.
All communication between hosts is kept within the boundaries of the registries and is
transparent to the objects communicating.

This approach has the following advantages:

e Clients are kept simple as they only have to be know how to communicate with

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION

98
the registry via its interface;
e Information can be cached at the registry;

In addition, the system can easily be extended to provide:

e Access control: access rights can be maintained in the local registry, if required;

e Statistics: user profile information and general statistical data can also be gathered

locally, and on a per-session basis.

Processes also need to communicate to exchange status information, actions, objects

references, etc. The Registry keeps a post office to provide for communication between

objects and processes.

The components of the Registry are shown in figure 5.6; they are:

Post
Office

Registered
windows

Registered N 7~

: Remote
objects Hosts

R
) o,
RRRRHAS

o
o
KRN
R
X
XN
%
X
oyl
>}
A
fotst
)

3%
RR

25
"
95,

%
%

bt

5%
2%
pPatet

Figure 5.6: Components of Registry

e Post office: the place where messages exchanged between processes and objects

within processes are processed. The post office may have to communicate with a

remote office to have a message delivered;

e Registered windows: the handlers for all windows processed by the current host.

This information is used by the clock process to broadcast timer information;

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 99

e Registered objects: the identification of all objects managed by the local host.
The Registry keeps internal and external identifications, aliases (as defined by

MHEG), and handlers for the windows managing these objects.

The registry also keeps a cache for objects handled remotely but referenced
locally. The cache is loaded during the process of locating an object: when the
registry receives a request to locate the object, it first tries to find it locally in
the objects it handles directly; if the search fails, it will then consult the other
registries until the desired object is located. It will then “remember” the location
of the object for future messages. If the desired object has moved since the
last communication was established, the cache is invalidated and the process is

restarted;

e Remote hosts: this information is kept when more than one host is being used in
a session. It maintains the identification of all remote hosts, including the main
host (the first one started) that is the time server. This information is used by the
clock process for synchronisation and by the post office to deliver and retrieve

remote messages.

o External naming services: in order to locate an object identified by an external
name, the registry may make use of external naming services. This is the point

where access to these services is provided.

Interface to the world

From the point of view of objects using it, the Registry is seen as a central point
to resolve identifications (figure 5.7) and to send/receive messages. An object must
register the identification of all its content objects and the process (Window) handling
them.

The registry also has an interface to the outside world, as some identifications may

make references to network or database objects or to other registries running on different

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 100

request
U identificatiop
S e

send
E ~ —> REGISTRY
R identification @
—_—
location

Figure 5.7: Registry as seen from a using object

machines. An object does not know that objects with which it is communicating may
be remote. All external communication is handled by the local registry.

From outside MHEG, the registry is seen as a cache of identifications in use by
the application with an external interface to other identification resolver processes, as
shown in figure 5.8. With this approach, the registry can also be extended to provide
name resolution capabilities to applications outside its scope, but which are interested

in objects under its control.

request
U identification

query
‘ resolver
R identificatior]
s —
location external @
@unicatio

Remote Registry
X.500 Server
DB System

—_—
send
—

Figure 5.8: Registry as seen from outside MHEG

5.3.3 The Clock

Timers are scarce resources in the MS-Windows 3.1 environment. There is a limit of
32 active ones at any time. The maximum resolution provided is 55 ms. Setting a
timer to a resolution is not a guarantee that an interrupt will occur at the precise time, as
the operating system is not preemptive and a timer message is a regular Windows low

priority message (i.e. it 1s posted to the window message queue).

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 101

A timer message is posted to the process queue like a regular window message with
the guarantee that only one message will be queued at any time. This means that if
more than one timer interrupt occurs before the process owning the timer gets the CPU,
MS-Windows 3.1 will discard the redundant messages. The result is that if a process
holds control longer than a timer tick, the distance between the ticks will be longer than
the specified timer interval, and it could be shorter than that interval in some subsequent
tick. Chapter 6 presents time measurements for several scheduling algorithms.

Because it is not possible to have a large number of timers running, it is not possible
to propose a solution where every process uses a timer from the environment to provide
its timing. To cope with this limitation, one “clock” process was implemented that uses
one timer from the environment and this is the only timer provided by the environment
to the system. The clock is used to schedule all processes on the same host. This clock
uses information from the Registry to broadcast the derived messages to all registered
processes.

The clock process is also responsible for synchronising with other clocks when more
than one host is being used to present the objects. The first clock is loaded when the
first object is started. When the first windows starts running, MS-Windows 3.1 loads
the DLLs that are going to be used by this process, if they are not already loaded. The
registry startup code starts the clock when it is first loaded.

One of the main goals of the scheduler is to provide a smooth presentation of objects.
As we are using a non-preemptive operating system, the scheduler must avoid “clock
jumps”, ie., one process should not hold the CPU for a time long enough to cause the

feeling that the presentation is progressing in jumps.

Synchronising clocks

For an interactive, real time system, it is important to keep track not only of the ordering
of events but of the delays between them as well.
Although the system implements only one logical clock for each host, the existence
.'=":5»,\
(iipeman)

! e ,/
\A Y 4

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 102

of dedicated cards with asynchronous control (like a video card) is similar to having
processes running in more than one host but is simplified because memory can be shared

and used for communication.

Tasks of the clock

Each timer message processed by the clock (i.e. every time the clock process holds the

CPU), results in two activities:

e Broadcast of Timer messages to all processes registered in the registry. In this
case, Clock uses MS-Windows 3.1 PostMessage to send the message to all
windows.

This is the place where the higher level system scheduling (or orchestration)
happens. The different broadcasting policies can define higher level priorities

amongst processes. Process orchestration is discussed in section 5.6.

e Synchronise with other clocks. The clock process uses its CPU share to synchro-
nise with all other clocks. The first clock created is the time server and, as all
processes on different hosts are also registered in the registry, this information is

used to synchronise the various clocks.

Several mechanisms for synchronising clocks exist [Tanenbaum, 1992a] which

do not require a lot of communication or processing.

5.3.4 MHEG Engine Action Processor

As described in Chapter 3, MHEG objects have two distinct phases. Initially they are
unknown to the system (or engine) processing them, and in the second phase they are
available to the engine. The timing of an MHEG object’s availability can be seen in

figure 5.9:

e During phase 01 the object is not known to the engine, however, it may receive a

request to prepare the object;

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 103

Prepare Destroy

initial iect 9 preparation status=ready preparation preparation status= not read
tial obj preparation Y

availability status = initialisation of other status = destruction of other
behaviour processing object behaviour processing object behaviour
01 VA 0 03 TR 01 >
Time

Figure 5.9: Timing diagram of model object availability

e The engine then starts preparing the object (02), which involves resolving the
name of the requested object and it may involve retrieving data from a remote

location, or from a slow video disk;

e When the object is prepared (03) it is available to the engine, which may then

create run time instances from it;

e When the object is no longer required, it is destroyed (04) becoming unavailable

to the engine again (01).

The MHEG Engine Action Processor is the module for starting the process that
prepares an MHEG object. Once the object is identified, it will start a process to
perform the necessary tasks to make the object available to the engine. The process that
handles the preparation will then be responsible for creating runtime instances of that

model object which may, in some cases, require it to make a copy of the contents data.

5.4 Processes

The processes that make use of the services provided by the kernel can be classified as:

1. Model object processes: these are the processes (figure 5.10) that handle model
objects as defined in the MHEG class hierarchy, i.e. the actual MHEG objects
that are exchanged, and Container objects. These processes will usually be

transparent to the user and are responsible for preparing the object that will be

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 104

timestones are
'set’ by actions

[——————— e ____7./ __________ .
- |
1 link processor / | l
I fromext rep
next. — |
] wint scheduler status timestone M I
1 p obj breaks objs into components manager manager actions 3 1
1 p ideptiffes owners keeps track of keeps track - - i I
SN 1 status infomationf timestones 1
ASN. I ¢ ecode ¢ |
| ° object g action pre r
I d exception handler ton protessa § 1
1 e Handles actions triggered in a Tu p 1
e

: 4 Qos ¢ I
Device crashes g 1
: RT-Object 7 I
1 ‘reads disk’ factory i I
I dispatcher c I
1
| 2 events o l

I event handler ~
I |
1
o4

Communication
with
other processes

Name resolving
(ALL internal communication
is accomplished with decoded
information) -

Figure 5.10: Structure of a Process Running a Model Object

presented. A model object process is started when the MHEG Engine Action
Processor receive a request to prepare an object. Only one such process will exist

at a given time for a model object.

