
JEFFREY, A, Riely, J, Batty, Mark, Cooksey, Simon, KAYSIN, I and PODKOPAEV,
A (2022) The Leaky Semicolon. Principles of Programming Languages,
6 . pp. 1-30. ISSN 0743-9016.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/95153/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3498716

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/95153/
https://doi.org/10.1145/3498716
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

54

The Leaky Semicolon
Compositional Semantic Dependencies for Relaxed-Memory Concurrency

ALAN JEFFREY, Roblox, USA

JAMES RIELY, DePaul University, USA

MARK BATTY, University of Kent, UK

SIMON COOKSEY, University of Kent, UK

ILYA KAYSIN, JetBrains Research, Russia and University of Cambridge, UK

ANTON PODKOPAEV, HSE University, Russia

Program logics and semantics tell a pleasant story about sequential composition: when executing (𝑆1; 𝑆2),
we first execute 𝑆1 then 𝑆2. To improve performance, however, processors execute instructions out of order,

and compilers reorder programs even more dramatically. By design, single-threaded systems cannot observe

these reorderings; however, multiple-threaded systems can, making the story considerably less pleasant. A

formal attempt to understand the resulting mess is known as a “relaxed memory model.” Prior models either

fail to address sequential composition directly, or overly restrict processors and compilers, or permit nonsense

thin-air behaviors which are unobservable in practice.

To support sequential composition while targeting modern hardware, we enrich the standard event-based

approach with preconditions and families of predicate transformers. When calculating the meaning of (𝑆1; 𝑆2),
the predicate transformer applied to the precondition of an event 𝑒 from 𝑆2 is chosen based on the set of

events in 𝑆1 upon which 𝑒 depends. We apply this approach to two existing memory models.

CCS Concepts: • Theory of computation→ Parallel computing models; Preconditions.

Additional KeyWords and Phrases: Concurrency, RelaxedMemoryModels, Pomsets, Preconditions, Predicate

Transformers, Multi-Copy Atomicity, Arm8, C11, Thin-Air Reads, Compiler Optimizations

ACM Reference Format:

Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The Leaky

Semicolon: Compositional Semantic Dependencies for Relaxed-Memory Concurrency. Proc. ACM Program.

Lang. 6, POPL, Article 54 (January 2022), 30 pages. https://doi.org/10.1145/3498716

1 INTRODUCTION

Sequentiality is a leaky abstraction [Spolsky 2002]. For example, sequentiality tells us that when
executing (𝑟1:=𝑥;𝑦 := 𝑟2), the assignment 𝑟1:=𝑥 is executed before 𝑦 := 𝑟2. Thus, one might rea-
sonably expect that the final value of 𝑟1 is independent of the initial value of 𝑟2. In most modern
languages, however, this fails to hold when the program is run concurrently with (𝑠:=𝑦;𝑥 := 𝑠),
which copies 𝑦 to 𝑥 .

In certain cases it is possible to ban concurrent access using separation [O’Hearn 2007], or to ac-
cept inefficient implementation in order to obtain sequential consistency (SC) [Marino et al. 2015].

Authors’ addresses: Alan Jeffrey, Roblox, Chicago, USA, ajeffrey@roblox.com; James Riely, DePaul University, Chicago,

USA, jriely@cs.depaul.edu; Mark Batty, University of Kent, Canterbury, UK, m.j.batty@kent.ac.uk; Simon Cooksey, Uni-

versity of Kent, Canterbury, UK, simon@graymalk.in; Ilya Kaysin, JetBrains Research, Russia and University of Cambridge,

Cambridge, UK, ik404@cam.ac.uk; Anton Podkopaev, HSE University, Saint Petersburg, Russia, apodkopaev@hse.ru.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART54

https://doi.org/10.1145/3498716

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-6342-0318
HTTPS://ORCID.ORG/0000-0002-8731-1463
HTTPS://ORCID.ORG/0000-0001-7053-4364
HTTPS://ORCID.ORG/0000-0001-9365-9717
HTTPS://ORCID.ORG/0000-0002-6301-152X
HTTPS://ORCID.ORG/0000-0002-9448-6587
https://doi.org/10.1145/3498716
https://orcid.org/0000-0001-6342-0318
https://orcid.org/0000-0002-8731-1463
https://orcid.org/0000-0001-7053-4364
https://orcid.org/0000-0001-9365-9717
https://orcid.org/0000-0002-6301-152X
https://orcid.org/0000-0002-9448-6587
https://doi.org/10.1145/3498716

54:2 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

When these approaches are not available, however, the humble semicolon becomes shrouded in
mystery, covered in the cloak of something known as a memory model. Every language has such
a model: For each read operation, it determines the set of available values. Compilers and runtime
systems are allowed to choose any value in the set. To allow efficient implementation, the set must
not be too small. To allow invariant reasoning, the set must not be too large.

For optimized concurrent languages, it is surprising difficult to define a model that allows com-
mon compiler optimizations and hardware reorderings yet disallows nonsense behaviors that don’t
arise in practice. The latter are commonly known as “thin-air” behaviors [Batty et al. 2015]. There
are only a handful of solutions, and all have deficiencies. These can be classified by their approach
to dependency tracking (from strongest to weakest):

• Syntactic dependencies [Boehm and Demsky 2014; Kavanagh and Brookes 2018; Lahav et al.
2017; Vafeiadis and Narayan 2013]. These models require inefficient implementation of re-
laxed access. This is a non-starter for safe languages like Java and Javascript, and may be an
unacceptable cost for low-level languages like C11.

• Semantic dependencies [Chakraborty and Vafeiadis 2019; Cho et al. 2021; Jagadeesan et al.
2010; Kang et al. 2017; Lee et al. 2020; Manson et al. 2005]. These models compute depen-
dencies operationally using alternate worlds, making it impossible to understood a single
execution in isolation; they also allow executions that violate temporal reasoning (see §9).

• No dependencies, as in C11 [Batty et al. 2015] and Javascript [Watt et al. 2019]. This allows
thin-air executions.

Thesemodels are all non-compositional in the sense that in order to calculate themeaning of any
thread, all threads must be known. Using the axiomatic approach of C11, for example, execution
graphs are first constructed for each thread, using an operational semantics that allows a read to see
any value. The combined graphs are then filtered using a set of acyclicity axioms that determine
which reads are valid. These axioms use existentially defined global relations, such as memory
order (mo), which must be a per-location total order on write actions.

Part of this non-compositionality is essential: In a concurrent system, the complete set of writes
is known only at top-level. However, much of it is incidental. Two recent models have attempted
to limit non-compositionality. Jagadeesan et al. [2020] defined Pomsets with Preconditions (PwP),
which use preconditions and logic to calculate dependencies for a Java-like language. Paviotti
et al. [2020] defined Modular Relaxed Dependencies (mRd), which use event structures to calculate
a semantic dependency relation (sdep). PwP is defined using (acyclic) labelled partial orders, or
pomsets [Gischer 1988]. mRd adds a causality axiom to C11, stating that (sdep∪ rf) must be acyclic.
In both approaches, acyclicity enables inductive reasoning.

