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Abstract

Bayesian methods for group sequential clinical trials have received increasing at­
tention recently. They offer an approach for dealing with many difficult problems 
and have some practical advantages over frequentist methods. This thesis covers 
Bayesian methods for group sequential clinical trials comparing two treatments 
using both the Bayes sequential procedure and the Bayes sequential decision pro­
cedure. The main outcome measures for clinical trials are distributed as normal, 
binomial, and exponential and the proportional hazard model for survival time 
data.

Under the framework of Bayes sequential procedure for group sequential clini­
cal trials, the student t prior distribution for the parameter of interest is proposed 
as a replacement for the normal prior distribution when the sample mean is very 
distant from the mean of the prior distribution. The framework of Bayes sequen­
tial procedure in clinical trials on normal distribution responses with variance 
unknown is given.

Bayes sequential decision theory is applied to group sequential clinical trials. 
First, Bayes sequential decision procedures with piecewise continuous loss func­
tions are used in clinical trials on normal distribution responses. The procedures 
with loss functions which consider treatment efficacy and patient horizon are then 
given in clinical trials on binary responses. Approximation methods of Bayes 
sequential decision procedures are explored in clinical trials with survival time 
data.

Robust Bayes analysis in clinical trials is presented to address the criticism on 
the subjective prior distribution for parameters of interest.
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Chapter 1

Introduction

1.1 Group Sequential Clinical Trial

The randomised, controlled clinical trial is the standard for evaluating new treat­

ments and therapeutic strategies in clinical research. It consumes substantial 

patient, investigator and financial resources. For ethical requirements, patient re­

sources should be deployed efficiently and necessarily. Early termination could be 

considered if a clinical trial shows early benefits or unexpected toxicity. To achieve 

this, the interim monitoring of a clinical trial has been suggested and developed 

by statisticians.

The mathematical theory of sequential analysis was introduced in the 1940s, 

motivated by industrial applications, and has continued to develop actively. Over 

the past 20 years, there has been extensive development in the biostatistics lit­

erature concerning the sequential monitoring of clinical trials. Classical methods 

of sequential analysis in clinical trials are summarised by Armitage(1975), and 

later by Whitehead(1982). These methods allow for continuous monitoring of 

paired data while they achieve the desired levels of type I and type II error rates. 

Though these methods are generally successful in their pursuit of a reduced sam­

ple number, they are not feasible in practice because of the difficulty of continual
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monitoring, particularly in multicenter co-operative clinical trials with survival 

time responses.

The term “group sequential” was first introduced by Pocock(1977). The group 

sequential clinical trial monitors a sequence of grouped data instead of paired data 

one group at a time and is used to decide whether sampling should be continued 

or stopped based on some criteria after observing each grouped data. The interim 

monitoring can be at either every specified number of samples, for instance, ev­

ery 20 patients, or alternatively every selected time point, for instance, every 3 

months after treatment or randomisation. The group sequential clinical trial or 

interim monitoring of clinical trial is now widely used for ethical, scientific and eco­

nomic reasons. It is generally agreed that a clinical trial could be stopped should 

accumulating evidence demonstrate the superiority of one of the treatments or 

unexpected toxicity of treatments; whilst continuing the trial would unnecessarily 

expose some patients in the trial to the less effective treatment and delay applying 

the results to patients outside the trial. With the current statistical methods, it 

is now recommended by FDA that planned interim analyses should be included 

in any clinical trial protocol.

1.2 Introduction of Frequentist Methods

A number of different frequentist statistical procedures in group sequential clinical 

trials have been suggested. The most popular ones are the Pocock(1977) and the 

0 ’Brien-Fleming(1979) procedures. It is widely noticed that the repeated signifi­

cance tests at conventional critical values increase the overall significance level or 

type I error rate a. This was shown by Armitage, McPherson and Rowe(1969). 

Therefore their methods adjust the critical values used at interim tests of the null 

hypothesis by the choice of a more stringent “nominal significance level” a' such 

that the overall type I error rate a is controlled at some prespecified level, for
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example, a =  0.05. If the p value of test statistics Zj , j  =  1 ,2 ,...,/ — 1, where 

/ is the number of groups or number of analyses, is less than the nominal signif­

icance level a' at an interim analysis, then the trial could be stopped early since 

the significant treatment difference under overall significance level is equal to a. 

Otherwise, the trial is continued to the final analysis.

Pocock and O’Brien-Fleming have given the nominal significance levels used in 

their procedures for various maximum number of groups and overall significance 

levels in their papers. Some of these nominal significance levels with overall type 

I error rate a =  0.05 are shown in the following table.

Nominal Significance Level

Procedure One interim analysis Two interim arlalyses

Pocock

O’Brien-Fleming

0.0294, 0.0294 

0.0048, 0.0475

0.0221, 0.0221, 

0.0005, 0.0141,

0.0221

0.0451

For example, for two interim analysis clinical trials the nominal significance levels 

above are 0.0005, 0.0141, and 0.0451 at the first, the second and the final analysis, 

respectively, with the O ’Brien-Fleming procedure; the levels remain at a constant 

value of 0.0221 with the Pocock procedure. In terms of the nominal significance 

level, Pocock’s procedure uses a constant stopping boundary, while the boundary 

of O’Brien-Fleming starts from a very strict level and ends close to the overall 

significance level. The methods of Pocock and O’Brien-Fleming require specifying 

the number of groups(or number of interim analyses) in advance and monitoring 

a clinical trial at equal increments of information. In practice, these procedures 

could cause difficulties since we may change the frequency of data monitoring at 

some point during the course of the trial for some unforeseen reasons. Another 

possibility is that slower recruitment than anticipated could force extension of the 

trial and hence increase the number of interim analyses.
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Lan and DeMets(1983) have developed a generalized group sequential pro­

cedure in clinical trials, known as the spending function (or use function) ap­

proach. It was motivated by the early termination of the Beta-Blocker Heart 

Attack Trial(BHAT)(1981). Their method avoids the above two restrictions, in­

cludes the approaches of Pocock and O’Brien-Fleming as special cases, and re­

quires only the specification of a spending (or use) function a(t) in advance. It is 

briefly described as follows.

Assume completion of a trial by time T, scaled arbitrarily such that T =  1, 

and specify an increasing function a(t) such that a(0) =  0 and a( 1) =  a, which 

is the overall significance level. This function « ( /) ,  which is called “spending” or 

“use” function, allocates the amount of type I error rate that one can “spend or 

use” at each interim analysis. Suppose there is a continuous stochastic process 

m t )  ;0 <  t < 1}, for example, Brownian motion process, and a continuous 

boundary 6(f), 0 <  t < 1, with probability a of being crossed in 0 <  t < 1. More 

specifically,

a(t) — P (t < t )  0 <  t <  1,

where r is the first exit time across the boundary b(t). Assume that W (t)  is 

observed only at time points, 0 <  t\ < t2 <  ... < ti <  1. These are corresponding 

to values of test statistics Zj, j  =  1 ,2 ,...,/. Let Wj =  W  (¿j), j  =  1 ,2 ,...,/. The 

boundary point /q =  b(ti) is chosen such that

P(\W1\ > b 1) =  P ( 0 < r < t 1) =  a(t1) i

that is, to assign an accumulated boundary crossing probability a (fi) to the time 

t\. The bj =  b(tj), j  — 2 ,...,/, are obtained such that

P(\W\\ <  &i,..., llTj-xl < bj-r,\Wj\ > bj) =  P(tj-1 < r <  tj) =  a(tj) -  a (fj-r ).
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The increment a(tj) — a (t j -1) represents the additional amount of the significance 

level that can be spent at the time period (tj-i, tj]. If b(t) denotes a continuously 

accumulated boundary with h(t.j) — bj, j  =  1 ,2 ,...,/, of the process {LF(/);0 < 

t <  1}, then the probability of being crossed in 0 < t < 1 is a. Therefore the 

sum of probabilities of {W { t j ) , j  =  1 ,2 ,...,/}  exceeding (6 i, b2, ..., b{\ is less than 

or equal to a.

Implicit in this procedure is information time tj. On the scaled [0,1] interval, 

t represents the fraction of patients randomised or the number of events observed. 

The calendar or real time can be transformed to the information time, for example, 

see Lan and DeMets(1989). The evaluation of bj, j  — 1 ,2 ,...,/, depends only 

on ait) and T, ..., tj, and is independent of the number of groups /. Also the 

group sample size, or the increment of information tj — t j -1, j  =  1,2,..., /, in each 

interim analysis doesn’t need to be a constant. So a clinical trial can be monitored 

at unequally spaced times without specifying the number of interim analyses in 

advance by the generalized group sequential procedure. The spending function 

approach needs to specify the target sample size of a clinical trial.

The fixed sample, the Pocock and the O’Brien-Fleming designs in clinical trials 

are special cases of the spending function approach. If the spending function is

f 0 0 <  t <  1
a(t) = I

a t =  1,

then it is a fixed sample design with the significance level equal to a.

If we choose spending function a\,

« i (t) =  2 -  2$(zi/Vt),

where $ is the standard normal distribution function, then the corresponding 

boundary is similar to the boundary of O’Brien-Fleming procedure. However, the
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spending function procedure doesn’t need to specify either the number of groups 

l or the group sample size in advance. Note ai(0.5) < 0.006 for a =  0.05. So 

an O ’Brien-Fleming boundary is unlikely to stop very early. The may be a

suitable choice when long-term treatment effect is a major concern of a clinical 

trial.

The spending function

a 2(i) =  a ln {l ±  (e — l) f }

will give the Pocock boundary. Since a 2(0.5) =  0.62a, a 2(t) will generally result 

in earlier termination but we will suffer a reduction in power.

While not described originally as a group sequential procedure, a strategy 

suggested by Haybittle(1971) and later supported by Peto et al(1976) merits con­

sideration as an ad hoc version of group sequential data monitoring. Most interim 

analyses occur periodically after the entry of an additional group of subjects or 

observations of an additional number of events. Haybittle proposed a very con­

servative critical value for all interim analyses(e.g. ±3.0 or ±3.5) such that type I 

error rate increases almost negligibly in repeated analyses. At the last scheduled 

analysis one could use the usual 5% critical value of ±1.96(or ±2.0) should the 

trial continue that far.

The advantages among the above stopping boundaries depend upon the needs 

of each clinical trial and the investigators philosophy. The Pocock boundary offers 

the best opportunity for early termination. However, for a trial which continues to 

the end with an impressive trend (e.g. the value of standardised test statistics > 

1.96) but does not exceed the nominal significance level, the inability to reject the 

null hypothesis H0 can be awkward and difficult to explain to clinical doctors. The 

Haybittle-Peto boundary does not allow much opportunity for early termination 

but avoids the awkward situation posed above. The O’Brien-Fleming boundary 

offers, in some sense, a compromise. Early termination is not likely as with that
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of Pocock, but becomes more possible as the clinical trial progresses. At the end 

of a clinical trial, the critical value of O’Brien-Fleming boundary is close to the 

corresponding value of the fixed sample test.

Elashoff and Reedy(1984) discuss the selection of a group sequential procedure 

with one interim analysis, and conclude that there is no “best” rule and they 

explain how the different options compare. Geller and Pocock(1987) confine their 

attention to a few options for clinical trials with a maximum number of interim 

analyses between two and five and the overall significance level a — 0.05 for a two 

sided test. The clinical trials with normal distribution responses are considered 

in their comparison. The options are the procedures of Pocock, O ’Brien-Fleming, 

Haybittle-Peto and the plans in Pocock(1982) which minimise the average sample 

number for that alternative hypothesis to be detected with given powers of 0.5,

0.75 and 0.8. Their conclusions are that the Pocock procedure has the greatest 

savings in an average sample number when alternative hypotheses can be detected 

with high power, but the O’Brien-Fleming procedure is better than the Pocock 

procedure for saving a maximum sample number.

Wang and Tsiatis(1987) have introduced a family of one parameter stopping 

boundaries, which were defined in terms of a parameter whose value affected the 

probability of rejection of the null hypothesis over the various analyses. Suppose a 

clinical trial comparing two treatments is monitored after every 2n observations, 

n for each treatment, and the maximum number of groups is l. Let Zj , j  =

1,2 ,..., /, be the sequence of test statistics. Assume Zj, j  =  1,2,..., /, are normally 

distributed with var(Z j)= l. The group sequential test consists of rejecting null 

hypothesis Ho of no treatment difference for the first j  such that

where C (A ,a ,l )  is chosen such that the overall significance level is a, that is, 

under the null hypothesis 7/0, the probability of failing to reject Ho, when it is
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true, is

P(\Z\\ <  (7(A, a, /)1A, \Zi\ < C (A ,a , l ) lA\H0) =  1 -  a,

where C (A ,a , l )  can be computed using the numerical recursive integration for­

mula given by Armitage, McPherson and Rowe(1969). The discrete stopping 

boundary values C(A, a, l ) jA, j  =  1 , depend on the parameter A, called the 

shape parameter. If A =  0, it gives the boundary of O’Brien-Fleming; and if 

A =  0.5, it is the boundary of Pocock.

This family of stopping boundaries yields approximately optimal results with 

respect to the least number of subjects for detecting specified treatment difference 

at given significance level a, and power 1 — (3. The optimal results of Wang and 

Tsiatis are consistent with those of Pocock(1982) by varying nominal significance 

levels to minimise the average sample number(ASN) under the alternative hy­

pothesis. So the approximately optimal boundaries within the family of stopping 

boundaries are approximately optimal overall. The methods of Wang-Tsiatis also 

need to specify a maximum number of groups in advance and analyse data at 

equal increments of information.

Pampallone and Tsiatis(1994) have proposed a general family of boundaries 

based on the boundaries of Wang-Tsiatis that allow stopping early with rejection 

of either the null or alternative hypothesis.

The statistical package EaSt(Early Stopping) can be used to design a group 

sequential clinical trial with Wang and Tsiatis’ family of one parameter stopping 

boundaries and Pampallone and Tsiatis’ general family of boundaries.

SPRT(Sequential Probability Ratio Test) designs and analyses have been sum­

marised by Whitehead(1992). He uses a continuous boundaries approach under 

the assumption of a continuous sample path, which is an abstract mathematical 

concept, and derives distributions of test statistics and power functions of tests.
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A Christmas tree adjustment is suggested at discrete interim analyses. The trian­

gular test is the most popular one in SPRT designs. There is a statistics package 

PEST(Planning & Evaluation of Sequential Trials) which can be used to not only 

design but also analyse group sequential clinical trials of SPRT. Estimations of 

the treatments effects have been given as well.

Jennison and Turnbull(1984, 1989) have described the repeated confidence 

interval approach. A sequence of intervals that all contain the true treatment 

difference with a prespecified probability, 95% say, are calculated at each interim 

analysis. The trial will be stopped and it can be claimed that there is a significant 

difference between the treatments when the current repeated confidence interval 

excludes 0. Jennison and Turnbull formulate certain repeated confidence intervals 

directly. Unlike previous methods, inferences of the repeated confidence interval 

approach are independent of the stopping rule. Interval estimates of the treatment 

difference are provided at each interim analysis. They can be used in reporting 

interim results and serve as an adjunct to a group sequential method giving more 

than just the “stop/continue” information at each interim analysis. This method 

is especially useful in some epidemiological studies or long-term follow-up studies 

where the sudden ending of exposure would be impossible. Koepcke(1989) has 

criticised that the repeated confidence intervals are too wide compared with con­

fidence intervals constructed at termination of a group sequential test. Pocock 

and Hughes(1989) have suggested that repeated confidence intervals be shrunk 

toward the null value of the parameter.

The stochastic curtailment approach in group sequential clinical trials was 

introduced by Lan, Simon and Halperin(1982). More details are given by Halperin 

et al (1982). The idea of stochastic curtailment is to curtail a trial as soon as an 

eventual conclusion of a trial is determined with high probability. At any stage 

of a trial, we calculate the probability of an eventual conclusion of experimental 

superiority, conditional on the true treatment difference of a trial and on the data
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observed so far. A trial is stopped and it is concluded that the experimental 

treatment is superior when the probability is large. This method can be used to 

illustrate the effects of low accrual trials. Stochastic curtailment is a prediction 

method, which is a criticism on this procedure.

The frequentist methods in group sequential clinical trials have the following 

major difficulties.

When a clinical trial is completed, there is an impressive trend of treatment 

difference which is however not significant at a pre-specified significance level, 

and the other studies have the same result. We may wish to carry on the study. 

How then should we analyse the extra data after we stop a trial? This type of 

problem also occurs when there is a delay between the entry of patient and the 

assessment of response to treatment. If a trial is stopped prematurely on the basis 

of a stopping rule, how should the statistician deal with extra data that become 

available after the trial has been stopped?

Terminal inferences of the group sequential method rely on strict adherence 

to the specified stopping rule. The confidence intervals, and point estimates of 

treatments differences have been studied under some special situations only. Most 

frequentist methods for group sequential clinical trials do not provide any inference 

about the treatment difference, only about the “stop/continue” decision during 

the period of interim monitoring.

Sometimes there is a difficulty in explaining the result to clinical investigators. 

For example, take a two interim analyses clinical trial with the Pocock procedure. 

The nominal significance level a' =  0.021 is used at each analysis, leading to an 

overall significance level a =  0.05. Suppose a trial has evidence of a treatment 

difference with nominal p value equal to 0.03 at each analysis. Then according to 

the nominal significance level this would not be statistically significant at the 5% 

level, whereas an investigator with identical data carrying out a fixed size analysis 

would attain p =  0.03. It is difficult to explain this to clinical investigators, who
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wonder why previous inspections of the data should affect the interpretation of 

the final results.

A large number of analyses give more opportunities for early stopping and 

will decrease the mean sample size if the treatment difference is large. On the 

other hand, increasing the number of analyses can actually increase the expected 

number of patients required for the trial under the null hypothesis, because the 

nominal significance level must be adjusted downward to maintain the overall type 

I error rate. There is a “penalty” paid for frequent interim monitoring of a clinical 

trial.

Reviews of frequentist methods for group sequential clinical trials can be found 

in DeMets(1987), Jennison and Turnbull(1990), Pocock(1992), Whitehead(1992) 

and Fleming and DeMets(1993).

1.3 Review of Bayesian Methods

Bayesian and the frequentist statistical approaches are based on inverse measures: 

one deals with probabilities of hypotheses given the data and the other involves 

probabilities of data sets given hypotheses. The interest of Bayesian method is on 

some unknown parameter 8. The notation of probability has different interpre­

tations. The probability in Bayesian inferences is not frequentist. The P(8 <  x ) 

does not represent the proportion of times that 8 is less than or equal to x in 

repeated investigations. Instead, it represents how likely the investigator thinks 

that 8 is less than or equal to x. Berry(1987) compares Bayesian with frequentist 

statistical approaches based on the role of likelihood principle. The comparison 

is summarised here. The Bayesian approach is conditional since the posterior is 

a distribution of given available information. The frequentist approach is uncon­

ditional since the statistical inference is derived from a given hypothesis. The 

Bayesian approach is consistent with the likelihood principle since the posterior
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distribution depends on the observed data only through Bayes theorem. The 

frequentist approach is not, because the p value or the tail probability is the prob­

ability under the null hypothesis of a result as extreme or more extreme than

data if there is a possibility of stopping or otherwise modifying the study as a 

result, unless inferences are adjusted accordingly. The conditional approach is 

completely flexible in this regard.

Bayesian methods for group sequential clinical trials have received increasing 

attention recently, as they offer an approach for dealing with many difficult prob­

lems and have some practical advantages over frequentist methods. As we know, 

before designing a clinical trial to compare the experimental treatment with the 

standard treatment, we will acquire all possible information about the activity 

of both treatments. This information will give us an opinion about the treat­

ment difference S and can be described by a prior distribution of the treatment 

difference, denoted by w(5). For example, Freedman and Spiegelhalter(1983) dis­

cuss their experience of translating doctors’ opinions into subjective probability 

distributions. Chaloner et. a/.(1993) describe a graphical elicitation of a prior 

distribution for a clinical trial. When we collect some data, we can update the 

opinion by Bayes theorem and get the posterior distribution of the treatment dif­

ference, denoted by w(S\data). The Bayesian inference derives entirely from this 

posterior distribution of the treatment difference. Naturally the clinical trial may 

be stopped if either

observed. In clinical trials, the unconditional approach disallows looking at the

or
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where the £\ and e2 are small positive values, the larger value of 6 denotes the 

experimental treatment better, and the interval ($i, 82) is the range of equiva­

lence (that is, the two treatments are considered roughly equivalent.). At each 

interim analysis, the treatment difference can be estimated by the expectation 

of treatment difference 5 with respect to the posterior distribution w(8\data). 

Freedman and Spiegelhalter(1989, 1993) have shown that by choosing some prior 

distributions Bayesian boundaries can be very close to Pocock or O’Brien-Fleming 

boundaries. Geller and Pocock(1987) mention that the Pocock procedure has the 

disadvantage of undertaking the last analysis at a p value considerably smaller 

than 0.05 and that the O’Brien-Fleming procedure is perhaps too stringent at the 

first analysis, virtually assuring that the trial does not stop then. Freedman and 

Spiegelhalter(1989, 1993) have also shown that the Bayesian method can have a 

stopping rule between the Pocock and O’Brien-Fleming boundaries by the choice 

of some prior distributions.

The attraction of the Bayesian method lies in its simplicity of concept and the 

directness of its conclusions. When we collect some data at any time, we update 

the opinion on the treatment difference by Bayes theorem. The likelihood principle 

implies that interpretation of the data does not depend on the number of analyses 

or on the stopping rule of the trial. So no “penalty” is paid for frequent interim 

analyses, and extra data can be analysed after the trial has been completed. Sta­

tistical inferences on the treatment difference following the trial are derived from 

the posterior distribution of the treatment difference. The problems of frequen- 

tist methods described in Section 1.2 are solved by Bayesian methods. However, 

Bayesian methods have not been as well developed as frequentist methods, and 

technical difficulties arise when numerous nuisance parameters are to be consid­

ered in addition to the treatment difference 8 itself. There is little corresponding 

software generally available which blocks the application of Bayesian methods in 

practice. The barrier to widespread implementation of the Bayesian method has
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been its computational difficulty and the construction of prior distribution, but 

that in principle is no longer a problem (Whitehead 1992).

Spiegelhalter, Freedman and Parmar(1994) have reviewed and demonstrated 

how Bayesian methods can be applied to group sequential clinical trials. Bayes 

sequential methods in clinical trials have been explored by Novick and Griz- 

zle(1965), Cornfield(1966, 1969), Berry(1985, 1989), Whitehead(1991), Freedman 

and Spiegelhalter(1989, 1991, 1993), Spiegelhalter and Freedman(1988), Freed­

man, Spiegelhalter and Parmar(1994), Parmar, Spiegelhalter and Freedman(1994), 

and by George et. al.( 1994), and discussed by Jennison and Turnbull(1990).

Since Bayes theorem allows an investigator to update his subjective opinion of 

the treatment difference 5 at any time, there is no special reason for a Bayesian 

to devise a stopping rule in advance. Decision theory provides the framework for 

combining subjective distributions with action. However, Bayes decision theory 

has not been widely introduced in group sequential clinical trials. Sylvester(1988) 

has used Bayes decision theory for a one-stage phase II clinical trial with binomial 

distribution response. Berry and Ho(1988) have addressed one-sided sequential 

stopping boundaries for clinical trials from a decision-theoretic point of view. 

Lewis and Berry(1994), and Lewis(1996) have studied Bayes sequential decision 

theory with piecewise continuous loss functions in group sequential clinical trials 

with binomial distribution response.

The major criticism of Bayes analyses is that it presumes an ability to com­

pletely and accurately elicit subjective information in terms of a single prior dis­

tribution. However, there has long existed (at least since Good(1959)) a robust 

Bayesian viewpoint which replaces the single prior distribution with a class of 

possible prior distributions. The goal of this approach is to make inferences or 

decisions which are robust over this class, i.e., relatively insensitive (or at least are 

satisfactory) to deviations as the prior distribution varies over this class. Green­

house and Wasserman(1995) have illustrated the application of robust Bayesian
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methods in clinical trials. Spiegelhalter, Freedman, and Parmar(1994) have sug­

gested the consideration of a community of priors covering the perspectives of a 

range of individuals. This may encompass a reference prior intended to add as 

little as possible to the data and a clinical prior expressing reasonable opinions 

held by individuals or derived from overviews(meta-analyses) of similar studies. 

However, it is also useful to develop “off the shelf” priors corresponding to a 

formal expression of sceptical and enthusiastic belief. These may be thought to 

provide reasonable bounds to the community of priors.

1.4 Aims and Outline of the Thesis

In this thesis, Bayes methods in group sequential clinical trials comparing two 

treatments are studied using both Bayes sequential and Bayes sequential decision 

methods; and the main outcome variables for clinical trials are distributed as 

normal, binomial, and exponential and proportional hazard models for survival 

time data. The aims of the thesis are to study some unresearched problems in 

Bayes sequential methods, build a set of systematic Bayes sequential decision 

methods, and also to compare these with frequentist methods in group sequential 

clinical trials.

Bayes sequential methods in clinical trials are discussed in Chapter 2. Under 

its framework in clinical trials, in which the main outcome variables is normally 

distributed, the student t prior distribution is used and compared with the normal 

prior distribution for the treatment difference. Bayes sequential decision theory 

is introduced to group sequential clinical trials. The brief introduction of Bayes 

sequential decision theory is described in Chapter 3. In Chapter 4, Bayes group 

sequential decision clinical trials are set up based on normal distribution responses 

with piecewise continuous loss functions, and are also compared with frequentist
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methods. The loss functions of considering the treatment effect and patient hori­

zon are studied under clinical trials with binary responses, which are discussed 

in Chapter 5. Chapter 6 discusses the application of Bayes sequential decision 

theory in group sequential clinical trials with the main outcome variable being an 

exponential and proportional hazard model for survival time. The brief introduc­

tion of non-parametric Bayes analysis is also included in Chapter 6 in order to be 

applied in proportional hazard model for survival time. Robust Bayes analyses 

which study the uncertainty of prior information in clinical trials are described in 

Chapter 7. The discussion and further study on some common issues are given in 

Chapter 8.



Chapter 2

Bayes Sequential Methods

In this chapter, the framework of Bayes sequential methods in group sequential 

clinical trials is described in Section 2.1. This framework is based on clinical 

trials whose main outcome variable is normally distributed with known variance. 

The mean of the normal distribution is the treatment effect. The parameter of 

interest is the treatment difference which is considered to have a normal prior 

distribution. In Section 2.2, the prior distribution of the treatment difference 

which has the form of student t is discussed. This is also compared with the 

situation of normal prior to the treatment difference. In practice, the variance of 

the normal response variable is usually unknown. This issue is studied in Section 

2.3.

2.1 Framework of Bayes Sequential Methods

2.1.1 The Problem

A group sequential clinical trial is designed to compare an experimental treatment 

with the standard treatment. The main outcome measure X  for the clinical trial is 

normally distributed with probability density functions and jV(//g,

for the experimental and the standard treatments, respectively. The value of

24
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<72 is known. For the presentation of below formulas purely, the variance of main
2

outcome measure X  is assumed to have the form The treatment is assigned by 

a randomised permuted block so that each consecutive group of 2rij, j  =  1, 2,...,/, 

patients has rij on each treatment. The l is the maximum number of groups.

Let the parameter 5 =  pe — ps be the measure of treatment difference where 

large value of 5 implies the superiority of the experimental treatment. The scale 

of treatment difference is divided into ( — oo, cq), ( i1; S2), and (¿2, oo). If S > S2, 

then the experimental treatment is considered clinically superior. If 6 < Si, then 

the standard treatment is superior. The interval (¿i, S2) is called the range of 

equivalence where the two treatments are considered roughly equivalent. Depend­

ing on the clinical situation, ¿q and S2 will either coincide or ¿q will be less than 

S2. The partitioning of the scale of treatment difference will be based on the rel­

ative toxicity of treatments and to a lesser extent on their cost and convenience. 

Assume that the treatment difference 5 has the normal prior distribution, that is,

S ~  w(S) =  N (v0,Tq). (2.1)

The variance r 2 is expressed as r 2 =  which might suggest that there were n0 

“extra” pairs of patients in the pilot trial(Freedman and Spiegelhalter 1989). This 

form is useful in comparing different prior information by the change of value no- 

The n0 is a measure of prior information on the treatment difference S.

Let the group sample means be denoted by X js =  ~  12%=ì - îj» and X j e =  

~  12?= i Xije, j  — 1, 2,...,/, for the standard and experimental treatments, respec­

tively, where the group sequential sample from the standard treatment X%js is from 

the normal distribution N (ps, y-) and the group sequential sample from the exper­

imental treatment X%je is from the normal distribution i =  1, 2,..., rij.

The group sample means X js and X je are then normally distributed with densities 

N (ps, ^ 7) and Ar(^e, ^ -) , respectively. The sequence of the differences between
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X je and X j a, denoted by Zj,

2

Zj =  X je -  X js ~  N{8, — ), J =  1 ,2 ,...,/, (2.2)
Hj

are sufficient statistics of the treatment difference 8. There will be no loss of infor­

mation to replace the group sequential variables {Ar,-je, Xij3, i =  1,2, . . . ,r ij,j  =

1 , 2 , by this classical sequential sample {Z j , j  =  1 , 2 , The group se­

quential clinical trial described above becomes a sequential clinical trial whose
2main outcome variable Zj, j  — 1 ,2 ,...,/, is from the normal distribution N(8, ~ ) ,  

where S is the measure of treatment difference and has the normal prior distribu­

tion w(8) =  N(uo, <£) in (2.1).

2.1.2 The framework

At each analysis j , j  =  1 ,2 ,...,/, after observing the differences of group sample 

means Z\ — z\, Z2 =  z^,..., Zj =  Zj, from the clinical trial, by Bayes theorem the 

posterior probability density function of 8 is the normal distribution with mean 

equal to n,zi+n°v° anc[ variance equal to ------, that is,Ei=l ni+n0 X i= in’+n0

8 ~  w(8\z\, z2, Z j )  = w{8\zj)
N (  E L i njZj +  n0uo

V E L i ni +  no ’ E L i ni +  n0

where ~Zj =  .E,=i n*'
The sequential Bayes method may suggest termination of the clinical trial at 

an interim analysis j ,  j  — 1,2,..., / — 1, if either

/■¿2
P(S < S2\zi,Z2, —,Zj) = /  w(S\zi,Z2, . . . ,2j)dS > 1 ~ (2.4)
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resulting in a rejection of the experimental treatment, or

/»OO
P ( S  > S1\z1,z 2,...,Z j) — / w (8\z1, z2, ...,Zj)d8 >

Js i
£2 , (2.5)

resulting in a recommendation of the experimental treatment, where the posterior 

probability density w(8\zi,z2,...,Zj) is obtained by (2.3). Otherwise the clinical 

trial needs to be continued to observe the next group of patients. At the final 

analysis, if (2.4) or (2.5) are not satisfied, then it may be concluded that these 

two treatments are equivalent since P(S\ < 5 < S2) is large. The £i and e2 are 

small positive values, such as 0.05, 0.025, etc.

Conditions (2.4) and (2.5) may be written as,

Zj <
E L i n% +  no

£ i= i m
S2

n o
£ i= i

■̂ 0
^~x(l - e i )  

£¿=1 ni
(2.6)

and

Zj  >
£¿=1 ni +  no

^ ------ vo ~  — r-—~a \ELi ^ ELi ^ El=i ni \
n0

ni +  no, (2.7)
i—1

respectively, where $ _1(1 — 0.025) =  1.96. These are the same form as boundaries 

of frequentist methods in terms of test statistics Zj — 1j, j  =  1 ,2,..., /. Freedman 

and Spiegelhalter(1989) have shown that by choosing some prior distributions of 

8 in (2.1) through some values of n0, Bayesian boundaries of (2.6) and (2.7) can 

be very close to boundaries of Pocock and O’Brien-Fleming procedures. Bayesian 

methods provide the same desirable features as frequentist methods.
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2.2 Student t Prior Distribution

2.2.1 The Framework

In Section 2.1, we assume that the treatment difference 8 in the clinical trial 

has the normal prior distribution 8 ~  w(8) =  N(vo, ^-). At each analysis j ,  

j  =  1 ,2 ,...,/, the posterior mean of the treatment difference 8 from (2.3) is

E(8\z1,z 2,...,z j ) =  zj - n0

E L i ni n o
-(Zj -  uQ).

If the sample mean Zj is very far from the mean of the prior distribution z/0, then 

the posterior mean E(8\z\, z2, Zj) will differ considerably from zj. Dawid(1973) 

has shown that this undesirable behaviour would be avoided if the prior distri­

bution of 8 had the form of a student t distribution. Assume that the variance

cr is known. He mentions that “if X  ~  N (6,a2) given 0  =  9, while 0  has a

student t prior, one obtains a limiting posterior 0  ~  N (x ,o 2) as |;t| —» oo, and 

£(0|a:) — x —> 0, as conjectured by Lindley.” . The Bayes sequential method in the 

clinical trial described in Section 2.1.1 with the student t prior for the treatment 

difference S is discussed below.

Without loss of generality, let the mean of the prior distribution in (2.1) be 

equal to 0, that is, uq =  0. The prior distribution for the standardised treat­

ment difference S' =  —E= then becomes the standard normal distribution A1(0,1).

Instead, consider that 8' has a student t prior with degree of freedom v, that is,

S' ~  w(<n i H ( i  + —  ) 2 
V

( 2 .8 )

The prior distribution of 8 is then
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where ci =  and ty(-|u) is the density function of (2.8).