The structure of a process in this category is given by figure 5.10; it contains:

e The decoder: the module responsible for transforming the object from the

interchange format to the internal format (section 5.4.2);

o The scheduler: the module responsible for breaking up the decoded object
into components and internally scheduling the pfocess activities so that the

process will not take too much CPU time in one cycle;

e The exception handler: deals with external exceptions such as devices

crashes;

e The dispatcher: the module responsible for all communication between the

process and the kernel.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 105

timestones are
'set’ by actions

e AU S S A _————
| / I
| link processor 7 1
I .

eduler . |
| e status timestone M I
| breaks objs into components manager manager actions fl 1
: ideptiffes owners keeps track of kt;.eps track - i 1
status infomati of timestone:
a I
| ; |
; action processor

| exception handler ceion proc s 1
1 Handles actions triggered in a [ink p |
I o= Eoq
1 Device crashes s ¢ |
1 spatial t I
1 processor J I

i
: dispatcher c 1
I

I \ events 1
1 event handler i
! I
I J

______ s __________:r_________
T e
Communication M
with
other processes

\\\
\~
Name resolving)
(ALL internal communication
is accomplished with decoded /
information)

kernel—"

Figure 5.11: Structure of a Process Running a rt-object

o The link processor: responsible for handling all link related activities as

described in section 5.4.3.

The event handler: deals with external interruptions;

o The rt-object factory: creates run time instances of the object;

The media specific (processor): the module that deals with the particulars

of each medium (section 5.4.5).

2. Run-time object processes.: these are the processes that present model objects to
the user. Run time objects are created from model objects. For example, a model
object can be a video and one or more run time instances of the video sequence
may be used in a presentation but all instances will be created from the same

video model.

The structure of a run time process is slightly different from an MHEG object

process and is shown in figure 5.11. A run time process does not create other run

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 106

time objects therefore it does not have a Rt-object factory module, but it must

control its positioning in space which is accomplished by the spatial processor.

The basic differences between the two classes of processes is that a run-time process
should be able to deal with user input and the MHEG object process is responsible for
preparing objects, which may mean that it will decode exchanged objects transforming
them into the internal representation structure that will be used by the run time processes.
The MHEG object process is also capable of creating a run time instance from its contents

which is a model object.

The categories above also make structural distinctions for:

1. Multiple objects: these are the objects that may include or make reference to
more that one component. Examples of such objects are composite and container
objects which usually include several other objects. Actions upon such objects
usually broadcast their effects to all components. Run time composite objects do
not usually have any perceptible effect, and exist simply to maintain the structure

of the document.

2. Simple objects: these are objects with only one component, for example, a piece
of graphics or a video sequence. Run time instances of such objects are usually

perceivable.

5.4.1 Processing unit

In this section, we discuss processes which support run time objects. The overall
structure for all MHEG objects is similar, with differences only in the possible actions
and status.

The process unit within the system is a “monomedium composite”. For example,
a composite with content objects of two media (a text and a picture as in figure 5.12)

will have at least three open windows. One window will be the composite object itself

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 107

(an invisible window) and will handle global information for the components; and the

other two windows will be responsible for rendering the content information.

no presentable
object

Figure 5.12: A composite with two media components

A window will be visible when it is rendering contents data or invisible when it is
used for control only. Each visible window (a leaf in the tree structure) contains at least
one presentable (a run time object with e “visible” effect) and one content object. A
window is also responsible for scrolling, and for handling hypermedia anchors. The
window may also handle several link objects.

The number of windows may also be dependent on specific hardware; for example,
if the machine has hardware to play only one video sequence a time, there can be only
one instance of the process (window) that displays video. On the other hand, there
could be several instances of a “text” process as there are no hardware restrictions on
the number of text objects being presented at a certain moment. All interaction among
components is made via the Registry, as described in section 5.5.

A (reasonably) complex composite MHEG object can be seen in figure 5.13. The
composite presented will render six content objects (the leaves in the tree). It is
subdivided into five presentables (sub-)composites (figure 5.14). The hollow leaves
indicate a reference to another composite. Solid leaves represent presentables with
reference to a content object. Each sub-composite can be authored individually and
assembled to build up the whole composite. Within each sub-composite the components

are identified by sequential numbers starting from 1. The sequence of numbers in the box

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 108

A

= & |

S S

B| P C\'\\

e T

} L_’___L1'___/,__! 1

| 7N A |
e @ | ‘@ |
®1 7 VARY:
| o / \
L2 /0 0

! l

| o |

| AN |

| $ = 2 |

TCE © |

- __
B c_
r~—_—_!:__,I . 0z]!
: . G.L. | | > |
ARV
! | I

Sub-composil

hed from

s s r———————

: .’T : .022:
LA
| | | |

1 | 2|
0 lee

Figure 5.14: (Sub-)composites of figure 5.13

at the root of each sub-composite indicate its identification within the whole composite.

For example the right leaf of sub-composite B will have identification 0./.2 within the

composite.

Alternatively, the sub-composites may have been exchanged in individual compos-

ites (no inclusion used), in which case the identification of the same object as above

would be accomplished by using its external identifier and the component index (2).

The internal references in the figures described are only valid in the scope of the

full composite of figure 5.13. If, say, sub-composite E is detached from the whole

composite, its internal references would be changed as in figure 5.14 (right).

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 109

5.4.2 The decoder

The decoder is the component that transforms an object from the interchange format to
the internal format. It may receive the encoded data from outside the process via the
dispatcher or it may load it directly (eg. from a local disk).

Internally, the decoder communicates with the scheduler which breaks objects into
components and retrieves their identifications. Objects that are not handled by the
process are transferred to the kernel that will forward them to the correct destination.

Figure 5.15 shows an example of a composite object definition. The object has the
external identification compl . cmp. It has references to two link objects, one reference
to a video object and one reference to a text object.

Figure 5.16 shows the process tree spawned when this composite is presented. At
the root we have the composite process itself. This process will decode and create
all the other processes, ie. the presentable processes (msg. txt and esdal.vid).
The two links referenced by the composite (vidl.lnk and vid2 . 1nk) are deéoded
within the composite process but they will be processed (as described in section 5.3.1)

by the process that contains the trigger condition.

5.4.3 The link processor

The link processor is one of the most important modules in the system. The link

processor is made up of three basic components

1. Status manager that is responsible for keeping track of all status data for the
objects handled by the-process. Status information is used for triggering links.
The status manager informs the link factory about any change in the internal

status for which there is a dependency in a link condition.

2. Timestone manager that exists for continuous media. This module checks the
media position and uses this information to change TIMESTONE_STATUS infor-

mation.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 110

\begin {COMPOSITE}
\Description

-Name: CO-001

-Owner: ESDA

-Date: 9401121137%Z
-Comments: 4 contents
\externalid compl.cmp
\Composition status:0
\Components:4

\index: 1

\begin {CONTENT}

_Description: -Name: esdal.vid -Date: 9401121134%
_MHEG ID:80, 114, 111, 116, 95, 51, 52, 49, ; 9
_MHEG classification: Motion JPEG video

_HOOK: Encoding: proprietary EncodingDescription:

_Data:esdal.vid
_OriginalSize: X=19018 Y=34944 Z=0
_OriginalSpeed: true

\end {CONTENT}

\index: 2

\begin {CONTENT}

_MclId: 2

_Description: -Name: msg.txt -Date: 9401121134%
_MHEG ID:80, 114, 111, 116, 95, 51, 52, 49, ; 10
_MHEG classification: ascii text

_HOOK: Encoding: ascii EncodingDescription:

_Data:msg. txt
OriginalSize: X=21845 Y=36816 7=0
OriginalSpeed: false

\end { CONTENT}

\index: 3

\begin {CONTENT}

_Description: -Name: vidl.lnk -Date: 9401121134%Z
_MHEG ID:80, 116, 115, 116, 95, 51, 52, 49, ; 9

_MHEG classification: link

_HOOK: Encoding:

_ EncodingDescription:

_Data: wvidl.lnk

_OriginalSpeed: false

\end {CONTENT}

\index: 4

\begin {CONTENT}

_Description: -Name: vid2.lnk -Date: 9401121134%Z
_MHEG ID:80, 118, 118, 108, 181, 136, 52, 49, ; 9
_MHEG classification: link

_HOOK: Encoding: EncodingDescription:
_Data: vid2.1lnk

_OriginalSpeed: false

\end {CONTENT}

\end {COMPOSITE}

Figure 5.15: Example of a Composite Object with Four Components

>

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 111

Link Factory

T

S| vidlink
vid2.Ink

Figure 5.16: Process Tree for Figure 5.15

3. Action processor which is the module that schedules and processes an action that

has been triggered by a link.

