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Abstract

Branching Time Active Inference (Champion et al., 2022b,a) is a framework

proposing to look at planning as a form of Bayesian model expansion. Its

root can be found in Active Inference (Friston et al., 2016; Da Costa et al.,

2020; Champion et al., 2021), a neuroscienti�c framework widely used for

brain modelling, as well as in Monte Carlo Tree Search (Browne et al., 2012),

a method broadly applied in the Reinforcement Learning literature. Up to

now, the inference of the latent variables was carried out by taking advantage
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of the �exibility o�ered by Variational Message Passing (Winn and Bishop,

2005), an iterative process that can be understood as sending messages along

the edges of a factor graph (Forney, 2001). In this paper, we harness the

e�ciency of an alternative method for inference called Bayesian Filtering (Fox

et al., 2003), which does not require the iteration of the update equations until

convergence of the Variational Free Energy. Instead, this scheme alternates

between two phases: integration of evidence and prediction of future states.

Both of those phases can be performed e�ciently and this provides a forty

times speed up over the state-of-the-art.

Keywords: Branching Time Active Inference, Bayesian Filtering, Free

Energy Principle

1. Introduction

Active inference applies the free energy principle to generative models with actions

(Friston et al., 2016; Da Costa et al., 2020; Champion et al., 2021) and can be regarded

as a form of planning as inference (Botvinick and Toussaint, 2012). Over the years,

this framework has successfully explained a wide range of phenomena, such as habit

formation (Friston et al., 2016), Bayesian surprise (Itti and Baldi, 2009), curiosity

(Schwartenbeck et al., 2018), and dopaminergic discharge (FitzGerald et al., 2015).

It has also been applied to a variety of tasks such as navigation in the Animal AI

environment (Fountas et al., 2020), robotic control (Pezzato et al., 2020; Sancaktar

et al., 2020), the mountain car problem (Çatal et al., 2020), the game DOOM (Cullen

et al., 2018) and the cart pole problem (Millidge, 2019).

However, because active inference de�nes the prior over policies as a marginal

distribution over the space of all possible policies, the method su�ers from an expo-

nential space and time complexity class. In what follows, we will refer to this kind of
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active inference as �zero-tethered active inference" because all policies e�ectively start

at time step zero. In the reinforcement learning literature, this exponential growth

can be tackled using Monte Carlo tree search (MCTS) (Browne et al., 2012), whose

origins can be found in the multi-armed bandit problem (Auer et al., 2002). More

recently, MCTS has been applied to a large number of tasks such as the game of Go

(Silver et al., 2016), the Animal AI environment (Fountas et al., 2020), and many

others.

More recently, Branching Time Active Inference (BTAI) (Champion et al., 2022b,a)

proposed that planning is a form of Bayesian model expansion guided by the upper

con�dence bound for trees (UCT) criterion from the MCTS literature, i.e. a quantity

from the multi-armed bandit problem whose objective is to minimize the agent's re-

gret. And because the generative model is dynamically expanded, variational message

passing (VMP) (Winn and Bishop, 2005) was used to carry out inference over the

latent variables. VMP can be understood as a �exible iterative process that sends

messages along the edges of a factor graph (Forney, 2001), and computes posterior

beliefs by summing those messages together.

Bayesian �ltering (BF) (Fox et al., 2003) is an alternative inference method com-

posed of two phases. In the �rst phase, Bayes theorem is used to compute posterior

beliefs each time a new observation is obtained from the environment. In the second

phase, posterior beliefs over the present state (St) are used to predict posterior beliefs

over the state at the next time step (St+1). Note, that Bayesian �ltering for discrete

state space models is formally equivalent to belief propagation, i.e., both approaches

lead to the same posterior beliefs. Importantly, Bayesian �ltering is not iterative

within a time step, i.e., it only contains a forward pass, and therefore is much more

e�cient than VMP, which contains both forward and backward messages.
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In other words, we focus on the forward pass in state estimation; as opposed to

the forward and backward passes found in Bayesian smoothing. This is the key dis-

tinction, from the perspective of the current work, because �ltering is easier than

smoothing. For example, in discrete state space models, forward-backward schemes

usually rely upon variational message passing, as opposed to belief propagation. Hav-

ing said this, it is possible to implement �ltering or forward schemes using variational

message passing for both discrete and continuous state space models. For an illustra-

tion of this in the context of generalised Bayesian �ltering please see (Friston et al.,

2017b).