At each analysis j ,  j  =  1 ,2 ,...,/, after observing Z\ =  z\, Z2 =  z2, ..., Zj =  Zj 

as in Section 2.1, the posterior probability density function of 8 is

w ( S \ Z i , Z 2 , . . . , Z j ) =  U7(i|z,-) =

r o o ^ i 2 ^ (M ' )2(i +

(2. 10)

1 _ V* n,z,-where z7- =  ----- .
Z),=i n>

The clinical trial may be terminated at analysis j ,  j  — 1 ,2 ,...,/, if either,

/■£ 2
P (d  <  ¿>2 |zi, Z2, Z j )  =  /  tü((5|2j)c/J >  1 — £ i

J — oo ( 2 . 11)

or,

P(d > <h|zi,z2, •••, > 1 — £2, ( 2 . 12)

where the posterior density function w(8\~Zj) is obtained by (2.10), and £1 and £2 

are small positive numbers. Otherwise the trial is continued to observe the next 

group of patients.

When the treatment difference 8 has the form of student t prior as in (2.9), 

there is no closed form for the posterior probabilities P (8 <  S2\zi, z2, ..., Zj) and 

P(5 > 81\z1, z2, Z j )  in (2.11) and (2.12), respectively. However, the numerical 

integration may be obtained by many mathematical and statistical packages.

2.2.2 Inferences for the Degree of Freedom v

Using the example of Freedman and Spiegelhalter(1989), consider a clinical trial

comparing two treatments with 200 patients, and the number of groups / =  5 with

the equal group sample size rij — n =  20, j  — 1,2, ...,5. Let The test statistics
2

Zj, j  =  1,2,..., 5, are from the normal distributions N (8 ,~ )  given 8 as in (2.2).
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The o 2 =  0.5 and no =  8,22, and 89 for the scanty, moderate and considerable 

prior information, respectively. Here suppose that the prior distribution of the 

treatment difference 8 is the student t distribution with the form of (2.9). Let 

no =  22 where prior information available is average. Assume that our interest 

is about departures, in either direction. Then =  S2 — 0. At each analysis j ,  

j  =  1,2,...,5, if the posterior probabilities P(8 < 82\z\, z2, •••> zj) =  P(8 < S2\zj)  

or P(8 > S1\z1, z2, Zj)  =  P(8 > Si\zj) follow the conditions (2.11) or (2.12), 

respectively, then stopping the clinical trial may be suggested as before.

Since the Zj =  4 J2i=i %%■> j  — 1, 2,..., 5, has the normal distribution N{8, j^) 

given 8, the range of 99% possible value of Zj is (S +  x (—2.58), 8 +  x 2.58 

As an example, j  =  4 say, let z4 = \J~̂  x Zq. By symmetry, only z0 < 0 needs to 

be considered. Without loss of generality, assume that z0 =  -2.58, -1.96, and -1, 

the corresponding posterior probabilities P(8 < 82\z4) of (2.11) and P{8 >  84\z4) 

of (2.12) with the degree of freedom v from 3 to 100 in the student t priors are 

displayed in Figure 2.1(a), Figure 2.1(b), and Figure 2.1(c), respectively. These 

figures show that the change of P{8 < 82\~z4) and P(8 > 8]\z4) with the change of 

the degree of freedom v of student t prior can be ignored, since these probabilities 

are almost constant with the degree of freedom v from 3 to 100. Similar figures 

can be obtained at other interim analyses. The same results are also found when 

the values of a2 and no are changed. Therefore it can be concluded that the pos­

terior inferences on the treatment difference 8 is robust to the degree of freedom 

v of the student t prior.
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P(S <  S2\z4) P(S >  5 i |«4)

-2.58

P ( S < 6 2\z4) P ( 6 > S  i\zt)

P { S < S 2\z4) P(S>Si\z4)

Figure 2.1 Posterior Probabilities with Different Degree of Freedom
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2.2.3 Comparisons with the Normal Prior Distribution

By the framework of Bayes sequential methods in group sequential clinical tri­

als, the stopping rules of these methods are based on the posterior probabil­

ity distribution of the treatment difference 8. It is then interesting to com­

pare the posterior probabilities P (8 < ¿2\zi, Z2, z j )  and P (8 > 8\\z\, Z2, ..., zj), 

j  =  1, 2,..., / ,  for the student t prior distributions with those for normal prior 

distributions. The comparisons are based on the change of posterior probabilities 

P(S < 82\zi, z2, Z j )  and P (8 > 8\\z\, z2, ..., zj), j  =  1, 2,..., /, with the change of 

prior information.

The variance (or n0) of the normal prior distribution N(is0, is a measure of

prior information on the treatment difference 8. The tail probability of the student 

t distribution is more sensitive than its degree of freedom. Hence, the change of 

prior information is considered by the change of variances and tail probabilities 

of normal and student t prior distributions.

The robustness to change of variances of prior distributions

Continuing the example of Section 2.2.2, assume that the treatment difference 8 

has the normal prior distribution 8 ~  N(u0, as in (2.1), where z/0 =  0. Let 

no =  8, 22, and 89 for the scanty, moderate and considerable prior information, 

respectively. At each analysis j ,  j  =  1,2,..., 5, after observing Z\ =  zl5 Z2 =  z2, 

..., Zj =  Zj, the posterior probabilities P (8 < S2\~Zj) and P (8 > 8\\zj) can be 

calculated by (2.4) and (2.5). As an example, say j  =  4, the posterior probabilities 

P (8 < ¿2^ 4) and P (8 >  ¿i|z4) with z4 =  x z0, where z0 =  -2.58, -1.96, -1, 

and 0, are listed in Table 2.1. It shows that the change of prior information might 

or might not affect the decision of stopping a trial early. Assume e 1 =  e2 =  0.05. 

When the value of observation =  \ J x (—2.58), a very strong evidence of the 

experimental treatment not being superior, all posterior probabilities P (8 < S2 |z4) 

under different prior information, n0 =  8, 22, and 89, indicate that stopping the
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trial would be advisable. When z0 — —1.96 and with the scanty prior information 

n0 =  8, the posterior probability P (8 < 82\z4) =  0.9694 > 1 — 0.05, which 

is suggesting that the trial may be stopped early, but with considerable prior 

information (n0 =  89) of no treatment difference (since we assumed that 5 ~  

J\r(0,£)), the posterior probability P (8 < S2\z4) — 0.9115 /  1 — 0.05, which is 

suggesting that the trial should be continued.

Table 2.1: Posterior Probabilities of Different Normal Priors (n0)

P (8 < 8 2 \z 4 ) P {8 > S4\z4 )

no nQ

Zo 8 22 89 8 22 89

-2.58 0.9933 0.9891 0.9623 0.0069 0.0112 0.0380

-1.96 0.9694 0.9589 0.9115 0.0308 0.0413 0.0888

-1 0.8300 0.8122 0.7545 0.1702 0.1880 0.2457

0 0.5001 0.5001 0.5001 0.5001 0.5001 0.5001

Alternatively, suppose that the treatment difference 8 has the student t prior 

distribution as in (2.9). Let the variances of 8, Var(S) — have the same

variances as those of normal prior distributions N (0, with n0 =  8, 22, and 

89 under the degree of freedom v from 10 to 100. The corresponding posterior 

probabilities P (8 < 82\z4) and P (8 > 8i \z4) with z4 =  \ f ^ x z 0, where z0 =  —2.58, 

-1.96 and -1, are listed in Table 2.2(a), (b) and (c), respectively. It can be seen 

from these tables that the influence on the degree of freedom v can be ignored as in 

Section 2.2.2 due to the minor change of posterior probabilities with the change of 

the degree of freedom v. For example, at z0 =  —1.96, the difference of P (8 < 82\~z4) 

between v =  10 and 100 is 0.9690 — 0.9666 =  0.0024. Similar to the results of
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normal prior distributions shown in Table 2.1, Tables 2.2(a), (b), and (c) have also 

shown that different precision of the prior information might change the decision of 

stopping a trial early. For example, when z0 =  —1.96, n =  20, and e1 =  e2 =  0.05, 

the trial is stopped and the experimental treatment is recommended if n0 =  8 or 

22; whereas the trial need to be continued if no =  89.

Comparing Table 2.1 with Tables 2.2(a), (b), and (c), it can be seen that 

the change of posterior probabilities P(S < S2\ẑ ) and P(5 > 8\\zi) is slightly 

bigger to the student t priors than those to normal priors with the same change 

of the precision of prior information. For example, at zq =  —2.58, for the normal 

prior, the change of the posterior probability P (8 < d2|z4) from the scanty prior- 

information (n0 =  8) to considerable prior information (n0 =  89) is,

P (8 < S2\z4,n0 =  8) -  P {8 < s2\z4,n0 =  89) =  0.9933 -  0.9623

=  0.0310;

and for the student t prior, the change is,

P (8 < S21̂ 4, no =  8) — P(S < i 2|^4,«o =  89) 

0.9921 -  0.9533 =  0.0389 v =  10

0.9930 -  0.9613 =  0.0317 v =  100.

The same results above are found at other interim analyses.
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Table 2.2(a): Posterior Probabilities of Different Student t Priors (v)

P(S < S2\z4) P(5 > (5i|z4)

n0 n0

V 8 22 89 8 22 89

10 0.9921 0.9863 0.9533 0.0079 0.0137 0.0467

20 0.9926 0.9877 0.9581 0.0074 0.0123 0.0419

30 0.9928 0.9881 0.9595 0.0072 0.0119 0.0405

40 0.9929 0.9883 0.9602 0.0071 0.0117 0.0398

50 0.9929 0.9884 0.9606 0.0071 0.0116 0.0394

60 0.9929 0.9885 0.9608 0.0071 0.0115 0.0392

70 0.9929 0.9885 0.9610 0.0071 0.0115 0.0390

80 0.9930 0.9886 0.9611 0.0070 0.0114 0.0389

90 0.9930 0.9886 0.9613 0.0070 0.0114 0.0388

100 0.9930 0.9886 0.9613 0.0070 0.0114 0.0387
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Table 2.2(b): Posterior Probabilities of Different Student t Priors (u)

P(S < 8i\zi) P(8 >  5i\zi)

V 8

n0

22 89 8

n  o

22 89

10 0.9666 0.9526 0.8966 0.0334 0.0475 0.1034

20 0.9680 0.9559 0.9045 0.0320 0.0441 0.0955

30 0.9684 0.9569 0.9068 0.0316 0.0431 0.0932

40 0.9686 0.9574 0.9080 0.0314 0.0426 0.0920

50 0.9687 0.9576 0.9087 0.0313 0.0424 0.0913

60 0.9688 0.9578 0.9091 0.0312 0.0422 0.0909

70 0.9689 0.9579 0.9094 0.0311 0.0421 0.0906

80 0.9689 0.9580 0.9097 0.0311 0.0420 0.0904

90 0.9689 0.9581 0.9098 0.0311 0.0419 0.0902

100 0.9690 0.9582 0.9100 0.0310 0.0418 0.0900
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T a b le  2 .2 (c ) :  P osterior  P rob a b ilit ie s  o f  D ifferent S tu d en t t P riors  (u )

P (8 < S 2\z4) P (S > S 1\z4)

n o n0

V 8 22 89 8 22 89

10 0.8249 0.8022 0.7383 0.1751 0.1978 0.2617

20 0.8276 0.8075 0.7467 0.1724 0.1925 0.2533

30 0.8284 0.8091 0.7493 0.1716 0.1909 0.2507

40 0.8288 0.8099 0.7506 0.1712 0.1902 0.2494

50 0.8290 0.8103 0.7513 0.1710 0.1897 0.2487

60 0.8291 0.8106 0.7518 0.1709 0.1894 0.2482

70 0.8292 0.8108 0.7522 0.1708 0.1892 0.2478

80 0.8293 0.8110 0.7524 0.1707 0.1890 0.2476

90 0.8294 0.8111 0.7526 0.1706 0.1889 0.2474

100 0.8294 0.8112 0.7528 0.1706 0.1888 0.2472

The robustness to change of tail probabilities of prior distributions

We continue using the above example to discuss the inferences on the change 

of tail probabilities of normal priors and student t priors. Assume that the tail 

probabilities of normal priors and student t priors, denoted by Ptaii, are equal 

to 0.01, 0.02, 0.03, 0.04, and 0.05. The posterior probabilities P(S < 8i \z4) and 

P(S > hi 1̂ 4) for normal priors and student t priors are listed in Table 2.3 and 

Tables 2.4(a), (b), and (c). The z4 =  \Ĵ  x zo, where zq =  -2.58, -1.96, and -1.

Comparing Table 2.3 with Tables 2.4(a), (b) and (c), conclusions are consistent 

with those of the same change of variances of normal priors and student t priors,
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that is, the changes of posterior probabilities P {8 < S2\z4) and P (6 > hi| 4̂) are 

less to normal prior distributions than those to student t prior distributions. For 

example, at zq — —2.58, the change of the posterior probability P(S < S2\z4) from 

Ptaii =  0.01 to Ptaii =  0.05, for the normal prior is,

P (8 < S2\z4, Ptaii =  0.01) -  P (8 < S2\z4, Ptaii =  0.05) =  0.9874 -  0.9771

=  0.0103;

for the student t prior is,

P(S < 52\z4, Ptaii =  0.01) -  P (8 < 82\z4, Ptaii =  0.05)

0.8083 — 0.7227 =  0.0856 v =  10

0.8214 -  0.7481 =  0.0733 v =  100.

2.2.4 Summary

The student t prior distribution (2.9) for the treatment difference 5 is discussed. 

It can be concluded that the posterior inferences on the treatment difference S is 

robust to the degree of freedom v of the student t prior. By comparing the student 

t prior with the normal prior, it can be obtained that posterior probabilities P(S < 

S2\zi, z2, ..., Zj) and P(5 > 8i\zi, z2, ..., zj), j  =  1 ,2 ,...,/, are more robust to the 

normal prior than those to the student t prior with the same change of variances 

or tail probabilities of the prior distributions. Hence, it is reasonable to assume 

that the treatment difference 5 has the normal prior distribution if the sample 

mean is not far from the mean of this prior distribution.
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T a b le  2.3: P osterior  P rob a b ilit ie s  o f  D ifferent (ta il) N orm a l P riors

Zo Ptail P(S < 82\za) P(S > ¿i|z4)

-2.58 0.01 0.9771 0.0232

0.02 0.9818 0.0184

0.03 0.9844 0.0158

0.04 0.9861 0.0141

0.05 0.9874 0.0129

-1.96 0.01 0.9352 0.0650

0.02 0.9439 0.0564

0.03 0.9489 0.0513

0.04 0.9524 0.0478

0.05 0.9551 0.0451

-1 0.01 0.7802 0.2200

0.02 0.7910 0.2093

0.03 0.7977 0.2026

0.04 0.8026 0.1976

0.05 0.8065 0.1937
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Table 2.4(a): Posterior Probabilities of Different (t ail) Student t Priors(u)

¿0 Ptail V P (6 < S2\z4) P(S > 5\\z4)

-2.58 0.01 10 0.7227 0.2773

50 0.7454 0.2546

100 0.7481 0.2519

0.02 10 0.7536 0.2464

50 0.7718 0.2282

100 0.7740 0.2260

0.03 10 0.7754 0.2246

50 0.7909 0.2091

100 0.7927 0.2073

0.04 10 0.7931 0.2069

50 0.8065 0.1935

100 0.8081 0.1919

0.05 10 0.8083 0.1917

50 0.8200 0.1800

100 0.8214 0.1786



Chapter 2. Bayes Sequential Methods 41

Table 2.4(b): Posterior Probabilities of Different(t.ail) Student t Priors(u)

Ptail V P (8 < ¿2|z4) P(S > Ji|r4)

-1.96 0.01 10 0.6725 0.3275

50 0.6918 0.3082

100 0.6941 0.3059

0.02 10 0.6978 0.3022

50 0.7141 0.2859

100 0.7160 0.2840

0.03 10 0.7161 0.2839

50 0.7305 0.2695

100 0.7322 0.2678

0.04 10 0.7312 0.2688

50 0.7442 0.2558

100 0.7457 0.2543

0.05 10 0.7445 0.2555

50 0.7563 0.2437

100 0.7577 0.2423
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T a b le  2 .4 (c ) :  P osterior  P rob a b ilit ie s  o f  D iffe ren t(ta il) S tu d en t t P r io rs (u )

Ptail V P(S < S2\z4) P {6 > 5i |24)

-1 0.01 10 0.5898 0.4102

50 0.6008 0.3992

100 0.6021 0.3979

0.02 10 0.6037 0.3963

50 0.6134 0.3866

100 0.6146 0.3854

0.03 10 0.6140 0.3860

50 0.6229 0.3771

100 0.6240 0.3760

0.04 10 0.6227 0.3774

50 0.6310 0.3690

100 0.6320 0.3680

0.05 10 0.6304 0.3696

50 0.6383 0.3617

100 0.6392 0.3608
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2.3 Clinical Trials on Normally Distributed Re­

sponse with Unknown Variance

The frameworks of Bayes sequential method in group sequential clinical trials

effect. However, it is often difficult to know the exact value of cr2 in practice. This 

issue is considered as follows.

2.3.1 The Framework

The prior distribution

Consider the clinical trial as described in Section 2.1. The main outcome measure 

X  for the clinical trial is normally distributed with probability density functions 

N(pe, y )  and N (ps, y )  for the experimental and the standard treatments, re­

spectively, where the variance o 2 is unknown. The parameter of interest is the 

treatment difference 5 =  pe — ¡is. For the convenience of notation, assume that 

the clinical trial is monitored at every 2n patients with n for each treatment. At 

each analysis j ,  j  =  1 ,2 ,...,/,

is a sufficient statistic of the treatment difference 8 given cr2, where X je ~

and standard treatments, respectively.

Let r =  and let R be the corresponding random variable of r. Suppose the 

prior distribution of 8 given R — r is the normal distribution,

above assume that the main outcome variable for a clinical trial is from the normal 

distribution N(p, y )  with known variance cr2. The p is a measure of treatment

2

Z j  -  X j e  -  X j s  ~  N ( 8 ,  — ) ,n (2.13)

2 ---- 2
N[¡Je, 2«) and Xjs ~  N(ps, ~ )  are group sample means for the experimental

n0r
(2.14)
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and the marginal prior distribution of R is the gamma distribution,

R ~  w(r) =  r (a , ¡3), (2.15)

where parameters a  > 0 and (3 > 0.

The Posterior Distribution

It is known that for the normal distribution N (8, ^ )(o r  N (8, T-)) likelihood, the 

normal-gamma prior is conjugate prior density for parameters (8, ¿t)(or (8,r)). 

At each analysis j ,  j  =  1 , 2 assume values Z\ =  zi, Z2 =  z2: ..., Zj =  Zj 

have been observed and /(¿a , z2, ..., Zj\8, r) is the probability density function of 

(z i ,z2,...,zj)  given (8,r), that is,

f ( z 1 ,z 2,. . . ,z j \S,r) = -¥ E L i(^ -5)2 (2.16)

Let zj =  i zi- The posterior probability distribution of 8 given R =  r by

Bayes theorem is

w(8\z1,z2, . . . ,z j ,r) oc 

oc 

oc

f ( z 1, z 2, . . . , z j \8, r)  u>(i|r)
jnr(zj-S)2 nn r ( « - i / n )2

e 2 e 2
(jn+n0)r , g. j n - j + n o ^ O ' 2 

g  2 '  j n  +  ilQ '

It then follows

8 ~  w(£|z i,22, =  A"
+  not'o 1

jn  +  n0 ’ (jn  +  n0)r y
(2.17)

The distribution of R given Z\ =  zi, Z 2 =  z2l Zj =  Zj is

w(r\z1 ,z 2, . . . ,z j ) oc J f ( z l ,z 2, . . . ,z j \8,r) w(8\r) w(r) dS
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oc w(r) J ( V ~ r ) j e 2 s'l~ y /re  ° ^ dS

, x L _ a>i y'i> 
ru(r) r 2 e 2 ¿-'•=1 ■ 2 0 re -  §  [(n J + n o ) i 2 - 2 ( r v /zj +n0i/Q )5]  I f

iü(r) r 2 e

(njzj+nQi/Q)2
nj + n0

é c - 2 ?  E i = l  (*• ~ Zj ) 2 _ 2( n j  +  n0 ) (zj  _ I / 0 ) 2

nr \ J 2 r 2 _______
oc iu(r) r* e— ¿-'«=1 *•’ à- "«e2 nJ+™o

oc ra+2 ‘ e-1

Hence, w{r\z\, z2, ...,Zj) is the gamma distribution with shape parameter equal to 

a  +  and scale parameter equal to ¡3 +   ̂E i= i(2i — Zj)2 +  | fn+n0 (¿i ~  z'o)2- 

Let

a —

Pi

jnzj  +  n0i/0 
jn  +  ?r0

P +  b" ~  ^ ' )2 +i=l

rionj
2 (raj +  n0) (*i -  î o)5 (2.18)

Then,

Æ ~  to(r|21, 22, ...,2j) =  r(r|a +  - ,  f t ) . (2.19)

The posterior probability density function of (h, r) by (2.17) and (2.19) is

w(5,r\z1,z 2,. ..,z j ) =  w(S\zu z2,...,z j ,r) w(r\z1, z2, z j )

=  N{5,a’ ü n +  „ 0) d r(r  |Q + f - A )

jn  +  Uo)r (jn + n0)r ̂  ^2 Pil̂ +o

r(« + f)
ra+i—ig-hi»-

V jn  +  n0 P"+2 +i +^_x (iuü ^ - ) 2+^,)r .
Æ  T(a +  f )  • [ U)
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The posterior probability density function of 5 is then,

/•OO
w(5\z1 , z 2,...,Zj) =  /  w(8,r\zu z2,...,Zj) dr

Jo

V j n +  n0 P(a +  f  +  |)
y/2n r (g  +  |)((J"+» o){s-°)3 +  foy+h+k

(jn+no)(2ct+j)( ( j n + » o ) ( 2 a + j )  j  2 ( 2 a + j ) + l

2/3i
( ( 2a  +  i ) 7r ) 2r (i p / 2o+j'

(2g+j) + l
2

1 + 2/3i
2« +  j

j / n n  , ■ ( j « +  ™ o ) ( 2 a  +  j )HO I 2a +  j, a, ---------- — ---------- ), (2.21)

which is a t distribution with degree of freedom 2 a +  j ,  location parameter a, and 
precision {jn+n0)(2a+j)' ^  of fl and ^ are obtained by (2.18).

The stopping rule

At each analysis j ,  j  =  1 ,2 ,...,/, the clinical trial is suggested being stopped if 

either

fS 2
P { S  < S2 \z!,  z 2 , ..., Zj) =  / w ( 8 \ z 1, z 2 , ..., Zj) d 8  >  1 — £i, (2.22)

or

yoo
P (i  > ii|zi,z2,...,z,-) =  / «;(i|2i,2r2, •••,A?) ^  > 1JSi £25 (2.23)

where iw(<J|2i, z2, • ••, Zj) is obtained by (2.21) and and e2 are small positive 

numbers; Otherwise the trial needs to be continued.
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2.3.2 The Prior Information

Influences of the prior information of (8, a2) on the posterior distribution of 8 is 

studied by continuing the example of Section 2.2.2. Let the prior distribution of 

8 given a2 be the normal distribution jV(0, ^-) as in (2.14), where no =  8, 22, and 

89; and let the marginal prior distribution of R =  \  be the gamma distribution 

r (a , |) as in (2.15), where a =  0.2, 0.5, 0.8, 1, 1.5 and 2. If a  =  | or an even 

natural number, then the gamma distribution T(a, |) is a x 2(2a) distribution. 

The Monte Carlo simulations are used in the study.

The inference of the parameter a

Let the sequential sample Zy j  =  1,2,...,5, of the example be from the normal 

distribution N( —0.01, ^ ) .  The value 8 — —0.01 is the mean of 1000 8 which are 

derived from the normal prior distribution fV(0, ĵ-) with a2 =  0.5. The cr2 =  0.5 is 

the average of 1000 a2 where dj- ~  T(l, |). The average posterior probabilities of 8 

as in (2.22) and (2.23) from 1000 simulations are denoted by Mean P {8 < 82\j =  4) 

and Mean P (8 > 8\\j =  4), respectively, at the analysis j  =  4 in Table 2.5. The 

corresponding standard errors are given in the brackets. For each no =  8, 22, and 

89, the differences among the posterior probabilities within two consecutive values 

of a in Table 2.5 are around 0.002. These differences might be negligible. The 

differences in the average posterior probabilities P (8 < 82\zi, z2, z3, z4) with a — 

0.2 and 2 are equal to 0.5589 - 0.5497 =  0.0092 when n0 =  8 for the scanty prior 

information of 8; equal to 0.5566 - 0.5470 =  0.0096 when no =  22 for the moderate 

prior information of 8] and equal to 0.5483 - 0.5383 =  0.01 when no =  89 for the 

considerable prior information of 8. These differences are close to each other. The 

same results are found when the values of 8 and a2 are changed. The example 

shows that the posterior inferences on 8 is reasonable robust to the parameter a.
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Table 2.5: Posterior Probabilities of S under Different no and a

n0 a Mean P(S < S2U =  4) (se) Mean P (6 > Si\j =  4) (se)

8 0.2 0.5497 (0.0080) 0.4503 (0.0080)

0.5 0.5518 (0.0084) 0.4482 (0.0084)

0.8 0.5536 (0.0087) 0.4464 (0.0087)

1 0.5547 (0.0089) 0.4453 (0.0089)

1.5 0.5570 (0.0094) 0.4430 (0.0094)

2 0.5589 (0.0097) 0.4411 (0.0097)

22 0.2 0.5470 (0.0076) 0.4530 (0.0076)

0.5 0.5492 (0.0080) 0.4508 (0.0080)

0.8 0.5511 (0.0083) 0.4489 (0.0083)

1 0.5522 (0.0085) 0.4478 (0.0085)

1.5 0.5546 (0.0089) 0.4454 (0.0089)

2 0.5566 (0.0093) 0.4434 (0.0093)

89 0.2 0.5383 (0.0061) 0.4617 (0.0061)

0.5 0.5405 (0.0065) 0.4595 (0.0065)

0.8 0.5424 (0.0068) 0.4576 (0.0068)

1 0.5435 (0.0070) 0.4565 (0.0070)

1.5 0.5461 (0.0075) 0.4539 (0.0075)

2 0.5483 (0.0078) 0.4517 (0.0078)
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The comparison with the situation of a2 known

Assume the sequential sample Zj, j  =  1 , 2 , 5 ,  in the example is from the normal 

distribution 1V(—0 .0 1 ,^ ). Table 2.6 lists average posterior probabilities P (8 < 

A21 , z2, z3, z4) and P (8 > 84\z4, z2, z3, z4) with the variance of the normal response 

known cr2 =  0.5, denoted by P ( ‘ \z4), and the variance unknown r̂ 1

denoted by P(-\j =  4) from the Monte Carlo simulations. We choose ~2 r(i,|)
since E ( ^ )  =  2. The values in brackets are corresponding standard errors. It can 

been seen from Table 2.6 that the posterior probabilities P (8 < 82\z4, z2, z3: z4) 

and P (8 > Si\z4, z2, z3, z4) with cr2 =  0.5 are similar to those with “IT r(i, |).
This example shows that it is reasonable to assume r ( i ,  |).

Table 2.6: Posterior Probabilities of 8 with a2 Known and Unknown

cr2 = 0.5 £ ~ r ( i , i )
Mean Mean Mean Mean

n0 P{8 < 82\z4) P{8 > 84\z4) P{8 < S2\j =  4) P ( 8 > 5 1\j =  4)

8 0.5294 (0.0090) 0.4706 (0.0090) 0.5294(0.0092) 0.4706 (0.0092)

22 0.5284 (0.0086) 0.4716 (0.0086) 0.5281(0.0087) 0.4719 (0.0087)

89 0.5244 (0.0073) 0.4756 (0.0073) 0.5233(0.0072) 0.4767 (0.0072)

The inference of the change of cr2

Assume that the sequential sample Z\j and Z2j are from the normal distribution 

A (̂—0.01, and A (̂—0.01, ^-), respectively. Let a2 =  0.5 and <r| =  1. The corre­

sponding posterior probabilities are denoted by Pi(-|-) and P2(-\-) respectively in 

Table 2.7. Table 2.7 only lists the posterior probabilities Pk(8 < S2\zi, z2, z3, z4, aj?) 

since Pk(5 > Silz1 ,z2,z3,z4,aj*) =  1 -  Pk(8 < 82\z4, z2, z3, z4,aj*), k =  1,2, when 

82 =  8\ — 0.
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Table 2.7 shows that the change of the posterior probabilities P(5 < 82\z4, z2, z3, 

with the change of cr2 is bigger at u2 known than those at cr2 ~  r (a , |).

Table 2.7: Posterior Probabilities of 8 with Different u2

a 2 =  0.5 known crz r (i .| )
Mean Mean Mean Mean

n0 Pi(8 < S2\z4) P2(S < 8 2 \z 4 ) Pi (8 < 82\j =  4]) Pi{8 < S2\j =  4)

8 0.5294 (0.0090) 0.5194 (0.0090) 0.5294(0.0092) 0.5204 (0.0099)

22 0.5284 (0.0086) 0.5187 (0.0086) 0.5281(0.0087) 0.5196 (0.0094)

89 0.5244 (0.0073) 0.5161 (0.0073) 0.5233(0.0072) 0.5165 (0.0079)

The summary

Under the framework described in Section 2.3.1, we have that the posterior prob­

abilities P (8 < 82\z4, z 2 , ..., Zj) and P (8 > 8\\z\,z2,...,Zj) are reasonably ro­

bust to the parameter a; when we choose the prior distribution ~  T(a, |), 

where E ( \ )  =  2a, the posterior probabilities P (8 < 82\z4, z2, ..., zj) and P (8 > 

8i\z\, Z2, ..., Zj) are similar to those of a 2 being known and equal to if we 

change a 2 from 0.5 to 1, the corresponding change of posterior probability P (8 < 

2̂^ 1, z2, ...,z j) is smaller in assuming ^  ~  P(l, |) than that in assuming a2 =  0.5. 

Therefore the normal-gamma prior described in Section 2.3.1 is recommended 

when we do not have enough prior information on the variance a2.

2.4 Discussion

The framework of Bayes sequential methods in group sequential clinical trials 

described in Section 2.1 is based on the work of Freedman and Spiegelhalter(1989). 

It can be generalized to clinical trials with binomially distributed responses and
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survival time data, although these clinical trials can be approximated by clinical 

trials with normal distribution responses.

In the framework, at each analysis j ,  j  =  1 , 2 after observing Z\ =  zx, 

Z2 — z2, Zj — Zj, we look at the posterior probabilities P (8 <  82\zx, z2, zj)

as in (2.4), and P (8 > 8x\zx, z2, ..., Zj) as in (2.5). If the posterior probability 

P(S < S2\zi, z2, z j )  (or P (8 > 8x\zx, z2, ..., Zj)) is greater than some specified 

value, then the clinical trial may be stopped. The calculation of corresponding 

posterior probabilities could be found in Chapter 5 for clinical trials with binary 

response and in Chapter 6 for clinical trials with survival time data.

The framework of Bayes sequential methods in groups sequential clinical trials 

which we have discussed are based on posterior probabilités P (8 <  82\z\, z2,..., Zj) 

and P (8 > 81\z1, z2, Z j ) .  Other criteria have also been suggested, for example, 

at each analysis j ,  j  =  1 ,2 ,...,/, we can also look at the posterior expectation 

of the treatment difference, denoted by E (8\zi, z2, ..., Zj). The clinical trial may 

be suggested to be stopped if the expectation E (8\zi, z2, Z j )  is greater than 

some specified value. More generally, let g(8) be some quantity of interest. At 

each analysis j ,  j  =  1 ,2 ,...,/, we may look at the posterior expectation of g(8), 

that is, E(g(8)\zi, z2, ..., Zj), and decide whether to stop the trial based on the 

value of E(g(8)\zi, z2, ..., Zj). If g{8) is the indicator function for the interval 

( oo, hi) (or (h2, oo)), then E(g(8)\zu z2, ..., zj) =  P (8 < 82\zx,z2 .̂.., Zj) (or = 

P {8 > 81 \z1, z2, ...,Zj) ).
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Bayes Sequential Decision Theory

3.1 Introduction

Decision theory provides the framework for combining subjective distributions 

with actions. The method of a sequential decision procedure is to look at a 

secpience of observations one at a time and to decide after each observation whether 

to stop sampling and make a decision immediately or to continue sampling and 

make a decision sometime later.

Bayes sequential decision theory used in group sequential clinical trials is 

briefly described in this chapter. Details can be found in Berger(1985), Deg- 

root(1970), and Ferguson(1967), etc.

3.1.1 Basic Elements of A Sequential Decision Procedure

The basic elements of a sequential decision procedure considered in the study are

1) a parameter S whose values are in the parameter space A and its prior 

distribution w(S) which is from the space of prior distributions A*;

Consider a clinical trial comparing two treatments described in Section 2.1. 

The parameter of interest is the treatment difference S =  ¡xe — ¡is. Its space A  is 

equal to the real line 7Z. The prior distribution of the parameter of interest 5 is

52
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assumed to be the normal distribution

S ~  w(S) =  N(is0, Tq).

The space of prior distributions is the normal distribution family, A* =  {N(S, r 2) :

8 e n , r 2 >  o}.

2) a decision d which is from decision space D ;

When the above clinical trial is terminated, a decision d will be chosen from 

the decision space D =  {experimental treatment, standard treatment}.

3) a sequential random sample AT, A 2,...; assume that the conditional g.p.d.f

of each X m, m =  1,2..., is /(• |h) for every ó € A;

In the clinical trial described in Section 2.1, we have the sequential sample Zj,
2

j  =  1 ,2 ,...,/, which are from the normal distribution given S with the
2variance — known.ni

4) a loss function L(8,d), a real value function defined on A x fl, which rep­

resents the loss when S is true and decision d is chosen;

5) the cost functions are denoted by {cm(h, aq, x2, •••, xm), m =  1 ,2 ,...}; the 

value of Cm(8, x1: x2, ..., xm) represents the cost of taking observations AT =  aq, 

AT =  x2, ..., X m =  Xm and stopping sampling when 8 is the true value of the 

parameter.