A description of the main components of an MHEG link is presented in section A.3.
An example of a link is shown is figure 5.17. The link described in the figure would
be triggered when object demol/bird.bmp#1 reaches or passes timestone 2 (lines
6 to 11) and object demol/creative.bmp#3 reaches timestone 1 (lines 14 to
19). The “effect” of the link is performed.by one action object only (lines 27 to 32)
targeted at object demol/bird.bmp#1 and the only elementary action specified is
@setposition 100 0. If it was desired to have a set of actions happening in
parallel, more than one “serial targeted actions” ({sertargactions}) group should

be specified within the “parallel targeted actions” ({partargactions}). .

5.4.4 The spatial processor

This is the module that keeps track of window and media positions and size. Spatial
position are used within the process itself and to provide reference positioning for child
processes in the MHEG generic space.

The Spatial Processor, in summary, is the module responsible for mapping measures

from Generic Temporal Units and Generic Spatial Units to physical values.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION

01 \begin{link}

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

\mhegid demo3/d3_13.1lnk

\begin{linkcond}
\rule AND
\begin{constraint}

@source
@trigvalue

@beforevalue 0
@wasrel %
@becomesrel ge
@aftervalue 2
\end{constraint}
\begin{constraint}

@source
@trigvalue

demol/bird.bmp#1
timestone_status

@beforevalue 0
@wasrel *
@becomesrel eq

@aftervalue 1
\end{constraint}
\end{linkcond}

\begin{partargactions}
\begin{sertargactions}
\targets demol/bird.bmp#1

\performances 1
\transition 0
\begin{actionobj}

\mhegid ac_1id_1

\begin{serialgroup}
@setposition 100 O
\end{serialgroup}

\end{actionobj}

\end{sertargactions}

\end{partargactions}

\end{link}

Figure 5.17: Example of a Link Object

112

demol/creative.bmp#3
timestone_status

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 113

5.4.5 The media specific processor

This is the part that should be individually written for each medium introduced. It
handles all processing that is unique to the medium and in some cases it may be
dependent on specific hardware. Status information specific to the media being handled
is also updated here.

For example, in the case of video, there is a dedicated motion JPEG card. The
media specific processor handles all communication between the card and the internal
process. When the displaying window is resized or moved, in addition to updating the
Windows window that provides the frame for displaying the images, the actual video

images should be moved by informing the video card of the changes.

5.5 Exchanging messages between processes

Amongst the types of interprocess communication facilities provided by the MS-

Windows 3.1 environment (as discussed in section 4.5), we use:

1. Windows messages: to broadcast timer messages within a processor. Windows
messages are also used for all user input and interaction with the interface such

as typing, moving and resizing windows, etc.

2. DLLs: are used for all inter process communication within one host; all its

processes share memory within a DLL.

All communication uses shared memory in the Registry DLL. A process, wishing
to post a message to another process, leaves the message at the post office main-
tained by the the registry. Each process must check at the post office for incoming

messages during the execution of its main loop.

As we perform most interprocess communication via the DLLs, we have the
flexibility to implement a scheduling algorithm that, within limits, provides a

seamless presentation.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 114

DLLs are also used for communicating with some dedicated hardware that is
released with dynamic libraries for system programming (e.g. motion JPEG

card).
3. DDE: is used in two cases:

¢ Integrating existing applications in the environment. Existing DDE aware
applications are integrated by the system as a media specific module in
figure 5.11. In this case, the actions exchanged between the link processor
and the media specific part is performed by a DDE conversation. An
example is the integration of the module Zext-To-Speech (a program that
converts ASCII text to speech using a sound blaster card) [Labs, 1994] that

provides for text being spoken rather than displayed.

e Communication involving two hosts happens at kernel level and is object
transparent. When a process requests the kernel to transfer a message, the
registry is responsible for the delivery, and in the case where both ends are in
the same host, shared memory in the DLL will be used. If the parts involved
in the communication are being handled by different hosts, a net DDE link
is established. Currently, the implementation handles only objects in the

same host.

5.6 System orchestration

In order to tune performance to achieve defined bounds, we define two levels where

resource usage, in particular CPU time, is shared between processes:

e Process selection level: in the common case, there will be several processes
running on one host. The run time process must define which process is to have

CPU control.

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 115

o Activity selection level: once the process is selected, we must define which of
the pending activities is to be performed. It must be kept in mind that in a non
preemptive operating system, the process must not take CPU control for a time

long enough to be noticed by the user.

In the following sections, we discuss the two levels of the orchestration scheme.

5.6.1 High level orchestration: process selection

As it has been said, the clock broadcasts timer messages for all registered processes. In
the higher level, priorities can be defined when selecting the next window to receive
the timer message. Higher priority can be given to a process that is expected to answer
a request for status information that may be used to trigger a link. On the other hand,
a process that is presenting a video using a dedicated hardware may have a lower
priority when no communication is pending to that window because the presentation
will proceed with no interruption even if CPU time is not scheduled to the process
(except, of course, if some event such as “end of media reached” happens).

Although several scheduling policies were tested (see Chapter 6), no single policy
is recommended as the requirements for clock granularity, skew and acceptable action

delays are application dependent and should be defined by the user.

5.6.2 Process level orchestration: The main loop

Processing within a window happens around a main loop that contains calls to routines
performed at each time tick. This is the place where the process must schedule itself
in order to optimise resources and provide for a smooth presentation. Under a non
preemptive operating system, the process must be as nice as possible by holding the
CPU for the shortest amount of time.

The activities performed by the main loop can be divided into two modules or

groups:

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 116

1. Generic activities: those that all processes should implement, such as positioning

and sizing windows, transferring objects, etc.; and

2. Media specific activities: those where processing depends on the media being
rendered, such as obtaining the position within the media, etc. These activities
may be complementary to the generic ones. For example, when a window is
moved in a video process, it i1s necessary to update both the position of the

window itself and the position where the video is being presented.

Generic activities

This module:

o Retrieves incoming messages and objects from the kernel. Usually these messages
are queries about the status of objects whose results are used to trigger links within
the window. The process also checks links whose trigger conditions are within
the window but which were decoded by another process. The process may also
receive an action to be performed internally which was triggered by an outside
process. An example of a query is “what is your preparation status?”, which can

be READY or NOTREADY;

o Transfers objects and messages to the kernel: this involves actions complemen-
taries to the previous ones. The process transfers to the kernel queries about the
status of remote objects, or actions to be handled by other windows. An example
of a message that a process has to transfer to the kernel is the answer to the query

about preparation status given in the previous example.

o Update link data: link information is handled by the link processor and involves

several activities:

— Check conditions that may trigger a link, such as change of any internal

status variable (e.g. timestone status, preparation status, etc.);

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 117

— For all triggered links being handled by the process, the links processor must
schedule an action to be performed in the time tick. This involves selecting
a link, and within the selected link scheduling the action to be performed
according to the definition from MHEG.
This step is required because the system is implemented under a non pre-
emptive operating system, and all processes must avoid taking over the CPU

for too long.

Media specific activities

This module:

o Updates the current time this applies to continuous media: the current position
within the medium must be either estimated or determined. When the cost of
determining the correct positioning within the medium is high, it is usually less
prejudicial to estimate the position. This happens, for instance, with a JPEG
motion card where a query such as “what is your position?” takes over the CPU
for approximately half a second, disrupting the whole presentation process if it is

performed frequently;

o Update presentation status such as timestones being achieved, end of media

reached, etc.

e Process actions that are specific to the medium, such as setting speed, fading,

setting volume, etc.

5.7 The Link Factory

The processing of links can be divided into three steps:

1. Link decoding that involves the decoding and transformation of the exchanged

object into the internal representation;

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 118

2. Link triggering that involves the period when the link is waiting for events that

will cause it to fire, and

3. Link effect which is the processing of actions triggered by the link.

5.7.1 Link decoding

The request for decoding a link happens when a composite or a container object con-
taining the link is prepared. The link factory decodes and stores un-triggered links and
it also maintains the triggering status of the link.

In the process of decoding a link, the link factory posts messages in the registry to
all processes upon which the link condition tree depends. The processes will then be
responsible for informing the link factory of changes in conditions. The link factory
does not need to poll processes in order to evaluate a link and it can assume that the
status information stored is valid up to the timing resolution that the run time system is

maintaining.

