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Abstract

Bayesian methods for group sequential clinical trials have received increasing at-
tention recently. They offer an approach for dealing with many difficult problems
and have some practical advantages over frequentist methods. This thesis covers
Bayesian methods for group sequential clinical trials comparing two treatments
using both the Bayes sequential procedure and the Bayes sequential decision pro-
cedure. The main outcome measures for clinical trials are distributed as normal,
binomial, and exponential and the proportional hazard model for survival time
data.

Under the framework of Bayes sequential procedure for group sequential clini-
cal trials, the student ¢ prior distribution for the parameter of interest is proposed
as a replacement for the normal prior distribution when the sample mean is very
distant from the mean of the prior distribution. The framework of Bayes sequen-
tial procedure in clinical trials on normal distribution responses with variance
unknown is given.

Bayes sequential decision theory is applied to group sequential clinical trials.
First, Bayes sequential decision procedures with piecewise continuous loss func-
tions are used in clinical trials on normal distribution responses. The procedures
with loss functions which consider treatment efficacy and patient horizon are then
given in clinical trials on binary responses. Approximation methods of Bayes
sequential decision procedures are explored in clinical trials with survival time
data.

Robust Bayes analysis in clinical trials is presented to address the criticism on
the subjective prior distribution for parameters of interest.
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Chapter 1

Introduction

1.1 Group Sequential Clinical Trial

The randomised, controlled clinical trial is the standard for evaluating new treat-
ments and therapeutic strategies in clinical research. It consumes substantial
patient, investigator and financial resources. For ethical requirements, patient re-
sources should be deployed efficiently and necessarily. Early termination could be
considered if a clinical trial shows early benefits or unexpected toxicity. To achieve
this, the interim monitoring of a clinical trial has been suggested and developed
by statisticians.

The mathematical theory of sequential analysis was introduced in the 1940s,
motivated by industrial applications, and has continued to develop actively. Over
the past 20 years, there has been extensive development in the biostatistics lit-
erature concerning the sequential monitoring of clinical trials. Classical methods
of sequential analysis in clinical trials are summarised by Armitage(1975), and
later by Whitehead(1982). These methods allow for continuous monitoring of
paired data while they achieve the desired levels of type I and type II error rates.
Though these methods are generally successful in their pursuit of a reduced sam-

ple number, they are not feasible in practice because of the difficulty of continual
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monitoring, particularly in multicenter co-operative clinical trials with survival
time responses.

The term “group sequential” was first introduced by Pocock(1977). The group
sequential clinical trial monitors a sequence of grouped data instead of paired data
one group at a time and is used to decide whether sampling should be continued
or stopped based on some criteria after observing each grouped data. The interim
monitoring can be at either every specified number of samples, for instance, ev-
ery 20 patients, or alternatively every selected time point, for instance, every 3
months after treatment or randomisation. The group sequential clinical trial or
interim monitoring of clinical trial is now widely used for ethical, scientific and eco-
nomic reasons. It is generally agreed that a clinical trial could be stopped should
accumulating evidence demonstrate the superiority of one of the treatments or
unexpected toxicity of treatments; whilst continuing the trial would unnecessarily
expose some patients in the trial to the less effective treatment and delay applying
the results to patients outside the trial. With the current statistical methods, it
is now recommended by FDA that planned interim analyses should be included

in any clinical trial protocol.

1.2 Introduction of Frequentist Methods

A number of different frequentist statistical procedures in group sequential clinical
trials have been suggested. The most popular ones are the Pocock(1977) and the
O’Brien-Fleming(1979) procedures. It is widely noticed that the repeated signifi-
cance tests at conventional critical values increase the overall significance level or
type I error rate . This was shown by Armitage, McPherson and Rowe(1969).
Therefore their methods adjust the critical values used at interim tests of the null
hypothesis by the choice of a more stringent “nominal significance level” o such

that the overall type I error rate « is controlled at some prespecified level, for
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example, o = 0.05. If the p value of test statistics Z;, j = 1,2,...,{ — 1, where
[ is the number of groups or number of analyses, is less than the nominal signif-
icance level o at an interim analysis, then the trial could be stopped early since
the significant treatment difference under overall significance level is equal to a.
Otherwise, the trial is continued to the final analysis.

Pocock and O’Brien-Fleming have given the nominal significance levels used in
their procedures for various maximum number of groups and overall significance
levels in their papers. Some of these nominal significance levels with overall type

I error rate a = 0.05 are shown in the following table.

Nominal Significance Level

Procedure One interim analysis Two interim analyses
Pocock 0.0294, 0.0294 0.0221, 0.0221, 0.0221
O’Brien-Fleming 0.0048, 0.0475 0.0005, 0.0141, 0.0451

For example, for two interim analysis clinical trials the nominal significance levels
above are 0.0005, 0.0141, and 0.0451 at the first, the second and the final analysis,
respectively, with the O’Brien-Fleming procedure; the levels remain at a constant
value of 0.0221 with the Pocock procedure. In terms of the nominal significance
level, Pocock’s procedure uses a constant stopping boundary, while the boundary
of O’Brien-Fleming starts from a very strict level and ends close to the overall
significance level. The methods of Pocock and O’Brien-Fleming require specifying
the number of groups(or number of interim analyses) in advance and monitoring
a clinical trial at equal increments of information. In practice, these procedures
could cause difficulties since we may change the frequency of data monitoring at
some point during the course of the trial for some unforeseen reasons. Another
possibility is that slower recruitment than anticipated could force extension of the

trial and hence increase the number of interim analyses.
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Lan and DeMets(1983) have developed a generalized group sequential pro-
cedure in clinical trials, known as the spending function (or use function) ap-
proach. It was motivated by the early termination of the Beta-Blocker Heart
Attack Trial(BHAT)(1981). Their method avoids the above two restrictions, in-
cludes the approaches of Pocock and O’Brien-Fleming as special cases, and re-
quires only the specification of a spending (or use) function «(t) in advance. It is
briefly described as follows.

Assume completion of a trial by time T, scaled arbitrarily such that T = 1,
and specify an increasing function «(t) such that «(0) = 0 and a(1) = «, which
is the overall significance level. This function «(t), which is called “spending” or
“use” function, allocates the amount of type I error rate that one can “spend or
use” at each interim analysis. Suppose there is a continuous stochastic process
{W(t);0 < ¢ < 1}, for example, Brownian motion process, and a continuous
boundary b(¢), 0 <t < 1, with probability « of being crossed in 0 <¢ < 1. More

specifically,

a(t)y=P(r<t) 0<t<1,

where 7 is the first exit time across the boundary b(t). Assume that W(¢) is
observed only at time points, 0 < t; <ty < ... < t; < 1. These are corresponding
to values of test statistics Z;, j = 1,2,...,1. Let W; = W (¢;), 7 = 1,2,...,1. The

boundary point by = b(t1) is chosen such that

P(IWi| > b)) = P(0 < 7 < t1) = a(ty),

that is, to assign an accumulated boundary crossing probability a(t1) to the time

t1. The b; = b(t;), 7 = 2,...,1, are obtained such that

P(|W1] € by, ey [Wisa| £ b1, [W)| > b5) = P(tjoa <7 < t5) = at;) — atj—1).
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The increment «(t;) — a(t;_1) represents the additional amount of the significance
level that can be spent at the time period (¢;_1,1;]. If b(t) denotes a continuously
accumulated boundary with b(t;) = b;, 7 = 1,2,...,[, of the process {W(t);0 <
t < 1}, then the probability of being crossed in 0 < ¢ < 1 is a. Therefore the
sum of probabilities of {W(¢;),7 = 1,2, ...,{} exceeding {b1, bs, ..., b;} is less than
or equal to a.

Implicit in this procedure is information time ¢;. On the scaled [0, 1] interval,
t represents the fraction of patients randomised or the number of events observed.
The calendar or real time can be transformed to the information time, for example,
see Lan and DeMets(1989). The evaluation of b;, 7 = 1,2,...,1, depends only
on a(t) and tq, ..., t;, and is independent of the number of groups [. Also the
group sample size, or the increment of information ¢; —¢;_1, y = 1,2,...,(, in each
interim analysis doesn’t need to be a constant. So a clinical trial can be monitored
at unequally spaced times without specifying the number of interim analyses in
advance by the generalized group sequential procedure. The spending function
approach needs to specify the target sample size of a clinical trial.

The fixed sample, the Pocock and the O’Brien-Fleming designs in clinical trials

are special cases of the spending function approach. If the spending function is

0 0<t<l
a(t) =
« t =1,

then it is a fixed sample design with the significance level equal to a.

If we choose spending function ay,
on(l) = 2 — 20(z2 /D),

where @ is the standard normal distribution function, then the corresponding

boundary is similar to the boundary of O’Brien-Fleming procedure. However, the
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spending function procedure doesn’t need to specify either the number of groups
[ or the group sample size in advance. Note a1(0.5) < 0.006 for o = 0.05. So
an O’Brien-Fleming boundary is unlikely to stop very early. The a1(¢) may be a
suitable choice when long-term treatment effect is a major concern of a clinical
trial.

The spending function

az(t) = aln{l + (e — 1)t}

will give the Pocock boundary. Since a»(0.5) = 0.62¢, as(t) will generally result
in earlier termination but we will suffer a reduction in power.