3.1.2 Loss Function and Cost Function

Bayes sequential decision theory has not been widely used in clinical trials because 

of the computational complexity of Bayes inferences and the difficulty of specifying 

loss and cost functions which can describe or measure the cost of decisions and the 

cost of carrying out a clinical trial. Lewis and Berry(1994), Lewis(1996) have ap­

plied Bayes sequential decision theory with piecewise continuous loss functions in 

group sequential clinical trials of binomial response variables. R.J.Sylvester(1988)
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used Bayes decision theory in a one stage Phase II clinical trial with binary re­

sponse outcome and a two-point prior distribution for a new drug response rate. 

He has suggested a loss function which involves the patient horizon and the amount 

of the difference between the new drug response rate and the standard rate.

Generally, the aims of the ideas considered in loss functions and cost func­

tions are to maximise the expected experimental treatment benefit over a patient 

horizon and the loss in efficacy will be taken to be proportional to the magnitude 

of the advantage of the treatment difference(Anscombe 1963, Berry et al 1992, 

Whitehead 1992). This area has been little studied.

The simplest form of the loss function is piecewise continuous. This will be 

used in group sequential clinical trials comparing two treatments with normal 

distribution response variables in Chapter 4. Although we may not rely on such 

a simple loss function to make decisions in real clinical trials, this is a start to 

introduce Bayes sequential decision theory into group sequential clinical trials.

Following this, the more complicated loss and cost functions will be discussed. 

For example, suppose a group sequential clinical trial is designed to compare an 

experimental treatment with the standard treatment. The parameter of inter­

est is the treatment difference 8. Assume that the experimental treatment is to 

be regarded as better than the standard treatment if the treatment difference 

(̂  > > 0 and that the experimental treatment is not to be recommended

otherwise. The So is the break-even value of the treatment difference 8. Let 

Zj,  j  =  1,2 , . . . , / ,  be the observation values of the group sequential sample Zj, 

j  =  1 ,2 ,...,/, respectively, which are used to test the treatment difference 5. The 

/ is the number of groups or analyses. Let de and ds be decisions of choosing the 

experimental and the standard treatments respectively, after the clinical trial is
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terminated. The loss functions can be defined as,

( 0 S <  5o
L(S,dt) =  { 01•-o $ > So,

r/r  f - K ( S - S 0)t S < S0
L(S,de) =  < ~K>01t-o1 5 > 60,

(3.1)

(3.2)

where K  denotes the difference in cost of further treatment between a patient who 

takes the experimental treatment and a patient who takes the standard treatment 

(assume K  >  0); t expresses the patient horizon, ie. the average number of 

patients who are treated with the experimental treatment after the trial before a 

second experimental treatment, which is as least as good, is found; rij is the group 

sample size in each treatment at analysis j ,  j  = 1,2,

The loss functions L(S,ds) in (3.1) and L(S,de) in (3.2) show that if the treat­

ment difference 5 < $o, that is, the experimental treatment is not better than the 

standard treatment, then there is no loss in choosing the standard treatment, but 

there is a cost —K(S — So)t > 0 in choosing the experimental treatment; if the 

treatment difference S >  i 0, that is, the experimental treatment is better than the 

standard treatment, then there is a gain(negative cost) —K(S — S0)t < 0 in choos­

ing the experimental treatment, but there is a cost K(S — So)t > 0 in choosing the 

standard treatment. The cost or gain of making a decision is proportional to the 

patient horizon t and the treatment efficacy S — S0.

Chapter 5 will apply Bayes sequential decision theory with the form of loss 

functions as in (3.1) to group sequential clinical trials with binomial distribution 

response variables.
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3.1.3 Bayes Risk, Bayes Decision and the Expected Risk

Consider a sequential decision procedure with the basic elements specified in Sec­

tion 3.1.1. Suppose the sequential samples X 1 =  aq, X 2 — x2, ..., X m =  xm, 

m =  1,2,..., have been observed. Let wm =  w(8\xi, x2..., xm) be the posterior- 

distribution of 5 after observing X\ =  aq, X 2 — x2, ..., X m =  xm, which is,

8\x1 , x 2, . . . ,xm ~  w(8\x1 , x 2, . . . ,xm)
f ( x 1 , x 2, w(8)

lA f ( x 1 , x 2, . . . ,xm\8) w(8) dS‘
(3.3)

The Bayes risk of stopping sampling, denoted by ro(wm,m), is defined as the 

greatest lower bound of expected losses, or risks, with respect to the posterior- 

distribution w (8\x i , x2, ...,x m) among decisions d £ D, that is,

r0(w , m) ¿(iq) d8j T cm((̂ , aq, aq,..., a?, )̂). (3.4)

After sampling is terminated, a decision d £ D is called a Bayes decision if its risk 

Ew(s\xux2,...,xm){L(8, d) +  cm(8,x\ ,x2, . . . ,xm)) is equal to the Bayes risk r0(wm,m ) 

in (3.4). In clinical trials of comparing different treatments, the decision space D 

is a set of finite treatments, that is, a set of finite elements, so we can always get 

a Bayes decision in clinical trials.

On the other hand, if sampling needs to be continued after observing X\ =  aq, 

X 2 — aq, ..., X m =  xm, the expected risk from continuing sampling to observe 

the next observation X  and to choose a decision d £ D later, expressed by 

E*ro(wm(X ) ,m  +  1), is the expectation of the Bayes risk r0(wm(X ),m  +  1) with 

respect to the predictive density of x , f ( x |aq,aq, ...,xm), that is,

E*r0(wm(X ),m  +  1) =  f  r0(wm(X  =  x), m +  1) /(ar|aq, aq,..., xm) dx, (3.5)
J  X

where wm(X  =  x) =  w(8|aq, x2, ..., xm, x) is the posterior distribution of 8 after- 

observing X\ =  aq, X 2 =  x2, ..., X m - xm and X  =  x] r0(wm(X  =  x ) ,m  +  1) is
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the Bayes risk after observing X\ =  aq, X 2 =  x2, ..., A"m =  xm and A" =  x, and 

?77.H-1 means that the risk is from these m +  1 observations; f(x\x\,x2, is the

predictive density function of x after observing Xi =  Xi, X 2 =  x2, ..., X m =  xm, 

that is,

f ( x |xi,x2, 'Em) — /. f{x\S) ro(i|xi, x 2, ..., xm) dS. (3.6)

3.2 Bayes Sequential Decision Theory

3.2.1 Bayes Sequential Decision Procedure

A sequential decision procedure involves looking at a sequence of observations one 

at a time and deciding after each observation whether to stop sampling and make 

a decision immediately or to continue sampling and make a decision sometime 

later. It has two components. One component is called a stopping rule, or a 

sampling plan, which specifies whether sampling should be stopped and a decision 

d G D should be chosen without further observations or whether another sample 

A  should be observed after observing values Ad =  x 1: X 2 — x2, ..., X m — xm, 

m = 1, 2, .... The second component of a sequential decision procedure may be 

called a decision rule. It specifies the decision d[x 1, x2, x m) £ D to be chosen 

for each possible set of observed values Ad =  x\, X 2 =  x2, ..., X m =  xm after 

which sampling might be terminated.

A Bayes sequential decision procedure, or an optimal sequential decision pro­

cedure, is a procedure for which the total risk(at least one observation is to be 

taken in clinical trials) is minimised. For a bounded sequential procedure, in which 

there is a fix number of observations No that can be taken, at each analysis, after 

observing X 1 =  aq, X 2 — x 2, ..., X m =  xm, m =  1,2,..., N0 — 1, the stopping rule
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of a Bayes sequential decision procedure is applied by comparing the Bayes risk 

from stopping sampling r0(wm, m), obtained by (3.4), with the expected risk from 

the optimal continuation of sampling and then choosing a decision d G D later, 

which is denoted by rN0̂ .rn(wm: m) and discussed in Section 3.2.2. If the Bayes 

risk from stopping sampling is less than the risk from the optimal continuing 

sampling, that is,

r0(wm,m) < rNo- m(wm}m ), (3.7)

then sampling may be stopped and a decision d G D would need to be chosen. 

Otherwise the sampling is continued.

The decision rule of a Bayes sequential decision procedure requires that deci­

sion functions d(xi, X2, ..., xm), m =  1,2,..., are always specified by Bayes decisions 

in D. That is, if sampling is to be terminated after values X\ =  aq, X 2 =  x 2, ..., 

X m =  xm have been observed and a decision d — d(aq, x2, ..., xm) £ D is chosen, 

then the risk of this decision d is equal to the Bayes risk, that is,

B w (6\x \,X2 ,...,a:m)(T/($, d) T cm (d, aq,£2 ,...,a?m)) — V q (re , n?.). (3.8)

3.2.2 Bounded Bayes Sequential Decision Procedure

The bounded sequential decision procedure involves stopping sampling after, at 

most, No samples. Corresponding to group sequential clinical trials comparing two 

treatments, let the maximum number of groups be / and the group sample size be 

n for each treatment, we have No =  2nl. If the value of No is large enough, then 

the bounded sequential procedure is in fact also the unbounded procedure. For 

example, if we can reach the point that as the trial progresses the cost of enrolling 

any additional groups of patients is greater than the cost savings achieved by any 

possible decrease in making Bayes decision, then we should terminate the trial
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at this stage, j ,  say, and make a decision. Let N0 > 2nj, the optimum bounded 

sequential decision procedure will be the optimum unbounded sequential decision 

procedure.

Backward induction(Berger 1985, Degroot 1970) is used to construct bounded 

Bayes sequential decision procedures. At each observation X m, m =  1,2,..., Ao —1, 

X\ =  aq, X 2 = x 2, ..., X m =  xm have been observed, there are not more than 

No—m observations which can be taken; we need to compare the risk from stopping 

the trial, denoted by r0(ai;m,m ), with the risk from the optimal continuation of 

the trial, denoted by r^0_TO(u;m, m), in which not more than No — m observations 

can be taken. If

r0(wm,m) <  (3.9)

then we make a decision without further observations; otherwise we continue 

sampling to observe the next sample Ah The calculations of rAr0_m(u;i” , m) can 

be obtained by the following recursive relationships,

ro(w , rn) inf Eŵ s\X\tx2,...,xm) ( ,̂ T cTO(5, aq, x2,..., a?TO)) ,

m =  1,2,..., N0, (3.10)

rk(wm,m ) =  min{r0(acra,m ), E*rk̂ 1 (wm(X ), m +  1)},

m, k =  1,..., N0 — 1, m +  k <  N0. (3.11)

After stopping sampling, the decision cl £ D with the Bayes risk as in (3.8) is 

chosen.

As an example, a Bayes sequential decision procedure with two interim anal­

yses, that is, No =  3, is described as follows.

the first interim analysis
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After observing AT =  aq, we need to compare the Bayes risk from stopping sam­

pling, r o ^ 1,].) with the expected risk from continuing sampling with not more 

than two observations r2(w1 , 1). If r0(tr’1, l )  <  r2(w1 , 1), then we stop sampling 

and make a Bayes decision. Otherwise we continue sampling and observe the next 

observation X .  The Bayes risk from stopping sampling ro('CC’1, 1) is obtained by 

(3.4) with m =  1. The expected risk r^rc1, ! )  is calculated by using recursive 

relationships of (3.10) and (3.11), that is,

ri(fn\ l) =  min{r0(rc1, 1), E*r0(w1 (X ),  2)}, 

r2(io\ l) =  min{r0(in1, 1), E*r1(w1 (X ),  2)}.

the second interim analysis

After observing AT =  x 2 and AT =  x2l the Bayes risk from stopping sampling is 

r0(w2, 2), obtained by (3.4) and the risk from continuing sampling with not more 

than one observation is ri(u;2,2). If r0(tc2, 2) <  ri(ic2,2), then we stop sampling. 

Otherwise we continue sampling to observe the next observation X .  The risk 

ri(u;2,2) is obtained by (3.11) with m =  2, k =  1.

the final analysis

After observing AT = x2, X 2 =  x 2 and AT =  X3, we need to choose a decision 

with the Bayes risk ro(io3,3) that is calculated by (3.4) with m=3.

3.2.3 Group Sequential Decision Procedure

To use a group sequential decision procedure one looks at observations one group 

at a time instead of one observation at a time as in a classical sequential decision 

procedure. It is more practical to carry out a group sequential procedure than a 

classical sequential decision procedure in clinical trials because of the difficulty in 

continual monitoring, particularly in multicenter co-operative clinical trials with
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survival time response.

It is known that there is no information loss of statistical inference on the 

parameters of interest if sufficient statistics(if they exist) of the parameters of in­

terest are used. Therefore group sequential samples may be replaced by a sequence 

of sufficient statistics of the parameters of interest. Bayes sequential decision pro­

cedure can be applied to the sequence of sufficient statistics. Chapters 4, 5, and 

6 will apply Bayes sequential decision theory into group sequential clinical tri­

als comparing two treatments with normal, binomial and survival time response 

variables, respectively.



Chapter 4

Bayes Group Sequential Decision 

Clinical Trials on Normal 

Response

4.1 The Problem

Consider a clinical trial comparing an experimental treatment with the standard 

treatment. Assume that the main outcome variable of the clinical trial X  is 

normally distributed with known variance a2 and unknown means //e and ¡is for 

the experimental and standard treatments, respectively. Let S =  fie — fis denote 

the treatment difference. The conventional hypotheses are

H0 : 8 < 0(the experimental treatment is not better) vs H\ : S >  So > 0 

in which So is a break-even value of S.

Suppose that the treatment is assigned by a randomised permuted block so 

that each consecutive group of 2n patients has n patients on each treatment, and 

the maximum number of groups is l. The group sample size n might be different 

in each group. This is discussed in Section 4.4. Let the group sequential sample 

be denoted by , Xijs, i =  1,2, j  =  1 ,2 ,...,/, for the experimental and

62
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standard treatments respectively. Random variables Xije, X{ja, i =  1,2, ...,n, j  =

1 ,2 ,...,/, are independent and identically distributed as the normal distribution 

N(pe, o 2) for the experimental treatment and the normal distribution N (ps, o 2) 

for the standard treatment. The group sequential samples can be expressed as

(4.1)

^ 1  le-, A  2lei •••? -̂ nle' A ] _  Ist A  2Isi •••) A nls•

At each analysis j ,  j  =  1 ,2 ,...,/, the Zj is defined to be the difference of group 

sample means of the experimental and the standard treatments, which is

Able:1 X2le, • • ? Anie, Aiis,A2IS, •• • 1 X n \ s

X l 2 c  ■1 A22e, •• • ? X n 2 e - > Al2s,A22S, •■ • 5 X n 2 s

y  . _  y  .
je ^  os', (4.2)

where,
__ n
A  je =  ~  X  A  ije i i—1

=  i  £  A V
2 =  1

The sequence of new random variables Z\, Z2,..., Z/ constitutes a classical sequen­

tial random sample, and they are independent and identically distributed as the 

normal distribution with mean equal to 5 and variance equal to

Since Z1, Z2,■■■■, Zi are sufficient statistics of the treatment difference 6, they 

can be used instead of the group sequential sample of (4.1) in statistical inferences 

on the treatment difference S without losing information. Then the Bayes sequen­

tial decision theory can be applied to the classical sequential random sample Zj, 

¿ =  1 ,2 ,...,/.
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4.2 Bayes Group Sequential Decision Procedure

4.2.1 Basic Elements of Bayes Sequential Decision Proce­

dure of the Study

Corresponding to Section 3.1.1, the basic elements of the Bayes sequential decision 

procedure applied to the problem described in Section 4.1 are,

1) The parameter of interest is the treatment difference 6 =  pe —  p s. Assume 

that the prior distribution of S is the normal distribution with mean equal to v0 

and variance equal to Tq , that is,

S ~  tu(<$) =  N ( is0,Tq). (4.3)

2) The decision d is chosen from the standard treatment and the experimental 

treatment, that is,

d G {standard treatment dt , experimental treatment de}. (4-4)

3) the sequential sample

It has been shown in Section 4.1 that the classical sequential sample Zi, Z2,..., Z; 

of (4.2) can be used instead of the original group sequential sample Xije, Xijs, i =

1,2, ...,n, j  =  1 ,2 ,...,/, of (4.1) without loss of information concerning statistical 

inferences on the treatment difference S. The probability density function of Zj , 

j  =  1, 2,...,/, is

Z, ~  f(z\S) =  N( 1̂ ) .  (4.5)

3) the loss and cost functions

To facilitate comparison with frequentisi methods in group sequential clini­

cal trials, and also for the simplicity of computation, the piecewise continuous



Chapter 4. Bayes Group Sequential Decision Clinical Trials on Normal Response65

loss function is used. The loss functions L(8,de) and L{8,d„) for choosing the 

experimental and standard treatments, respectively, are defined as,

0 8 <  d0
L(S,ds) =  <

I< 8 > 80

L(S,de) =  <' K 8 <  0

l 0 8 >  0,

that is, if the treatment difference 8 <  0 — the experimental treatment is not 

better than the standard treatment, then there is no loss in choosing the standard 

treatment, but there is a cost K  in choosing the experimental treatment; if the 

treatment difference 8 > 8q — the experimental treatment is better than the 

standard treatment, then there is no loss in choosing the experimental treatment 

but there is a cost K  in choosing the standard treatment. The loss function implies 

a “zone of indifference” or “range of equivalence” that extends from 0 to So, in 

which benefis from the experimental treatment are balanced by increased toxicity, 

inconvenience or cost. If the true difference 8 lies in this region, then there is no 

loss associated with accepting or rejecting the null hypothesis. The loss functions 

of (4.6) are displayed in Figure 4.1.

L(S,B) L(S,A)

IIIII
III
I
II

0 ¿o

Figure 4.1 Loss Function L(8, A )(— ) and Loss Function L(8, B )( -----)
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Suppose the cost of enrolling a patient into the trial is 1 unit. This cost is 

constant through the trial. The cost function is then,

zii Zj) j  — 1 ,2 ,...,/. (4.7)

The total cost, for example, will be L(5, d) +  2n if the trial stops at the first interim 

analysis.

4.2.2 Posterior Distribution of S

At each analysis j ,  j  — 1 ,...,/, after observing Z\ — z1} Z2 =  z2,..., Zj — zj, the 

joint probability density function of Zi, Z2,..., and Zj, from (4.5) is

f ( z 1,z 2,...,z j \S) =  Y [ f ( zi\S)
i— 1

(4.8)

The posterior distribution of S, =  w(S\zi, z2, ..., Zj), is obtained by the Bayes 

theorem, that is,

w(5\z1,z 2,. . . ,z j ) =
f ( z 1,z2,. ..,z j \S) w(S) 

JA f ( z 1,z2,. ..,z j \5) w(S) dS

47rcr2 )
Y  e - ^ Z L ^ - 6 ) 2

(6-vq)~
\Tjtt0 '

47T(72 ,
-  if* E L , (*.-«)’  1

(¿-m)2
e 4̂

\ J  2  7T T q
T0 dS

\Z2lTTj

= N(Vj,T (4 .9 )
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where,

jm^Zj +  2uo cr2 
jn r 2 +  2o2
o 2 22t0 cr

jn r 2 +  2cr2 ’
1 0 

J i = 1
(4.10)

4.2.3 Predictive Density Function

At each analysis j , j  =  1 , 2 after observing Zi =  z1; Z2 =  22,..., Zj 

Zj, the predictive density function of Z  given Zi =  ¿q, Z2 =  22v >  -Z,' =  

22, 2:j), defined by (3.6), is,

/ OO

/(*|£) U>(<J|*1,22, ...,*,■)
-oo

= r

dS

n  - -a - r ( z -S ) 2 ____1_
((-Vjf

4no2

1

e 4»-2'
y/2/KTj

e i dS

----------- 5-----9—  ( 5  — V i  )  2

v ^ f ? + ¥ )

=  N Wi,Tj +

e i

(4.11)

where Th  and Zj are obtained by (4.10).

4.2.4 Sequential Decision Procedure

Suppose the study defined in Section 4.1 is designed to have two interim analyses. 

The Bayes sequential decision procedure of the study may have the first interim 

analysis, the second interim analysis and the final analysis. The Bayes group se­

quential decision procedure of the clinical trial is described as follows by backward 

induction(see Section 3.2.2).
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The first interim analysis

At the first interim analysis, after =  z\ has been observed, we need to get 

,1) which is the Bayes risk from stopping the trial, and r2(w1, 1) which is 

the risk from optimally continuing the trial with not more than two observations. 

Since the cost of enrolling patients, which is C\{8,z\) =  2n at the first interim 

analysis, is independent of 6, and the risk ^(itf1, 1) is used to compare with the risk 

r2(ud, 1) only, the cost C\(5, zi) =  2n may be ignored in calculations of ro(tid,1) 

and r2(w1, 1).

Using the formulae (3.4) with m =  1, we have,

r0(itf\l) =  min Es\ZlL(S,d) 
dc{d3de}

=  mm{Es\ZlL(8,ds), Es\ZlL(5,de)}

=  m i n { A '( l - $ ( ^ — ^ ) ) ,  K $ { — )},  (4.12)
n  n

where $(■) is the standard normal cumulative probability distribution function 

and u\ and t\ are obtained by (4.10).

From the formula (3.11) with m =  1 and k =  2, we get,

r2(u>\l) =  min{r0(io1, 1), E*r1(w1(Z), 2) +  2n}, (4-13)

where ro(w1, 1) is obtained by (4.12) and

/ OO

r1(u;1(z), 2) * f(z\zi)dz. (4-14)
-OO

In (4.14), the predictive density f(z\zi) is the normal distribution A/’(i/i, rx2 +  ^ - )  

by (4.11), and the calculation of ri(w1(z), 2) is obtained as follows.
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By (3.11) and (4.12), first we have,

r1(iu1, 1) =  min{r0(ro1, 1), E*r0(w1(Z'), 2) +  2n}

J m i n { A ' ( l - $ ( ^ ) ) ,  E*r0(w1(Z'),2) +  2n} Zl <  Mx 

\ E*r0(w1(Z'),2) +  2n} z1 > M 1,

where

Mi
5o(titq +  2u2) 2uo<72

2 n r02 n r 2

If u;1 =  tu(<$|zi) is replaced by ro1(^) =  z), then we can get,

r i)« ;1^ ) ^ )  =

m i n { A ( l  -  <f(f c ^ ) ) .  A7 _ ^ (l  -
\/TTTF>

(̂ '—̂2(̂ 1 .*))2 
e 2("22+¥->

_(z'-J/2(il,2))2
+ A « ( ■  , - 1 e W < f e '  +

s fT T N F )

m m {A # (^ I y i i ) .  K J Z (1  ~  $(& za .L --^ )))

y < M,

(z'-v2(zi,z))'2
,e 2(tI + “̂ _*

( z ' - t / 2 (z i , z ) ) 2

e 2(t2 + 2̂ _ ) dz' +  2n} y > M,

where,

'A

^2(^1,-2)

uTqZi -f 2u0cr2 
nr0 +  2<r2 ’
2 r0V 2

n r 2 +  2d 2 ’ 
n r02(zx +  0) +  2^0o-2 

2 n r 2 +  2cr2 
2r02o-2

2nr2 +  2cr2 ’
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HTq (zi + 2 + z') + 2u0o 2 
3nr02 + 2cr2

2r0V 2
3nr2 +  2(T2 ?

=  -^ ■ (-2 ^ 0cr2 -  nr02(2i +  z) +  ^¿0(3nr2 +  2er2)),
uTq L

~  — ¿ ( -2 v 0cr2 -  titqZ1 +  50(nTQ +  o 2)).
nr0

After r0(w1  ̂1) and r2(w1, 1) have been calculated, we compare these two risks. If 

^(itf1, 1) <  r2(u r ,1), then we stop the trial and choose a treatment which has the 

Bayes risk ro(w1, 1). The statistical inferences on the treatment difference 8 can 

be obtained based on the posterior distribution 8\zi ~  w1 =  w{8\zì) =  N{y\,r2). 

Otherwise we continue the trial to observe the next observation Z and need to go 

to the second interim analysis.

The second interim analysis

At the second interim analysis, after Z\ =  z\ and Z2 =  z2 have been observed, we 

need to calculate the Bayes risk from stopping the trial ro(u>2,2), and ri(u;2,2) 

which is the expected risk from observing not more than one observation. Similar 

to the first interim analysis, the risks r0(u>2, 2) and r1(w2,2) are calculated by 

(3.4) and the recursive relationships of (3.10) and (3.11), respectively. The Bayes 

risk from stopping the trial is,

r0(wz,2) =  inf Es\ZuZ2L(8,d) de{da,de}
mm{Es\Zuz2 L(S, ds), Eĝ ZliZ2L(̂ 6̂ de ŷ̂

= min{/T(l — $ ( —------- ) ) ,  K <$>(— - ) } .
r2 T2

The expected risk is,

ri(u;2,2) = min{r0(rc2, 2), E*r0(w2(Z), 3) +  2n},

M zi,z ,z ')

T 3

M'

M
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where v2 and r2 are obtained by (4.10), and

/ CO

r0(w2(Z =  z),3)f(z\z1,z 2)dz
-CO

rMn
=  K  ( l - * (

J — oo
■ So ~ va(z)

))r= Aw + e 2(r2+ ^ )  dz

+ K
poo

/  <*>(-
Jm 2

-vai2) -
t3 2<t2

n
-e 2(TI + 2# )  dz,

where

M2

uTq[z\ + z2 +  z) +  2u0cr2 
3nr2 +  2cr2 

2r0V 2
3nr2 +  2er2 ’

— ^i—2uocr2 — nr2(zi + z2) + — So(3nr2 +  2cr2)).
TITq ¿i

If r0(w2, 2) <  E*ro(w2{Z), 3) +  2n, then we should stop the trial to choose a 

decision with the Bayes risk ro(iw2, 2). The statistical inferences on the treatment 

difference 5 may be based on the posterior distribution S ~  w2 =  tu(d|zi, £2) =  

N { v 2 , t|). Otherwise we need to continue the trial to observe the next observation 

Z.

The Final Analysis

At the final analysis, after observing Z\ = z\, Z2 = z2 and Z2 = Z3, we should 

stop sampling and choose the treatment with the Bayes risk r0(to3,3), which is,

M w  ,3) min'(Fj|j.1 ds), Efj\ZlZ2Z3Li8, de)}.
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The decision d may be chosen by,

 ̂_  I Es\Zl,Z2,Z3 L{8,ds) T E$\ZltZ2tZ3L(5jde)

[ de Efi\Zl ,Z2,Z3 d3 ) >  £'5|z1 ,Z2,Z3 o?e) ■

The statistical inferences on the treatment difference 8 could be obtained from 

the posterior distribution w(S\zi, z2, z2) =  N (u3, t̂ ) as in (4.9). For example, the 

posterior expectation of 8, E (8\z\, z2, Z3) =  nT° a P°int estimator

of the treatment difference 8.

4.2.5 Mean Sample Size

Suppose random variable J is the number of analyses. For two interim analyses, 

values of J may be 1, 2, or 3, and the expected number of analyses E (J ) is

E(J) =  l x P ( r 0(w1, l ) < r 2(M1,l ) )

+2 x P (r0(u>1, 1) > r2[w11 1), r0(w2, 2) <  E*r0(w2(Z ), 3) +  2n)

+3 x P (r0(w1, 1) > r2(rc1, 1), r0(ro2,2) > E*r0(w2(Z), 3) +  2n)

If the group of sample size of each treatment is n, then the mean sample size of 

the clinical trial will be 2n * E(J).

Although the group sequential clinical trial with three analyses was used in the 

study to describe the Bayes group sequential decision procedure, this procedure 

is similar when applied to a group sequential clinical trial with a greater number 

of analyses. Pocock(1982) has suggested that the number of analyses in group 

sequential clinical trials should not be more than five; otherwise there is little 

advantage in carrying out a group sequential clinical trial to reduce the sample 

size in frequentist methods. The group sequential clinical trial with three analyses 

will be used to compare Bayes sequential decision procedure with procedures of 

Pocock and O’Brien-Fleming in Section 4.3 by Monte Carlo simulations.
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4.3 Monte Carlo Simulations

4.3.1 Introduction

Two types of Monte Carlo simulations were used to compare Bayes procedures 

with frequentist procedures on group sequential clinical trials. The first type 

of simulation compared type I and type II error rates and mean sample sizes 

of Bayes group sequential decision procedures with one-tailed frequentist group 

sequential procedures of the Pocock and the O’Brien-Fleming. The second type 

of simulation was the comparison of Bayesian characteristics — the mean cost C 

— which is equal to the mean sample size plus the loss K  times error rate. Two 

interim analyses were used in simulations.

4.3.2 Simulations on Type I, Type II error rates and Mean 

Sample Size

We start by considering the first type of simulation. Type I error rates a were 

determined with the treatment difference 8 equal to 0, that is, the sequential 

sample of (4.5) are from the normal distribution N (0, ^ - )  with mean equal to 

zero; The type I error rate a is the ratio of the number of decisions that there is a 

treatment difference to the total times of simulations. The mean sample size under 

these conditions is denoted by Mean Na. Type II error rates ¡3 were determined 

with the treatment difference 8 equal to 0.25cr, that is, the sequential sample of 

(4.5) are from the normal distribution 1V(0.25<t, The type II error rate ¡3 is 

the ratio of the number of decisions that there is no treatment difference to the 

total times of simulations. The corresponding mean sample size is Mean, Np.

We assumed that the prior distribution of the treatment difference 8 was the
2

normal distribution 1V(0, ~ ) .  The mean of the prior distribution is equal to 0 

which means that there was no treatment difference to our prior knowledge. The
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2variance of the prior distribution is equal to ^  which might suggest that there 

were 2no “extra” pairs of patients in the pilot trial(Freedman and Spiegelhalter 

1989). The number no can be regarded as a measurement of the prior information 

and was changed (from 1% of maximum sample size to 50% of maximum sample 

size) in our simulations to study inferences from different prior information.

Group sample sizes n obtained by the Pocock’s design and the O’Brien-Fleming’s 

design with type I error rate a =  0.05, powers 1 — ¡3 =  80% , and 90% were used 

in the simulations. The loss functions of (4.6), K  values of 5,000 and 10,000, were 

chosen to yield type I error rates close to 0.05, type II error rates close to 0.20 or 

0. 10.

We ran 1000 simulations on Bayes procedures with various prior information. 

Results of simulations, which are the type I error rate a, the type II error rate 

/3, the mean sample size under no treatment difference and the mean sample 

size under the treatment difference =  0.25<r, denoted by Mean Na and Mean Np 

respectively, are listed in Table 4.1, Table 4.2, Table 4.3, Table 4.4 and Table 4.5. 

Table 4.1 and Table 4.2 are the comparison of the Pocock procedures(powers 1 -/3 =  

80%, 90%) with Bayes procedures (loss functions K  =  5, 000, I\ =  10, 000). Table

4.3 and Table 4.4 are the comparison of the O’Brien-Fleming procedures(powers 

1 -¡3 =  80%, 90%) with Bayes procedures (loss functions K  =  5,000, K  =  10,000). 

They show that with some prior distribution of the treatment difference 5, there 

is a Bayes procedure(bold print in tables) with type I error rates a and type II 

error rates [3 similar to those of the Pocock and the O’Brien-Fleming procedures, 

but with smaller mean sample sizes (Mean Na and Mean Np) than those of the 

Pocock and the O’Brien-Fleming procedures. Bayes procedures stop the trial 

earlier under null hypothesis than the Pocock and the O ’Brien-Fleming procedures 

since Bayes procedures have a much smaller mean sample size(Mean Na). The 

more prior information we have concerning treatment difference (when n0 is large), 

the earlier the trial stops under the null hypothesis(for Mean Na is small), but the
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lower power is(1-/3 is small). This is because the prior distribution of treatment 

difference S has the mean equal to 0. Since we did 1,000 simulations in Bayes 

procedures, the type I error rate a and type II error rate (3 were random variables 

with binomial distributions. If we compare type I error rates a of Bayes procedures 

with the a =  0.05 of frequentist procedures, the 95% confidence interval of a  is 

(0.036, 0.064). The 95% confidence intervals for powers l-/3=80%, 90% are (0.775, 

0.825), (0.881, 0.919), respectively. This is the reason that we are able to say that 

the bold print of type I error rate a and type II error rate ¡3 in Table 4.1, Table

4.2, Table 4.3 and Table 4.4 are similar to 0.05, 0.80(or 0.90), respectively.

Table 4.5 is the comparison between Bayes procedures with different loss func- 

tions(loss functions K=5,000, and 10,000) and the Pocock procedures with the 

type I error rate a =  0.05 and the power 1-/3 =  90%. Results on the comparison 

of Bayes procedures with the Pocock procedure are the same as those of Tables 4.1 

and 4.2. By looking at different loss functions in Bayes procedures, Table 4.5 also 

shows that the bigger the cost of making a wrong decision(when I\ =  10,000), 

the larger the mean sample sizes needed in trials in order to make a decision with 

greater accuracy, that is, with smaller type I error rate and bigger power.

4.3.3 Simulations on Costs

The second type of simulation considered the comparison of Bayes characteristics

— the mean cost C — which is equal to the mean sample size plus the loss K  times

error rate. Instead of giving values of treatment difference 8, the value of treatment

difference 8 used for each simulation was from the prior distribution iV(0, ^-) and

the sequential samples Z's were from the normal distribution N(8, ^ - )  with the
2

mean equal to <3 obtained from the prior distribution /V(0,^-). The Table 4.6 

shows the comparison of Bayes procedures of the loss K=5,000 with the Pocock 

procedure of type I error rate a = 0.05 and type II error rate (3 =  0.20.

In Table 4.6, Bayes procedure I is the result of 10 simulations on treatment
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differences S and 500 simulations on sequential samples Z's for each treatment 

difference 5, and Bayes procedure II is the result of fOO simulations on treatment 

differences 5 and 20 times on sequential samples for each S. It is very interesting 

to note that the mean cost(Mean C) in Bayes procedures is lower than that in 

the Pocock procedures. The same results are found in the comparison of Bayes 

procedures with the O’Brien-Fleming procedures.

