
Ferraz, Carlos Andre Guimaraes (1995) The annotation of continuous media.
 Doctor of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94344/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination.

It was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94344/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

THE ANNOTATION OF CONTINUOUS MEDIA

A THESIS SUBMITTED TO

T h e U n iv e r s it y o f K e n t a t C a n t e r b u r y

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY.

By

Carlos André Guimaräes Ferraz

September 1995

D K M C ' Z i - 5 g

To Ana Maria, my wife,

and André, my son.

Abstract

In principle, the presentation of continuous media is time-dependent. Examples of con­
tinuous media are audio, video and graphics animation. This work is on the support for
the annotation of continuous media, or the integration of voice comments with continuous-
media documents like music and video clips. This application has strict synchronisation
requirements, both with respect to the media involved and to user interaction. The applica­
tion involves functions such as storage, management, control of GUIs, and of continuous-
medium devices. These are realised by components which can be distributed across a
network.

New models and architectures have been defined to enable open distributed processing of
applications, that is, distributed processing independent of operating systems. Abstractions
are provided, which facilitate the development of applications, and these execute supported
by platforms that implement such open architectures. These architectures have been based
on an object-based client/server model. Our work aims at exploring object-orientation,
open distributed processing and some characteristics of continuous media, through the
development and use of the proposed application.

The application is designed as a set of objects with well-defined functions and which interact
between themselves. A distinguishing feature of the application is that it involves reusable
components and mechanisms. For example, a mechanism, which enables components to
control logical clocks and synchronise them, is incorporated in the application in response to
its synchronisation requirements. The implementation is based on ANSAware, a platform
that supports open distributed processing and allows distributed objects to bind to each
other, to interact with one another, and to exhibit concurrent activities. The performance of
the implementation is examined with respect to the application’s response to user requests.
Response times of operations such as play, pause, etc., are measured, and the final results
are better than a defined maximum tolerance.

An analysis of the development approach is made with respect to support for real-time
activities in the application, and to software reuse in the model proposed. This thesis
concludes by reviewing the suitability of the object-oriented approach for the development
of distributed continuous media applications.

iii

Acknowledgements

I am very grateful to my supervisor, Professor Peter Linington, for his constructive criticism,

guidance, understanding and attention during the whole period of this work. His experience

was fundamental to improve style and correctness in the thesis.

Others helped to make my work easier. In particular, I would like to thank David Barnes

and Li Ning, with respect to the audio sub-system, and Chris Scott, Mike Rizzo and Ian

Buckner, in relation to ANSAware.

I specially thank my parents, José Martiniano and Maria do Céu. They gave me love,

education, and moral support throughout my life. Their support has been fundamental to

what I have achieved.

My family and I would like to thank my grandmother, and my parents-in-law, for their

kindness and encouragement throughout this period. Here, our life was made easier thanks

to many people, and I would like to mention George Justo, Eduardo Albuquerque, Judith

Kelner and Sue Davies.

The unforgettable experience we had here was made possible by many friends and col­

leagues. Special thanks go to Paulo Cunha, Silvio Meira, Richard Shaw, Eduardo Vegas,

Helena Rodrigues and Geraldina Fernandes.

I acknowledge the financial support of Fundaçâo CAPES, Brazil.

IV

Contents

Acknowledgements iv

1 Introduction 1

1.1 M otivation .. 1

1.2 Multimedia Applications... 3

1.2.1 Types of M e d i a .. 4

1.2.2 Constraints... 5

1.2.3 Distributed R equ irem en ts.. 6

1.2.4 Annotation and Related W o rk ... 7

1.3 Distributed S y s te m s ... 10

1.3.1 The Client/Server Model .. 12

1.3.2 Development of Distributed A pplications... 15

1.4 O b jec tiv es .. 17

1.5 Thesis O u tlin e ... 18

2 Background 21

2.1 In tro d u c tio n ... 21

2.2 Object-Orientation... 22

v

2.2.1 C oncepts.. 24

2.2.2 Object-based vs. O b ject-o rien ted .. 27

2.2.3 B e n e f i ts .. 28

2.3 Developing and Processing Object-Based Distributed Applications 28

2.3.1 Emerging Standards for Open Distributed P rocessing 32

2.4 ANSAware.. 34

2.5 C onclusion.. 40

3 The Design of a Distributed Application 43

3.1 In tro d u c tio n ... 43

3.2 Description of the A pplication.. 45

3.2.1 Two S u b -sy s te m s ... 46

3.2.2 S u p p o r t .. 47

3.2.3 Overall Structure .. 50

3.3 Requirements ... 52

3.3.1 B andw idth .. 52

3.3.2 Synchronisation.. 53

3.3.3 Real-time response .. 55

3.4 Development Environment... 55

3.4.1 Distribution platform .. 56

3.4.2 N e tw o rk .. 58

3.4.3 Limitations ... 58

3.5 C o n c lu sio n s .. 59

vi

»

4 Implementation 61

4.1 In tro d u c tio n .. 61

4.2 A n n o ta tio n s .. 63

4.2.1 Relationships between Annotations and Presentation 63

4.3 Component Integration... 66

4.3.1 R eq u irem en ts ... 66

4.3.2 C o n figu ra tion .. 69

4.4 Communication In terfaces.. 70

4.4.1 Rate C o n tro l... 71

4.4.2 Music P layer... 72

4.4.3 A n n o ta to r .. 73

4.4.4 Annotations Server .. 73

4.4.5 Audio Server ... 74

4.4.6 Rope S e r v e r .. 76

4.4.7 Audio Storage S e r v e r .. 77

4.5 In te rac tio n ... 78

4.5.1 The MusicPlayer User In te rface .. 78

4.5.2 The Annotator User In te r fa c e .. 80

4.5.3 Common Interaction... 85

4.6 Implementation of O p era tions.. 91

4.7 C o n c lu sio n s .. 92

5 Performance of the Implementation 94

5.1 In tro d u c tio n .. 94

vii

k

5.2 Observable E v e n ts ... 97

5.3 Measurement M odules.. 98

5.3.1 Run-time M o d u le ... 99

5.3.2 Auxiliary M easurem ents... 102

5.4 Test E n v iro n m e n t... 106

5.5 Development S ta g e s ... 106

5.5.1 Points of A ttention.. 106

5.5.2 S ta g e s .. 109

5.5.3 R esults.. 112

5.6 C o n c lu sio n s ... 118

6 Analysis of the Approach 120

6.1 In tro d u c tio n ... 120

6.1.1 Emphasis on Abstraction .. 122

6.1.2 Separation between Rate Control and Continuous Media Transmission 123

6.2 Real-time S u p p o r t ... 124

6.2.1 Synchronisation... 125

6.2.2 Stream H andling... 126

6.2.3 Summary of the Support.. 129

6.3 Software Reuse .. 130

6.3.1 Reuse of Interface S p ec ifica tio n s ... 131

6.3.2 Code R e u s e .. 132

6.3.3 Reuse of C om ponents... 133

6.3.4 Reuse in the Model .. 134

viii

6.4 Main Ingredients of the Approach 135

6.4.1 Comparing with a Different A pproach... 138

6.4.2 Building Larger System s... 139

6.5 C onclusions.. 140

7 Conclusions 142

7.1 Summary of the Thesis... 142

7.2 Future W o rk .. 145

7.2.1 Additional F e a tu re s .. 145

7.2.2 Synchronous Collaborative W o r k ... 150

7.2.3 Porting the Application to Other P la tfo rm ... 151

7.2.4 Handling digital video and high-quality a u d io 152

7.3 Final R em ark s ... 152

A Interfaces Specification 155

A.l Audio In p u t/O u tp u t.. 155

A.1.1 The a u d io interface .. 155

A.2 Storage and Database M an ag em en t... 156

A.2.1 The a d s in te rface .. 156

A.2.2 The v r s in te rface ... 157

A.2.3 The a s s in te rface .. 162

A.3 Rate C o n tro l.. 165

A.3.1 The r a t e in te rfa c e .. 165

A.4 Sub-systems’ Interaction... 168

A.4.1 The d o c P la y e r in te r fa c e ... 168

IX

A.4.2 The p P a r t n e r in te rfa c e ... J6g

Bibliography j 7 0

x

List of Tables

1 Time dependencies of data... 5

2 Synchronisation events... 54

3 Examples of presentation during annotation... 65

4 Quality of Service for continuous media synchronisation............................... 96

5 Times for a file opening by machine type.. 104

6 Block-reading times by machine type.. 105

7 Latency times by machine type... 105

8 Main model ingredients to be included in distributed continuous media

applications.. 137

xi

List of Figures

1 Hypertext model for the annotation of documents... 8

2 Client-server communication.. 13

3 Object model.. 29

4 Traded and non-traded services... 39

5 RPC transparency.. 40

6 Example of an annotation... 45

7 The two sub-systems of the application... 47

8 Annotator decomposition... 48

9 Presenter decomposition.. 49

10 Application model... 51

11 Example of synchronisation in the application... 55

12 Timeline representation of an annotated-document... 63

13 Presentation transformations determined by annotations................................ 65

14 Configuration of the application.. 70

15 The MusicPlayer GUI... 80

16 MusicPlayer states machine... 81

17 The Annotator GUI... 82

xii

18 Annotator states machine... 84

19 An example of how rate might be manipulated during annotation if doing

so was allowed... 87

20 Examples of conflicting and non-conflicting annotations................................ 88

21 Response time in the application... 95

22 Achievement of the request to skip.. 98

23 Accuracy of audio callbacks.. 101

24 Test network... 106

25 Behaviour in stage 1.. 110

26 Behaviour in stage 2.. I l l

27 Behaviour in stage 3.. 112

28 Performance in stage 1.. 113

29 Performance in stage 2... 113

30 Performance in stage 3.. 114

31 Evolution of performance in the different stages... 115

32 Example of response time for p l a y in stage 3... 116

33 Example of response time for s k i p in stage 3... 116

34 Example of response time for p a u s e in stage 3.. 117

35 Example of response time for c o n t i n u e in stage 3...................................... 117

36 Structuring continuous media applications in terms of support for synchro­

nisation and streams.. 121

37 Rate communities in an application.. 127

38 Buffering in the audio server.. 128

39 Annotation of clocked sequences of images showing highlights................... 149

xiii

40 Synchronisation in a multiuser environment, 151

xiv

Chapter 1

Introduction

This chapter starts by showing the motivation to annotate continuous media.

The annotation o f continuous media is an application that involves media such

as voice, audio or video, and presents strict synchronisation requirements.

Multimedia applications generally require distribution support to run more

efficiently. The main approach used for structuring distributed systems has been

the client/server model, and object-oriented operating systems or intermediate

platforms based on this model enable the development and use o f distributed

applications. In this sense, this introductory chapter discusses multimedia

applications - in particular, those involving time-dependent media - distributed

systems, and describes the objectives o f this work.

1.1 Motivation

This work is about continuous media; Ferrari et al [Ferrari 92] define continuous media as

1

CHAPTER 1. INTRODUCTION 2

"... to mean digital data that is generated/consumed isochronously at some

granularity (e.g., motion video displayed at 30 frames per second).”

The term ‘continuous media’ is particularly associated with video and audio.

The power of audio and video in areas that provide information and entertainment has

been demonstrated by, for example, radio and television. The existence of hardware and

software components capable of handling digital audio and video makes computers, with

their ability to provide interaction facilities, more and more useful in education, training,

advertisement and many other areas. Further developments will allow a widespread use of

continuous-media documents (i.e. documents in the form of audio and/or video) within and

between organisations, improving and making more efficient methods of working based on,

for example, teleconference and computer-supported cooperative work (CSCW).

The advantages of annotation of text documents, and more generally, static-media docu­

ments (e.g. images and graphics) are well established [Terry 88, Fish 88, Tilley 91, Trigg 88,

Dewan 93], It is also desirable to be able to annotate continuous media documents to help

activities like analysis, revision, authoring and criticism - of music, natural sounds, speech,

video, etc. Studies presented in [Chalfonte 91, Kraut 92] show that spoken annotations are

more likely to be used to comment on higher-level issues in a document, adding features

like explanation that make the comments more expressive. Van Ness [van Nes 92] de­

scribes human-factors research on annotation of (static) documents indicating a preference

for voice annotations as being more efficient than text annotations. Similarly, annotation

of continuous documents can be more efficient and more expressive using voice.

A distributed approach to building continuous-media applications is important to deal

with aspects such as

CHAPTER 1. INTRODUCTION 3

• storage of information: the large quantities of data involved in audio or video appli­

cations demand efficient use of storage resources, often distributed across networks.

Thus, applications need to be capable of using data which are physically distributed;

• performance: the complex and possibly concurrent activities existing in the applica­

tions require a great deal of processing power which can be more efficiently achieved

through distributed processing, using multiple processors distributed over networks;

• multiple use: different users may share applications, possibly working collabora-

tively, and applications may share services. Thus, applications should be structured

to use modules designed for general purposes or multiple use.

Concurrent activities sometimes need to synchronise, as for example in the presentation

of annotations and continuous documents. Synchronisation of continuous media (e.g. voice

and video) is not an easy task, especially when user manipulation of the presentation is

allowed. The design of continuous media applications has to take into account the particular

characteristics of the media involved, quality of service requirements and interaction forms.

Support for application distribution has been developed, particularly in the form of

software platforms sitting in between operating systems and the application level. Moreover,

developments in operating systems and hardware to support distribution and continuous

media encourage the development of distributed continuous-media applications.

1.2 Multimedia Applications

Multimedia applications deal with various types of data such as text, video and audio, that are

usually captured or presented simultaneously. In this sense, the annotation of continuous

CHAPTER 1. INTRODUCTION 4

media can be characterised as a multimedia application. The advent of multiple media

has increased the expressiveness of applications, since information can be represented by

appropriate types of media. Ghandeharizadeh and Ramos (in [Ghandeharizadeh 93]) say

“Multimedia Information Systems have emerged as an essential component of

many application domains... because these systems utilise a variety of human

senses to provide an effective means of communicating information.”

This shows that the meaning of things is captured rapidly, without much effort, because they

are appropriately represented. For example, electronic messages can use voice, simulation

of chemical experiments can use graphics, and so on. And these can be composed in

multimedia applications enabling, for example, the simulations of chemical experiments

to be accompanied by comments, either in the form of text or voice. These features and

the possibility of providing user interaction make computer-supported multimedia systems

widely applicable.

1.2.1 Types of Media

The term ‘multimedia’ concerns the integration of data representing distinct forms of

information such as text, graphics, images, video, sound and voice. These are distinguished

by their internal and external characteristics. One important aspect of multimedia systems

is the representation of time dependencies of the data involved.

Time dependencies

In multimedia applications there can be composition of data presenting distinct time depen­

dencies, as described in table 1 adapted from [Little 94], An example is voice annotations

CHAPTER 1. INTRODUCTION 5

(i.e. continuous data) of static images. In addition to being continuous, the voice anno­

tations can be live or stored, i.e. the same type of data may present more than one time

dependency.

Type Definition
Static no time dependency
Discrete single element
Transient short-lived
Natural or implied real-world time dependencies
Synthetic artificially created time dependencies
Continuous playout contiguous in time
Persistent maintained in a database
Live originated in real time
Stored originated from prerecorded storage

Table 1 : Time dependencies of data.

1.2.2 Constraints

Multimedia applications require handling of timing constraints [Stefani 92], which may be

caused by

• the different types of representation media, i.e. types of data exchanged between

application components at some presentation interfaces,

• synchronisation of media presentation, or

• interactivity.

The different media are presented or captured by devices which provide interfaces

classified according to their behaviour as follows.

CHAPTER 1. INTRODUCTION 6

Discrete vs. continuous interfaces

Devices’ discrete interfaces cause no timing constraints on the presentation of media data

(presentation constraints are only defined by the application), whereas the behaviour of

continuous interfaces imposes timing constraints (rate of presentation, in particular) on the

capture or presentation of continuous media.

1.2.3 Distributed Requirements

According to Steinmetz in [Steinmetz 96],

“a multimedia system is characterised by the integrated computer-controlled

generation, manipulation, presentation, storage, and communication of inde­

pendent discrete and continuous media.”

Functional components, some in charge of specific media (e.g. an audio store), must interact

to achieve the intentions of a multimedia application. The nature of this kind of application

implies that several data streams have to be handled in parallel [Shepherd 90], Appropriate

distribution support allows application components to be designed for distribution across a

network (see section 1.3.2).

The International Standards Organization (ISO) has been working on ways to allow

multimedia presentations to be portable, distributed for example in CD-ROMs or over

networks. The subcommittee ISO/IEC JTC1/SC29 (Coding of Audio, Picture, Multimedia,

and Hypermedia Information) has three working groups:

• Joint Photographic Experts Group (JPEG), which defines the compression encoding

of still images [ISO 92b],

CHAPTER 1. INTRODUCTION 7

• Moving Pictures Experts Group (MPEG), which defines a compression and inter­

change format for video, including audio [ISO 92a], and

• Multimedia and Hypermedia Information Coding Experts Group (MHEG) defines a

model, which is expected to allow the description of the interrelationship between

the different components of a multimedia presentation [Meyer-Boudnik 95].

Our work would benefit from the above for information distribution, but it is initially

interested in the distributed processing of multimedia applications, specifically continuous-

media ones.

1.2.4 Annotation and Related Work

An annotation is a note which is associated with a certain portion of a document for purposes

like commenting, augmenting information or reminding the reader of something. Three

basic elements are involved:

(a) the main document that is being followed by the reader;

(b) the annotation, itself a document that contains information referring to a certain

portion of the main or underlying document; and

(c) the association between the two types of document.

These can be modelled by the hypertext1 concepts of

• node: an information container (i.e. a document), and

'Hypertext is a model for establishing relationships between documents without a fixed sequential struc­
ture. See [Conklin 87] for a good introduction.

CHAPTER 1. INTRODUCTION 8

• link: a logical connection between nodes.

Another concept, anchor, an icon or other indicator that highlights the portion of a node

that is linked to another node, can be very useful in applications involving annotations. A

hypertext model for the annotation of documents is seen in figure 1. In fact, the suitability

node

Figure 1 : Hypertext model for the annotation of documents.

of this model for the annotation of documents is proposed, for example, in [Conklin 87].

The reason is that hypertext makes the creation of new references easy, which enables users

to annotate documents (without changing them).

Hypertext can be extended to the more general concept of hypermedia, in which in­

tegrating elements can be text, graphics, sound, images, and video. The integration of

information represented by multiple media basically follows the same model. This basic

model can also be used when both information and management are distributed [Noll 91].

Audio, video and animation, that is continuous media, present new challenges for docu­

ments because they involve time. Given this, synchronisation becomes an important issue:

multimedia events should happen in specific relationships with one another [Zellweger 92],

CHAPTER 1. INTRODUCTION 9

In the annotation of a video clip, for example, a comment about the jump of a horse that is

jumping a fence should happen when the jump over the fence actually appears in scene.

Much work has been done on annotations [Thomas 85, Terry 88, Hsiao 89, Mackay 89,

Dewan 93, Gintell 94], These are divided into two classes:

(a) annotation of static media, and

(b) annotation of continuous media,

with annotations usually made of either text or voice.

The Etherphone system [Terry 88, Vin 91] allows embedding of speech in documents

such as annotated manuscript or program documentation. It introduced voice annotations,

which lead to a number of other pieces of work, like [Hsiao 89], that allowed voice

annotation of still images. In an initial stage of our work, a voice annotator of clocked

sequences of images was developed. Our work uses a distributed audio system [Li 94] that

adopts the concept of voice rope introduced in [Terry 88],

Annotations are particularly useful in cooperative work. For example, Quilt [Fish 88]

is a tool for collaborative document production using hypermedia links that allow people

to attach text and voice annotations to the document. Also, Scrutiny2 [Gintell 94] is a

system for performing software inspection and review. In it, inspectors examine items to

find defects and are allowed to enter textual comments and questions (annotations). Each

annotation refers to a specific portion of an item and may be referenced via a hyperlink.

They may be private or shared, and annotations may reference existing ones.

EVA, an experimental video annotator [Mackay 89], is a study on the annotation of

video using symbols (or single-word annotations) to help video analysis. The annotations

2Scrutiny is a trademark of Bull HN Information Systems Inc.

CHAPTER l. INTRODUCTION 10

are tags that help users search for segments (in a video) which are associated to specific

tags representing their interests.

If both the base document and the annotation are continuous, there is a much more

strict demand for synchronisation. Voice and the annotated media (audio or video) can

occur simultaneously, and tolerance for time discrepancies between an annotation and

the document portion to which it refers is a quality o f service parameter - maximum

jitter, i.e. the maximum acceptable time-difference between corresponding segments of

synchronous streams. Stream synchronisation has been studied in detail, as in [Little 90],

which considers intermedia timing in multimedia composition, and [Steinmetz 90], which

addresses synchronisation mechanisms’ characteristics. Careful management and control

of time are necessary, as in the case of separate streams that require a buffering scheme to

maintain the synchronisation of each individual stream over short periods of time and that

the application ensures that they remain synchronised with respect to each other over longer

periods of time [Nicolau 90], In the Amsterdam Hypermedia Model [Hardman 94], time

and the concept of context are added to the Dexter hypertext model [Halasz 94], allowing

concurrent presentation of linked nodes.

1.3 Distributed Systems

People work exchanging information between each other, so that it is natural to think

about the need to make the computers they use exchange information too [Khoshafian 92].

In [Schroeder 93] the author defines the ideal distributed system as a combination of the

advantages of centralised systems (stand-alone personal computers or mainframes) with

the advantages of networked systems (a collection of workstations/personal computers and

CHAPTER 1. INTRODUCTION 11

servers connected by a communication network), plus real security and high availability.

Real security is not offered by centralised systems, which have a single security domain,

because a fault can be exploited to break the security of the entire system. On the other hand,

networked systems do not offer real security for having multiple security domains, which

makes security control extremely difficult. Both types of systems have their advantages.

Equally in relation to high availability, there are pros and cons from both sides (see details

in [Schroeder 93, pp. 3-4]).

The advantages of centralised systems are given as

• accessibility: all information and resources are equally accessible;

• coherence: functions work the same way and objects have the same name everywhere

in a centralised system; and

• manageability: a centralised system is easier to manage.

The advantages of networked systems are

• sharing of information and resources spread geographically,

• use of small, cost-effective computers,

• incremental growth, i.e. computing power can be added in small increments, and

• autonomy.

Nevertheless, in order to construct a distributed system, it is necessary to define the

interconnection of the system’s components and how it should be structured. It is also

desirable to have means for the development of distributed applications.

CHAPTER 1. INTRODUCTION 12

Recognising the need for communication between different computers, ISO has pro­

posed a collection of protocols in a reference model called Open Systems Interconnection,

or OSI [ISO 81, ISO 84]. This reference model, where lower layers provide service to

higher ones, has been used as an architectural model for many purposes (e.g. applications

design). Not all the layers have to be used in the interconnection of systems. Most LAN3-

based distributed systems use only a subset of the protocol stack for efficiency-related

reasons, since a significant overhead is imposed by the addition of headers in all layers

when a message is sent and removal of the headers when it is received.

The OSI Reference Model is limited to peer-to-peer communication. It is defined

relative to the physical points of interconnection, abstracting communication from the

internal structure and behaviour of the systems involved [Herbert 89]. The model was

not intended to provide standards for distributed computing [Mullender 89]. Additionally,

the OSI standards do not define facilities, such as synchronisation, required by distributed

multimedia applications [Shepherd 90].

1.3.1 The Client/Server Model

The client/server model is used as an approach for the structuring of distributed systems. It

says a distributed system should be organised as a group of cooperating processes, called

servers, that offer services to other processes, called clients [Tanenbaum 92], Clients and

servers usually share responsibilities - for example, a client focuses on the presentation of

data to the user, while a server concentrates on the storage and retrieval of the data. In the

example of figure 2, a client and a server communicate through the use of request and reply

3LAN = Local Area Network.

CHAPTER 1. INTRODUCTION 13

messages. Basically, five steps occur:

1. the client makes a service request,

2. the server receives the request,

3. it is processed,

4. the processed results are returned, and

5. the client receives the reply.

The client/server approach is used both as a model for structuring distributed computer

systems and as a model for distributed computing.

time

processing

Client Network Server

Figure 2: Client-server communication.

The client/server model is the most used model for distributed computing. The major

technologies capable of creating client/server applications, and which provide tools and

middleware for so doing, are SQL4 databases, TP5 monitors, groupware and distributed

objects [Orfali 95b].

4SQL = Structured Query Language.
5TP = Transaction Processing

CHAPTER l. INTRODUCTION 14

SQL manages data and the functions that manipulate them, via stored procedures

which are composed of SQL statements and procedural logic, and are stored in a server

database. It is said to be easy to create client/server applications in single-vendor/single-

server environments, given the availability of tools.

TP monitors manage processes and orchestrate programs by breaking complex appli­

cations into pieces of code called transactions, which bind clients and servers. By putting

themselves between clients and servers, TP monitors can manage transactions, route them

across systems, load-balance their execution, and restart them after failures.

Groupware is a model of computing which helps users collect unstructured data and

organise them as a collection of documents, via technologies such as multimedia document

management, work flow, eletronic mail, conferencing, and work scheduling. It enables

users to view documents, and to store, replicate and route them over a network. Groupware

manages document databases in a client/server fashion.

Distributed objects encapsulate data and logic, and can be placed anywhere on networks,

run on different platforms, and manage themselves and the resources they control. This

technology is discussed further in Chapter 2.