In Section 2, we present the theory underlying Branching Time Active Inference

when using Bayesian �ltering for inference over latent variables. In Section 3, we

show that using Bayesian �ltering instead of variational message passing for the in-

ference process provides BTAI with a forty times speed-up while maintaining e�ective

planning. Finally, Section 5 concludes this paper and discusses avenues for future re-

search.

2. Branching Time Active Inference with Bayesian Filtering

(BTAIBF)

In this section, we describe the theory underlying our approach. For any notational

uncertainty the reader is referred to Appendix F of Champion et al. (2022b). We

let D be a 1-tensor representing the prior over initial hidden states P (S0). Let A

be a 2-tensor representing the likelihood mapping P (Oτ |Sτ ), and B be a 3-tensor

representing the transition mapping P (Sτ+1|Sτ , Uτ ). Additionally, we let I be the

set of multi-indices containing all the policies (i.e., sequences of actions) that have

been explored by the model. The generative model of BTAI with BF can be formally
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written as the following joint distribution:

P (O0, S0, OI, SI) =P (O0|S0)P (S0)
∏
I∈I

P (OI |SI)P (SI |SI\last)

where SI\last is the parent of SI , and:

P (S0) = Cat(D) P (Oτ |Sτ ) = Cat(A)

P (OI |SI) = Cat(A) P (SI |SI\last) = Cat(BI).

where BI = B(•, •, Ilast) is the 2-tensor corresponding to Ilast (i.e., the last action that

led to SI), and the likelihood mapping in the past, i.e., P (Oτ |Sτ ), and in the future,

i.e., P (OI |SI), are both categorical distributions with parameters A. This generative

model is depicted in Figure 1, where we assume that the current time step t equals

zero.
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Figure 1: This �gure illustrates the expandable generative model used by the BTAI

with BF agent. The future is a tree like generative model whose branches correspond

to the policies considered by the agent. The branches can be dynamically expanded

during planning and the nodes in light gray represent possible expansions of the

current generative model.

Initially, the generative model only contains the initial state S0 and observation

O0. The prior over the hidden state is known, i.e. P (S0) = Cat(D), as well as the

likelihood, i.e., P (Oτ |Sτ ) = Cat(A), and P (O0), the evidence, can be computed in the

usual way by marginalizing over P (O0, S0) = P (O0|S0)P (S0). Thus, we can integrate

the evidence provided to us by the initial observation O0 using Bayes Theorem:

B(S0) =
P (O0|S0)P (S0)

P (O0)
, (1)

where B(S0) are the beliefs over the initial hidden state. Then, we use the UCT

criterion to determine which node in the tree should be expanded. Let the tree's root
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S0 be called the current node. If the current node has no children, then it is selected

for expansion. Alternatively, the child with the highest UCT criterion becomes the

new current node and the process is iterated until we reach a leaf node (i.e. a node

from which no action has previously been selected). The UCT criterion (Browne

et al., 2012) for the j-th child of the current node is given by:

UCTj = −Ḡj + Cexplore

√
lnn

nj
, (2)

where Ḡj is the average expected free energy calculated with respected to the actions

selected from the j-th child, Cexplore is the exploration constant that modulates the

amount of exploration at the tree level, n is the number of times the current node

has been visited, and nj is the number of times the j-th child has been visited.

Importantly, the expected free energy (see below) is, e�ectively, the variational free

energy expected under posterior predictive beliefs, under the action in question.