While PwP and mRd both treat concurrency compositionally, neither gives a compositional ac-
count of sequentiality. PwP uses prefixing, adding one event at a time on the left. mRd encodes se-
quential composition using continuation-passing. In both, adding an event requires perfect knowl-
edge of the future. For example, suppose that you are writing system call code and you wish to
know if you can reorder a couple of statements. Using PwP or mRd, you cannot tell whether this
is possible without having the calling code! More formally, Jagadeesan et al. state the equivalence
allowing reordering independent writes as follows:

J𝑥:=𝑀;𝑦:=𝑁; 𝑆K = J𝑦:=𝑁;𝑥:=𝑀; 𝑆K if 𝑥 ≠ 𝑦

This requires a quantification over all continuations 𝑆 . This is problematic, both from a theoretical
point of view—the syntax of programs is nowmentioned in the definition of the semantics—and in
practice—tools cannot quantify over infinite sets.This problem is related to contextual equivalence,
full abstraction [Milner 1977; Plotkin 1977] and the CIU theorem of Mason and Talcott [1992].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:3

In this paper, we show that PwP can be extended with families of predicate transformers (PwT)
to calculate sequential dependencies in a way that is compositional and direct: compositional in
that the denotation of (𝑆1; 𝑆2) can be computed from the denotation of 𝑆1 and the denotation of
𝑆2, and direct in that these can be calculated independently. With this formulation, we can show:

J𝑥:=𝑀;𝑦:=𝑁 K = J𝑦:=𝑁;𝑥:=𝑀K if 𝑥 ≠ 𝑦

Then the equivalence holds in any context—this form of the equivalence enables reasoning about
peephole optimizations. Said differently, unlike prior work, PwT allows the presence or absence
of a dependency to be understood in isolation—this enables incremental and modular validation
of assumptions about program dependencies in larger blocks of code.

Our main insight is that for language models, sequentiality is the hard part. Concurrency is easy!
Or at least, it is no more difficult than it is for hardware. Compilers make the difference, since
they typically do little optimization between threads. We motivate our approach to sequential
dependencies in §2 and provide formal definitions in §3. In §8, we extend the model to include
additional features, such as address calculation and Rmws. We discuss related and future work in
§9–10.

We extend PwT to a full memory model in §4, based on PwP [Jagadeesan et al. 2020]. §5 sum-
marizes the results for this model. In addition to powering such a bespoke model, the dependency
relation calculated by PwT can also be used with off-the-shelf models. For example, in §6 we show
that it can be used as an sdep relation for C11, adapting the approach of mRd [Paviotti et al. 2020].
§7 describes a tool for automatic evaluation of litmus tests in this model. C11 allows thin-air in
order to avoid overhead in the implementation of relaxed reads. Safe languages like OCaml [Dolan
et al. 2018] have typically made the opposite choice, accepting a performance penalty in order to
avoid thin-air. Just as PwT can be used to strengthen C11, it could also be used to weaken these
models, allowing optimal lowering for relaxed reads while banning thin-air.

PwT has been formalized in Coq. We have formally verified that the sequential composition
satisfies the expected monoid laws (Lemma 3.5). In addition we have formally verified that Jif(𝜙)
{𝑆1; 𝑆3} else {𝑆2; 𝑆3}K ⊇ Jif(𝜙){𝑆1} else {𝑆2}; 𝑆3K (Lemma 3.6e).

Supplementary material for this paper is available at https://weakmemory.github.io/pwt.

2 OVERVIEW

This paper is about the interaction of two of the fundamental building blocks of computing: se-
quential composition and mutable state. One would like to think that these are well-worn topics,
where every issue has been settled, but this is not the case.

2.1 Sequential Composition

Novice programmers are taught sequential abstraction: that the program 𝑆1; 𝑆2 executes 𝑆1 before
𝑆2. Since the late 1960s, we’ve been able to explain this using logic [Hoare 1969]. In Dijkstra’s [1975]
formulation, we think of programs as predicate transformers, where predicates describe the state of
memory in the system. In the calculus of weakest preconditions, programs map postconditions to
preconditions. We recall the definition of wp𝑆 (𝜓) for loop-free code below (where 𝑟–𝑠 range over
thread-local registers and 𝑀–𝑁 range over side-effect-free expressions).

wp𝑟 :=𝑀 (𝜓) = 𝜓 [𝑀/𝑟] wp𝑆1;𝑆2 (𝜓) = wp𝑆1 (wp𝑆2 (𝜓)) wpskip (𝜓) = 𝜓

wpif(𝑀){𝑆1} else {𝑆2}
(𝜓) = ((𝑀≠0) ⇒ wp𝑆1 (𝜓)) ∧ ((𝑀=0) ⇒ wp𝑆2 (𝜓))

Without loops, the Hoare triple {𝜙} 𝑆 {𝜓 } holds exactly when 𝜙 ⇒ wp𝑆 (𝜓). This is an elegant
explanation of sequential computation in a sequential context. Note that the assignment rule is
sound because a read from a thread-local register must be fulfilled by a preceding write in the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://weakmemory.github.io/pwt

54:4 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

same thread. In a concurrent context, with shared variables (𝑥–𝑧), the obvious generalization of
the assignment rule for reads, wp𝑟 :=𝑥 (𝜓) = 𝜓 [𝑥/𝑟], is unsound! In particular, a read from a shared
memory location may be fulfilled by a write in another thread.

In this paper we answer the following question: what does sequential composition mean in a
concurrent context? An acceptable answer must satisfy several desiderata:

(1) it should not impose too much order, overconstraining the implementation,
(2) it should not impose too little order, allowing bogus executions, and
(3) it should be compositional and direct, as described in §1.

Memory models differ in how they navigate between desiderata 1 and 2. In one direction there
are both more valid compiler optimizations and also more potentially dubious executions, in the
other direction, less of both. To understand the tradeoffs, one must first understand the underlying
hardware and compilers.

2.2 Memory Models

For single-threaded programs, memory can be thought of as you might expect: programs write to,
and read from, memory references. This can be thought of as a total order over memory actions
(), where each read has a matching fulfilling write (), for example:

𝑥 := 0;𝑥 := 1;𝑦 := 2; 𝑟 :=𝑦; 𝑠:=𝑥

W𝑥 0 W𝑥 1 W𝑦2 R𝑦2 R𝑥 1

This model extends naturally to the case of shared-memory concurrency, leading to a sequen-
tially consistent semantics [Lamport 1979], in which program order inside a thread implies a total
causal order between read and write events, for example (where ; has higher precedence than ‖):

𝑥 := 0;𝑥 := 1;𝑦 := 2 ‖ 𝑟 :=𝑦; 𝑠:=𝑥

W𝑥 0 W𝑥 1 W𝑦2 R𝑦2 R𝑥 1

We can represent such an execution as a labelled partial order, or pomset [Gischer 1988; Pratt 1985].
A programmay give rise to many executions, each reflecting a different interleaving of the threads.

Unfortunately, this model does not compile efficiently to commodity hardware, resulting in a 37–
73% increase in CPU time on Arm8 [Liu et al. 2019] and, hence, in power consumption. Developers
of software and compilers have therefore been faced with a difficult trade-off, between an elegant
model of memory, and its impact on resource usage (such as size of data centers, electricity bills
and carbon footprint). Unsurprisingly, many have chosen to prioritize efficiency over elegance.

This has led to relaxed memory models, in which the requirement of sequential consistency is
weakened to only apply per-location. This allows executions that are inconsistent with program
order, such as the following, which contains an antidependency ():

𝑥 := 0;𝑥 := 1;𝑦 := 2 ‖ 𝑟 :=𝑦; 𝑠:=𝑥

W𝑥 0 W𝑥 1 W𝑦2 R𝑦2 R𝑥 0

In such models, the causal order between events is important, and includes control and data
dependencies () to avoid paradoxical “out of thin air” examples such as the following. (We rou-
tinely elide initializing writes when they are uninteresting.)