Examples of network servers

The approach used in many network systems is based on the client/server model. Some

examples are print services, database servers and file systems. They all have the objective

of providing services to multiple users. Print services give users access to printers, allowing

those to send files to be printed, to cancel printing, etc. Database servers are responsible for

maintaining information bases. They provide concurrent access to the bases, and maintain

the consistency and validity of the data.

CHAPTER 1. INTRODUCTION 15

File systems are particularly important applications of the client/server model and

are discussed in more detail. The most popular distributed file system is the Network

File System (NFS) of Sun Microsystems, which allows a client workstation to perform

transparent file access over the network. It was designed to be machine-, operating system-,

network-, and transport protocol-independent. Client file access calls are converted to NFS

protocol requests. The server receives the request, performs the actual file system operation,

and sends a response back to the client, as in figure 2. NFS uses remote procedure calls

(RPC) for the exchange of commands and data with a remote server. RPC is an abstraction

that makes a server appear to be one function call away; its primitives are built on top

of the external data representation (XDR), which provides a machine-independent method

of representing data. Tanenbaum [Tanenbaum 92, Chapter 13] distinguishes between file

service and file server saying that in effect, the file service specifies the file system’s

interface to the clients, whereas a file server is a process that runs on some machine and

helps implement the file service. A system may have one file server or several, and in a

distributed system, the clients should not need to know the number of file servers and the

location or function of each one of them. He gives as an example of a well-structured

distributed file system, the Andrew File System (AFS) of the Carnegie-Mellon University,

which works by caching whole files on client disks, uploading them when they are closed.

1.3.2 Development of Distributed Applications

System models and programming support are necessary for the development of distributed

applications. Facilities have been developed to allow the construction of such applica­

tions, i.e. technologies including tools and software platforms (middleware) to support

client/server applications. System-dependent applications are restricted by the number of

CHAPTER 1. INTRODUCTION 16

platforms on which they can run or with which they can exchange information. A solution

to this is seen in open platforms for the programming of applications. Open platforms hide

the differences between underlying systems and make application development easier. The

applications no longer need to call device- or system-dependent services.

The basic needs for distributed applications are support for communication, concurrency

and synchronisation. Applications can be built on top of distribution platforms, which

provide facilities - such as RPC for interprocess communication, threads for concurrency,

and event counters and sequencers for synchronisation (see section 2.4) - capable of

decoupling application developers from operating system and network primitives. If some

facilities, such as thread support, are provided by the operating system, the platform makes

use of them; if not, they are built within the platform implementation. In either case, the

platform hides the detailed mechanisms from the applications [Mullender 93b],

Other important issues in the development of distributed applications are how the

components of an application know about each other’s existence and the specification of

components’ binding. Elements like the OMG/ORB (Object Request Broker) insulate

clients from the mechanisms used to communicate with, activate, or store server objects

[Orfali 95a], Applications can be built as a collection of server objects that specify interfaces

for communication and offer them to a broker or trader, and client objects that search in the

broker for interfaces (by type) that are said to provide the services they want to use. These

technologies are the basis of our work, and as such, are further discussed in the following

chapter.

CHAPTER 1. INTRODUCTION 17

1.4 Objectives

Ordinary users do not run operating systems, but applications. An operating system is

an intermediate software layer that hides hardware details and manages system resources

[Johansen 94], In networked systems, there is distribution of both hardware and software

components, and distributed systems can differ from networked systems through the prop­

erty of transparency, which makes them look, to users, as though they were centralised.

With the advent of distributed operating systems, such as Amoeba [Tanenbaum 90], Chorus

[Rozier 88] and Mach [Accetta 86], and open distribution platforms like ANSA [APM 93a],

CORBA [Orfali 95a], and DCE [Johnson 94], which are capable of providing independence

from underlying systems, distributed applications can become reality. Applications already

run on centralised systems and on networked ones, but their migration to the kind of platform

provided by distributed systems is a matter for further experiment [Johansen 94].

The primary objective of this work is the development of a distributed continuous-

media application, considering the use of digital continuous-media documents in networked

environments and the challenges imposed by continuous media, in particular, requirements

for data transmission and synchronisation. For the development of the application, an

object-oriented method, based on the client/server model, will be used, and the application

is built on top of a distribution platform. Support is needed for aspects such as

• construction of the application, concentrating on programming and integration sup­

port, including the use of existing services and creation of new ones;

• continuous media, that is, types support and data transfer;

CHAPTER 1. INTRODUCTION 18

• concurrency, i.e. processing support for execution threads within processes - schedul­

ing;

• synchronisation, in terms of supporting mechanisms;

• reusability of code, components and mechanisms.

Where direct support is not provided by the distribution platform, we will use the support

available to develop the required mechanisms.

The resulting Annotator should be a component that can be integrated in different appli­

cations to provide the facility of document annotation. However, the principal contribution

of this work is concerned with the development of distributed applications in general. Fo­

cusing on the most strict requirements put on support platforms, such as those imposed

by multimedia applications involving continuous media, this work is to explore as many

features of the platforms as possible. The results include the description of the development

experience and the indication of points that may need some improvement.

1.5 Thesis Outline

The thesis describes the approach used to design, implement and measure the performance

of the distributed application involving continuous media. This chapter was concerned

with providing the motivation to annotate continuous media, related work and general

discussions about multimedia applications and distributed systems. The following chapters

build on this introduction.

Chapter 2 is concerned with support for distributed applications. Development and use

of distributed applications have been based on the object-oriented approach. Object

CHAPTER 1. INTRODUCTION 19

orientation is introduced, with some concepts and benefits being highlighted. The

approach has been particularly used in the distributed systems domain, involving

operating systems, intermediate platforms, applications and environments. A discus­

sion on the emerging standards for open distributed processing is included, and the

ANSAware platform is introduced. ANSAware’s support to distributed applications

is presented and discussed.

Chapter 3 presents the design of the application regarding the annotation of continuous

media. The application is described as consisting of an annotator and a continuous-

document presenter, such as a music player, a video player, etc. The required support,

in terms of storage, database management and continuous-media devices control,

is discussed and the modules of the application are presented. The application

has to perform according to some requirements such as bandwidth, synchronisation

and response time. These are discussed considering that the application involves

continuous media and user interaction. And finally, the environment in which the

application is developed and used is discussed together with its limitations.

Chapter 4 discusses the implementation of the application. A music player is considered

as the annotator’s partner, and so the implementation of the annotation of music is

presented. Initially, the possible types of annotation and the relationships between

annotations and the presentation of the base document are defined. The discussion

involves user interaction, including manipulation of presentation rates and its syn­

chronisation effects, considering the GUIs for the annotator and the music player.

Then, the integration of the application components, including the definition of their

interfaces, is presented.

CHAPTER 1. INTRODUCTION 20

Chapter 5 is concerned with the performance of the implementation. Response times for

user requests made via the GUIs are measured, allowing the synchronisation between

the application components involved in the actions to be examined. Satisfactory

results are achieved after three stages of modifications. The method of making the

measurements, the factors that affect the application’s performance and the results of

the modifications made are discussed in this chapter.

Chapter 6 analyses the approach used to model distributed continuous media applications

in terms of an object-based description of support for continuous media and of

software reuse. Support for continuous media is discussed in terms of rate control

and stream handling, and it is compared with a different approach. The discussion

about reuse involves the reuse of interface specifications, code reuse, and the reuse

of the component objects presented in the model.

Chapter 7 concludes this thesis by presenting a summary of it, considering plans for

future work, which include enhancements in the application and porting it to another

platform with a similar object model, and drawing final remarks.

Chapter 2

Background

Here the background for the definition of distributed applications is given.

Object-orientation is discussed and some o f its concepts are introduced. Then,

it is related to distributed systems, and work on the definition o f architectures

that aim at supporting the development and use of object-based distributed ap­

plications in open environments is highlighted. Finally, a distribution platform,

called ANSAware, is presented.

2.1 Introduction

The purpose of this chapter is to present the basic technologies that support our work. The

development of distributed applications needs support in terms of modelling techniques and

architectures that describe means for distribution and interaction of application components.

One of the most powerful models for systems development is based on entities called objects,

which resemble real-world objects, as they can be active or passive, and have interfaces to

interact with the environment.

21

CHAPTER 2. BACKGROUND 22

The object-oriented approach, or object-orientation, to be more generic, has been used

in a large number of areas of computing. It has been used to develop information systems,

control systems, etc. In particular, object-orientation has been involved in aspects of

distributed systems, from concepts to design, programming, and support. There are object-

oriented distributed operating systems, intermediate platforms to support distribution based

on objects, and object-oriented distributed applications.

The following sections of this chapter highlight the aspects of object-orientation related

to distributed systems, initially presenting a general overview of it, and work on distribution

architectures, designed to support development and use of distributed applications. There

is no intention to cover all the aspects of any of the topics, mainly because of the wide

spectrum of them. Some more detail is given, however, with respect to the particular

distribution platform used for the application described in this thesis (the annotation of

continuous media).

2.2 Object-Orientation

Object-orientation is not restricted to programming languages, databases or software engi­

neering; thus, it may be interpreted in many different ways. Objects have different roles

in the variety of different areas where they are applied. For example, in a concurrent

programming environment, objects need to be active objects with a queueing facility for

incoming messages, whereas database systems interpret objects as imperative objects with

a unique identity determined by their attributes and operations.

One observes that objects may be of different kinds for different purposes. Wegner

[Wegner 90] classifies them as

CHAPTER 2. BACKGROUND 23

• functional objects: a functional object has no state and no separate identity, and

operations are invoked by function calls. Examples of functional objects are the

objects TRUE and FALSE of the class BOOL with operations such as a n d , o r and

n o t in a functional programming language;

• imperative objects: imperative objects have the property of being passive until they

are activated by a received message; and

• active objects: these may be executing when a message arrives. Incoming messages

may have to be queued and to wait for execution. The possible states of an active

object are idle (sleeping), busy (executing) and blocked (waiting for resources or

completion of subtasks). Active objects are applied, for example, in concurrent

object-oriented programming [Lea 93, Meyer 93, Karaorman 93],

Objects interact by sending messages to communicate with each other. The following

three components of a message are identified:

1. Receptor, which specifies the object to which the message is sent.

2. Selector, which specifies the appropriate method which should be invoked as a result

of the message.

3. Parameters, which are function arguments or operands needed by the method associ­

ated with a specific message.

If an object receives a message, it usually reacts by executing a method (or operation), but

another possible reaction is an exception, i.e. an error routine.

CHAPTER 2. BACKGROUND 24

In order to enable object interaction, each object provides an interface (or protocol).

The interface determines which parts (e.g. methods) of an object are accessible from other

objects.

2.2.1 Concepts

The following paragraphs describe some of the concepts of terms particularly associated

with object-orientation. Some terms have already been introduced, and only the ones that

are in the scope of this work are mentioned. These are:

• objects and interfaces,

• encapsulation and abstraction,

• method (operation),

• class,

• inheritance, and

• binding (static and dynamic).

Object. An object is usually seen as a representation of an entity. Each object in a certain

environment has a unique identifier, an updatable state, and behaviour. Unique object-

identifiers distinguish objects from each other without the need to compare their values or

their behaviour.

Another point related to object identity is concerned with sharing of an object by

multiple clients. Sharing of object means that two or more references can point to the same

CHAPTER 2. BACKGROUND 25

object. Updates on the object pointed to can be seen from the clients, so only one update is

necessary.

Encapsulation. Encapsulation is defined by Booch [Booch 91, p. 46] as

“... the process of hiding all of the details of an object that do not contribute to

its essential characteristics."

He also says that encapsulation and abstraction are complementary concepts, with abstrac­

tion focusing on the outside view of an object and encapsulation (or information hiding)

preventing clients from seeing its inside view, where the behaviour of the abstraction is

implemented. In object-oriented systems, objects are the units of encapsulation (modules).

An object encapsulates state (data) and behaviour (operations). The operations are the

means to manipulate the state.

Method. A method provides the implementation of an operation on an object. Different

objects may have different methods for the same operation. Bertino [Bertino 91] identifies

the two constituent parts of a method as follows:

(a) Method signature. The signature consists of the method’s name, the names and types

of the parameters, and the types of the results.

(b) Method implementation. The implementation of the method is written in a program­

ming language and is executed when an appropriate message is received.

Methods can have

• a return value. Those which do not have a return value are only used to manipulate

the state of objects. Some methods manipulate the state of objects and have a return

CHAPTER 2. BACKGROUND 26

value, whereas others have a return value and do not manipulate state, being only

used to retrieve information about objects - these are called retrieval methods',

• side effects. Manipulation of the state of objects generates side effects. Retrieval

methods, therefore, have no side effects; and

• parameters. If a method has parameters, there can be different results for each possible

combination of parameters.

Class. Objects that have the same structural and behavioural characteristics - they can be

distinguished by object identity only - can be grouped into a class. Classes are similar to

types; thus, relationships can be established between classes, as well as between types.

Inheritance. The description of inheritance is valid both for classes and for types. Inher­

itance means that classes (types) can be derived from other classes (types). A superclass-

subclass (supertype-subtype) relationship is established. The subclass (subtype) inherits

the attributes and the operations of the superclass (supertype). The mechanism that allows

a subclass (subtype) to define additional operations and attributes is called specialisation.

On the other hand, instances of the superclass (supertype) generalize (restrict) the instances

of the subclasses (subtypes) - this mechanism is called generalisation [Banerjee 87].

There can be

• inheritance of implementation, which is used to facilitate the implementation of

classes by using code of existing classes - a subclass relation is established; and

• inheritance of behaviour, used to establish an “is-a" relationship between objects.

This is called subtyping.

CHAPTER 2. BACKGROUND 27

Subtyping occurs if the properties of a type are inherited by a subtype. Subclassing means

that not only inheritance of specification but also inheritance of implementation occur. In

class-based object-oriented systems, a subclass inherits the operations implemented for

the superclass. Since the subclass is a specialisation of the superclass, it can also have a

specialised version of the existing operations of the superclass. Thus, it is possible for a

subclass to override the operations of the superclass.

Binding. The time when the code is bound to a method signature determines two kinds

of binding:

• Static binding (or early binding). Early binding means that binding occurs at compile

time.

• Dynamic binding (or late binding). Late binding means that binding occurs at run

time.

Dynamic binding is needed, for example, in the situation in which the appropriate code for

a method is not known at compile time. The compilation can proceed given the possibility

of late binding.

2.2.2 Object-based vs. Object-oriented

The terms ‘object-based’ and ‘object-oriented’ are often used interchangeably. When

there is concern with the use of the appropriate term, ‘object-based’ and ‘object-oriented’

are normally distinguished considering the presence or absence of inheritance. Booch

[Booch 91], Cardelli and Wegner [Cardelli 85, Wegner 87] define ‘object-based’ as ‘object-

oriented’ without inheritance, which means that object-based systems have greater freedom

CHAPTER 2. BACKGROUND 28

to select an appropriate kind of binding to support distribution, for example.

2.2.3 Benefits

Among the benefits or advantages of object orientation, perhaps the most important ones

are

• naturalness: the concept of object appeals well to human cognition;

• a strong relationship with the real word in terms of modelling;

• reusability of software and design;

• encapsulation and abstraction.

Other additional advantages [Booch 94] include

• faster development of systems,

• easier maintenance,

• evolution, i.e. systems may have more ability to evolve, and

• better quality.

2.3 Developing and Processing Object-Based Distributed

Applications

Object orientation has been used in many domains, notably in programming languages

and databases. Also a number of techniques have been based on it to help analysis,

CHAPTER 2. BACKGROUND 29

called object-oriented analysis (0 0 A), design, called object-oriented design (OOD), and

programming, known as object-oriented programming (OOP). Object-oriented (or object-

based) technology comprises methods, tools, and frameworks used to build software systems

from objects; object orientation is also a possible way to achieve such goals as extensibility

and reusability.

Modelling a distributed system as a distributed collection of objects, that have state

and behaviour and offer interfaces for interaction, appears both natural and appropriate. In

figure 3, object B provides two possibly different interfaces and serves objects A and C;

object C is a client of B and offers an interface that provides service shared by objects A

and D; A and D are clients only.

— interface

—► invocation

Objects interact by invoking operations
grouped in interfaces provided by each other.

Figure 3: Object model.

CHAPTER 2. BACKGROUND 30

The following concepts, identified and discussed in [Snyder 93], confirm their appropriate­

ness for use in distributed systems:

• All objects embody an abstraction.

• Objects provide services.

• Clients issue requests.

• Objects are encapsulated.

• Requests identify operations.

• Requests can identify objects.

• New objects can be created.

• Operations can be generic.

• Objects can be classified in terms of their services.

• Objects can have a common implementation.

• Objects can share partial implementations.

Object orientation has been explored in the development and use of distributed op­

erating systems (e.g. Chorus [Rozier88]), intermediate architectures (e.g. CORBA

[OMG 92, Orfali 95a] and ANSA [APM 93a]) and applications and environments, such

as PREMO [Herman 94, Stenzel 94], a presentation environment for multimedia objects

under development by ISO/IEC JTC1/SC24/WG6 [ISO 95a]. In connection with their use

in distributed systems, object-oriented techniques have been applied in the construction of

CHAPTER 2. BACKGROUND 31

telecommunication software, given the demand for the quick development of new services

[Yamazaki 93] - here the issues include maintainability, reliability and performance - and

parallel systems [Grimshaw 93], in which performance is the major issue and a hospitable

programming environment is desirable.

Operating systems. Object-oriented operating systems provide resources through objects

that can be distributed. Additionally, objects can be used to model both the hardware in­

terface, the application interface, and all operating system concepts including mechanisms,

policies and, as mentioned, resources [Campbell 93],

Distribution architectures. Distribution architectures describe the mechanisms by which

objects make requests and receive responses in a transparent fashion. These intermediate

platforms are built to support distributed applications, handling distribution of messages

between application objects, and aim at providing abstraction. The benefits include en­

hanced application portability, ease of application distribution and reconfiguration, ease of

application integration, and ease of software reuse [Burleigh 93],

Applications and environments. These are usually built on top of distribution platforms,

particularly in an intermediate layer to allow for, e.g. portability and interoperability - open

systems. The application on the annotation of continuous media is built on top of an

object-based distribution platform and its development and performance are discussed in

the following chapters (3, 4 and 5).

Applications are getting larger and more performance-critical, and some of their com­

ponents may be distributed across heterogeneous networks. The trend for open, distributed,

object-oriented computing is represented by efforts being made by the Object Management

CHAPTER 2. BACKGROUND 32

Group (OMG), an industry consortium, and by ISO in order to develop standards to enable

the interconnection of heterogeneous distributed applications - object-oriented techniques

were chosen to describe the models.

2.3.1 Emerging Standards for Open Distributed Processing

The two main groups, the ISO/IEC JTC1/SC21 WG7 and the OMG, searching for an

architecture that allows the construction of system-independent distributed applications,

have contacts with each other for the establishment of the necessary standards. Distribution

platforms try to conform with the emerging standards discussed here.

CORBA

One of the objectives of the OMG is the definition of an architecture for distributed

applications using object-oriented techniques. The architecture consists of four elements:

(a) the Object Request Broker (ORB), which is the object interconnection bus, or the

communications element, for handling the distribution of messages between applica­

tion objects;

(b) the Object Services, which extend the capabilities of the ORB, allowing the logical

modelling and physical storage of objects - the services include naming, persistence,

life-cycle management and concurrency control;

(c) the Common Facilities, divided into two categories, called horizontal and vertical.

The horizontal common facilities provide information management, systems manage­

ment, task management and user interface services. The vertical common facilities

CHAPTER 2. BACKGROUND 33

are to be provided in many application domains (e.g. health and finance) through

class interfaces;

(d) the Application Objects, which are specific to end-user applications, built on top of

the ORB, the object services and common facilities.

The Common Object Request Broker Architecture (CORBA) initially described the

interface technology for the ORB portion of the reference model. CORBA 1.1 [OMG 92]

defined the Interface Definition Language (IDL) and the application programming interfaces

(APIs) to enable interaction between client- and server-objects within a specific implemen­

tation of an ORB. CORBA 2.0 deals with the interoperation of ORBs from different vendors

[Orfali 95a],

ODP

The ISO’s Open Distributed Processing Reference Model (ODP-RM) [ISO 95b] covers the

many aspects of the operation of a distributed system. The ODP Architecture provides

means for consistency checking in the relationships between the human interface, the

programming interface and the OSI protocols. According to the ODP model, a system is

considered from different viewpoints, which reflect specific design concerns [Linington 92,

Linington 95]. There are five viewpoints considered, and these are briefly defined as

follows:

(a) Enterprise viewpoint: this is concerned with the business and management policies

and human (user) roles with respect to the systems and their environment;

(b) Information viewpoint: this is concerned with the description of information models,

i.e. information sources and sinks and the information flows between them;

CHAPTER 2. BACKGROUND 34

(c) Computational viewpoint: here the concern is with the algorithms and data structures

of the distributed system;

(d) Engineering viewpoint: in this viewpoint there is concern with the mechanisms and

transparencies that support distribution;

(e) Technology viewpoint: this is concerned with the components and links from which

the distributed system is constructed.

While the five viewpoints are relevant to the design of distributed systems, the compu­

tational and engineering ones are more specifically associated with the use and construction

of these systems.

2.4 ANS Aware

ANSAware is a platform that follows the ODP reference model. It is an implementation of

ANSA (Advanced Networked Systems Architecture), an architecture for open distributed

processing which supports the design and construction of distributed applications, and is

not constrained by network structure, or heterogeneous hardware and operating systems

[APM93a]. There are ANSAware ports to systems like UNIX1, VMS, MS-DOS and

Chorus, for example. The main features of ANSAware are described as follows.

Services. The basic building block of ANSA is a service; and a service is provided at

an interface. A component or object purely described in terms of the way it provides

or uses services is called a computational object. A computational object may have

‘UNIX is a registered trademark of AT&T Bell Laboratories.

CHAPTER 2. BACKGROUND 35

several interfaces, each offering the same or different services - a service is a collection of

operations. Each instance of a service interface has a unique identifier called an interface

reference.

Services are divided into application services, which are specific to the task to be

performed by the system or application, and architectural services, which provide functions

for naming and finding services, access control and management within a distributed system.

A trader registers service offers made by service providers and returns information

about the available services accessible to clients that request them. When a client requests

a particular service, the trader matches the request with existing offers by using interface

types, context names and service properties in combination as selection criteria. This is

how the separate parts of a distributed application can find each other on demand. The

control of services available on a network is completed by two additional service providers,

node managers and factories. Trader, node managers and factories cooperate to allow, for

example, dynamic instantiation of objects [APM 93b], (There is also dynamic instantiation

of interfaces, discussed on page 38.)

Transparencies. ANSAware allows interaction between objects without needing them to

know each other’s physical location, and allows a uniform style of interaction irrespective

of the objects’ construction or environment, or whether they are local or remote. These are

called location transparency and access transparency, respectively.

Languages. A computational object is described using the following two languages:

• IDL. This definition language is used to specify interfaces, e.g.

Examplelntf : INTERFACE =
- - interface name

CHAPTER 2. BACKGROUND 36

NEEDS Commonlntf;
-- specification inheritance
BEGIN

-- type definition

Status: TYPE = {Succeeded, Failed}

-- operation signatures

-- the following specification enables a synchronous call
Register: OPERATION [of f ered-service : ansa_Interf aceRef]

interface references can be passed as arguments
RETURNS [status: Status;

handle : CARDINAL;
req.service: ansa-InterfaceRef] ;

... and received as results
-- the following configures an asynchronous call

in which results are not needed
Dereg: OPERATION [handle: CARDINAL]

RETURNS [];

END.

• PREPC. This language provides a means for embedding invocations of interface

operations in C source files. The generic syntax for an operation invocation is:

! { results } <- interface_ref$operation (args) exceptions

Capsules. Computational objects are potentially remote from one another. When they

are compiled (and are then called engineering objects), operation invocations are translated

into calls to the local nucleus, which manages the resources of a node and assigns them to

engineering objects called capsules. A capsule is the unit of autonomous operation within

ANSAware.

If ANSAware is supported by a multi-tasking operating system such as UNIX, then one

node may support various capsules, and a capsule, in this case, is a UNIX process. Capsules

CHAPTER 2. BACKGROUND 37

have the following capabilities:

• encapsulation, i.e. a capsule is a protection domain and an atomic unit of failure;

• provision for concurrent activities, and synchronisation and ordering of such activities

within each capsule;

• communication with other capsules;

• preservation of state between interactions, unless a failure occurs;

• provision for creating other capsules.

Concurrency. ANSAware provides concurrency in a multi-threaded environment. A

thread is an independent execution path which can be executed concurrently with other

threads. The resources a thread requires (a stack to store its local variables and function

return links, and a register dump area) are provided by a virtual processor called a task.

Tasks are the units of actual concurrency provided by the system, while threads are the units

of potential concurrency - tasks are more expensive than threads in terms of memory. A

thread has to be assigned to a task, and so tasks can service a queue of threads [APM 93c].

Components have multiple threads and may optionally support multi-tasking.

ANSAware allows concurrent activities within capsules, and thus, provides an inter-task

synchronisation mechanism that permits objects to control the ordering of events directly.

The mechanism consists of eventcounts and sequencers'.

• an eventcount is responsible for counting the number of events of a given type that

have occurred so far. It is associated with

CHAPTER 2. BACKGROUND 38

- an advance primitive, which increases the value of the eventcount by 1, indi­

cating the occurrence of an associated event,

- a read primitive, which reads the value of the eventcount, and

- an await primitive, which blocks the caller until the eventcount is equal to or

exceeds the given value;

• sequencers can be used to help ordering events, because eventcounts alone cannot

do that. A sequencer is associated with a ticket operation, which returns the current

value of a sequencer and atomically increments the sequencer’s value.