Let SI be the (leaf) node selected by the above selection procedure. We then

expand all the children of SI , i.e., all the states of the form SI::U where U ∈ {1, ..., |U |}

is an arbitrary action, and I :: U is the multi-index obtained by appending the action

U at the end of the sequence de�ned by I. Next, we compute the predicted beliefs

over those expanded hidden states using the transition mapping:

B(SJ) = EB(SI)

[
P (SJ |SI)

]
, (3)

where we let J = I :: U for any action U , B(SI) are the predicted posterior beliefs

over SI , and according to our generative model P (SJ |SI) = Cat(BJ) with BJ =

B(•, •, Jlast). The above equation corresponds to the second phase of Bayesian �ltering,

i.e., the prediction phase, which involves the calculation of new beliefs, using the
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generative model, in the absence of new observations. Then, we need to estimate the

cost of (virtually) taking each possible action. The cost in this paper is taken to be

the expected free energy (Friston et al., 2017a):

GJ =∆ DKL[B(OJ)||V (OJ)] + EB(SJ )[H[P (OJ |SJ)]], (4)

where the prior preferences over future observations are speci�ed by the modeller as

V (OJ) = Cat(C), according to the generative model P (OJ |SJ) = Cat(A), and the

posterior beliefs over future observations are computed by prediction as follows:

B(OJ) = EB(SJ )[P (OJ |SJ)].

Next, we assume that the agent will always perform the action with the lowest cost,

and back-propagate the cost of the best (virtual) action toward the root of the tree.

Formally, we write the update as follows:

∀K ∈ AI ∪ {I}, GK ← GK + min
U∈{1,...,|U |}

GI::U , (5)

where I is the multi-index of the node that was selected for (virtual) expansion, and

AI is the set of all multi-indices corresponding to ancestors of SI . During the back

propagation, we also update the number of visits as follows:

∀K ∈ AI ∪ {I}, nK ← nK + 1. (6)

8



Branching Time Active Inference

If we let Gaggr
K be the aggregated cost of an arbitrary node SK obtained by applying

Equation 5 after each expansion, then we are now able to express ḠK formally as:

ḠK =
Gaggr
K

nK
.

The planning procedure described above ends when the maximum number of planning

iterations is reached, and the action corresponding to the root's child with the lowest

average cost is performed in the environment. At this point, the agent receives a new

observation Oτ and needs to update its beliefs over Sτ . First, we predict the posterior

beliefs over Sτ as follows:

B(Sτ |Uτ−1 = U∗) = EB(Sτ−1)

[
P (Sτ |Sτ−1, Uτ−1 = U∗)

]
, (7)

where U∗ is the action performed (from the root) in the environment, P (Sτ |Sτ−1, Uτ−1 =

U∗) is the 2-tensor B(•, •, U∗), and B(Sτ−1) is the agent's posterior beliefs over the

state at time τ − 1, e.g., after performing the �rst action in the environment, τ = 1

and B(Sτ−1) = B(S0) as given by Equation 1. Second, we integrate the evidence

provided by the new observation Oτ using Bayes theorem:

B(Sτ ) =
P (Oτ |Sτ )B(Sτ |Uτ−1 = U∗)

P (Oτ )
, (8)

where B(Sτ |Uτ−1 = U∗) is used as an empirical prior. By an empirical prior we mean

a posterior distribution of the previous time step, e.g., B(Sτ |Uτ−1 = U∗), that is used

9



Champion et al.

as a prior in Bayes theorem. Algorithm 1 concludes this section by summarizing our

approach.

Algorithm 1: BTAI with BF: action-perception cycles (with relevant equa-
tions indicated in round brackets).

Input: env the environment, O0 the initial observation, A the likelihood
mapping, B the transition mapping, C the prior preferences, D the
prior over initial states, N the number of planning iterations, M the
number of action-perception cycles.