While not described originally as a group sequential procedure, a strategy
suggested by Haybittle(1971) and later supported by Peto et al(1976) merits con-
sideration as an ad hoc version of group sequential data monitoring. Most interim
analyses occur periodically after the entry of an additional group of subjects or
observations of an additional number of events. Haybittle proposed a very con-
servative critical value for all interim analyses(e.g. +3.0 or +3.5) such that type I
error rate increases almost negligibly in repeated analyses. At the last scheduled
analysis one could use the usual 5% critical value of +1.96(or £2.0) should the
trial continue that far.

The advantages among the above stopping boundaries depend upon the needs
of each clinical trial and the investigators philosophy. The Pocock boundary offers
the best opportunity for early termination. However, for a trial which continues to
the end with an impressive trend (e.g. the value of standardised test statistics >
1.96) but does not exceed the nominal significance level, the inability to reject the
null hypothesis Hy can be awkward and difficult to explain to clinical doctors. The
Haybittle-Peto boundary does not allow much opportunity for early termination
but avoids the awkward situation posed above. The O’Brien-Fleming boundary

offers, in some sense, a compromise. Early termination is not likely as with that
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of Pocock, but becomes more possible as the clinical trial progresses. At the end
of a clinical trial, the critical value of O’Brien-Fleming boundary is close to the
corresponding value of the fixed sample test.

Flashoff and Reedy(1984) discuss the selection of a group sequential procedure
with one interim analysis, and conclude that there is no “best” rule and they
explain how the different options compare. Geller and Pocock(1987) confine their
attention to a few options for clinical trials with a maximum number of interim
analyses between two and five and the overall significance level o = 0.05 for a two
sided test. The clinical trials with normal distribution responses are considered
in their comparison. The options are the procedures of Pocock, O’Brien-Fleming,
Haybittle-Peto and the plans in Pocock(1982) which minimise the average sample
number for that alternative hypothesis to be detected with given powers of 0.5,
0.75 and 0.8. Their conclusions are that the Pocock procedure has the greatest
savings in an average sample number when alternative hypotheses can be detected
with high power, but the O’Brien-Fleming procedure is better than the Pocock
procedure for saving a maximum sample number.

Wang and Tsiatis(1987) have introduced a family of one parameter stopping
boundaries, which were defined in terms of a parameter whose value affected the
probability of rejection of the null hypothesis over the various analyses. Suppose a
clinical trial comparing two treatments is monitored after every 2n observations,
n for each treatment, and the maximum number of groups is [. Let Z;, 7 =
1,2,...,1, be the sequence of test statistics. Assume Z;, j = 1,2,...,1, are normally
distributed with var(Z;)=1. The group sequential test consists of rejecting null

hypothesis Hy of no treatment difference for the first j such that
1Z;]1 > C(A, o, 1)5%,

where C'(A, a,l) is chosen such that the overall significance level is «, that is,

under the null hypothesis Hy, the probability of failing to reject Hy, when it is
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true, is
P(|Z4| < C(A, 0,12, ..,|121] < C(A,, )% Hp) = 1 — @,

where C(A, a,l) can be computed using the numerical recursive integration for-
mula given by Armitage, McPherson and Rowe(1969). The discrete stopping
boundary values C'(A, a,1)5%, 7 = 1,...,1, depend on the parameter A, called the
shape parameter. If A = 0, it gives the boundary of O’Brien-Fleming; and if
A = 0.5, it is the boundary of Pocock.

This family of stopping boundaries yields approximately optimal results with
respect to the least number of subjects for detecting specified treatment difference
at given significance level a, and power 1 — 3. The optimal results of Wang and
Tsiatis are consistent with those of Pocock(1982) by varying nominal significance
levels to minimise the average sample number(ASN) under the alternative hy-
pothesis. So the approximately optimal boundaries within the family of stopping
boundaries are approximately optimal overall. The methods of Wang-Tsiatis also
need to specify a maximum number of groups in advance and analyse data at
equal increments of information.

Pampallone and Tsiatis(1994) have proposed a general family of boundaries
based on the boundaries of Wang-Tsiatis that allow stopping early with rejection
of either the null or alternative hypothesis.

The statistical package EaSt(Early Stopping) can be used to design a group
sequential clinical trial with Wang and Tsiatis” family of one parameter stopping
boundaries and Pampallone and Tsiatis” general family of boundaries.

SPRT(Sequential Probability Ratio Test) designs and analyses have been sum-
marised by Whitehead(1992). He uses a continuous boundaries approach under
the assumption of a continuous sample path, which is an abstract mathematical

concept, and derives distributions of test statistics and power functions of tests.
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A Christmas tree adjustment is suggested at discrete interim analyses. The trian-
gular test is the most popular one in SPRT designs. There is a statistics package
PEST(Planning & Evaluation of Sequential Trials) which can be used to not only
design but also analyse group sequential clinical trials of SPRT. Estimations of
the treatments effects have been given as well.

Jennison and Turnbull(1984, 1989) have described the repeated confidence
interval approach. A sequence of intervals that all contain the true treatment
difference with a prespecified probability, 95% say, are calculated at each interim
analysis. The trial will be stopped and it can be claimed that there is a significant
difference between the treatments when the current repeated confidence interval
excludes 0. Jennison and Turnbull formulate certain repeated confidence intervals
directly. Unlike previous methods, inferences of the repeated confidence interval
approach are independent of the stopping rule. Interval estimates of the treatment
difference are provided at each interim analysis. They can be used in reporting
interim results and serve as an adjunct to a group sequential method giving more
than just the “stop/continue” information at each interim analysis. This method
is especially useful in some epidemiological studies or long-term follow-up studies
where the sudden ending of exposure would be impossible. Koepcke(1989) has
criticised that the repeated confidence intervals are too wide compared with con-
fidence intervals constructed at termination of a group sequential test. Pocock
and Hughes(1989) have suggested that repeated confidence intervals be shrunk
toward the null value of the parameter.

The stochastic curtailment approach in group sequential clinical trials was
introduced by Lan, Simon and Halperin(1982). More details are given by Halperin
et al (1982). The idea of stochastic curtailment is to curtail a trial as soon as an
eventual conclusion of a trial is determined with high probability. At any stage
of a trial, we calculate the probability of an eventual conclusion of experimental

superiority, conditional on the true treatment difference of a trial and on the data
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observed so far. A trial is stopped and it is concluded that the experimental
treatment is superior when the probability is large. This method can be used to
illustrate the effects of low accrual trials. Stochastic curtailment is a prediction
method, which is a criticism on this procedure.

The frequentist methods in group sequential clinical trials have the following
major difficulties.

When a clinical trial is completed, there is an impressive trend of treatment
difference which is however not significant at a pre-specified significance level,
and the other studies have the same result. We may wish to carry on the study.
How then should we analyse the extra data after we stop a trial? This type of
problem also occurs when there is a delay between the entry of patient and the
assessment of response to treatment. If a trial is stopped prematurely on the basis
of a stopping rule, how should the statistician deal with extra data that become
available after the trial has been stopped?

Terminal inferences of the group sequential method rely on strict adherence
to the specified stopping rule. The confidence intervals, and point estimates of
treatments differences have been studied under some special situations only. Most
frequentist methods for group sequential clinical trials do not provide any inference
about the treatment difference, only about the “stop/continue” decision during
the period of interim monitoring.

Sometimes there is a difficulty in explaining the result to clinical investigators.
For example, take a two interim analyses clinical trial with the Pocock procedure.
The nominal significance level o/ = 0.021 is used at each analysis, leading to an
overall significance level @ = 0.05. Suppose a trial has evidence of a treatment
difference with nominal p value equal to 0.03 at each analysis. Then according to
the nominal significance level this would not be statistically significant at the 5%
level, whereas an investigator with identical data carrying out a fixed size analysis

would attain p = 0.03. It is difficult to explain this to clinical investigators, who
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wonder why previous inspections of the data should affect the interpretation of
the final results.

A large number of analyses give more opportunities for early stopping and
will decrease the mean sample size if the treatment difference is large. On the
other hand, increasing the number of analyses can actually increase the expected
number of patients required for the trial under the null hypothesis, because the
nominal significance level must be adjusted downward to maintain the overall type
[ error rate. There is a “penalty” paid for frequent interim monitoring of a clinical
trial.

Reviews of frequentist methods for group sequential clinical trials can be found
in DeMets(1987), Jennison and Turnbull(1990), Pocock(1992), Whitehead(1992)
and Fleming and DeMets(1993).

1.3 Review of Bayesian Methods

Bayesian and the frequentist statistical approaches are based on inverse measures:
one deals with probabilities of hypotheses given the data and the other involves
probabilities of data sets given hypotheses. The interest of Bayesian method is on
some unknown parameter . The notation of probability has different interpre-
tations. The probability in Bayesian inferences is not frequentist. The P(§ < z)
does not represent the proportion of times that ¢ is less than or equal to z in
repeated investigations. Instead, it represents how likely the investigator thinks
that § is less than or equal to @. Berry(1987) compares Bayesian with frequentist
statistical approaches based on the role of likelihood principle. The comparison
i1s summarised here. The Bayesian approach is conditional since the posterior is
a distribution of given available information. The frequentist approach is uncon-
ditional since the statistical inference is derived from a given hypothesis. The

Bayesian approach is consistent with the likelihood principle since the posterior
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distribution depends on the observed data only through Bayes theorem. The
frequentist approach is not, because the p value or the tail probability is the prob-
ability under the null hypothesis of a result as extreme or more extreme than
observed. In clinical trials, the unconditional approach disallows looking at the
data if there is a possibility of stopping or otherwise modifying the study as a
result, unless inferences are adjusted accordingly. The conditional approach is
completely flexible in this regard.