The following algorithm makes sure that the lines and columns of a matrix are drawn at the

same colour:

/* thread A */ /* thread B * /

for (colour=0; colour<256; colour++) {
for (i = 0; i < 5; i++) {

draw_line(colour,i);

>

}
ecs_advance(five_line_count);
ecs_await(five_col_count,

ecs_ticket(five_col_seq));

for (colour=0; colour<256; colour++) {
for (i = 0; i < 5; i++) {

draw_column(colour,i) ;
>
ecs_advance(five_col_count);
ecs_await(five_line_count,

ecs_ticket (f ive_line_seq)) ,-
}

Communication. Communication between capsules is done via the services they may

provide to each other. They communicate by invoking operations (via RPC) at service

interfaces whose references they know - one well-known interface reference is the reference

to the trading service. Interface instances can be created and destroyed dynamically, and

after creation their references can be exported to the trader so that they can be imported

by clients. Any client which possesses an interface reference can use the service provided

CHAPTER 2. BACKGROUND 39

at that interface. In an application, interface references can be passed as arguments and

returned as results of operations. In this case, such references are not known outside the

application. In any application, at least one interface reference generally has to be exported.

Figure 4 shows the use of trader’s service and non-traded interfaces (the example interface

(Exampieintf) given before is considered as s 1).

Figure 4: Traded and non-traded services.

In the communication between a client and a server, transparency in the remote proce­

dure calls is achieved through routines called stubs. Interface specifications are input to a

stub generator, which produces both the client stub and the server stub, and these are then

put into the appropriate libraries. When the client is compiled, the client stubs are linked

into its binary, and the same occurs with respect to the server; i.e. the server stubs are linked

with it when it is compiled [Tanenbaum 92, pp. 420-427]. See figure 5 for an example of

the use of stubs.

CHAPTER 2. BACKGROUND 40

Client capsule Server capsule

Figure 5: RPC transparency.

2.5 Conclusion

This chapter has identified the suitability of object-oriented techniques for the design and

development of distributed systems. These are modelled as a collection of objects that are

able to send and receive messages to each other. Their external behaviour is specified at

interfaces, which they make available to represent the services they can provide. Services

can be shared by various objects, so that updates on the data managed by the object that

provides a certain service need only to be made once, as they can then be seen by all the

objects that share the service. Interfaces provide an abstract view of the operations that can

be used to perform services. The operations’ actual implementations, called methods, are

hidden, or encapsulated, by the objects that provide the services. Objects can be classified

CHAPTER 2. BACKGROUND 41

according to their structural and behavioural characteristics. One of the benefits object-

orientation can provide is the reusability of objects in systems and applications, added to

other benefits that allow faster development, easier maintenance and extension of systems.

Because of their ability to provide services, abstractions, and interaction, amongst other

features, objects have been applied in the development and use of distributed operating

systems, intermediate architectures, applications and environments. Major work has been

carried out on the definition of architectures to support the development of distributed

applications in open environments. The efforts include the provision of transparencies, so

that development and use can be made without concerns about, for example, access methods

for and location of objects, and provision of consistency in the relationships between the

human interface, the programming interface and communication protocols.

If architectures are implemented as intermediate platforms, they enable applications to

be independent of the operating systems on which these distribution platforms are based.

These platforms use the facilities given by the lower-layer systems to provide services to

support the distribution of applications. If, for example, the operating system provides

services such as concurrency support, etc., the intermediate layer needs only to provide the

necessary system-independence without imposing much additional overhead.

ANSAware, the distribution platform used for our application, has been introduced.

It provides services, such as trading, to allow application objects to export and import

services in the form of interface references. Interface instances can be dynamically created

and destroyed, and objects that possess references to them may request the services they

provide. It is also possible to instantiate objects dynamically through the combined services

provided by the trader and other architectural servers called node managers and factories.

ANSAware supports transparencies such as location transparency and access transparency.

CHAPTER 2. BACKGROUND 42

In ANSAware, the so-called computational objects are described using an interface

definition language (IDL), for the interfaces, and a language that allows the embedding of

invocations of interface operations in source code described in a standard programming lan­

guage like C. Computational objects are compiled into engineering objects called capsules.

A capsule is a protection domain and an atomic unit of failure; it can communicate with

other capsules and can be multi-threaded, i.e. there can be concurrent activities within it.

Thus, ANSAware supports concurrency and provides a mechanism for inter-task synchro­

nisation. Communication between capsules is done via either asynchronous or synchronous

RPC.

In the following, the object-oriented paradigm and ANSAware, as an object-based open

distribution platform, are used for the development of an application that is interactive,

needs synchronisation, and is composed of a number of communicating objects, some of

them reusable.

Chapter 3

The Design of a Distributed Application

This chapter presents the design of a distributed application which makes

possible the annotation of continuous media documents (eg. music and video

clips) using voice. The composition of the continuous media involved in the

application is discussed, with emphasis on the aspects o f synchronisation,

including real-time requirements. The modules o f the application are presented,

considering the needs for data storage, database management and continuous

media devices control. The environment for the development o f the application

is presented and its limitations are discussed.

3.1 Introduction

With the advent of languages (e.g. LOTOS [Bolognesi 87]), environments (e.g. CONIC

[Magee 89]) and, particularly, platforms (e.g. ANSAware [APM 93a] and Orbix [IONA 95])

to support distribution transparently, it has become easier and simpler to develop distributed

systems. In multimedia applications, the media involved require different treatment in terms

43

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 44

of storage, interaction, transmission and representation. Modularity, concurrency and syn­

chronisation are some of the key requirements of these applications. Implementation of the

modules as independent processing elements that cooperate and communicate to achieve

common goals can provide efficiency, especially when they run on different processors.

Advances described in [Mullender 93a, Tanenbaum 92, Fox 91, Liebhold 91], referring

to technologies involving communication, operating systems and data compression (in­

cluding the integration of de/compression facilities with presentation devices), allow the

construction of multimedia applications with real-time requirements, or at least with fast

response times. Real-time systems can be classified as hard and soft [Panzieri 93]. The

latter are defined as real-time systems in which the ability to meet deadlines is required, but

failure to do so does not indicate a system error.

Application design is the act of discovering the structure of an application and defining

the modules of which it will consist [Lorin 90], Functions are identified and grouped into

modules according to the primary interests of the application, i.e. performance, extensibility,

recovery, etc. Design has to do with the specification of computations within the modules

and communications between them [Singhal 91],

The advent of multimedia has increased the possibilities of user interaction. Not only

in terms of devices (screen, headphone, etc.), but also with respect to access forms (random

access, browsing, etc.) in composite documents. Attention has to be given to observe

constraints imposed by the components of the documents [Stefani 92],

In this chapter we present an application that is modular, interactive and is designed to

meet real-time requirements. The design will also address, to a certain extent, issues such

as generality, i.e. applicability to different media types, and extension of the functionality

to accommodate group cooperation, following the fundamental principles for the design of

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPEICATION 45

open distributed systems of orthogonality (independent definitions specifying independent

architectural requirements), generality (preference to generic rather than special-purpose

definitions) and open-endedness (maintenance of designs, i.e. extension and modifica­

tion) [Vissers 91].

3.2 Description of the Application

The annotation of continuous media is an application that combines voice with the

presentation of continuous media documents in the form of music, video clips, etc., allowing

such documents to be voice-annotated. Annotations are remarks that refer to specific points

or segments of a document. Since the application deals with time-dependent media (voice

and others), the reference chosen to link annotations and the respective document-segments

is time, enabling synchronisation between them. Figure 6 shows an example of an annotation

that refers to a scene of a video clip. As the annotation refers to scene 2, the annotation and

this scene should be synchronised, giving significance to the contents of the annotation.

scene 1 scene 2 scene 3

video clip

annotation

approach a
closed door

the door opens
slowly

walk along
the corridor IZ

the door should
open more quickly

time

time

Figure 6: Example of an annotation.

The application could be used in areas involving film production (advertisement, cinema,

etc.), arts criticism (music, cinema, etc.), among others, which require a close relationship

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 46

between remarks and the parts of the material under observation to which they refer. Given

the continuous nature of the observation, annotations are made relative to the presentation

time. The application is able to provide instant access to annotations and locations in

the continuous documents through an appropriate graphical interface including a timeline,

giving users access by logical time so that it can be manipulated, avoiding the use of

more complex structures. Furthermore, the composition of annotations and documents is

transparent to the users; that is, they do not need to know that a voice-annotation and a

video-document are stored separately - they are automatically associated by the application.

The design of the application draws on the constructive approach[Kramer 90, Kramer 93],

which proposes steps that can be used recursively to build distributed systems. Notably,

the first step, structure and component identification, which takes into account functional

decomposition and entity modelling/identification of component types, is used here. Other

steps, such as interface specification and component elaboration, i.e. functional description

of behaviour, are used in Chapter 4, which discusses interaction in more detail.

3.2.1 Two Sub-systems

The application consists of two concurrent modules: one controls the presentation of contin­

uous medium documents and the other enables the annotation of such base documents. The

separation allows the annotator module to connect, in different instances, with presentation

modules that support different types of documents, like music, video, animation, etc.

Control buttons allow the user to view presentations interactively rather than linearly.

Through the interface of the annotator the user can request recording and playback of

annotations. The two modules have to provide logical clocks and exchange information

in order to keep them synchronised. The initial design structure of the annotation of

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 47

continuous media application can be seen in figure 7.

record

play

cancel

move

audio/video

play/restart
skip
pause/continue
stop
change speed/dlrectlon
move

Figure 7: The two sub-systems of the application.

For the presentation of both base document and annotations, and for the recording

of annotations, the application needs support for data storage, database management and

device control for the media involved.

3.2.2 Support

Storage

Continuous media are stored in various standard-formats (.au, .avi, etc.), which cannot be

mixed with other types of information. The storage requirements of the application are

classified as

• annotation-information storage: the application is supposed to provide storage for

structured information about annotations, e.g. records containing time-references,

etc., and

• continuous-media storage: specialised by media type - video store, audio store, etc.

Note that storage and retrieval of the voice part of an annotation should be handled

by an audio store.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 48

The identification of the general requirement for data handling leads to the first step in

the decomposition of the annotation and presentation modules, as shown in figure 8 and

figure 9, respectively.

record

play

cancel

move

microphone speaker

Figure 8: Annotator decomposition.

Management

The stored data must be organised so that references can be maintained and the client

modules can refer to the data abstractly. Database facilities, supporting search, add and

delete, are provided for this purpose.

The application has to be capable of incorporating modules that support structures

which represent annotations, audio documents and video documents, depending on which

types of media are involved in the base documents. Annotations are compound structures

consisting of information, which describes the relationships between them and base docu­

ments, and voice, an audio document, which contains user-remarks on segments in the base

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 49

device
A

clock info

continuous
medium

handling

document presenter

u
s
e
r

i
n
t
e
r
f
a
c
e

play/restart

skip

pause/continue

stop

change speed/direction

move

Figure 9: Presenter decomposition.

documents. The voice part of annotations is managed by an audio database module, and

the reference-information, which includes the reference to the voice document, is managed

by the annotations database manager module.

Besides the usual database operations, the management of continuous media requires

operations to record, play, stop and build sequences of stored audio and video. In fact,

abstractions for continuous media could be treated uniformly by a database manager without

compromising the different requirements that the actual audio and video data may have (the

data are manipulated by the respective storage modules - audio or video). Therefore,

the general term continuous-medium ropes, from the voice ropes defined in [Terry 88], is

appropriate to represent both audio and video sequences. Data referenced by continuous-

medium ropes can be stored in distinct files, providing more flexibility in terms of data

composition to application users. A clear distinction between the management/manipulation

and storage functions is observed.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 50

Medium device control

The necessary control of the devices that enable the presentation and capture of distinct

media is included as part of the application. An audio device control module is always

present to support the presentation and capture of voice for the annotations; this module

is also used when base documents involve audio (e.g. music). For video documents, a

video device control module is needed. These modules are linked to the respective storage

modules for the storage/retrieval of audio or video.

3.2.3 Overall Structure

The application involves four basic functions: GUI control, database management, stor­

age and medium device control. These are associated with the annotator and document

presenter modules as necessary. Thus, the annotator consists of GUI control, annotations

management, ropes management, voice storage and audio device control, and the presenter

should follow the same model, adapted to the type of medium used (audio or video) - for

audio it could use the same audio-related modules as the annotator. Figure 10 shows the

structural model of the application.

The support modules are actually capable of providing services, not specifically de­

signed for the annotation of continuous media application, but suitable for multimedia

applications in general. The application was, in fact, planned to use existing services devel­

oped within the Networks and Distributed Systems Group at UKC’s Computing Laboratory.

Such services are designed to be shared by multiple clients, as in an application where the

presenter is an audio-document player and may share the audio services with the annotator.

The construction of the application is expected to give feedback on the suitability of the

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 51

speaker microphone display

The video-related modules are incorporated only
when the document presenter is a ‘video player’.

video

Figure 10: Application model.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 52

audio services, particularly, with regard to aspects such as consistency and performance.

3.3 Requirements

The application requires that the media presentation runs at the established rate and that

events are synchronised within minimum delays. The basic requirements are discussed as

follows.

3.3.1 Bandwidth

The amount of data that needs to be sent through a given communications circuit per second

depends on the media type and quality required. Thus, for continuous or isochronous media,

where a minimum, constant sampling rate is required for meaningful presentation, the raw

communication bandwidth requirements are indicated as follows.

Digital audio .

• telephone quality speech (mono) - 64 kbps;

• CD quality (stereo) - 1.412 Mbps;

Digital colour video .

• broadcast quality - 216 Mbps;

• high definition quality - from 1 Gbps.

The above requirements can be reduced by compression. In the application, telephone

quality speech is enough for the voice annotations. However, the quality for other media

involved depends on hardware facilities. For example, on SPARC stations, which standardly

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 53

provide 64 kbps for audio transmission, the quality of audio presentation, although poor,

may be acceptable, depending on the purpose of the applications.

3.3.2 Synchronisation

In the application, a number of events require synchronisation. There are two ways of

achieving synchronisation: (1) by making threads of execution wait for the synchronisation

event to happen, or (2) by synchronising the logical clocks of the participating components

when some significant event occurs. An example of the first is:

(a) the button play was pressed, so wait until the presentation starts;

the following are examples of the second:

(b) the button skip was pressed, so reset the components’ clocks to a new temporal

position that represents the skip, and proceed playing from the new position;

(c) while the base document is playing, time comes to a point where an existing annotation

should be played, so the logical clocks are synchronised to allow the document and

the annotation to play synchronously.

Table 2 lists the application’s synchronisation events, which are all synchronised through

method 2 described above, i.e. by updating the logical clocks according to the operation

requirements. Events are triggered either by the user, or at a given time, or by end of reading

rope data.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 54

Triggering event Main activity Other activities
User

• play doc. presentation time indicator“
• restart doc. presentation time indicator
• skip doc. presentation time indicator, annotation
• pause doc. presentation time indicator, annotation
• continue doc. presentation time indicator, annotation
• stop doc. presentation time indicator, annotation
• move6 doc. presentation time indicator, annotation
• play annotation annotation doc. presentation, time indicator
• cancel annotation annotation doc. presentation, time indicator
• record annotation annotation doc. presentation, time indicator

Timed
• start of existing annot. annotation doc. presentation, time indicator

End of reading
• annotation
• document

doc. presentation
time indicator

time indicator

“ ‘time indicator’ displays the current time of presentation in the user interfaces (see section 4.4).
6The ‘move’ action represents an explicit manipulation of time by the user.

Table 2: Synchronisation events.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 55

3.3.3 Real-time response

Real-time requirements aim at making sure that delays in responding to events are not

so long as to degrade the presentation seriously. In the example shown in figure 11, an

annotation is expected to play synchronously with a piece of music, but the longer the delay

before starting the annotation, the harder the chance to achieve the requirements.

/ annotated segment
r

music

delay
l
1

annotation

-------------------------►
t i t2 real time

tx = virtual synchronisation point

t2 = actual start of the annotation

Figure 11: Example of synchronisation in the application.

In chapter 5, response times of the implementation are measured and compared with

established tolerances.

3.4 Development Environment

The application is a distributed system and needs support for interprocess communication,

concurrency and synchronisation. It relies on ANSAware, introduced in section 2.4, for such

support, and on X-Windows/Motif for the implementation of the graphical user interfaces.

Location transparency for data files used in the application is provided by SUN’s NFS

(network file systems -1 .3 .1). UNIX is the operating system used.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 56

3.4.1 Distribution platform

This section reviews some facilities provided by ANSAware, as discussed in 2.4, and adds

some more information about what this platform provides.

Interprocess communication

The application is designed in terms of a number of cooperating components that need to

interact. ANSAware provides facilities for

• specification of interfaces that consist of the definition of types and operations for the

possible interactions between components (see IDL in section 2.4),

• invocation of remote operations (cf. communication), and

• components binding (cf. trader).

Threads

ANSAware provides tasks and threads to support concurrency in components. A thread is

a unit of potentially concurrent activity and a task is a virtual processor that supplies the

resources a thread requires. When a thread executes on a task, its resources can only be

freed when the thread terminates. Components can be multi-threaded, which means that

they can execute more than one activity simultaneously, provided the threads have tasks to

run on, because tasks are the units scheduled by the ANSA-scheduler. The use of multiple

threads enables enhancements in the performance of applications, and servers to provide

services to multiple clients concurrently.

Components in the application need to exhibit concurrency. For example, maintenance

of the logical clock is one independent activity in some components. Clients sharing the

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 57

same service (provided by one instance of the server) also require control of concurrency.

Designing the application assuming that it will be extended to support group collaboration

implies that all the components require concurrency support.

Synchronisation mechanisms

The behaviour of an application is determined by the order of events it produces. When

an application is composed of concurrent components, each event that actually occurs

is a possible event in the independent behaviour of each separate component involved

[Hoare 85]. Thus, programming constructs are needed to help implementing the desired

behaviour.

ANSAware provides mechanisms for interprocess synchronisation and for inter-task

synchronisation in components that exhibit concurrency. The former is achieved by the use

of interrogation operations, in which a client waits for the results it requested, whereas

the latter is provided by the facilities of event counts and sequencers, which combine

to control the number of occurrences of events of given types (cf. section 2.4). The use

of primitives such as wait and advance allows concurrent and distributed applications to

control the relative ordering of events.

Using X-Windows from ANSAware applications

In order to prevent interference caused by certain X functions with the ANSA-scheduler,

the ANSA-scheduler and the X-scheduler interact, so that the input processing of X events

is handled by ANSAware, and the output by the applications. ANSAware manages the

communication between clients and the X server, allowing distributed applications to

access the X I1 Toolkit, thus supporting window-based user interfaces.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 58

3.4.2 Network

The application is to run on a local area network (LAN) composed of SUN SPARC 2 and

SPARC 10 workstations connected via Ethernet. In theory, Ethernet’s speed is defined as

10Mbps. However, according to Protogeros et al [Protogeros 90], studies of real Ethernet

networks show that only a few of them operate near the maximum throughput, with typical

loads below 50% and often close to 5%. Traffic usually consists of many minimum-length

packets (64 bytes, including a 14-byte header and a 4-byte ‘frame check sequence’, but

excluding the preamble and synchronisation bits which are stripped from the packet upon

reception), some maximum-length packets (1518 bytes) and a few of intermediate size.

These authors consider, therefore, that it is safe to assume a typical network load of 20%

and an average packet length of 200 bytes, so that the network would carry about 4500

packets per second. This means that typical Ethernet networks’ throughput is approximately

7 Mbps. Thus, the bandwidth requirement of 64 kbps for telephone quality audio can be

easily achieved given such throughput.

3.4.3 Limitations

The numbers shown above, compared with the bandwidth requirements presented in sec­

tion 3.3.1, demonstrate that the Ethernet is not able to carry real-time video or high quality

audio, especially without compression. An experiment [Henshaw 94] in the Networks

and Distributed Systems Group using an ATM network and video compression (JPEG) by

hardware has shown satisfactory results.

The fact that UNIX is not a real-time operating system also presents a limitation in

the sense that audio and video presentations can be disrupted by higher-priority activities.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 59

Additionally, in a networked environment, the possibility of jitter must be considered.

In a distributed system, a delay between a packet being sent and the same packet being

received is known as end-to-end delay, and this delay may vary. Jitter is defined as

the maximum difference between end-to-end delays experienced by any two consecutive

packets [Zhang 91]. Quality of service in situations like the ones described in this paragraph,

presentation disruption by higher-priority activities in non-real-time operating systems and

the possibility of jitter in distributed systems, can be improved by careful use of buffering

[Linington 90, Steinmetz 96].

3.5 Conclusions

An application capable of integrating continuous media objects has been designed, allowing

users to compose voice annotations with continuous media presentations in the form of

documents such as music, video clips, graphics animations, etc.

The application consists of two modules (or sub-systems), an annotator and a docu­

ment player, which need support for functions such as storage, database management and

device control. Storage requirements involve the storage of annotation descriptions and of

continuous media, database facilities abstract the use of file operations, and device control

has to do with specific types of media. The process of design involved issues like or­

thogonality, generality and open-endedness, and the identification of modules that display

similar functionality has allowed reuse and so reduced effort. The object model provided by

ANSAware, together with its support of concurrency and communication, have enabled the

design of this application whose components can be distributed and synchronised. Effective

synchronisation is needed to support the application’s real-time requirements.

CHAPTER 3. THE DESIGN OF A DISTRIB UTED APPLICATION 60

This chapter ended in a discussion of the environment in which the application will be

implemented and of its limitations. The next one will concentrate on the issue of interaction,

defining the application’s GUIs and specifying the communication interfaces between the

components.

Chapter 4

Implementation

This chapter discusses the implementation of the application designed. The

relationship between the presentation o f continuous media and annotations is

given by the annotation structure defined. The application components’ in­

tegration is discussed and their communication interfaces are specified. The

presentation of the GUIs involved in the application follows the discussion of

the components’ interaction, and aspects o f the user interaction with the appli­

cation are considered. The chapter finishes by examining the implementation

o f the temporal access control operations (e.g. pause) o f the application.

4.1 Introduction

The application designed allows continuous media documents (e.g. music, video) to

be voice-annotated. The application involves two main modules: one to control the

presentation of the base document, that is, the document which is being studied and gives

sense to the annotations, and the other to support the annotation process. Support for data

61

CHAPTER 4. IMPLEMENTATION 62

storage, transfer and database organisation is required. The design has taken into account

the possibility of distribution of the application’s components over a network, and thus,

the implementation relies on ANSAware, a distribution-support platform, to realise the

application.

The application is composed of a number of objects that interact with each other based

on the client/server model. ANSAware gives means for objects to define interfaces for the

services they provide, and for these interfaces to be accessible to clients. This platform

also supports concurrency to allow servers to handle concurrent, multiple requests, and

this facility (threads) can also be used to enhance the performance of components of

the application, and therefore, of the application as a whole, since independent activities

within components can execute simultaneously. A mechanism based on event counts and

sequencers permits concurrency control. ANSAware allows objects to provide multiple

different interfaces and clients invoke operations in the interfaces via the RPC mechanism.

The implementation of the application on the annotation of continuous media makes

use of ANSAware’s facilities enabling component objects to define their communication

interfaces, interact with one another, and exhibit concurrent activities such as user-input and

rate control. Rate control, in particular, is a mechanism that gives application components

control of a logical clock, and a common clock among communicating objects can be set,

with distributed updates being done via RPC. This mechanism is used in the application to

implement media synchronisation and operations that control time-dependent presentation

(i.e. temporal access control operations).

CHAPTER 4. IMPLEMENTATION 63

4.2 Annotations

An annotation is a piece of information that refers to a part of or point in a document,

commenting on it. In our application, as the base document is continuous, i.e., its presenta­

tion is contiguous in time, annotations refer either to instants or intervals of the document

presentation. In this sense, annotations are, respectively, classified as

• instant-annotations: presentation of the main document is paused and the annotation

proceeds, and

• interval-annotations: the base document and the annotation flow together.

Figure 12 illustrates the two types of annotation in a timeline representation of a session

involving playing some music and associated annotations.

audio play music resume music

voice interval-annotation instant-annotation

real time

Figure 12: Timeline representation of an annotated-document.

4.2.1 Relationships between Annotations and Presentation

Annotations and the base document are related in various ways. The basic reference that

links them is time. An annotation is a data structure that indicates

• the path of the file which stores the voice data representing a user’s comment on the

base document

CHAPTER 4. IMPLEMENTATION 64

• the point in the document’s time when the annotation should start, and

• the time when it should terminate.

Databases of annotations associated with specific documents are maintained by an annota­

tions server, discussed later in this chapter. The type definition of an annotation is given as

follows.

typedef struct _annotation_type {

char *filepath;

int init-time;

int endJim e;

} annotation_type;

In order to be meaningful, annotations are expected to play at normal speed (100% -

factor 1), so their duration is derived from the respective voice file’s length. However, the

user may wish to comment on the document playing at a different speed (e.g. half or double)

or at a different direction (e.g. backwards) - the sign of the speed factor can, implicitly,

express the direction, and the value 0 (zero) can represent pause. Therefore, the ratio of the

difference between the end time and the initial time to the annotation duration determines

the speed factor of the document’s presentation during the occurrence of annotation.

end-time — initial d im espeed-factor = --------------:-------------;-----
annotation-duration

Table 3 shows examples of the relationships between annotations and document presenta­

tion.

The established relationships require temporal transformations [Little 94] to be made in

the document presentation when annotations occur, as seen in figure 13.