B(S0)← IntegrateEvidence(O0, A, D) // Using (1)

root← CreateTreeNode(beliefs = B(S0), action = -1, cost = 0, visits = 1)
// Where -1 in the line above is a dummy value

repeat M times

repeat N times

node← SelectNode(root) // Using (2) recursively

eNodes← ExpandChildren(node, B) // Using (3) for each

action

Evaluate(eNodes, A, C) // Compute (4) for each expanded

node

Backpropagate(eNodes) // Using (5) and (6)

end

U∗ ← SelectAction(root) // Such that U∗ minimises the average

cost

Oτ ← env.Execute(U∗)
B(Sτ−1)← root.beliefs // Get beliefs of the root node

B(Sτ |Uτ−1 = U∗)← ComputeEmpiricalPrior(B, B(Sτ−1), U∗) // Using

(7)

B(Sτ )← IntegrateEvidence(Oτ , A, B(Sτ |Uτ−1 = U∗)) // Using (8)

root← CreateTreeNode(beliefs = B(Sτ ), action = U∗, cost = 0, visits =
1)

end

3. Results

In this section, we �rst present the deep reward environment in which two versions

of BTAI will be compared. Then, we present experimental results comparing BTAI

with VMP and BTAI with BF in terms of running time and performance.
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3.1 Deep reward environment

This environment is called the deep reward environment because the agent needs to

navigate a tree-like graph where the graph's nodes correspond to the states of the

system, and the agent needs to look deep into the future to diferentiate the good

path from the traps. At the beginning of each trial, the agent is placed at the root

of the tree, i.e., the initial state of the system. From the initial state, the agent

can perform n + m actions, where n and m are the number of good and bad paths,

respectively. Additionally, at any point in time, the agent can make two observations:

a pleasant one or an unpleasant one. The states of the good paths produce pleasant

observations, while the states of the bad paths produce unpleasant ones.

If the �rst action selected was one of the m bad actions, then the agent will enter

a bad path in which n + m actions are available at each time step but all of them

produce unpleasant observations. If the �rst action selected was one of the n good

actions, then the agent will enter the associated good path. We let Lk be the length

of the k-th good path. Once the agent is engaged on the k-th path, there are still

n + m actions available but only one of them keeps the agent on the good path. All

the other actions will produce unpleasant observations, i.e., the agent will enter a bad

path.

This process will continue until the agent reaches the end of the k-th path, which

is determined by the path's length Lk. If the k-th path was the longest of the n

good paths, then the agent will from now on only receive pleasant observations inde-

pendently of the action performed. If the k-th path was not the longest path, then

independently of the action performed the agent will enter a bad path.

To summarize, at the beginning of each trial, the agent is prompted with n good

paths and m bad paths. Only the longest good path will be bene�cial in the long

11
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term, the others are traps, which will ultimately lead the agent to a bad state. Figure

2 illustrates this environment.

S0

Sb
... Sb

m ❜❛❞ ♣❛t❤s

S1
1 S...

1 Sn
1

S1
2Sb

...Sb

m+ n− 1 ❜❛❞ ♣❛t❤s

✳

✳

✳

...Sg Sg

m+ n ❣♦♦❞ ♣❛t❤s

...Sb Sb

m+ n ❜❛❞ ♣❛t❤s

Figure 2: This �gure illustrates a type of deep reward environment where S0 represents

the initial state, Sb represents a bad state, Sg represents a good state, and Sij is the

j-th state of the i-th good path. Also, the longest path in the above picture is the �rst

good path whose length L1 is equal to two. Importantly, the longest path corresponds

to the only good path that does not turn out to be a trap.

3.2 BTAI with VMP versus BTAI with BF

In this section, we compare BTAI with VMP and BTAI with BF in terms of running

time and performance. The running time reported in Tables 1 and 2 was obtained

by running 100 trials each composed of 20 action-perception cycles. Also, the trial

was stopped whenever the agent reached a bad state or the goal state. As shown in

Tables 1 and 2, both approaches were able to solve the tasks. However, BTAI with

BF ran around forty times faster than BTAI with VMP.
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This speed up is possible for two reasons. First, Bayesian �ltering does not require

the iteration of the belief updates until convergence of the variational free energy.