4.3.4 Discussion

In the simulations, we used the break-even value of the treatment difference S 

equal to 0.25er, that is, So =  0.25cr, and got a large sample size saving in Bayes 

procedures. If 50 =  0.50cr, then the sample size saving in Bayes procedures would 

not be as big as in So — 0.25a. However, the reason for carrying out sequential 

clinical trials is to be able to detect small treatment differences as early as possible. 

Snapinn(1992) has also shown that monitoring clinical trials with a conditional 

probability stopping rule can achieve a large reduction in expected sample size 

without greatly affecting either the significance level or power of the trial. Another 

reason for the large sample size saving in Bayes procedures is that the Pocock 

and O’Brien-Fleming procedures stop a clinical trial when there is a treatment 

difference. But Bayes procedures stop a clinical trial either there is a treatment 

difference or there is no treatment difference when it is demonstrated by enough 

accumulating data.
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Table 4.1 Frequentist Characteristics Comparison of Bayes(I\ =  5,000) with the

Pocock Procedures

Procedure n MaxlV Prior no a Mean Na 1-/3 Mean Np

Pocock 78 468 0.050 456 0.800 320

Bayes 2(1%) 0.105 239 0.874 247

12(5%) 0.078 223 0.821 252

23(10%) 0.055 206 0.763 257

47(20%) 0.023 176 0.564 240

117(50%) 0.001 157 0.060 160

Pocock 106 636 0.050 626 0.900 388

Bayes 3(1%) 0.094 279 0.883 291

16(5%) 0.067 258 0.822 293

31(10%) 0.044 241 0.742 285

63(20%) 0.011 218 0.482 256

157(50%) 0.001 212 0.030 212
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Table 4.2 Frequentist Characteristics Comparison of Bayes(/F =  10,000) with

the Pocock Procedures

Procedure n Max/V Prior no a Mean Na 1 - /3 Mean Np

Pocock 78 468 0.050 456 0.800 320

Bayes 2(1%) 0.080 273 0.898 286

12(5%) 0.069 254 0.860 295

23(10%) 0.047 234 0.796 303

47(20%) 0.025 194 0.641 292

117(50%) 0.000 157 0.114 181

Pocock 106 636 0.050 626 0.900 388

Bayes 3(1%) 0.064 323 0.918 338

16(5%) 0.049 296 0.875 346

31(10%) 0.031 269 0.801 353

63(20%) 0.010 229 0.584 331

157(50%) 0.000 213 0.037 216
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Table 4.3 Frequentisi Characteristics Comparison of Bayes(/C =  5, 000) with the

0 ’Brien-Fleming((9 — F) Procedures

Procedure n Max./V Prior no a Mean Na l - ( 3 Mean Np

0 1 68 408 0.050 404 0.800 332

Bayes 2(1%) 0.107 221 0.864 230

10(5%) 0.083 209 0.818 235

20(10%) 0.061 192 0.758 239

41(20%) 0.028 163 0.588 228

102(50%) 0.001 137 0.099 150

0  — F 93 558 0.050 556 0.900 425

Bayes 3(1%) 0.096 260 0.881 273

14(5%) 0.072 245 0.830 274

28(10%) 0.046 224 0.743 273

56(20%) 0.014 197 0.511 249

140(50%) 0.001 186 0.038 186



Chapter 4. Bayes Group Sequential Decision Clinical Trials on Normal Response80

Table 4.4 Frequentist Characteristics Comparison of Bayes (/\ =  10,000) with 

the 0 ’Brien-Fleming((9 — F ) Procedures

Procedure n MaxlV Prior no a Mean Na l - ( 3 Mean Np

0 1 68 408 0.050 404 0.800 332

Bayes 2(1%) 0.089 247 0.886 264

10(5%) 0.072 236 0.850 272

20(10%) 0.059 219 0.793 277

41(20%) 0.029 182 0.653 274

102(50%) 0.000 139 0.159 172

O - F 93 558 0.050 556 0.900 425

Bayes 3(1%) 0.071 300 0.913 316

14(5%) 0.056 277 0.870 325

28(10%) 0.034 253 0.794 330

56(20%) 0.014 212 0.614 319

140(50%) 0.000 187 0.055 195
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Table 4.5 Comparison of Bayes Procedures with Different Loss Functions

Procedure n Max A" Prior no a Mean Na l - P Mean Np

Pocock 106 636 0.050 626 0.900 388

K  =  5,000

Bayes 3(1%) 0.094 279 0.883 291

16(5%) 0.067 258 0.822 293

31(10%) 0.044 241 0.742 285

63(20%) 0.011 218 0.482 256

157(50%) 0.001 212 0.030 212

K  =  10,000

Bayes 3(1%) 0.064 323 0.918 338

16(5%) 0.049 296 0.875 346

31(10%) 0.031 269 0.801 353

63(20%) 0.010 229 0.584 331

157(50%) 0.000 213 0.037 216
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Table 4.6 Costs Comparison of Bayes(I\ =  5,000, n =  78) with 

Pocock(n =  78, a =  0.05, f3 — 0.2) Procedures

Procedure Prior n0 Mean N Error Rate Mean C

Pocock 304 0.0196 402

Bayes procedure I 2(1%) 185 0.0126 248

Pocock 356 0.0060 386

Bayes procedure II 2(1%) 183 0.0070 218

Pocock 410 0.0086 453

Bayes procedure I 12(5%) 187 0.0176 274

Pocock 398 0.0180 480

Bayes procedure II 12(5%) 203 0.0215 310

Pocock 428 0.0228 542

Bayes procedure I 23(10%) 207 0.0304 359

Pocock 426 0.0050 452

Bayes procedure II 23(10%) 208 0.0090 253

Pocock 447 0.0048 471

Bayes procedure I 47(20%) 177 0.0022 187

Pocock 438 0.0105 490

Bayes procedure II 47(20%) 185 0.0105 237

Pocock 461 0.0178 550

Bayes procedure I 117(50%) 156 0.0004 158

Pocock 451 0.0105 504

Bayes procedure II 117(50%) 157 0.0100 207



Chapter 4. Bayes Group Sequential Decision Clinical Trials on Normal Response83

4.4 Conclusion and Discussion

In the group sequential clinical trial comparing an experimental treatment with 

the standard treatment, where the main outcome measure X  for the clinical trial 

is normally distributed and the mean of its normal distribution is the measure 

of treatment effect, there is a sequence of sufficient statistics of the treatment 

difference 5, Zi ,  Z2,...,Z/, which constitutes a classical sequential random sample. 

The Zj, j  =  1 , 2 is normally distributed. The original group sequential 

random sample can be replaced by this sequence of efficient statistics without 

loss of information of statistical inferences on the treatment difference 8. The 

Bayes sequential decision theory is then applied to the classical sequential random 

sample Zi, Z2,...,Z/. Monte Carlo simulations have shown that by choosing proper 

prior distributions and loss functions, there are Bayes group sequential decision 

procedures with type I error rate and type II error rate similar to those of the 

Pocock and the O’Brien-Fleming procedures, but with smaller expected sample 

sizes and costs than those of the Pocock and the O’Brien-Fleming procedures.

In the above study, we assumed that the clinical trial was monitored at every 

equal group sample size, which was every 2n patients. This is not the requirement 

of the Bayes sequential decision procedure in clinical trials. A clinical trial can be 

monitored at unequal group sample size. It is explained as follows.

Consider the clinical trial as in Section 4.1, here suppose that the group sample 

size is ny j  =  1 ,2 ,...,/. Corresponding to (4.2), the classical sequential sample

Zj =  x je -  X js, where X je =  ¿ E t i X ije, X js £"=1 Xij„, j  =  1 ,2 ,..,/. The

{Z i ,Z 2,..., Zj} are the sequence of differences of group sample means and from the 

normal distributions f(z\8) =  N (8 ,^ -) ,  j  =  1 ,2 ,...,/, respectively. The variances 

of this sequence of random variables {Z j , j  =  1,2,..., / }  are different, which is the 

only difference from the above clinical trial with equal group sample size. However, 

the variance a2 is known, at each analysis j ,  j  — 1 ,2 ,...,/, the sequential sample 

Zj may be standardised to have its variance equal to 1. The Bayes sequential
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decision procedure of this clinical trial with unequal group sample size is then the 

same as the above procedure with equal group sample size. The Bayes sequential 

decision procedure can also be applied to the sequential sample { Z j , j  =  1, 2 , / }  

itself like the above clinical trial, which is monitored at every 2n patients, because 

the corresponding posterior distribution w(8\zi, z2, Zj ) ,  j  =  1 ,2 ,...,/, shown in 

(4.15) and predictive distribution f(z\zi, •••, Zj), j  =  1 ,2 ,...,/, shown in (4.17) 

are still normal distributions.

At each analysis j ,  j  = 1 ,2 ,...,/, after observing Z\ — Zi, Z2 = z2,..., Zj — Zj, 
the posterior distribution of the treatment difference 8 is

w(S\z1,z2,. ..,z j )
ULi f(zj\5)w(8) 

n a i L i  f(zi\8)w{8) d8

— ~ E CrGi-sY3

A  V 47T<72 
1=1

1— p 1 = 1 (6-*or1 2r2e oV^ro

f - O O  . f i  V  47TO-2 ' %=i 1
i
1  2 r ?,—  e i

y/̂ lTTj

(S-vq)2
1 - 3r0 d8

\ Z 2 t t t 0

(4.15)

where,

ELi njTozj +  2 z W
Ei=i nirf +  2cr2

2r02a2

E L i niTo +  2cr2 ’
E L i nizi (4.16)

The predictive density function of z with the group sample size equal to n given
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Zi =  ZU Z2 =  z2,..., Zj =  Zj, f(z\zu z2, Zj), is,

/: n
oo v 47T(72

1

~ Vm TTW)

$\z1,z2,. ..,zj) dS

1x 2r.
!------ C 3

\ /2 7 r  Tj

2(t- + « ) e v j n ;
(*-«'; )2

(4.17)

where zz,-, r j, and ^  are obtained by (4.16).

This detailed procedure of monitoring a clinical trial with unequal group sam­

ple size is discussed in Chapter 6, where the clinical trial with survival time re­

sponse may be approximated by the clinical trial with normal distribution response 

with unequal variance in each analysis.

In the previous study, we also assumed that the main outcome variable in 

the clinical trial is from the normal distribution with variance <r2 known. When 

the variance o 2 is unknown, the computation required by the Bayes sequential 

decision procedure is complicated. This needs to be further studied.



Chapter 5

Bayes Group Sequential Decision 

Clinical Trials on Binary 

Response

This chapter will look at the Bayes sequential decision procedure of clinical trials 

with main outcome variables being binary response. If a random variable X  is 

from the binomial distribution B(n,p), where p is the parameter of interest, then 

the set of possible values of this random variable X  are {0 ,1 ,2 ,..., ??,}, which is a 

Unite set. Consequently the computational difficulties of Bayesian inferences on 

the parameter p may be partly overcome. Therefore, instead of using the simple 

piecewise continuous loss function as in Chapter 4, the loss function which consid­

ers the treatment effect and patient horizon will be used in the Bayes sequential 

decision procedure of clinical trials with binary response.

5.1 The Problem

A clinical trial is designed to test a new drug response rate p. The conventional 

hypotheses are
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H0 : p < po(reject the new drug) vs Hi : p > p0 (accept the new drug), 

in which po is the break-even value of the response rate.

Suppose the clinical trial is monitored at every n observations and the total 

number of analyses is /. Let Xij, i =  1 , 2 , n, j  =  1 , 2 , / ,  be the group sequen­

tial random variables, where X ij  are independent identically distributed Bernoulli 

random variables with unknown parameter p. At each analysis j , j  =  1 ,2 ,...,/, 

the group sequential sample, X i j  = X\j, X 2j  =  x2j, . . . ,  X nj  =  xnj, are observed. 

Let Yj be defined to be the sum of the group sample X i j , i =  1,2, ...,n. The 

sequence of random variables Y j, j  =  1 ,2 ,...,/, constitutes a classical sequential 

sample, and the distribution of Yj is the binomial distribution B(n,p), that is,

Yi = ' t ^ a ~ B ( n,p). (5.1)
2 —  1

Since Yj, j  =  1 , 2 , . . . , / ,  are sufficient statistics of the parameter p, the group se­

quential sample X i j , i =  1 , 2 ,  ...,n, j  — 1 ,2 ,...,/, can be replaced by the classical 

sequential sample Y j , j  — 1 , 2 , . . . , / ,  without losing information on statistical in­

ferences of the parameter p. The group sequential procedure is then replaced by 

the classical sequential procedure. Bayes sequential decision theory described in 

Chapter 3 can therefore be applied to the study. It is discussed as follows.

The basic elements of Bayes sequential decision procedure of the study are,

1) The parameter of interest is the new drug response rate p. A two-point 

prior distribution and beta prior distribution for p are studied in Section 5.2 and 

Section 5.3, respectively.

2) The decision space of the study is D — {d0(reject the new drug), di (accept 

the new drug)}.

3) the loss and cost functions
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At each analysis j , j  — 1, 2 , I, the loss function is defined as,

0 p < po

K(p -  Po)t P>Po,

K(p0 - p ) t  p < P o

K(p0 - p ) t  p >  po,

where p =  the true underlying response rate of the new drug;

Po =  the break-even response rate; 

t =  the patient horizon;

K  =  the difference in cost (monetary or ethical) of further treatment be­

tween a patient who does not respond to the new drug and a patient who does 

respond(/v > 0).

(5.2)

L{p, d\) L(p,d0)

Figure 5.1 Loss Function L(p,d0){---- ) and Loss Function L(p,d1)(----- )



The loss function is shown in figure 5.1. The patient horizon t and the treat­

ment effect p — po are considered in the loss function. If the response rate of 

new drug p is less than po, where the new drug should not be recommended, 

then there is no loss(L(p, d0) =  0) in rejecting the new drug, and there is a loss 

L(p,di) =  K(p0 — p)t in accepting the new drug. If the response rate of new 

drug p is greater than p0, where the new drug could be recommended, then there 

is a loss L(p,do) =  K(p — po)t in rejecting the new drug, and there is a gain 

L(p, d\) =  K(po — p)t (<  0) in accepting the new drug.

Suppose that the unit of K {>  0) is the cost of enrolling a patient into the trial. 

The cost function at analysis j ,  j  =  1 ,2 ,...,/, is then

Cj =  jn. (5.3)

4) The sequential sample Yj, j  — 1 ,2 , . . . , / ,  are obtained by (5.1) in which

Yj ~  f(v\p) = B(n,p)-
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5.2 Bayes Sequential Decision Procedure with 

Two-Point Prior Distribution

Consider the Bayes sequential decision procedure of the clinical trial described in 

Section 5.1. Suppose that the response rate of new drug p has the two-point prior 

distribution,

w(p)
w i p =  pi 

w2 P =  P2,
(5.4)

where uq +  w2 — 1, 0 < pi < po < p2 < 1. In practical, this prior distribution 

would be suggested only when we have very strong prior information to show this
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form of prior.

At each analysis j ,  j  =  1 , 2 , I, the posterior distribution of p after observing

Yi = Vu y 2 = Yj = yj, denoted by w3 =  w(p\y1,y2, is

w(p\yi,V2 i ...,yj)
= ______________f(yi,y2 ,-,yj\p) w{p)______________

/(y i ,  y2, •••,yj\pi) w(p1) +  f(yuy2, -,yj\P2 ) w{p2)
j
n f{yi\p) w(p)_ i=1

j j
n f(yi\pi) H p i) + n f(yi\p2) w{p2)

pYii=i w(i — p y n Yh'i=iV' w(p) 1

p'pi-iy,(i _ pl y n YsCiV'wx + p ^ ' - iy'(i - p 2)jn E(= 1 Vi 102

P p ^ y,(i-P W \

Pp = 1 y,d-Pi yn-Z L i  »•»1+Pp = i  9- W2

_Ei

PiP =1 !'>„,1+pP = 1 « ,

p =  pi

P =  P2-

(5.5)

At each analysis j ,  j  =  1 ,2 ,...,/, the predictive density function of y  after observ­

ing Y1 = yu Y2 = y 2 , — , V j  =  y j ,  expressed by / ( y | y i ,  y2 , . . . ,  y j ) ,  is

/(y| y i,y 2 ,--.,y j)

— -®p|s/i ,1/2 / (j/ li5)

=  /(y | p iM p i| y i,y 2,---,y j) +  / ( y b 2M p 2|yi,y2,...,y j)

C )pF =1 ' i+,(i-pi)°'+1)n_(̂ = i  « ^ U + O pP - 1 !',+!'(i-P2)(J+1)n_(E t i  ».•+»>*

p?

W2

Pp =i ^(i - po^ -E L i 9-wl+pp'=' 9i(i-p2)j' " - E t . >w 2

5.2.1 Bayes Sequential Decision Procedure

The Bayes sequential decision procedure of a clinical trial compares the Bayes 

risk from stopping the clinical trial with the risk from the optimal continuation
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of the clinical trial after each observation. During any analysis, if the Bayes risk 

from stopping the trial is less than the risk from the optimally continuing the trial, 

then the clinical trial is stopped; otherwise the trial is continued. After the clinical 

trial is terminated, a decision with the Bayes risk is chosen. These are described 

in Chapter 3. However, the stopping and decision rules of the Bayes sequential 

decision procedure of the clinical trial defined in Section 5.1 with the two-point 

prior distribution as in (5.4) can be described in the form of test statistics as can 

those of frequentist methods. This is explained as follows by these Bayes sequential 

decision procedures with one interim analysis and two interim analyses.

The Stopping Rule

One Interim Analysis

In the interim analysis, after the value Yi =  jq has been observed, ignoring the 

constant cost function of (5.3), the Bayes risk from stopping the trial r0(ud, 1) is,

ro^w1, 1)

mmcig|c;0iii1 j h/pjyj Z/(p, d)
=  mm{Ep\yiL(p,d0), EPiyiL(p,d1)}

I< (p2 ~  Po)t w (p2\yi)

K{p0 -  pi)tw(p1\y1) +  K(p0 -  p2)t w(p2\y1)

On the other hand, if the next sample Y  needs to be observed, the expected risk 

from observing Y, denoted by E*ro(w1(Y ) : 2), is

n

E*r0(w1(Y), 2) =  Y i ro(w\Y =  y),2)f(y\Y1 = y 1),
y —o

2/1 <

y i >

log[ PO Pi
Hp2~P0) w21( 1:  2 '■1-

rP2 ‘ - p i  i

!£ !)> * ] 
P2 '  1

l 0 S U  1 - P 2 J 
lno- f PO ~ P i  W 1 / ! ~  ° (̂P2 —PO )  ̂1-

log j>2 1 ~ P  1 •

Pi \n] 
P2 ’  J

Pi ~P2 J

(5.7)
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where

r0(w1(Y  =  y),2)

=  miridg^o^j} RpiyltyL(p, d)

y  L (jq ^  (1q )  , E y ^ y ^ ^ y L ( p ^  < ^ i ) }

| K { p 2 - P o ) t w ( P 2 \ y i , y )

K(po ~  Pi)tw(p1\y1,y) +  K(p0 ~  Pa)< w(p2\yi, y)

and the predictive density function f(y\yi) is obtained by (5.6). Let M  be the
loo ; f P 0 JIP 1_ m  ( l z £ L  ) 2 n 1

integer portion of value m ax{---- ? ^  1P2--------?/i, 0}. It is obtained that
°  PI 1 -P 2  1

=  E i L o K iP2 -  P o ) tw (p 2 \yi,y) f (y\y i )  
n ( 5 . 8 )

+  E  [ K ( P o ~ P i ) t w ( p 1\y1 :y)  + K ( p o - p 2) t w ( p 2\y1, y ) \ f ( y \ y 1).
y=M-\-l

Let

y < log[

y > log[

P i Wl ( 1- P l \2n]  
2(P2 ~PQ ) w 2  ̂ 1 ~ P2  J

P Q -P l  ___  ______
2 (P 2  ~ P 0  ) w 2  ̂ 1 ~ P 2

P 2 J1 {1~Pl \2m
9  '  1 — p o  '

log [P2 1 - P I  1 
PI 1 - P 2  J

yi

yi>

^(yi|«, K ,t,w ) =  roiw1, 1) -  (E*r0(w1(Y),2)  +  n). (5.9)

If D(yi\n,K,t,w) <  0, then the clinical trial might be stopped; otherwise the 

clinical trial needs to be continued. Assume that the clinical trial is terminated at 

the interim analysis. The value of yi should be small if the drug is not effective; 

and the value of yx would not be close to 0 if the response rate of the drug is high. 

The structure of stopping region is then,

{y i : D(y1\n,K,t,w) < 0} =
(5.10)

{y i ; yi <  C ! ( n , K , t , w ) }  U {y i : y x >  c2(n, K ,  t, tt;)}, 

where cx and c2(0 < cx < c2 < n) might be the roots of the equation

D (y 1\n, K , t, w)  =  0 . (5 .1 1 )
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Although the form of (5.10) is obtained under the assumption of the clinical trial 

being terminated at the interim analysis, it can be also used in the situation when 

the clinical trial needs to be continued by some special values of c\ and c2. The 

stopping rule at the interim analysis is then described as below.

At the interim analysis, if there are no roots in [0,n] of the equation (5.11), 

then the clinical trial is either continued when D(yx |n, K, t, w) > 0 or stopped 

when D(yi\n, K ,t ,w )  < 0, no matter what value yi has been observed. If there 

are roots of the equation (5.11), then

1) when ci =  c2 =  n or cx =  c2 =  0, that is, {y x : D(yx\n, K, t, w) <  0} = 

{0 ,1 ,2 , ...,n }, the clinical trial is stopped at the interim analysis no matter what 

value of the first observation Yx is observed;

2) when cx < 0 and c2 > n, while {j/i : D(y1\n: K, t, w) <  0} is an empty set, 

the clinical trial needs to be continued;

3) when ci < 0 and c2 <  n, the trial could be stopped and the new drug ac­

cepted if yi E {yi : yi > e2(n, K, t, w)}, otherwise the trial needs to be continued;

4) when c2 > n and Ci > 0, the trial could be stopped and the new drug rejected 

if Ui 6 {yi ■ Vi <  ci(n, K ,t ,w )} ,  otherwise the trial needs to be continued;

5) when 0 < ci <  c2 <  n, the trial could be stopped with the decision of 

rejecting the new drug if y1 E {yi : y\ <  cx(n, K ,t ,w ) }  or accepting the new 

drug if y1 E {j/i : y\ > c2(n, K, t,w )},  otherwise the trial is continued to the final 

analysis.

Two Interim Analyses Procedure

Say at the first interim analysis, Tj =  yx has been observed. The next observa­

tion should be taken if, and only if, the risk from stopping the trial, denoted by 

r0(w1, 1), is greater than the risk of continuing the trial with not more than two 

observations, denoted by r2(u;1, 1). The risk roiw1, 1) is obtained by (5.7). Using
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the method of backward induction described in Chapter 3, the risk r2(w1, 1) is, 

r2( V , l )  =  min{r0(V ,  1), E*r1(w1(Y), 2) +  n}, (5.12)

where,

E*r1(w1(Y), 2) =  =  y),2 )f(y\yi). (5.13)
y = o

In (5.13) the predictive density function f(y\yi) is obtained by (5.6), and the 

calculation of ri(w1(Y  =  y), 2) is described as below.

From (3.11) it is obtained,

r i(io \ l)  =  min{r0(u;1, 1), E*r0(wl (Y'),2) +  n}

min{Ep\yiL(p,d0), E*r0{w1(Y'), 2) +  n}

I mm{Ep\yiL(p,dx), E*r0(w1(Y'), 2) +  n}

where,

E*r0{w\Y'),2) =  ± r o ( w \ Y '  =  y>),2)f(Y ' =  y'\yi).
y’ =o  

M

=  J2 K (d2 -j>o)<w(p2|i/i,y,) / ( y ,|yi)
y'=o

n
+  s  [^(^o — i»i)i iu(pi|yi, y') +  A '(p o -P 2)^ « (p 2|yi,y,) ] / ( y ,|yi),

y f—M +1

loSr_PQ~Pl )2ni
in which the M  is the integer portion of value max{ — ~--------yi, °}-

S Ip, 1—p2 1
If ty1 =  w(p|yi) is replaced by io1(y) =  tu(p|yi,y), then r1(w1(Y  =  y),2) in (5.13)

y i <
l o g f  P 0~P 1 ' W1 ^ - P l  

°  *~2(P2~Pq) w2  ̂1~P2 '
l°g [— i—PLl® LPl 1-P2 J

y i > LPl !—P2J
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is obtained, that is, 

r1(w1(Y =  y), 2)

=  min{r0(n;1(y  =  y )), E*r0(w1(Y')\Y =  y)) + n} 

mm{Ep\yuyL(p,do), E*r0{w1(Y')\Y =  y)) +  n}

Tnm{Ep\y^yL(j),dx), E*r0(w1(Y')\Y =  y)) +  n}

where,

Mi

E*r0(w1(Y')\Y — y)) =  ^  I<(p2 -  p 0 )*  w ( p 2| y i ,  y, y') / ( 2 / I 2 / 1 ,  y)
y'=0

n

+ I ]  W po -Pi)tu;(pi|yi,y,y') + 7^(p0 -  p2)wfols/i,y,y')}f{y'\yi,y),
y '= M i +1

log [ PQ-Pl
in which the Mi is the integer portion of m ax{---- 2 1 Y1P|'~P2--------(yi +  2/)> 0}.

log[«

< log[ P n - P i  ___  ______
2 ( P 2 ~ P ( l )  m2 V I — P2

1 I L-Pl \2nl
2 '  1 —P2 '  1

y >

l o g [S L i^ £ L ]& LPl 1-P2 J 
P Q -P l , 1 - P l  \2n]

^(P2 ~P0 ) w2  ̂ 1 ~P 2 Jlog [
log[P2_ 1 —Pi ■

y i

2/i,
pi - P 2  J

7̂ 1(y1|n, A', t, w) =  r0(^ x, 1) -  r2(w1, 1). (5-14)

If Di(yi\n, I\, t, w) <  0, then the clinical trial could be stopped; otherwise the 

trial needs to be continued. As described in the procedure of one interim analysis, 

the stopping region with the form of yi has the structure,

{pi : D1 (yj |n, K, t , to) < 0} =
(5.15)

{yi ■ ?/i < c\{n, K ,t ,w ) }  U {yi : yi > c\(n, K, t, tw)},

where c\(n, K, t, w) and c\(n, K , t ,w) (cj < c\) might be the roots of equation 

D^y^n, =  0.

If the equation D1(y1\n, K ,t ,w ) — 0 has no roots, the clinical trial could be 

either stopped when H1(y1|n, K, /, w) < 0, or continued when D1(y1\n, K, t, w) >  0 

no matter what observed value Y1 =  yx is. If there are roots of the equation
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Di(yi\n, K ,t ,w ) =  0, then clinical trial could be stopped when 0 <  y\ <  c\ <  n 

or n > j/i >  c\ > 0; otherwise the trial needs to be continued.

At the second interim analysis, after Y\ — y\ and Y2 =  y2 have been observed, 

there is only one more sample which can be observed. The calculation of risks at 

the second interim analysis is therefore same as those at the interim analysis of 

one interim analysis procedure except that the posterior distribution of p, w(p\yi), 

is replaced by w(p\yi, 2/2)- The Bayes risk from stopping the trial is,

r0(u;2,2) =  min Ep\yumL(p,d)

= m in{£p|yiiy2L(p,£/0), Eplyuy2L{p, d i)}, (5.16)

where,

E p\yuy2L (P ido) =  K ( p 2 -p o )tw (p 2\y i,y2),

T'pIj/i ,1/2 T(p, d\) = K(p0 -  Pi)tw(pi\yu y2) + K(p0 -  p2)t w(p2\yu y2).

The expected risk from observing the last observation is,

E*r0{w2(Y), 3) =  Y j r0{w2(Y  =  y), 3 ) /(y|yx, y2), (5.17)
y = 0

where,

r0(iv2(Y =  y), 3) =  min Eplyuy2tyL(p,d)

— m m { E p \yu y2ty L ( p ,  d 0 ) ,  -^p|yi,t/2 ,yT(p , f / i ) } .

It is easy to show that the r0(iv2, 2) and E*r0(iu2(Y ), 3) +  n are functions of yi +  y2 

given the group sample size n, parameters of the loss function K , t and the prior
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distribution w(p). Let

D2(yi +  y2\n,K,t,w) =  r0(w2, 2) -  (E*r0(w2(Y), 3) +  n). (5.18)

If D2(yi +  y2,\n, K ,t ,w ) < 0, then the trial should be stopped; otherwise the trial 

needs to be continued. The stopping region with the form of t/i. +  y2 is

{yi + V 2 ■ D2(yi +  2/2K  K ,t,w )  < 0} =
(5.19)

{y\ +  V2 -y\ +  y2 < c l (n ,K ,t ,w )}  U {y x +  y-1 : Vi +  y2 > c2(n, K ,t ,w )} .

where Cj(n, K, t, w), c\(n, K , t, w) can be the roots of the equation D2(y1-\-y2\n, K, t, w)

0.

Hence the stopping rule of the clinical trial with two interim analyses in the 

form of test statistics is that at each interim analysis j  — 1 (or j  =  2), after 

Li =  2/i (or >i =  i/i, y2 =  y2) being observed, if the equation D1(y1\n, K, t, w) =  0 

(or D2{yi +  2/2I«, K ,t ,w )) have no roots, then the clinical trial should be stopped 

when D1(y1\n,K,t,w) < 0 (or D2(y1 +  y2\n,K,t,w) < 0), and the clinical trial 

is continued when D1(y1\n, K, t, w) >  0 (or D2(y1 +  y2\n, K ,t ,w ) > 0); if the 

equation Di(yi\n, K, t, w) =  0 (or D2(y1 +  y2\n, K , t, w) =  0) have the roots, then 

the decision of stopping the trial early is based on the values of the roots listed in 

the following table.
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The Stopping Rule of Clinical Trials Two Interim Analyses

first interim analysis Di(yi\n, K, t, w) =  0

no roots in [0, n\ roots c\, c\

stop the trial D\{y\ n, K, t,w) <  0 0 < j/i < c\ < n

0 < c\ < yi < n

continue the trial Di(yi\n, K ,t ,w ) >  0 c\ <  0 and c\ > n

second interim analysis £ 2(2/1 +  2/21 n, K, t, w) =  0

no roots in [0, 2n\ roots c\, cl

stop the trial £ 2(2/1 +  2/21«, K ,t,w )  < 0 0 < 2/1 +  2/2 < c\ <  n

0 < c\ <  2/1 +  2/2 < n

continue the trial £ 2(2/1 +  2/1K  K , t ,w) > 0 cl < 0 and c\> n

The above results can be easily generalized to the Bayes sequential decision proce­

dure of the clinical trial with more than two interim analyses. Consider the Bayes 

sequential decision procedure of the clinical trial described in Section 5.1. At each 

analysis j ,  j  =  1 , 2 after Y1 =  ¿q, Y2 =  y2, ..., Yj =  yj have been observed, 

the Bayes risk from stopping the trial is denoted by r^w 31 j )  and the expected 

risk of continuing the trial with not more than / — j  observations is denoted by
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r i - j ( wC  j)-  Let

j
Dj(J2yi\n, K C ,w) =  ro(w3, j )

2=1
(5.20)

If Ui\n,K,t,w) < 0, then the trial could be stopped; otherwise the trial
2 = 1

j
needs to be continued. The stopping region with the form of statistics ]T) V) is

i=1

{ E  Vi ■ Dj( E  Vj\n,K,t,w) < 0} =
2 =  1 2 =  1

{  E  Vi ■ E  Vi<  cj(n, LT, i, tu)} U {  E  Vi ■ E  y* > cj(n, /T, t, w}i=l i=1 ¿=1 t=l

(5,21)

where cl(n, I\,t,w) and c?2(n, K ,t ,w )  (cj <  c )̂ may be the roots of the equation 
i

Dj(Yl Ui\n, K ,t ,w )  =  0. The stopping rule at analysis j  can be summarised as 
2 =  1

the following table.

Stopping rule at analysis j

jth  interim analysis Dj( E  y%\n, K ,t ,w ) =  0
i=1

no roots in [0, jn\ roots cj, cj
2

stop the trial Dj{ E  yi\n, K, t,w) < 0 0 < E  y% <  <4 <  nj 
2 = 1  2 = 1

0 <  4  <  E  Vi < nji=1
3 • .