5.7.2 Link Triggering

MHEG links are event triggered with a general structure as shown in figure 5.18.
During the phase prior to its triggering, a link will be waiting for the events that will
satisfy the link condition. The link effect is not processed before the link is triggered.
The link must wait for status changes from all objects that are part of its link
condition. One of the problems that must be taken into account is the cost of checking
all conditions that are part of the link condition. Polling all objects to check for status
change would be very expensive in terms of resources. The solution proposed uses
the fact that the registry keeps a list of pending messages for every registered object.
When a link is decoded, and therefore created, messages are posted in the registry for all
objects referred to in the link condition. The messages are of the form destination

(the internal identification of the link that expects a response) and condition that

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 119

1‘ Link condmon. ;

generic condition
(single trigger or condition)

OR
Logical combinations of generic
conditions

X
\

trigger link trigger link
cond. cond. cond. cond.
; |
const. const. const. | |
; cond. cond. cond. }

Figure 5.18: Link Condition Tree

defines the condition to be satisfied.

All processes check with the registry about events that should be reported during
their processing loop, as described in section 5.6.2. When a pending request evaluates
to true, it will cause an update in the condition tree. The process that generated the
event will use part of its CPU share to update the link condition tree. If it happens to
trigger the link, the link effect should be performed as described below.

A link must be fired as many times as its link condition evaluates to true, so the
whole process is restarted. Therefore, a link, once created, will be maintained by the
link factory until an explicit message for its destruction is issued.

Figure 5.19 makes the idea clearer. In the figure we see the Link Factory, the
Registry and processes videol and video2. Inside the link factory we have link object
Linkl whose trigger condition is satisfied if videol reaches position 50 seconds or
video2 reaches frame 325. The Registry keeps communication queues for all objects
registered. One of the queues kept maintains requests for status or attributes. Therefore,
in the queue kept for videol there is a request to inform object link! when condition

position = 50 is true. For object video2, there is a request to inform object linkl

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 120

link factory registry pending requests queue
destinatign condition SOURCE
/\OR . linkl position = s0s Videoi
O‘{ ‘b v1djeo'L
positipn = 50 s
link2 frame = 325 video2
link1
videol video2
(main loop) (main loop)

check st ueue
check status report queue Ck status report q

Figure 5.19: Link Processing Overview

when it passes frame 325. The video objects (videol and video2) check the registry
for pending requests during their main loops. When a request is satisfied, the tree of
conditions for the link in the Link Factory is immediately updated and the link may be

triggered, in which case a new Link Process is started.

5.7.3 Link effect

After the link is triggered the link effect is processed. From the point of view of the
processes handling the link effect, once triggering has occurred, the link condition is no
longer important. The link can however be triggered again because its processing within
the link factory remains unchanged, and processes will still test the link conditions.
The solution proposed to implement the processing of the link effect is to create an
independent process that will perform the actions. A link process is not visible and it is

a process whose location can be made completely transparent to the author or user. In

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 121

its main loop, a link process will deliver actions to the correct object using the registry.
In this sense, as far as the link process is concerned, it works like a remote control to

other objects that are affected by the link.

5.8 Timestamping messages

All communication between objects happens via the Registry. Messages are times-
tamped and the destination process can order all messages it receives by using its own
real-time clock, provided by the Clock (section 5.3.3) module. The implementation uses
the timer services provided by Windows multimedia extensions which provide a time
resolution of one millisecond to timestamp messages. However, the timer resolution

provided by the Clock process is still 55 ms.

5.9 Actions

Action objects have the structure shown in figure 5.20. Actions objects are part of the

link effect and are executed when the link is triggered.

Targets: objectl, video2

Delay: 2s
get visible size set speed 100— .
get. enx frame set size 210 ————l Actions to be
set position 23] = rf
— 1 performed
sequentially

\\\\ | / //
N
\ &

Set of actions to be performed in parallel

Figure 5.20: Action Object

The action object has a set of targets, defines a delay before its execution, and has

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 122

a list of actions that should happen in parallel. Within each list of parallel actions there
is a list of actions that should happen sequentially.

The internal messaging system stores messages as sequences of characters and it is
up to the destination process to interpret the action. Several strategies for optimising the
communication of actions can be implemented but the best results were obtained when
the link process transferred the entire set of actions targeted to an object as one chunk.
The destination process is then in charge of using its own resources to synchronise the

processing of actions.

5.10 Final remarks

This chapter has provided an overview of the proposed architecture and of the prototype
implementation. Some performance measurements and a discussion on how they were

used to tune the system are provided in the next chapter.
The system proposed is modular and can be extended with little difficulty, but it

would benefit from using a preemptive operating system as discussed below.

5.10.1 Support for extensions
The system allows extensions to be made at several levels:
e new actions can be added because the base system does not interpret the actions;

e the interprocess communication infrastructure can be updated to more efficient

mechanisms, such as RPC, since support for communication is centralised;

e existing applications that support some means of external communication, such

as DDE, can be integrated by using a process to provide remote control for them,;

¢ areconfigurable system based on filters/preprocessing of objects such as in [Hill

etal., 1992] could be provided, since these features can be added by changing the

CHAPTER 5. ARCHITECTURE AND IMPLEMENTATION 123

behaviour of the MHEG engine module in the kernel (section 5.3.4), with little

effect on media dependent processes;

5.10.2 Considerations for a Preemptive OS

The implementation would greatly benefit from a preemptive operating system since
much of the burden currently placed on the programmer would then be left to the

underlying operating system:

o scheduling algorithms are simplified as there is no need to have well behaved
applications. The operating system guarantees a “smooth" presentation by not

allowing any process to use all the CPU time.

¢ the run time system depends on slow actions (painting a 1024x768 images with
256 colours can take almost 4 s). Here again, if the programmer is not disciplined,

a simple window repaint may have a huge impact on overall performance.

Chapter 6

Performance measurements

In this chapter, we present and discuss some performance measurements and how these
measurements were used to tune the system. Limitations imposed by the MS-Windows
3.1 environment are also discussed.

Initially, some performance graphs obtained for a small document are shown, and
then figures are presented for various kinds of extreme load on the system.

Identifying processing bottlenecks is especially important in an application running
under a non preemptive operating system as one badly behaved routine may cause the

whole system to come to a halt.

6.1 Technique used

The measurements were obtained by using a DLL to store the timing data in memory
and to transfer it to disk at the end of the run. The raw data Was then processed off line.
The client processes transferred strings marking the points at which the measurements
have to be taken; each string is time stamped in the DLL for processing.

The DLL, when loaded, allocates a large enough amount of memory to store all
data for that run. The first version of the DLL dynamically allocated memory for the

strings but, as the time taken by Windows to allocate memory proved not to be constant,

124

CHAPTER 6. PERFORMANCE MEASUREMENTS 125

it was decided to allocate all memory before the beginning of the presentation. In a
typical run, the overhead introduced by the data collection was reduced by around 40
times by pre-allocating memory. The measured times dropped from over 5 ms for each
measurement string to about 8 strings/ms.

All time stamps were obtained using the function t imeGetTime in the multimedia

extension DLL (mmsystem.d11) which provides a resolution of 1 ms.

6.2 A typical presentation

The first measurements were taken from a small complete multimedia presentation. A
screen snapshot of this presentation is shown in figure 6.1. In summary, the presentation
consisted of four bitmap images (bird, creative, house and japan) and
an AVI video sequence ca_world from a CD-ROM. Figure 6.2 shows a time line
with the main events after the run-time object to present ca_wor1d is created. The
images are displayed when links are triggered by timestones set in the video sequence.
A timestone was also used to trigger links to destroy each run-time object. In figure 6.2,

the last run time objects (japan and ca.wor1d) are destroyed at 60 s.

6.2.1 Performance considerations

The measurements taken were centered around the execution of the run-time object
main loop. As described in detail in section 5.6.2, the main activities performed during

the execution of the main loop are:

e Retrieve incoming messages from the registry;
e Update internal status variables;
e Perform actions targeted at the window;

e Check whether any change in the current status will trigger a link, and use the

link factory to trigger the link, if so.

CHAPTER 6. PERFORMANCE MEASUREMENTS 126

S MHMCL =

MHEG - Graphics Object — ded: \ ‘

Figure 6.1: A Snapshot of a presentation

Repainting may be requested outside the direct control of the engine if, for example,
a window is uncovered by user interaction. The time taken to repaint the window was
also measured. During the repaint process, only the window performing the repaint will
have CPU control, making this activity critical.

The measurements were taken on two Intel 486 based machines:

o 486-66: clock at 66MHZ, with a PCI S3-864 (1 MB DRAM) graphics card,;

e 486-33: clock at 33MHZ, with a Western Digital (512 KB DRAM) graphics card
(vesa local bus). This machine is also equipped with a Video Logic motion JPEG

card.

Both machines are also equipped with a Panasonic 563 double speed CD-ROM drive

and a Creative Lab Sound Blaster 16 Value audio card.