Second, when computing the optimal posterior over a random variable X, VMP

needs to compute one message for each adjacent variable of X, add them together,

and normalise using a softmax function. In contrast, BF only performs a forward

pass, which is essentially implemented as matrix multiplications.

n m L1, L2, ..., Ln # planning iterations P(goal) P(bad) Running time (ms)
2 5 5, 8 25 1 0 23.42± 4.966
2 5 5, 8 50 1 0 43.37± 2.743
2 5 5, 8 100 1 0 110.58± 29.586
3 5 6, 5, 8 25 1 0 26.7± 2.405
3 5 6, 5, 8 50 1 0 61.41± 45.112
3 5 6, 5, 8 100 1 0 120.25± 12.722

Table 1: This table presents the results of BTAI with BF on various deep reward envi-

ronments. Recall, that n and m are the number of good and bad paths, respectively.

Li is the length of the i-th good path. P (goal) reports the probability of reaching the

goal state (i.e., the agent successfully picked the longest path), and P (bad) reports

the probability of reaching the bad state (i.e., either by picking a bad action directly

of by falling into a trap).

13
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n m L1, L2, ..., Ln # planning iterations P(goal) P(bad) Running time (ms)
2 5 5, 8 25 1 0 924.63± 38.930
2 5 5, 8 50 1 0 1908.54± 60.621
2 5 5, 8 100 1 0 4574.45± 301.197
3 5 6, 5, 8 25 1 0 1038.43± 51.322
3 5 6, 5, 8 50 1 0 2119.19± 19.866
3 5 6, 5, 8 100 1 0 5342.04± 252.953

Table 2: This table presents the results of BTAI with VMP on various deep reward

environments. Recall, that n and m are the number of good and bad paths, re-

spectively. Li is the length of the i-th good path. P (goal) reports the probability

of reaching the goal state (i.e., the agent successfully picked the longest path), and

P (bad) reports the probability of reaching the bad state (i.e., either by picking a bad

action directly of by falling into a trap).

4. Discussion

In this section, we discuss how our work relates to others in the literature. We have

discussed various computational architectures for active (planning as) inference �

and have shown that the current scheme, based upon Bayesian �ltering, is the most

e�cient. To place the current scheme in relation to other active inference schemes,

it is helpful to think about the distinctions in terms of the underlying generative

model. Active inference can be regarded as the Bayesian inversion of a generative

model that includes the consequences of action. Operationally, this means that active

inference can be de�ned as selecting action sequences (i.e., policies) that minimise the

variational free energy (or maximise marginal likelihood) expected, when committing

to a policy.

However, this does not specify the particular form of the generative model. There

are two sorts of generative models used in active inference. The �rst, considers a
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policy that starts at the beginning of a trial (Friston et al., 2017b), i.e., zero-tethered

active inference. The second uses a generative model in which policies start at the

current time, as described in the present paper. The requisite belief updating for

these two kinds of models is fundamentally di�erent. In the �rst kind, evidence that

the agent is pursuing a particular policy accumulates during the execution of that

policy. In the second kind, every policy is, a priori, equally plausible at the point of

evaluation.

In active inference of the �rst kind, information during policy execution informs

the likelihood that this policy is currently being enacted. In turn, this requires belief

updating about past states, to assess the likelihood of observations in the past. This

mandates backward message passing from the present to the past and an implicit

form of working memory. In contrast, active inference of the second kind can proceed

using belief updating into the future.

In the terminology of state estimation, this means zero-tethered active inference

involves forward and backward algorithms (e.g., variational message passing), while

active inference of the second kind just requires forward message passing or belief

propagation. Variational message passing and belief propagation are procedures found

in generative models of discrete states. The equivalent belief updating in generative

models of continuous states is generally referred to as Bayesian smoothing (with

forward and backward passes) and Bayesian �ltering (with just forward passes). In

short, because our deep tree search starts from the present, it only needs the �ltering

or forward pass. Technically, this is important because one can replace variational

message passing (required for smoothing or forward and backward passes) with belief

propagation in the forwards direction, which is much more e�cient.

Belief propagation refers to propagating posterior beliefs about the present into

the future, using suitable probability transition matrices. We have leveraged this
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simpli�cation and e�ciency, much in the spirit of the deep tree searches described

in terms of sophisticated inference (Friston et al., 2021). Although numerical exper-

iments may be needed to con�rm this picture, it suggests that the improvement in

computational e�ciency � demonstrated in the current work � rests upon �nessing

the inference problem through a commitment to belief propagation � as opposed

to the more demanding problem of representing the past and implicit abilities for

postdiction.