CHAPTER 4. IMPLEMENTATION 65

Initial time End time Duration Ratio Presentation
10 20 10 1 normal speed
50 50 15 0 paused
60 70 20 1/2 half speed
100 120 10 2 double speed
150 140 10 -1 inverted

times in seconds.

Table 3: Examples of presentation during annotation.

original
audio * 1

virtual time

transformed
audio scaled inverted

voice interval-annotation
instant-
annotation

interval-
annotation

interval-
annotation

real time

Figure 13: Presentation transformations determined by annotations.

Observe that the interval of the document whose associated annotation requires inverted

presentation is played three times:

1. play until initial time of the annotation is reached;

2. play backwards to conform with the annotation requirement;

3. finished the annotation, play forwards.

The application recognises such situations to prevent infinite loops. The necessary con­

straints are discussed in section 4.5.

CHAPTER 4. IMPLEMENTATION 66

4.3 Component Integration

The application was designed as a collection of components that interact providing services

to one another. In this section, the requirements for the integration of the components are

discussed and the configuration of the application is presented.

4.3.1 Requirements

In a distributed application, requirements involve establishment of connections among the

components, control of synchronisation and data transfer.

*

Binding

Interfaces describe the service operations provided by servers. Possession of an interface

reference by a client allows it to invoke operations at that interface (see section 2.4).

References can either be obtained via the trader or be passed from one object to another as

arguments or results of operation invocations.

Services offered (exported) to the trader are made public, and as such, they may be

used by different client applications. (The trader organises the offers it receives according

to type, context1 and (optional) properties (e.g. aliases, user names).) On the other hand,

interface references passed within a particular application represent internal services. In

the following, the exported and the non-traded interfaces of the annotations application are

listed.

• Exported interfaces: a client wishing to use a certain service has to provide appropriate

parameters about it to the trader, so that a service instance can be searched for and the 1

1 The context-space in ANSAware is organised as a hierarchical tree.

CHAPTER 4. IMPLEMENTATION 67

client can obtain an interface reference for it. In the application, the public interfaces

(types) that can be imported are:

- doc Player: this interface is offered by the document player to indicate that

it wishes to integrate with another object; it is identified via a user login name,

so as to ensure that the annotator, for example, binds to the player used by the

same user;

- a d s : the annotation database server’s interface; it may be identified via an alias

(e.g. “AnnotDB”);

- v r s : this interface is offered by the voice rope server, which controls the rope

database; it can be identified through an alias (e.g. “VrsAnnotator”);

- a s s : a s s is the interface for the audio storage service; similarly, an alias (e.g.

“AssAnnotator”) can be used;

- a u d c t r l : it represents the connection establishment service, provided by the

audio server; usually, user login names identify this interface.

• Non-traded interfaces: these are the interfaces whose references are passed within

the application:

- p P a r t n e r : the interface for the presentation partner (e.g. the annotator);

- r a t e : the rate control interface;

- c a l l b a c k : the interface used to report back to a client the status of audio

operations (e.g. play started);

- a u d io : the interface used for audio data transfer.

The interfaces are described in section 4.4.

CHAPTER 4. IMPLEMENTATION 68

Rate communities

Objects involved with the same continuous medium document must perform rate control

synchronously, and so form a rate community. In the application, the objects are those that

control the user interfaces (music player and annotator), manage the voice and music rope

databases (rope server) and control data transfer (audio storage server). Synchronisation

is achieved via the r a t e interfaces, which are provided by the objects participating in the

same community - the ropes server is also the server of the rate communities. Given that

the various types of relationship between annotations and base document are, basically,

defined by how they are rate-controlled, separate rate communities are created, and the

management of the relationships is done by the annotator. Objects provide as many r a t e

interfaces as the number of different communities they are engaged in.

Audio transfer

Audio data transfer is made within the audio sub-system between the audio storage server

and the audio server. Since the audio server encapsulates the hardware to make sound

in the workstations, one instance of the server must run on each station. Therefore, the

audio storage server has to know the correct reference of the a u d io interface with which

it should interact. That is quoted by application clients when they request transfer to occur

in connection with specific stations. For example, when the music player requests for a

rope to be played on the workstation A, it specifies the a u d io interface reference related

to the server that is running on that station. That reference is obtained via the a u d c t r l

interface (cf. section 4.4.5). When the audio server is started on a workstation, it exports

the audio control interface with properties that, implicitly, associate it with the station. The

application then has to make sure that clients import that interface with the right properties.

CHAPTER 4. IMPLEMENTATION 69

4.3.2 Configuration

The connection of objects to one another in the application is shown in figure 14. Connec­

tions are made regarding

• audio: involving the audio server, the audio storage server (assServer), the rope

server (vrsServer), with the annotator and the music player as clients. The clients

request the audio server to create the audio interfaces (channels) for voice and music.

The references for these interfaces are quoted by the respective clients to the rope

server, which passes them to the storage server so that voice and music data can

be transferred to/from the appropriate channels. Additionally, the annotator and the

music player create their callback interfaces, enabling them to receive reports from

the storage server;

• rate control: this involves music presentation and the voice annotations. The music

rate community is formed by the music player, the rope server, the audio storage

server, the audio server, and the annotator; and the annotations rate community

consists of the annotator, the rope server, the audio storage server. As mentioned

earlier, the annotator is responsible for avoiding conflicts between annotations and

the underlying music in terms of their presentation rates;

• annotation description storage: the annotator communicates with the annotations

database server (AnnotServer) via the ads interface;

• sub-systems interaction: the annotator registers its callback interface pPartner

(presentation partner) with the music player via the docPIayer interface. The two

sub-systems can interact through these interfaces.

CHAPTER 4. IMPLEMENTATION 70

The interfaces mentioned here are described in the following section.

Figure 14: Configuration of the application.

4.4 Communication Interfaces

Services are provided by objects that represent the components of the application. Objects

interact by calling operations on interfaces that present an abstract view of the services.

This section discusses the services and presents the operations used in the application (the

CHAPTER 4. IMPLEMENTATION 71

interfaces’ IDL descriptions are given in Appendix A). Many of the interfaces shown here

have not been designed to be used exclusively in this application, so reusability can be

explored.

4.4.1 Rate Control

Each object in the application responsible for a continuous media document (e.g., voice and

music) needs to control the rate of presentation. An interface is defined to allow synchro­

nisation among the components that support it. In order to establish a rate community one

of the components is defined to be the rate server.

The rate interface

This interface allows control of speed and direction of time-dependent media, defining a

logical clock with respect to real time. For each setting operation, the result is the value

actually set, which may not be the same as the request if the device cannot support all

options.

Speed. Speed is specified as the ratio of logical time to real time (logical/real ticks). Thus

(1,2) is understood as play at 1/2 speed.

Direction. Forward (true) or backward (false) direction can be set directly through this

operation, or implicitly by negative speed.

Pause. This operation allows temporary pause (true) without change of speed or direction.

Resumption is accomplished by setting pause false.

CHAPTER 4. IMPLEMENTATION 72

Position. Positioning in the time-dimension specified by the associated length is made via

this operation.

Update. This operation is used to update, in one call, the presentation variables speed,

direction, pause and position.

Request. This operation allows the current values of the presentation variables to be

requested from time to time, enabling synchronisation among the components of the

same rate community.

In addition to the above operations, the management of the rate community by the server is

supported by

Register. This operation is used by a client which is interested in the service. A callback

interface reference of type r a t e is passed as argument, and in return the server sends

a status flag and a handle by which the client is known; and

Deregister. Which is called when the client is no longer interested in the service.

4.4.2 Music Player

The object responsible for the presentation of the base document (e.g. music, video)

expresses its desire to integrate with other objects (e.g. the annotator) by offering the

following interface.

The docPlayer interface

This interface provides the following operations.

CHAPTER 4. IMPLEMENTATION 73

Register. The interface reference for the object that registers interest in integration is

received. It is associated with a handle, which is sent back together with the status

of the operation. Also, the interface reference of the rate server is returned to enable

the client to register itself with the community including the document player, so that

synchronisation can be achieved.

Deregister. Integration is discontinued via this operation. The handle indicates which

object is being de-registered, and an acknowledgement is produced.

4.4.3 Annotator

Any object that is to be integrated with the document player, whose interface has been

described above, must produce the “presentation partner” interface.

The pPartner interface

This interface involves the operations:

Selected Document. Through this operation the presentation partner (i.e. the annotator)

is informed that a document has been selected for presentation. The name of the

document is specified (enabling annotation naming) and an acknowledgement is

returned; and

End Session. This is used to request the end of session. The operation is acknowledged.

4.4.4 Annotations Server

The annotations database server is responsible for maintaining the consistency of informa­

tion about annotations. Its service is provided by the following interface.

CHAPTER 4. IMPLEMENTATION 74

The ads interface

This interface has been designed to allow the application to develop from single to multiple

user support. If there are multiple users, clients have to provide a callback interface,

described in Appendix A. (Group collaboration issues are discussed in Chapter 7, under

proposals for future work.) The interface operations are

Register Document. A document handle is produced in return to the given document

name.

List Annotations. Using the document handle, the client can request the descriptions of

associated existing annotations2.

Store Annotation. This operation is used to store information about a new annotation

associated with a document handle. The result of the operation is the annotation

name given by the server.

Deregister. Via this operation a client informs that it will no longer use the service.

4.4.5 Audio Server

The audio server encapsulates the hardware, providing audio support based on the facilities

available on SUN SPARCstations. This object produces two service interfaces to clients.

The audctrl interface

This is the main interface of communication between clients and the audio server. It is

used for connection establishment and provides three operations. One creates a port, and

2The voice-related data are managed and stored by the voice ropes (section 4.4.6) and audio storage
(section 4.4.7) servers, respectively.

CHAPTER 4. IMPLEMENTATION 75

the other two are for indirect connection. These are not used in our application, so refer to

[Linington 90, Linington 91] for appropriate explanations. Here, only the first operation is

described.

Create. This operation returns an interface reference to be used for audio transfer. If

the interface cannot be created, an error indication is returned. The transfer mode

required (simplex or duplex) and the user identity are given as parameters.

The audio interface

This interface allows the exchange of audio in a series of spurts between client and server

objects. Service can only be provided to clients that possess a reference for the interface.

These are not exported to the trader; they are obtained via the control interface and may be

passed around in the application. Only one operation is supported by the audio interface:

Spurt. Playback, recording or both are supported by this operation, depending on the mode

established for the interface when it is created. Spurts are transferred as sequences

of PCM speech samples. The delay expected to happen before the spurt begins to be

played is reported through this operation, which also carries status flags for normal

or end-of-stream actions.

Currently, 512 bytes of audio data may be transferred in each direction by each RPC;

serialisation of RPCs provide flow control. Buffering is used to prevent disruption. (These

facts are considered in the performance evaluation of the application, discussed in Chap­

ter 5.)

CHAPTER 4. IMPLEMENTATION 76

4.4.6 Rope Server

This object supports an abstraction called a voice rope, which represents a sequence of stored

voice, so that clients need only to refer to ropes when they want to record or play voice.

It manages the data structures that represent the abstraction and supports sharing among

clients. Originally described in [Li 92], the server has evolved to provide the interface

defined in Appendix A, and discussed as follows.

The v r s interface

Here, only the operations used in the application are considered.

Request Rate Interface. It is natural for the rope manager to be the rate server. Thus, this

operation is used by a client to request the establishment of a new rate community.

The results are the interface reference for the rate server so that clients can register

interest to synchronise, and the status of the operation.

Register Rope. Register the details associated with a rope. In return, the client knows the

rope-handle and the rope’s length.

Play Rope. A registered rope is played through this operation.

Cancel Play. Stop rope being played.

File to Rope. Create a rope from a given file.

Register Record Rope. This operation allows the recording-specific details of a rope to

be registered.

Record. Request for recording a rope is made via this operation.

CHAPTER 4. IMPLEMENTATION 77

Cancel Record. This operation stops the recording of a rope.

4.4.7 Audio Storage Server

This object provides only one interface, which is fully described in Appendix A. Here only

the operations used in the application are considered.

The ass interface

New Rate Handle. Through this operation, the audio storage server is required to create a

rate interface and to join a community by registering with the given server interface

reference. The results are the status of the operation and a handle corresponding to

the client rate interface.

Register Rope. The necessary information to enable the server to read audio data referring

to a rope is given via this operation, which returns the associated rope handle for

future reference.

Play Rope. This operation enables the storage server to start reading data associated with

a certain rope.

Cancel Read. Used to cancel data reading.

Write. The server is requested to store incoming audio data through this operation.

Cancel Write. The server is requested to stop writing.

Application clients may wish to be informed of certain events that occur during audio

transfer. For this, they have to provide the callback interface described below.

CHAPTER 4. IMPLEMENTATION 78

The callback interface

This event callback interface supports the following operations:

Failed. Used to report processing failures in the audio store.

Cancelled. This operation is used to indicate that the reading/writing process has been

terminated.

Done. Called when rope playing/recording is finished.

Event. Reports the occurrence of user-defined labels in the rope.

Paused. This indicates a pause in the playback of a rope.

Started. Called when a rope has started to play.

4.5 Interaction

Here are presented the layouts of the graphical user interfaces (GUIs) of the Music Player

and the Annotator. The use of their features and their combined reactions to user requests

are explained.

4.5.1 The MusicPlayer User Interface

This interface provides the basic features found in any continuous-medium player, like a

VCR or a CD-player. It works as a remote control that gives the user the ability to

• play or restart from the beginning,

• skip either forwards or backwards,

CHAPTER 4. IMPLEMENTATION 79

• pause the presentation,

• continue from a paused situation,

• stop the presentation,

• move across it, and

• change speed and direction.

Additionally, the interface provides

• selection of the document to be presented and

• a time display.

Figure 15 shows the MusicPlayer user interface, which consists of three areas:

Timeline. This area’s length denotes the total duration of the presentation and a slider in it

shows the current time. This slider can be dragged, representing time manipulation.

Speed/direction setting. Speed and direction of the presentation can be changed through

the slider in the scale. The centre of the scale indicates zero speed, and to the left of

it negative speed is set, whereas positive speed is set by moving the slider to the right

of the centre of the scale. Default values are 1 (normal speed) and true (forwards),

respectively.

Buttons. Each button in this area activates a specific operation that affects the presentation

- the complementary operations pause and continue share the same button. The

button select, which allows selection of the document to be presented, cannot be

used during a presentation.

CHAPTER 4. IMPLEMENTATION 80

Buttons
N

Timeline Speed/direction setting

Figure 15: The MusicPlayer GUI.

Constraints

The following interaction constraints are given for the system’s operation.

(a) Document selection can only be made in the idle state.

(b) Skip cannot be used to start playback.

(c) During pause, only the button continue can be pressed, de-activating the state. In

this state, the timeline slider cannot be dragged.

(d) Speed and direction can be set at any time, including pause, without modifying the

current state.

The complete set of state changes can be seen in figure 16, where idle is the initial state and

finished is the final one.

4.5.2 The Annotator User Interface

The Annotator interface can

CHAPTER 4. IMPLEMENTATION 81

set speed/
direction

select I drag slider
set speed/direction

Figure 16: MusicPlayer states machine.

• denote the total duration of the main document’s presentation. The length of the

timeline designates the total duration of the presentation and works as a time-scale;

• show the current time o f the presentation. As the presentation progresses, a slider

flows in the scale to represent the time passing;

• indicate where annotations are found, relatively to the presentation time. Since

the total duration of the presentation is represented, the positions of annotations

are graphically displayed in the interface, showing the correspondence between the

comments and the points in the presentation to which they refer;

• give the user control o f the presentation. The slider allows the user to move across the

presentation, viewing or reviewing it from a new location - synchronisation between

the annotator and the music player is necessary; and

• permit voice annotations to be recorded and played back.

CHAPTER 4. IMPLEMENTATION 82

The GUI given in figure 17 presents three interaction areas, which are described as

follows.

Timeline

Annotations display Buttons

Figure 17: The Annotator GUI.

Timeline. This area enables the representation of the duration and current time of the

presentation. The slider can be dragged for the purpose of time manipulation.

Annotations display. Here the annotations are mapped onto space. Random access of

annotations displayed in this region allows them to be played back - this is an

implicit form of time manipulation.

Buttons. This area consists of the following buttons:

• pause & rec, to permit the recording of instant-annotations,

• record, for interval-annotations,

• cancel, allowing the cancellation of annotation recording and playback,

• play-status selection, through which the user can decide whether to play NONE

or play ALL or play SELECTively the annotations associated with the presen­

tation - the label shown on the button indicates the current play-status, and

CHAPTER 4. IMPLEMENTATION 83

• quit, to disconnect the Annotator from the MusicPlayer.

Interaction rules

The following rules are imposed.

(a) Play-status selection can be made at any time, but if there is an annotation being

played or recorded, this is not affected. The meanings of the play-states are described

as follows.

• NONE. No annotation can be played either through selection or when the

presentation’s current time corresponds to an annotation’s initial-time.

• SELECT. Annotations can only be played through user selection.

• ALL. Selection and current time may activate annotation playback.

(b) No kind of rate manipulation can be made while an annotation is being recorded.

Only the cancel operation is allowed in order to finish the recording, retrieving the

previous state.

(c) During annotation playback, a new annotation can be made. However, limitation

on the number of simultaneous annotations is necessary to ensure clarity, and also

because there might not be enough memory available for the tasks needed to accom­

modate all the threads that would have to run concurrently, forcing threads to queue

for a task to become available.

(d) Selection of an annotation when another is being played implicitly cancels the current

playback. Nevertheless, more than one annotation can play concurrently provided

they are activated by time and the limit of simultaneous annotations is not exceeded.

CHAPTER 4. IMPLEMENTATION 84

(e) Dragging the slider in the timeline does not initiate annotation playback if initial

times are reached, but annotations which are already playing behave accordingly.

The possible actions in the different states of the Annotator sub-system are shown in

figure 18, in which idle is the initial state and finished the final one.

select play-status

select
play-status

Figure 18: Annotator states machine.

Graphical resolution

The timeline should be able to represent the duration of a continuous medium document by

mapping time to space, and according to Myers [Myers 85], a graphical interface should

give a clear view of position in the time-space, so that the user can navigate more confidently

through the presentation. Given the variety of durations, the continuous position updating

of the slider uses more or less space in the timeline. Lengthy documents’ presentations, in

particular, use much less space per unit-time, with the slider’s motion appearing too slow,

and so, dragging it in the timeline may deliver undesirable long jumps in the presentation,

CHAPTER 4. IMPLEMENTATION 85

making the navigation difficult. Moreover, displaying annotations, as in the timeline

of the annotator, in cases when the timeline represents lengthy documents, can generate

misunderstandings about the nature of the annotations (whether they are instant- or interval-

annotations) because little space is used. It is not practical to vary the interface’s length to

solve the resolution problems of time updating and duration indication (for base document

and annotations) because of the diversity of duration of continuous media documents (music,

movies, etc.). In MIT’s MegaSound [Hindus 93], the interface can incorporate an additional

level to expand pieces of the timeline without losing global positioning information. User

interaction can be with either the original timeline or the zoomed one, as their behaviours

are similar. This is a possible solution that could be used in the interfaces of the annotator

and the document player.

4.5.3 Common Interaction

The MusicPlayer and the Annotator have their own functions, but cooperation and inter­

action give them the ability to deliver combined reactions to user requests. Actions taken

in one interface may modify the behaviour of the other sub-system, and vice-versa, so a

protocol has to be defined to make sure that user’s expectations are fulfilled.

Annotator’s interference on the main document presentation

Besides the operations that can be invoked during the music presentation through the

MusicPlayer interface (skip, pause, etc.), others can be made via the Annotator:

• time manipulation', moving the slider in the timeline makes the presentation behave

accordingly, i.e. play backwards or forwards at different speeds;

CHAPTER 4. IMPLEMENTATION 86

• annotation playing: as time reaches the initial-time value of an annotation, this

starts playing synchronously with the presentation. Optionally, the user can select

an annotation in the annotation display, updating the current time of the presentation

to be the initial time of the selected annotation, providing random access in the

presentation. In any case, if the annotation is an instant-annotation, the presentation

pauses during the occurrence of annotation;

• annotation recording: this can be made during the presentation or by pausing it.

Effects of presentation manipulation on annotations

During annotation playback, any sort of rate-manipulation operation can be invoked, re­

quiring corresponding behaviour. Some operations may have the effect of cancelling the

playback, like skipping to a position in the presentation outside the annotation’s time-

interval. Annotation recording is treated specially to prevent bizarre effects: although

annotations may refer to the presentation at different speed or direction, these have to be set

previous to the recording and remain constant throughout - an annotation’s recording speed

and direction are always normal and forwards, respectively; during an instant-annotation

recording, however, since the presentation is paused, speed/direction setting for the presen­

tation can be made as its effects only appear when the recording finishes. The restriction of

keeping speed/direction constant during annotation recording simplifies the representation

of the relationship between document presentation and annotation, both in terms of the

annotation structure (cf. section 4.2.1), and graphically in the Annotator’s GUI. Similarly,

no other rate-manipulation action (e.g. restart) can take place while an annotation is being

recorded. In figure 19, a scenario involving changes during annotation recording shows

some of the information that would need to be stored if that restriction were not imposed.

CHAPTER 4. IMPLEMENTATION 87

Presentation
time

0 * i 2 3 4 5 6 7 8 9 Annotation
time

+ At (0,0) start recording, normal speed, forward direction
+ At (3,3) double presentation speed, forward direction
+ At (5,7) normal speed, backward direction
+ At (7,5) half speed, forward direction
+ At (9,6) end recording

Figure 19: An example of how rate might be manipulated during annotation if doing so
was allowed.

Conflict handling

Conflicts, such as the simultaneous occurrence of two annotations that require different

speeds or directions for the presentation of the base document, are administered by the

Annotator, giving priority to the annotation that started first. Since the Annotator allows

only one annotation to be recorded at a time, conflict can exist between playing multiple

annotations or between recording a new annotation and playing previous ones, but never

between the recording of two annotations. Annotation recording always gets priority. So,

in general, only the activities with priority can proceed, and simultaneous occurrence of

annotations can only happen if they all have the same requirements for speed and direction

for the presentation of the base document (see examples in figure 20). In practice, such a

priority policy means that some annotations can only be played through user selection.

CHAPTER 4. IMPLEMENTATION 88

1 > 1 > 2 > 1 >

\1 < / 2 > 1 > 1 <

c o n fl ic ts (a) (b) (c) (d)

no c o n f l ic ts (e) (f) (g) (e)

1 > 2 > 1 > 1 >

1 > 2 > 1 > 1 >

______ recording annotation

^ playing annotation

speed and direction required for
the base document presentation

A C cancel annotation

Figure 20: Examples of conflicting and non-conflicting annotations.

Communication protocol

To ensure a smooth interaction between themselves, the MusicPlayer and the Annotator

negotiate a “global” status, both using the interface below.

Commonlntf : INTERFACE =
BEGIN

-- List of the possible common states negotiated between
-- the Annotator and the MusicPlayer

GlobalStatus : TYPE =
(Idle,
-- (0)
Playing,
-- (1) main document presentation only
Paused,
-- (2) presentation paused, no annotation

CHAPTER 4. IMPLEMENTATION 89

SyncPlay,
-- (3) annotation and presentation synchronous playing
SyncRec,
-- (4) annotation recording synchronised with presentation
AnnotPlay,
-- (5) annotation playback in paused presentation
AnnotRec
-- (6) annotation recording during paused presentation

} ;

-- The following operation allows status negotiation

NewStatus: OPERATION [submitted_status: GlobalStatus]
RETURNS [new_status: GlobalStatus];

END.

The states defined in the common interface - 0 or Idle, 1 or Playing, 2 or Paused,

etc. - are considered in the following, where the global policy o f interaction is described.

The table represents either states in which each action cannot be taken (-) or states resulting

from possible actions taken in each possible state - when more than one state can result from

a particular action in a certain state, the resulting states appear separated by | (representing

choice).

CHAPTER 4. IMPLEMENTATION 90

States

Actions (0) (1) (2) (3) (4) (5) (6)

select document 0 - - - - - -

set speed/direction 0 1 2 3 - 5 6

play/restart 1 1 5. i |5 - 1 |5 - - -

stop - 0 - 0 - 0 -

skip - 1 - 1 13 - - -

pause - 2 - 2 - - -

continue - - 1 13 - - - -

presentation over - 0 - 0 0 - -

quit MusicPlayer 0 0 0 0 - 0 -

select play-status 0 1 2 3 4 5 6

drag slider - 1 - 1 13 - - -

pause & rec 6(a) 6 6 6(d) (b) 6 (b)

record 6(a) 4 6 4(e) (b) 6(e) (b)

select annotation - 3 15 - 3 | 5(c) - 3 | 5(c) -

initial time reached - 3 15 - 3(e) | 5(d) - - -

annotation over - - - 1 - 1 -

cancel - - - 1(c) 1 1 3(f) 1 1 1 2 13(f)

quit Annotator 0 1 2 1 - 1 | 2(f) -

Observations:

(a) provided there is a selected document;

CHAPTER 4. IMPLEMENTATION 91

(b) only one annotation can be recorded at a time by one Annotator;

(c) cancel current playing annotation(s);

(d) pause current playing annotation(s);

(e) do not exceed limit of simultaneous annotations;

(f) return previous status.

4.6 Implementation of Operations

The so-called temporal access control (TAC) operations [Little 94] are considered here.

These can be achieved in many ways. For example, video fast-forward can be provided

either by skipping frames or by doubling the rate of playout. In the following, the imple­

mentation of the various operations in the application is discussed, remembering that all

the objects engaged in a same rate community should react accordingly.

• Play/Restart. These operations are implemented by calling VrsPlayRope and

making rate_Position (0) to ensure that the rope is played from the beginning.