CHAPTER 6. PERFORMANCE MEASUREMENTS 127

10 20 30 40 50 60 70 80 I
I
time (s)
target: target: target: target: target
bird bird creative house japan
run destroy| | destroy destroy destroy
rotate
rotate
rotate target: target target target
rotate creative| | house japan ca_worl(
run run run destroy

rotate

rotate

rotate

rotate

rotate

Figure 6.2: Timestones set in ca_wor1d run-time object

In order to determine the frequency at which processes should release CPU control,

the measurements were organised as follows:

e Policy I: in this case, the process performs a single activity in the main loop,

then releases control, providing a nice behaviour by holding the CPU for a very
small time slice. As the window that releases the control can receive a new clock
message before finishing the previous main loop, it is necessary to make the main
loop code protected, i.e. it will be restarted only after the previous cycle has

finished.

Policy 2: each process performs all activities in the main loop before releasing
control. Only one action in each category is performed: e.g. it will retrieve at
most one message from registry; if there is an action object to be executed, only
one elementary action will be performed. However, the process will check all
link conditions that depend on status information updated since the previous time

it had control.

The items in the tables of measurements are as follows:

Number of times main loop was executed: the number of times the main loop was

fully executed: in the case of policy I, this means the number of times the main

CHAPTER 6. PERFORMANCE MEASUREMENTS 128

loop is completely executed regardless of the number of times it was interrupted

to yield control to other processes.

o Average time slice: average CPU time used in each slice. To provide a smooth
presentation, this value should be as short as possible. The higher this value the
worse the presentation will be as only one process can take control of the CPU
at a time. The optimum value varies depending on the kinds of media being

presented (competing for resources).

o Longest time slice: the longest time for which the process took over the CPU.
For all graphics object the longest slice happened the first time the window had

to be painted. This value should also be minimised.

o Standard deviation (time slice): the standard deviation including the longest time

slice.

o Average time slice (ignoring the longest): this measure gives the average time
slice the process took ignoring the first time the window was painted (the longest

one).

e Standard deviation (ignoring the longest) is also the value ignoring the slice in

which the first paint happened.

o Longest time between slices: the longest gap between slices. The longer the
distance between the slices, the later internal status will be updated, causing

synchronisation problems.

o Number of times the window was re-painted: the window is painted when it is

started; in the case of images that were rotated, each rotation requires a re-paint.

o Average time used painting: the average time the process required to perform a

full repaint of the window.

CHAPTER 6. PERFORMANCE MEASUREMENTS 129

Tables 6.1 and 6.2 represents the measurements obtained using policy 1. It shows that
the average time slice used by the process when there are no activities to be performed
is very low, typically less than 1 ms per cycle (e.g. the case of the creative object
which is painted only once and is not the target of any action). Most of the time used
by this process was to repaint the window.

Tables 6.3 and 6.4 represent the measurements obtained using policy 2. Here again,
the time used by a process when there is no activity is less than 1 ms; and most of the
time was used repainting the window.

Comparing tables 6.3 with 6.1 and 6.4 with 6.2, it is clear that interrupting the
processes frequently brings a penalty to the overall performance. Each process on
average takes around 10% longer to perform a full loop. In the whole presentation, the
total number of times the main loop was fully executed is also reduced, which is not
desirable. On the other hand, the tables above do not give a full picture of what happens
since although yielding control more frequently means the time to perform the whole
set of actions each time slice is longer, the processes are interrupted more frequently.
It can be seen that raising the frequency with which the processes release control while
performing the activities within the main loop does not lead to an improvement in the
presentations ‘“‘smoothness” as the longest time measured between the time slices is
not reduced significantly because it is primarily dependent on the execution of heavy
(or slow) actions. Therefore, all processes should try to break up heavy processing

activities in order not to affect other processes.

The measurements obtained with a 486-33 with a slow video card (tables 6.2 and
6.4) also shows that the response times obtained were not acceptable for a real applica-
tion, as the figures were above the desirable maximum delay which is in the order of

0.2 s [Shneiderman, 1984].

CHAPTER 6. PERFORMANCE MEASUREMENTS 130
Item Measured Object

ca_world bird | creative | house | japan
Times main loop had control 490 250 337 382 574
Times main loop was executed 188 84 119 135 192
Time slice:
Average 5.96 1.88 0.48 2.76 0.34
Longest 996 190 144 147 151
Standard deviation 43.62 | 14.51 7.84 | 14.38 6.30
Ignoring longest slice:
Average time slice 0.42 0.08 0.05 2.38 0.08
Standard deviation 0.60 0.27 0.22 | 12.33 6.30
Time between slices:
Average 127.62 | 94.53 96.58 | 112.55 | 108.91
Standard deviation 159.64 | 127.26 | 119.75 | 144.80 | 135.20
Longest 995 771 698 1949 837
Painting:
Number of Times 2 6 2 15 2
Average 114945 | 12890 | 137.93 | 124.98

Table 6.1: Measurements with processes yielding control within the main loop (times
in ms)— policy 1 nice behaviour/ (486-66)

Item Measured Object

ca-world bird | creative | house | japan
Times main loop had control 223 112 142 166 334
Times main loop was executed 114 39 49 56 113
Time slice:
Average 5.83 8.62 3.20 7.20 1.51
Longest 1136 434 418 451 453
Standard deviation 76.05 | 47.32 35.10 | 4049 | 2481
Ignoring longest slice:
Average time slice 0.74 4.78 0.26 451 0.15
Standard deviation 2.08 | 24.38 1.70 | 20.94 1.23
Time between slices: .
Average 410.93 | 237.09 | 239.20 | 282.02 | 270.23
Standard deviation 362.55 | 300.54 | 286.82 | 343.02 | 287.45
Longest 2272 1726 1728 1823 1933
Painting:
Number of Times 2 6 2 8 2
Average 4 1434.00 | 362.52 | 412.23 | 409.33

Table 6.2: Measurements with processes yielding control within the main loop (times
in ms)— policy 1 nice behaviour/ (486-33)

CHAPTER 6. PERFORMANCE MEASUREMENTS 131
Item Measured Object

ca_world bird | creative | house | japan
Times main loop was executed 195 87 121 137 194
Time slice:
Average 5.87 5.31 1.26 7.21 0.89
Longest 941 171 137 149 143
Standard deviation 67.31 | 23.51 1244 | 22.19| 10.26
Ignoring longest slice:
Average time slice 1.05 3.30 0.13 6.16 0.15
Standard deviation 216.52 | 14.21 0.34 | 18.54 0.36
Time between slices:
Average 320.53 | 262.89 | 269.43 | 312.63 | 321.43
Standard deviation 216.52 | 204.49 | 189.44 | 224.11 | 206.63
Longest 1135 935 935 950 983
Painting:
Number of Times 6 2 15 2
Average 1| 142.33 | 129.00 | 134.53 | 134.00

Table 6.3: Measurements with processes performing all activities in the main loop
before yielding control (times in ms) — policy 2 (486-66)

Item Measured Object

ca_world bird | creative | house | japan
Times main loop was executed 114 39 49 56 113
Time slice:
Average 11.90 | 23.28 841 | 19.63 4.41
Longest 1167 434 396 459 472
Standard deviation 109.15 | 76.61 56.53 | 68.12 | 4438
Ignoring longest slice:
Average time slice 1.68 | 1247 033 | 11.63 0.23
Standard deviation .19 36.23 047 | 32.64 0.42
Time between slices:
Average 786.35 | 663.82 | 707.73 | 827.78 | 789.05
Standard deviation 470.15 | 518.49 | 47245 | 557.19 | 405.28
Longest 2679 1995 2045 2469 | 2726
Painting:
Number of Times 2 6 2 8 2
Average 3141417 | 359.50 | 414.63 | 412.50

Table 6.4: Measurements with processes performing all activities in the main loop
before yielding control (times in ms) — policy 2 (486-33)

CHAPTER 6. PERFORMANCE MEASUREMENTS 132

Timestone | Policy 1 | Policy 2
Reached (ms) (ms)

1 168 98

2 132 65

3 198 198

4 198 269

5 237 163

Table 6.5: Average errors setting timestones

Table 6.5 shows the average error in the actual time of occurrence of the timestones
set for the video process. The longest error found (269 ms) happened when a window
was painted (taking 145 ms) between two time slices used by the japan process. One
way of compensating for such errors is to establish an error margin for comparing times.
This value can be dynamically adjusted depending on the system load and in the above
example, a value of 200 ms is enough to guarantee that most timestones will be triggered
in time.