𝑟 :=𝑥; if(𝑟){𝑦 := 1} ‖ 𝑠:=𝑦;𝑥 := 𝑠

R𝑥 1 W𝑦1 R𝑦1 W𝑥 1

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:5

This candidate execution forms a cycle in causal order, so is disallowed, but this depends crucially
on the control dependency from (R𝑥 1) to (W𝑦1), and the data dependency from (R𝑦1) to (W𝑥 1).
If either is missing, then this execution is acyclic and hence allowed. For example dropping the
control dependency results in the following execution, which should be allowed:

𝑟 :=𝑥;𝑦 := 1 ‖ 𝑠:=𝑦;𝑥 := 𝑠

R𝑥 1 W𝑦1 R𝑦1 W𝑥 1

While syntactic dependency calculation suffices for hardware models, it is not preserved by
common compiler optimizations. For example, consider the following program:

𝑟 :=𝑥; if(𝑟){𝑦 := 1} else {𝑦 := 1} ‖ 𝑠:=𝑦;𝑥 := 𝑠

Because 𝑦 := 1 occurs on both branches of the conditional, a compiler may lift it out. With the
dependency removed, the compiler could reorder the read of 𝑥 and write to 𝑦, allowing both reads
to see 1. Attempting to generate this execution with syntactic dependencies, however, results in
the following candidate execution, which has a cycle and therefore is disallowed:

R𝑥 1 W𝑦1 R𝑦1 W𝑥 1

To address this, Jagadeesan et al. [2020] introduced Pomsets with Preconditions (PwP), where
events are labeled with logical formulae. Nontrivial preconditions are introduced by store actions
(modeling data dependencies) and conditionals (modeling control dependencies):

if(𝑠>0){𝑧 := 𝑟∗(𝑠−1)}

(𝑠>0) ∧ (𝑟∗(𝑠−1))=0
�

�

� W𝑧0

In this diagram, (𝑠>0) is a control dependency and (𝑟∗(𝑠−1))=0 is a data dependency. Precondi-
tions are updated as events are prepended (we assume the usual precedence for logical operators):

𝑟 :=𝑥; 𝑠:=𝑦; if(𝑠>0){𝑧 := 𝑟∗(𝑠−1)}

R𝑥 1 R𝑦1 (1=𝑠) ⇒ (𝑠>0) ∧ (𝑟∗(𝑠−1))=0
�

�

� W𝑧0

In this diagram there are two reads. As evidenced by the arrow, the read of 𝑦 is ordered before the
write, reflecting possible dependency; the read of 𝑥 is not, reflecting independency. The dependent
read of 𝑦 allows the precondition of the write to weaken: now the old precondition need only be
satisfied assuming the hypothesis (1=𝑠). The independent read of 𝑥 allows no such weakening.
Nonetheless, the precondition of the write is now a tautology, and so can be elided in the diagram.

We can complete the execution by adding the required writes:

𝑥 := 1;𝑦 := 1 ‖ 𝑟 :=𝑥; 𝑠:=𝑦; if(𝑠>0){𝑧 := 𝑟∗(𝑠−1)}

W𝑥 1 W𝑦1 R𝑥 1 R𝑦1 W𝑧0

In order for a PwP to be complete, all preconditions must be tautologies and all reads must be
fulfilled by matching writes. The first requirement captures the sequential semantics. The second
requirement captures the concurrent semantics. These correspond to two views of memory for
each thread: thread-local and global. In a multicopy-atomic (mca) architecture, there is only one
global view, shared by all processors, which is neatly captured by the order of the pomset (see §4).

An untaken conditional produces no events. PwP models this by including the empty pomset in
the semantics of every program fragment. To then ensure that skip is not a refinement of 𝑥 := 1,
PwP include a termination action, ✓, which we have elided in the examples above.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:6 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

2.3 Predicate Transformers For Relaxed Memory

PwP shows how the logical approach to sequential dependency calculation can be mixed into a
relaxed memory model. Our contribution is to extend PwP with predicate transformers to arrive
at a model of sequential composition. Predicate transformers are a good fit for logical models of
dependency calculation, since both are concerned with preconditions.

Our first attempt is to associate a predicate transformer with each pomset. We visualize this in
diagrams by showing how𝜓 is transformed, for example:

𝑟 :=𝑥

R𝑥 1 (1=𝑟) ⇒𝜓

𝑠:=𝑦

R𝑦1 (1=𝑠) ⇒𝜓

if(𝑠<1){𝑧 := 𝑟∗𝑠}

(𝑠<1) ∧ (𝑟∗(𝑠−1))=0
�

�

� W𝑧0 𝜓 [𝑟∗𝑠/𝑧]

The predicate transformer for a write 𝑧 :=𝑀 matches Dijkstra: taking 𝜓 to 𝜓 [𝑀/𝑧]. For a read
𝑟 :=𝑥 , however, Dijkstra would transform𝜓 to𝜓 [𝑥/𝑟], which is equivalent to (𝑥=𝑟)⇒𝜓 under the
assumption that registers are assigned at most once. Instead, we use (1=𝑟) ⇒𝜓 , reflecting the fact
that 1 may come from a concurrent write. The obligation to find a matching write is moved from
the sequential semantics of substitution and implication to the concurrent semantics of fulfillment.

For a sequentially consistent semantics, sequential composition is straightforward: we apply
each predicate transformer to subsequent preconditions, composing the predicate transformers.

𝑟 :=𝑥; 𝑠:=𝑦; if(𝑠<1){𝑧 := 𝑟∗(𝑠−1)} (*)

R𝑥 1 R𝑦1 (1=𝑟) ⇒ (1=𝑠) ⇒ (𝑠<1) ∧ (𝑟∗(𝑠−1))=0
�

�

� W𝑧0 (1=𝑟) ⇒ (1=𝑠) ⇒𝜓 [𝑟∗(𝑠−1)/𝑧]

This works for the sequentially consistent case, but needs to be weakened for the relaxed case.
The key observation of this paper is that rather than working with one predicate transformer,

we should work with a family of predicate transformers, indexed by sets of events. For example,
for single-event pomsets, there are two predicate transformers, since there are two subsets of any
one-element set. The independent transformer is indexed by the empty set, whereas the dependent
transformer is indexed by the singleton. We visualize this by including more than one transformed
predicate, with a dotted edge leading to the dependent one (). For example:

𝑟 :=𝑥

R𝑥 1𝜓 (1=𝑟) ⇒𝜓

𝑠:=𝑦

R𝑦1𝜓 (1=𝑠) ⇒𝜓

Themodel of sequential composition then picks which predicate transformer to apply to an event’s
precondition by picking the one indexed by all the events before it in causal order.

For example, we can recover the expected semantics for (*) by choosing the predicate trans-
former which is independent of (R𝑥 1) but dependent on (R𝑦1), which is the transformer which
maps𝜓 to (1=𝑠) ⇒𝜓 . (In subsequent diagrams, we only show predicate transformers for reads.)

𝑟 :=𝑥; 𝑠:=𝑦; if(𝑠<1){𝑧 := 𝑟∗(𝑠−1)}

𝜓 (1=𝑟) ⇒𝜓 (1=𝑟) ⇒ (1=𝑠) ⇒𝜓 (1=𝑠) ⇒𝜓

R𝑥 1 R𝑦1 (1=𝑠) ⇒ (𝑠<1) ∧ (𝑟∗(𝑠−1))=0
�

�

� W𝑧0

In the diagram, the dotted lines indicate set inclusion into the index of the transformer-family. As
a quick correctness check, we can see that sequential composition is associative in this case, since
it does not matter whether we associate to the left—with the intermediate step as in the diagram
above, eliding the write action—or to the right—with the intermediate step:

𝑠:=𝑦; if(𝑠<1){𝑧 := 𝑟∗(𝑠−1)}

R𝑦1 (1=𝑠) ⇒ (𝑠<1) ∧ (𝑟∗(𝑠−1))=0
�

�

� W𝑧0(1=𝑠) ⇒𝜓𝜓

This is an instance of the general result that sequential composition forms a monoid (Lemma 3.5).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:7

3 SEQUENTIAL SEMANTICS

After some preliminaries (§3.1–3.2), we define the model and establish some basic properties (§3.3
and Fig. 1). We then explain the model using examples (§3.4–3.9). We encourage readers to skim
the definitions and then skip to §3.4, coming back as needed.