Dj( Y1 Vi\n, K ,t ,w ) > 0  < 0 and Cj > nj
¿=i

continue the trial
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The Decision Rule

At each analysis j ,  j  =  1 , 2 after values Y\ =  y\, Y2 =  ¡/2 r ., Yj =  yj have 

been observed, if the clinical trial is terminated, the Bayes risk from stopping the 

trial, ro(w3,j ) ,  is,

r0(wJ,j )  = min ^p|yi>3/2-.. L(p,d)de{do,di}
min{ Ep\yi tV2...y. L (p, do), Ep\y\ ,y2,...,yj L{p, d i)}

E,p\y\ ,V2,—,yj L(p, d0

Ep\yi,y2,---:yjL(p, d\)

j log[ Pp-Pl )jni° '■̂ (P2-P0 ) U'2  ̂!-P2 'T, yi <i—1

t d i >
2 —  1

log 1̂2.
Iog[ ^

p i  i - p j j_____ wi c ‘ - pi \<»i
2(p? -pn) «’2  ̂t~P2 ' ‘

log [— t—TT]
l P i  l — P2 1

(5.22)

where

£p|yi,y2 ¿ (M o )  =  Kt(p2 -  p0)w(p2\y1,y2,...,y j ),

Ep\yum yjL{P^i)  =  Kt(p0 -  pi)w(p1\yl ly2,...,y j ) +  Kt(p0 -  p2) w(p2\y1,y 2,

j
The Bayes risk r0(w3, j ) is a function of Y  Vi- The decision rule after the trial be

2 =  1

terminated is then

d
doireject the new drug)

<
di (accept the new drug)

^  /  log[^=«
Y, Vi — Iog[P2 i- pi

_ W1 /  1 ~ P  1 \jn I
2 ( P2 ~ P p )  w 2  ̂ 1 ~ P 2  ' J

2 = 1

¿ y * >
2 =  1

Pi 1 - P 2  J
i nf- r  p o - pi  wi / 1 - p i \j^ ilQsU(P2- Pn)^ (r ^ -r  J

l°g [—7-—]® LPl !-P2 J

(5.23)

5.2.2 Group Sample Size

Consider the group sequential clinical trial with the number of analyses equal to

l. At the final analysis, let f (y i ,  yi, ■■■, yi) be the joint probability density function
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of Yi, Y2,..., Yi, that is,

f ( y i ,y 2 , - ,y i )  =

+

f ( y i , y 2 ,  ■~,yi\pi)w(pr)  +  / ( y i ,y 2 ,  •••,y i\p2)w(p2)

n  ( )  pF ,=i Vt ( i -  y‘ w!
i= 1 \Vi/ 

i=i v I
(5.24)

7 . . . .  .Since the Bayes risk r0( w , l ) as in (5.22) with j  =  l is a function of X) yi where
2=1

the constant cost function (7/ as in (5.3) was ignored, the average Bayes risk, 

E{Yl,Y2,...,Y,)ro(wl,l) + nl, is,

^(yiiya...Yl)r0(w\l) +  nl =  X  ro(wl, l ) f { y i , y 2,...,yi) +  nl
yi ,V2,

=  X ) r0(wl, l ) f Q 2 y i )  +  nl
E^'

r /  nl \
=  X  ro(™lJ)

X)s/*=°

X n/ \ nE «  
X ij-

Ey.-
p r  (i -  p i)ni

+  l _  l p ^ " ( i - P 2 ) n ,_s ,,i^2 +  nl

Mo T / nl \ ■ v-= X  p̂|yi,y2,..,y/̂ (P̂ o) Pi y‘(1 -  pi)ni~E> U7j
V i / . = n  L \ ^ 2 / * /Ew=°

+ f  )  p F y‘ (l -  p2)n'“ ^ y' +

nl

X  Ep\yi'y2'...,y,L(p, d\
XI y;=Aio+i

X n/  ̂ „ E «
,Ey<

' n l \ X  
X v i

pr 'h( i  - p i ) nZ -^yi

+ i p ^ “‘ ( i - p 2r ^ yi^2 +  nl (5.25)

l o  [ P 0 - P 1  ’ " l / l - P l x n l l

where the M0 is the integer portion o f ----~(pf~pX i-r\7P2----•

It can been seen from above that given the prior distribution w(p), the loss 

function L(p,d), and the cost function Cj, j  =  1 ,2 ,...,/, the average Bayes risk
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E(Yi ,Yn,...,Y,)ro(w\ Z) is a function of nl, which is the maximum sample size of the 

group sequential clinical trial. Bayes inferences are independent of the number of 

analyses after the trial is terminated. Therefore in the view of Bayes sequential 

decision theory the maximum sample size N =  nl can be designed to reach the 

prespecified average Bayes risk level, say R , and

N — min{Ar : Ê Y1,Y2,-,Yl)ro(wl,1) <  R}. (5.26)

If the clinical trial is designed to have equal group size, then the group sample 
Nsize is n =  y .

5.2.3 Comparison with Frequentist Methods

In this section, the procedures of Pocock and O’Brien-Fleming are used for com­

parisons with the Bayes sequential decision procedure in the group sequential 

clinical trial described in Section 5.2.1. The comparisons are based on type I er­

ror rates ct, type II error rates (3, and their corresponding expected sample sizes, 

Mean Na, Mean Np, respectively,

Since the response rate of new drug p is assumed to have the two-point prior 

distribution as in (5.4), the corresponding conventional hypotheses test is H0 : 

p =  Pi <  po(reject the new drug), vs Hi : p =  p2 > po(accept the new drug). 

Hence, the type I error rate a in the study is the probability of accepting the drug 

if the drug is not effective, that is, the probability of choosing decision di if the 

sequential samples Yj, j  =  1 ,2 ,...,/, are from the binomial distribution B(n,pi). 

The type II error rate ¡3 in the study is the probability of rejecting the drug 

while the drug is effective, that is, the probability of choosing decision d0 if the 

sequential samples Yj, j  =  1 ,2 ,...,/, are from the binomial distribution B(n,p2). 

Since the number of all possible values of Yj, j  — 1 ,2 ,...,/, is n +  1, the type I 

error rate a and type II error rate (3 can be calculated.
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Assume the clinical trial described in Section 5.1 is studied under the Bayes 

sequential decision theory. Suppose the break-even value of response rate of the 

new drug p0 =  0.20, the new drug is rejected if the response rate of the drug 

p =  pi =  0.01, 0.05, and 0.10, and the new drug is accepted if the response rate 

of the drug p =  P2 — 0.25. Let the two-point prior distribution of p as in (5.4) 

have Wi =  0.3, 0.5, 0.7, and 0.9. The group sample sizes n are designed to be the 

same as those used in the procedures of Pocock and O’Brien-Fleming with type 

1 error rate a — 0.05 and type II error rate ¡3 =  0.20 and 0.10. Assume that the 

patient horizon t =  500, 1000, 5000, 10000. The two interim analyses procedure 

is used as an example. The Table 5.1 and Table 5.2 are the results of the type I 

error rate a  and its expected sample size Mean Nai and the type II error rate (3 

and its expected sample size Mean Np, respectively, with the group sample size 

designed by the procedure of Pocock with type I error rate a =  0.05 and type II 

error rate (3 =  0.2.

It has been shown that there are Bayes sequential decision procedures which 

have the type I error rates a, type II error rates (3 close to the procedures of 

Pocock, but their corresponding expected sample sizes are smaller than those of 

Pocock’s procedures, which are in bold print in the tables. The more prior belief 

in p =  pi of the new drug being ineffective, that is, the larger value of uq, then 

the lower type I error rate a and the smaller expected sample size Mean Na but 

the higher type II error rate (3 and the bigger expected sample size Mean Np. The 

less prior belief in p — pi or the more prior belief in p =  p2, that is, the larger 

the value of w2 =  1 — uq, then the smaller type II error rate (3 is. The larger 

the patient horizon t is, the larger the expected sample size is needed to be able 

to make a decision with greater accuracy(that is, both type I and type II error 

rates are small). The bigger the difference of response rate(that is, the value of 

Pi is smaller because the value of p2 is fixed to be 0.25.) is, the earlier the trial 

is stopped since the expected sample size is smaller. The same results are found
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when the type II error rate /3 =  0.1.

The Table 5.1’ and Table 5.2’ are the results of the type I error rate a  and 

its expected sample size Mean Na, and the type II error rate ¡3 and its expected 

sample size Mean Np, respectively, with the group sample size designed by the 

procedure of O’Brien-Fleming with type I error rate a =  0.05 and type II error 

rate (3 =  0.2. The results of Bayesian decision procedures comparing with the 

procedure of O’Brien-Fleming are same as those of Bayesian decision procedures 

comparing with the procedure of Procock.

Hence, it is obtained that Bayesian sequential decision procedures in clinical 

trials could be based on the statistics J2i=i Pi, j  =  1 ,2 ,...,/, as those of frequentist 

methods. There are Bayesian sequential decision procedures with type I and type 

II error rates similar to those of the Pocock and the O’Brien-Fleming procedures, 

but with smaller mean sample size than those of the Pocock and the O ’Brien- 

Fleming procedures.
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Table 5.1 Type I error rate o- and expected sample size Mean Na

t=500 t=1000 t=5000 t=10000

Wi a Mean Na a Mean Na a Mean Na a Mean Na

Pocock’s procedure: p\ =  0.01, Max N =  39, Mean N =  17.5 

Bayes sequential decision procedure:

0.3 0.0082 14.7 0.0082 14.7 0.0085 28.8 0.0024 29.0

0.5 0.0082 14.7 0.0082 14.7 0.0007 14.9 0.0008 26.4

0.7 0.0072 13 0.0082 14.7 0.0007 14.9 0.0007 14.9

0.9 0.0004 13.1 0.0004 13.1 0.0007 14.9 0.0007 14.9

Pocock’s procedure: pi = 0.05, Max N = 63, Mean N == 28

Bayes sequential decision procedure:

0.3 0.0849 21 0.0898 25.4 0.0277 37.2 0.0149 37.8

0.5 0.0849 21 0.0205 22.5 0.0080 27.8 0.0066 37.9

0.7 0.0189 21 0.0205 22.5 0.0061 27.8 0.0038 27.9

0.9 0.0032 21 0.0036 21.4 0.0011 23.0 0.0012 23.4

Pocock’s procedure: p\ = 0.10, Max N = 129, Mean N =  55.5

Bayes sequential decision procedure:

0.3 0.1332 43 0.1333 43 0.0728 60.6 0.0373 65.0

0.5 0.0607 43 0.0607 43 0.0318 55.0 0.0162 64.2

0.7 0.0607 43 0.0607 43 0.0124 49.4 0.0067 56.7

0.9 0.0087 43 0.0087 43 0.0044 45.9 0.0024 49.4



Chapter 5. Bayes Group Sequential Decision Clinical Trials on Binary Response 106

Table 5.2 Type II error rate ¡3 and expected sample size MeanNp

t=500 t=1000 t=5000 t=10000

w\ (3 Mean Np (3 Mean Np [3 Mean Np (3 Mean Np

Pocock’s procedure: p\ =  0.01, Max N = 39, Mean N =  20.5

Bayes sequential decision procedure:

0.3 0.0275 14.5 0.0275 14.5 0.0042 14.9 0.0048 17.7

0.5 0.0275 14.5 0.0275 14.5 0.0292 17.8 0.0092 18.2

0.7 0.1267 13 0.0275 14.5 0.0292 17.8 0.0292 17.8

0.9 0.1321 16.0 0.1321 16.0 0.0292 17.8 0.0292 17.8

Pocock’s procedure: p\ =  0.05, Max N = 63, Mean N =  33.5

Bayes sequential decision procedure:

0.3 0.0745 21 0.0236 22.3 0.0080 26.0 0.0085 30.0

0.5 0.0745 21 0.0843 23.7 0.0313 29.3 0.0151 31.1

0.7 0.1917 21 0.0843 23.7 0.0323 30.4 0.0329 34.9

0.9 0.3674 21 0.2063 25.1 0.0976 34.6 0.0913 34.8

Pocock’s procedure: p\ =  0.10, Max N =  129, Mean N =  66 

Bayes sequential decision procedure:

0.3 0.0612 43 0.0612 43 0.0161 48.6 0.0147 53.8

0.5 0.1237 43 0.1237 43 0.0339 52.6 0.0217 60.5

0.7 0.1237 43 0.1237 43 0.0740 57.1 0.0420 67.6

61.0 0.0916 73.40.9 0.3390 43 0.3390 43 0.1411
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Table 5.1’ Type I error rate a and expected sample size Na

t=500 t= 1000 t=:5000 t= 10000

W\ a Mean Na a Mean Na a Mean Na a Mean Na

O’Brien-Fleming procedure: p% = 0.01, Max N =  30, Mean N = 20

Bayes sequential decision procedure:

0.3 0.0956 10 0.0134 11.7 0.0066 21.73 0.0066 21.7

0.5 0.0055 11.0 0.0055 11.0 0.0066 21.73 0.0032 21.8

0.7 0.0055 11.0 0.0055 11.0 0.0024 11.90 0.0032 21.8

0.9 0.0043 10 0.0010 11.1 0.0003 11.08 0.0003 11.1

O’Brien-Fleming procedure: p\ = 0.05, Max N =  48, Mean N = 32

Bayes sequential decision procedure:

0.3 0.0582 19.7 0.0594 20.1 0.0200 30.26 0.0205 37.7

0.5 0.0503 17 0.0542 20.2 0.0188 27.96 0.0128 30.6

0.7 0.0503 17 0.0112 17.8 0.0041 21.59 0.0045 28.3

0.9 0.0088 17 0.0025 17.9 0.0038 20.85 0.0030 21.6

O’Brien-Fleming procedure: p\ = 0.10, Max N =  94, Mean N = 62

Bayes sequential decision procedure:

0.3 0.2115 32 0.2115 32 0.0593 55.38 0.0605 58.7

0.5 0.0944 32 0.0944 32 0.0503 45.62 0.0352 57.0

0.7 0.0359 32 0.0358 32 0.0222 40.24 0.0148 47.4

0.9 0.0117 32 0.0117 32 0.0062 35.34 0.0057 40.0
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Table 5.2’ Type II error rate (3 and expected sample size Np

t=500

OOo1Î4-3 t=5000 t= 10000

W 1 /3 Mean Np ¡3 Mean Np ¡3 Mean Np /? Mean Np

O’Brien-Fleming procedure: p\ =  0.01, Max N =  30, Mean N = 24.5

Bayes sequential decision procedure:

0.3 0.0563 10 0.0589 12.0 0.0112 13.2 0.0112 13.2

0.5 0.0689 12.2 0.0689 12.2 0.0112 13.2 0.0121 16.1

0.7 0.0689 12.2 0.0689 12.2 0.0618 15.3 0.0121 16.1

0.9 0.2440 10 0.0794 15.2 0.0853 16.3 0.0853 16.3

O’Brien-Fleming procedure: pi =  0.05, Max N =  48, Mean N = 39

Bayes sequential decision procedure:

0.3 0.0687 18.9 0.0579 19.2 0.0218 24.4 0.0164 24.7

0.5 0.1637 17 0.0590 19.5 0.0290 24.3 0.0233 30.0

0.7 0.1637 17 0.1767 20.6 0.0781 28.6 0.0473 29.8

0.9 0.3530 17 0.2088 25.0 0.0927 28.3 0.0797 34.2

O’Brien-Fleming procedure: p\ =  0.10, Max N =  94, Mean N = 76

Bayes sequential decision procedure:

0.3 0.0698 32 0.0698 32 0.0243 42.7 0.0210 42.9

0.5 0.1530 32 0.1530 32 0.0465 42.7 0.0269 49.6

0.7 0.2779 32 0.2779 32 0.0911 46.3 0.0597 56.2

0.9 0.4325 32 0.4325 32 0.1976 51.0 0.1201 61.1
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5.3 Bayes Sequential Decision Procedure with 

Beta Prior Distribution

Consider the study described as in Section 5.1. Assume that the prior distribution 

of the response rate p in the study has the beta distribution with parameters 

u(u > 0) and v(v > 0). The probability density function of p is,

At each analysis j ,  j  =  1 ,2 ,...,/, the posterior distribution of p after observing

Y1 =  yu y2 =  2/2, •••, Yj =  Vj, denoted by w3 =  w(p\y1,y2, i s  still a beta
j  j

distribution with parameters Hi + 11 and jn  — Yi Vi +  v- It is shown as follows
i = l  i= 1

by Bayes theorem.

p ~ w (p )  =  f(p\u,v)

(5.27)

w(p\y1,y2,...,yj)
f(yuy2,-,y j\p)w {p)

So f ( y u y 2 , - , y j \ p ) w { p ) dP
j
n f(yi\p)w(p)

j J

j j

(5.28)
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At each analysis j ,  j  =  1 ,2 ,...,/, the predictive density function of Y  after observ­

ing Yi =  y u  Y2 = y2,..., Yj =  yj ,  expressed by f ( y \ y 1, y 2, . . . , y j ), is

f{y\yi,y2,---,yj)

—  Ep\yl ty2 ,...,yj f  (?/|p)

=  I f{y\p)w(p\yuy2,-.-,yj)dp 
Jo

n

,y

53 y>+u-i Jn_53 yt+v~1
Pi=1 (1 — P) i=1

j j
/? (£  yi +  «, jn  -  E  yi +  v)

2 = 1  i=1

/? (E  y* +  y + «, (j +  i ) n - E » i - ! i  +  »)¿ = 1_____________________ 2 = 1___________
j j

/3(E ^  +  u, jn  -  E  yj +  v)
2=1 2=1

dp

(5.29)

5.3.1 Bayes Sequential Decision Procedure

In this section, Bayes sequential decision procedures of the study are described by 

the one interim analysis and the two interim analyses.

The Stopping Rule

One Interim Analysis

At the interim analysis, suppose that the value E  =  yi has been observed, the 

Bayes risk from stopping the trial, r0(w1: 1), is,

r o (« E l)  =  min Ep]yiL(p,d)at\ao,ai j

=  mm{Ep\yiL(p,do)} Ep\yiL(p,d1)} ,  (5.30)
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where

EP\yiL(p,d0) =  f  L(p,d0)w(p\y1)dp
J 0
¡■i vVl+u~1(\ — r>)n~yi+v~1
/  K ( p - p 0)tf-—----—--------------- — —
JP0 p(yi + u, n - y i +  u)

dp

Kt
yi +  u 1 p y i + u+ l - l   ̂1 _  p ^ n - y i + v - 1

n +  u +  v JPo /?(yi +  u +  1, n - y x  +  v)L
dp

-Po fJp0

1 pVl 1 ̂  1 _  p^ri-yi +v-l

(3(yi +  « , n -  yi +  t>)
dp

EpfaLfadx) =  f  L(p, di) w(p\yx)dp
V 0

p,2/1 +«-l (! - P )[  K(p0 - p ) t  
Jo p(y i +  u, n

n-yi +w-l

yi +  U)
dp

Ktpo — Kt
yi +  u 

n +  u +  v

There is no closed form for the Bayes risk ^ ( iu1, 1) as in (5.7) for the study with 

the two-point prior distribution.

The expected risk from observing the next observation Y, denoted by E*r0(w1(Y), 2), 

is,

E*r0{w \Y),2) Y^roiw 'iY  =  y) ,2)f (y\y1)
y=o

£  . y™ , EP\uuyL (Pid) f(y\yi)lJ=0 \rfG-tdo,ai > /

( ,  TT1, i /  ^(p»d) u,(p|yi>y)<ip') /(y|yi)> (5-31)^  \de{do,di} Jo )

where the posterior density function w(p\y\, y ) and the predictive density function 

f(yi\y)  are obtained by (5.28) and (5.29), respectively.

If the Bayes risk from stopping the trial ^ (w 1, 1) is less than E*r0(w1(Y), 2) + 

n, the clinical trial could be stopped; otherwise the trial needs to be continued. 

Although the stopping rule of the Bayes sequential decision procedure in the study 

can be described as a form of statistics Y\ as in Section 5.2, it is not easy to get
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roots from the following equation (5.32) and it is unnecessary for this discussion.

D{yi\n, I\, t,w) — ^ (w 1, 1) -  (E*r0(w1(Y), 2) +  n) =  0. (5.32)

Two Interim Analyses

At the first interim analysis, say Yi =  yi has been observed. The Bayes risk from 

stopping the trial ^(tv1, ! )  is obtained by (5.30). Using the backward induction, 

the risk from continuing the trial with not more than two observations r2(w1, 1) 

is,

r2(w1, 1) =  min{r0(ru1, 1), E*rx{w1(Y), 2) +  n}, (5.33)

where,

n

E*ri(w1(Y), 2) =  ^ r 1(n;1(y  =  y),2)/(y|y1)- (5.34)
y -o

In (5.34) the predictive density function /(y|yi) is obtained by (5.29), and the risk 

ri(u;1(U =  y ), 2) may be calculated as the risk ri(ud, 1) by replacing the posterior 

distribution w1 =  w(p\yi) with the posterior distribution m1(y )  =  ^(p|yi,y)- It 

is described as follows.

From (3.11) it is obtained,

r1(in1, 1) =  min{r0(ri;1, 1), E*r0(w1(Y l), 2) +  n},

E 'r0(w \Y% 2) E ro
y=o

y,) ,2 ) / ( y / y'\yi)-

where,



Chapter 5. Bayes Group Sequential Decision Clinical Trials on Binary Response 113

Hence,

r1(w1(Y  =  y), 2) =  min{r0(?n1(H =  y)), E*r0(w1(Y')\Y =  y)) +  n}, 

where,

ro{w ( h  =  y ) )  —  m in { _ £ / p | y l j y Z / ( y ,  c /o)5 ^ i ) } j

E*ro(wi (Y ) |k = y ) ) — 2  min-f-Epiy^y^'L(y, (¿o), Ep\yityyiL{j), )}f(y ll/ii y)
y'=o

If the Bayes risk from stopping the trial /^(lo1, 1) is less than the expected risk 

of continuing the trial with not more than two observations r2(w1, 1), then the 

clinical trial could be stopped; Otherwise it needs to be continued to the second 

interim analysis.

At the second interim analysis, after Yi =  yi and Y2 =  y2 have been observed, 

there is only one more sample which can be observed. The risk from stopping the 

trial is,

ro(w\ 2) = min Ep\yuy2L(p,d)
{do4li

=  mm{Eplyuy2L(p,d0), Ep\VltV2L(p, d i)}. (5.35)

The expected risk from observing the last observation is,

E*r0(w2(Y), 3) =  ¿ r 0(w2(Y =  y), 3)/(y|yi, y2), (5.36)
y=o

where,

ro(u; (1 — y), 3) — Tl'1), > Ep\yi:y2:yL(p, d)

= rnln{Ep\yi y2 yL(p, do), Ep\ylty2yL(p, ch)}.

If the Bayes risk from stopping the trial r0(w2, 2) is less than the expected risk of
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continuing the trial E*r0(w2(Y),3)  +  n, then the clinical trial could be stopped; 

Otherwise the trial needs to be continued.

The Decision Rule

At each analysis j ,  j  =  1 , 2 in the study, after values Yx =  yx, Y2 =  yz,..., 

Y j  =  ijj have been observed, if the trial is terminated, then the Bayes risk from 

stopping the trial r^w C j)  is,

r0 (W^ j )  — , 1 Ep\y1,V2,...,yjL{p, cl)
d£{d0,di}

=  min{i?p|j,ljy2),..!j/i.L(p, (¿0)5 Ep\yity2t...tyjL(p, <A)}. (5.37)

Since the Ep\yuy2^ yjL(p, d0) and the Ep\yity2t...tyjL(p, ¿1) are functions of £  Vi, and
7 = 1

j
the drug is not accepted if the response rate is not high enough, that is, the J2 yi

7 =  1
is small. The decision rule after the trial being terminated has the form,

d
do(reject the new drug) X) Vi E 1̂

7 — 1
j

di(accept the new drug) y; > ^2
7 = 1

(5.38)

where 0 <  k\ < k2 <  jn.

5.3.2 Prior Information

In the study the prior distribution of the response rate p of the new drug is 

assumed to be a beta distribution as in (5.27), that is,

1
P(u,v)

p ~  w{p) U—1/1  \v — l
p  (1 -  p)
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The expectation and variance of the prior distribution of p are,

u
u -f v

Var{p) = ( „ + „ ) ’ ( « ’+ , + D

— i ( —  i—U +  V )  \ U +  V J Vu +  u +  1

— )  f l  -  — ) ( — 1

These expressions show that the variance Var(p) is a function of u +  v if the 

expectation E(p) is fixed. Therefore the value of u +  v may be regarded as a 

measure of prior information.

If E(p) < po, then there is prior belief that the new drug is not effective. The 

larger value of u +  v (or the more prior information), the more likely that the new 

drug would be rejected, and hence the smaller type I error rate a would be. When 

E(p) > po, it is assumed that the new drug is effective by the prior information. 

The larger value of u +  v, that is, the more prior information, the more chance 

that the new drug be accepted, and hence the smaller type II error rate (3 would 

be. These results can be shown by the following example.

Consider a one interim analysis with group sample size n — 20 and the break­

even value of response rate p0 =  0.20. The type I error rate a and its corresponding 

mean sample size Mean Na are obtained under the assumption that the sequential 

sample Y  is from the binomial distribution B(n,pi), where pi =  0.05. The type II 

error rate ¡3 and its corresponding mean sample size Mean Np are obtained under 

the assumption that the sequential sample Y  is from the binomial distribution 

B{n,P2), where p2 =  0.25. The parameters u and v of the beta prior distribution 

of (5.27) are selected to have the E{p) =  0.01 and 0.5. As an example, assume 

that the value of u =0.2, 0.25, 0.33, 0.5, 1, 2, 3, and 4. The corresponding values
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of v are obtained by E(p) =  0.01 and 0.5. The type I error rate a and its expected 

sample size Mean Na, and the type II error rate /3 and its expected sample size 

Mean Np are listed in Table 5.3.

The Table 5.3 shows that when E(p) < po, then the more prior information, 

such as the value of u +  v from 2 to 40, the smaller the type I error rate a, which 

is 0.0159 to < 0.0001, but the bigger type II error rate ¡3, which is from 0.2252 to 

0.8982. The type I error rate a and type II error rate (3 are quite stable when the 

value of u +  v is from 2 to 2.5, 3.3 to 10, and 20 to 40. When E(p) > p0, then 

the more prior information, while the value of u +  v is from 2 to 40, the smaller 

the type II error rate (3 is, but the type I error rate a is increased. The type I 

error rate a and type II error rate ¡3 are relatively stable when the value of u +  v 

is from 0.4 to 2.
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Table 5.3 The Beta Prior Information

u V E(P) Var(p) a Mean Na ß Mean Nß

0.2 1.8 0.01 0.03

E(p ) <  Po

0.0159 20 0.2252 20

0.25 2.25 0.01 0.0257 0.0159 20 0.2252 20

0.33 3 0.01 0.0208 0.0026 20.3 0.3422 23.8

0.5 4.5 0.01 0.015 0.0026 20.3 0.3422 23.8

1 9 0.01 0.0082 0.0026 20 0.4148 20

2 18 0.01 0.0043 0.0003 20 0.6172 20

3 27 0.01 0.0029 < 0.0001 20 0.7858 20

4 36 0.01 0.0022 < 0.0001 20 0.8982 20

0.2 0.2 0.5 0.1786

E{p) > Po

0.0159 20 0.2252 20

0.25 0.25 0.5 0.1667 0.0159 20 0.2252 20

0.33 0.33 0.5 0.15 0.0159 20 0.2252 20

0.5 0.5 0.5 0.125 0.0159 21.2 0.1739 22.7

1 1 0.5 0.0833 0.0161 21.2 0.1468 22.7

2 2 0.5 0.05 0.0755 20 0.0913 20

3 3 0.5 0.0357 0.2642 20 0.0243 20

4 4 0.5 0.0278 0.2926 27.5 0.0051 20.4
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5.3.3 Comparison with the Two-point Prior Distribution

The comparisons are based on type I, type II error rates, their corresponding 

expected sample sizes, and average Bayes risks. The values of parameters u, v of 

the beta prior distribution are selected to have the same expectation and variance 

as those of the two-point prior distributions in Table 5.1 and Table 5.2. The loss 

and cost functions are also same as those of the two-point prior distributions in 

Table 5.1 and Table 5.2. The results of the type I error rate a and its corresponding 

expected sample size Mean Na, and the type II error rate (3 and its corresponding 

expected sample size Mean Np on the beta prior distribution are listed in Table 5.4 

and Table 5.5. The expected Bayes risk Mean Risk of two-point prior distribution 

and beta prior distribution are listed in Table 5.6 and Table 5.7, respectively.

Comparing Table 5.1 with Table 5.4, and Table 5.2 with Table 5.5, it can 

been seen that the type I error rates a of Bayes sequential decision procedures 

with the beta prior distribution are smaller than those of Bayes sequential decision 

procedures with the two-point prior distribution; the type II error rates ¡3 of Bayes 

sequential decision procedures with the beta prior distribution are larger than 

those of Bayes sequential decision procedures with two-points prior distribution, 

but can still be smaller than those of procedures of Pocock in some situations. 

Comparing Table 5.6 with Table 5.7, it can been seen that the average Bayes risks 

of Bayes sequential decision procedures with beta prior distributions are bigger 

than those with two-point prior procedures. This is because the two-point prior 

distribution could be assumed when we have very strong prior information.
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Table 5.4 Type I error rate a and expected sample size Mean Na

t=500 t=1000 t=5000 t=10000

u V a MeanlVa a MeanA’a a MeanA^ a MeanlY«

Pocock’s procedure: pi =  0.01, Max N =  39, :Mean N = 17.5

Bayes sequential decision procedure:

1.98 9.12 .0003 13 .0003 13.1 <  .0001 14.6 < .0001 14.6

0.89 5.96 .0003 13 <  .0001 13.0 < .0001 13.1 < .0001 14.6

0.43 4.79 .0003 13 < .0001 13.0 < .0001 13.1 < .0001 14.6

0.18 5.15 <  .0001 13 <  .0001 13.0 <  .0001 13.1 < .0001 13.1

Pocock’s procedure: pi =  0.05, Max N =  63, Mean N = 28

Bayes sequential decision procedure:

1.98 9.12 .0189 21 .0189 21 .0006 22.8 .0005 27.0

0.89 5.96 .0032 21 .0032 21 .0005 22.8 .0001 22.9

0.43 4.79 .0032 21 .0032 21 .0001 21.4 .0001 22.9

0.18 5.15 .0004 21 .0004 21 <  .0001 21.1 < .0001 21.4

Pocock’s procedure: p\ =  0.10, Max N =  129, Mean N == 55.5

Bayes sequential decision procedure:

1.98 9.12 .0607 43 .0607 43 .0283 47.7 .0117 54.3

0.89 5.96 .0244 43 .0244 43 .0105 45.2 .0041 48.9

0.43 4.79 .0087 43 .0087 43 .0091 43.7 .0032 45.6

0.18 5.15 .0008 43 .0008 43 .0002 43.1 < .0001 43.2
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Table 5.5 Type II error rate (3 and expected sample size Mean Np

u V

t =

fi

:500 t =  

Mean Np (3

1000

Meaning

t =

fi

=5000

Meaning

II 10000

MeanlVg

Pocock’s procedure: P i  = 0.01, Max N =  39, Mean N =  20.5

Bayes sequential decision procedure:

1.98 9.12 0.3326 13 0.1952 15.7 0.2175 28.3 0.2175 28.3

0.89 5.96 0.3326 13 0.3817 16.9 0.2622 26.2 0.2175 28.3

0.43 4.79 0.3326 13 0.3817 16.9 0.2622 26.2 0.2175 28.3

0.18 5.15 0.5843 13 0.4163 16.3 0.2927 25.2 0.2686 30.1

Pocock’s procedure: P i  — 0.05, Max N =  63, Mean N =  33.5

Bayes sequential decision procedure:

1.98 9.12 0.1917 21 0.1917 21 0.1479 34.1 0.1261 37.7

0.89 5.96 0.3674 21 0.3674 21 0.2120 34.9 0.1990 40.4

0.43 4.79 0.3674 21 0.3674 21 0.2845 35.8 0.2077 42.8

0.18 5.15 0.5666 21 0.5666 21 0.4607 34.7 0.3769 42.2

Pocock’s procedure: P i  =  0.10, Max N =  129, Mean N = 66

Bayes sequential decision procedure:

1.98 9.12 0.1237 43 0.1237 43 0.0864 49.7 0.0632 58.6

0.89 5.96 0.2175 43 0.2175 43 0.1591 52.3 0.1158 63.8

0.43 4.79 0.3390 43 0.3390 43 0.2439 48.2 0.1794 61.3

0.18 5.15 0.6145 43 0.6145 43 0.6273 53.5 0.5177 73.7
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Table 5.6 Expected Bayes Risk for the Two-point Prior

Wi

t=500 t=1000 

Mean Risk Mean Risk

t=5000 

Mean Risk

t=10000 

Mean Risk

Pi =: 0.01, Max N == 39, Mean Na =  20.5, Mean Np—23.0

0.3 -13.04 -26.08 -136.90 -276.22

0.5 -9.14 -18.28 -93.91 -195.75

0.7 -4.09 -10.47 -56.14 -112.27

Pi =
XSLcT

Oo N == 63, Mean Na = 33.5, Mean Np=26.5

0.3 -10.38 -23.44 -132.77 -269.89

0.5 -5.96 -15.40 -91.34 -189.99

0.7 -2.91 -8.26 -53.57 -108.93

Pi =: 0.10, Max N == 129, Mean Na = 66, Mean Np=72

0.3 -10.69 -21.38 -126.77 -262.83

0.5 -6.31 -12.63 -86.85 -184.83

0.7 -2.82 -5.63 -47.66 -106.17
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Table 5.7 Expected Bayes Risk for the Beta Prior

t=500 t=1000 

w\ Mean Risk Mean Risk

t=5000 

Mean Risk

t=10000 

Mean Risk

Pi =  0.01, Max N = 39, Mean Na =  20.5, Mean A^=23.0

0.3 -7.61 -18.02 -110.53 -221.05

0.5 -5.73 -13.30 -79.83 -165.41

0.7 -3.41 -8.19 -48.54 -100.15

Pi =  0.05, Max N =  63, Mean Na = 33.5, Mean A^=26.5

0.3 -7.66 -15.32 -99.79 -206.49

0.5 -4.82 -9.64 -67.85 -140.27

0.7 -2.12 -4.24 -32.61 -71.77

pi — 0.10, Max N =  129, Mean Na =  66, Mean Np=72

0.3 -8.26 -16.52 -91.41 -195.74

0.5 -4.68 -9.35 -55.01 -121.97

0.7 1.50 -3.00 -18.97 -48.94



Chapter 6

Bayes Group Sequential Decision 

Clinical Trials on Survival Time 

Data

In this chapter, Bayes sequential decision theory is introduced into clinical trials 

with survival time data. The exponential distributions and proportional hazard 

models for survival time are studied. The one treatment clinical trial with an 

exponential distribution response is discussed first to give a picture of using Bayes 

sequential decision theory. Following this, clinical trials comparing two treatments 

with exponential distribution responses are studied. After a brief introduction of 

the non-parametric Bayes analysis, several approaches are discussed for group 

sequential clinical trials with proportional hazard models for survival time data.