One conclusion that can be drawn from the above tables is that although processes
must be well behaved by not holding CPU control for a long time, they should also
avoid doing too few activities in one cycle as the overhead imposed by the operating
system for task switching will then affect the overall performance. The process must,
however, avoid performing more than one slow activity (e.g. repainting the window)
in the same cycle as the longest time between two CPU slices is more dependent on the
execution of slow actions (eg. painting) than on the frequency with which control is
released between fast actions. In the case of pictures, several alternatives for reducing
the load can be used [Bulterman, 1993] such as updating parts of the image at a time,

using reduced sized images, or even displaying a text description of the image.

Table 6.6 shows the average time the window (process) that will process the link
effect takes to retrieve a triggered link from the link factory. The times measured range
from 135 ms to 529 ms. A large proportion of this time is used creating the window that

will handle the triggered link: the values measured range from 90 ms to 430 ms. This

CHAPTER 6. PERFORMANCE MEASUREMENTS 133

Timestone | Measure 1 | Measure 2
Reached (ms) (ms)
1 390 300

2 135 195

3 267 465

4 529 479

5 320 323

Table 6.6: Delay to retrieve a link triggered (creating triggered link process)

Timestone | Measure 1 | Measure 2
Reached (ms) (ms)
1 151 98

2 83 28

3 57 157

4 63 39

5 8 10

Table 6.7: Delay to retrieve a link triggered (triggered link process not created)

values shows that the process of creating a window in Windows 3.1 is too heavy for
handling events that require a fast response time. In addition, the creation of an extra
process uses up the scarce resources, as discussed in section 6.5.

Table 6.7 reflects the times obtained when the processing of the link effect is within
the kernel and therefore avoids the creation of a process to handle it. The changes were
implemented in the link factory: when a link is triggered, instead of starting the process
to handle the effect, the link factory itself posts the effect to the destination objects.
The changes made, as a prototype, do not include all the functionality maintained by
the independent process, such as the ability to interrupt the processing of the link effect.
However, the times measured were around 200 ms faster than in the previous case. The
improvement obtained is due only to avoiding the overhead imposed by Windows 3.1
to start a process up. The disadvantage of the approach is that the processing of all

triggered links is kept within the link factory preventing distribution.

CHAPTER 6. PERFORMANCE MEASUREMENTS 134

6.3 The timer

The limitation imposed by MS-Windows 3.1 on the use of timers was discussed in
Chapter 5. Although the timer provides a maximum resolution of approximately 55 ms
(54.925 ms), in practice it was observed that the behaviour of the clock is not reliable.
Figures 6.3 and 6.4 show the measurements obtained for a process running a timer
only. In the first case, the shell (similar to a window manager under X) used was the
Central Point Software (CPS) shell and in the second the standard Program manager.
Although the CPS shell interferes with the overall behaviour of the clock, in both cases,
one clock tick is lost regularly.

LOG-205 Distance between clock ticks (timer = 20 ms)
T T T T T T T T
Ticks —
140 =

120 - 4

100 E

‘Hii h‘ijn_;x‘ g T M“ i

L L) L I
UL R UL L f | Y N ’!

Distance between clock ticks (ms)

‘4” \

‘ i] }‘H 1l ke “‘ji
il 4 "'r”‘l O ||u|‘||’!. oo IR .

1 1 1 1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Time (ms)

Figure 6.3: Behaviour of Windows timer using CPS shell

The behaviour observed shows that although it would be expected that a process
would be activated at every 55 ms (provided all processes are well behaved), in practice
that time ranges from around 20 ms to 80 ms. Values less than 55 ms are only obtained
if the previous tick was late, because Windows guarantees that not more than one timer
message is queued at any moment.

The first design to deal with links let the triggered link process schedule all action

CHAPTER 6. PERFORMANCE MEASUREMENTS 135

LOG-211 Distance between clock ticks (timer = 20 ms)PROG MANAGER

T T T T T

Ticks —
140 4

120 -
100 | B
80 .

; WWM‘. | 1

40 .

Distance between clock ticks (ms)

20 1 1 1 1
0 10000 20000 30000 40000 50000 60000
Time (ms)

Figure 6.4: Behaviour of Windows timer using Program Manager shell

processing. The client processes then needed only to process elementary actions which
have a much simpler structure. However, the limitation imposed by the timer résolution
makes this approach infeasible as actions that should happen in sequence or in parallel
would have at least a delay of 55 ms. As implemented, the destination process of an
action object is responsible for its own internal scheduling to process the elementary
actions. Although the process becomes more complex, the response times are greatly
improved. Once a link is triggered, the process handling it is basically responsible for
informing destination processes that the link effect has been canceled. It can, therefore,
have a lower scheduling priority in the system kernel. Figure 6.5 illustrates the sequence

in which a link is triggered:

e Once the link is decoded, it is stored and handled by the link factory;

e processes that contain conditions that may trigger the link update the information

in the link factory;

e When a link is triggered, a process is created to handle its effect. It maintains

only the effects part of the link.

CHAPTER 6. PERFORMANCE MEASUREMENTS 136

Processes with
trigger

conditions Triggered link Process target

C,_ . >)//l\Linkfacrory process of effect
N -~
>@ @?—1 1 (V\J-/\\\
SetZ% L) Tinal AN SNy
/\/ — N -

r—]

-
Al

Figure 6.5: Processes involved in dealing with a link

e The triggered link process transfers the action objects to the processes that are
the target of the effect. As described in section A.2, the action object may hold
several elementary actions that should be scheduled for processing within the

destination process.

6.4 Effect of continuous media

The presentation of continuous media such as video or audio causes a considerable load
on the system. This load is high either when a sequence is played using Windows MCI
extensions or by using the dedicated motion JPEG card.

In order to evaluate the overload imposed by a continuous medium, we ran an altered
version of the previous document with an added interaction object in the form of a menu
that could pause and resume-the video éequence.

Figure 6.6 shows the behaviour of the AVI video sequence. The video was stopped
at 24,680 ms (resumed at 31,986 ms), 39,200 ms (resumed at 46,170 ms) and at 58,167
ms (resumed at 70,795 ms). The graph shows clearly that when the video was stopped
(marked with vertical lines) the distance between slices and the time required to process
windows messages was greatly reduced, approaching 55 ms, i.e. once per clock tick.

If we take a closer look at the behaviour of object bird (figure 6.7) which was
being continuously rotated when the video was stopped for the first time (at 24 680 ms),

it can be seen that not only the distance between the slices was reduced but also the time

CHAPTER 6. PERFORMANCE MEASUREMENTS 137

AVI summary
T T T T T T T T T
Slice dist —
1000 [} Win msg ----- B
800 |+ E
é 600 B
Q
E
=
400 f J =
200 ft i -
\
i :
0 18 '! ' 1L l i1 L

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Elapsed Time (ms)

Figure 6.6: Effect of continuous media on a presentation. The arrows indicate regions
where the video was paused.
required to process windows messages. Figure 6.8 shows in more detail the system
behaviour in the interval between 20 s and 34 s.

The graphs show that just playing one continuous medium adds a heavy overhead
to the overall system response, with the measured distance between slices suffering at

least a 5 fold increase.

6.4.1 Performance of non continuous media only

If the video sequence in the previous example is removed, and more than one graphics
object allowed to be processed at the same time the distance between slices as shown
in figure 6.9 is obtained. The points with a large distance between slices are in regions
where the object is being requested to rotate the image it is displaying, which takes
around 140 ms for each image.

From the graph, it can be seen that when there is no painting activity, the distance
between the slices is reduced to the clock resolution of 55 ms. If we analyse the region

between 10,000 ms and 15,000 ms, we notice that the objects bird and creative are

CHAPTER 6. PERFORMANCE MEASUREMENTS 138

BIRD summary
T T T T T T
Slice dist —
1000 - Win msg ----- _
800 | B
E 600 E
[}
E
=
400 | =}
200 i 1
i !
0 1 1 L I} T O (R !
5000 10000 15000 20000 25000 30000 35000 40000

Elapsed Time (ms)

Figure 6.7: Effect of continuous media on a non continuous object. The arrow indicates
the region where the video was paused; in the regions where the win msg line is not
visible, it is near zero.
responsible for most of the activity going on. They are basically repainting the window
continuously. Figure 6.10 shows in detail the activity of bird between 10,000 ms and
15,000 ms, when it was very active and was, therefore, one of the main causes of the
the longer “distance between slices”.

The graphs show that non continuous media do not add a background overhead to
the system performance as happened with the continuous media. The distance between

slices is influenced by the time taken by specific activities such as repainting the window.