In this section, we concentrate on the sequential semantics, ignoring the requirement that con-
current reads be fulfilled by matching writes. We extend the model to a full concurrent semantics
in §4 and §6 by defining a reads-from relation (rf) subject to various constraints.

3.1 Preliminaries

The syntax is built from

• a set of values V , ranged over by 𝑣 ,𝑤 , ℓ , 𝑘 ,
• a set of registers R, ranged over by 𝑟 , 𝑠 ,
• a set of expressions M, ranged over by 𝑀 , 𝑁 , 𝐿.

Memory references, aka locations, are tagged values, written [ℓ]. Let X be the set of memory
references, ranged over by 𝑥 , 𝑦, 𝑧. We require that

• values and registers are disjoint,
• values are finite1 and include at least the constants 0 and 1,
• expressions include at least registers and values,
• expressions do not include memory references: 𝑀 [𝑁 /𝑥] = 𝑀 (for all 𝑥).

We model the following language.

𝜇, 𝜈 ::= rlx | rel | acq | sc

𝑆 ::= 𝑟 :=𝑀 | 𝑟 := [𝐿]𝜇 | [𝐿]𝜇:=𝑀 | F𝜇 | skip | 𝑆1; 𝑆2 | if(𝑀){𝑆1} else {𝑆2} | 𝑆1 ‖→ 𝑆2

Access modes, 𝜇, are relaxed (rlx), release (rel), acquire (acq), and sequentially consistent (sc).
Reads (𝑟 := [𝐿]𝜇) support rlx, acq, sc. Writes ([𝐿]𝜇:= 𝑟) support rlx, rel, sc. Fences (F𝜇) support rel,
acq, sc. Register assignments (𝑟 :=𝑀) only affect thread-local state and therefore have no mode. In
examples, the default mode for reads and writes is rlx—we systematically drop the annotation.
Commands, aka statements, 𝑆 , include fences and memory accesses at a given mode, as well as

the usual structural constructs. Following Ferreira et al. [1996], ‖→ denotes parallel composition,
preserving thread state on the right after a join. In examples without join, we use the symmetric
‖ operator.

We use common syntactic sugar, such as extended expressions, M, which include memory loca-
tions. For example, ifM includes a single occurrence of 𝑥 , then (𝑦:=M; 𝑆) is shorthand for (𝑟 :=𝑥;
𝑦:=M[𝑟/𝑥]; 𝑆). Each occurrence of 𝑥 in an extended expression corresponds to an separate read.
We also write if(𝑀){𝑆} as shorthand for if(𝑀){𝑆} else {skip}.

Throughout §1–7 we require that each register is assigned at most once in a program. In §8, we
drop this restriction, requiring instead that there are registers that do not appear in programs.

The semantics is built from the following.

• a set of events E, ranged over by 𝑒 , 𝑑 , 𝑐 , and subsets ranged over by 𝐸, 𝐷 , 𝐶 ,
• a set of logical formulae Φ, ranged over by 𝜙 ,𝜓 , 𝜃 ,
• a set of actions A, ranged over by 𝑎, 𝑏,
• a family of quiescence symbols Q𝑥 , indexed by location.

We require that

• formulae include tt, ff , Q𝑥 , and the equalities (𝑀=𝑁) and (𝑥=𝑀),

1We require finiteness for the semantics of address calculation (§8.4), which quantifies over all values. Using types, one

could limit the finiteness assumption to the subset of values used for address calculation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:8 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

• formulae are closed under ¬, ∧, ∨, ⇒, and substitutions [𝑀/𝑟], [𝑀/𝑥], [𝜙/Q𝑥],
• there is a relation ⊨ between formulae, capturing entailment,
• ⊨ has the expected semantics for =, ¬, ∧, ∨, ⇒ and substitutions [𝑀/𝑟], [𝑀/𝑥], [𝜙/Q𝑥],
• there is a subset of A, distinguishing read actions,
• there are four binary relations over A ×A: delays and matches ⊆ blocks ⊆ overlaps.

Logical formulae include equations over registers and memory references, such as (𝑟=𝑠+1) and
(𝑥=1). We use expressions as formulae, coercing 𝑀 to 𝑀≠0.

We write 𝜙 ≡ 𝜓 when 𝜙 ⊨ 𝜓 and𝜓 ⊨ 𝜙 . We say 𝜙 is a tautology if tt ⊨ 𝜙 . We say 𝜙 is unsatisfiable
if 𝜙 ⊨ ff , and satisfiable otherwise.

3.2 Actions in This Paper

In this paper, each action is either a read, a write, or a fence:

𝑎,𝑏 ::= R𝜇𝑥𝑣 | W𝜇𝑥𝑣 | F𝜇

We use shorthand when referring to actions. In definitions, we drop elements of actions that
are existentially quantified. In examples, we drop elements of actions, using defaults. Let ⊑ be the
smallest order over access and fence modes such that rlx ⊑ rel ⊑ sc and rlx ⊑ acq ⊑ sc. We write
(W⊒rel) to stand for either (Wrel) or (Wsc), and similarly for the other actions and modes.

Definition 3.1. Actions (R) are read actions.
We say 𝑎 matches 𝑏 if 𝑎 = (W𝑥𝑣) and 𝑏 = (R𝑥𝑣).
We say 𝑎 blocks 𝑏 if 𝑎 = (W𝑥) and 𝑏 = (R𝑥), regardless of value.
We say 𝑎 overlaps 𝑏 if they access the same location, regardless of whether they read or write.
Let ⊲⊳co capture write-write, read-write coherence: ⊲⊳co = {(W𝑥,W𝑥), (R𝑥,W𝑥), (W𝑥,R𝑥)}.
Let ⋉sync capture conflict due to synchronization:2 ⋉sync = {(𝑎,W⊒rel), (𝑎, F⊒rel), (R, F⊒acq),

(R⊒acq, 𝑏), (F⊒acq, 𝑏), (F⊒rel,W), (W⊒rel𝑥,W𝑥)}.
Let ⊲⊳sc capture conflict due to sc access: ⊲⊳sc = {(Wsc,Wsc), (Rsc,Wsc), (Wsc,Rsc), (Rsc,Rsc)}.
We say 𝑎 delays 𝑏 if 𝑎 ⊲⊳co 𝑏 or 𝑎 ⋉sync 𝑏 or 𝑎 ⊲⊳sc 𝑏.

3.3 PwT: Pomsets with Predicate Transformers

Predicate transformers are functions on formulae that preserve logical structure, providing a natural
model of sequential composition. The definition follows Dijkstra [1975].3

Definition 3.2. A predicate transformer is a function 𝜏 : Φ→ Φ such that
(x1) 𝜏 (𝜓1 ∧𝜓2) ≡ 𝜏 (𝜓1) ∧ 𝜏 (𝜓2),
(x2) 𝜏 (𝜓1 ∨𝜓2) ≡ 𝜏 (𝜓1) ∨ 𝜏 (𝜓2),

(x3) if 𝜙 ⊨ 𝜓 , then 𝜏 (𝜙) ⊨ 𝜏 (𝜓).

We consistently use𝜓 as the parameter of predicate transformers. Note that substitutions (𝜓 [𝑀/𝑟]
and𝜓 [𝑀/𝑥]) and implications on the right (𝜙 ⇒𝜓) are predicate transformers.