However, to restart while the rope is being played simply do rate_Posi t ion (0).

• Skip. This operation was designed to make the presentation skip the equivalent of

10 seconds, either backwards or forwards. That is implemented using the operation

rate_Position.

• Pause. Rate_Pause (true) implements this operation.

• Continue. Midpoint resumption is achieved by doing rate_Pause (false) .

CHAPTER 4. IMPLEMENTATION 92

• Stop. This operation is provided by calling VrsCancelPlay.

• Browsing (slider dragging). This is achieved by manipulating rate position.

• Annotation selection (random access). Selecting an annotation for presentation im­

plies that the associated rope is played, which is done by calling VrsPlayRope.
The rate controls for the annotations and the base document are separated. Thus,

while the rate position for an annotation is set to 0 (zero) to make sure it is played

from the beginning, the document’s position is updated to the initial time of the

annotation to achieve synchronisation (cf. section 4.2.1). The Annotator manages

the relationship between the base document and annotations by making appropriate

use of the operations Speed, Direction, Pause and Position on the rate

interface.

4.7 Conclusions

The implementation of the application on the annotation of continuous media (music has

been considered) has focused on interaction. User interfaces have been presented and deliv­

ery of combined reactions between the base-document presenter and the annotator has been

examined. The major issue, however, has been the interaction among the components of the

application. This has been possible by the definition of interfaces encapsulating operations

(and data) and associating them with objects that implement the operations. ‘Client objects’

can invoke operations on interfaces provided by ‘server objects’. ANSAware supports ob­

ject binding and communication, and a mechanism developed to support rate control has

been used to enable synchronisation between the objects that participate in the presentation

CHAPTER 4. IMPLEMENTATION 93

of continuous media.

The use of services not especially designed for the purpose of the application has been

important to check their consistency. They have proved themselves reusable in general;

in fact, the building of the application has benefited from the reuse of code and objects.

Nevertheless, the implementation has contributed to the improvement of some of those

services. In the next chapter, the performance of some of the temporal access control

operations, whose implementation has been discussed here, is measured to see whether

further improvements in the implementation are necessary.

Chapter 5

Performance of the Implementation

The performance o f the application in response to a specific set o f operations is

examined. Response times are measured to represent the performance evolution

in the different stages o f the application’s development. The test environment is

a local network of SUN SPARCstations 2 and 10, with all the datafiles residing

on the same disk. File access and network transmission times are considered

in the measurements, and the results are presented specifying the factors that

mostly affected the response times for the various operations.

5.1 Introduction

To evaluate the application’s performance, response times to user actions were measured.

This chapter identifies the factors that affect such response times and discusses the im­

provement of the performance resulting from the measurements. File access, CPU and

memory use and network transmission are some of these factors. These are considered

in the measurements, which take into account the processing power of machines in the

94

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 95

test environment. The application’s response to the user events selected for observation

(cf. section 5.2) involves actions performed in components distributed across the network.

Figure 21 illustrates the application’s notion of response time, which considers the time-

interval that includes the user’s input and the beginning of the last action taken in the

application to respond the user-request. This is in accordance with the approach described

in [Shneiderman 92] that considers the initial time of the responding action, instead of the

end-time. That is necessary for continuous media.

C om pon en t

C om ponen t^

C om pon en t c

user-input

action 1 (th rea d)

action 2 (th rea d)

response time

C om pon en ta controls the GUI that accepts user inputs.

Figure 21: Response time in the application.

One can consider delays in two distinguished ways: (a) an acceptable delay, so that one

can work with it, and (b) a delay that if it is noticed, it can make the work difficult. Some

considerations that relate to our work include:

• confirmation of physical actions: in a classification of response times requirements (in

[Coats 87]), the interval 0.1-0.2 second is recommended as acceptable, considering

that the user should expect an almost instantaneous feedback that the action has taken

place;

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 96

• human perception threshold time: Nicolau [Nicolau 90] talks about direct manipula­

tion interfaces [Schneiderman 83], characterised by concurrent input and the provi­

sion of timely positive feedback in response to user actions, and says the feedback

provided should appear instantaneous to the user, meaning that a maximum response

time should be on the order of 10-40 milliseconds, i.e. human perception threshold

time;

• maximum acceptable delays for various media: Little [Little 94] cites [Hehmann 90]

for, among others, an acceptable delay of 0.25 second for voice and for video. This

can be the case, for example, in the context of satellite transmission;

• human perception o f jitter and media synchronisation', table 4 derives from results

of experiments presented in [Steinmetz 96],

Media Mode, Application QoS
video audio lip synchronisation + / - 80 ms
audio animation event correlation (e.g. dancing) + / - 80 ms

audio loosely coupled (e.g. background music) + / - 500 ms

Table 4: Quality of Service for continuous media synchronisation.

The experiments shown in this chapter concentrate on response times to user requests in an

audio presentation. Our experience with the application indicates that an acceptable delay

should be in the interval 50-80 milliseconds.

The feedback provided by the implemented application involves (a) a slider, whose

position in the timeline of a graphical user interface (GUI) represents the time passing,

and (b) the presentation of a music. The experiments observe such graphical and audio

feedbacks by measuring the initial times corresponding to the slider positioning and the

audio playback, respectively.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 91

Two types of experimental results are shown. First, there are the results which will sup­

port the understanding of the application’s performance. These include time measurements

of file manipulation, involving opening and reading, and remote procedure calls (RPC)

regarding data transfer. Variation of transfer size is studied to indicate its effect on file

access times, as well as on communication times. Then, the results of measurements of

response times to the events identified are presented to characterise the actual performance

of the application, according to its development stages.

5.2 Observable Events

Time is measured referring to the

• operation request: a button click by the user,

• slider positioning: system’s update of the slider’s position and state (paused or

continuing) in the timeline, and

• audio response: halt, or play from a specified position in the playback time.

Figure 22 shows the achievement of the skip operation, in which the user expects to

view a jump of the slider in the timeline, equivalent to 10 seconds, and to listen to the

audio accordingly. Notice the use of the rate mechanism, controlled by the rope server

(vrsServer), responsible for spreading the new position information to the storage server

(assServer), which responds by reading the audio file from the corresponding position

(converted to bytes). assServer calls the client back, immediately before the new audio

spurt is delivered to the audio server, to inform that the playback is starting (after the skip).

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 98

Figure 22: Achievement of the request to skip.

The other operations of interest are:

• play from position 0 (zero),

• pause at current position,

• continue from current position, and

• stop, reseting position to 0 (zero).

5.3 Measurement Modules

To make the measurements, two modules were defined: one to collect data about events

during execution of the application, and another to make auxiliary measurements that will

help explain the results obtained in the main experiments.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 99

5.3.1 Run-time Module

The design of this module and the analysis of data to calculate the response times relative

to the selected operations are discussed here.

Design

The module was designed to capture data, especially time o f occurrence, about the observ­

able events described in section 5.2. It was incorporated in the application, so the main

concern was to have as little effect as possible on the behaviour and, consequently, on the

performance of the application. The design considerations include

• the approach used to capture data about the occurrence of an event; thus, for each

operation, data are captured relative to the following events: the user request for

the operation, the slider positioning in the timeline of the GUI in response to the

operation requested, and the corresponding response by the audio sub-system;

• the use of callbacks to indicate the audio response;

• the accuracy of the measurements, i.e. how close is the relationship between the data

captured and the actual occurrence of an event; and

• the procedure to store the data captured.

The approach. In general, the approach used is to create information about an event as it

happens, that is, immediately after its occurrence. The algorithm for this general approach

is presented as follows.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 100

Algorithm 1:

event;
get occurrence time,-
record event id, occurrence time

However, for events that wait for certain actions to complete, time is captured prior to

their triggering (see following algorithm). For events which take long to finish, it may be

desirable to record the return time too.

Algorithm 2:

get occurrence time,-
record event id, occurrence time,-
event;
[get return time,- record event id, return time]

Notice that the latter approach refers to events that synchronise with other actions, so let us

call the approaches as single-event and synchronisation-event, respectively.

Callbacks. Responsibility for the audio operation, in particular, is given to the audio

storage server (assServer). This has the ability to call back its clients to notify them of

events, such as the occurrence of labels in the stream, cancellation of audio, pause, start,

finish and failures. (More details of this server’s role are given in section 5.5.1.) The

measurements are concentrated in the clients, following the principle of not interfering

much with the behaviour or performance of the system, and they rely on the callbacks to

indicate that an audio event has happened.

Accuracy. The significance of the data will depend on the accuracy of the measurements.

The two main points are: the timing function and the use of callbacks.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 101

To obtain the data to represent the occurrence of events in time, the system function

g e t t im e o f d a y is called, returning the system’s time expressed in seconds and microsec­

onds. These are used to calculate the time in milliseconds, the granularity needed. The

resolution of the system clock is sufficient and, with the call as near as possible to the

event’s instruction, the result is accurate enough to indicate events time.

Assuming that the storage server was designed to deliver callbacks as close as possible

to the actual audio event, only latency needs to be considered. However, according to the

RPC times measured in the auxiliary tests (see section 5.3.2 - table 7), differences are of no

more than 5 ms, which does not imply any large inaccuracy (see figure 23). Additionally,

system interrupts and scheduling are potential problems, but the consistency of the results

obtained suggests that they are not major sources of error.

MusicPIayer assServer audioserver

Figure 23: Accuracy of audio callbacks.

Data storage. During execution the system checks the environment variable STAT, which

defines whether statistics are generated or not. The data collected in the event monitoring

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 102

are put in a buffer, which is emptied to a disk file either from time to time or when it gets

full. The use of buffering follows the idea of disturbing the performance of the application

as little as possible.

Data analysis

The resulting log-files can be analysed by the programs l o g p l o t and l o g e v a l . Vi­

sualisation of the events as they happened in the session is given by l o g p l o t , whereas

operation times, averages and percentages are evaluated by l o g e v a l . This is responsible

for separating the sequences of events corresponding to specific operation types (e.g. skip,

pause, etc.), calculating their response times individually, and giving operation averages

and percentages by time intervals. The results are shown in section 5.5.3.

5.3.2 Auxiliary Measurements

In addition to observing selected events while the application was running, there were

measurements of times corresponding to file manipulation and process communication, as

these represent the most important and the most time-consuming actions of the system.

The tests were made using a simple client-server structure, in which the client program

performs the file manipulation and sends blocks of data to the server. Considerations

included process location, processing power, block and message (data) sizes (granularity).

The main objective is to discuss the results based on the fact that the application’s audio sub­

system performs the audio transfer by repeated remote procedure calls, each sending 520

bytes of data, of which 512 bytes represent audio. Also, the effect of general communication

of various packet sizes in the application’s performance can be examined.

The main components of file manipulation are file opening and block reading. The first

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 103

block-reading is distinguished, as it is believed to be slower than subsequent readings, and

therefore, could affect the performance of the play operation, for example. The algorithm

(in dpi notation) that represents the basic client and server behaviours is given as follows,

remembering that communication is done via remote procedure call1 (RPC).

Algorithm 3:

Client Server

gettimeofday(&tA,NULL);
/* file opening */

f = open(file);
gettimeofday(&tB,NULL);
/* first read */

read(f,buffer,buffer_size);
gettimeofday(&tC,N U L L);
open_time = tB - tA;
read_time = tC - tB;
gettimeofday(&tA,N U L L);
/* RPC */

! {tB} <- server$Op(buffer)
latency = tB - tA;
gettimeofday(&tA,NULL);
/* read */

read(f,buffer,buffer_size);
gettimeofday(&tB,NULL);
/* RPC */

int server.Op (in, out)
gettimeofday(&tB,NULL);
*out = tB;
return 1 ;

'Clock synchronisation of different machines on the network used for testing is considered satisfactory.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 104

! {tC} <- server$Op(buffer)
read_time = tB - tA;
latency = tC - tB;

File manipulation

The calibration-tests were carried out using the same audio-files employed in the application.

The machine on which the files reside is referred to as “local SPARC 10”. (The experiments

make use of SUN’s network file system (NFS) for remote access.) System load can be

considered as normal, since the tests were done at normal working hours.

File opening. Times for a file open were much faster on the local workstation than on the

other machines. Locality was more significant than processing power - compare

values from the SPARC 10s (local and remote). Table 5 summarises the results.

SPARC 2 SPARC 10 Local SPARC 10
Average (ms) 12.55 8.85 1.66
No. of experiments 35000 35000 36300

Table 5: Times for a file opening by machine type.

Block reading. Table 6 shows the average times needed to read a data-block for various

grain sizes. The factors that influenced the results were machine load and processing

power. The remote SPARC 10 was less loaded than the local one, and times were

significantly better in the remote one in spite of the locality aspect. The fact that

SPARCs 10 are faster than SPARCs 2 is confirmed by the comparison of the results

obtained in these two types of machine. The results confirm that the little differences

of time to read small and large blocks of data represent an advantage when using

larger blocks because less disk access is required. Observe that second readings are

faster than first readings due to caching in the file system.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 105

Reading times (ms)
Grain size

(byte)
SPARC 2 SPARC 10 Local SPARC 10

1st r 2nd r 1st r 2nd r 1st r 2nd r
1 16.78 0.35 7.25 0.14 7.43 0.16
4 17.02 0.39 7.30 0.14 7.58 0.16

16 17.11 0.40 7.32 0.14 7.62 0.17
256 18.02 0.40 7.51 0.15 7.68 0.17
512 18.31 0.44 7.72 0.16 7.85 0.21
520 18.33 0.44 7.71 0.17 7.71 0.21

1024 24.02 0.51 9.13 0.18 9.13 0.23

Table 6: Block-reading times by machine type.

Latency

The times needed to transfer varied-sized messages of data from one object to another are

given in table 7. Once again, local transfer was the key factor. The effect of granularity

Grain size
(byte)

Client remote
on a SPARC 2

(time in ms)

Client remote
on a SPARC 10

(time in ms)

Client local
on a SPARC 10

(time in ms)
1 3.06 2.27 1.63
4 3.30 2.89 1.64

16 3.53 3.10 1.73
256 3.95 3.93 3.02
512 4.30 4.20 3.30
520 4.36 4.23 3.30

1024 4.82 4.30 3.44

Table 7: Latency times by machine type.

was observed, and the results show how expensive it is to transfer small amounts of

data in comparison with packets involving 256, 512, 520 and 1024 data bytes. Also, as

suggested in [Vaidyanathan 90], host speed played an important role in determining the

communication and the computational performance, contributing to faster data transfer -

compare the columns referring to the client on a SPARC 2 and on a SPARC 10, which is

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 106

faster than a SPARC 2.

5.4 Test Environment

The tests were performed on a local network consisting of SUN SPARCstation 2s and 10s

running Unix, and communicating over a 10Mbps Ethernet, as seen in figure 24. The

station where the audio files reside is a SPARC 10, labelled “local”. (SPARC stations

provide 64kbps PCM speech input and output.) The ANSA-trader usually runs on this local

machine - although traders can be set to execute on other hosts.

SPARC 10 SPARC 10 SPARC 2

"local" station 3 workstations
/ \

7 workstations

Ethernet

Figure 24: Test network.

5.5 Development Stages

The application development took place in three stages. Each of them achieved a different

level of performance corresponding to the techniques used. The main design issues are

now presented, followed by the description of the development stages.

5.5.1 Points of Attention

In the following, areas in which improvements could be made are identified. Attention

is given to audio-based aspects because of the amount of data involved, which makes the

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 107

achievement of QoS requirements difficult in this area.

Audio-data manipulation

It is clear that the combination of file opening, data reading and communication represents

a cost that can be reduced if appropriate policies are chosen.

Communication between the rope server and the audio storage server

The design of the audio (sub-)system has, since the early versions, been based on clear roles

for each of its components. The rope server is responsible for the manipulation of the rope

abstraction, which in practice may be composed of different audio data files, each of which

is treated by the storage server, and this communicates with the audio server, the controller

of the workstation’s audio device, with respect to the transfer of incoming or outgoing data.

In the application, the rope server also acts as the rate server. The components of a rate

community are all responsible for generating rate information, which must be synchronised

via the server. The clients are expected to perform their rate-based tasks independently.

However, due to the relationship between audio files and ropes (i.e., a single file may or

may not represent a rope), the storage server sometimes needs to interact with the rope

server to manipulate the audio data. Excessive communication between these two servers

may degrade the performance of the application.

Audio storage server’s role

During playback: in the “reading loop”, besides reading data from the audio file and

making RPCs to send these data to the audio server, the storage server’s additional tasks

include checking

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 108

(a) loss of synchronisation: difference between the rate position and the amount of data

read. If an acceptable discrepancy is violated, data reading has to be adjusted - this

procedure is especially useful for the skip operation;

(b) clock status: continuing, paused or stopped. In particular, when the logical clock is

paused the thread’s behaviour is

while (paused) {
sleep (rums)
keep_audio_interface_alive ()2

}

(c) change of direction/speed.

In each case, appropriate actions are taken if the situation changes. These actions may

impose additional delay on the communication between the storage server and the audio

server.

While recording: the performance experiments do not involve audio recording, so the

storage server’s role in this operation is not considered here.

Why sleep? The call to s l e e p in a thread is used, basically, for two reasons:

(a) because the thread needs to wait for a certain action to happen in a different object,

and cost considerations do not allow the use of a proper synchronisation mecha­

nism like w a i t (c o n d i t i o n) ; instead, it has to use s l e e p , whose semantics is

w a i t (t i m e - p e r i o d) . Moreover, t i m e - p e r i o d has to be guessed because

there is no guarantee of when the expected action will actually happen;

2The audio server is prepared to discontinue service on an interface if it is not used for 60 seconds, so
what k e e p _ a u d io _ in te r f a c e _ a l iv e does is send an (empty) spurt to use the audio interface.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 109

(b) in the case where actions in a sequence can be, or are required to be, separated in

time (i.e. not executed immediately, one after the other) in the thread - an example

of this is the procedure to keep the audio interface alive described above in (b) of the

audio storage server’s role during playback.

ANSAware responds to a request to s l e e p (t i m e - p e r i o d) by making the thread sleep

for approximately the period of time required.

5.5.2 Stages

The measurement strategy was defined in parallel with the application’s development, so

stage 1 represents the use of measurements when the measurement strategy first became

stable and the tools were reliable. Thus some of the improvements had already been

included.

Stage 1. This stage is characterised by

(a) the audio storage server interacting with the rope server for help in the following

conditions:

• loss of synchronisation caused by intentional rate changes or by the data

reading being too much ahead or behind the rate position,

• pause of the logical clock,

• change of direction and

• change of speed.

(b) The routine to keep the audio interface alive (see item b in audio storage

server’s role) sleeps for 25 ms within the loop that monitors the rate information;

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 110

(c) opening of the audio file was already done in the operation of rope registration,

avoiding its effect of delaying the data processing;

(d) in the rate community, the storage server was the last rate client to receive

broadcast information, which could increase the delay in relation to its reaction

to certain changes; and

(e) before calling the operation that reads audio data, the rope server slept for 25 ms

to allow the storage server to receive the clock information.

The behaviour of the operations under observation is given in figure 25 - operation

calls beginning with a capital letter represent RPCs.

PLAY SKIP PAUSE
RatePosition(0) RatePosition(curr_time+10000) RatePause(true)
VrsPlayRope get_rate_details get_rate_details

AssEnableRead (* re-schedule: return (* re-schedule:
sleep(25) to VrsPlayRope *) return to
AssPlayRope AssEnableRead VrsPlayRope *)

get_raCe_details sleep(25)
read AssPlayRope
AudioSpurt get_rate_datails

read
AudioSpurt

CONTINUE
RatePause(false)

(* from VrsPlayRope *)
AssEnableRead
sleep(25)
AssPlayRope

get_rope_de tai1s
read
AudioSpurt

Figure 25: Behaviour in stage 1.

In figure 25, observe that skip and pause return to V rs P la y R o p e ; continue resumes

from that operation and, like skip, they present the same behaviour as play from

V rs P la y R o p e . Skip is likely to have the worst performance amongst these user

operations.

Stage 2. The features are:

(a) the problem of excessive communication between the interfaces ass (audio

storage server) and vrs (voice ropes server) began to be tackled by combining

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 112

The audio storage server is prepared to react to rate changes without needing to

re-schedule with the ropes server, as long as the changes imply that the same

audio file will still be used - remember that a rope may be composed of more

than one file. (Music ropes are, usually, formed by one single file.)

(b) The rope server no longer sleeps before calling the audio-read operation on the

storage server.

Since skip and continue can take advantage of (a), only play can benefit from (b) -

see figure 27.

PLAY SKIP PAUSE
RatePosition(0) RatePosition(curr_time+10000) RatePause(true)
VrsPlayRope get_rate_details get_rate_details

AssPlayRope (* try to re-sync keep_audi o_i t f_ali ve
get_rate_details without returning
read to VrsPlayRope *)
AudioSpurt read

AudioSpurt

CONTINUE
RatePause(false)

(* proceed after
keep_audio_i t f_alive
finishes *)

read
AudioSpurt

Figure 27: Behaviour in stage 3.

5.5.3 Results

Stage 1

Performance of the selected user operations can be seen in figure 28; these are the average

results obtained in the experiments made in this stage. As expected, skip presents the

worst performance, while all the other operations show similar results, with play being

slightly worse; this is not surprising, given that skip is the most complex of the operations

to realise and play starts from the music player calling VrsPlayRope (after requesting

RatePosition (0) - see figure 25), whereas continue, for example, already resumes

from VrsPlayRope.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 113

PLAY SKIP PAUSE CONTINUE

Figure 28: Performance in stage 1.

Stage 2

This stage showed a general improvement of the performance of the operations (see fig­

ure 29). The reduction of sleep-periods, both in the routine that keeps the audio interface

alive and when the rope server sleeps to allow the storage server to receive the clock infor­

mation, significantly contributed to the improvements. Improvements were best in relation

to play (25%), skip (33%) and continue (56%).

average response times (ms)

PLAY SKIP PAUSE
□

CONTINUE

Figure 29: Performance in stage 2.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 114

Stage 3

In this stage the target of 50-80 ms, as the maximum acceptable response times, has been

achieved for all the operations being studied (see figure 30). Again, control over sleep-

periods - in fact, the ropes server no longer sleeps before requesting the storage server to

start reading audio data - represents an important factor in the performance of applications

containing concurrent threads. In this stage, the operation play showed the best performance

improvement.

average response times (ms)

PLAY SKIP PAUSE CONTINUE

Figure 30: Performance in stage 3.

Performance improvement

Performance of distributed applications, whose components may consist of concurrent

threads, can be improved through control over communication and removal of unnecessary

delays. Excessive communication, granularity of data transfer (to/from disk and over net­

works), buffering control, and trade-offs imposed by the applications are some factors that

should be observed. Additionally, machine loading, network traffic, etc., are factors that

can result in differences in performance. (Different machines were used in the different

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 115

testing-sessions trying to minimise the influence of such factors in the results.) After con­

sidering these factors, the results shown in figure 31 clearly indicate that the improvements

in the performance of the observed operations were mainly achieved through the alterations

made in the application in each of the development stages. Note that the algorithm for

pause was the least modified throughout the stages because it was the simplest and was

well established since stage 1. This explains the little progress made in relation to this

operation’s performance, i.e. only 31% overall improvement, while play showed 78%,

skip, 65%, and continue, 31%. Also, observe that continue’s performance deteriorated

from stage 2 to stage 3, but this can be explained by the fact that not returning to the ropes

server during a pause, the reading operation (of the storage server) tries to keep the audio

interface alive, sleeping from time to time and awaking to check if continue has been

requested, and this might make it discover the new status after some delay.

200

Figure 31 : Evolution of performance in the different stages.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 116

Examples

Examples of response times achieved with respect to the operations examined in the last

stage of development and measurement are given in the following figures (32, 33, 34 and

35).

button —
I 1 , 1 I I I I I 1

play

slider —

audio —
play

J____ I____ I__ l_ l____ I____ LI___ L
-5 0 5 10 15 20 25 30 35

Time (ms)

Figure 32: Example of response time for p l a y in stage 3.

button —

slider — -

audio — •

......... i skipÉ..........7

skip

play

__ ____ Lj_____
5 10 15

Time (ms)
20 25

Figure 33: Example of response time for s k i p in stage 3.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 117

button —

CD>LU

: pause
•*........

slider —

audio —

\ paus

20

e

40 60
Time (ms)

pause
....-

80

Figure 34: Example of response time for p a u s e in stage 3.

................ s
cont

£.................
nue

>V

...............
move

.................

Ev
en

t

l)
0

\
\

\

AK .

play

i

__________ __________

/TN

1

!
i

i

__________ i__________ ________

10 15 20
Time (ms)

25 30 35

Figure 35: Example of response time for c o n t i n u e in stage 3.

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 118

5.6 Conclusions

This chapter has shown experiments made on the application implemented, in relation to

response times to user requests affecting an audio presentation. A reaction of the application

is a combination of actions taken by its distributed components. The mechanism developed

to allow application components to interact and synchronise the logical clocks they control,

forming a rate community, has been studied and has proved satisfactory in the application.

The experiments involved measurements of the times of the user request, the positioning

of the slider in the timeline of the GUI, and the reaction of the audio storage server to

start/stop sending data to the audio server, which controls the audio device in the workstation

on which it runs. Other related measurements had to be made to study the delays for a

remote procedure call (the amount of data transferred with the call across the network was

also considered), and for opening a disk file and reading data blocks from it, either locally

or remotely (in a LAN and supported by a network file system). Granularity in the transfer

of audio data has been studied, but considered not an issue because of the existing trade-off

between data transfer from an application component (storage server) to another (audio

server) and buffering control within the audio server, given the low throughput of 64 kbps

supported by the workstations used.