Bayesian methods for group sequential clinical trials have received increasing
attention recently, as they offer an approach for dealing with many difficult prob-
lems and have some practical advantages over frequentist methods. As we know,
before designing a clinical trial to compare the experimental treatment with the
standard treatment, we will acquire all possible information about the activity
of both treatments. This information will give us an opinion about the treat-
ment difference § and can be described by a prior distribution of the treatment
difference, denoted by w(d). For example, Freedman and Spiegelhalter(1983) dis-
cuss their experience of translating doctors’ opinions into subjective probability
distributions. Chaloner et. al.(1993) describe a graphical elicitation of a prior
distribution for a clinical trial. When we collect some data, we can update the
opinion by Bayes theorem and get the posterior distribution of the treatment dif-
ference, denoted by w(d|data). The Bayesian inference derives entirely from this
posterior distribution of the treatment difference. Naturally the clinical trial may

be stopped if either

b2
/ w(d|data)dd > 1 — &4,

[oe]

or

/°° w(8|data)ds > 1 — e,
1
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where the e; and e, are small positive values, the larger value of § denotes the
experimental treatment better, and the interval (41, ds) is the range of equiva-
lence (that is, the two treatments are considered roughly equivalent.). At each
interim analysis, the treatment difference can be estimated by the expectation
of treatment difference ¢ with respect to the posterior distribution w(é|data).
Freedman and Spiegelhalter(1989, 1993) have shown that by choosing some prior
distributions Bayesian boundaries can be very close to Pocock or O’Brien-Fleming
boundaries. Geller and Pocock(1987) mention that the Pocock procedure has the
disadvantage of undertaking the last analysis at a p value considerably smaller
than 0.05 and that the O’Brien-Fleming procedure is perhaps too stringent at the
first analysis, virtually assuring that the trial does not stop then. Freedman and
Spiegelhalter(1989, 1993) have also shown that the Bayesian method can have a
stopping rule between the Pocock and O’Brien-Fleming boundaries by the choice
of some prior distributions.

The attraction of the Bayesian method lies in its simplicity of concept and the
directness of its conclusions. When we collect some data at any time, we update
the opinion on the treatment difference by Bayes theorem. The likelihood principle
implies that interpretation of the data does not depend on the number of analyses
or on the stopping rule of the trial. So no “penalty” is paid for frequent interim
analyses, and extra data can be analysed after the trial has been completed. Sta-
tistical inferences on the treatment difference following the trial are derived from
the posterior distribution of the treatment difference. The problems of frequen-
tist methods described in Section 1.2 are solved by Bayesian methods. However,
Bayesian methods have not been as well developed as frequentist methods, and
technical difficulties arise when numerous nuisance parameters are to be consid-
ered in addition to the treatment difference § itself. There is little corresponding
software generally available which blocks the application of Bayesian methods in

practice. The barrier to widespread implementation of the Bayesian method has
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been its computational difficulty and the construction of prior distribution, but
that in principle is no longer a problem(Whitehead 1992).

Spiegelhalter, Freedman and Parmar(1994) have reviewed and demonstrated
how Bayesian methods can be applied to group sequential clinical trials. Bayes
sequential methods in clinical trials have been explored by Novick and Griz-
z1e(1965), Cornfield(1966, 1969), Berry(1985, 1989), Whitehead(1991), Freedman
and Spiegelhalter(1989, 1991, 1993), Spiegelhalter and Freedman(1988), Freed-
man, Spiegelhalter and Parmar(1994), Parmar, Spiegelhalter and Freedman(1994),
and by George et. al.(1994), and discussed by Jennison and Turnbull(1990).

Since Bayes theorem allows an investigator to update his subjective opinion of
the treatment difference § at any time, there is no special reason for a Bayesian
to devise a stopping rule in advance. Decision theory provides the framework for
combining subjective distributions with action. However, Bayes decision theory
has not been widely introduced in group sequential clinical trials. Sylvester(1988)
has used Bayes decision theory for a one-stage phase Il clinical trial with binomial
distribution response. Berry and Ho(1988) have addressed one-sided sequential
stopping boundaries for clinical trials from a decision-theoretic point of view.
Lewis and Berry(1994), and Lewis(1996) have studied Bayes sequential decision
theory with piecewise continuous loss functions in group sequential clinical trials
with binomial distribution response.

The major criticism of Bayes analyses is that it presumes an ability to com-
pletely and accurately elicit subjective information in terms of a single prior dis-
tribution. However, there has long existed (at least since Good(1959)) a robust
Bayesian viewpoint which replaces the single prior distribution with a class of
possible prior distributions. The goal of this approach is to make inferences or
decisions which are robust over this class, i.e., relatively insensitive (or at least are
satisfactory) to deviations as the prior distribution varies over this class. Green-

house and Wasserman(1995) have illustrated the application of robust Bayesian
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methods in clinical trials. Spiegelhalter, Freedman, and Parmar(1994) have sug-
gested the consideration of a community of priors covering the perspectives of a
range of individuals. This may encompass a reference prior intended to add as
little as possible to the data and a clinical prior expressing reasonable opinions
held by individuals or derived from overviews(meta-analyses) of similar studies.
However, it is also useful to develop “off the shelf” priors corresponding to a
formal expression of sceptical and enthusiastic belief. These may be thought to

provide reasonable bounds to the community of priors.

1.4 Aims and Outline of the Thesis

In this thesis, Bayes methods in group sequential clinical trials comparing two
treatments are studied using both Bayes sequential and Bayes sequential decision
methods; and the main outcome variables for clinical trials are distributed as
normal, binomial, and exponential and proportional hazard models for survival
time data. The aims of the thesis are to study some unresearched problems in
Bayes sequential methods, build a set of systematic Bayes sequential decision
methods, and also to compare these with frequentist methods in group sequential
clinical trials.

Bayes sequential methods in clinical trials are discussed in Chapter 2. Under
its framework in clinical trials, in which the main outcome variables is normally
distributed, the student ¢ prior distribution is used and compared with the normal
prior distribution for the treatment difference. Bayes sequential decision theory
is introduced to group sequential clinical trials. The brief introduction of Bayes
sequential decision theory is described in Chapter 3. In Chapter 4, Bayes group
sequential decision clinical trials are set up based on normal distribution responses

with piecewise continuous loss functions, and are also compared with frequentist
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methods. The loss functions of considering the treatment effect and patient hori-
zon are studied under clinical trials with binary responses, which are discussed
in Chapter 5. Chapter 6 discusses the application of Bayes sequential decision
theory in group sequential clinical trials with the main outcome variable being an
exponential and proportional hazard model for survival time. The brief introduc-
tion of non-parametric Bayes analysis is also included in Chapter 6 in order to be
applied in proportional hazard model for survival time. Robust Bayes analyses
which study the uncertainty of prior information in clinical trials are described in
Chapter 7. The discussion and further study on some common issues are given in

Chapter 8.




Chapter 2

Bayes Sequential Methods

In this chapter, the framework of Bayes sequential methods in group sequential
clinical trials is described in Section 2.1. This framework is based on clinical
trials whose main outcome variable is normally distributed with known variance.
The mean of the normal distribution is the treatment effect. The parameter of
interest is the treatment difference which is considered to have a normal prior
distribution. In Section 2.2, the prior distribution of the treatment difference
which has the form of student ¢ is discussed. This is also compared with the
situation of normal prior to the treatment difference. In practice, the variance of
the normal response variable is usually unknown. This issue is studied in Section

2.3

2.1 Framework of Bayes Sequential Methods

2.1.1 The Problem

A group sequential clinical trial is designed to compare an experimental treatment
with the standard treatment. The main outcome measure X for the clinical trial is
normally distributed with probability density functions N (g, %) and N (us, %)

for the experimental and the standard treatments, respectively. The value of

24
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o? is known. For the presentation of below formulas purely, the variance of main
outcome measure X is assumed to have the form "—22— The treatment is assigned by
a randomised permuted block so that each consecutive group of 2n;, 7 =1,2,...,(,
patients has n; on each treatment. The [ is the maximum number of groups.

Let the parameter 6 = p, — j, be the measure of treatment difference where
large value of ¢ implies the superiority of the experimental treatment. The scale
of treatment difference is divided into (—oo, d1), (61, d2), and (J2, 00). If § > &5,
then the experimental treatment is considered clinically superior. If § < d;, then
the standard treatment is superior. The interval (41, d5) is called the range of
equivalence where the two treatments are considered roughly equivalent. Depend-
ing on the clinical situation, é; and d, will either coincide or §; will be less than
d5. The partitioning of the scale of treatment difference will be based on the rel-
ative toxicity of treatments and to a lesser extent on their cost and convenience.