As discussed in §1, predicate transformers suffice for sequentially consistent models, but not
relaxed models, where dependency calculation is crucial. For dependency calculation, we use a
family of predicate transformers, indexed by sets of events. When computing J𝑆1; 𝑆2K, we will use
𝜏𝐶 as the predicate transformer for event 𝑒 ∈ J𝑆2K, where 𝐶 includes all of the events in J𝑆1K that

2This formalization includes release sequences (W⊒rel𝑥,W𝑥) . Symmetry would suggest that we include (R𝑥,R⊒acq𝑥), but

this is not sound for Arm8.
3In addition to the three criteria of Def. 3.2, Dijkstra [1975] requires (x4′) 𝜏 (ff) ≡ ff . The dependent transformer for read

actions (R4a) fails x4′ , since ff is not equivalent to 𝑣=𝑟⇒ff . We can define an analog of x4′ for our model using the register

naming conventions of §8. Define 𝜃𝜆 to capture the register state of a pomset: 𝜃𝜆 =
∧

{(𝑒,𝑣) ∈ (𝐸×V) |𝜆 (𝑒)=(R𝑣) } (s𝑒=𝑣) where

𝐸 = dom(𝜆) . We say that 𝜙 is 𝜆-inconsistent if 𝜙 ∧ 𝜃𝜆 is unsatisfiable. We can then require (x4) if𝜓 is 𝜆-inconsistent then

𝜏 (𝜓) is 𝜆-inconsistent. x4 is not needed for the results of this paper, therefore we have elided it from themain development.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:9

precede 𝑒 in causal order (𝑑 <1 𝑒 implies 𝑑 ∈ 𝐶). Under the following definition, the larger 𝐶 is,
the better, at least in terms of satisfying preconditions. Adding more order can only increase the
size of 𝐶 . Thus more order means weaker preconditions.

Definition 3.3. A family of predicate transformers over 𝐸 consists of a predicate transformer 𝜏𝐷

for each 𝐷 ⊆ E, such that if 𝐶 ∩ 𝐸 ⊆ 𝐷 then 𝜏𝐶 (𝜓) ⊨ 𝜏𝐷 (𝜓).

In a family of predicate transformers, the transformer of a smaller setmust entail the transformer
of a larger set. Thus bigger sets are better and 𝜏𝐸 (𝜓)—the transformer of the biggest set—is the best.
(The definition is insensitive to events outside 𝐸—it is for this reason that we have taken 𝐷 ⊆ E
rather than 𝐷 ⊆ 𝐸.)

Definition 3.4. A pomset with predicate transformers (PwT) is a tuple (𝐸, 𝜆, 𝜅, 𝜏 ,✓, <) where

(m1) 𝐸 ⊆ E is a set of events,
(m2) 𝜆 : 𝐸 →A defines an action for each event,
(m3) 𝜅 : E → Φ defines a precondition for each event, such that
(m3a) 𝑒 ∉ 𝐸 implies 𝜅 (𝑒) = ff ,
(m4) 𝜏 : 2E → Φ→ Φ is a family of predicate transformers over 𝐸,
(m5) ✓ : Φ is a termination condition, such that
(m5a) ✓ ⊨ 𝜏𝐸 (tt),
(m6) < ⊆ 𝐸 × 𝐸, is a strict partial order capturing causality.

A PwT is complete if
(c3) 𝜅 (𝑒) is a tautology (for every 𝑒 ∈ 𝐸), (c5) ✓ is a tautology.

We refer to PwTs simply as pomsets. Let 𝑃 range over pomsets, and P over sets of pomsets.
Throughout the rest of this section, we endeavor to explain Fig. 1, which gives the semantics of

programs J·K. We use consistent sub- and super-scripts to refer to the components of a pomset. For
example <1 is the order of 𝑃1, <

′ is the order of 𝑃 ′, and < is the order of 𝑃 . We also use consistent
numbering. For example, item 3 always refers to 𝜅 and item 5 always refers to ✓. As usual, we
write 𝑑 ≤ 𝑒 to mean 𝑑 < 𝑒 or 𝑑 = 𝑒 .

The core of the model is a labeled partial order, including a set of events (m1), a labeling (m2),
and an order (m6). On top of this basic structure, m3–m5 add a layer of logic. For each pomset, m5
provides a termination condition. For each event in a pomset, m3 provides a precondition. For each
set of events in a pomset, m4 provides a predicate transformer. The partial order and the logic are
tied together formally in the definition of 𝜅′

2
in SEQ in Fig. 1, which calculates dependencies.

Before discussing the details, we note that the semantics satisfies the expected monoid laws, as
well as some laws concerning the conditional. We have verified Lemma 3.5 and Lemma 3.6e in
Coq4. Similar laws apply to parallel composition—for example J𝑆K = Jskip ‖→ 𝑆K. Note, however,
that J𝑆K ≠ J𝑆 ‖→ skipK—this asymmetric operator throws away thread state from the left.

Lemma 3.5. (a) J𝑆K = J(𝑆; skip)K = J(skip; 𝑆)K. (b) J(𝑆1; 𝑆2); 𝑆3K = J𝑆1; (𝑆2; 𝑆3)K.

Theproof of (a) requires m5a for the termination condition in (𝑆; skip).The proof of (b) requires
both conjunction closure (x1, for the termination condition) and disjunction closure (x2, for the
predicate transformers themselves). The proof of (b) also requires that s6 enforce projection as
well as inclusion (see the definition of respects in Fig. 1).

Lemma 3.6. (c) Jif(𝜙){𝑆1} else {𝑆2}K ⊇ J𝑆1K if 𝜙 is a tautology.
(d) Jif(𝜙){𝑆} else {𝑆}K ⊇ J𝑆K.
(e) Jif(𝜙){𝑆1; 𝑆3} else {𝑆2; 𝑆3}K ⊇ Jif(𝜙){𝑆1} else {𝑆2}; 𝑆3K.

4Specifically, we have proven these results for the semantics of Fig. 1 with the refinements of §3.7, §8.1, and §8.3

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:10 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

(f) Jif(𝜙){𝑆1; 𝑆2} else {𝑆1; 𝑆3}K ⊇ J𝑆1; if(𝜙){𝑆2} else {𝑆3}K.
(g) Jif(¬𝜙){𝑆2}; if(𝜙){𝑆1}K ⊆ Jif(𝜙){𝑆1} else {𝑆2}K ⊇ Jif(𝜙){𝑆1}; if(¬𝜙){𝑆2}K.

In §8.3, we refine the semantics to validate the reverse inclusions for (d–f) using if-introduction.
Although the semantics of Fig. 1 validates the reverse inclusions for (g), these do not hold for
PwT-mca (see §10).

The semantics is closed with respect to augmentation: 𝑃2 is an augment of 𝑃1 if all fields are
equal except, perhaps, the order, where we require <2 ⊇ <1.

Lemma 3.7. If 𝑃1 ∈ J𝑆K and 𝑃2 augments 𝑃1 then 𝑃2 ∈ J𝑆K.

Augment closure captures the intuition that it is always sound for a compiler to make more
conservative assumptions about dependencies than the semantics.

Unless otherwise noted, all pomsets in examples are complete and augment-minimal.

3.4 Pomsets and Complete Pomsets: Termination

Ignoring the logic, the definitions of Fig. 1 are straightforward. Reads, writes and fences map to
pomsets with at most one event—we allow the empty pomset so that these may appear in the
untaken branch of a conditional. skip and register assignment map to the empty pomset. The
structural rules combine pomsets: PAR performs disjoint union, inheriting labeling and order from
the two sides. SEQ and IF both perform a union.

We say that 𝑑 ∈ 𝐸1 and 𝑒 ∈ 𝐸2 coalesce if 𝑑 = 𝑒 . As a trivial consequence of using union
rather than disjoint union, s1 validatesmumbling [Brookes 1996] by coalescing events. For example
J𝑥 := 1;𝑥 := 1K includes the singleton pomset W𝑥 1 . From this it is easy to see that J𝑥 := 1;𝑥 := 1K ⊇

J𝑥 := 1K is a valid refinement. It is equally obvious that J𝑥 := 1K ⊉ J𝑥 := 1;𝑥 := 1K is not a valid
refinement, since the latter includes a two-element pomset, but the former does not. (These are
observationally distinguished by the context: [–] ‖ 𝑟 :=𝑥;𝑥 := 2; 𝑠:=𝑥; if(𝑟=𝑠){𝑧 := 1}.)