Two modules were developed to realise the measurements required: one of them

involved two objects (a client and a server) to make auxiliary measurements of file ma­

nipulation and RPC times, and the other involved a strategy to measure event times in the

application. Additionally, two programs were developed to calculate and analyse the re­

sponse times for the operations studied. The study was realised in three stages representing

modifications made in order to improve the performance of the application; some of the

CHAPTER 5. PERFORMANCE OF THE IMPLEMENTATION 119

alterations allowed a fine tuning of the audio sub-system.

The results presented are quite satisfactory, given a reasonably difficult target set initially.

The imposed maximum delay on the order of 50-80 ms for the response times of the specified

operations has been confirmed as acceptable. Although experiments relied on callbacks to

represent event times, which may not be absolutely precise, the accuracy of approximate

results has been discussed and suggested as reliable. The presentation of the results in stages

helped show the development of the application and identify the importance of systematic

alterations for the evolution of the performance.

Analysis of the results, considering the modifications that most improved response,

provides the following suggestions for use in distributed applications:

• A major factor in the application’s performance was the excessive message exchange

between the storage and the rope servers. Better-balanced tasks may increase com­

ponent independence, avoid concentration of decisions, and improve cooperation,

which can be based on better-quality communication (message substance). Tools

to verify and provide tasks balance in a specification would be extremely helpful to

application designers.

• Applications should be given some control over system functions such as s l e e p ,

in addition to choosing parameters for and using these functions adequately. For

example, an application should be able to interrupt a thread’s sleep if a certain

condition happened. In the case of the application presented, this could help improve

the performance of the continue operation.

Chapter 6

Analysis of the Approach

This chapter analyses the approach used to model distributed continuous media

applications in terms o f an object-based description of support for continuous

media and of software reuse. Support for continuous media is discussed in

terms o f rate control and stream handling, and it is compared with a different

approach. The discussion about reuse involves the reuse of interface specifi­

cations, code reuse, and the reuse of the component objects presented in the

model.

6.1 Introduction

This thesis has discussed the development of distributed applications involving continuous

media. Therefore, it is necessary to analyse the approach used to model the applications in

the terms of an object-based description of support for continuous media (i.e. synchronisa­

tion and real-time support) and of software reuse.

The approach is based on the ANSA architecture, as representative of the ODP model.

120

CHAPTER 6. ANALYSIS OF THE APPROACH 121

Objects offer interfaces, abstracting the services they provide, and encapsulate data and

behaviour. (A distinction is made between architectural services, such as trading, and

application services, provided by application objects.) Distribution can be supported by

placing the objects in different locations and they can interact with each other by invoking

operations defined in the interfaces provided. The recurring objects of the model proposed

in this thesis are illustrated in figure 36.

/ \

Figure 36: Structuring continuous media applications in terms of support for synchronisa­
tion and streams.

CHAPTER 6. ANALYSIS OF THE APPROACH 122

The model identifies a class of reusable continuous media subsystems which can be

integrated into applications via their control interfaces, but which encapsulate the details

of continuous media transmission and associated resource management. Thus an audio

subsystem consisting of a rope server, a storage server and a server for presentation/capture

of the continuous medium can be encapsulated so that its only external interactions are via

the control interfaces which start and stop activities, report events and control the rate of the

presentation. The details of the medium handling are within the encapsulation boundary of

the subsystem.

In the model, there is thus a clear distinction between rate control and stream support -

achieved by identifying a stream transmission subsystem involving the storage server and

the device control server (e.g. the audio server), as shown in figure 36. Rate control is

independent of the stream transmission subsystem and is jointly performed by the server

that manages the rope abstraction, which represents a continuous medium sequence, its

clients in the application, and the storage server. The separation from continuous medium

transmission makes the rate control mechanism reusable in a number of different applica­

tions. Continuous medium transmission is encapsulated so that optimised stream handling

is carried out by the storage server and the server that controls the devices for continuous

medium presentation/capture. It is this server that does most of the buffering control to

support the real-time requirements of a continuous medium.

6.1.1 Emphasis on Abstraction

The rope server provides an abstraction called a rope, based on the concept of voice rope

introduced in [Terry 88], as a sequence of segments containing continuous media data. This

simplifies the relationship between the rope server and its clients in terms of the operations

CHAPTER 6. ANALYSIS OF THE APPROACH 123

related to continuous media. The clients in an application request for a rope to be played,

and are not concerned with the storage structures, such as a file or a sequence of frames,

for example.

The benefits provided by the rope server include abstracting clients from the complexity

of managing streams (a rope is a simple structure representing a continuous medium, that

can be edited, stored in a database, etc.), and the possibility of attaching labels to a rope,

enabling actions to be taken when the labels are found during the rope playback. From the

application developer’s point of view, the rope server is like a database server that provides

clear operations to manipulate ropes, such as, search for a rope, build a rope, store, play,

record, etc.

6.1.2 Separation between Rate Control and Continuous Media Trans­

mission

Applications do not need to worry about continuous media transmission details, as they

reuse a subsystem developed to encapsulate stream handling. Rate control is used as a

synchronisation mechanism for different activities in an application. An example of an

activity that needs rate control is the positioning of a slider in the time-scale of a GUI,

so that it can represent time passing. Real time constraints on the continuous media need

only be met at the point of presentation. Thus, for example, the exact timing of reads

in the storage server is not important, so long as the correct timing is reconstructed on

presentation, and there is sufficient buffering to accommodate the timing variation. What

the storage server must do, however, is ensure that the mean rate and position correspond

to that requested in the application. This depends on a synchronisation process which can

CHAPTER 6. ANALYSIS OF THE APPROACH 124

be carried on out-of-band with respect to the continuous medium transmission.

The components that operate the store and that manage the continuous media abstrac­

tions, plus their application clients, form a rate community when a particular presentation

is to be controlled. For example, in an application that requires synchronisation between

video and audio, the video-related and the audio-related components should participate in

the same rate community, in spite of the different bandwidth requirements. In the music

application described in this thesis, the annotator and the music player, together with the

rope server and the audio storage server, form a rate community with respect to the mu­

sic presentation, and the annotator can request another community to be formed in order

to allow the presentations of music and annotation to have different rates, exploring the

flexibility of the model.

These levels of abstraction and separation of concerns are what distinguish this work in

terms of real-time support and reusability. In the following sections, these are each analysed

in more detail aiming at demonstrating the benefits of the proposed approach.

6.2 Real-time Support

The real-time requirements in continuous media applications include

(a) synchronisation: which takes two forms:

(i) event-driven: the system should respond to given events within a specified

delay-interval - remember that we defined a maximum acceptable delay on the

order of 50-80 ms for the response to user events in Chapter 5;

CHAPTER 6. ANALYSIS OF THE APPROACH 125

(ii) multiple stream synchronisation: here synchronisation implies the occurrence of

multiple events at the same instant in time. For two or more sequences of events

(e.g. sequences of audio and video frames) differences between corresponding

events should not exceed a certain synchronisation tolerance;

(b) stream handling: a distinct form of synchronisation which enables communication

and presentation at a defined rate (e.g. 30 video frames/second). Here data transmis­

sion from source to sink in a distributed environment is considered.

Our approach allocates specific functions, such as GUI control, storage, device control, etc.,

to application objects. Real-time support in the application can be provided by individual

objects or by communities of them. Observe the decision to provide support for real time

in the application level, not requiring any special service from the architecture, so that

the application can be ported to a variety of similar architectures, so long as they provide

general support for distributed applications.

6.2.1 Synchronisation

Multimedia applications require synchronisation mechanisms that extend the idea of con­

trolling the order of events. Real-time synchronisation is needed to control the timings of

interactions between multimedia activities. To meet such extensive requirements, some ask

for the existence of synchronisation mechanisms in the communication subsystem and for

operating system support [Coulson 95]. However, open-endedness can be quite compro­

mised by such requirements, because the applications can become dependent on the specific

systems that provide the mechanisms needed.

CHAPTER 6. ANALYSIS OF THE APPROACH 126

In contrast, our approach of including rate control in the application satisfies the re­

quirements for supporting synchronisation and for open-endedness. The model relies on

well-engineered application components, which may still require some operating-system

facilities, but no special mechanism that cannot be found in any system. Moreover, sep­

arating synchronisation from communication lets the choice of rate control be separated

from details of continuous media transmission and allow reuse in a number of different

applications - see the discussion about reusability in section 6.3. The key to this is the

concept of a rate community.

Rate community

A rate community is formed by objects interested in synchronising some of their activities.

Each object defines logical clocks with respect to real time. For each set of activities to

be synchronised, a rate community is established orchestrating local clocks to give global

synchronisation; thus, objects can be engaged in different communities if they wish to have

some of their concurrent activities controlled by specific logical clocks (see figure 37). Each

object provides interfaces of the type rate (discussed in 4.4.1) in order to keep the clocks

synchronised in terms of position (in time), speed and direction. Each clock is then used

within an object to ensure that the associated fine-grain activities are performed on time.

6.2.2 Stream Handling

Transmission of continuous media data from source to sink in a distributed environment

has been considered in several works [Nicolau 90, Anderson 91, Gemmell 95, Nahrstedt 95,

Coulson 95], Some of the issues involved are definition of sample size, communication

delays, transfer mechanism (RPC, etc.) and buffer management.

CHAPTER 6. ANALYSIS OF THE APPROACH 127

activities controlled by
clock engaged in community 1

activities controlled by
clock engaged in community 2

Figure 37: Rate communities in an application.

CHAPTER 6. ANALYSIS OF THE APPROACH 128

In the application discussed in this thesis, which involves the annotation of music,

audio transfer occurs between the storage server and the audio server (providing the stream

support in figure 36) and this is done by repeated RPC to provide flow control. The

operation used for data transfer (Spurt - see 4.4.5) can receive 512 bytes of audio data,

which are put in the input queue for the device driver, and can return another 512 bytes of

audio, taken from the output queue (see figure 38).

Figure 38: Buffering in the audio server.

The balance moves between the input and the output queues depending on the average

speed of the RPC and presentation mechanisms. In non real-time operating systems, such

as UNIX, if data buffering is limited, audio can be disrupted by delay caused by privileged

activities. If there is overloading there can be data loss. Therefore, the audio server

includes a control mechanism to stabilise the loop buffering. It is the audio server which is

responsible for maintaining the rate of presentation through control of buffering. Observe

that this control can be concentrated at the audio server, with buffering at the storage server

being sufficient to support disc operations (read/write). These disc operations do not need

to be positioned accurately in real time, but only need to meet the rate constraints, and

so there is no need for an additional component to control rates in the transmission layer.

Applications are freed from the task of doing additional buffering control, since it is done by

the device control server (e.g. audio server) and the storage server used by the application.

CHAPTER 6. ANALYSIS OF THE APPROACH 129

6.2.3 Summary of the Support

A summary of the real-time support, as proposed in our approach, is given below:

• real-time support is provided in the application level,

• rate control is implemented by a synchronisation mechanism based on logical clocks:

a time-dependent activity in an application component is performed associated with

a logical clock, which is monitored internally;

• distributed components of an application synchronise their logical clocks through a

rate community, enabling the synchronisation of the activities associated with those

clocks;

• a continuous medium sequence is represented by an abstraction called a rope, so

that clients in an application do not get involved with details of the storage and

transmission of continuous media data;

• synchronisation is separated from communication, allowing rate control to be sepa­

rated from continuous media transmission - synchronisation is out-of-band',

• the details of continuous media transmission are encapsulated in optimised stream

handling in the device control component used by applications - buffering optimisa­

tion, for example, does not need to be an issue in the development of an application.

The satisfactory performance of the test-application, as shown by the results of the mea­

surements presented in Chapter 5, demonstrate the suitability of the support for real-time

activities provided by the model.

CHAPTER 6. ANALYSIS OF THE APPROACH 130

6.3 Software Reuse

Software reuse is the process of creating software systems from existing software rather than

building them from scratch [Krueger 92], The model presented here, based on objects with

clear and simple functions and clean interfaces, promotes software reuse in the development

of distributed applications involving continuous media by concentrating on the reuse of

distributable objects. Krueger talks about software artifacts that can be reused in the

construction of a new software system, and classifies them as source code fragments,

design structures, module-level implementation structures, specifications, documentation,

etc. The techniques for software reuse involve abstracting, selecting, specialising, and

integrating software artifacts.

Abstraction is the essential feature in software reuse. Concise and expressive abstrac­

tions are needed for developers to figure out what an artifact does, when it can be reused,

and how to reuse it. After selecting an artifact for reuse, a developer can specialise it

through some form of refinement, such as transformation, application of constraints, provi­

sion of parameters, etc. Selected and specialised artifacts are combined into a new software

system through an integration framework. In the ANSA model, the existing integration

framework provides facilities for interface references to be exported and imported within

an application, so that the corresponding services they represent can be provided and used,

once the objects that implement them are integrated into the application.

The discussion presented in the following sections analyses software reuse in the model

for the development of distributed continuous-media applications in terms of

(a) reuse of interface specifications: this is the case when an object must provide a

collection of functions, but the way it should behave to achieve such functionality

CHAPTER 6. ANALYSIS OF THE APPROACH 131

does not matter - only the interaction arguments and results are important;

(b) reuse of code: this refers to source code (e.g. the rate control mechanism) that can

be reused in the implementation of similar activities in distinct components of an

application or in similar activities in different applications; and

(c) reuse of components: this refers to the reuse of servers, or components that provide the

kind of services capable of supporting similar requirements of different applications

(e.g. the rope server and the audio server).

6.3.1 Reuse of Interface Specifications

Our approach requires that the interfaces in an application be clean, i.e. provide a specific,

limited type of service, to support reuse, as this makes the model clear and simple. Consider

the interface c a l l b a c k (page 78) as an example; in applications involving continuous

media, the storage server reports events related to the playback/recording of the rope

abstraction via an instance of this interface provided by the clients that wish to know about

the events. The specification of the interface is described (in idl - interface description

language) as follows:

callback: INTERFACE =
NEEDS ass;
BEGIN
-- Operation signatures

Failed: OPERATION [vrs_rope_handle : RopeHandle;
reason : AssStatus]

RETURNS [];

CHAPTER 6. ANALYSIS OF THE APPROACH 132

Playback/recording cancelled by a user request
Cancelled: OPERATION [vrs_rope_handle : RopeHandle

RETURNS [];
End of rope
Done : OPERATION

RETURNS
[vrs_rope_handle : RopeHandle]
[1 ;

Label found in the rope
Event : OPERATION [

RETURNS [

vrs_rope_handle
delay :
action :
] ;

RopeHandle;
CARDINAL ;
STRING]

Playback/recording paused
Paused: OPERATION [vrs_rope_handle : RopeHandle]

RETURNS [];
Playback/recording started
Started: OPERATION [vrs_rope_handle : RopeHandle]

RETURNS [];
END.

The clients’ reactions to the events may be different, but the interface used for callbacks

has to be the one described above. Similarly, the interface r a t e 1, for the synchronisation

of distributed logical clocks, is reusable in all applications which require synchronised rate

control.

6.3.2 Code Reuse

This is related to design and code scavenging, as described in [Krueger 92], In code scav­

enging, a contiguous block of source code is copied from an existing system or component.

'Discussed in 4.4.1 and A.3.1 (idl-description).

CHAPTER 6. ANALYSIS OF THE APPROACH 133

In design scavenging, a large block of code is copied, but many of the internal details

are deleted while the global template of the design is retained. The effectiveness of the

scavenging approach is restricted by its informality. In ideal cases, the developer is able to

adapt large fragments of source code without significant modification. In his work, based

on the limitations of code scavenging, Krueger mentions the second truism of software

reuse:

For a software reuse technique to be effective, it must be easier to reuse the

artifacts than it is to develop the software from scratch.

The development of the music-annotator application presented in this thesis reused the

code of the rate control mechanism very effectively, with no significant modification, be­

cause of its clarity and generality. Where rate control is applied for a number of activities,

not specifically associated with continuous media, our model proposes that certain mecha­

nisms be generalised for reuse in different applications or in components of an application.

6.3.3 Reuse of Components

Our model’s notion of component reuse goes beyond the reuse of code, as discussed previ­

ously. Here the model explores the integration framework of ANSA, which allows active

objects to connect to each other as a consequence of having references to communication

interfaces. They can obtain these references by export/import via the trader or by receiving

them as results of remote operations. An object that possesses the reference for an interface

of another object can call operations on that interface. In this sense, an application is built

as a collection of objects linked to each other via interfaces that encapsulate operations

representing services that the objects can provide.

CHAPTER 6. ANALYSIS OF THE APPROACH 134

Component reuse happens in an application when it integrates objects that have been

used in other applications. For this, such objects have to be designed to support a range

of requirements that can be identified in different applications. For example, the rope

server, providing operations on an abstraction such as a rope, representing a sequence of

continuous media segments, and satisfying the requirement for maintaining a database of

ropes, can be reused in a number of applications involving continuous media, provided that

these media are represented as ropes. In fact, for applications involving audio, the entire

audio subsystem (the rope server, the audio storage server and the audio server) can be

reused by simply being integrated into the application, as shown in figure 36.

6.3.4 Reuse in the Model

The model, as seen in figure 36, describes the requirements for the construction of dis­

tributed continuous media applications. This model incorporates features to encourage

reuse, including

• the rope abstraction: this allows continuous media to be kept simple, with a minimum

of associated structure;

• the rope server: since it provides facilities to allow clients to invoke operations on

ropes, and not on more specific and possibly more complex structures to represent

continuous media, the rope server can be reused in continuous media applications

that require dealing with continuous media in an abstract way;

• the storage server: a storage server is a basic requirement in applications that use

stored continuous media - the storage server must be specialised for the type of

continuous medium used, but its control interfaces can be general;

CHAPTER 6. ANALYSIS OF THE APPROACH 135

• the device control server: the model requires that a server (specialised by media

type) exist in an application to control devices (e.g. speakers and microphone) and

encapsulate buffering (as discussed in section 6.2.2);

• the rate community abstraction: objects in an application participate in a rate commu­

nity to synchronise activities by incorporating a reusable mechanism for rate control;

• clean interfaces: this is a requirement in any model designed to support reuse.

6.4 Main Ingredients of the Approach

The major issues involved in the design and construction of distributed continuous media

applications are:

• how continuous media are modelled: the way continuous media are structured and

represented is important to define how they can be manipulated;

• rate control: this relates to stream self- and mutual-synchronisation, i.e. maintaining

presentation rates and synchronisation of multiple streams; and

• continuous media transmission: this relates to resource control aspects of stream

handling, or how the real-time requirements of continuous media presentation can

still be satisfied, considering the variation of communication delay.

The following ingredients of the model proposed in this thesis provide solutions to the

problems described above:

• the rope server: because it lets its clients abstract from the complexity of manipulating

continuous media; in particular, storage and transmission - the rope abstraction allows

CHAPTER 6. ANALYSIS OF THE APPROACH 136

the clients to see it as a simple structure, requesting via a simple interface (cf. v r s in

appendix A.2.2) for a rope to be built, edited, stored, played, recorded, etc., without

knowing what type of medium it represents and how the medium is structured; a

similar rope structure could, for example, be used as a basis for video applications;

• the rate control mechanism: because it allows distributed application objects to

perform time-dependent activities efficiently according to logical clocks that can

themselves be synchronised in a rate community, via a well-defined and clear in­

terface (cf. r a t e in A.3.1). Rate-related variables, such as speed, direction (for-

wards/backwards) and position are controlled, allowing a logical time to be manip­

ulated by a document author or from a user interface. The rate control mechanism

can be applied to many time-varying processes, not specifically related to continuous

media, such as those providing graphical feedback of progress, making it highly

reusable. The response times (i.e. synchronisation delays) reported in Chapter 5 are

satisfactory, demonstrating the efficiency of the mechanism;

• the continuous medium subsystem: in particular the mechanism implemented by the

device control server (e.g audio server) makes the stream transmission subsystem

(involving the storage server and the device control server - see stream support in

figure 36) incorporate all the real-time links to the supporting system - they form part

of the interface to the device - making the control interfaces as simple as possible; the

minimum application involvement is ensured by the encapsulation of stream handling

in the reusable components of the subsystem.

Table 8 shows a summary of the ingredients plus the advantages and disadvantages of

the solutions provided.

CHAPTER 6. ANALYSIS OF THE APPROACH 137

Issue Ingredient Solutions Provided Advantages Disadvantages
Continuous
media
modelling

Rope server Rope abstraction
and simple
interface

• Reusability
• Client objects
abstracted from
details of
continuous media
manipulation
• Continuous
media seen as a
simple structure

Simple abstractions
are fine, as long
as they fit in with
the application,
but if one needs to
do something that
is not modelled
(e.g. speech
recognition) then
a more detailed
control may be
needed

Stream
synchroni­
sation

Rate control
mechanism

Logical clock,
rate community,
well-defined
interface
and clear
operations

• Wide
applicability
• Easy
manipulation

Possibly less
precise than
special-purpose
synchronisation
mechanisms

Continuous
media
transmission

Stream sync,
subsystem

Encapsulated
stream handling

• Very simple
real-time links
between the sub­
system and the
supporting sys.
• Minimum
application
involvement
• Reusability
• Portability

Possibly less
efficient than
system-supported
mechanisms,
because there
can be extra
latency
following control
operations, and
some additional
communication
cost

Table 8: Main model ingredients to be included in distributed continuous media applica­
tions.

CHAPTER 6. ANALYSIS OF THE APPROACH 138

6.4.1 Comparing with a Different Approach

The approach taken by Coulson et al. [Coulson 95], for example, identifies

• explicit representation o f continuous flow in the computational viewpoint, and con­

tinuous commitment/ resource reservation in the engineering viewpoint, with regard

to continuous media support, and

• programming specification and synchronisation in the communication subsystem plus

operating system support, in the respective viewpoints, with regard to real-time

synchronisation.

The first of these is a common requirement for any continuous media system, but the

degree to which an application developer needs to be involved with engineering detail can

be minimised by careful choice of system components and their interfaces.

With respect to the second point, the approach describes things in terms of close links

between communication and synchronisation, whereas our approach has weak links, via

well-known components. In our case, the separation between synchronisation and commu­

nication lets the choice of rate control be separated from continuous media transmission,

making the synchronisation out-of-band; continuous medium transmission is encapsulated

in optimised stream handling carried out by a stream transmission subsystem, which is

integrated into the application (as shown in figure 36).

Observe that the features proposed by Coulson and colleagues are to be included in the

underlying systems, whereas our approach proposes that reusable components are integrated

into the application, so that the application developer does not need to know about details

of the continuous media support and works at an appropriate level of abstraction. In fact,

both approaches aim at reducing the degree of visibility of the underlying mechanisms

CHAPTER 6. ANALYSIS OF THE APPROACH 139

by the applications - the stronger the abstraction, the better. The main differences are at

what level the mechanisms are provided - Coulson’s approach is to provide them in the

underlying systems - and in the demands imposed on a platform by a continuous media

application. Our system is, in this sense, easier to port to another similar, object-based

platform, since it does not require any special service to be included in the platform or

special support from the communication subsystem or from the operating system - the

mechanisms are encapsulated in it, allowing it to provide adequate and efficient support for

the real-time requirements of continuous media in open distributed processing, and making

the applications integrated with it highly portable.

6.4.2 Building Larger Systems

The fact that the separation of transport and synchronisation reduces the number of con­

straints to be met simultaneously when selecting protocols and software components is

fundamental to the construction of larger systems - one can have different transport in

different parts of the system, while retaining any necessary synchronisation. Another im­

portant point is that a rate community can be decomposed, forming a rate hierarchy, with

the server in a given community being a client of the rate server in another community, al­

lowing the communities, and therefore, their members, to synchronise - in a community of

communities. This gives better scaling properties than an n-way interaction depending on

a specific transport protocol. It also fits better with software structure, because a subsystem

can have its own rate community, which is synchronised with the application as a whole,

whereas the low level approach leads to problems of deciding which level of software owns

the synchronisation hooks.

The approach proposed in this thesis is appropriate because

CHAPTER 6. ANALYSIS OF THE APPROACH 140

• it models continuous media generally;

• it provides a high level of abstraction through simple and well-defined interfaces;

• it is reusable, with little modification, in a number of applications that require synchro­

nised time-manipulation in the presentation of continuous media, including audio,

video, animation, etc;

• it satisfies requirements for open-endedness without asking for additional support in

the underlying platform; and

• it can be used in the construction of larger systems.

The application to the annotation of continuous media presented in this thesis served to

show the efficiency of the approach, and the ingredients presented in the system proposed

allow more complex applications to be designed and built.

6.5 Conclusions

This chapter has shown the suitability of the approach used to model distributed applications

involving continuous media for real time support and software reuse. The approach is based

on the ANSA model, which provides a language for the description of interfaces and an

integration framework for the binding of application objects.

Synchronisation of time-dependent activities is achieved through a rate control mech­

anism separated from communication. The model does not require any special support

from the communication subsystem or from the operating system - synchronisation is

out-of-band. Support is provided in the application level, and thus, the approach satisfies

CHAPTER 6. ANALYSIS OF THE APPROACH 141

requirements for open-endedness. This style of design is what distinguishes our approach

from other models.

Rate control is separated from continuous media transmission and can be used in a

number of different applications. A time-dependent activity in an application component

is performed according to the time of a logical clock set by the component, and distributed

logical clocks are synchronised in a rate community formed by the components that control

them.

The details of continuous medium transmission are encapsulated in optimised pieces of

stream handling. Therefore, applications do not need to worry about optimising buffering,

as this is mainly done in the reusable component that controls the devices for continuous

medium presentation/capture.