Assume that the treatment difference ¢ has the normal prior distribution, that is,

§ ~w(8) = N(vg,72). (2.1)

The variance ¢ is expressed as 73 = %, which might suggest that there were ng

“extra” pairs of patients in the pilot trial(Freedman and Spiegelhalter 1989). This

form is useful in comparing different prior information by the change of value ng.
The ng is a measure of prior information on the treatment difference 4.

Let the group sample means be denoted by X;, = %E:Zl Xije and X, =

i
% Y Xije, J = 1,2, ..., 1, for the standard and experimental treatments, respec-
J
tively, where the group sequential sample from the standard treatment X, is from
the normal distribution NV (fs, %) and the group sequential sample from the exper-
imental treatment Xjj. is from the normal distribution N (z, %), 1 =1,2,..,ny
The group sample means X j, and X j, are then normally distributed with densities

N (s, 2”—2) and N (pe, ;;), respectively. The sequence of the differences between
7’1:] n]
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X, and Xj,, denoted by 7Z;,

S — 0'2
Zi=Xje = Xju o NG, D), j=1,201, (2.

n;

[N
Do
~—

are sufficient statistics of the treatment difference 6. There will be no loss of infor-
mation to replace the group sequential variables {Xjje, Xijs, 1 = 1,2,...,n,7 =
1,2,...,} by this classical sequential sample {Z;,7 = 1,2,...,{}. The group se-
quential clinical trial described above becomes a sequential clinical trial whose
main outcome variable 7;, 7 = 1,2, ...,/ is from the normal distribution N (4, %),
where § is the measure of treatment difference and has the normal prior distribu-

tion w(d) = N(wo, %) in (2.1).

2.1.2 The framework

At each analysis 7, 7 = 1,2, ...,(, after observing the differences of group sample
means 4y = 21, Ly = Za,..., 4j = %z, {from the clinical trial, by Bayes theorem the

posterior probability density function of § is the normal distribution with mean

J —
Zi:l nizj+nov

® 2 ¥
equal to ==1——— and variance equal to ——=——, that is,
i=1 i tT0 i=1 im0
§ ~ w(d|z1,22,...,25) = w(d|z;)
J = 2
_ N (Zi:l n;Z; + novo o ) (2.3)
- J 9 J bl p=te
Diz1 M+ o Yi=1 i + 1o
_ ] T 28
where z,; = Lizy % -
! ?:1 T

The sequential Bayes method may suggest termination of the clinical trial at

an interim analysis 7, 7 = 1,2, ...,{ — 1, if either

P
P(6 < 8|21, 23,y 25) = / w(8|21, 22, o, 2;)dE > 1 — €1, (2.4)

— 00
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resulting in a rejection of the experimental treatment, or

P(6 > 61|21, 22y oy 25) = /5 w(8|z1, 22, ey 25)dd > 1 — &9, 2,

O]
I3
S—

resulting in a recommendation of the experimental treatment, where the posterior
probability density w(d|z1, 22, ..., 2;) is obtained by (2.3). Otherwise the clinical
trial needs to be continued to observe the next group of patients. At the final
analysis, if (2.4) or (2.5) are not satisfied, then it may be concluded that these
two treatments are equivalent since P(d; < 6 < d5) is large. The e; and e, are
small positive values, such as 0.05, 0.025, etc.

Conditions (2.4) and (2.5) may be written as,

_ Zj: n; + no no (1 —eq . :
z; < E lj . (Sg— 7 Vg — (_] )O' Zni+n0, (26)
Dim1 N dim1 N Ei:l n; i=1
Y mitng no O (e,) j
Z; > = lj : é1 — > Vo — =3 o Zni + nyg, (2.7)
Zi:l n; Zi:l n; Zi:l U2 =1

respectively, where ®~*(1—0.025) = 1.96. These are the same form as boundaries

and

of frequentist methods in terms of test statistics Z; = z;, j = 1,2,...,[. Freedman
and Spiegelhalter(1989) have shown that by choosing some prior distributions of
0 in (2.1) through some values of ng, Bayesian boundaries of (2.6) and (2.7) can
be very close to boundaries of Pocock and O’Brien-Fleming procedures. Bayesian

methods provide the same desirable features as frequentist methods.
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2.2 Student ¢t Prior Distribution

2.2.1 The Framework

In Section 2.1, we assume that the treatment difference ¢ in the clinical trial
has the normal prior distribution 6 ~ w(d) = N(l/o,%). At each analysis j,

J =1,2,...,1, the posterior mean of the treatment difference ¢ from (2.3) is
E(d|21, 22y ..y 25) = %5 — ———(%; — 1o)-

If the sample mean Z; is very far from the mean of the prior distribution vq, then
the posterior mean £(d|z1, 23, ..., z;) will differ considerably from z;. Dawid(1973)
has shown that this undesirable behaviour would be avoided if the prior distri-
bution of § had the form of a student ¢ distribution. Assume that the variance
o? is known. He mentions that “if X ~ N(0,0%) given © = 6, while © has a
student ¢ prior, one obtains a limiting posterior © ~ N(z,0?) as |z| — oo, and
E(O]z)—ax — 0, as conjectured by Lindley.”. The Bayes sequential method in the
clinical trial described in Section 2.1.1 with the student ¢ prior for the treatment
difference § is discussed below.

Without loss of generality, let the mean of the prior distribution in (2.1) be

equal to 0, that is, 9 = 0. The prior distribution for the standardised treat-

)

o
ng

Instead, consider that ¢’ has a student ¢ prior with degree of freedom v, that is,

ment difference ¢’ = then becomes the standard normal distribution N (0, 1).

2

12

r(2sl

: ) _vit
I oy — 2 1 _ 2 . 2.8
The prior distribution of ¢ is then
1 4
§ ~ —w(—|v), (2.9)

a a
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0.2 ! . . .
where @ = /%, and w(-|v) is the density function of (2.8).
At each analysis 7, j = 1,2,...,[, after observing Zy = 21, Zy = 23, ..., Z; = z;

as in Section 2.1, the posterior probability density function of § is

j '",i o
e =71 4 £y°3
w(d|21, 25, sy 25) = W(B|24) = - e . (2.10)

- _LZ::lni(é‘_z.)Z §2 \ 22
e ™ @ T+ o) T ds

i
- s Tz
where z; = Z'—Tl—
B 1
i=1 "¢

The clinical trial may be terminated at analysis 7, 7 = 1,2,....(, if either,

b2
P(6 < 8|21, 22, ory 25) :/ w(8|Z;)d6 > 1 — 1, (2.11)
or,
P(8 > 811, 23, ooy 25) = /°° w(8|Z;)d6 > 1 — &5, (2.12)
51

where the posterior density function w(d|z;) is obtained by (2.10), and &; and &
are small positive numbers. Otherwise the trial is continued to observe the next
group of patients.

When the treatment difference ¢ has the form of student ¢ prior as in (2.9),
there is no closed form for the posterior probabilities P(d < d,|z1, 22, ..., z;) and
P(6 > 61|21, 22,...,2;) in (2.11) and (2.12), respectively. However, the numerical

integration may be obtained by many mathematical and statistical packages.

2.2.2 Inferences for the Degree of Freedom v

Using the example of Freedman and Spiegelhalter(1989), consider a clinical trial
comparing two treatments with 200 patients, and the number of groups [ = 5 with
the equal group sample size n; = n = 20, 3 = 1,2,...,5. Let The test statistics

Zj, 7 =1,2,...,5, are from the normal distributions N (4, %) given ¢ as in (2.2).
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The 02 = 0.5 and ng = 8,22, and 89 for the scanty, moderate and considerable
prior information, respectively. Here suppose that the prior distribution of the
treatment difference ¢ is the student ¢ distribution with the form of (2.9). Let
no = 22 where prior information available is average. Assume that our interest
is about departures, in either direction. Then §; = d5 = 0. At each analysis 7,
J = 1,2,...,5, if the posterior probabilities P(6 < 3|21, 23, ..., 2;) = P( < 82|Z;)
or P(6 > 01|21, 22,...,25) = P(6 > 61|Z;) follow the conditions (2.11) or (2.12),
respectively, then stopping the clinical trial may be suggested as before.

Since the Z; = % I Z;i, 7 =1,2,..,5, has the normal distribution N (6, Z—:L)
given &, the range of 99% possible value of Z; is ((5 + \/—‘J’—j X (—2.58), 6 + ;!:7 % 2.58).
As an example, 7 = 4 say, let Z, = \/g X zp. By symmetry, only Zy < 0 needs to
be considered. Without loss of generality, assume that zo = -2.58, -1.96, and -1,
the corresponding posterior probabilities P(6 < d2|Z4) of (2.11) and P(§ > 61|z4)
of (2.12) with the degree of freedom v from 3 to 100 in the student ¢ priors are
displayed in Figure 2.1(a), Figure 2.1(b), and Figure 2.1(c), respectively. These
figures show that the change of P(6 < d2|Z4) and P(§ > §1|Z4) with the change of
the degree of freedom v of student ¢ prior can be ignored, since these probabilities
are almost constant with the degree of freedom v from 3 to 100. Similar figures
can be obtained at other interim analyses. The same results are also found when
the values of 6% and ng are changed. Therefore it can be concluded that the pos-
terior inferences on the treatment difference ¢ is robust to the degree of freedom

v of the student ¢ prior.
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Figure 2.1 Posterior Probabilities with Different Degree of Freedom
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2.2.3 Comparisons with the Normal Prior Distribution

By the framework of Bayes sequential methods in group sequential clinical tri-
als, the stopping rules of these methods are based on the posterior probabil-
ity distribution of the treatment difference §. It is then interesting to com-
pare the posterior probabilities P(§ < 921, 23, ..., 2;) and P(§ > 61|21, 22, ..., 25),
7 = 1,2,...,[, for the student ¢ prior distributions with those for normal prior
distributions. The comparisons are based on the change of posterior probabilities
P(8 < é3|z1, 22, ..., 25) and P(8 > 61|21, 29, ..., 25), 5 = 1,2, ..., 1, with the change of
prior information.