In complete pomsets, c3 requires that all preconditions must be tautologies. In order to allow
complete pomsets with untaken conditionals, such as if(ff){𝑥 := 1}, we allow the empty pomset
in the semantics of all statements. Termination conditions ensure that the empty pomset is not
used inappropriately. At top level, c5 requires that ✓ is a tautology. w5 and f5 ensure that writes
and fences are included in complete pomsets, unless they are inside an untaken conditional. For
example, termination conditions ensure that J𝑥 := 1K ⊉ JskipK, since JskipK includes the empty
pomset with ✓ ≡ tt, but J𝑥 := 1K can only include the empty pomset with ✓ ≡ K(∅) = ff .

For reads, the definition of ✓ depends on the mode: relaxed reads may be elided in complete
pomsets (R5a), but acquiring reads must be included (R5b). From this, it is easy to see that J𝑟 :=𝑥 K ⊇
JskipK is a valid refinement (where the default mode is rlx).

Note that J𝑥 := 2K can write any value 𝑣 ; the fact that 𝑣 must be 2 is captured in the logic. In
particular, w5 requires that ✓ ≡ 2=𝑣 for this program and c5 requires that ✓ be a tautology at top-
level. In combination, these ensure that complete pomsets do not include bogus writes. Consider
the following incomplete pomsets:

𝑥 := 1

W𝑥 1

𝑥 := 2

2=3

�

�

� W𝑥 3

if(𝑀){𝑥 := 3}

𝑀≠0

�

�

� W𝑥 3

By merging, the semantics allows the following:

𝑥 := 1;𝑥 := 2; if(𝑀){𝑥 := 3}

W𝑥 1 𝑀≠0

�

�

� W𝑥 3

However, this pomset is incomplete—regardless of 𝑀—since ✓ ≡ 2=3 ≡ ff .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:11

If 𝑃 ∈ SKIP then 𝐸 = ∅ and 𝜏𝐷 (𝜓) ≡ 𝜓 and ✓ ≡ tt.

If 𝑃 ∈ ASSIGN (𝑟, 𝑀) then 𝐸 = ∅ and 𝜏𝐷 (𝜓) ≡ 𝜓 [𝑀/𝑟] and ✓ ≡ tt.

Suppose 𝑅𝑖 is a relation in 𝐸𝑖 × 𝐸𝑖 . We say 𝑅 respects 𝑅𝑖 if 𝑅 ⊇ 𝑅𝑖 and 𝑅 ∩ (𝐸𝑖 × 𝐸𝑖) = 𝑅𝑖 .

If 𝑃 ∈ PAR(P1, P2) then (∃𝑃1 ∈ P1) (∃𝑃2 ∈ P2)
(p1) 𝐸 = (𝐸1 ⊎ 𝐸2),
(p2) 𝜆 = (𝜆1 ∪ 𝜆2),
(p3) 𝜅 (𝑒) ≡ 𝜅1 (𝑒) ∨ 𝜅2 (𝑒),

(p4) 𝜏𝐷 (𝜓) ≡ 𝜏𝐷
2
(𝜓),

(p5) ✓ ≡ ✓1 ∧ ✓2,
(p6) < respects <1 and <2.

If 𝑃 ∈ SEQ(P1, P2) then (∃𝑃1 ∈ P1) (∃𝑃2 ∈ P2)
let 𝜅′

2
(𝑒) = 𝜏𝐶

1
(𝜅2 (𝑒)) where 𝐶 = {𝑐 | 𝑐 < 𝑒}

(s1) 𝐸 = (𝐸1 ∪ 𝐸2),
(s2) 𝜆 = (𝜆1 ∪ 𝜆2),
(s3) 𝜅 (𝑒) ≡ 𝜅1 (𝑒) ∨ 𝜅′

2
(𝑒),

(s4) 𝜏𝐷 (𝜓) ≡ 𝜏𝐷
1
(𝜏𝐷

2
(𝜓)),

(s5) ✓ ≡ ✓1 ∧ 𝜏𝐸1

1
(✓2),

(s6) < respects <1 and <2.

If 𝑃 ∈ IF (𝜙, P1, P2) then (∃𝑃1 ∈ P1) (∃𝑃2 ∈ P2)
(i1) 𝐸 = (𝐸1 ∪ 𝐸2),
(i2) 𝜆 = (𝜆1 ∪ 𝜆2),
(i3) 𝜅 (𝑒) ≡ (𝜙 ∧ 𝜅1 (𝑒)) ∨ (¬𝜙 ∧ 𝜅2 (𝑒)),

(i4) 𝜏𝐷 (𝜓) ≡ (𝜙 ∧ 𝜏𝐷
1
(𝜓)) ∨ (¬𝜙 ∧ 𝜏𝐷

2
(𝜓)),

(i5) ✓ ≡ (𝜙 ∧ ✓1) ∨ (¬𝜙 ∧ ✓2),
(i6) < respects <1 and <2.

Let K(𝐷) =
∨

𝑑∈𝐷𝜅 (𝑑). Note that K(∅) = ff .

If 𝑃 ∈ FENCE(𝜇) then
(f1) |𝐸 | ⩽ 1,
(f2) 𝜆(𝑒) = F𝜇 ,
(f3) 𝜅 (𝑒) ≡ tt,

(f4) 𝜏𝐷 (𝜓) ≡ 𝜓 ,
(f5) ✓ ≡ K(𝐸).

If 𝑃 ∈ WRITE(𝑥, 𝑀, 𝜇) then (∃𝑣 ∈ V)
(w1) |𝐸 | ⩽ 1,
(w2) 𝜆(𝑒) = W𝜇𝑥𝑣 ,
(w3) 𝜅 (𝑒) ≡ 𝑀=𝑣 ,

(w4) 𝜏𝐷 (𝜓) ≡ 𝜓 [𝑀/𝑥] [K(𝐸)/Q𝑥],
(w5) ✓ ≡ K(𝐸),

If 𝑃 ∈ READ(𝑟, 𝑥, 𝜇) then (∃𝑣 ∈ V)
(R1) |𝐸 | ⩽ 1,
(R2) 𝜆(𝑒) = R𝜇𝑥𝑣 ,
(R3) 𝜅 (𝑒) ≡ Q𝑥 ,

(R4a) if 𝑒 ∈ 𝐸 ∩ 𝐷 then 𝜏𝐷 (𝜓) ≡ (𝜅 (𝑒) ⇒ 𝑣=𝑟) ⇒𝜓,

(R4b) if 𝑒 ∈ 𝐸 \ 𝐷 then 𝜏𝐷 (𝜓) ≡ (𝜅 (𝑒) ⇒ (𝑣=𝑟 ∨ 𝑥=𝑟)) ⇒𝜓,

(R4c) if 𝐸 = ∅ then 𝜏𝐷 (𝜓) ≡ 𝜓,

(R5a) if 𝜇 ⊑ rlx then ✓ ≡ tt,
(R5b) if 𝜇 ⊒ acq then ✓ ≡ K(𝐸).