5. Conclusion and future works

In this paper, we proposed a new implementation of Branching Time Active Inference

(Champion et al., 2022b,a), where the inference is carried out using Bayesian �ltering

(Fox et al., 2003), instead of using variational message passing (Champion et al.,

2021; Winn and Bishop, 2005).

This new approach has a few advantages. First, it achieves the same performance

as its predecessor around forty times faster. Second, the implementation is simpler

and less data structures need to be stored in memory.

Also, one could argue that there is a trade-o� in the nature and extent of the

information inferred by zero-tethered active inference, branching-time active inference

with variational message passing (BTAIVMP) from Champion et al. (2022b,a), and

branching-time active inference with Bayesian Filtering (BTAIBF). Speci�cally, zero-

tethered active inference exhaustively represents and updates all possible policies,

while BTAIVMP will typically only represent one policly in the past (i.e., the one

undertaken by the agent) and a small subset of the possible (future) trajectories.

These will typically be the more advantageous paths for the agent to pursue, with

the less bene�cial paths not represented at all. Indeed, the tree search is based
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on the expected free energy that favors policies that maximize information gain,

while realizing the prior preferences of the agent. BTAIBF stores even less data than

BTAIVMP, because the sequence of past hidden states is discarded as time passes, and

only the beliefs over the current and future states are stored.

Additionally, full variational inference can update the system's understanding of

past contingencies on the basis of new observations. As a result, the system can

obtain more re�ned information about previous decisions, perhaps re-evaluating the

optimality of these past decisions. Because zero-tethered active inference represents

a larger space of policies, this re-evaluation could apply to more policies. When using

Bayesian �ltering, beliefs about past hidden states are discarded as time progresses,

which makes Bayesian belief updating (about past hidden states) impossible.

We also know that humans engage in counterfactual reasoning (Rafetseder et al.,

2013), which, in our planning context, could involve the entertainment and evaluation

of alternative (non-selected) sequences of decisions. It may be that, because of the

more exhaustive representation of possible trajectories, zero-tethered active inference

can more e�ciently engage in counterfactual reasoning. In contrast, branching-time

active inference would require these alternative pasts to be generated �a fresh� for

each counterfactual deliberation. In this sense, one might argue that there is a trade-

o�: branching-time active inference provides considerably more e�cient planning to

attain current goals, zero-tethered active inference provides a more exhaustive assess-

ment of paths not taken. In contrast, branching time active inference implemented

with Bayesian �ltering does not leave a memory at all, let alone one upon which

conterfactual reasoning could be realized.

The implementation of Branching Time Active Inference with variational mes-

sage passing can be found here: https://github.com/ChampiB/Homing-Pigeon,

and the implementation of Branching Time Active Inference with Bayesian Filtering
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is available on Github: https://github.com/ChampiB/Branching_Time_Active_

Inference.

Even with this forty times speed up, BTAI is still unable to deal with large scale

observations such as images. Adding deep neural networks to approximate the likeli-

hood mapping is therefore a compelling direction for future research.

Also, this framework is currently limited to discrete action and state spaces. De-

signing a continuous extension of BTAI would enable its application to a wider range

of problems such as robotic control with continuous actions. Note that creating gener-

ative models of continuous processes is probably best achieved by equipping a discrete

state space model (of the sort used above), with a level that maps to continuous state

spaces. In brief, this involves specifying a continuous trajectory as a succession of

�xed points that are generated by a Markov decision process. See Friston et al.

(2017b), for an example. This means that one could apply BTAI, in principle, to

real-world, continuous state space problems, such as robotics and active vision.

Finally, as the depth of the tree increases, the beliefs about future states tend to

become more and more uncertain, which can lead to a drop in performance. This

suggests that there exists an optimal number of planning iterations, after which the

model simply does not have enough information to keep planning. Future work could

thus focus on automatically identifying this optimal number of planning iterations,

in order to improve the robustness of the approach.
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