The variance (or ng) of the normal prior distribution N (v, %) is a measure of
prior information on the treatment difference §. The tail probability of the student
t distribution is more sensitive than its degree of freedom. Hence, the change of
prior information is considered by the change of variances and tail probabilities

of normal and student ¢ prior distributions.

The robustness to change of variances of prior distributions

Continuing the example of Section 2.2.2, assume that the treatment difference §
has the normal prior distribution § ~ N (1, %) as in (2.1), where vy = 0. Let
ng = 8, 22, and 89 for the scanty, moderate and considerable prior information,
respectively. At each analysis 7, 7 = 1,2,...,5, after observing Z; = 21, Zy = z,,
...y 4j = zj, the posterior probabilities P( < 95|Z;) and P(6 > 61]z;) can be
calculated by (2.4) and (2.5). As an example, say j = 4, the posterior probabilities
P(§ < 85]Z4) and P(8 > 81]Zs) with 24 = /2 x zg, where 2 = -2.58, -1.96, -1,
and 0, are listed in Table 2.1. It shows that the change of prior information might
or might not affect the decision of stopping a trial early. Assume ¢; = g5 = 0.05.
When the value of observation z, = % X (—2.58), a very strong evidence of the

experimental treatment not being superior, all posterior probabilities P(§ < d4|z4)

under different prior information, ng = 8, 22, and 89, indicate that stopping the
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trial would be advisable. When zy = —1.96 and with the scanty prior information
no = 8, the posterior probability P(§ < d]Z4) = 0.9694 > 1 — 0.05, which
is suggesting that the trial may be stopped early, but with considerable prior
information (ny = 89) of no treatment difference (since we assumed that § ~
N(0, %)), the posterior probability P(d < d»]z4) = 0.9115 # 1 — 0.05, which is

suggesting that the trial should be continued.

Table 2.1: Posterior Probabilities of Different Normal Priors (ng)

P(§ < 8,|74) P(§ > 6,|7)
No Mo

20 8 22 89 8 2 89

-2.58 0.9933 0.9891 0.9623 0.0069 0.0112 0.0380
-1.96 0.9694 0.9589 0.9115 0.0308 0.0413 0.0888
-1 0.8300 0.8122 0.7545 0.1702 0.1880 0.2457
0 0.5001 0.5001 0.5001 0.5001 0.5001 0.5001

Alternatively, suppose that the treatment difference ¢ has the student ¢ prior
distribution as in (2.9). Let the variances of §, Var(d) = 2=, have the same
variances as those of normal prior distributions N(0, %) with ng = 8, 22, and
89 under the degree of freedom v from 10 to 100. The corresponding posterior
probabilities P(d < 05]Z4) and P(§ > §;|Z4) with Z4 = \/gx 20, Wwhere zp = —2.58,
-1.96 and -1, are listed in Table 2.2(a), (b) and (c¢), respectively. It can be seen
from these tables that the influence on the degree of freedom v can be ignored as in
Section 2.2.2 due to the minor change of posterior probabilities with the change of
the degree of freedom v. For example, at zg = —1.96, the difference of P(§ < §5|24)
between v = 10 and 100 is 0.9690 — 0.9666 = 0.0024. Similar to the results of
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normal prior distributions shown in Table 2.1, Tables 2.2(a), (b), and (¢) have also
shown that different precision of the prior information might change the decision of
stopping a trial early. For example, when zp = —1.96,v = 20, and &; = &5 = 0.05,
the trial is stopped and the experimental treatment is recommended if ng = 8 or
22; whereas the trial need to be continued if ny = 89.

Comparing Table 2.1 with Tables 2.2(a), (b), and (c), it can be seen that
the change of posterior probabilities P(§ < d5|Z4) and P(§ > 6;1|z4) is slightly
bigger to the student ¢ priors than those to normal priors with the same change
of the precision of prior information. For example, at zg = —2.58, for the normal
prior, the change of the posterior probability P(§ < d;|Z4) from the scanty prior

information (no = 8) to considerable prior information (ng = 89) is,

P(8 < 85|Z4,m0 = 8) — P(8 < 8s|Za,n0 = 89) = 0.9933 — 0.9623
= 0.0310;

and for the student ¢ prior, the change is,

P((g < 52|—3—4,710 = 8) = P((S = (52|E4,7lo = 89)
0.9921 — 0.9533 = 0.0389 v=10
0.9930 — 0.9613 = 0.0317 v = 100.

The same results above are found at other interim analyses.
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Table 2.2(a): Posterior Probabilities of Different Student ¢ Priors (v)

P(6 < 62|74) P(6 > 61]|z4)
no no

20 v 8 22 89 8 22 89
-2.58 10 0.9921 0.9863 0.9533 0.0079 0.0137 0.0467
20 0.9926 0.9877 0.9581 0.0074 0.0123 0.0419
30 0.9928 0.9881 0.9595 0.0072  0.0119 0.0405
40 0.9929 0.9883 0.9602 0.0071 0.0117 0.0398
50 0.9929 0.9884 0.9606 0.0071 0.0116 0.0394
60 0.9929 0.9885 0.9608 0.0071 0.0115 0.0392
70 0.9929 0.9885 0.9610 0.0071 0.0115 0.0390
80 0.9930 0.9886 0.9611 0.0070 0.0114 0.0389
90 0.9930 0.9886 0.9613 0.0070 0.0114 0.0388
100 0.9930 0.9886 0.9613 0.0070 0.0114 0.0387

35
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Table 2.2(b): Posterior Probabilities of Different Student ¢ Priors (v)

P(d < 65]74) P(6 > 61]za)
No no

20 v 8 22 89 8 22 89
-1.96 10 0.9666 0.9526 0.8966 0.0334 0.0475 0.1034
20 0.9680 0.9559 0.9045 0.0320 0.0441 0.0955
30 0.9684 0.9569 0.9068 0.0316 0.0431 0.0932
40 0.9686 0.9574 0.9080 0.0314 0.0426 0.0920
50 0.9687 0.9576 0.9087 0.0313 0.0424 0.0913
60 0.9688 0.9578 0.9091 0.0312 0.0422 0.0909
70 0.9689 0.9579 0.9094 0.0311 0.0421 0.0906
80 0.9689 0.9580 0.9097 0.0311 0.0420 0.0904
90 0.9689 0.9581 0.9098 0.0311 0.0419 0.0902
100 0.9690 0.9582 0.9100 0.0310 0.0418 0.0900

36
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Table 2.2(c): Posterior Probabilities of Different Student ¢ Priors (v)

P(§ < 02|Z4) P(0 > 61|Z4)
no No

20 v 8 22 89 8 22 89

-1 10 0.8249 0.8022 0.7383 0.1751 0.1978 0.2617
20 0.8276 0.8075 0.7467 0.1724 0.1925 0.2533

30 0.8284 0.8091 0.7493 0.1716  0.1909 0.2507

40 0.8288 0.8099 0.7506 0.1712  0.1902 0.2494

50 0.8290 0.8103 0.7513 0.1710 0.1897 0.2487

60 0.8291 0.8106 0.7518 0.1709 0.1894 0.2482

70 0.8292 0.8108 0.7522 0.1708 0.1892 0.2478

80 0.8293 0.8110 0.7524 0.1707 0.1890 0.2476

90 0.8294 0.8111 0.7526 0.1706 0.1889 0.2474

100 0.8294 0.8112 0.7528 0.1706 0.1888 0.2472

The robustness to change of tail probabilities of prior distributions
We continue using the above example to discuss the inferences on the change
of tail probabilities of normal priors and student ¢ priors. Assume that the tail
probabilities of normal priors and student ¢ priors, denoted by Py, are equal
to 0.01, 0.02, 0.03, 0.04, and 0.05. The posterior probabilities P(§ < d2|Z4) and
P(§ > 61]z4) for normal priors and student ¢ priors are listed in Table 2.3 and
Tables 2.4(a), (b), and (c). The zZ4 = \/g X 29, where zg = -2.58, -1.96, and -1.
Comparing Table 2.3 with Tables 2.4(a), (b) and (c), conclusions are consistent

with those of the same change of variances of normal priors and student ¢ priors,
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that is, the changes of posterior probabilities P(J < 65|Z4) and P(§ > 61]|z4) are

less to normal prior distributions than those to student ¢ prior distributions. For

example, at zop = —2.58, the change of the posterior probability P(d < d2|z4) from

Piait = 0.01 to Pys = 0.05, for the normal prior is,

P(8 < 6|4, Pt = 0.01) — P(S < 63|Z4, P = 0.05) = 0.9874 — 0.9771
= 0.0103;

for the student ¢ prior is,

P((S € (52|E4, Ptail = 001) = P((S < 52'34, Ptail = 005)
0.8083 — 0.7227 = 0.0856 v=10
0.8214 — 0.7481 = 0.0733 v = 100.