J𝑟 :=𝑀K = ASSIGN (𝑟, 𝑀)

J𝑥𝜇:=𝑀K = WRITE(𝑥, 𝑀, 𝜇)

J𝑟 :=𝑥𝜇K = READ(𝑟, 𝑥, 𝜇)

JF𝜇K = FENCE(𝜇)

JskipK = SKIP

J𝑆1 ‖→ 𝑆2K = PAR(J𝑆1K, J𝑆2K)

J𝑆1; 𝑆2K = SEQ(J𝑆1K, J𝑆2K)

Jif(𝑀){𝑆1} else {𝑆2}K = IF (𝑀≠0, J𝑆1K, J𝑆2K)

Fig. 1. PwT Semantics

Ignoring predicate transformers, p5 and s5 both take ✓ ≡ ✓1 ∧ ✓2. This is as expected: the
program terminates if both subprograms terminate. In i5, ✓ ≡ (𝜙 ∧✓1) ∨ (¬𝜙 ∧✓2): the program
terminates as long as the taken branch terminates. Thus Jif(tt){𝑥 := 1} else {𝑦 := 1}K contains a
complete pomset with exactly one event: (W𝑥 1). To construct this pomset, we take the singleton
from the left and the empty set from the right. This is a general principle: for code that contributes
no events at top-level, use the empty set.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:12 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

3.5 Preconditions, Predicate Transformers, and Data Dependencies

In this section, we ignore the Q𝑥 symbols that appear in the semantics of read and write, taking
Q𝑥 = tt, for all 𝑥 . We also introduce the independent transformer for reads (R4b) without explain-
ing why it is defined as it is. We take up both subjects in §3.8.

Preconditions are discharged during sequential composition by applying predicate transformers
—𝜏

1
—from the left to preconditions—𝜅2 (𝑒)—on the right. The specific rule is s3, which uses the

transformed predicate 𝜅′
2
(𝑒) = 𝜏𝐶

1
(𝜅2 (𝑒)), where 𝐶 = {𝑐 | 𝑐 < 𝑒} is the set of events that precede 𝑒

in causal order. We call 𝐶 the dependent set for 𝑒 . Then 𝐸 \𝐶 is the independent set.
Before looking at the details, it is useful to have a high-level view of how nontrivial precondi-

tions and predicate transformers are introduced.

Preconditions are introduced in:

(w3) for data dependencies,
(i3) for control dependencies.

Predicate transformers are introduced in:

(R4a) for reads in the dependent set,
(R4b) for reads in the independent set,
(w4) for writes.

The rules track dependencies.We discuss data dependencies (w3) here and control dependencies
(i3) in §3.6. We enrich the semantics to handle address dependencies in §8.4.

A simple example of a data dependency is a pomset 𝑃 ∈ J𝑟 :=𝑥;𝑦 := 𝑟K. If 𝑃 is complete, it
must have two events. Then SEQ (Fig. 1) requires 𝑃1 ∈ J𝑟 :=𝑥 K and 𝑃2 ∈ J𝑦 := 𝑟K of the following
form. (We only show the independent transformer for writes—ignoring Q𝑥 , the dependent and
independent transformers for writes are the same.)

𝑟 :=𝑥

𝑣=𝑟 ⇒𝜓R𝑥 𝑣
𝑑

(𝑣=𝑟 ∨ 𝑥=𝑟) ⇒𝜓

𝑦 := 𝑟

𝑟=𝑤
�

�

� W𝑦𝑤
𝑒

𝜓 [𝑟/𝑦]
(†)

First we consider the case that 𝑣 = 𝑤 . For example, if 𝑣 = 𝑤 = 1, we have:

1=𝑟 ⇒𝜓R𝑥 1
𝑑

(1=𝑟 ∨ 𝑥=𝑟) ⇒𝜓 𝑟=1
�

�

� W𝑦1
𝑒

𝜓 [𝑟/𝑦]

For the read, the dependent transformer 𝜏
{𝑑 }
1

is 1=𝑟⇒𝜓 ; the independent transformer 𝜏 ∅
1
is (1=𝑟 ∨

𝑥=𝑟) ⇒𝜓 . These are determined by R4a and R4b, respectively. For the write, both 𝜏
{𝑒 }
2

and 𝜏 ∅
2
are

𝜓 [𝑟/𝑦], as are determined by w4. Combining these into a single pomset, we have:

𝑟 :=𝑥;𝑦 := 𝑟

1=𝑟 ⇒𝜓 [𝑟/𝑦]R𝑥 1
𝑑

(1=𝑟 ∨ 𝑥=𝑟) ⇒𝜓 [𝑟/𝑦] 𝜙
�

�

� W𝑦1
𝑒

Looking at the precondition 𝜙 of the write, recall that in order for 𝑒 to participate in a top-level
pomset, the precondition 𝜙 must be a tautology at top-level. There are two possibilities.

• If 𝑑 < 𝑒 then we apply the dependent transformer and 𝜙 ≡ (1=𝑟 ⇒ 𝑟=1), a tautology.
• If 𝑑 6< 𝑒 then we apply the independent transformer and 𝜙 ≡ ((1=𝑟 ∨ 𝑥=𝑟) ⇒ 𝑟=1). Under

the assumption that 𝑟 is bound (see footnote 3), this is logically equivalent to (𝑥=1).

Eliding transformers and tautological preconditions, the two outcomes are:

𝑟 :=𝑥;𝑦 := 𝑟

R𝑥 1
𝑑

W𝑦1
𝑒

𝑟 :=𝑥;𝑦 := 𝑟

R𝑥 1
𝑑

𝑥=1
�

�

� W𝑦1
𝑒

The independent case on the right can only participate in a top-level pomset if the precondition
(𝑥=1) is discharged. To do so, we can prepend a program that writes 1 to 𝑥 :

𝑥 := 1

1=1

�

�

� W𝑥 1
𝑐

𝜓 [1/𝑥]

𝑥 := 1; 𝑟 :=𝑥;𝑦 := 𝑟

1=1

�

�

� W𝑥 1
𝑐

R𝑥 1
𝑑

1=1

�

�

� W𝑦1
𝑒

Here we apply the transformer from the left (𝜓 [1/𝑥]) to (𝑥=1), resulting in the tautology (1=1).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:13

Now suppose that 𝑣 ≠ 𝑤 in (†). Again there are two possibilities. Taking 𝑣=0 and𝑤=1:

𝑟 :=𝑥;𝑦 := 𝑟

R𝑥 0
𝑑

0=𝑟 ⇒ 𝑟=1
�

�

� W𝑦1
𝑒

𝑟 :=𝑥;𝑦 := 𝑟

R𝑥 0
𝑑

(0=𝑟 ∨ 𝑥=𝑟) ⇒ 𝑟=1
�

�

� W𝑦1
𝑒

Assuming that 𝑟 is bound, both preconditions on 𝑒 are unsatisfiable.
If a write is independent of a read, then clearly no order is imposed between them. For example,

the precondition of 𝑒 is a tautology in:

𝑟 :=𝑥;𝑦 := 1

0=𝑟 ⇒𝜓 [𝑟/𝑦]R𝑥 0
𝑑

(0=𝑟 ∨ 𝑥=𝑟) ⇒𝜓 [𝑟/𝑦] (0=𝑟 ∨ 𝑥=𝑟) ⇒ 1=1

�

�

� W𝑦1
𝑒

Note that both R4a and R4b degenerate to the identity transformer when 𝜅 (𝑒) = ff . This is the
same as the transformer for the empty pomset (R4c).

Also note that J𝑆1 ‖→ 𝑆2K is asymmetric, taking the predicate transformer for 𝑆2 in p4.

3.6 Control Dependencies

In IF (𝜙, P1, P2), the predicate transformer (i4) is (𝜙 ∧ 𝜏𝐷
1
(𝜓)) ∨ (¬𝜙 ∧ 𝜏𝐷

2
(𝜓)), which is the dis-

junctive equivalent of Dijkstra’s conjunctive formulation: (𝜙 ⇒ 𝜏𝐷
1
(𝜓)) ∧ (¬𝜙 ⇒ 𝜏𝐷

2
(𝜓)).