6.5 Limits on the number of processes

Under MS-Windows 3.1, the number of processes running depends not only on the
total amount of available memory, but also on the availability of system resources such
as “graphics pens”, icons, menus, etc. Windows provides only 64 Kbytes of resource
memory for all running applications. There is also a limit on the availability of memory

under the first 640Kb, as all processes use part of that memory. The final result is

CHAPTER 6. PERFORMANCE MEASUREMENTS 139

BIRD Detail

T T T T T

Slice dist —
1000 Win msg ----

800 -

600

Time (ms)

400

200 | i

"
RN
A\ 1
v \
\ \
\
\ \

0 ! N A n a | o 1
20000 22000 24000 26000 28000 30000 32000 34000
Elapsed Time (ms)

Figure 6.8: Detail of figure 6.7

that in general the environment runs out resource or “memory” even when megabytes
of extended memory are still available. This limitation also imposes restrictions on
creating a process to handle a triggered link, as many links may be active at the same
time. In order to tackle this limitation, there are two versions of the link process: in the
first case all link activity is handled by the link factory, even when a link is triggered;
and in the second version a process is created to deal with each triggered link.

This problem should not exist in future versions of the operating system which
should provide more resources for each process.

On average, it was found that the system runs out of conventional memory when
around 45 to 50 tasks are active. To explore the limits on the number of active tasks, a
very simple presentation was designed. The presentation contained one model object, a
250x250 bitmap object, and 36 run time instances of it were created, which was enough
to cause Windows to swap out memory.

The graph in figure 6.11 shows the behaviour found: The beginning of the graph
shows that there was a slight increase in the average distance between the times when

the process would have the CPU (Slice dist) as the number of instances was

CHAPTER 6. PERFORMANCE MEASUREMENTS 140

Distance Between Slices e CAEATIVE mmemary
600 T T T T T T

I

iz
it

Distance — 20

T (el
H

400 B

300 B

200 B

i . |
100 | E £ \‘
% - A |
na %000 10000 1!

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Time (ms)

Distance between slices (ms)

Figure 6.9: Behaviour of a presentation with graphics only

increased. During this period, each instance created represented the creation of a
process (a Window), which had to access the disk to retrieve the bitmap. At around
7000 milliseconds, we notice a peak in the graph where for the first time Windows swaps
out some memory; then there is a short period with a good response time. Finally, and
when the memory usage reaches the limit of the RAM there is a major delay, with a lot
of disk activity, when Windows reorganises the memory. The main swap happens just
after the creation of the last run time instance. The same behaviour was found when
varying the total number of instances which indicates that windows tends to reorganise
memory when it becomes relatively unloaded.

Another measurement taken was of the time used by the processes to perform the
main loop (see figure 6.12). The time is usually less than 1 ms which proves that the
overhead for checking the queues in the registry is very low. The initial time taken to
start up the process is not represented in this graphic, and would represent a large peak

at the beginning of the graph.

CHAPTER 6. PERFORMANCE MEASUREMENTS 141

BIRD summary
600 T T T T T T T T T
Slice dist —
Win msg -----
Main loop -----
500 .
400 e
@
E
® 300 B
E
=
200 E
100 —
0 \ 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Elapsed Time (ms)

Figure 6.10: Effect of continuous media on a non continuous object presentation

6.6 A highly interactive presentation

In order to assess how the system behaves with a document with a large number of
links, a document was defined with four run time objects and timestones set at 1 second
intervals for 20 seconds in each of these objects. Each timestone will trigger a link
whose effect will be a void action targeted at one of the run time objects. The reason for
using a void action is to prevent the time required to process the action from interfering
with the measurements related to link triggering.

Figure 6.13 shows the behaviour when 80 links are created and each process handles
conditions on 40 of them. In this situation, when any status variable is updated, the
process has to check 40 links that might be triggered by the éhange. Figure 6.14 shows
the average error in reaching a timestone. The system allows (in this experiment) a
timestone to be “reached” within 10 ms its due time. A positive value (i.e. a positive
“error’”) indicates that the timestone was reached before the time it was due and a
negative value (i.e. a negative “error”) indicates a delay. If the curves with the error at

reaching the timestone and the distance between the clock ticks are plotted (figure 6.15),

CHAPTER 6. PERFORMANCE MEASUREMENTS 142

Distance Between Slices (36 run time instances)

T T T T T 1!
Distance —
1400 - Instances (x10) ----- Tl
1200 -
£ 1000 |- _
12
(]
9
»
S 800 —
[
2
[
Q
8 600 4
[
g
Rz
a
400 | -
200 .
0 2 - 1 1 1
2000 4000 6000 8000 10000 12000 14000 16000

Time (ms)

Figure 6.11: Distance between CPU slices

it can be seen that the peaks where the Windows timer is late cause an extra delay at
reaching the timestones.

Figures 6.16 and 6.17 shows similar graphs when the number of links is increased
to two hundred and each process handles one hundred link conditions.

The graphs shows that the behaviour of the timer is not very precise and at intervals
of about 3 seconds, there is a delay caused by its re-synchronisation. In order to verify
the effect of the clock resolution on the overall performance, the same document was
run using an altered version of the clock which will post timer messages as fast as it can.
The effect of is that the CPU load will be 100% during all presentation. Figures 6.18
and 6.19 shows the graphs when two hundred links are created. It can be noticed that
the distance between slices is greatly reduced and the timestones are reached with much
more precision than in the previous cases. This is even more noticeable when there are
no delays in the timer for re-synchronisation.

The final conclusion from the graphs is that although the resolution of 55 ms provided
by MS-Windows 3.1 is good enough for a large range of applications, its unreliability

make it unsuitable for many uses.

CHAPTER 6. PERFORMANCE MEASUREMENTS 143

Time to process messages
4 T T T T T T

bird —
comp -----
35 F -
3r 4
m
£
&
8 25 | -
| A
>
Q
kel
(@]
» 2F £ 4
1 .
8 &
<] i
& i
o 1.5 F .
® Hh
E h
= |
1F ‘,‘ ’;‘ =
05 i
0 ! L 1 I] i H I ‘IIE: RS I
2000 4000 6000 8000 10000 12000 14000 16000

Time (ms)

Figure 6.12: CPU time used by process (bird and comp are active processes)
6.6.1 Complex link conditions

As the link handling is implemented, the actual number of conditions in the link
condition has very little impact on the time it takes to trigger the link. As described in
section 5.7.2, the conditions in the link are in a tree and the processes that hold them are
responsible for keeping that information updated in the link factory. Therefore, when
one of the conditions is changed, it is very fast for the link factory to check whether
the trigger condition is satisfied as it can assume that all information has already been
updated. The time required to update each condition grows linearly with the number of

conditions.

6.7 Final remarks

In summary, the conclusions that can be drawn from the analysis presented in this

chapter are:

CHAPTER 6. PERFORMANCE MEASUREMENTS 144

Distance Between Slices
200 T T T T T T T T T

cloc —

160 - 4

140 - .

120

100 |-

80

Distance between slices (ms)

60 |

40

0 - 15 1 1 1 1 1] Il 1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time (ms)

Figure 6.13: Distance between CPU slices (80 links triggered)

Triggering error for Timestone
100 r .] . : ;

Error —
80 .

60 o

40 1

20 &

S
—
-

Error (ms)

-80 | =
-100 1 1 1 1 1 L
15000 20000 25000 30000 35000 40000 45000 50000

Time (ms)

Figure 6.14: Error reaching timestones

145

Time (ms)

CHAPTER 6. PERFORMANCE MEASUREMENTS

Error Reaching Timestones x Clock Ticks

o
o
T 2 v T r T T T T T
: 2 O
n 5
S ——
= ; m 5 | x
3 /18 5 0
ckE ’ el 2 a
8§ @ ~ o] S
Q0 /
S8 / E
(OB / o +— L
L 20 / 8 = b0
2R 7 =)
= / <+ =
/ B
4 =
g S
nnn\\uh NNNNN ~— 3 O
e | i
||||||||||| IIzme— m % i
R B 3 = g
T -1 0\./ $— (%)
ey b= m [63)] m
e = 9 =4S
e o S c
B e . mm (7)) %
e 2
f oo a3 (] 2
gTraaEEiiiraa——— @0 m % L
— OW L o
e e S w i e
r.trlvuulnﬂnuh\. ||||||| — h o = <
i it « % B
TR o
——— 3 2
N T - 18 B
3 m
(]
g 2
i] s L
A =
o A
= o
o .. -
0 w
—
No}
1 1 1 o) 1 1 1 1 1 1 1 1 1
o o o (=] = o o o o o o o o o o
~ - 50 N - -~ - -~ —
. v—{
(sw) awi) (sw) so211s usamjaq eduelsiqg

15000 20000 25000 30000 35000 40000 45000 50000 55000

5000 10000

0

Figure 6.16: Distance between CPU slices (200 links)

CHAPTER 6. PERFORMANCE MEASUREMENTS

Triggering Error for Timestone

100 T

60

40

20

bbbt bbb A

A

A4

lll

Error —

Error (ms)
o
S}

-100 L

1

1

15000 20000

Figure 6.17:

25000

Distance Between Time Slices

30000

35000

Time (ms)

40000

Error reaching timestones

45000 50000

200 T

180 |-

160 -

140 |

120 -

100

Distance between slices (ms)

60 -

40 |

20 -

0 1

v

T

1

1

1

T
clock tick —

1

0 5000

10000

15000

20000

25000

Time (ms)

30000

35000 40000

146

Figure 6.18: Distance between CPU slices using rapid ticks (200 links) — the initial
peaks are due to the initial processes creation

CHAPTER 6. PERFORMANCE MEASUREMENTS 147

Triggering error for Timestone
100 T T T T T T T T

Error —
80 4

60 |- -
40 .