2.2.4 Summary

The student ¢ prior distribution (2.9) for the treatment difference § is discussed.
It can be concluded that the posterior inferences on the treatment difference J is
robust to the degree of freedom v of the student ¢ prior. By comparing the student
t prior with the normal prior, it can be obtained that posterior probabilities P(¢ <
dalz1, 29, ..., z5) and P(0 > 6121, 22, ..., 24), 7 = 1,2,...,[, are more robust to the
normal prior than those to the student ¢ prior with the same change of variances
or tail probabilities of the prior distributions. Hence, it is reasonable to assume
that the treatment difference ¢ has the normal prior distribution if the sample

mean is not far from the mean of this prior distribution.
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Table 2.3: Posterior Probabilities of Different(tail) Normal Priors

20 Praat P(d < 45|74) P(6 > 41|z4)
-2.58 0.01 0.9771 0.0232
0.02 0.9818 0.0184
0.03 0.9844 0.0158
0.04 0.9861 0.0141
0.05 0.9874 0.0129
-1.96 0.01 0.9352 0.0650
0.02 0.9439 0.0564
0.03 0.9489 0.0513
0.04 0.9524 0.0478
0.05 0.9551 0.0451
-1 0.01 0.7802 0.2200
0.02 0.7910 0.2093
0.03 0.7977 0.2026
0.04 0.8026 0.1976

0.05 0.8065 0.1937
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Table 2.4(a): Posterior Probabilities of Different(tail) Student ¢ Priors(v)

20 Ptail v ])((S < (52 54) P(5 > 61|§4)
-2.58 0.01 10 0.7227 0.2773
50 0.7454 0.2546
100 0.7481 0.2519
0.02 10 0.7536 0.2464
50 0.7718 0.2282
100 0.7740 0.2260
0.03 10 0.7754 0.2246
50 0.7909 0.2091
100 0.7927 0.2073
0.04 10 0.7931 0.2069
50 0.8065 0.1935
100 0.8081 0.1919
0.05 10 0.8083 01917
50 0.8200 0.1800

100 0.8214 0.1786
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Table 2.4(b): Posterior Probabilities of Different(tail) Student ¢ Priors(v)

20 Ptail v P((S < 52|E4) P((S > 51]54)
-1.96 0.01 10 0.6725 0.3275
50 0.6918 0.3082
100 0.6941 0.3059
0.02 10 0.6978 0.3022
50 0.7141 0.2859
100 0.7160 0.2840
0.03 10 0.7161 0.2839
50 0.7305 0.2695
100 0.7322 0.2678
0.04 10 0.7312 0.2688
50 0.7442 0.2558
100 0.7457 0.2543
0.05 10 0.7445 0.2555
50 0.7563 0.2437
100 0.7577 0.2423
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Table 2.4(c): Posterior Probabilities of Different(tail) Student ¢ Priors(v)

20 '[)tail v P((s < 52|E4) P((S > 51!24)
-1 0.01 10 0.5898 0.4102
50 0.6008 0.3992
100 0.6021 0.3979
0.02 10 0.6037 0.3963
50 0.6134 0.3866
100 0.6146 0.3854
0.03 10 0.6140 0.3860
50 0.6229 0.3771
100 0.6240 0.3760
0.04 10 0.6227 0.3774
50 0.6310 0.3690
100 0.6320 0.3680
0.05 10 0.6304 0.3696
50 0.6383 0.3617
100 0.6392 0.3608
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2.3 Clinical Trials on Normally Distributed Re-
sponse with Unknown Variance

The frameworks of Bayes sequential method in group sequential clinical trials
above assume that the main outcome variable for a clinical trial is from the normal
distribution N (g, %) with known variance o?. The p is a measure of treatment
effect. However, it is often difficult to know the exact value of o2 in practice. This

issue 1s considered as follows.

2.3.1 The Framework

The prior distribution

Consider the clinical trial as described in Section 2.1. The main outcome measure
X for the clinical trial is normally distributed with probability density functions
N (fte, %) and N (ps, %) for the experimental and the standard treatments, re-
spectively, where the variance o2 is unknown. The parameter of interest is the
treatment difference § = ., — p,. For the convenience of notation, assume that
the clinical trial is monitored at every 2n patients with n for each treatment. At
each analysis 7, 7 = 1,2, ..., 1,

2

Ty = T = Ky v 170, S, (2.13)

n

is a sufficient statistic of the treatment difference § given o?, where X;, ~
N (e, g—n) and Xj, ~ N(u,, %) are group sample means for the experimental
and standard treatments, respectively.

Let r = % and let R be the corresponding random variable of 7. Suppose the

prior distribution of ¢ given R = r is the normal distribution,

1
§|R =r ~w(é|r) = N(vn, —), (2.14)

nor
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and the marginal prior distribution of R is the gamma distribution,
R ~w(r)=T(e,p), (2.15)

where parameters o« > 0 and 3 > 0.

The Posterior Distribution

It is known that for the normal distribution N(4, %)(or N (6, ) likelihood, the
normal-gamma prior is conjugate prior density for parameters (4, %5)(or (4,r)).
At each analysis j, j = 1,2,...,[, assume values Z; = 2, Z, = 23, ..., Z; = z;

have been observed and f(z1, 2, ..., z;/,7) is the probability density function of

(21,22, ..., z7) given (4,r), that is,

J i 5
forr 2o lbir) = (fgr) € F Zimalso? (216
m

Let Z; = % i_1 2. The posterior probability distribution of ¢ given R = r by

Bayes theorem is

w(d|z1, 22y vy 25,7) X f(21, 29, ..., 250, 7) W(S|r)

_ .7'7”(7]' —6)2 _ngr(8—yg )2
x € 2 (& 2

intng) inZ;+ngyy
_Un no)r (5 I )2

xX € Jntng

It then follows

d~w(d

S |
21,22y 0y 25,7) = N (]n',zj + 7701/0, . . (2.17)

Jn + ng (yn + no)r
The distribution of R given Zy = z1, Zy = 23, ..., Z; = z; 18

w(r|z1, 22, .., 25) X /f(zl,zz, ey 216, 7) w(O|r) w(r) d§
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> w(r)/ (\/’T)j@_% f““‘"““"’ﬁe—%s—u@f(zd
— ’IU(T) 7"%@_,;_7‘ i=1 : n01 /\/—6 > IlJ-}—nO (”jzj+7bou0)6]d5

J nr J 2 ngr_ o 1( +"0"0)‘
x w(r)rze 2 Li=1% 2 062_1—11j+n0

ngnjr

: nr M . )2 s ) 2
= w(r)rie” 2 L= (%) " atuigag (%)

1 Jnn

a+§—1 _<’B+% Ef:l(zi_‘z]) T3 atay jn+tng (Zj_yo)2>r

Hence, w(r|z1, 22, ..., z;) is the gamma distribution with shape parameter equal to

i g . ol e . n \~J Y. =.)\2 1 gnng (= 2
a + £, and scale parameter equal to 8+ 3 X7 (z: — Z;)* + T (z; — 10)*.

Let

JNZ; + nolo

@ = :
Jn +ng
ng _ non)
3 = e 2 —Z 2 = 2 o Q
/1 ﬁ 2 ;( J) (n] + 770)( g VO) (2 J‘b)
Then,
R ~ wir|z, 22, ...s23) = [(7|a + /31) (2.19)

The posterior probability density function of (é,7) by (2.17) and (2.19) is

w(d,r|21, 22,..,25) = w(b|z1,22,...,25,7) W(r|21, 22, ..., 2;)
1 J

= N |a, — ['(r =, 3

(0] (]7Z+no)7‘) (r fac+ 2’ A1)

: S atd _
¢ J
vV 2m F(CY + 5)
2 /(,H—’i
[ 2 5
A / o 1 n+n a
_ VIn+no By _ petialon —(lnta)es Y o (2.20)

V2r T(a+9)
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The posterior probability density function of § is then,

(o]
wiéler, 2, 0y 25) = /0 w(d, 7|21, 22, ..., 2;) dr

Jin T A Dot i+ 1)
v2r Dla+ 2] (w 1+ By)etits

( Jntng)(2a+j )17 I\( 2a+] +1) (Jntno)(2a+j _LQQ—?H_I
- - 1,‘2:. 14— (§—q)
(20 + j)m)2I'(%52) 20+
- . ] 0)(2 )
_ (5|2 +], a, SnEM2a i)y (2.21)

261

which is a ¢ distribution with degree of freedom 2a + j, location parameter a, and

(jn4no)(2a+7)

Ty . The values of a and [, are obtained by (2.18).

precision

The stopping rule
At each analysis 7, 7 = 1,2,...,[, the clinical trial is suggested being stopped if

either
52 \
P(§ < 83|21, 22, ..., 25) = / w(0|z1, 29y ooy z5) d§ > 1 — &4, (2.22)
or
Pw>m%@w¢ﬁ5éwwhﬂwﬁgw>yf% (2.23)

where w(d|z1, 22, ..., zj) is obtained by (2.21) and &; and e, are small positive

numbers; Otherwise the trial needs to be continued.
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2.3.2 The Prior Information

Influences of the prior information of (§,02) on the posterior distribution of § is

§ given o2 be the normal distribution N(0, :L—()) as in (2.14), where ng = 8, 22, and
89; and let the marginal prior distribution of R = % be the gamma distribution

['(e

7%) as in (2.15), where @ = 0.2, 0.5, 0.8, 1, 1.5 and 2. If o = % or an even
natural number, then the gamma distribution I'(«, %) is a x%(2«a) distribution.