The abstractions provided in the model, such as a rope, or a rate community, plus the

fact that the interfaces are clean, making the model clear and simple, help the support

for reuse. This chapter has confirmed that software reuse involves abstracting, selecting,

specialising and integrating software artifacts, which can be source code fragments, design

structures, specifications, etc. Our approach makes appropriate use of abstraction, selection,

specialisation and integration for the reuse of interface specifications, code fragments and

component objects in the development of distributed continuous media applications.

The separation of transport and synchronisation, and the possible decomposition of a

rate community, allowing software subsystems to be integrated more easily, enable larger

systems to be designed and built.

Chapter 7

Conclusions

This final chapter summarises the thesis. It presents the plans for future work,

considering enhancements in the application, like making it support collabo­

rative work, and porting it to another platform with a similar object model,

aimed at observing the difficulties o f the process o f porting and the advantages

and disadvantages o f the various platforms. It concludes by presenting final

remarks with respect to the application, networks and abstractions used.

7.1 Summary of the Thesis

This work has been a study of the development of multimedia applications using an object-

oriented approach, based on the client/server model, in an open distributed environment.

The basic concept domains and sources of knowledge for the work have been the object-

orientation paradigm, distributed computing and open distribution platforms. Continuous

media in particular, and the requirements for presentation and synchronisation of this type

of media have been studied. The work has concentrated on description of components

142

CHAPTER 7. CONCLUSIONS 143

and their interaction, and on application performance. The integration and interaction of

distributed components have been facilitated by distribution platforms. A complex system,

in general, is defined as a system which consists of many parts that interact with each other

and which has properties resulting from such interactions. The complexity of distributed

computing systems is reduced by transparencies provided by the platforms.

The thesis considers the techniques needed for the annotation of continuous media: we

are all used to annotating static documents as part of our daily routine at work; with the

widespread use of computers as work tools and the introduction of new types of media,

documents may be in the form of audio documents, video documents, or others. The

annotation of continuous media documents using voice is a subject for study, because

it has, as additional ingredients, strict synchronisation requirements. The data capture,

presentation and storage, database management, and GUI control can each be distributed.

The OSI Model allows the interconnection of distributed systems; a model is needed

for distributed processing, preferably in an open fashion. The client/server model has been

used as an approach for structuring distributed systems. Client/server applications can be

created using, amongst others, the technology of distributed objects. This technology is

based on the object-orientation approach, which permits objects to interact via interfaces

that abstract data and behaviour; these interfaces represent the services that objects can

provide. Object-oriented techniques have enhanced client/server applications, making an

important contribution to a distributed processing model. Recent evidence of this trend

includes initiatives such as ISO/ODP and OMG/CORBA.

ANS Aware is a platform that follows the ODP Model and was designed and implemented

using the object-oriented approach. It supports architectural and application objects; the

most important of the architectural objects is the trader, which provides a ‘rendezvous

CHAPTER 7. CONCLUSIONS 144

mechanism for dynamic binding of clients to some well-known or published services’. An

object has as many interfaces as needed for the services it provides. Engineering capsules are

the units of execution and failure in ANS Aware. Communication between objects is done via

RPC, and ANSAware supports concurrency within capsules through a threads/tasks package

and provides an inter-task synchronisation mechanism. The application was developed

using all these basic resources provided by ANSAware to support structuring, concurrency

and distribution.

The design of the application is sufficiently general to allow the use of any continuous

media, including audio and video: the relationship between annotations and underlying

documents is temporal, so any medium whose presentation can be controlled by observing

the time (continuously) can be annotated. The mechanism that allows manipulation and

control of the presentation rates, based on logical time, enables the synchronisation between

the media involved. The application integrates a number of objects, some of them providing

general-purpose services, which means that they can be used in different applications. In

fact, the ability of ANSAware (and other platforms) to support reusability is regarded as

one of its best features. Our work has successfully explored this property.

Being concerned with an application in which performance needs attention, the thesis

devoted a chapter to present the results of the measurements made with respect to the

synchronisation mechanism. In three stages, modifications in the application gradually

improved its performance in terms of response times to user inputs. It measured how long

it took for a user-action taken in a GUI, controlled by a certain object, to be responded,

considering that the response depended on a combination of objects distributed over the

local area network. A mechanism allows application components to synchronise their

logical clocks, and the results obtained showed this to be successful. Suggestions have

CHAPTER 7. CONCLUSIONS 145

been made that should be followed by any performance-critical application.

And finally, an analysis of the development approach has been made with respect to

support for real-time activities, in particular the presentation of continuous media, and

to software reuse in the model proposed. It concluded that the model is suitable for the

construction of distributed continuous media applications.

7.2 Future Work

The following sub-sections describe directions for the continuation of this work in four

topics:

• new features that should be included in the application, especially in relation to

supporting collaborative work, so that some related issues can be explored;

• synchronous collaborative work, so that the synchronisation mechanism can be ex­

ploited further;

• porting the application to another platform, using a similar model, such as CORBA;

• adapting the application to handle video and high-quality audio.

7.2.1 Additional Features

The current application could be enhanced by adding:

• mechanisms to provide collaborative work,

• the possibility of sub-annotations,

CHAPTER 7. CONCLUSIONS 146

• an expiry mechanism for annotations, and

• support for the “highlighting” of the parts of the underlying document which are

referred to by annotations.

Collaborative work

CSCW systems allow multiple users, possibly geographically dispersed, to use computers

to work together, either synchronous or asynchronously. Most of the issues related to

asynchronous work can be applied in the synchronous case. In synchronous collaborative

work users share the same views concurrently. Concurrency is not required in asynchronous

work, but if the users work at the same time on an application, their views may not be the

same [Knister 93], To clarify the distinction between synchronous and asynchronous work,

imagine the case (not necessarily computer-supported) in which two people read the same

book and collaborate by providing comments on what they read; they might work in the

following two possible ways:

(a) the two people observe the same page while just one of them speaks the words, so

that both of them follow the same point in the narrative, and possible comments

made by each one of them are listened to by both at the same time. They could be

geographically separated and using the telephone, for example;

(b) the two people read different pages, possibly not knowing that they work at the same

time, and record their comments, so that each one of them can have the other’s

comments some time later.

(a) is an example of synchronous collaborative work, while (b) exemplifies asynchronous

collaboration.

CHAPTER 7. CONCLUSIONS 147

The following issues can be applied, in the case of our application, to both asyn­

chronous and synchronous collaborative work. (The synchronous collaborative annotation

of continuous media is discussed in 7.2.2.)

Data sharing. In collaborative work, users should be able to access each other’s annota­

tions on the documents they share. At the same time, a mechanism should be provided

to enable access control; as in a file system, a user should be able to determine per­

missions, giving access to everybody, to specific groups or to just the owner/author

of the annotation. In the GUI, users should be allowed to choose between private and

shared modes [Gintell 94]. The management of data sharing should be performed by

the annotation server.

Consistency. With the introduction of sub-annotations [Gintell 94], the relationship be­

tween an annotation and its sub-annotations should be consistent:

• an annotation cannot be deleted1 if there are sub-annotations referring to it;

• sub-annotations of open annotations should also provide shared access to the

same group that access the annotation, for ethical reasons.

Because the comments of annotations cannot be altered, there is not a problem about

maintaining consistency of the comments; i.e. there cannot be conflicting updates of

the same comment (annotation).

Visualisation. Users should be informed of addition or deletion of annotations when they

occur, i.e. the application should maintain an up-to-date view of information as

it is dynamically changed by multiple users [Ben-Shaul 93]. As in [Knister93],

'The delete operation should be included in future work.

CHAPTER 7. CONCLUSIONS 148

any addition/deletion should be performed locally first and then broadcast, to keep

response time low, and a locking mechanism should allow the GUIs to present the

same views, i.e. annotation lines should appear in the same positions in the timelines

of each user interface.

Identification. Users should be able to identify the authors of annotations before they

run the annotations - there should be no need to recognise voices. The GUI might

show the annotation icons/lines in different colours, each colour associated with a

participant in the collaborating group [Karsenty 93]. A collaborative annotation

group is associated with a specific (underlying) document; the members of the group

are those who can annotate this underlying document. The colour each member

chooses should be the same for at least as long as the document exists, since this

determines the existence of the group.

Moreover, when the collaborative application is in single-user mode, it should behave like

the single-user application [Patel 93].

Expiry mechanism for annotations

Depending on the nature of the application, annotations may be permanent or temporary.

Temporary annotations should have an expiry period, which should be defined relative not

to creation date but to access date. Thus, if an annotation is not accessed for a defined period

of time, it should automatically be deleted or put in a different store by the application. An

annotation and its sub-annotations should be considered as one for this purpose, so they

should all have the same expiry period, determined by the last access to any one of them.

In this case, access includes creating sub-annotations.

CHAPTER 7. CONCLUSIONS 149

Highlight support

In addition to annotation timelines, there should be another kind of support to highlight

the annotations and the portions of an underlying document to which they refer. This

should be the case, in particular, for visual documents like a video, so that an object in the

video commented on by an annotation could be highlighted during the presentation of the

comment. In an early version of the application, which was an experiment with clocked

sequences of images (not properly continuous), it was possible to highlight areas of the

images using rectangles drawn with the cursor, as seen in figure 39.

Figure 39: Annotation of clocked sequences of images showing highlights.

A tool was developed in the Network and Distributed Systems Group at UKC to allow

highlighting of video [Linington 93] in a similar fashion to that shown in figure 39, i.e.

using rectangles that move tracking objects in the video. This could be adapted to highlight

CHAPTER 7. CONCLUSIONS 150

video on-line with annotations.

7.2.2 Synchronous Collaborative Work

The main objective for extending the application to a synchronous collaborative application

is to test the synchronisation mechanisms further, since a significantly increased number

of client objects would be involved. Different configurations, ranging from a centralised

master that broadcasts updates to all clients, to a more cooperative community in which

updates are passed from a component to its “neighbour” and so on, can be explored to check

which is the most appropriate and efficient. The two basic issues are the guarantee that all

participants are informed of the updates (whether the information is correct is a matter for

the network protocols) and the time needed to make all participants aware of the changes.

Moreover, with respect to collaborative work performed synchronously, i.e. in which

users are aware that their actions using the application are observed by others in real-time,

the application has to be able to

• manage conflicts when, for example, different users decide to view different parts of

the document at approximately the same time - a blocking mechanism is required;

• show results of actions to all users (also relying on the synchronisation mechanism);

and

• control users joining and leaving a session, to make sure that results go to exactly

those objects activated by the users actually participating in the session.

In the synchronous collaborative annotation of continuous media, synchronisation be­

tween the media involved and of user actions need to be considered in a multiuser environ­

ment (figure 40), requiring greater efforts from the synchronisation mechanism.

CHAPTER 7. CONCLUSIONS 151

Figure 40: Synchronisation in a multiuser environment.

7.2.3 Porting the Application to Other Platform

Since the two major efforts to provide open environments for distributed processing are

convergent - the groups working on ODP and CORBA collaborate on some aspects (e.g.

the adoption of the IDL) and their architectures are both based on the object-oriented

approach, porting the application from ANSAware to a CORBA-based platform should

allow a practical comparison of the models to establish differences, similarities, advantages

and disadvantages.

In principle, the adaptation should not be difficult, as the support given to applications

is similar. CORBA’s object services can be compared with ANSA’s architectural services,

although some of those provided are new, i.e. both CORBA and ANSA seem to provide

similar basic services, with the former providing some additional ones. However, these

might not be needed by the application. The initial comparison should be with respect

CHAPTER 7. CONCLUSIONS 152

to support for the development and use of the application (e.g. component binding), and

additionally with respect to the influence of the platforms on the application’s performance.

7.2.4 Handling digital video and high-quality audio

The implemented application was tested over a local area network consisting of a small

number of hosts under normal load. The Ethernet, with its maximum throughput of

10Mbps, has not been a serious limitation on the performance of the application, given

that only uncompressed audio, with a bandwidth requirement of 64 kbps, has been used.

However, faster networks such as Fast-Ethernet or ATM and compression would be required

to handle video or high-quality audio.

7.3 Final Remarks

Achievements. The following are goals that have been achieved:

• object-oriented approach: the object-oriented approach has been used in the devel­

opment of the application;

• open distributed processing: the application has been built on top of an open

platform that supports distributed processing of communicating objects;

• reusability: the application has taken advantage of reusability - e.g. some compo­

nents have been shown to be reusable;

• synchronisation mechanism: a general synchronisation mechanism has been used;

CHAPTER 7. CONCLUSIONS 153

• continuous media: in the application, the mechanism above successfully synchro­

nises continuous media. The implementation has demonstrated that the combination

of rate control, repeated RPCs to represent continuous transfer, and buffering to avoid

disruption of data presentation/capture can successfully support continuous media in

distributed applications. The design of the application permits any type of continuous

medium to be incorporated without much effort;

• satisfactory response times: the application has used resources in a way that allows

satisfactory response times to be realised in the interaction between the user and the

continuous media.

Additionally,

• a measurement method has been defined to allow response times for temporal access

control operations to be measured in continuous media applications;

• the audio sub-system has been fine tuned, as a result of modifications made in

order to improve the performance of the application, in particular, of its audio-related

components, which can be reused in other applications, so that these can also benefit

from the improvements; and

• auxiliary measurements of response times in relation to file manipulation and remote

procedure calls have been made in a client/server system especially developed for

this purpose.

Multiple threads and the Ethernet. Without the support for multiple threads (provided

by ANSAware) it would have been very hard to develop the application, and we believe

CHAPTER 7. CONCLUSIONS 154

this is true for multimedia applications in general. The application has been developed

for and used in a local area network of SUN SPARCStations used for ordinary purposes

and connected via the Ethernet. The SPARCStations and the Ethernet do not support the

bandwidth requirements for all modes of continuous media (e.g. video and hi-fi audio), so

the implementation has been restricted to telephone-quality audio (mono). In this case, the

performance of the application has not been significantly compromised by the network.

And finally, the approach used and the transparencies supported by the platform have

enabled a quick and easy development of distributed applications. Interfaces, the RPC

paradigm and architectural services make distributed objects interact in a most natural way,

like inquiring someone’s telephone number through the operator, ringing and interacting

with that person without necessarily knowing the person’s exact location, environment

and behaviour. An application can be developed using different levels of abstraction to

represent its features effectively by using an object-oriented distributed model.

Appendix A

Interfaces Specification

This appendix shows the application’s key interfaces according to their functions. The

interfaces are specified in IDL1 (interface description language).

A .l Audio Input/Output

Data transfer to/from the object that controls the audio device is made through the a u d io

interface.

A.1.1 The audio interface
audio : INTERFACE =

audio.spec - specification for the voicegram service
Copyright (c) 1990, 1991 Palantir Project
Modified by pfp & nl5 Aug. 1991

’Basic types and reserved words are entirely written in capital letters.

155

APPENDIX A. INTERFACES SPECIFICATION 156

status values are FALSE for normal action,
TRUE for shut down request

octet sequence is a sequence of PCM speech samples
BEGIN

OctetSequence: TYPE = SEQUENCE OF OCTET;
operation signatures
Spurt : OPERATION [

status : BOOLEAN;
delay : CARDINAL;
samples : OctetSequence]

RETURNS [
status_out : BOOLEAN;
delay_out : CARDINAL;
samples_out : OctetSequence];

END.

A.2 Storage and Database Management

Annotation description data and audio data need to be stored and organised in databases.

The a d s interface is used to manipulate the annotation data, and the interfaces v r s and

a s s are used for accessing the audio (ropes) database and the audio store, respectively.

A.2.1 The ads interface
ads : INTERFACE =
-- annotations database service interface
NEEDS AnnotType;

AnnotType includes the definition of Annotation

APPENDIX A. INTERFACES SPECIFICATION 157

BEGIN
-- Type signature

RequestStatus: TYPE = { FailedRequest,
SuccessfulRequest,
WrongHandle,
NoAnnotations };

-- Operation signatures

register a document with which annotations can be associated
RegisterDoc: OPERATION [doc_name: STRING]

RETURNS [status: RequestStatus;
doc_handle: CARDINAL];

-- list the existing annotations associated
ListAnnotations: OPERATION [doc_handle:

RETURNS [status:
annot list:

with a document
CARDINAL]
RequestStatus;
SEQUENCE OF Annotation

StoreAnnotation: OPERATION

RETURNS
doc_handle:
annot_info:
status :
annottarne :

CARDINAL ;
Annotation]
RequestStatus;
STRING];

END.

A.2.2 The vrs interface
--- *
__*

-- * vrs.idi -- Specification for audio rope service
__*
__* *
__*

* Li Ning
_____ "k

-- * Palantir Project
__* ______________________

APPENDIX A. INTERFACES SPECIFICATION 158

-- * Computing Laboratory
-- * University of Kent
_____ -k

- - * This version by David Barnes.
-- * Playing a rope requires a RopeHandle, obtained by
-- * the operation VrsRegisterRope. A rope is played under
-- * the control of a rate interface which
-- * is created by the operation VrsRequestRatelf.
-- * Different ropes may use the same rate handle, but the
-- * length of the model only makes sense if it is related

* to the length of the rope being played.
__*

__ k

vrs: INTERFACE =
IMPLEMENTATION IS COMPATIBLE WITH rate;
NEEDS ass;
BEGIN
-- Type signatures

RopeSegment: TYPE = RECORD [ropename:
interval :

STRING,
Interval]

RopeSegments: TYPE = SEQUENCE OF RopeSegment;
Label : TYPE = RECORD [labelname: STRING,

interval : Interval];
Labels : TYPE = SEQUENCE OF Label;
LabelEvent: TYPE = RECORD [labelname:

action :
STRING,
STRING];

LabelEvents : TYPE = SEQUENCE OF LabelEvent;
Ropes : TYPE = SEQUENCE OF STRING;

APPENDIX A. INTERFACES SPECIFICATION 159

VrsStatus: TYPE = { VrsOpSuccess, VrsOpFailure,
VrsNoMemory, RopeNameDup,
RSegmsToSegmsErr, VSTFull, VRHFull,
DumpDBErr, BadFile, UnknownRopeName,
LabelNameNo, AssReadErr,
AssEnableReadErr, AssCancelReadErr,
AssWriteErr, AssEnableWriteErr,
AssCancelWriteErr, AddLabelErr,
VrsNoEditLabel(VrsCantFindHandle,
VrsCantAddDisplay,VrsIIlegalPosition,
VrsPositionFailure,
VrsNoLabelCopied,
-- failures to cache a rope
VrsReadPermi s s i onDeni ed,
VrsWritePermissionDenied

— Operation signatures
VrsRequestRatelf:

OPERATION []
RETURNS [status : VrsStatus;

-- Client rate interface
rate_if : ansa_InterfaceRef];

VrsRegisterRope:
OPERATION [

RETURNS [

audio_interface_ref:
ropename:
label_events:
callback_interface_ref:
preload:
rate_ir:
VrsStatus; RopeHandle;

ansa_InterfaceRef;
STRING;
LabelEvents;
ansa_InterfaceRef;
INTEGER;
rateRef]
CARDINAL];

VrsDeregisterRope:
OPERATION [vrs_rope_handle : RopeHandle]
RETURNS [VrsStatus];

VrsChangeRopeEvents :
OPERATION [vrs_rope_handle : RopeHandle;

label_events : LabelEvents]

APPENDIX A. INTERFACES SPECIFICATION 160

RETURNS [VrsStatus];
VrsAddFilenameToHandle:

OPERATION [vrs_rope_handle : RopeHandle;
to_filename: STRING]

RETURNS [VrsStatus];
VrsAddDisplayToHandle:

OPERATION [vrs_rope_handle : RopeHandle;
display_interface_ref: ansa_InterfaceRef;
display_scan_rate: INTEGER]

RETURNS [VrsStatus];
VrsRemoveDisplayFromHandle:

OPERATION [vrs_rope_handle : RopeHandle]
RETURNS [VrsStatus];

VrsPlayRope:
OPERATION
RETURNS

VrsCancelPlay:
OPERATION
RETURNS

VrsBuildRope:
OPERATION
RETURNS

[vrs_rope_handle
[VrsStatus];

[vrs_rope_handle
[VrsStatus];

[rope_segments:
ropename:

[VrsStatus];

: RopeHandle]

: RopeHandle]

RopeSegments;
STRING]

-- Build a rope without the need to delete it.
VrsBuildTempRope:

OPERATION [rope_segments: RopeSegments]
RETURNS [VrsStatus; STRING];

VrsFileToRope:
OPERATION [ropename:

filename :
RETURNS [VrsStatus];

STRING;
STRING]

VrsDeleteRope:

APPENDIX A. INTERFACES SPECIFICATION 161

OPERATION [ropename: STRING]
RETURNS [VrsStatus];

VrsListRopes:
OPERATION []
RETURNS [ropes : Ropes];

VrsRegisterRecordRope:
OPERATION [audio_interface_ref: audioRef;

ropename: STRING;
record_interval: Interval;
callback_interface_ref: ansa_InterfaceRef]

RETURNS [VrsStatus; RopeHandle];
VrsRecord:

OPERATION [vrs_rope_handle : RopeHandle]
RETURNS [VrsStatus];

VrsPauseRecord:
OPERATION [vrs_rope_handle : RopeHandle;

pause : BOOLEAN]
RETURNS [VrsStatus];

VrsCancelRecord:
OPERATION [vrs_rope_handle : RopeHandle]
RETURNS [VrsStatus] ;

VrsCopyLabel:
OPERATION [source_ropename: STRING;

destinate_ropename: STRING]
RETURNS [VrsStatus];

VrsEditLabel:
OPERATION [ropename:

label :
RETURNS [VrsStatus];

STRING;
Label]

VrsGetRopeDetails :
OPERATION [ropename:

max_number:
[VrsStatus; Labels];RETURNS

STRING;
INTEGER]

APPENDIX A. INTERFACES SPECIFICATION 162

VrsChangeDir:
OPERATION [directory: STRING]
RETURNS [VrsStatus];

VrsShutDown:
ANNOUNCEMENT OPERATION [shutdown_ass : BOOLEAN]
RETURNS [];

END.

A.2.3 The a s s interface
____ ■ k - k - k - k - k - k - k - k - k - k - k ' k - k - k - k - k - k - k - k - k - k - k - k - k i c - k - k - k - k - k - k - k ' k - k - k - k - k - k - k - k - k - k - k - k - k - k - k - k - k - k i c - k - k ' k - k - k ' k - k - k - k ' k ^ - k

__*

-- * ass.idl -- Specification for audio storage service
__*
____ ’k ’k ' k ’k - k i c ' k ' k ' k ' k ' k ' k ' k l c ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k i c - k - k ' k ' k - k - k - k - k - k ' k - k - k - k - k - k i c - k - k - k - k - k - k - k - k - k i t - k - k - k ' k - k ' k - k - k - k

____ "k

- - * Li Ning
____ ~k

-- * Palantir Project
__* ______________________

-- * Computing Laboratory
-- * University of Kent
__*

____ " k ’k ' k ' k ' k - k - k ' k - k - k - k - k ' k - k - k - k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ’k ' k ' k - k - k - k - k ' k ' k - k - k - k - k - k - k - k - k - k ' k - k ' k - k - k - k - k - k - k - k ' k - k - k - k ' k ' k - k - k - k

ass: INTERFACE =
IMPLEMENTATION IS COMPATIBLE WITH rate;
NEEDS audio;
BEGIN
-- Type signatures

Interval: TYPE = RECORD [start: LONG INTEGER,
length: LONG INTEGER

APPENDIX A. INTERFACES SPECIFICATION 163

Segment: TYPE = RECORD [filename: STRING,
interval: Interval

] ;
Segments: TYPE = SEQUENCE OF Segment;
LabelPosition: TYPE = RECORD [action: STRING,

interval : Interval
] ;

LabelPositions: TYPE = SEQUENCE OF LabelPosition;
AssStatus: TYPE = { AssOpSuccess, AssOpFailure,

AssNoMemory,
AssCantFindHandle,AssOpenFailure,
AssSeekFailure, AssPlayFailure,
AssFilePermissionFailure,
AssWriteFailure,
AssCancelled,AssRopeStatusChange,
AudioHangup,AudioPortDisappeared,
AssReadFailure

} ;
RopeStatus: TYPE = { Stopped, Paused,

Active, RateChange };
RopeHandle: TYPE = LONG CARDINAL;
PlayDetails: TYPE = RECORD [

i r_audi o: audi oRe f,
ir_display: ansa_InterfaceRef,
display_scan_rate: INTEGER,
ir_callback: ansa_InterfaceRef,
to_filename: STRING,
preload: INTEGER

] ;
Operation signatures
AssNewRateHandle: OPERATION [cacref : ansa__InterfaceRef]

APPENDIX A. INTERFACES SPECIFICATION 164

RETURNS [status : AssStatus;
ass_rate_handle : CARDINAL];

AssRegisterRope: OPERATION [Playlnfo
segments

RETURNS

PlayDetails;
Segments ;

labels : LabelPositions;
vrs_rope_handle : RopeHandle;
ass_rate_handle : CARDINAL];

[AssStatus; RopeHandle];
AssDeregisterRope: OPERATION [ass_rope_handle : RopeHandle]

RETURNS [AssStatus];
AssPlayRope: OPERATION [ass_rope_handle : RopeHandle]

RETURNS [AssStatus];

AssCancelRead: OPERATION [ass_rope_handle : RopeHandle
RETURNS [AssStatus];

AssChangeRopeEvents: OPERATION [ass_rope_handle : RopeHandle;
labels : LabelPositions]

RETURNS [AssStatus] ;
AssAddDisplayToHandle: OPERATION

[ass_rope_handle : RopeHandle;
display_itf_ref: ansa_InterfaceRef ;
display_scan_rate: INTEGER

]
RETURNS [AssStatus];

AssRemoveDisplayFromHandle: OPERATION
[ass_rope_handle : RopeHandle]

RETURNS [AssStatus];
AssWrite: OPERATION [ass_rope_handle : RopeHandle;

interval : Interval
]

RETURNS [AssStatus];

APPENDIX A. INTERFACES SPECIFICATION 165

AssPauseWrite: OPERATION [ass_rope_handle : RopeHandle;
pause : BOOLEAN

]
RETURNS [AssStatus];

AssCancelWrite: OPERATION [ass_rope_handle : RopeHandle]
RETURNS [AssStatus];

AssEnableWrite: OPERATION [ass_rope_handle : RopeHandle]
RETURNS [AssStatus];

AssShutDown: ANNOUNCEMENT OPERATION []
RETURNS [];

END.