20 4

-2: _ \/_/\\/WA\/\JMV/\A\/A\/A \/ \/ V\/\/\/J \

40 F =

Error (ms)

-60 -

-80 F 4

-100 1 1 1 1 1 ! 1 it

18000 20000 22000 24000 26000 28000 30000 32000 34000 36000
Time (ms)

Figure 6.19: Error reaching timestones (using rapid ticks)

Item Measured Machine

486-66 | 486-33
Paint a 1024x768 pixels bitmap 1720 4320
Paint a 320x180 pixels bitmap 150 335
Mount and start an AVI file 1700 3100
Mount a motion JPEG file -.- 1720
Get position of a motion JPEG file -.- 960
Get position of an AVI file <1 <1

Table 6.8: Some slow actions

e It is not worth making the points where each process releases control to the
operating system too frequent as the overhead incurred does not compensate for

the improvement in the granularity of CPU usage by the processes.

The smoothness of a presentation is much more dependent on the execution of
“slow” actions than on the time used to update internal status and interact with
the registry. The processes, therefore, should avoid performing more than one
slow action within the same clock cycle. Table 6.8 shows the times measured for

some demanding operations, which should be broken up when possible in order

CHAPTER 6. PERFORMANCE MEASUREMENTS 148

to reduce their influence on the overall performance.

¢ Since the main factor influencing how the whole presentation performs is the time
it takes to process slow actions, it is more important to define the activities within
the main loop in each process carefully than to define overall process priorities;

interaction with the system kernel is very fast, not imposing a heavy overhead.

e The creation of processes also imposes extra delays to the system. Table 6.9
shows some figures for starting up processes. The huge difference between the
minimum and maximum times are due to the fact that the longest times are
usually obtained when the first instance of the process is started that requires

some dynamic libraries to be loaded.

Item Measured Minimum | Maximum | Average
Startup graphics window 95 2136 260
Startup triggered link 90 430 187
Startup AVI window 139 2420 265

Table 6.9: Times required to startup processes (times in ms) — (486/66)

e The total number of processes is limited not only by the total available memory
but also by “resources” and the amount of memory available in the first 640 KB.

The design should not therefore require large number of processes.

e The average clock resolution influenced how links are processed: it is worth
transferring a large group of actions to the target process rather than transferring

one action at a time;

e Programmers must be aware that the timer services provided by MS-Windows

3.1 are not reliable;

e The maximum CPU time a process can use can be configured dynamically depend-
ing on the system load although there is not much support provided to interrupt

“slow actions” that have to be atomic, such as interacting with the JPEG card.

CHAPTER 6. PERFORMANCE MEASUREMENTS 149

When there are several pending fast activities, such as retrieving triggered links
or link conditions from the link factory or executing actions, the process should

perform as many activities as possible within the CPU time limit.

e The use of a non preemptive operating system forces a programming style that
requires a very disciplined way of handling CPU usage by every process. This
requires the programmer to be much more careful with resource usage than is

necessary when developing programs for a preemptive operating system.

Chapter 7

A Ciritical Analysis of MHEG

This Chapter presents an overview of the evolution of the MHEG work, its current

status and limitations imposed by the model.

7.1 The evolution of MHEG

The MHEG standard has suffered several basic structural changes since the start of the
work of SG29 WG 12, and it has been a difficult task to to keep up with the frequent
changes. Figures 7.1 and 7.2 show the class hierarchies in 1991, 1992 and the present
edition.

The figures show how the hierarchy has become simpler as the standard evolved.
The hierarchy proposed in 1991 (figure 7.1) presented too many details, almost to the
level of a graphics widget set, defining forms of input and output. The structure was
also very limiting in the sense that media types were defined in the hierarchy (text,
graphics, picture, audio and audiovisual), therefore requiring the basic structure to be
changed when a new medium was added.

The hierarchy in 1992 (figure 7.2 left) was cleaner but the types of supported media
were still pre-defined providing poor support for extensions.

The current hierarchy (figure 7.2 right) is much more generic, providing the basic

150

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG ST

MH-OBJECT
ALL-OBJECT>
CONTENT>
OUTPUT-CONTENT>
TEXT CONTENT
GRAPHICS CONTENT
STILL PICTURE CONTENT
AUDIO CONTENT
AUDIO VISUAL SEQUENCE CONTENT
INPUT CONTENT>
ACTION-BUTTON CONTENT
STAY-ON BUTTON CONTENT
ON-OFF BUTTON CONTENT
MENU SELECTION CONTENT
MULTIPLE SELECTION CONTENT
CHARACTER STRING CONTENT>
CHARACTER STRING BY TYPING CONTENT
CHARACTER STRING ON SELECTION CONTENT
MULTIPLE CHARACTER STRING CONTENT>
FORM FILLING CONTENT
LMULTIPLE CHARACTER STRING ON SELECTION CONTENT
OCATION CONTENT
NUMERICAL VALUE CONTENT
PROJECTOR>
OUTPUT PROJECTOR>
AREA PROJECTOR>
TEXT PROJECTOR
GRAPHICS PROJECTOR
STILL PICTURE PROJECTOR
AUDIO PROJECTOR
AUDIO VISUAL SEQUENCE PROJECTOR
INPUT PROJECTOR>
ACTION-BUTTON PROJECTOR
STAY-ON BUTTON PROJECTOR
ON-OFF BUTTON PROJECTOR
MENU SELECTION PROJECTOR
MULTIPLE SELECTION PROJECTOR
CHARACTER STRING PROJECTOR:
CHARACTER STRING BY TYPING PROJECTOR
CHARACTER STRING ON SELECTION PROJECTOR
MULTIPLE CHARACTER STRING PROJECTOR>
FORM FILLING PROJECTOR
MULTIPLE CHARACTER STRING ON SELECTION PROJECTOR
LOCATION PROJECTOR
NUMERICAL VALUE PROJECTOR
COMPOSITE>
COMPOSITE OUTPUT
COMPOSITE INPUT
INTERACTIVE
NULL

Figure 7.1: MHEG Class Hierarchy in 1991 as in [MHEG, 1991]

CHAPTER 7. A CRITICAL ANALYSIS OF MHEG 152

MH-OBJECT> MH-OBJECT>
HEADER> ACTION
CONTENT> LINK
MEDIA CONTENT> MODEL>
TEXT CONTENT SCRIPT
GRAPHICS CONTENT COMPONENT>
STILL CONTENT CONTENT>
AUDIO CONTENT | MULTIPLEXED CONTENT
AUDIOVISUAL CONTENT COMPOSITE
INUMERIC CONTENT ONTAINER
PROJECTOR> DESCRIPTOR

SPATIAL PROJECTOR >
TEXT PROJECTOR
GRAPHICS PROJECTOR
STILL PROJECTOR
AUDIOVISUAL PROJECTOR

AUDIO PROJECTOR

NUMERIC PROJECTOR

PROJECTABLE
INTERACTION
LINK
COMPOSITE
NULL

CLOCK

Figure 7.2: MHEG Class Hierarchy in 92 (I) and today (r)

framework for extension: mediatypes are not defined in the hierarchy; they are included
in subclasses of the Model class, therefore any new medium will be just a new instance
of a Content class. The model is now abstract enough to cope with new additions of
media on the exchange level.

The important point to be perceived from the evolution is that concepts gradually
became clearer: early hierarchies mixed up exchange with presentation resulting in a
less powerful format, with an undesired focus on implementation.

Another very important evolution in the standard was the definition of run-time
objects. Early versions of MHEG did not refer explicitly to run-time objects, although
their existence had to be inferred for the implementation of any run-time system. The
initial absence of run-time objects can be understood as it w.as initially thought that the
standard was dealing with information exchange rather than presentation and it could
be expected that the use of one content object (already exchanged) would be implicit.

The absen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>