The Monte Carlo simulations are used in the study.

The inference of the parameter o

Let the sequential sample Z;, 7 = 1,2,...,5, of the example be from the normal
distribution N(—0.01,%%). The value § = —0.01 is the mean of 1000 § which are
derived from the normal prior distribution N(0, Z—;) with 62 = 0.5. The 02 = 0.5 is
the average of 1000 o where % ~ T'(1, 1). The average posterior probabilities of §
as in (2.22) and (2.23) from 1000 simulations are denoted by Mean P(§ < &5|7 = 4)
and Mean P(d > d1|j = 4), respectively, at the analysis j = 4 in Table 2.5. The
corresponding standard errors are given in the brackets. For each ng = 8, 22, and
89, the differences among the posterior probabilities within two consecutive values
of o in Table 2.5 are around 0.002. These differences might be negligible. The
differences in the average posterior probabilities P(§ < d2|z1, 22, 23, 24) with a =
0.2 and 2 are equal to 0.5589 - 0.5497 = 0.0092 when no = 8 for the scanty prior
information of §; equal to 0.5566 - 0.5470 = 0.0096 when ng = 22 for the moderate
prior information of §; and equal to 0.5483 - 0.5383 = 0.01 when ny = 89 for the
considerable prior information of . These differences are close to each other. The

same results are found when the values of § and o2 are changed. The example

shows that the posterior inferences on ¢ is reasonable robust to the parameter a.
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Table 2.5: Posterior Probabilities of § under Different ny and o

ng « Mean P(6 < 93|73 =4) (se) Mean P(d > d1]5 = 4) (se)

8 0.2 0.5497 (0.0080) 0.4503 (0.0080)

0.5 0.5518 (0.0084) 0.4482 (0.0084)

0.8 0.5536 (0.0087) 0.4464 (0.0087)

1 0.5547 (0.0089) 0.4453 (0.0089)

1.5 0.5570 (0.0094) 0.4430 (0.0094)

2 0.5589 (0.0097) 0.4411 (0.0097)

22 0.2 0.5470 (0.0076) 0.4530 (0.0076)

0.5 0.5492 (0.0080) 0.4508 (0.0080)

0.8 5511 (0.0083) 0.4489 (0.0083)

1 0.5522 (0.0085) 0.4478 (0.0085)

1.5 0.5546 (0.0089) 0.4454 (0.0089)

2 0.5566 (0.0093) 0.4434 (0.0093)

89 0.2 0.5383 (0.0061) 0.4617 (0.0061)

0.5 0.5405 (0.0065) 0.4595 (0.0065)

0.8 0.5424 (0.0068) 0.4576 (0.0068)

| 0.5435 (0.0070) 0.4565 (0.0070)

1.5 0.5461 (0.0075) 0.4539 (0.0075)

2 0.5483 (0.0078) 0.4517 (0.0078)
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The comparison with the situation of ¢? known

Assume the sequential sample Z;, 7 = 1,2, ..., 5, in the example is from the normal
distribution N(—0.01, %) Table 2.6 lists average posterior probabilities P(¢ <
02

21, Z9, 23, 24) and P(6 > 01]z1, 22, 23, z4) with the variance of the normal response

known ¢ = 0.5, denoted by P(-|Z4), and the variance unknown % ~ I'(1, 3
denoted by P(-|j = 4) from the Monte Carlo simulations. We choose % ~ T'(1, %)
since E((%) = 2. The values in brackets are corresponding standard errors. It can
been seen from Table 2.6 that the posterior probabilities P(§ < d|z1, 22, 23, 24)
and P(§ > 61|21, 22, 23, 24) with o2 = 0.5 are similar to those with G% ~ I'(1, %)

This example shows that it is reasonable to assume % ~ I'(1, 3).

Table 2.6: Posterior Probabilities of § with o2 Known and Unknown

o2 =0.5 = ~I(1,1)

o 2

Mean Mean Mean Mean

Nno P((S < 62'54) P(5 > 51|§4) P(5 < 52’] — 4) P((g > 51“] = 4)

o0

0.5294 (0.0090) 0.4706 (0.0090)  0.5294(0.0092)  0.4706 (0.0092)
22 0.5284 (0.0086) 0.4716 (0.0086)  0.5281(0.0087) 0.4719 (0.0087)
89 0.5244 (0.0073) 0.4756 (0.0073)  0.5233(0.0072)  0.4767 (0.0072)

The inference of the change of o

Assume that the sequential sample Z;; and Z,; are from the normal distribution
N(—0.01, Zni) and N(—0.01, %L-ZL)7 respectively. Let ¢ = 0.5 and 02 = 1. The corre-
sponding posterior probabilities are denoted by Pi(:|-) and Ps(+|) respectively in

Table 2.7. Table 2.7 only lists the posterior probabilities P, (0 < 85|21, 29, 23, 24, 0F)

; N N 9 >
since Pp(& > 01|21, 22, 23, 24, 0%) = 1 — Pu(8 < 0221, 22, 23, 24,02), k = 1,2, when
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Table 2.7 shows that the change of the posterior probabilities P(§ < 83|21, 29, 23, 24)

with the change of 0% is bigger at 0 known than those at o ~ I'(c, 1).

Table 2.7: Posterior Probabilities of § with Different o2

o = 0.5 known L~ T(1, %)
Mean Mean Mean Mean

no Pi(8 < 02|Z4) P2( < 62|Z4) Pi(6 < dsly =4) Po(d < da]j =4)

8 0.5294 (0.0090) 0.5194 (0.0090)  0.5294(0.0092)  0.5204 (0.0099)
22 0.5284 (0.0086) 0.5187 (0.0086)  0.5281(0.0087)  0.5196 (0.0094)
89 0.5244 (0.0073) 0.5161 (0.0073)  0.5233(0.0072)  0.5165 (0.0079)

The summary

Under the framework described in Section 2.3.1, we have that the posterior prob-
abilities P(0 < 6s|21, 22,...,25) and P(6 > 61|21, 22,...,2;) are reasonably ro-
bust to the parameter a; when we choose the prior distribution % ~ T'(a, o
where E(Z) = 2a, the posterior probabilities P(§ < 85|21, 22, ..., 2;) and P(§ >
81|71, 22y ..., z;) are similar to those of o? being known and equal to i; if we
change ¢? from 0.5 to 1, the corresponding change of posterior probability P(§ <
02|21, 22, ..., z;) 1s smaller in assuming 01—2 ~ I'(1, %) than that in assuming o2 = 0.5.
Therefore the normal-gamma prior described in Section 2.3.1 is recommended

when we do not have enough prior information on the variance 2.

2.4 Discussion

The framework of Bayes sequential methods in group sequential clinical trials
described in Section 2.1 is based on the work of Freedman and Spiegelhalter(1989).

It can be generalized to clinical trials with binomially distributed responses and
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survival time data, although these clinical trials can be approximated by clinical
trials with normal distribution responses.

In the framework, at each analysis 7, j = 1,2,...,(, after observing Z; = z,
Zy = z3, ..., Zj = z;, we look at the posterior probabilities P(§ < d|z1, 2, ..., 2;)
as in (2.4), and P(d > 01|z1, 22,...,2j) as in (2.5). If the posterior probability
P(6 < d3|z1,22,...,25) (or P(§ > 41|21, 22, ..., 25)) is greater than some specified
value, then the clinical trial may be stopped. The calculation of corresponding
posterior probabilities could be found in Chapter 5 for clinical trials with binary
response and in Chapter 6 for clinical trials with survival time data.

The framework of Bayes sequential methods in groups sequential clinical trials
which we have discussed are based on posterior probabilites P(§ < 82|21, za, ..., 2;)
and P(§ > 01|71, 22, ..., 2j). Other criteria have also been suggested, for example,
at each analysis 7, j = 1,2,...,[, we can also look at the posterior expectation
of the treatment difference, denoted by FE(d|z1, 22, ..., zj). The clinical trial may
be suggested to be stopped if the expectation F(d|z1, 22, ..., z;) is greater than
some specified value. More generally, let g(d) be some quantity of interest. At
each analysis j, 7 = 1,2,...,[, we may look at the posterior expectation of ¢(¢),
that is, £(g(d)|z1, 22, ..., 2j), and decide whether to stop the trial based on the
value of E(g(0)|z1,22,...,2;). If g(d) is the indicator function for the interval
(—o0, 1) (or (82, o©)), then E(g(d)|z1,22,...,2;) = P(6 < 83|21, 22,...,2;) (or =
P(d > 81|21, 22y 4005 85) )




Chapter 3

Bayes Sequential Decision Theory

3.1 Introduction

Decision theory provides the framework for combining subjective distributions
with actions. The method of a sequential decision procedure is to look at a
sequence of observations one at a time and to decide after each observation whether
to stop sampling and make a decision immediately or to continue sampling and
make a decision sometime later.