123
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6.1 One Treatment Clinical Trials with Expo­

nential Distribution Responses

6.1.1 The Problem

A clinical trial is designed to test the effect of a new treatment. The major 

outcome of the clinical trial is an exponentially distributed random variable. Its 

probability density function is,

m  = v - M, (6.1)

and the survival function is,

S(t) =  P(T > t )  =  e - x\ 

where the hazard rate A > 0.

Assume that A0 is a break-even value of A. The new treatment is not considered 

effective if A > Ao- The conventional hypotheses will be, Ho'. A > Ao(no treatment 

effect), vs Hr- A < Ao(treatment effect).

Suppose a size n random sample ¿i, ¿2, •••, tm, Ci, C2, ..., cn_m, are from the 

exponential distribution (6.1), where ¿1, tm are the failure times and Ci,

C2,...,  cn_m are the censored times. Let S be the random variable of total survival 

time and s be its observed value, that is,

m n—m
s =  (6-2) 

3=1 k=1

The likelihood function of A is then

m n—m
L ( A ;  ¿ i , . . . ,  C i , . . . ,  c n _ m ) R / ( b )  I T  ‘- ’ (cfc)

j= 1 fc=i
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m n—m

= n(Ae~Aij) n e_Ac*
3=1 k=l

=  Ame-MEr=i*>+E::r«*)
m

OC
r(m)

\ m
r(m)

(E ‘,' + E  Cl)m“,e'A,E-"-‘'+E:-';"c*)

(6.3)

i—l fc=i
cm— 1 „ — As

which is proportional to the gamma probability density function with shape pa­

rameter m and scale parameter A. The likelihood function shows that given the 

number of failures m, the total survival time S' is a sufficient statistic for A, 

and the statistic S follows the gamma distribution with shape parameter equal 

to the number of failures m and scale parameter equal to the hazard rata A, 

denoted by rs|m(s; ra, A). The statistical inferences on A based on the data 

ti, ...,cn_m can therefore be replaced by the datum s defined as in (6.2)

without loss of information.

6.1.2 Design of the Clinical Trial

Assume patient accrual is uniform in period (0, sa) with a constant rate R. The 

maximum number of patients in the clinical trial is then Rsa. The clinical trial is 

monitored at either I) selected times after treatment or randomisation, Ui, u2, ..., 

ill, every 6 months say, or II) specified number of new failures mi, m2,...,m;, say, 

every 10 failures. The / is the maximum number of analyses. Suppose patients 

are observed until failed or censored by the termination of the clinical trial.

I) The clinical trial is monitored at times u\, u2, ..., tq.

Let the total number of failures until times rq, u2, ..., ui be denoted by d(ui), 

d(u2),..., d(ui), respectively. At each analysis j ,  j  =  1 ,2 ,...,/, the total observed
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survival time Sj is,

d(uj) Rinin{uj ,sa}—d(uj)
sj =  E  U +  E  Pw, (6.4)

2 = 1  k= 1

where t{,i =  1,2 ,...,d(uj), are the failure times at the analysis j ,  and Ckj, k = 

1, 2,..., Rmin{iiji sa} — d(uj), are censored times until Uj. Let Sj, j  =  1,2 

be the corresponding random variables of S j ,  j  =  1 , 2 , Given the number of 

failures d(uj), the Sj, j  =  1 ,2 ,...,/, are from the gamma distributions with shape 

parameter equal to d(iij) and scale parameter equal to A by Section 6.1.1. Let

u0 =  0, d(u0) =  0,

mi = d(iii) -  d(ui-i).

The mi, i — 1,2, j  =  1,2,...,/, are the number of failures at the period 

(uj_i,Ui). The total number of failures at analysis j ,  denoted by d(uj), is equal 

to Yii=i The gamma random variable Sj can be then decomposed as a sum of 

the gamma random variables Xi, that is,

Sj =  Y , X ii (6-5)
2 =  1

where random variables Xi, i =  1,2, are from the gamma distributions with 

shape parameters equal to m.,-, j  =  1 ,2 ,...,/, respectively, and the constant scale 

parameter equal to A. II)

II) The clinical trial is monitored at number of new failures m1? m2,

mi.

Let the corresponding monitoring times at the cumulated number of failures mi, 

mi +  m2, ..., E - i  mi be denoted by ui, n2,...,rq. At each analysis j ,  j  =  1,2,..., /, 

let Sj be the total survival time random variable and Sj be its observed value,
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that is,

rri\ Rmin{uj ,sa } — (ttii -f...-j-raj)
-  X  ti +

i=1
X
fc=l

c kj i (6.6)

where t{,i =  1 , 2 , Yji=i mii are the failure times until analysis j ,  and qy,A; = 

1 , 2 , i?min{rij, sa} — (mi +  ... +  rrij) are censored time until analysis j .  The 

S j , j  =  1,2,..., /, are from the gamma distributions with probability density func­

tions r(5; J2i=i m%-> hy Section 6.1.1. As in the case I), the Sj  can be decomposed

as,

Sj =  f x i, (6.7)
2 — 1

where i =  1,2, ...j are from the gamma distributions F(a:; m*, A), respectively.

Hence, the group sequential samples in both cases I) and II) can be replaced 

by the classical sequential sample Xj, j  =  1 , 2 , . . . , / ,  where X j, j  =  1 , 2 , . . . , / ,  are 

from the gamma distributions with probability density function F(x;mj,A).  The 

rrij is the number of new failures at analysis j  and J2i=i mi is the total number of 

failures at analysis j .

6.1.3 Basic Elements of Bayes Sequential Decision Theory

Bayes sequential decision theory is applied in the clinical trial described above in 

Section 6.1.1 and Section 6.1.2. The basic elements of Bayes sequential decision 

theory in this study are,

1) the parameter of interest A is assumed to have the gamma prior distribution 

with parameters a and ¡3, that is,

A ~  w(A) =  r (A; ck, /3)
\ > 0

0 otherwise.
( 6.8)
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2) the decision space is

D — {d0 (no treatment effect), ^(treatment effect)}.

3) the loss and the cost functions

For computational simplicity, piecewise continuous loss functions are used here. 

They are defined as,

L (  A ,  do) 

L ( A ,  d\)

K A < A0

0 A > A0

0 A < Ao

K A > A0
(6.9)

Suppose the unit of K (>  0) is the cost of enrolling a patient into the trial. This 

cost is constant through the trial.

4) the sequential sample X j, j  =  1,2,..., /, obtained by Section 6.1.2, are from the 

gamma distributions, which are,

X, - f(x\\,mj) = ri.):; tu j . Ai, ( 6 .10)

where the rrij is the number of failures between the ( j  — l)th analysis and jth  

analysis, and the Ya=i mi are the total number of failures at the jth  analysis.

From above elements, the posterior distribution of A and predictive distribution 

of x are obtained as follows. At each analysis j ,  j  =  1 ,2 ,...,/, after observing 

X i  =  x i ,  X 2 =  x2, . . . ,  X j — Xj with the number of new failures mi, m2, . . . ,  rrij, 

respectively, the posterior distribution of A, denoted by w J =  ry(A|xi, x 2 , . . . , X j ) ,  

is,

f ( x 1, x 2, . . . , X j \ \ ) w ( \ )

¡0°° f ( x i , x 2, . . . , X j \ \ ) w ( \ )  dX

ULi r (mi)
x r n i - l e - A x i( OL — 1

r(«)
up Am-' rrij-l -Ax,7 Pa \n- 1

Jo i i i = i  r ( m , f i  e

e /3A) 

e _/3A) dX

w(X\x1, x 2,. . . ,xj )
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Aa+S i= imi_1e_ ^+Z)i=i X*)A

/ 0° °  A a + E L i  m ' - 1 e - ^ + E i = i  x d A  f / A

00 +  E L i* ■)a+ELi'
r (a  +  E L i

-Aa+Ei=i mi-1e-(0+ELi x-)A, (6.11)

which is still the gamma probability density function with parameters ct-\~Ei=i mi 
and ¡3 +  El=i xi-

At each interim analysis j ,  j  =  1 ,2 ,...,/ — 1, after observing Ad =  x\, X 2 =  

x 2 , . . . ,  Xj  =  X j, the predictive density function of x with number of new failures 

equal to to, denoted by f(x\xi,X2,..-,Xj), is,

f(x\xUX2,...,Xj)

E'\\xi,X2,„. ,Xjf {x\\)
poo

=  /  f(x\\)w(\\x1, x 2, ■■■,Xj) dX
Jo

r°°, A (P + Ei=l 1__lA^ELl^-^-^+ELl d\-X
Jo Vr(m)~ ' /v r(a + ELimi)  

x ^ i p  +  z L  xi)a+^ =

„m — 1
r(TO)r(a +  Ei=i mi)

(P + EL,

. n t|  M QQ

!z___ / Aa+m+ELi 1e-09+*+Ei=i
; 1 2o

r/A

mi r(a + to + e E i mi)

r(TO)r(a + Ei=1 mi) (/3 + x + Ei=i Xi)a+m+̂ =15
r(a + to + s t i  toQ + e -=i xQ^+EL^-
r (a  +  Ei=! mi)T{m) (p + x + ELi Xi)a+m+Eh '

( 6. 12)

6.1.4 Bayes Sequential Decision Procedure

The one interim analysis is first considered to describe Bayes sequential decision 

procedure of the study described in Sections 6.1.1, 6.1.2, and 6.1.3. The two types 

of monitoring are studied separately.
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I) Monitoring the clinical trial at the selected times iq and u2

In the interim analysis, at the time iq , the number of failures equal to mi and 

the total survival time X\ equal to aq are observed. The AT is from the gamma 

distribution with parameters ?rq and A, denoted by T(s; m!,A). The risk from 

stopping the trial, denoted by r0(w1, 1), is

r0(ic\ l)  =  min Ex\XlL(X,d){do,di}
=  mm{Ex\XlL(\,d0), Ex\XlL(X, dt )},

where, by the loss function (6.9) and posterior distribution function (6.11),

roo
E\\XlL(X,d0) =  /  A(A,d0) to(A|aq) dA

Jo

— f  Kw(X\xi) dX
Jo

— K  f  r(A; a +  mi,/3 +  xi)d X,
Jo

roo
Ex\XlL(X,d1) =  /  L(X,di) iy(A|xi) dA

Jo
/*oo
/ Kw(X\xi) dX

J Ao
roo
/ T(A; a +  m i, (3 +  aq) dA.

d An

/Ao
=  I<

Let Mi be the median of the gamma distribution L(A; a +  m i,/? +  sq), then

roiw1, 1) =  <
KP(X  < Ao|n +  m i,/? +  x\) Ao "El M l

A [1 — jP(A E Aq |ex T m i, /? -)- )] Aq > M i,
(6,13)

where P(A < A0|a,6) is the probability of event {A <  A0} of the gamma distri­

bution with the shape parameter equal to a and the scale parameter equal to 

b.

On the other hand, if the next observation X  — x with the number of failures 

to is observed, then the Bayes risk from stopping the trial after observing AT =  aq
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and X  =  x is,

^ (^ (A I X  =  x),2)

=  r0(iu2, 2)

=  min{do4ly Ex\Xl,xL(\, cl)

= K  min{P(A < A0|a +  m1 +  m, (3 +  x\ +  x), 1 — P (A < A0|e* +  mx +  m, (3 +  xx +  x )}.

Since
P(A < Ao|o; +  mi +  m , (3 + xi +  x)

_ f^o (/3+xi+z)(Q + TOl +m) ^g+rrei +m — 1 ^ — (0+xi +x)X^\^
0̂ r(a+mi+m)

.^a+m j+m -lg-A^_  i-(/3+xi+x)Ao
— Jo F(a+roi +m) '

which is a monotonic increasing function of x given A0, a, (3, m and x\. So there 

is an unique value M  — ^  — (3 — xq, where M2 is the median of the gamma 

distribution P(A; a +  mi +  m, 1), such that

I K  P(A < A0|o; +  mi +  m :(3 +  xx +  x) x < M
r0( w (A|A" =  x),2) =  <

I K[  1 — P(A <  A0|o; +  m 1 +  m,/J +  Xi +  x)] x > M.

Hence, the expected risk from observing the next sample X  given the number of 

failures m, denoted by P,*m?’o(^1(A|Af),2), is

B|>o( » i (A|V),2)
r o°

= /  r0(u’1(A|Af = x),2)/(x|Ad = xi)dx
Jo

r M
= /\ { J P(A < A0|o + mx + m,/J + xi + x)

Jm  ̂ r (a  +  m ,i)r(m ) (/J +  Xi +  x )a+mi+m J

r f  1 / X \ ( (3 +  X1

r(cv +  mi +  m) (/J +  x i)a+7Tllxm 1 
r (a  +  m i)r (m ) (/? +  xi +  tT)“ +TOl+m 

r (a  +  m i+ m ) (/3 +  x i)a+mixm_1

m —1
=  K

M-x1+m P(a +  mi, m) V/? +  xi +  x y
(/3 +  x i)“ +mi

3 +  x 1 +  x /3 +  xi +  x

T(a + mi) Jo
f ° Aa+rai“ 1e - (/3+Xl)\/A 
Jo
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2 {(3  +  2 i ) a+ m i 

T(a +  m i)r (m )
xa+m1+m-le-(P+x1+x)\xm-ldXdxy (6.14)

Let g(m) be the probability distribution function of m. The expected risk from 

observing the next sample A" is,

E ’ r„{w\\\X),2) =  £ £ f „ r „ ( t o 1(A|;0,2) g(m). (6.15)
m

If the Bayes risk from stopping the trial is less than the expected risk from ob­

serving the next sample X,  that is, ^(tu1, ! )  < E*ro(w1(X\A ) ,2) +  R m in{u2 — 

Ui,sa — u i,0 }, then the clinical trial is terminated. Otherwise the clinical trial is 

continued to the final analysis.

At the final analysis, after observing Ad =  X\ and A"2 =  x2, the decision with 

the Bayes stopping risk is chosen.

The simulation on the expected risk £”V (  A|X),2)

The distribution of the number of failures g(m) is very complicated. Alterna­

tively the following simulation method may be used to get the expected risk 

E*r0(wl (\\X),2) in (6.15).

At the interim analysis, assume that the clinical trial is continued and that 

the next sample X  =  x with number of new failures m is observed. The expected 

risk given m, £ ’|dl(tc1(A|A), 2), can be calculated by using (6.14). The expected 

risk £;*(ry1(A|A), 2) is then

E \ w \ A|A),2) £ w £ C »(« '1W -’0 ,2 )
N

where N is the number of simulations.

II) Monitoring the clinical trial at number of failures mi and mi +  m2

At the interim analysis, after observing the total survival time Ad =  Xi with
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number of failures equal to mi, the Bayes risk from stopping the trial ^(iw1, 1) is 

obtained by (6.13). The expected risk from continuing the trial E*(w1 (X\X), 2) 

can be obtained directly from (6.14) with

as the clinical trial is expected to be monitored at the next number of failures 

equal to 777.2.

Let u be the corresponding monitoring time with number of failures equal to 

mi +  tt72. The computation of the expected monitoring time E(u) is complicated. 

The simulation method is used to get the E{u).

If the Bayes risk from stopping the trial is less than the expected risk from op­

timally continuing the trial, that is, r0(tt;1 ,1 ) <  E*r0(w1(X\X),2) + R  min{D(u) — 

u\,sa — ux, 0}, then the clinical trial is terminated. Otherwise the clinical trial is 

continued to the final analysis.

At the final analysis, after observing X\ =  x x and X 2 =  x2, the decision with 

the Bayes stopping risk is chosen.

If the Bayes sequential decision procedure with more than one interim analysis 

is designed in the clinical trial, then at each interim analysis j ,  the computation 

of the Bayes risk from stopping the trial is similar to that of one interim analysis, 

where the posterior density w1 =  tc(A|x i) is replaced by the posterior density 

w-’ =  10(A|xi, *2, ..., Xj); and the expected risk from optimally continuing the trial 

would need be obtained by simulations as that of one interim analysis. The clinical 

trial could be stopped at the interim analysis j  when the Bayes risk from stopping 

the trial is less than the expected risk from continuing the trial.
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6.2 Two Treatments Clinical Trials on Exponen­

tial Distribution Responses

6.2.1 The Problem

Consider a clinical trial comparing an experimenatal treatment with the standard 

treatment. The main outcome of treatments is exponentially distributed with 

hazard rates Ae and As for the experimental and standard treatments respectively. 

Let the treatment difference in efficacy is 7 =  y-. The conventional hypotheses 

are

H0 : 7 >  1 vs iLi : 7 < 70, (6.16)

where 7o(< 1) is a break-even value of 7 . The H0 corresponds to the experimental 

treatment not better and Hi to the experimental treatment better.

Patients are uniformly enrolled into the trial in period (0, sa) at a constant 

rate R and are allocated randomly and equally to each treatment. The clinical 

trial is monitored at either I) selected times u\, w2j ■■■■> 1H or II) selected number of 

new failures mie +  m i„ m2e +  m2*, ...,m;e +  m;s. The / is the maximum number of 

analyses. Sections 6.1.1 and 6.1.2 have shown that given the number of failures, 

the group sequential sample from an exponential distribution can be regarded 

as a classical sequential sample from gamma distributions. Therefore, the group 

sequential sample from these exponential distributions with hazard rates Ae for 

the experimental treatment and As for the standard treatment can be replaced by 

classical sequential samples of gamma distributions without loss of information 

on inference of Ae and Xs. Let the Xjk, k =  e,s, j  =  1,2,..., /, be the sequences of 

classical samples, then

Xjk  ~  ,f'(*£ ^ jk5 A/ . )  L ( x f c ,  TTijki A / . ) ,  k e ,  s ,  j  1 , 2 , . . . , / ,  ( 6 . 1 7 )
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where E ; = 1  Xik and E i =  1  rnik are the total survival time and number of failures, 

respectively, for treatment k, k =  e,s, at analysis j ,  j  =  1 ,2 ,...,/.

Suppose hazard rates Ae and A3 are independent and the prior distributions of 

Afc, k =  e,s, are the gamma distributions which are,

Afc ~  w(Xk) -  V(Xk-,ak,(3k). (6.18)

At each analysis j ,  j  =  1 ,2 ,...,/, after observing Xik =  k-,X2k =  x2k, •••,Xjk =  

xjk, with number of failures mu-, m2fc,..., rrijk-, respectively, k =  e,s,  by (6.10) 

the posterior distribution of A*,, denoted by w(\k\xik,x 2k-, ■■■,xjk), are the gamma 

distributions with parameters a*, +  E E i mik and /3k +  Ei= i xik, that is

j j
w (\k \x ik i X2ki •••) Xjk) r (  A ,̂ T  )  ( Clljk‘ ¡3k T  ^ ) xik̂ j ‘

2=1 2=1

The posterior distribution of 7 , denoted by w(^\(xie, Xi3), (:r2e, £2«), ■ {xje,xjs)), 

is then,

^ls)) (x2ei x2s)? (xjei xjs ))
poo

— /  A 5?X>(^yAs j j ' l e ?  %2e-> • • • 5 ^ j e )  ^ ( A s  | % ls •> '^2si • • • 5 ^ j s )  d \ s JO

— /  AsT(,yAs , (X.e “1" fi  ̂Wlie ? fie + fi  ̂^2e) 1 ( A 5 5 (%s fi  ̂ 2̂3 ? fis H- ^  ̂ 3) ^A5
Jo  A2 =  1 2 =  1 2 =  1 2 =  1

roo

L  <( &  +  E Ì = l

r («e  +  ELi
j  m ,e

____(^As)“ e + ̂ i = l mie~1e~(/3e + ELl XiehXs

x (A  +  Ei=ixis)aa+^ i- im,\ a,+ElL 1m"+1 c-(0,+Yj. ^ ìa. i 
r (a s +  E i= imw)

We +  E l i  XieT^^mUWs +  E É l Si.)“ ' ^ 1
7 +E,=i m,'e 1

x  /  A

r ( « e +  E?=i ” iie )r(a s +  e L i m**)

e + E(=l ™.e+«.+ELl e-[(/3e+ELl ».e)7+(/3. + ELl ^
L

T(ae +  E L i mie +  +  E L i +  1)
r (a e +  E i=i rnie)Y(as +  E ;=i mis)
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x
(Pe  +  Z L l  X ie) ^ + E L  mu {(3s +  E J= i  Xis) « ‘ + Z L  - »  7 -T̂lig sy/&e~\~̂  j YB>ie. 1

[{Pe +  E i= l x ie)7  +  (/?» +  E i = l  Xis)\
«+EÌ= J tnie+«l + ̂ j =1 m-ia+1

-(6.19)

At each interim analysis j , j  =  1 ,2 ,...,/ — 1, the predictive density function of 

(XejAg) with number of new failures (me,m*) after observing Ah*, =  x i k -,^ 1  k =

x 2ki A jh: x jki h C, .S, IS,

f  ( x e i x s | (®le 5 x ls ) i ( x 2e i ^ 2s)i ■■■> i,x jei x js ) )

— ,/'(‘̂ e|^'le;^'2e5---5 Xjc)  f  (^s 127s, x 2si x js)

=  B x elXleix2e,...,xjef ( x e\^e)  E \ a\Xli ,x2s,...,xjsf { x s\Xs )
poo

i .! / /(x fc|Afc)u;(Afc|xifc,(C2fc,..., d \kJok—e,s

= n C “ 1 (/3fc +  Ei=iXifc)“ ‘ +^ = ‘ mi*
fc=e,s F (m fc) r («fc +  E i= l m ifc)

X n j ox  x T +ak+E3i=im'k~1̂ +E u - a + ^  dXk

n r (a fc +  mk + E i=i mifc) £fcra* +  ELi ®ifc)a*+^ =1 mi*
fc=e,s r ( a fc +  E L i  mik)T{m k) (/?* +  +  £ ' =1 z ifc)a*+m*+E-=i

( 6 .20 )

6.2.2 Bayes Sequential Decision Procedure

Corresponding to the conventional hypotheses (6.16), piecewise continuous loss 

functions for choosing the experimental treatment and the standard treatment 

are defined as,

0
L(l ,de)

K

7 <  1 

7 >  1,



Chapter 6. Bayes Group Sequential Decision Clinical Trials on Survival Time D a ta l3 7

L(y,ds)
I< 7  <  70

0 7 >  To,
( 6 .21)

in which the unit of K (>  0) is the cost of enrolling a patient into the trial. This 

cost is constant through the trial. There is no loss in the range of equivalence 

(7o, !)•
One interim analysis is considered first. At the interim analysis, let mu, 

k =  e, s, be the number of failures and Uj be the monitoring time. The Bayes risk 

from stopping the clinical trial after observing Ahfc =  X \ k  — e, s, is

ro{w ? 1) min{if^|a.le)Xls fi(7; ^e)) -Eyixie.xia ̂ (7> ds)}, ( 6 .22)

where,

E'f\Xle,xla^(7 , de)

=  /i°° /T^ (7 |a?ie, Xis)dy
jy- r00 r(ae+mle+a3+ml3-l) (/3e+xie)ae + rnie (|8»+xis)as + ml» âe + ™ie ,

-  h  r(ae+mie)r(a.+™li) [(/3e+xle)7+(/3s+x1,)]Q'  + ™ie + «s + ™i»-i a7?

£,7|xle,xis ¿(7) ds )

=  / 070 A'u;(7|xie,xls)d7
ry T7o r(ae+nne+a,+mi,-l) (/3e+̂ ie)a<!+',‘1,i (/3a+xia)Q,+mia 7ae+mie y

-  JO r(ae+mle)r(aa+mla) [(/3e+xle)-y+(fia+xla )]«»«+™le+«.+»l.-i U7-

On the other hand, the expected risk from observing the next samples AT, k =  e,s, 

with the number of new failures m*,, k =  e,s, at the monitoring time 1/, denoted 

by £*r0K ( 7 |AT,AT),2), is

A*r0(u;1(7|A'e, AT),2) ^

— Jo Jo A)(™ (yjAg xe,s xg),2) f ( x e  ̂•̂ sl̂ 'ie, ■Os) dxedxs,

where the predictive density / ( x e, Xis) is obtained by (6.20), and the risk

ro(u,1(7 |AT =  xe, X s =  x s),2) is the stopping risk after observing Ah*, =  x\k and
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Xk =  Xk with the number of failures m u, m*,, respectively, k =  e,s,  that is,

r0(iw1(7 \Xe =  xe, X s =  x s),2)

=  min{-B7|(XleiXlj)i(XeiXs)L(7, de), A7|(XleiXlj)j(X(,iX()L(7, A ,)}5

where

E7 \(xie,x\s),(xe,xs)L{y, de)

=  Kw(y\(xle,xls), (xe,xs))dy

= K  r( +mie • +")a +- *1  (p + x + x )«e+mie+me + x + j  Ja.+mL+m.r(ae+mie+me)r(o,+m1,+raI) le e' v̂ 3 13 s>
poo 7ae + m1<, + me-l j

X  J l  [ ( 0 e + X l e + X e ) 7  + ( / 3 i + X i s + X S ) ] a e  +  m i '  +  m e  +  a '  +  m i -  +  r o a  +  1 d 7 ’

= /070 A'iu(7|(xie, Xi3), (xe, xs))dy
=  K  D^+mle+rne+a,+nn. +™.+l) ^  + + 3. \ae+mle+m. + x +  x ja.+mi.+m.

r(ae+rnie+me)r(ai,+mis+ma) V̂ e ie e'

x / c
70 ae + mle + me—1
0 m+Xle+Xeh+(^+Xla+X,)]a‘  + m̂  + m̂ a‘ + m̂  + ,n‘ +t dy.

If ro(u)1, 1) < E*r0(w1(y\Xe, X s), 2) +  Amin{ti — ip, sa — u i ,0}, then the clinical 

trial is terminated. Otherwise the clinical trial is continued to the final analysis.

At the final analysis, after observing Ah =  x\k and X 2 =  x 2k, the decision with 

the Bayes risk is chosen.

The computation of the expected risk A*r0('tc1(7|Ah, Ah), 2) in (6.23) is dif­

ficult even given the number of failures m*,, k =  e,s. It is very complicated to 

divide the two dimensional space { (x e, xs); xe >  0 ,xs > 0} in (6.24) into two 

parts, say x\ and x2s ( { (x e, xs); xe >  0, x3 > 0} =  x\ +  x\), as follows,

r0(w1('f\Xe = xe, X s =  x s ) , 2 )

=  m in {A 7|(XiejXi a)i(XeiXa)¿ ( 7 ?  de), A 7|(XleiXls)^Xe Xs)¿ ( 7 ,  <A)} 

j £'7|(xie,xls),(xe,xil)7'(75 de) (xe,x s) G xe

[ ^7|(xie,xis),(xe,xs)7'(75 ds) (xe, x s) G xg,
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in order to get E*r0(w1(y\xe, x s), 2) by (6.23). Therefore, it is necessary to find 

some approximate approaches to be able to use Bayes sequential decision theory 

in the study.

6.2.3 Log Gamma Approximation

The approximation method

If the random variable X  is from the gamma distribution, which is X  r (o ,/3 ), 

then

M-Y ~  x 2(2a),

M W )  ^  M M 2 « )  -  i  -  ¿ j ) .

H 2 X )  - l n ( 2 a )  +  Y  +  _ L  X.  W ( - M / 3 ) ,

that is, the distribution of log gamma random variable can be approximated by the 

normal distribution. In terms of the sequential samples X jk, k =  e, s, j  =  1,2...,/, 

in (6.17) from the study described in Sections 6.2.1 and 6.2.2, it is obtained that

M 2A>) -  l„(2m*) + X -  + D -  ~  AT(-ln(AO,

Let

Yjk -  \n(2Xjk) H 2 m jk) + 2m^  +

Zj  =  Yjs -  Yje, (6.25)

then

Z j~ N (  ln( 2 m +
oe 2m js — 1 (6.26)
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The mean of the normal distribution in (6.26) is equal to ln (^ ), which is a measure 

of the difference between the experimential treatment and the standard treatment, 

the sequence of random variables Zj, j  =  1 , 2 , may be used to test the 

treatment difference instead of the sequential sample Xjk, j  — 1, 2,..., / ,  k =  e,s, 

in (6.17). Again using the log transformation in the hazard rates A*,, k =  e,s  in 

(6.18), let 5 =  In7 =  ln (^ ), then S =  ln(Ae) — ln(As) has an asymptotic normal 

distribution.

Hence, the problem in Section 6.2.1 becomes the study that a classical se­

quential clinical trial with the normal distribution responses Zj, j  =  1 ,2 ,...,/, 

is designed to test the hypotheses H0 : S =  ln (^ ) > 0 ,  Hi : 6 < 80 =  Inyo. 

The Bayes sequential decision procedure on normal responses in Chapter 4 can 

be used.

The variances of the sequential samples Zj, j  — 1 ,2 ,...,/, are equal to 2m2 _1 + 

2m2 _x ), j  — 1 ,2 ,...,/, respectively, which are not constant. The procedure dis­

cussed in Section 4.4 should be used. This is described as follow.

The Bayes sequential decision procedure 

the basic elements

The Bayes sequential decision procedure is based on the following basic elements. 

1) the parameter of interest is S =  ln (^ ). Assume that S has the normal prior 

distribution, that is,

S ~  w(8) =  N(u0, t2), (6.27)

where,

_ I / Clefts \ 1 1 . 1 , 1
Uo ~  n _  2&e ~  12of ' 2o^ ' 12of ’ 
_2  2 2 
T°  ~  2ae -  1 +  2 a ,- 1 '
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The above ae, ¡3e, a*, f3s are obtained by (6.18). The posterior distribution of 5 

given Z\ — — Zj,  j  =  1 ,...,/, is the normal distribution,

w(6\z1:...,zj) = N (u j,T j), (6.28)

where,

'A
Ei=i _1_ MLt
vA 1 i 1 ’
^i=1 ^  ^

i  +  l  ¿̂ * = 1 0.2 -h 21 ’

CT- = +2m,v — 1 2m,-, — 1

2) the decision space.

After the trial is terminated, the decision d £ D with the Bayes risk is chosen, 

where the decision space D is defined as

D — {  experimental treatment de, standard treatment ds }.

3) the loss and cost functions

Corresponding to the loss functions of (6.21), the loss functions here are

L(8,de) 

L(8, da)

0 8 <  0

K 8 > 0,

K 8 < S0

0 5 > S0,

in which the unit of K (>  0) is the cost of enrolling a patient into the trial. This 

cost is constant through the trial.

4) the sequential sample

The sequential sample Zj, j  =  1 , 2 , are from normal distributions N(8, ~m, ■ _- -
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2̂ 1) ’ respectively.

At each interim analysis j ,  j  =  1 ,2 ,...,/ — 1, given Z\ =  z\, Z 2 =  z2,...,Zj — Zj, 

the predictive density function of Z with number of failures m^, k =  e,s, is still 

the normal distributions,

f(z\z1,z2,. .. ,zj ) =  Es\Zl,Z2r...,Zjf{z\S) 

= N(vj, t? + 2 mP 1 +  2to, -  T
(6.29)

where Uj and r? are the same as those in (6.28).

the stopping risk and the expected risk

At each interim analysis j , j  =  1 ,2 ,...,/ — 1, after observing Z\ =  z\, Z2 =  

z2,...,Zj =  zj, the risk from stopping the trial is,

ro(u>:i, j )  — min{Es\ZliZ2r..tzjL(&, de), E^ZlfZ2̂ _z.L{5, (/»)}

=  m in{/T(l — <&(— -) ) ,  /T $ (—------- ) } .
ri Tj

If the clinical trial is monitored at I) selected times U\, u2, ...,ui , then the expected 

risk from observing the next sample Z at time u =  Uj+1, is

E*(ro(trj (Z ) , j  +  1) =  ^  Ê me rna{r0(w3(Z ) , j  +  1) g(me,m s).
me,ms

where E*me TOs(ro(twJ(.Z), j  +  1) is the expected risk given me and ms, and g(me, ms) 

is the distribution of (me,m s). The distribution g(rne,m.s) is very complicated. 

The E* (r0(w:’ (Z ) , j  +  1) may be obtained by the simulation method used in Section 

6.1.4.

If the clinical trial is monitored at II) selected number of failures mle +  m j„ 

m2e +  rn2s, ..., m;e +  m;s, then the expected risk from observing the next sample
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with number of new failures me +  ms = m is

E * (r0(wj {Z ) , j  +  1 )  =  X !  E \me,mSro{wJ (z ) , j  +  1 )  g(me,m s).
m e-\-ms= m

Let u be the corresponding monitoring time with number of new failures equal to 

me +  ms =  to. The E(uj) may be obtained by simulation as in Section 6.1.4.

By backward induction described in Section 3.2.2, the risk from optimally 

continuing the trial with not more than / — j  groups of observations, denoted by 

ri-j(wGj).  is obtained based on the above stopping risk and expected risk.

the procedure

At each interim analysis j ,  j  =  1 ,2 ,...,/ — 1, if the Bayes risk from stopping the 

trial is less than the risk of continuing the trial, that is,

ro(w\j) <  r/_i (w, , j ) ,

then we stop the trial. Otherwise we continue the trial to observe the next group 

of samples.

6.2.4 Log-rank Statistics Approximation

Consider the study described in Section 6.2.1. Let 9 =  ln (^ ) and As =  A0. The 9 

is a log hazard ratio and Ae =  A0exp($). A proportional hazard model is defined 

with the hazard rate,

A =  A 0exp(9z), (6.30)

where z is an indicator variable of treatments, that is, when z =  1, then the patient 

is from the experimental treatment with the hazard rate A =  A0exp(9) =  Ae; 

whereas when z — 0, the patient is from the standard treatment with the hazard
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rate A =  Ao =  As. Under this model, 9 =  0 means that there is no treatment 

difference between the experimental and standard treatments.

Tsiatis(1981,1982) has shown that the log rank test of a proportional hazard 

model computed over time indeed behaves like a partial sum of independent nor­

mal variables, with the variance proportional to the number of failures observed.