A.3 Rate Control

Rate control can be achieved via the r a t e interface.

A.3.1 The rate interface
rate : INTERFACE =

-- Palantir unified multimedia interfaces
-- Modified by Paul Henshaw 08.03.93

... to include configMgmt interface. This file now only
describes the synchronisation aspects of the rate interface.
See configMgmt.idl for details of Registration operations.

-- rate.spec - specification for the media rate control service
-- Copyright (c) 1992 Palantir Project
-- The reference to this interface is obtained on allocation.

APPENDIX A. INTERFACES SPECIFICATION 166

-- This interface allows control of the speed and direction of
-- any clocked sequential medium, defining the logical clock
-- of the medium with respect to real time.
-- Requests are made directly or indirectly

by the owner of the resource
-- For each setting operation, the result is the value actually
-- set, which may not be the same as the request if device cannot
-- support all options
-- speed is the ratio (positive) of logical time to real time
-- expressed as a fraction (logical ticks/real ticks). Thus
-- (2, 3) means play at 2/3 speed
-- direction is true for forward, false for backward
-- note that direction can be set implicitly by negative speed
-- pause true is temporary pause (without change of speed/direction
-- pause false is allows the medium to continue
-- position allows the medium to be spaced forward or backwards
-- the associated length is for progress displays - set negative
-- if unknown by caller
-- update is a convenience function combining speed, direction,
-- pause and position.
-- callback is an interface of type "rate"

-- Standard Registration operations
IMPLEMENTATION IS COMPATIBLE WITH ConfigMgmt FROM configMgmt ;
NEEDS MMtypes;
BEGIN
-- operation signatures

ErrorNotify: OPERATION [manager : ansa_InterfaceRef]

APPENDIX A. INTERFACES SPECIFICATION 167

RETURNS [all_ok BOOLEAN];

Speed : OPERATION [requestHandle CARDINAL;
requestSpeed Ratio]

RETURNS [responseSpeed Ratio];
Direction : OPERATION [requestHandle CARDINAL;

requestDirect BOOLEAN]
RETURNS [responseDirect BOOLEAN];

Pause : OPERATION [requestHandle CARDINAL;
requestPause BOOLEAN]

RETURNS [responsePause BOOLEAN];
Position : OPERATION [requestHandle CARDINAL;

requestPosn LONG CARDINAL;
requestLen LONG INTEGER]

RETURNS [status Progress;
responsePosn LONG CARDINAL;
responseLen LONG INTEGER]

Update : OPERATION t requestHandle CARDINAL;
requestPosn LONG CARDINAL;
requestLen LONG INTEGER;
requestSpeed Ratio;
requestPause BOOLEAN]

RETURNS [status Progress;
responsePosn LONG CARDINAL;
responseLen LONG INTEGER;
responseSpeed Ratio;
responsePause BOOLEAN];

Request : OPERATION []
RETURNS [responsePosn LONG CARDINAL;

responseLen LONG INTEGER;
responseSpeed Ratio;
responsePause BOOLEAN];

END.

APPENDIX A. INTERFACES SPECIFICATION 168

A.4 Sub-systems’ Interaction

The document player’s interface (d o c P la y e r) allows an application component (the

annotator, in the case) to register its interest for interaction. The document presentation

partner, therefore, presents the p P a r t n e r interface, which functions as a callback interface

in the interaction between the application’s parts.

A.4.1 The docPlayer interface
docPlayer : INTERFACE =
-- continuous media player interface
NEEDS Commonlntf;
-- includes operation NewStatus
BEGIN

Register: OPERATION [ir:
RETURNS [status:

handle:
ansa_InterfaceRef]
BOOLEAN;
CARDINAL];

Dereg: OPERATION [handle: CARDINAL]
RETURNS [ack: BOOLEAN];

END.

A.4.2 The pPartner interface
pPartner : INTERFACE =
-- presentation partner interface
NEEDS Commonlntf;
-- includes operation NewStatus

APPENDIX A. INTERFACES SPECIFICATION

BEGIN
SelectedDoc: OPERATION [doc_name: STRING]

RETURNS C ack: BOOLEAN

EndSession: OPERATION []
RETURNS [ack: BOOLEAN

Bibliography

[Accetta 86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-

nian, and M. Young. “Mach: A New Kernel Foundation for UNIX

Development”. In USENIX1986 Summer Conference, pages 93-113,

1986.

[Anderson 91] D. Anderson and G. Homsy. “A Continuous Media I/O Server and its

Synchronization Mechanism”. IEEE Computer, 24(10):51-57,1991.

[APM 93a] APM. An Overview of ANS Aw are 4.1. Architecture Projects Man­

agement Ltd., Cambridge, UK, 1993.

[APM 93b] APM. ANS Aware 4.1: Application Programming in ANS Aware. Ar­

chitecture Projects Management Ltd., Cambridge, UK, 1993.

[APM 93c] APM. ANS Aware 4.1: System Programming in ANSAware. Archi­

tecture Projects Management Ltd., Cambridge, UK, 1993.

[Banerjee 87] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou, and

H. Kim. “Data Model Issues for Object-Oriented Applications”. ACM

TOIS, 5(1):3—26, 1987.

170

BIBLIOGRAPHY 171

[Ben-Shaul 93] I. Ben-Shaul, G. Kaiser, and G. Heineman. “An Architecture for

Multi-User Software Development Environments”. Computing Sys­

tems (USENIX), 6(2):65—103, Spring 1993.

[Bertino 91] E. Bertino. “An Indexing Technique for Object-Oriented Databases”.

In IEEE Inti Conference on Data Engineering, pages 160-170, Japan,

1991.

[Bolognesi 87] T. Bolognesi and E. Brinksma. “Introduction to the ISO Specification

Language LOTOS”. Computer Networks and ISDN Systems, 14:25-

59, 1987.

[Booch 91] G. Booch. Object-Oriented Design with Applications. Benjamin

Cummings, 1991.

[Booch 94] G. Booch. Object-Oriented Analysis and Design with Applications.

Benjamin Cummings, 2nd edition, 1994.

[Burleigh 93] S. Burleigh. “ROME: Distributing C++ Object Systems”. IEEE

Parallel & Distributed Technology, 1 (2):21—32, 1993.

[Campbell 93] R. Campbell, N. Islam, D. Raila, and R Madany. “Designing and

Implementing Choices: An Object-Oriented System in C++”. Com­

munications of the ACM, 36(9): 117-126, September 1993.

[Cardelli 85] L. Cardelli and P. Wegner. “On Understanding Types, Data Abstrac­

tion, and Polymorphism”. ACM Computing Surveys, 17(4):471-522,

1985.

BIBLIOGRAPHY 172

[Chalfonte 91] B. Chalfonte, R. Fish, and R. Kraut. “Expressive Richness: A Com­

parison of Speech and Text as Media for Revision”. In ACM CHI’91

Conference on Human Factors in Computing Systems, pages 21-26,

1991.

[Coats 87] R. Coats and I. Vlaeminke. Man-Computer Interfaces: An Introduc­

tion to Software Design and Implementation. Blackwell Scientific

Publications, 1987.

[Conklin 87] J. Conklin. “Hypertext: An Introduction and Survey”. Computer,

20(9): 17—41, 1987.

[Coulson 95] G. Coulson, G. Blair, J. Stefani, F. Horn, and L. Hazard. “Sup­

porting the Real-Time Requirements of Continuous Media in Open

Distributed Processing”. Computer Networks and ISDN Systems,

27(7): 1231-1246, July 1995.

[Dewan 93] P. Dewan and J. Reidl. “Toward Computer-Supported Concurrent

Software Engineering”. Computer, 26(1): 17-27, 1993.

[Ferrari 92] D. Ferrari, A. Grupta, M. Moran, and B. Wolfinger. “A Continous

Media Communication Service and its Implementation”. In Proceed­

ings of GLOBECOM’92, pages 220-224, Orlando, Florida, 1992.

[Fish 88] R. Fish, R. Kraut, M. Leland, and M. Cohen. “Quilt: A Collaborative

Tool for Cooperative Writing”. In Proceedings o f the Conference on

Office Information Systems, pages 30-37. ACM SIGOIS, 1988.

BIBLIOGRAPHY 173

[Fox 91] E. Fox. “Advances in Interactive Digital Multimedia Systems”. IEEE

Computer, 24(10):9-21, 1991.

[Gemmell 95] D. Gemmell, H. Vin, D. Kandlur, R Rangan, and L. Rowe. “Multi-

media Storage Servers: A Tutorial”. IEEE Computer, 28(5):40-49,

May 1995.

[Ghandeharizadeh 93] S. Ghandeharizadeh and L. Ramos. “Continuous Retrieval of Mul-

[Gintell 94]

timedia Data using Parallelism”. IEEE Transactions on Knowledge

and Data Engineering, 5(4):658-669, August 1993.

J. Gintell and R. McKenny. “CSCW Infrastructure Requirements

Derived from the Scrutiny Project”. ACM SIGOIS Bulletin, 15(2):27-

30,1994. Position paper from the CSCW’ 94 Workshop on Distributed

systems, multimedia and infrastructure support in CSCW.

[Grimshaw 93] A. Grimshaw, W. Strayer, and P. Narayan. “Dynamic, Object-

Oriented Parallel Processing”. IEEE Parallel & Distributed Tech­

nology, 1(2):33—47,1993.

[Halasz 94] * F. Halasz and M. Schwartz. “The Dexter Hypertext Reference

Model”. CACM, 37(2):30-39, 1994.

[Hardman 94] L. Hardman, D. Bulterman, and G. van Rossum. “The Amsterdam

Hypermedia Model: Adding Time and Context to the Dexter Model”.

CACM, 37(2):50-62, 1994.

BIBLIOGRAPHY 174

[Hehmann 90] D. Hehmann, M. Salmony, and H. Stüttgen. “Transport Services

for Multimedia Applications on Broadband Networks”. Computer

Communications, 13(4): 197-203, 1990.

[Henshaw 94] P. Henshaw. UKC ATM Video Filestore Application. Working paper,

1994. University of Kent, Computing Laboratory.

[Herbert 89] A. Herbert. The ANSA Project and Standards. In S. Muhender,

editor, Distributed Systems, pages 391-399. Addison-Wesley, 1989.

[Herman 94] I. Herman, G. Carson, J. Davy, D. Duce, P. ten Hagen, W. Hewitt,

K. Kansy, B. Lurvey, R. Puk, G. Reynolds, and H. Stenzel. “PREMO:

An ISO Standard for a Presentation Environment for Multimedia

Objects”. In ACM Multimedia’94 Conference, 1994. (8 pages).

[Hindus 93] D. Hindus, C. Schmandt, and C. Horner. “Capturing, Structuring, and

Representing Ubiquitous Audio”. ACM TOIS, 11 (4):376-400, 1993.

[Hoare 85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985.

[Hsiao 89] C. Hsiao and S. R. Levine. “Voice Annotation in Wang Freestyle

System”. In Proceedings of Speech Tech ’89, pages 365-367, 1989.

[IONA 95] IONA. The Orbix Architecture. IONA Technologies Ltd, 1995.

[ISO 81] ISO. “ISO Open Systems Interconnection - Basic Reference Model”.

ACM SIGCOMM, 11(2): 15-65, 1981. Draft Proposal, DP 7498.

BIBLIOGRAPHY 175

[ISO 84] ISO. ISO TC97: Open Systems Interconnection - Basic Reference

Model, 1984. International Standard, IS 7498.

[ISO 92a] ISO. Information Technology Coding for Moving Pictures and As­

sociated Audio for Digital Storage up to about 1.5Mbit/s (MPEG).

International Standards Organization, 1992. IS 11172.

[ISO 92b] ISO. Information Technology Digital Compression and Coding of

Continuous-Tone Still Images (JPEG). International Standards Orga­

nization, 1992. IS 10918.

[ISO 95a] ISO. Information Processing Systems - Computer Graphics and Im­

age Processing - Presentation Environments for Multimedia Objects

(PREMO). International Standards Organization, 1995. Committee

Draft ISO/IEC 14478.

[ISO 95b] ISO. Open Distributed Processing - Reference Model. International

Standards Organization, 1995. ISO/IEC 10746.

[Johansen 94] D. Johansen and R. van Renesse. Distributed Systems in Perspective.

In F. Brazier and D. Johansen, editors, Distributed Open Systems,

pages 175-179. IEEE Computer Society Press, 1994.

[Johnson 94] B. Johnson. A Distributed Computing Environment Framework: An

OSF Perspective. In F. Brazier and D. Johansen, editors, Distributed

Open Systems, pages 57-77. IEEE Computer Society Press, 1994.

[Karaorman 93] M. Karaorman and J. Bruno. “Introducing Concurrency to a Sequen­

tial Language”. CACM, 36(9): 103-116, 1993.

BIBLIOGRAPHY 176

[Karsenty 93] A. Karsenty, C. Tranche, and M. Beaudouin-Lafon. “GroupDesign:

Shared Editing in a Heterogeneous Environment”. Computing Sys­

tems (USENIX), 6(2): 167-195, Spring 1993.

[Khoshafian 92] S. Khoshafian, A. Baker, R. Abnous, and K. Shepherd. Intelligent

Offices: Object-Oriented Multi-Media Information Management in

Client/Server Architectures. John Wiley & Sons, 1992.

[Knister 93] M. Knister and A. Prakash. “Issues in the Design of a Toolkit for

Supporting Multiple Group Editors”. Computing Systems (USENIX),

6(2): 135-166, Spring 1993.

[Kramer 90] J. Kramer, J. Magee, and A. Finkelstein. “A Constructive Approach

to the Design of Distributed Systems”. In Proc. o f 10th IEEE ICDCS,

pages 580-587, Paris, 1990.

[Kramer 93] J. Kramer, J. Magee, K. Ng, and M. Sloman. “The System Architect’s

Assistant for Design and Construction of Distributed Systems”. In

Proc. o f 4th IEEE Workshop on Future Trends o f Distributed Com­

puting Systems, Lisbon, 1993. (7 pages).

[Kraut 92] R. Kraut, J. Galegher, R. Fish, and B. Chalfonte. “Task Requirements

and Media Choice in Collaborative Writing”. Human-Computer In­

teraction, 7(4):375-407, 1992.

[Krueger 92] C. Krueger. “Software Reuse”. ACM Computing Surveys, 24(2): 131—

183, June 1992.

BIBLIOGRAPHY 111

[Lea 93] R. Lea, C. Jacquemot, and E. Pillevesse. “COOL: System Support

for Distributed Programming”. CACM, 36(9):37-46, 1993.

[Li 92] N. Li. Manual pages on audio service. Working paper palan-

tir/ukc/078, 1992. University of Kent, Computing Laboratory.

[Li 94] N. Li. “A Distributed Audio System”. In W. Herzner and F. Kappe,

editors, Multimedia/Hypermedia in Open Distributed Environments,

pages 109-121. Springer-Verlag, 1994.

[Liebhold 91] M. Liebhold and E. Hoffert. “Toward an Open Environment for

Digital Video”. CACM, 34(4): 103-112, 1991.

[Linington 90] P. Linington. Audio facilities for use in Palantir. Working paper

palantir/ukc/050, 1990. University of Kent, Computing Laboratory.

[Linington 91] P. Linington. Revision of the audio interface. Working paper palan-

tir/ukc/071, 1991. University of Kent, Computing Laboratory.

[Linington 92] P. Linington. Introduction to the Open Distributed Processing Basic

Reference Model. In J. de Meer, V. Heymer, and R. Roth, editors,

Open Distributed Processing, pages 3-13. Elsevier, 1992.

[Linington 93] P. Linington and C. Teixeira. “Exploiting Interactive Video and An­

imation in Distributed Environments for the Design of Hypermedia

and Graphical User Interfaces”. In VI SIBIGRAPI, pages 213-220,

Recife, Brazil, October 1993. Brazilian Computing Society.

BIBLIOGRAPHY 178

[Linington 95] P. Linington. “RM-ODP: The Architecture”. In Inti. Conference on

Open Distributed Processing, Australia, February 1995.

[Little 90] T. Little and A. Ghafoor. “Synchronization and Storage Models for

Multimedia Objects”. IEEE Journal on Selected Areas in Communi­

cations, 8(3):413-427, 1990.

[Little 94] T. Little. Time-based Media Representation and Delivery. In Multi-

media Systems, chapter 7, pages 175-200. Addison Wesley, 1994.

[Lorin 90] H. Lorin. “Application Development, Software Engineering and

Distributed Processing”. Computer Communications, 13(1):4—16,

1990.

[Mackay 89] W. Mackay. “EVA: An Experimental Video Annotator for Symbolic

Analysis of Video Data”. ACM SIGCHI Bulletin, 21(2):68—71, 1989.

[Magee 89] J. Magee, J. Kramer, and M. Sloman. “Constructing Distributed

Systems in Conic”. IEEE Transactions on Software Engineering,

SE-15(6):663—675, June 1989.

[Meyer 93] B. Meyer. “Systematic Concurrent Object-Oriented Programming”.

CACM, 36(9):56-80, 1993.

[Meyer-Boudnik 95] T. Meyer-Boudnik and W. Effelsberg. “MHEG Explained”. IEEE

[Muhender 89]

Multimedia, 2(1):26—38, Spring 1995.

S. Mullender. Interprocess Communication. In S. Mullender, editor,

Distributed Systems, pages 37-64. Addison-Wesley, 1989.

BIBLIOGRAPHY 179

[Mullender 93a] S. Mullender, editor. Distributed Systems. Addison-Wesley, 2nd

edition, 1993.

[Mullender 93b] S. Mullender. Kernel Support for Distributed Systems. In S. Mul­

lender, editor, Distributed Systems, pages 385—409. Addison-Wesley,

1993.

[Myers 85] B. Myers. “The Importance of Percent-done Progress Indicators

for Human-Computer Interfaces”. In Human Factors in Computer

Systems - CHI’85 Conference Proceedings, pages 11-17, ACM. New

York, 1985.

[Nahrstedt 95] K. Nahrstedt and R. Steinmetz. “Resource Management in Networked

Multimedia Systems”. IEEE Computer, 28(5):52-63, May 1995.

[Nicolau 90] C. Nicolau. “An Architecture for Real-Time Multimedia Communi­

cation Systems”. IEEE Journal on Selected Areas in Communica­

tions, 8(3):391-400, April 1990.

[Noll 91] J. Noll and W. Scacchi. “Integrating Diverse Information Reposito­

ries: A Distributed Hypertext Approach”. Computer, 24(12):38^45,

1991.

[OMG 92] OMG. The Common Object Request Broker: Architecture and Speci­

fication. Object Management Group, 1992. OMG Document Number

91.12.1, Revision 1.1.

[Orfali 95a] R. Orfali and D. Harkey. “Client/Server with Distributed Objects”.

BYTE, 20(4): 151-162, 1995.

BIBLIOGRAPHY 180

[Orfali 95b] R. Orfali, D. Harkey, and J. Edwards. “Intergalactic Client/Server

Computing”. BYTE, 20(4): 108-122, 1995.

[Panzieri 93] F. Panzieri and R. Davoli. Real Time Systems: A Tutorial. Technical

Report UBLCS-93-22, University of Bologna LCS, Italy, 1993.

[Patel 93] D. Patel and S. Kalter. “A UNIX Toolkit for Distributed

Synchronous Collaborative Applications”. Computing Systems

(USENIX), 6(2): 105-133, Spring 1993.

[Protogeros 90] A. Protogeros and E. Ball. “Traffic Analyser and Generator - Part

1: High-speed traffic capture for IEEE 802.3/Ethernet networks”.

Computer Communications, 13(7):407—413, 1990.

[Rozier 88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guille-

mont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and

W. Neuhauser. “CHORUS Distributed Operating Systems”. Com­

puting Systems Journal, l(4):305-370, 1988.

[Schneiderman 83] B. Schneiderman. “Direct Manipulation: A Step Beyond Program­

ming Languages”. Computer, 16(8):57-69, August 1983.

[Schroeder 93] M. Schroeder. A State-of-the-Art Distributed System: Computing

with BOB. In S. Mullender, editor, Distributed Systems, pages 1-16.

Addison-Wesley, 1993.

[Shepherd 90] D. Shepherd and M. Salmony. “Extending OSI to Support Synchro­

nization required by Multimedia Applications”. Computer Commu­

nications, 13(7):399-406, September 1990.

BIBLIOGRAPHY 181

[Shneiderman 92] B. Shneiderman. Designing the User Interface: Strategies for Ef­

fective Human-Computer Interaction. Addison-Wesley, 2nd edition,

1992.

[Singhal 91] M. Singhal and T. Casavant. “Distributed Computing Systems”.

Computer, 23(8): 12-15, 1991.

[Snyder 93] A. Snyder. “The Essence of Objects: Concepts and Terms”. IEEE

Software, 10(l):31-42, 1993.

[Stefani 92] J. Stefani, L. Hazard, and F. Horn. “Computational Model for Dis­

tributed Multimedia Applications based on a Synchronous Program­

ming Language”. Computer Communications, 15(2): 114—128, 1992.

[Steinmetz 90] R. Steinmetz. “Synchronization Properties in Multimedia Systems”.

IEEE Journal on Selected Areas in Communications, pages 401-412,

1990.

[Steinmetz 96] R. Steinmetz. “Human Perception of Jitter and Media Synchronisa­

tion”. To appear in IEEE Journal on Selected Areas in Communica­

tion, 14(2), February 1996.

[Stenzei 94] H. Stenzel, K. Kansy, I. Herman, and G. Carson. “PREMO: An

Architecture for Presentation of Multimedia Objects in an Open

Envirnoment”. In W. Herzner and F. Kappe, editors, Multime-

dia/Hypermedia in Open Distributed Environments, pages 77-96.

Springer-Verlag, 1994.

BIBLIOGRAPHY 182

[Tanenbaum 90] A. Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp, S. Mul-

lender, A. Jansen, and G. van Rossum. “Experiences with the Amoeba

Distributed Operating System”. CACM, 33(12):46-63, 1990.

[Tanenbaum 92] A. Tanenbaum. Modem Operating Systems. Prentice-Hall, 1992.

[Terry 88] D. Terry and D. Swinehart. “Managing Stored Voice in the Ether-

phone System”. ACM Transactions on Computer Systems, 6(l):3-27,

1988.

[Thomas 85] R. Thomas, H. Fordsdick, T. Crowley, R. Schaaf, R. Tomlinson,

V. Travers, and G. Robertson. “Diamond: A Multimedia Message

System built upon a Distributed Architecture”. Computer, 18(12):65-

77, 1985.

[Tilley 91] S. Tilley and H. Muller. “INFO: A Simple Documentation Annotation

Facility”. In ACM 9th Inti. Conference on Systems Documentation,

pages 30-36, 1991.

[Trigg 88] R. Trigg. “Guided Tours and Tabletops: Tools for Communicating

in a Hypertext Environment”. In ACM CSCW’88, pages 216-226,

1988.

[Vaidyanathan 90] P. Vaidyanathan and S. Midkiff. “Performance Evaluation of Com­

munication Protocols for Distributed Processing”. Computer Com­

munications, 13(5):275-282,1990.

[van Nes 92] F. van Nes. Design and Evaluation of Applications with Speech In­

terfaces - Experimental Results and Practical Guidelines. In Methods

BIBLIOGRAPHY 183

and Tools in User-Centred Design for Information Technology, pages

281-297. Elsevier, 1992.

[Vin 91] H. Vin, P. Zellweger, D. Swinehart, andP. Rangan. “Multimedia Con­

ferencing in the Etherphone Environment”. Computer, 24(10):69-79,

1991.

[Vissers 91] C. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Speci­

fication Styles in Distributed Systems Design and Verification. In

Theoretical Computer Science 89, pages 179-206. Elsevier, 1991.

[Wegner 87] P. Wegner. “Dimensions of Object-Based Language Design”. ACM

SIGPLAN Notices (Special Issue), 22(12): 168-182, 1987. Also in

Proceedings of OOPSLA’87.

[Wegner 90] P. Wegner. “Concepts and Paradigms of Object-Oriented Program­

ming”. OOPS Messenger, 1(1):7—87, 1990.

[Yamazaki 93] S. Yamazaki, K. Kajihara, M. Ito, and R. Yasuhara. “Object-Oriented

Design of Telecommunication Software”. IEEE Software, 10(1):81—

87, 1993.

[Zellweger 92] P. Zellweger. Toward a Model for Active Multimedia Documents.

In M. Blattner and R. Dannenberg, editors, Multimedia Interface

Design, pages 39-52. Addison-Wesley, 1992.

[Zhang 91] H. Zhang and S. Keshav. “Comparison of Rate-Based Service Disci­

plines”. In ACM SIGCOMM’91, pages 113-121, September 1991.