Bayes sequential decision theory used in group sequential clinical trials is
briefly described in this chapter. Details can be found in Berger(1985), Deg-
root(1970), and Ferguson(1967), etc.

3.1.1 Basic Elements of A Sequential Decision Procedure

The basic elements of a sequential decision procedure considered in the study are
1) a parameter § whose values are in the parameter space A and its prior
distribution w(¢d) which is from the space of prior distributions A*;
Consider a clinical trial comparing two treatments described in Section 2.1.
The parameter of interest is the treatment difference § = po — p,. Its space A is

equal to the real line R. The prior distribution of the parameter of interest ¢ is

&1
Do
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assumed to be the normal distribution
d ~w(d) = N(I/O,TOZ).

The space of prior distributions is the normal distribution family, A* = {N (4, 72) :
§eR, 72> 0}.

2) a decision d which is from decision space D;

When the above clinical trial is terminated, a decision d will be chosen from
the decision space D = {experimental treatment, standard treatment}.

3) a sequential random sample X7, Xs,...; assume that the conditional g.p.d.f
of each X,,, m = 1,2..., is f(+|0) for every § € A;

In the clinical trial described in Section 2.1, we have the sequential sample Z;,
J = 1,2,...,[, which are from the normal distribution N(J, %) given ¢ with the
variance % known.

4) a loss function L(d,d), a real value function defined on A x D, which rep-
resents the loss when ¢ is true and decision d is chosen;

5) the cost functions are denoted by {cn(d, 1,22, ..., ), m = 1,2,...}; the

value of ¢, (9, z1, 2, ..., 2,,) represents the cost of taking observations X; = z1,
Xy = @9, ..., X; = &, and stopping sampling when ¢ is the true value of the
parameter.

3.1.2 Loss Function and Cost Function

Bayes sequential decision theory has not been widely used in clinical trials because
of the computational complexity of Bayes inferences and the difficulty of specifying
loss and cost functions which can describe or measure the cost of decisions and the
cost of carrying out a clinical trial. Lewis and Berry(1994), Lewis(1996) have ap-
plied Bayes sequential decision theory with piecewise continuous loss functions in

group sequential clinical trials of binomial response variables. R.J.Sylvester(1988)
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used Bayes decision theory in a one stage Phase II clinical trial with binary re-
sponse outcome and a two-point prior distribution for a new drug response rate.
He has suggested a loss function which involves the patient horizon and the amount
of the difference between the new drug response rate and the standard rate.

Generally, the aims of the ideas considered in loss functions and cost func-
tions are to maximise the expected experimental treatment benefit over a patient
horizon and the loss in efficacy will be taken to be proportional to the magnitude
of the advantage of the treatment difference(Anscombe 1963, Berry et al 1992,
Whitehead 1992). This area has been little studied.

The simplest form of the loss function is piecewise continuous. This will be
used in group sequential clinical trials comparing two treatments with normal
distribution response variables in Chapter 4. Although we may not rely on such
a simple loss function to make decisions in real clinical trials, this is a start to
introduce Bayes sequential decision theory into group sequential clinical trials.

Following this, the more complicated loss and cost functions will be discussed.
For example, suppose a group sequential clinical trial is designed to compare an
experimental treatment with the standard treatment. The parameter of inter-
est is the treatment difference §. Assume that the experimental treatment is to
be regarded as better than the standard treatment if the treatment difference
§ > 9o > 0 and that the experimental treatment is not to be recommended
otherwise. The &y is the break-even value of the treatment difference §. Let
zj, 7 = 1,2,...,1, be the observation values of the group sequential sample Z;,
7 =1,2,...,1, respectively, which are used to test the treatment difference §. The
[ is the number of groups or analyses. Let d. and d, be decisions of choosing the

experimental and the standard treatments respectively, after the clinical trial is
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terminated. The loss functions can be defined as,

0 d < 9o
BA} = (3.1)
[((5 — (50)t 4> 50,

—K(0—14d0)t &< do
L(d;ds) = (3.2)
—K(6—13d)t & > o,
where A denotes the difference in cost of further treatment between a patient who
takes the experimental treatment and a patient who takes the standard treatment
(assume K > 0); t expresses the patient horizon, ie. the average number of
patients who are treated with the experimental treatment after the trial before a
second experimental treatment, which is as least as good, is found; n; is the group
sample size in each treatment at analysis 7, 7 = 1,2, ..., L.

The loss functions L(d,d,) in (3.1) and L(4,d.) in (3.2) show that if the treat-
ment difference § < dg, that is, the experimental treatment is not better than the
standard treatment, then there is no loss in choosing the standard treatment, but
there is a cost —K'(d — dp)t > 0 in choosing the experimental treatment; if the
treatment difference § > dp, that is, the experimental treatment is better than the
standard treatment, then there is a gain(negative cost) —K(d — o)t < 0 in choos-
ing the experimental treatment, but there is a cost K(d— o)t > 0 in choosing the
standard treatment. The cost or gain of making a decision is proportional to the
patient horizon ¢ and the treatment efficacy 6 — do.

Chapter 5 will apply Bayes sequential decision theory with the form of loss
functions as in (3.1) to group sequential clinical trials with binomial distribution

response variables.
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3.1.3 Bayes Risk, Bayes Decision and the Expected Risk

Consider a sequential decision procedure with the basic elements specified in Sec-
tion 3.1.1. Suppose the sequential samples X; = z1, Xy = x3, ..., X;, = 7,
m = 1,2,..., have been observed. Let w™ = w(§|z1,zs..., ) be the posterior

distribution of d after observing X; = z1, Xy = 29, ..., X,y = 2y, which is,

_ f(xlaa;Za"'al'm‘(g) w(é)
fA f<$1,l'2, 7$m15) ’LU((S) dé’

(3.3)

8|T1, @y ey Ty ~ W(O|T1, Ty eeny T

The Bayes risk of stopping sampling, denoted by ro(w™,m), is defined as the
greatest lower bound of expected losses, or risks, with respect to the posterior

distribution w(d|xq, z, ..., 2,,) among decisions d € D, that is,
ro(w™,m) = gg]fj B (slo1,09,mm) (L(0, d) + e (3, 21, 22, ...y Tm)).  (3.4)

After sampling is terminated, a decision d € D is called a Bayes decision if its risk
B (81z1 w9sesom) (L(0, d) + € (6, 21, 23, ..., 2m)) 1s equal to the Bayes risk ro(w™, m)
in (3.4). In clinical trials of comparing different treatments, the decision space D
is a set of finite treatments, that is, a set of finite elements, so we can always get
a Bayes decision in clinical trials.

On the other hand, if sampling needs to be continued after observing X; = z1,
Xy = gy ooy Xon = Ty, the expected risk from continuing sampling to observe
the next observation X and to choose a decision d € D later, expressed by
E*ro(w™(X),m + 1), is the expectation of the Bayes risk ro(w™(X), m 4 1) with

respect to the predictive density of z, f(z|¢1, 22, ..., ), that is,
Ero(w™(X),m+1) = /X ro(w™(X = 2),m + 1) f(e|e, 22, .., Tra) dz, (3.5)

where w™(X = z) = w(é|x1, xa, ..., Tm, ¢) is the posterior distribution of § after

observing X1 = z1, Xo = 23, ..., X = Zmm and X = z; ro(w™(X = 2),m + 1) is
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the Bayes risk after observing X; = 21, X3 = 23, ..., X,,, = 2, and X = z, and
m+1 means that the risk is from these m+1 observations; f(z|z1, 22, ..., 2,) is the
predictive density function of x after observing X; = z1, Xo = 29, ..., X, = @,
that is,
F(2]21, T2, ooy Em) = / F(2]6) w(b|21, 3, ooy Tm) dO. (3.6)
A

3.2 Bayes Sequential Decision Theory

3.2.1 Bayes Sequential Decision Procedure

A sequential decision procedure involves looking at a sequence of observations one
at a time and deciding after each observation whether to stop sampling and make
a decision immediately or to continue sampling and make a decision sometime
later. It has two components. One component is called a stopping rule, or a
sampling plan, which specifies whether sampling should be stopped and a decision
d € D should be chosen without further observations or whether another sample
X should be observed after observing values X; = 21, Xy = @3, ..., X;n = Zpm,
m=1, 2, .... The second component of a sequential decision procedure may be
called a decision rule. It specifies the decision d(z1, ¢, ...,2,,) € D to be chosen
for each possible set of observed values X; = 21, X5 = 29, ..., X,, = z,, after
which sampling might be terminated.

A Bayes sequential decision procedure, or an optimal sequential decision pro-
cedure, is a procedure for which the total risk(at least one observation is to be
taken in clinical trials) is minimised. For a bounded sequential procedure, in which
there is a fix number of observations Ny that can be taken, at each analysis, after

observing X1 = x1, Xy = 2, ..., Xip, = &, m = 1,2,..., Ny — 1, the stopping rule
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of a Bayes sequential decision procedure is applied by comparing the Bayes risk
from stopping sampling ro(w™, m), obtained by (3.4), with the expected risk from
the optimal continuation of sampling and then choosing a decision d € D later,
which is denoted by ry,_m(w™, m) and discussed in Section 3.2.2. If the Bayes
risk from stopping sampling is less than the risk from the optimal continuing

sampling, that is,
ro(w™,m) < r