Suppose the clinical trial is monitored at arbitrarily selected calendar times 

Uj, j  =  1 ,2 ,...,/, where the total number of failures at these time points are 

denoted by d{u\), d(u2), ...,d(ui). Let V (Uj), j  =  1 ,2 ,...,/, denote the value of the 

log rank test computed at calendar time Uj.  Tsiatis(1981,1982) has derived that,

V (Uj) ~  X\ -f X 2 +  +  Xj,  (6.31)

where Ah, X 2, .. . ,Xj  are independent normal random variables with mean E(X{)  

and variance Var(Xi), i =  1,2..., j ,  respectively, as follows.

E{Xi) =  9[d(ui) -  d(u;_i)]jo(l -  p),

Var(Xi) =  [d(ui) -  c/(ui_i)]p(l -  p), (6.32)

in which p denotes the proportion of failures in one of the treatments.

At each analysis j ,  j  =  1 ,2 ,...,/, let

y. = __________^ __________
3 [d(uj) ~ d(uj-i)\p(l — p) ’

Yj N(y6, [(d(uj) -  d («i-i)]p (l -  p)

When the number of failures is large enough, the sequence of random variables 

Yj, j  =  1 ,2 ,...,/, may be used to test the hypotheses Ho : 9 =  0. The sequential 

sample in (6.17) can be then replaced by the sequential sample Yj, j  =  1 ,2,..., /, in 

(6.33), where I j ’s are from the normal distributions. The Bayes sequential decision 

procedure in clinical trials with normal distribution responses in Chapter 4 can be
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used to approximate the Bayes sequential decision clinical trials on exponential 

distributions for survival time data.

6.2.5 Comparison Between Log gamma Approximation and 

Log-rank Statistics Approximation

The asymptotic normal distributions

The log transformation of the gamma random variable in Section 6.3.2 and the 

log-rank statistics in Section 6.3.4 are asymptotically normal distributed with 

the probability density functions (6.26) and (6.33), respectively. The mean of 

the normal distribution (6.26) equal to 8 =  ln (^ ) is the same as the mean of 

the normal distribution (6.33) which is 6 =  ln (^ ). If the number of failures rrijk, 

k =  e, s, j  =  1, 2,..., /, is large enough, then the variance of the normal distribution 

(6.26) is

2---------- 2 1 1------------- -f- ------------- ~  -----  T
2 rrije — 1 2m. js — 1 mje mja

1
m,-e +  m 7-3)-----f---------- f----V mje+m.j3 m.je+ m j ,

1
[d(uj) -  d K -O M l  - p Y

which is the variance of the normal distribution (6.33). Therefore these two asymp­

totic normal distributions are almost the same.

Monte Carlo simulations

Monte Carlo simulations are used to compare these two approximation methods 

based on the following example.

Assume 300 patients enter a clinical trial for comparing an experimental treat­

ment with the standard treatment. Patients are uniformly enrolled into the clinical 

trial and are allocated randomly and equally for each treatment during a year. The
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major outcome of the clinical trial is the survival time from treatment. Suppose 

the survival time from the standard treatment has the exponential distribution 

with hazard rate As equal to 0.8. The experimental treatment is considered ef­

fective if the hazard ratio is less than 0.5. The hazard rate Ae is then equal to 

0.5 x 0.8 =  0.4. Suppose this is the one interim analysis and the clinical trial is 

monitored at the middle of the study year. Let Ae and As have the same prior 

gamma distribution L(A; 1, b). The b > 0 was changed in simulations to study the 

inferences of the prior information.

Simulation 1. The log gamma approximation. After observing the group 

sequential samples from the exponential distributions with hazard rates Ae and 

As, the corresponding classical sequential samples, Xjk , j  =  1,2, which are from 

the gamma distributions F(mjfc,Afc), j  =  1,2, are calculated by (6.2) for each 

treatment k, k =  e,s. Following (6.25) and (6.26), the sequence of asymptotic 

normal random variables Zj, j  =  1,2, are obtained. The Bayes sequential decision 

procedure described in Section 6.2.3 is used into the simulation.

Simulation 2. The log-rank statistics approximation. The log-rank statistics 

are calculated after observing the group sequential samples from exponential dis­

tributions with hazard rate Ae and Xs. Using the result of (6.33), the log-rank 

statistics are treated as from the normal distributions. The Bayes sequential de­

cision procedure in clinical trials with normal distribution responses may be used 

in the simulation.

The comparisons are based on the type I error rate a, its expected sample size 

Mean Na, type II error rate (3, its expected sample size Mean Np and the average 

Bayes risk. The results are listed in Table 6.1 with the loss function K  =  2000 

and parameter of prior distribution b =  1.5, where the 95% confidence intervals 

are listed in the brackets. It shows that these two approximation methods are 

reasonably close. The same conclusion is found when the values of K  and b are 

changed.
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The prior gamma distribution was changed in simulations. The result of sim­

ulations on log gamma transformation is listed in Table 6.2. The type I error 

rate a, its mean sample size Mean Na, type II error rate /?, its mean sample size 

Mean Np, and average Bayes risk are quite stable with the change of b from 1 to 

2.5. This is the same for the log-rank statistics approximation, which is shown in 

Table 6.3.

Table 6.1 The comparison of two approximation methods

log gamma transformation log-rank statistics

type I error a 0.1058 (0.0953, 0.1162) 0.0820 (0.0650, 0.0990)

Mean Na 190.1 (188.3, 191.9) 185.7 (181.7, 189.7)

Average Bayes risk 40.14 (38.88, 41.40) 37.93 (35.06, 40.80)

type II error ¡3 0.1168 (0.1079, 0.1257) 0.1740 (0.1505, 0.1975)

Mean Np 202.6 (200.6, 204.6) 203.7 (199.2, 208.2)

Average Bayes risk 50.65 (49.30, 52.00) 54.57 (51.58, 57.56)

Table 6.2 The log gamma approximation with different prior distributions

b a Mean Na Mean Risk P Mean Np Mean Risk

1 0.1040 190.5 39.78 0.1170 202.9 50.26

1.25 0.1054 190.2 40.01 0.1168 202.7 50.44

1.5 0.1058 190.1 40.14 0.1168 202.6 50.65

2 0.1060 190.0 40.32 0.1172 202.2 51.04

2.25 0.1066 189.8 40.52 0.1176 202.0 51.23

2.5 0.1064 189.7 40.57 0.1176 201.8 51.50
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Table 6.3 Log-rank statistics approximation with different prior distributions

b a Mean Na Mean Risk (3 Mean Np Mean Risk

1 0.0850 186.0 36.48 0.1870 202.2 54.68

1.25 0.0930 190.2 36.24 0.1680 199.7 56.13

1.5 0.0820 185.7 37.93 0.1740 203.7 54.57

2 0.0810 186.9 37.09 0.1790 206.6 53.05

2.25 0.0990 184.5 39.70 0.1850 200.1 52.77

2.5 0.0950 187.5 38.57 0.1790 201.2 52.00

6.2.6 Conclusion

Bayes sequential decision theory was applied to the clinical trials comparing two 

treatments with survival time data. When the survival time is from an exponential 

distribution with hazard rate equal to A and the prior distribution of the A is a 

gamma distribution, then the Bayes sequential decision procedure in clinical trials 

with normal distribution responses can be used as an approximation. If the gamma 

prior distribution has the form F(l,6), then the inferences of the average sample 

size and the average Bayes risk from changing the value of b are small.
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6.3 Non-Parametric Bayes Analysis

6.3.1 Prior Distributions on Spaces of Probability Mea­

sures

Ferguson(1973, 1974) has said that the Bayes approach in treating non-parametric 

problems has not been very successful, and this is due primarily to the difficulty 

in finding workable prior distributions on the parameter space. There are two 

desirable properties of a prior distribution for nonparametric problems.

(1) The support of the prior distribution should be large — with respect to 

some suitable topology on the space of probability distributions on a given sample 

space.

(2) Posterior distributions given a sample of observations from the true prob­

ability distribution should be manageable analytically.

Ferguson(1973) first introduced the Dirichlet process and used it as prior for 

an unknown cumulative distribution function. Later Doksum(1974) and Fergu- 

son(1974) have addressed the tail-free processes and processes neutral to the right 

as prior probability distributions on spaces of probability measures or distribu­

tion functions. These three processes have often been used in the non-parametric 

Bayes analysis.

Here the prior distributions on the space of all probability measures are re­

stricted on (R ,B ) where R is the real line and B is the er-algebra of Borel subsets 

of R. Let

T  =  { P  : P is a probability measure on (R,B)}.

The definitions of the Dirichlet process, the process neutral to the right 

and the tail-free process

The Dirichlet process
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Let a(-) be a finite non-null measure on (P, P), and let P(-) be a stochastic process 

indexed by elements of B. The P is called a Dirichlet process with parameter a 

and written P  £ P (a ), if for every finite measurable partition { P i , Bm}  of P, 

the random vector ( P ( P i ) , P(Bm)) has a Dirichlet distribution with parameter 

..., a(Bm)). In particular, for every B £ P, P (P ) £ Be(a(B), a(R) — 

a (P )), therefore E[P(B)] =

Equivalently, the Dirichlet process can be defined as follows. Let a(t) = 

a (( — oo,t]) and F{t)  =  P(( — oo,t]). The P is called a Dirichlet process with 

parameter a and written P £ T>(a) (or F  £ 'D(a)), if the process Fit)  may be 

written as where Zt is a process with independent increments, Zt £ r(a(i), 1), 

and Zoo — limt_*oo Zt £ r(a;(P), 1), F(t) £Be(a(t),a(R) — a(t)).

The process neutral to the right

A random distribution function F(t)  on the real line is said to be neutral to the 

right if for every m and ti <  t2 < • • • < tm, there exist independent random 

variables Vi, V2, ..., Vm, such that (1 — P(D), 1 — F(t2) , ..., 1 — F(tm)) has the same 

distribution as (Li, ViV2,Y i™ V i ) .

Essentially, F  is said to be neutral to the right, if (1 —F (p ), 

are independent when the denominators are non zero.

The tail-free process

Let {7rm; m — 1 ,2 ,..} be a tree of measurable partitions of (R,B). The distribu­

tion of a random probability P on (P, B) is said to be tail-free with respect to { ttm} 

if there exist a family of non-negative independent random variables {Lrm,B\ rn =

1,2,..., B £ 7rm} such that for every m =  1,2,..., if Bj £ 7rj, j  =  l ,. .. ,m  and 

Bm C ... C Pi, then P (P ro) =  Y[J=1Vjp j .

A random distribution function F  is tail-free with respect to the tail (s,oo) 

if for all 5 =  p  < ••• < tk there exist non-negative independent random variables
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Vi,...,Vk independent of {F(t )  : t <  s}  such that

(F (i i ),.... F(tk)) = (F(s)  +  [1 -  F(s)][l -  nisi(l -  =  1, ...,k)

If F  is neutral to the right then Yt =  —log( 1 — F(t)) has independent increments. 

Let Y't be a process with independent increments, non-decreasing a.s., right con­

tinuous a.s., limi^-oc Yt =  0 a.s. and linp^oo Yt =  oo a.s. Then F(t) =  1 — e~Yt is 

a random distribution function neutral to the right.

Characterisations of three processes

Let three trivial types of processes be 

T\. P  non-random (F  =  F0);

T2. P  degenerate at a random point (F  =  /[x,co)) where X  has distribution

Fo)\

T3. P concentrated on two non-random points (F  =  17/[ai00) +  (1 — U)I[bi00) 

where U has an arbitrary distribution on [0,1], and a < b).

1. If F  is a Dirichlet process (F  £ 2?(a)), then with probability one F  is 

discrete.

The limitations of the Dirichlet process stem mainly from the fact that it 

chooses discrete distributions with probability one, so that it is expected to have 

some observations repeated exactly. To avoid these limitations, we should try to 

find some workable priors that choose continuous distribution with probability 

one. There are some among the tailfree processes.

2. The support of T>(a) with respect to the topology of weak convergence is the 

set of all distribution whose support is contained in the support of a. Therefore, 

if the support of a is /?, then the support of T>(a) with respect to convergence in 

law is T .

3. If P  is neutral with respect to every finite measurable partition, then P  is
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either a Dirichlet process or of types Ti, T2 or T3.

4. If P  is tail-free with respect to every tree of partitions, then P is either a 

Dirichlet process or of types Ti, T2 or T3.

The Dirichlet process is essentially the only random probability that is inde­

pendent of the defined partitions in the sense of having the desired independence 

properties for all sequences of partitions.

5. If for every measurable set B , the posterior distribution of P(B)  given 

a sample X i , . . . ,X n from T, depends on AT,..., AT only through the number of 

observations that fall in B (and not on where they fall within or outside of P), 

then P  is either a Dirichlet process or of types Ti, T2 or T3.

The above property makes the posterior distribution of the Dirichlet process 

easy to handle. However, this is not necessarily a desirable property since the 

posterior distribution is rather insensitive to the values of the sample. From 

this point of view, the tail-free process prior that chooses absolutely continuous 

distributions with probability one would seem to be more appropriate. But the 

tail-free with continuous singular or absolutely continuous with probability one 

has new drawbacks. A minor one is that the expectation of F(t)  is now more 

difficult to compute. The main drawback is that the dyadic points of subdivision 

play a strong role in the posterior distribution.

6. F  is neutral to the right if and only if F  is tail-free with respect to (s, oo) 

for all 5 in R.

Posterior distributions of three processes

If F  is a Dirichlet process F  G X>(a) and if X\, . . . ,Xn is a sample from F, then 

the posterior distribution of F  given AT,..., X n is V(a  +  Y i  TvJ, where 5X is the 

measure giving mass one to x.

If F  is neutral to the right, and if AT,...,AT is a sample from F, then the 

posterior distribution of F  given AT, ..., AT is neutral to the right.



Chapter 6. Bayes Group Sequential Decision Clinical Trials on Survival Time Datal53

If the distribution of P is tail-free with respect to {nm}  and if Xi, . . . ,Xn is a 

sample from P, then the posterior distribution of P  given X\,. . . ,Xn is tail-free 

with respect to {nm}.

6.3.2 Non-parametric Bayes Analysis of the Proportional 

Hazard Model

The non-parametric Bayes estimation of a survival or reliability function has been 

considered by several authors (for example, see Susarla and Van Ryzin, 1976, 

Ferguson and Phadia, 1979, Dykstra and Laud, 1981, Padgett and Wei,1981, and 

Berliner and Hill, 1988). Kalbfleisch(1978) and Hjort(1990) have discussed the 

non-parametric Bayes analysis of the proportional hazard model.

Let T >  0 represent the failure time of an individual. The covariate variable z 

is equal to 0 or 1 to indicate two treatments. The distribution function F(t)  and 

the survival function S(t) are

1 — F(t\z) — S(t\z) =  exp{—A(t)exp(z/3)} (6.34)

where exp{—A (f)} is a base line survival function and is left unspecified. In the 

continuous case, the cumulative hazard function A(i) =  /„ A(u)du.

Kalbfleisch(1978) has treated the A (t) as a nuisance parameter with a gamma 

process, denoted by A(t) ~  r(cA*(f), c), where the c is a positive real number and 

exp{ —A*(t)} is a completely specified survival function. The gamma process that 

he constructed is a non-decreasing process with independent increments, which 

is similar to the Birichlet process. Estimation of ¡3 is carried out by determining 

the marginal probability distribution of data as a function of ¡3, after A (t) having 

been eliminated.

Suppose (ti, zi),...,(tn, zn) are observed from the proportional hazard model 

(6.34), where H, f2, •••, tn are observed failure times with H < t2 <  ... < tn, and



zi, z2, zn are values of covariate variable z, then,

P(T1 > t 1,...,Tn > t n\P,z,A) =  exp{-J2HU)exp(z i (3) }
n

= e x p { ~ Y j riAi}i (6.35)
i

where rt- =  A(f,-) — A(L_i), and A{ =  J2ieR(ti) exp(zi/3), i =  1 , n. Let t0 =  0 and

fn+l OO.

If qi =  P(T  e [L_i,L)lr  > L -i, A), then A(L) =  E U i “  log(l “  <?«)• 

has been shown by Doksum(1974) that a probability distribution can be speci­

fied on the space {A (t)} by specifying the finite dimensional distributions of qi, 

for each partition (i= l,2 ,...,n +1). Accordingly, independent

prior probability densities can be specified for qi, q2,...,qn+1 subject to some con­

sistency conditions and the resulting processes are called tailfree or nuetral to 

the right by Doksum. The A (t) is by this construction a non-decreasing process 

with independent increments. The problem then reduces to the specification of 

a non-decreasing independent increments process for A (t). To do this, one need 

only specify independent prios for the r[s or s) subject to the condition that 

the distribution of r* +  r;+1 must be the same as would be obtained by direct 

application of the rules to the combined interval. If the q[s have independent 

beta prior distributions, then the resulting process A (t) is Dirichlet process. The 

gamma process specifies that =  — log(l — qi) have the independent gamma 

distributions
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n =  A(fj) — A(fj_i)

~  r{cA*(fj) -  cA *(ij_i),c} (* =  1, ...,n +  1), (6.36)

Integrating (6.35) with respect to the distribution of r\ in (6.36) gives,

P(Ti >  ¿1, r 2 > f2, •••, Tn > tn\(3, z) exp{-Y^cBiA*(t i ) }
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then the likelihood function of ¡3 is

L(/3) =  ¿ ' e x p { - ' E c B iA*(ti) } m xm(ti)Bih (6-37)

where

m  =  jp  * w ,

Bi =  - l o g { l  -  exp(zi(3)/(c + A i ) } ,

Ai =  exp(zu(3), * =  l,...,n ,
u£R(ti)

and jR(ij) is the set of individuals at risk at time i* — 0.

Although the likelihood function L(/3) in (6.37) is considered under failure 

times, right censoring is easily accommodated which is

n

L(/3) =  (6.38)
i

where d{ =  0 or 1 for censored or failure times respectively.

Let 7r(/3) be a prior distribution of parameter ¡3. The posterior distribution of

(3 is,

w(/3\T,z) cx ir(/3)exp{-'^2cBiA*(ti)} '[[{\*(ti)Bi}di. (6.39)

Statistical inferences for ¡3 can be derived based on this posterior distribution.

Hjort(1990) has considered a beta process on the cumulative hazard function 

A(t). Using the product integral, the distribution function F(t\z) obtained from 

A (t) is

F{t\z) =  1 -  n i 1 -  dA(s)}expW\  
[o A

t > 0 (6.40)
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which is equivalent to the distribution function of (6.34) if and only if A (t) is 

continuous.

Hjort(1990) said that the cumulative hazard function A{t) in (6.40) was more 

easily interpreted and generalized than that in (6.34), and also is the desire to par­

allel the construction and results of non-parametric time discreta survival analy­

sis. Loosely speaking, a beta process on a cumulative hazard function is a process 

which produces cumulative hazard rates whose increments are independent and 

approximately beta distributed. A particular transformation of a given Dirichlet 

process produces a special case of the beta process, but the beta process forms a 

much larger and more flexible class.

Let A0(t) be a cumulative hazard function with a finite number of jumps at 

ti, t2,...,tn and let c(t) be a piecewise continuous, non-negative function on [0, oo). 

The Levy process A(t), ie., one having independent non-negative increments, is 

called a beta process with parameters c(f), Ao(t), and denoted by

A (t) ~  beta{c(t), A0(t)}, (6.41)

if the following equation holds,

E (exp{—9A(t)}) n E (exp { - ° s j))
r oo

e x p { -  /  (1 -  ees)dLt(s)} ,
Jo

where

S j  = A(tj) ~  beta{c(tj), A0(fj)} ,

dLt(s) =  f t c ( z ) s - \ l - s ) c^ - 1dA0tO(z)ds,
Jo

in which A0tC(t) =  A0(t) — Etj<t Ao(ij) is A0(t) with its jumps removed, then the 

A (t) has Levy representation.
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If A(t) is a beta process beta{c(t), Ao(i)} defined by (6.41), then the indepen­

dent increments have

dA(s) ~  beta{c(s)dAo(s), c(s)(l — dAo(s))}

Suppose the data (i1? zi),...,(tn, zn) have been observed from (6.40) with t\ < 

¿2 < ... < tn. Let w(/3) be a prior distribution of (3. The posterior distribution of 

P by Hjort(1990) is,

w(/3\data) =  const.exp{— /0°° [f(c(s)  +  R(s,/3)) — ^(c(s))]c(s)cL40(.s)}

x IL:ij=i [^(c(ri) +  R(U,(3)) -  ip(c(ti)  +  R(U,p) -  A(U,f3))]ir(P),
(6.42)

where

. . .  r '(2 ) i , 1 . 2
^  = m y  = og s ~  2 z ~  v i z

n

R(s,P) =  J2 exp{Pzi)l{t3>*},
3 = 1

Si =  1 failure ; or 0 censored,
n

i=l

Both posterior distributions of P in (6.39) and (6.42) are related to data of all 

individuals. It is, however, very difficult to get the expected risk from observing 

the next group of samples in using Bayes sequential decision theory.
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6.4 Bayes Group Sequential Decision Clinical Tri­

als on Proportional Hazard Model for Sur­

vival Time Data

6.4.1 The Problem

Consider a clinical trial comparing an experimental treatment with the standard 

treatment. The main outcome of the clinical trial is a survival time random 

variable with the following proportional hazard model. Let T be the survival time 

random variable. The hazard function h(t\z) and the survival function S(t\z) of 

T are

h[t\z) =  A (t)exp((3z),

S(t\z) =  exp{—A(t)exp(/3z)}, (6.43)

where A(t) is a baseline hazard function which is left unspecified and A (t) — 

Jo A(s)ds is the cumulative hazard function of A(t). The covariate variable z is 

a 0-1 variable. The z — 0 for the outcome from the standard treatment; and 

z =  1 for the outcome from the experimental treatment. The ¡3 is the parameter 

of interest. Assume that the experimental treatment is not considered better if 

¡3 > /?2 and that the experimental treatment is considered better if (3 <  (3i_. The 

interval (/?i, /32) is the range of equivalence. Suppose (3 has the normal prior 

distribution with mean u0 and variance Tq, that is, (3 ~  w(/3) =  V(t'o,cro)-

Assume patients accrual is uniform in period (0, sa) with a constant rate R 

and the allocation of patients is random and equal for each treatment. The clinical 

trial is monitored at either I) selected times U\, u2,..., ui or II) total number of

new failures mi =  ni\e +  mis, m2 =  m2e +  m2s, ..., mi =  mie +  mi3. The l is the

maximum number of analyses. For simplify of computation, the loss functions are
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defined as

L((3,ds)

L(f3,de)

K fl < fk

0 ( 3 > (k

0 P < @2

K (d > @2
(6.44)

in which the unit of K  is the cost of enrolling a patient into the trial. This cost 

is constant through the trial.

6.4.2 Method 1. Beta Process on the Cumulative Hazard 

Function A(t)

Let the nuisance parameter A (t) in the proportional hazard model (6.43) have a 

prior beta process beta{c, Ao(t)} defined in (6.41), where the c is a constant and 

Ao(i) =

The posterior distribution of the parameter (3

At each analysis j ,  j  =  1 ,2 ,...,/, suppose the values (t, z) =  {(t\,zx), (t2, z2), ..., 

( f m i+ros+...+m,-) Z m l + m 2+ . . . + m j ) }  have been observed from the proportional hazard 

model (6.43). The is the total number of failures at analysis j .  The

posterior distribution of /?, te(/?|t,z), is given by (6.42).

The predictive density function

At each interim analysis j ,  j  =  1 , 2 , -  1, let s =  {s?, smJ si, 52> •••> sm.}

be the observed survival time from the next group of observations, where < 

¿2 < ••• < are the survival time from treatment k, k — e, s, and m =  me +  ms 

is the total number of new failures.
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Let rf =  A (s j)-A (5 j!_1), which is from beta{c(A0(s’l ) - A 0(^ _1)), c ( l—(A0(sJ!) -  

A0(5^_1)))}; Ft1? =  (mi. — (i — 1 ))exp(j3zk), where zs — 0 and ze =  1; and let 

Grk(.) be the moment generating function of the beta distribution rf, k =  e,s, 

z — 1,..., nii*.

Since

P(S% >  S
k 
i »

and,

=  EA(P(SK; > s k1:...,Skmk> s krtlk\f3,A)}
rrik

=  m  n  e- A(s*)ê 2fc)]
i=1

™k
=  Ei [eXp { - ' £ r f R ‘l}] 

i=1 
mk

=  II Er; l e x p ( - r^ ) \
2 — 1

mk

2 —  1

P(Si >  >  s‘mt, St >  st ,. . . ,S eme >  < J t ,z )

=  Ef>\t,.[P(Sl > > s'mt, St > st ,. . . ,S eme > s t n M

=  E ^ [ P ( S {  > > S‘mt 1/3)] E ^ z[P(St > S\,...,seme >

= E ^ z(UZ\ Gr*(—ms +  i -  1)] £/3|t,z[n™\ Gre ( ( -m e +  i -  l)exp(fi))]

=  Ut\ Grf( - m s +  i -  1) E ^ x[U ti  Grf( ( - m e +  z -  1 )exp((3))\

=  nr=i Grt ( - m . + i - 1) iZo * m = i  a ?  a - m e + * -

=  Il7=\Grt ( - m s +  i - l )

X ¡ ^ { c o n s t . e x p l - -  E ” „ A <#(c +  E ”=j -  </>(c)](ii -  (;_,)}

X nSi [V>(c + E"=i exp(fjzv))-  v>(c + E™=i+i exp(/fe„))]

X [nr=i Gri? ( ( -m e +  i -  l)ea;p(/?))]}d/?,



Chapter 6. Bayes Group Sequential Decision Clinical Trials on Survival Time Data.161

then, the predictive density function is,

/(s|t,z)
- s l p ( s ;  £

Bayes sequential decision procedure: one interim analysis

At the interim analysis, the values (t, z) =  ((fi, z{), (t2, z2) , ( t mi, zmi)) have 

been observed. The risk from stopping the trial is,

r0( V , l )  =  TCLvn.{Ep\tL(P,ds), Ep\tL(fl,de)},

where,

Ep\tL(/3, dt)

=  KjP'00w({3\t)dfi

= I< con s t .ex p { -^ ~ ^ - -  E"=o Ac[V>(c +  YZ=i exp((3zu)) -  ^(c)](U -

x UT=\ M e  +  Eu=i exp((3zu)) -  ij>(c +  Eu±i+1 exP((3zu))]dp,

<4)

= I< w(P\t)df3

=  K J £  c o n s t . e x p { ^ ^ f  -  £ £ 0 A<#(c +  e x p t f z j )  -  ^{c)](U -  t ^ ) }  

X n ^ i  m c +  Euii exp((3zu)) -  if>(c +  En=i+1 exp(/3zu))\d(3.

The expected risk from continuing the trial, denoted by E*r0(w1(s),2), is

^s\t,x  IHlIL'{ii'/3|t,z;s-Z-'(/^) d « ) ,  £'/3|t,z;s^'(/3) d e) }

=  / s mm-[£,̂ 3|t,z;sk-(/3, da), £'/3|t,z;s-̂ /(/d, de)} /(s|t,z)ds

=  Jmm{El3\tiZ;SL(p,ds),E l3\t'Z.iSL(p,de)}f(s\t,z)dss1...dssmsdse1...dserne, (6.45)
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where

rPi ( Q  — ;/n l 2 foo
= const. / exp {---------- -=------- / [ip(c +  R(t, ¡3)) — ip(c)\c\dt}

J - o o  2<Tq Jo

m\

x II [V>(c) + /?)) - V>(c + R(U,P) - M u ,/?))]
2=1 
m 9

x n  [V-(c) +  R K , m  -  +  -  A « , /? ) ) ]
2 2 = 1  

m e

X n  W <0 +  -  </>(c + f lK ,/3 )  -  ¿ K , w ,
v=l

=  const. [  exp{ — —---- ^ -----[  [^(c +  R(t, f3)) — ip(c)]c\dt}
Jp2 2 ctq J o

m\

X n  [^(c) +  R(UM )) -  ^(c +  i2(k, /?) -  M u , P))i 
2=1 
m a

x n  W c) +  i ? ( < , / ? ) ) - # ( c + f i « , / ? ) - A « , / 3 ) ) ]
2 2 = 1  

m e

x n  M<0 +  « « , / ? ) )  -  V’(c +  ^ K ,/3 )  -  A « , /? ) )H 3 ,
2 7 = 1

in which ?/>(.), A (.,/3) are the same as those in (6.42), and

m m 9 m e
R(t, P) =  Z  exp{Pzi)i{u>t} +  Z  h<>t} +  Z  exp{P)hs%>t}-

2 =  1  2 2 = 1  2 7 = 1

The computation of the expected risk (6.45) is extremely difficult even for a one 

interim analysis. It is the same situation when a gamma process (Kalbfleisch 

1978) is considered on the cumulative hazard function A(i). It is necessary to 

develop some approximation methods.

R/3|t,z;sh(ft, ds)

Rp\t,z;s-h((J, dg')

6.4.3 Method 2. Cox partial likelihood method

The Cox partial likelihood function of the parameter ¡3 ignores the nuisance pa­

rameter A (t) in (6.43). It is worthwhile trying to apply Bayes sequential decision 

theory based on the Cox partial likelihood function.



Suppose the values (t, z) =  (ti, zi), (i2, z2), (tm, zm)}  have been observed 

from the proportional hazard model (6.43). The Cox partial likelihood function 

is
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L{P, t ,z ) n ex
Eueflfto) exP(Pzu) ’

(6.46)

where R(t(i)) is the set of individuals at risk of failing just prior to tyy 

The posterior distribution of (3 is

w{(3 |t,z) Ciw(f3)L((3,t,z)

r  r (ft -  )2 i  T T  exp(pz{i))
lCXP 2 tq P i  E uGi i ( t (i)) exp{(3zu) ’

(6.47)

where Ci is a constant such that /  u?(/?|t, z)df3 =  1.

Consider a one interim analysis clinical trial. Suppose the trial is monitored at 

total number of failures and mi +  m2. At the interim analysis, after observing 

(t, z) =  ( (¿ i,  z{), (t2, Z2) , . . . , ( i mi , zmi ) ),  the risk from stopping the trial is,

r0(tw\l) =  min{£'^|tL(/3,ds), £/3|tT(ft,4 ) } ,

where,

£/0|t£(/M.)

Ep\tL((3, de)

( f t  VO  T T  e X P ( P Z ( i ) )  g

2 r 02 ¿ i  E u e R (t (i)) exp(/3zu) '/ ’

( ft -^ o )%  i r  expjPzft)
2r02 ¿ i  eicp(/?2r„)

Let < ... < ssmr>s be the next group of observed survival time from the standard 

treatment, and s® < ... < sem2e be the next group of observed survival time from 

the experimental treatment with m2 =  m2s +  m2e- The predictive density function
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is,

/(s|t,z)

=  Ep |t,»/(s|/?)
m\ xp(Pz(i))

exp{/3zh) u zm2 3
E

_i____

/.€«(<) nm 2e
V = \

exp  ¡3 

R(»%) exp  (3 dp.

The expected risk from continuing the trial is

^s|t,z in in {T /3 | t jZ;sT ( /3 ,  t/s ) ,  T'/3|t,z;s^'(/5, d e ) }

=  /s niin{^g|t)z;s-̂ '(̂ > /̂3|t,z;s-L(/3, de)} / (s |t, z )r/s

=  /min{£;Jg|tiB;sL(/3,d ,) ,^ | tiZ;BZ-(/3,de)}/(s|t,z)</5;...ds^aeds;...ds^!l#(6.48)

E < -  < *™2e

< -  < 4 ,2s

where

Ep\t,z;s-h(f3, ds)

=  c 3i ^ ex p { - ' i ^ i i }  n s i r

T '/3|t,z;sT (/?, de)

zp(/%.)) 
'*6i?(«(,))eXp(/3zh)

n m 2 s «=1
E ft€H(»')

— TTm2e exp/3
1 P=1 Ene*.«)“ ** ’

= C3 /ft exp{ {P-VqY
2rn- } n s exp(/3z(,)) ttTO2j 1____  T T « l2 e  ____

E f t g H i ^ , , )  exP(Pzh) U u = 1  E f t G H « ) 1 1 1 W = 1  E

exp/3
heR(»$) exp(3 *

Since the risk sets 7?(s„) and /?(s£) involve the data of all failures, then the 

computation of the expected risk in (6.48) is multiple integration. It is impractical 

to compute it and also difficult to get it by simulations.

6.4.4 Method 3. Log-rank statistics

Suppose the clinical trial is monitored at times u\, n2, ..., tij. Let V(uj), j  =

1 ,2 ,...,/, denote the value of log rank statistics computed at time Uj from the 

proportional hazard model (6.43).
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Tsiatis(1981, 1982) has derived that the asymptotic joint distribution of log 

rank statistics at different time points U j,  j  =  1 ,2 ,...,/, is the same as the dis­

tribution of a sequence of partial sums of independent normal random variables. 

That is,

V{%ij) ~  X 1 +  A 2 + ...  +  X j ,

where Ad, A'2,---,Xj are independent normal random variables with

E{Xj) =  (3(d(uj) -  d(uj _1))p( 1 -  p), 

Var(Xj) =  (d(uj) -  d(i£j _1))p(l -  p).

The p is the proportion of failures on one of the treatments. At each analysis j ,  

j  =  1,2,..., /, let

[d(uj) -  d(«j-i)b(l - p Y  

Yj N (^ ’ [d{uj) -  d(«i-i)]p(l -  p)) ’

The original group sequential data may be replaced by the sequence of random 

variables Y j,j  =  1 ,2 ,...,/ in Bayes sequential decision procedure.

The Bayes sequential decision procedure: one interim analysis

Suppose the clinical trial is monitored at I) iq and u2. At time uly number of 

failures d{u\) =  ds(iii) +  de(u\) have been observed, the log rank statistics is 

V (ui). The value of Vj is

Y, =  Vi = ___ _________~ N [8  ______ _______)
d ( u x ) p ( l - p )  ’ d(«i)p(l - p )  '

whereP =  S a / -
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Using Bayes theorem, the posterior distribution of (3 given Yi =  yi is a normal 

distribution, denoted by N(ui: ra2). The risk from stopping the trial is

r0( V , l )  =  mm{Ep\yiL((3, dg), Ep\yiL((3,de)},

where

rih 1
Ep\u(Cl)L(f3,ds) =  I< /  e 2ri d(3,

J-oo Y Z7TTi
/»OO 2  —

Ep\u(Cl)L{P,de) =  K  - j = —e 2T? d(3.

On the other hand, the predictive distribution of Y  with the number of new 

failures m =  d(u2) — d(uC) given Yi — yi is,

f(y\yi) =  En\yJ{y\P)

- I .
00 j  (d(u2) — d(u\))p{\ — p) (d(M2 ) - < i ( « l ) ) p ( l - p ) ( 3 l - / 8 ) 2 1  ~ U\ r ? ) i p

2tt

— Tl +
1

(d(u2) -  d(ui))p( 1 - p ) )

The expected risk from continuing the trial given the number of new failures 

m =  d(u2) — d(u\) is

/ OO

r0(w1(Y = y),2)f(y\y1)dy,
-OO

where,

r0(w1(Y  =  y), 2) =  mm{Ep\yuyL(f3, dt), Ep\yityL((3, de)}
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Let g(m) be the distribution of m. The expected risk from continuing the trial is,

E‘ r„(w '(Y),2) = y , E
m

If the risk from stopping the trial, ro(w1: 1), is less than the risk from continuing 

the trial, E * vq{ w 1[ X ), 2) +  i?min{r<2 — ui, sa — uh 0}, then the trial is terminated. 

Otherwise the trial is continued to the final analysis.

Suppose the clinical trial is monitored II) at total number of new failures mi, 

m2. In the Bayes sequential decision procedure, the risk from stopping the trial 

is obtained in the same way as in case I); the expected risk from continuing the 

trial is E*r0(w1(X ),  2) +  R min{f?(ti) — Ui, sa — iiX, 0}, where E(u) is the expected 

monitoring time which is corresponding to having total number of deaths equal 

to mi +  ra2.

Hence, if the number of failures are large enough, the group sequential sam­

ple from the proportional hazard model (6.43) may be replaced by the log-rank 

statistics calculated at each analysis. The Bayes sequential decision procedure in 

clinical trials with normal distribution responses in Chapter 4 may be used.

6.4.5 Conclusion

Bayes sequential decision theory was applied to the clinical trials with survival 

time data, where the survival time is the proportional hazard model. As a nuisance 

parameter, the cumulative hazard function of the proportional hazard model was 

assumed to have a prior beta process from the idea of Hjort(1990) and a gamma 

process from Kalbfleisch(1978). Since we are interested in the sequential clinical 

trials, there were computational problems of obtaining the Bayes stopping risk 

and the expected risk from continuing the trial, which was discussed in Section

6.4.2. The Cox partial likelihood doesn’t involve the cumulative hazard function, 

but there was still difficulty to get the expected risk from continuing the trial
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which was described in Section 6.4.3. However, the asymptotic joint distribution 

of log-rank statistics at different time points is the same as the distribution of 

a sequence of partial sums of independent normal random variable. Therefore, 

the Bayes sequential decision procedure in clinical trials with normal distribution 

responses can be used as an approximation. This was discussed in Section 6.4.4. 

The discussion on the non-parametric Bayes analysis of proportional hazard model 

is used in the estimation of treatment difference after the trial is terminated. This 

is also used in Chapter 2 for clinical trials with proportional hazard model for 

survival time.



Chapter 7

Robust Bayes Analysis in Clinical 

Trials

Bayesian methods in clinical trials have received increasing attention recently as 

they offer an approach for dealing with many difficult problems which arise in 

practice. This was described in Chapter 1. A major criticism of Bayes analy­

sis is that it presumes an ability to completely and accurately elicit subjective 

information in terms of a single prior distribution for parameters of interest. In­

vestigators are concerned that inferences based on a posterior distribution will be 

sensitive to the specification of the prior distribution. However, there has long 

existed a robust Bayesian viewpoint to address this criticism. Good(1959, 1961, 

1962) has started the robust Bayesian approach to inference. The robust Bayesian 

approach replaces the single prior distribution with a class of possible prior dis­

tributions. The goal of this approach is to make inferences or decisions which are 

robust within this class, that is, the inferences or decisions are relatively insensi­

tive (or at least are satisfactory) to deviations as the prior distribution varies over 

this class. There are reviews by Berger(1984, 1985, 1990, and 1994) and Wasser- 

man(1992). Greenhouse and Wasserman(1995) have illustrated the application of 

robust Bayes methods to the analysis of clinical trials.

169
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Although a complete robust Bayes analysis would consider the sensitivity of 

posterior inferences not only to the specification of the prior distribution but also 

to the specification of the likelihood function, in this chapter only the sensitivity 

of posterior inferences to the prior distribution is discussed.

The framework of robust Bayes analysis is described in Section 7.1. Following 

this, the applications of robust Bayes analysis to clinical trials are discussed. The 

robust Bayes analysis of clinical trials with main outcome variable from normal 

distribution is considered in Section 7.2. Section 7.3 discusses the robust analysis 

of clinical trials with main outcome variable from binomial distribution. Chapter 

6 has shown that analysis of clinical trials with survival time data could be approx­

imated by analysis of clinical trials with normal distribution response. Therefore 

the robust Bayes analysis of clinical trials with survival time data is not discussed 

here.

7.1 The Framework of Robust Bayes Analysis

7.1.1 The e—contamination class

To formulate a class of possible prior distributions for a parameter of inter­

est has not been resolved completely in the Bayesian robust approach. The 

e—contamination class is used as the class of possible prior distributions in the 

robust Bayes analysis here. This class has been considered by many people, in­

cluding Huber(1973), Berger(1984), Berger and Berliner(1986), Lavine et al(1991) 

and Greenhouse and Wasserman(1995).

Let X  denote the observable random variable or random vector A" =  (A i, A"2, X n 

which is assumed to have a distribution function f(x\9), where 6 is an unknown 

parameter lying in a parameter space 0 . Assume that 6 has the prior probability 

density function iuq =  wq(9)  on 0 . The posterior probability density function of 

9 given X  = x (assuming it exists) is denoted by w0(9\x). To be more precise,
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we should work with probability distributions not densities because the classes of 

priors we deal with do not necessarily have densities, but for simplicity, we will 

write expressions in terms of density functions. Let V  denote the space of all 

probability distributions on 0 . The e —contamination class is defined as

TE =  {iu : w — (1 -  e)w0 +  eg, g G Q}, (7.1)

where 0 < e <  1 represents the amount of uncertainty relating the accuracy of the 

specified prior distribution wo, the value (1 — e )  reflects degree of confidence in the 

accuracy of the prior distribution ru0, and Q is a class of reasonable alternative 

priors which is some subset of V .

Berger and Berliner(1986) have given several reasons for consideration of this 

class Te, and suggested that the class of contaminations Q may be

I) Q = V(all probability distributions on 0 );

II) Q ={all symmetric and unimodal distributions on 0  };

III) the class of contaminations such that the resulting w is unimodal(assuming 

that Wo is unimodal);

IV) Q=  {  mixtures of various classes }.

The e —contamination class Te in (7.1) with Q =  V  is computationally easy to 

work with. Although this class is large and contains many more distributions 

than we would consider reasonable in practice, if the posterior distribution is not 

sensitive to this class, then we should have considerable confidence in the posterior 

robustness to the prior w0-
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7.1.2 The framework

Let g(9) be some quantity of interest. The upper and lower bounds on the posterior 

expectation of g(8) over the class lb defined by (7.1) are

sup Ew(g(9)\x) =  sup [  g(9)w(9\x)d9, (7.2)
w€Tc

inf Ew(g(9)\x)wE.re = inf /  g(9)w(9\x)d9. weTe Jo (7.3)

If the differences supwer£ Ew(g(8)\x) — infwer£ Ew(g(9)\x) are small for some val­

ues of e(0 <  e <  1), that is, the inferences or decisions based on the posterior 

expectation Ew(g(9)\x) do not change as the prior varies over this class lb, it may 

be concluded that the inferences for g(9) are not sensitive to the specified prior 

distribution w0.

When g(9) is the indicator function for a measurable set A C 0 , then the poste­

rior expectation Ew(g(9)\x) =  Pw(8 G A\x), which is the posterior probability of A 

after observing X  =  x. Corresponding to Chapter 2, let the 9 G 0  =  7?.1(real line) 

be the measure of treatment difference in a clinical trial comparing two treatments 

and let A =  {9, 9 < 9\} (or {0, 9 >  92}),  where the interval (#i, 92)(91 <  92) 

is the range of equivalence of the clinical trial. When the posterior probabil­

ity PWo(9 G A\x) — PWo(8 < 8i\x) (or PWo(9 > 92\x)) is big, the clinical trial 

is suggested being stopped early as discussed in Chapter 2. If the difference 

suPtuer£ Pw(9 G A\x) — infwGrt Pw{9 G A\x) is small, in other words, the decisions 

based on posterior probabilities Pw(9 G A\x) over this class lb are same, then we 

do not need to worry about the choice of the single “correct” prior distribution 

Wo and can be concluded that the decision of stopping the clinical trial early is 

robust to the prior Wo-

From a mathematical perspective, the calculations supmeFE Ew(g(9)\x) in (7.2) 

and infw€rf Ew(g(9)\x) in (7.3) are very complicated. Huber(1973) has derived 

the calculation of upper and lower bounds of Pw(9 G A\x) over the class lb of
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(7.1) with Q — T.

Huber Theorem Assume that the random variable X  has the density function 

/(:r|0), and the parameter of interest 9 G 0  has the prior distribution wq. Let A 

be a measurable subset of 0 , and /?o be the posterior probability of A under w0, 

that is, /3q =  PWo(9 G A\X =  x). It is obtained that

inf P(9 G A\X =  x )

sup P{9 G A\X =  x) 
werc

.  L  £swpe(Af{x\e) \ 1
^ ° l  ' (1 — e)m(x\wo) J ’
(1 -  e)m(x\w0)(3o +  £ sup6e  ̂f(x\9) 
(1 -  e)m(x\wQ) +  e s u p ^  f(x\9)

(7.4)

(7.5)

where m(x\wo) =  f e f(x\9)wo(0)d9 is the marginal density of x under the prior 

u>o, and is the e—contamination class defined as in (7.1) with Q =  V.

7.2 Clinical Trials with Normal Distribution Re­

sponse

Consider a clinical trial comparing two treatments. The main outcome variable 

is normally distributed with variance known and mean i =  1,2, for each 

treatment respectively. Let 9 =  p\—p2- The parameter 9 is a measure of difference 

of these two treatments. The comparison of these two treatments could be based 

on statistical inferences of the parameter 9. Let random variable X  be the test 

statistic of the difference 9. The X  is from the normal distribution with mean 

equal to 9 and variance known, denoted by cr2, that is, X  ~  N (9 ,o2).

Assume that the prior distribution of 9 , wq(0 ) ,  is the normal distribution with 

mean p and variance r 2, that is, 9 ~  io0(9) =  N(p, r 2). The posterior distribution 

of 9 given X  — x is,

u>o(0|x) =  N ( 5 ( x ) X )
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where J(x) =  x -  {x -  n), V2 =

The usual 100(1 — a)%  Bayes credible region for 0, denoted by A , is

A =  {9 :  S(x) - K  < 6  < 8(x) +  K } ,  (7.6)

where K  =  za/2V, and za/2 is the 100(1 — a/2) upper percentile of the standard 

normal distribution. The robustness of posterior probability P{6 G A\x) to the 

specified prior distribution Wq(6) =  N(p,T2) is discussed below.

For the simplicity of computation, only the class of contaminations Q =  'P(all 

distributions on 0 ) and Q =  {all symmetric and unimodal distributions on 0 }  in 

(7.1) are considered in Section 7.2.1 and Section 7.2.2, respectively.

7.2.1 Arbitrary contaminations Q = V

Corresponding to the definition of e —contamination class described in Section

7.1.1, the £-contamination class of prior distributions for the difference of these 

two treatments 6 in the clinical trial is,

r £ =  {w : w =  (1 -  e)N(p, r 2) +  eq, q G V }.  (7.7)

The lower and upper bounds of Pw(8 G A\X — x) over this class Te may be 

calculated by the Huber theorem.

Consider the example in Berger and Berliner(1986). Suppose a2 =  1, r 2 =  2, 

p =  0, and £ =  0.2. If x =  0.5 is observed, then 95% Bayes credible interval for 9 

is A =  (-1.27,1.93), and

inf —1.27 < 8 < 1.93|X =  0.5) =  0.817, 

sup Pw(-1 .27  < 8 < 1.93|X =  0.5) = 0.966.
weTo.2

The above results show that the difference between the lower and upper bounds
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of the posterior probability Pw( —1.27 < 9 < 1.93|X =  0.5) is small. The pos­

terior probability of this standard credible set is reasonably robust to the prior 

distribution of 0, which is tco(^) =  N(0,2).

If x =  4 is observed, then the usual 95% credible set is (1.07,4.27), and it is 

obtained that

inf Ptu(1.07 < 0 < 4.27|X =  4) =  0.1355,wer1!
sup 1.07 < 0 < 4 .271Al = 4 )  =  0.99.

Since the posterior probability can get as low as 0.1355, and as high as 0.99 for 

x =  4, the procedure is not robust to the prior distribution 1V(0,2) with respect 

to the class P£ defined by (7.7).

The example has shown that the robustness with respect to Fe depends signif­

icantly on the x observed. A lack of robustness may be due to the fact that the 

e—contamination class Fe in (7.7) with arbitrary contaminations Q =  V  is “too 

large” .

7.2.2 Symmetric unimodal contaminations

Let 0  Ç TT^real line). The class of symmetric unimodal contaminations can 

be expressed by Q =  {densities of the form q(\0 — 0o|)5 9 nonincreasing}, where 

0 =  0O is the symmetric axis of density q. This class may be approximated by 

Q' =  {FIniform (90 — a, 90+a) densities, a >  0} as a considerable simplicity to work 

with (Berger and Berliner 1986). The e-contamination class of prior distributions 

of 0 in the study is then

r e =  {u> : w =  (1 — e)N(p, r 2) +  eU{p — a, p +  a), a >  0}. (7.8)
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The expression of a prior distribution from this class in (7.8) can be derived as 

follows.

Suppose 0 has the prior distribution from this class Tc defined by (7.8), then 

6 =  (1 — e)U\ +  e U 2, where U\ and U2 are independent with U\ ~  N(p,T2) and 

U2 U(9o — a, do +  a). The probability distribution function of 6 is,

P ( 0 < b ) =  P ((l - e ) U 1 +  eU2 < b)

IJ u2 G (0O -  a, 0O + a) Æ  

(1 — e)u\ +  e u 2 <  b

1 ( u\ —p)“ 1
e 2r- —  diiidu2

ITT 2 a

1 Co+a r-rrr  
2(2 JOo—a J —oo

(“i - 1X
\ Z 2 ttt

du i du2-

The prior density function of 0 is then,

w(9) =
2ar(l — e) Je0

fSo+a —
/  < K -

J  On —a

0 — eu2_
)du2.

After observing X  =  x, the posterior probability density function of 9 is,

w(9\x) =
f(x\9)w(9) 

f-oo f(x\9)w(9)d0

V  27TC
•e 2̂2

/-
! ,e0+a. R 2(T 00 \2/kct 2a r ( l

0 —£U2

0 — eu<2

(7.9)

(7.10)

The lower and upper bounds of Pw(0 G A\X =  x) over the class Te in (7.8) are

inf Pw(9 G A\X =  x) =  inf [  w(9\x)d0, [t)£rr a>0 JA

sup Pw(9 G A|A" =  x) =  sup / iü(0|x )c?0, 
xier£ a>o -1a

(7.11)

(7.12)
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where the posterior probability density function w(9\x) is obtained by (7.10).

If the difference supul€rt Pw(0 G A\X =  x) — inf„,er£ Pw(9 G A\X =  x ) are 

small for some values of e(0 < e <  1), then it may be concluded that the inference 

on the posterior probability P{9 G A\x) is robust to the prior with respect to the 

e —contamination class Te in (7.8).

Continuing the example in Section 7.2.1, it was shown that the posterior prob­

ability of 95% credible set at x =  4 is not robust to the prior with respect 

to the e—contamination class P£ defined by (7.7) with e =  0.2. Consider the 

e —contamination class defined as in (7.8) with Q! — {  Uniform(0 - a, 0 +  a) 

densities, a <  5}. At x =  4,

inf Pw{ 1.07 < 9 < 4.27\X =  4) =  0.139, 
wero.2
sup Pw( 1.07 < 9  < 4.27\X =  4) =  0.218.™er0.2

The difference of these upper and lower bounds is small over this class Te, which 

shows that the posterior probability Pwo(1.07 < 9 < 4.27|A" =  4) is much less 

sensitive over the class defined by (7.8) than over the class Te defined by (7.7). 

The example shows that it is worthwhile to check the robustness with respect to 

some reasonable subset of V  when a procedure is not robust with respect to the 

£—contamination class with the arbitrary contamination class V .
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7.3 Clinical Trials with Binomial Distribution 

Response

7.3.1 One Sample

Consider a clinical trial with main outcome variable X  from the binomial distri­

bution B(n,p). The rate p is the parameter of interest. Greenhouse and Wasser- 

man(1995) have discussed the robustness of P(p > po\x) to the prior with respect 

to the following e-contamination class Fe defined by (7.13), in which p0 is the 

break-even value of p.

Te =  {w : w =  (1 — e)Beta(vi, i/2) +  eq, q G T7}, (7-13)

where they have assumed that the p has the beta prior distribution w0(p) =  

Beta(ui, u2).

However, sometimes it may be suggested that the 9 =  log has the normal 

prior distribution w0(6) =  N (p ,r2). The robustness of Pw(9 < 6q\X =  a:)(or 

Pw(6 >  9q\X — x ) to this prior is discussed below, where 9q =  log is the 

break-even value of 6.

Assume that the e-contamination class with arbitrary contamination class is 

used and that it is defined as in (7.14).

Te =  {w : w =  (1 -  e)N(/j,, r 2) +  eq,q 6 V }.  (7-14)

The infiygr, Pw{9 < =  x) and sup„,eri Pw(6 < Q0\X =  x) are calculated by

the Huber theorem. Corresponding to the Huber theorem, the density function 

f(x\0), supe>0o f(x\0), supe<0o f(x\6) and the marginal density function m(x\wo)
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under the prior distribution wq{9) =  N (p ,r2) are,

f(x\0)

sup f(x\9) 
o>80

sup f(x\9) 
8<80

m(x\wo)

( “ ) PfJ I -  Pii)" '  x < n p 0

'. a r u  -  i r -  

( : )  art1 -  s )“ ~*
( “ ) Pòi1 -P o )”“"  x > n p 0,

— )I +  ee )
(»-or

■\/2n<j
de.

If supweri Plu(0 <  = x) — inf„,ert Pw{& < 90\X =  x) are small for some values

of e(0 <  e < 1), then the posterior probability P(6 < 9q\X =  x) is robust to the 

prior w0.

Consider the example given by Greenhouse and Wasserman(1995). A clinical 

trial is designed to test the effect of a new treatment. If the failure rate of the 

new treatment p is greater than po =  0.2, then the new treatment is not accepted. 

They assumed that p had the beta prior distribution w0(p) =  Pefa(1.56,8.44) 

with mean equal to 0.16 and variance equal to 0.012. When three of the first four 

patients in the trial failed, it was obtained that the lower and upper bounds of 

the posterior probability P(j> > 0.2|x) over the class Fe in (7.13) at e =  0.2 were

inf Pw(p > 0.2|x) =  0.67, 
mìGToì

sup Pw(p > 0.2|x) =  0.98; 
wero.2

inf Pw(p > 0.2|x) =  0.41, 
wer05

sup Pw(p > 0.2|x) =  0.99.
™er0.5

and at e =  0.5 were
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For £ =  0.2, where there was 80% belief in the specified prior distribution w0(p) =  

Beta( 1.56,8.44), the posterior probability that the failure rate was greater than 

20% was fairly large, which was between 0.67 and 0.98. For £ =  0.5, where the 

belief in the prior Wo(p) =  Beta( 1.56,8.44) and the class of all other priors q was 

equally split, this posterior probability was still large, which was from 0.41 to 0.99. 

They also considered the expected failure rate Ew(p\x). For e =  0.5, the bounds 

for Ew(p\x) with respect to the £—contamination class defined by (7.13) were 

0.30 and 0.80 respectively. Based on these analyses, they stated that they had 

considerable confidence in supporting a recommendation to stop the trial and not 

to accept the new treatment.

Alternatively, suppose that the 9 =  log has the normal prior distribution 

wo(9) =  N (p ,r 2) and that the e—contamination class r e defined by (7.14) is used. 

The mean and variance of the normal prior distribution are equal to log y^yyy and 

(cu6 +  1_o is )2 x 0.012 respectively, which are approximatedly equal to the mean 

and variance of the beta prior distribution Beia(1.56, 8.44), respectively, by the 

Taylor expansions. The corresponding lower and upper bounds of Pw(p >  0.2|x) = 

Pw(9 >  log 1° q 2\x ) over the class of Te in (7.14) at e =  0.2 are,

inf Pw(9 > log |a) = 0.755,

sup Pw(9 >  log |x) =  0.967;
tuGTo2 1 t).2

and at £ =  0.5 are,

inf Pw{9 > log ° '2 A x) =  0.532,^Gr0.5 1 — U.z

sup Pw(9 > log ' |a) =  0.990.
wer0 5 l ll.w

The differences of upper and lower bounds of the posterior probability at e =  

0.2 and 0.5 are 0.212 and 0.458, respectively, over the class Te in (7.14), while
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differences are 0.31 and 0.58 at e =  0.2 and 0.5, respectively, over the class in 

(7.13). The example shows that posterior inferences on 9 =  log to the normal 

prior sometimes are more robust than those of p to the beta prior for binomial 

response variables.

7.3.2 Two Samples

Consider a clinical trial comparing two treatments A and B with n patients in each 

treatment. The main outcome variable of the clinical trial is from the binomial 

distribution X a ~  B (u,pa) and X b ~  B (n ,p s ) for treatments A and B , respec­

tively. Assume that the pa and pB are independent and have beta prior distribu­

tions pa ~  Beta(v1A,v2A) and pb ~  Beta(viB,v2B). Let 8 =  ^  G 0  =  (0, oo) be 

the measure of the treatment difference. Assume that pa and ps are successful 

rates of treatments A and B , respectively, and that hi and h2 are break-even values 

of h and the interval (hi, h2)(hi < h2) is the range of equivalence. If h <  hi, then 

treatment B is better than treatment A; if h >  S2, then treatment A  is better 

than treatment B. The prior distribution of h is,

iv0(S) =  /  PBWo(5pB)wo(pB)dpi
Jo

t  - y r - ^ ------ -(5pB r iA- \ l  -  Sp b T 2* - 1Jo (3{via , v2A) 
1

' P{yXB,V2B.
Ps1B 1( 1 - P b Y 2B l dpB - (7.15)

After observing X a =  xa and X b =  x b , before making inferences or decisions, 

it is important to know the robustness of P(6 < 8\\Xa =  xa ,X b =  x b ){or 

P{8 >  82\Xa =  xa ,X b =  xb )) to the prior w0(8).

Since f ( x A\pA)f{xB\pB) =  f ( x A,x B\pA,PB) =  f (x A ,x B\8pB,PB), then the 

probability density function of (xa , xb ) is,

f ( x A,x B\8) f ( x A , x B 18pB , Pb )w 0(p b ) dpB
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-  r  (  n  )  (Sp b T H  1 -  S p B )n- XA (  n )  Pbb { 1 -  Pb T ~ XbJo \XA/ \Xb J

x 717 ■------ rPBlfl_1(l - P B Y ^ d p B .  (7.16)
p ( y i B ) ^i b )

Consider the below e-contamination class with Q =  V, defined by (7.17),

r e =  {to : w =  (1 -  e)w0 +  eq, q G V },  (7- l7)

where the prior distribution Wo is defined by (7.15). The lower and upper bounds 

of PW(S <  ii|X a =  xA-,XB =  a^B)(or Pw(6 >  S2\XA = xA,X B =  xB)) over this 

class r e can be calculated by the Huber theorem from the prior distribution Wo(6) 

in (7.15), the density function f ( x A,x B|i) in (7.16) and the e—contamination class 

r £ in (7.17). Let C =  { i ,  8 < i i }  (or { i ,  S >  2̂})- The robustness is based on 

the difference

sup PW(S e  C\XA =  xA,X B =  xB) -  inf PW(S 6 C\XA =  xA, X B =  xB).
w € T c  w £ r '

If the procedure above is not robust, it is worthwhile to study that the dA = 

log and 0B =  log have the normal prior distributions as the case of one 

sample clinical trial in Section 7.3.1. The treatment difference may be measured 

by r) =  1̂ - since log is a monotonie increasing function of p. The discussion 

on this robustness is then similar to the study of pA and pB with the beta prior 

distributions, which is to find the prior distribution w0(p) and density function 

f { x A,XB\q) first and then calculate the lower and upper bounds over the corre­

sponding class of possible prior distributions for 77.

7.4 Discussion

The robust Bayes analysis methods applied to clinical trials were illustrated. For 

the simplicity of computation, only the types I) (all probability distributions for the
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parameters of interest) and II) (all symmetric and unimodal distributions for the 

parameters of interest) of the class of contaminations Q for the e —contamination 

class defined as in (7.1) were considered.

The idea of carrying out the robust Bayes analysis in clinical trials is straight­

forward, that is, to analyse the sensitivity of posterior inferences to the specified 

prior distribution for the parameters of interest. However, to implement the ro­

bust Bayes analysis, we need to use numerical integration to get E(g(6)\x) and 

m(x\wo), and sometimes may need a numerical optimization routine to obtain 

the superma and infima. Although the Markov Chain Monte Carlo method is 

currently very popular to obtain integration, from a mathematical perspective, 

this method does not necessarily overcome the complications of computations 

involving the robust analysis.

For the analysis of sensitivity of posterior inferences to the prior in clinical 

trials, Spiegelhalter, Freedman, and Parmar(1994) have suggested considering a 

community of priors covering the perspectives of a range of individuals in clini­

cal trials. This may encompass a “reference” prior intended to add as little as 

possible to the data and a “clinical” prior expressing reasonable opinions held by 

individuals or derived from overviews(meta-analyses) of similar studies. It is also 

useful to develop “off the shelf” priors corresponding to a formal expression of 

“sceptical” and “enthusiastic” belief- these may be thought to provide reasonable 

bounds to the community of priors. However, the robust Bayes methods do not 

mean to imply that the single prior Bayes approach is necessarily bad. It usually 

works very well.

The framework of robust Bayes analysis may be used in the sequential sam­

pling, which is corresponding the sequential clinical trials. Assume that {X { ,i  = 

1 ,2 ,...} is a sequential sample from the density function f(x\9) and that the pa­

rameter of interest 9 has the prior distribution w0. Let F be the class of possible 

prior distributions of 9. A sequential robust Bayes analysis looks at the sequence
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of differences supw£r E w(g(9)\xi) — in f^ r  E w(g(9)\xi) one at a time after observing 

Xi — Xi, i =  1,2,.... If the sampling is terminated at analysis / and the sequence 

of the differences

{sup E w(yg(9^\xil -  mi E w(g(9)\xi), i =  1,2

are small, then it may be concluded that the sequential inferences for g(9) are 

not sensitive to the prior. The robust Bayes analysis in sequential clinical trials 

would give us considerable confidence in suggesting that whether the trial should 

be stopped early or not. Greenhouse and Wasserman(1995) give a sequential ro­

bust Bayes analysis of an efficacy trial. It was the Harvard ECMO clinical trial, in 

which the treatment ECMO was compared with the treatment CMT. The proba­

bilities of success on ECMO and CMT were denoted by ps and pc-, respectively. 

They plotted bounds of P(pe > Pc\%i, ■■■, %i) and E(pe — Pc\%i, ■■■■> xi) over the 

e—contamination class after each patient Xi,i =  1,2,..., 19, for some values of 

£(=0.1, 0.2, 0.3, 0.4). The plots showed that ECMO appeared consistently supe­

rior to CMT starting with the tenth patient for e =  0.1 which was a small degree 

of uncertainty in the specified prior; however the evidence did not favor ECMO 

with sufficient strength to stop the trial early for slightly large values of e.

The robust analysis has not been studied in Bayes sequential decision methods 

in clinical trials because of computational difficulty. It needs to be developed in 

the future.



Chapter 8

Discussion and Further Study

The corresponding discussions are given in chapters. The following are several 

common issues.

8.1 Prior Information

In the previous study, we have assumed that the prior distribution for parameters 

of interest could be obtained. Freedman and Spiegelhalter(1983) and Kadane(1986) 

discuss their experience of translating doctors opinions into subjective probability 

distributions. Chaloner et. a/.(1993) describe a graphical elicitation of a prior 

distribution for a clinical trial. In clinical trials comparing two treatments, the 

normal likelihood with its mean being the parameter of interest covers many sit­

uations. The mean is often assumed to have a normal prior distribution. This is 

not only mathematically convenient, but also reasonably realistic. Spiegelhalter, 

Freedman and Parmar(1994) have listed sources of evidence for clinical priors, 

which are,

1) Evidence from other randomised trials.

For example, in the design of the f3—Blocker heart attack trial(BHAT 1982), 

it was assumed that the drug propranalol would reduce mortality by 28% which

185
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was based on the results of five European trials of different ¡3—Blocker drugs. 

In their paper, they suggest that results from previous randomised trials should 

generally form the basis for a prior distribution but should not specify the dis­

tribution completely and that random effects models in meta-analysis might be 

an appropriate tool, in which case the prior distribution would correspond to the 

predictive distribution for the effect in a new trial(for example, see Carlin, 1992).

2) Evidence from non-randomised studies

It is often the situation that results of relevant randomised trial are not avail­

able, but non-randomised studies may have been conducted. For instance, Byar 

et al.( 1976) have given some examples.

3) Subjective clinical opinion

This is emphasized in their paper even when evidence in the form of ran­

domised studies is available. They have suggested that one approach to eliciting 

opinion is to conduct individual interviews with clinicians who would participate 

in the trial( for examples, Spiegelhalter, Freedman and Parmar, 1994, Chaloner 

et ai, 1993, MRC Urological Working Party 1985, Spiegelhalter and Freedman 

1988, and Freedman and Spiegelhalter 1983, etc.). Genest and Zidek(1986) have 

proposed many methods to combine these individual distributions to arrive at a 

prior distribution for the group.

The subject of prior distributions is extensively studied by theoretical statis- 

tician(for example, see Bernardo and Smith, 1994). However, the issue of how 

we can collect proper prior information and to formulate a prior distribution for 

parameters of interest in clinical trials needs to be further studied in practice.

8.2 Decision Theory

Decision theory provides the framework for combining subjective distributions 

with action. The barriers to the use of Bayesian decision theory in clinical trials
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include the choice and formulation of loss and cost functions, and the lack of 

statistical packages. There is a discussion on whether decision theory should be 

used in sequential clinical trials. Spiegelhalter, Freedman and Parmar(1994) have 

said that “when the decision is whether or not to discontinue the trial coupled 

with whether or not to recommend one treatment in preference to the other, the 

consequences of any particular course of action are so uncertain that they make 

the meaningful specification of utilities rather speculative.” . However, in contrast, 

Berry(1994) has said that speculation and assessing uncertainty are the stuff of the 

Bayesian approach and that deciding whether to stop a trial requires considering 

why we are running it in the first place, and this means assessing utilities. He has 

also pointed out that the value of e in Bayes sequential methods in clinical trials 

as described in Chapter 2 should be obtained by decision theory. Berry, Wolff, 

and Sack(1992, 1994) have given an example in which the various uncertainties 

are explicitly considered.

Lindley(1994) has said that “it must be recognized that clinical trials are not 

there for inference but to reach a decision, and the omission of their raison d'etre 

is serious. In the long term, expected utility is realistic and , indeed, necessary.” .

We are interested in applying decision theory in clinical trials as in Chapter 4, 

Chapter 5, and Chapter 6. There are problems in the formulation of proper loss 

and cost functions for clinical trials and in the computational difficulties.

Whitehead(1992) has said that, “There is a more fundamental concern about 

their use: is a Phase III clinical trial really a decision procedure? Who is making 

the decision? In reality, a clinical trial provides data for a whole series of decision 

makers. The investigators must decide whether to recommend an experimental 

drug, regulatory bodies must decide whether to licence it, and individual clinicians 

must decide whether to use it. In addition, future investigators will use the trial 

results to help in the design of their own studies. Each decision maker will have 

different prior opinions, different assessments of loss and different supplementary
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sets of data available.” There is a need to develop decision theory for multiple 

decision makers.

Thall and Simon(1994), and Thall, Simon, and Estey(1995) use frequentist 

criteria to avoid the specification of costs and a loss function intentionally although 

a loss function certainly is defined implicitly in their formulation. It is interesting 

to combine Bayesian methods with frequentist methods.

8.3 Computation

Bayesian approaches have not been widely used in clinical trials as frequentist 

methods due to the computational difficulties and the lack of statistical pack­

ages. In Chapter 6, we developed some approximate methods to be able to use 

the decision theory in clinical trials with survival time data. Recently Markov 

Chain Monte Carlo has become popular in using Bayesian approaches. Tanner 

and Wong(1987), and Tierney(1991) have used the way of Markov Chain Monte 

Carlo to find posterior distributions. Clydo, Muller and Parmigian(1996) explore 

expected utility surface by Markov Chain Monte Carlo. The computational meth­

ods concerning Bayesian inference need to be further explored. The corresponding 

statistical packages need to be developed.
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