Control dependencies are introduced by the conditional. For coalescing events in 𝐸1 ∩ 𝐸2, i3
requires (𝜙 ∧ 𝜅1 (𝑒)) ∨ (¬𝜙 ∧ 𝜅2 (𝑒)). For other events from 𝐸𝑖 , it requires 𝜙 ∧ 𝜅𝑖 (𝑒), using m3a.
Control dependencies are eliminated in the same way as data dependencies. Consider:

𝑟 :=𝑥

𝑣=𝑟 ⇒𝜓R𝑥 𝑣
𝑑

(𝑣=𝑟 ∨ 𝑥=𝑟) ⇒𝜓

if(𝑟=1){𝑦 := 1}

𝑟=1
�

�

� W𝑦𝑤
𝑒

(𝑟=1 ∧𝜓 [1/𝑦]) ∨ (𝑟≠1 ∧𝜓)

As for (†), there are two possibilities:

𝑟 :=𝑥; if(𝑟=1){𝑦 := 1}

R𝑥 1
𝑑

1=𝑟 ⇒ 𝑟=1
�

�

� W𝑦1
𝑒

𝑟 :=𝑥; if(𝑟=1){𝑦 := 1}

R𝑥 1
𝑑

(1=𝑟 ∨ 𝑥=𝑟) ⇒ 𝑟=1
�

�

� W𝑦1
𝑒

When events coalesce, i3 ensures that control dependencies are calculated semantically, rather
than syntactically. For example, consider 𝑃 ∈ Jif(𝑟=1){𝑦 := 𝑟} else {𝑦 := 1}K, which is built from
𝑃1 ∈ J𝑦 := 𝑟K and 𝑃2 ∈ J𝑦 := 1K. For example, consider:

𝑦 := 𝑟

𝑟=1
�

�

� W𝑦1
𝑒

𝑦 := 1

1=1

�

�

� W𝑦1
𝑒

if(𝑟=1){𝑦 := 𝑟} else {𝑦 := 1}

𝑟=1 ∨ (𝑟≠1 ∧ 1=1)
�

�

� W𝑦1
𝑒

Here, the precondition in the combined pomset (on the right) is a tautology, independent of 𝑟 .
The semantics allows common code to be lifted out of a conditional, validating the transforma-

tion Jif(𝑀){𝑆} else {𝑆}K ⊇ J𝑆K. The semantics also validates dead code elimination: if 𝑀≠0 is a
tautology then Jif(𝑀){𝑆1} else {𝑆2}K ⊇ J𝑆1K. Here, we take the empty pomset as the denotation
of 𝑆2. Since𝑀=0 is unsatisfiable, i5 ignores the termination condition of 𝑆2. It is worth noting that
the reverse inclusion, dead-code-introduction, holds for complete pomsets, but not in general.

3.7 A Refinement: No Dependencies into Reads

To avoid stalling the CPU pipeline unnecessarily, hardware does not enforce control dependencies
between reads. To support if-introduction (§8.3), software models must not distinguish control
dependencies from other dependencies. Thus, we are forced to drop all dependencies into reads.
To achieve this, we modify the definition of 𝜅′

2
in Fig. 1.

𝜅′2 (𝑒) =

{

𝜏𝐸1

1
(𝜅2 (𝑒)) if 𝜆(𝑒) is a read

𝜏𝐶
1
(𝜅2 (𝑒)) otherwise, where 𝐶 = {𝑐 | 𝑐 < 𝑒}

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:14 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

Thus reads always use the “best” transformer, 𝜏𝐸1

1
. In order for non-reads to get a good transformer,

they need to add order. Throughout the remainder of the paper, we use this definition.

3.8 Local State

Several of the jmm Causality Test Cases [Pugh 2004] center on compiler optimizations that result
from limiting the range of variables. Because the compiler is allowed to collude with the scheduler
when estimating the range, we refer to this as local invariant reasoning. The basic idea is that a
write to 𝑦 is independent of a read of 𝑥 that precedes it, as long as the local state of 𝑥 prior to the
read justifies the write. For example, consider tc1:5

𝑥 := 0; (𝑟 :=𝑥; if(𝑟⩾0){𝑦 := 1} ‖ 𝑥 :=𝑦)

W𝑥 0 R𝑥 1 𝜙
�

�

� W𝑦1 R𝑦1 W𝑥 1
(tc1)

Using local invariant reasoning, a compiler could determine that 𝑥 is always either 0 or 1, and
therefore that the write to 𝑦 does not depend on the read of 𝑥 , allowing these to be reordered,
resulting in the execution shown above. This is captured by our semantics as follows. Using R4b
and w4, the precondition 𝜙 is ((1=𝑟 ∨ 𝑥=𝑟) ⇒ 𝑟⩾0) [0/𝑥] which is ((1=𝑟 ∨ 0=𝑟) ⇒ 𝑟⩾0) which
is indeed a tautology, justifying the independency. When used to form complete pomsets, R4b
requires that subsequent preconditions be tautological under the assumption that the value of the
read is used (1=𝑟) and under the assumption that the local value of 𝑥 is used instead (𝑥=𝑟).

This requires that we put locations into logical formulae, in addition to registers. While logi-
cal formulae involving registers are discharged by predicate transformers from ASSIGN or READ
(Fig. 1), logical formulae involving locations are discharged by predicate transformers fromWRITE.
In other words, registers track the value of reads, whereas locations track the value of the most
recent local write. This provides a local view of memory, distinct from the global view manifest in
the labels on events. See [Jagadeesan et al. 2020] for further discussion.

A related concern arises when eliding changes to local state from the untaken branch of a con-
ditional, creating indirect dependencies. Consider the following example [Paviotti et al. 2020, §6.3]:

𝑥 := 1; 𝑟 :=𝑦; if(𝑟=0){𝑥 := 0; 𝑠:=𝑥; if(𝑠){𝑧 := 1}}

else {𝑠:=𝑥; if(𝑠){𝑧 := 1}}

if(𝑧){𝑦 := 1}

In SC executions, the left thread always takes the then-branch of the conditional, reading 0 for 𝑥
and therefore not writing 𝑧. As a result the second thread does not write 𝑦, and the program is
data-race-free under SC. To satisfy the dRf-sc theorem, no other executions should be possible.
Complete executions of the left thread that take the then-branch must include (W𝑥 0), whereas
those that take the else-branch must not include (W𝑥 0). A problem arises if events from the sub-
sequent code of the left thread—common to the two branches—coalesce, thus removing an essential
control dependency. Consider the following candidate execution:

W𝑥 1 R𝑦1 R𝑥 1 𝜙
�

�

� W𝑧1 R𝑧1 W𝑦1 (††)

Note that the write to 𝑧 depends on the read of 𝑥 , but not the read of 𝑦. Ignoring Q𝑥 , as we have
done up to now, the precondition 𝜙 is:

𝜙 ≡ (1=𝑟 ∨ 𝑦=𝑟) ⇒ (𝑟=0 ∧ (1=𝑠 ⇒ 𝑠≠0))
∧ (𝑟≠0 ∧ (1=𝑠 ⇒ 𝑠≠0))

Since (1=𝑠) implies (𝑠≠0), the precondition is a tautology and (††) is allowed, violating dRf-sc.

5TC6 and TC8–9 are similar. TC2 and TC17–18 require both local invariant reasoning and resolving the nondeterminism

of reads using redundant read elimination—see §8.1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:15

Without Q𝑥 , the semantics enforces (W𝑧1)’s direct dependency on (R𝑥 1), but not its indirect
dependency on (R𝑦1). By eliding (W𝑥 0), we have forgotten the local state of 𝑥 in the untaken
branch of the execution. Nonetheless, we are using the subsequent—stale—read of 𝑥 , by merging
it with the read from the taken branch. This half-stale merged read is then used to justify (W𝑧1).

In Fig. 1, R4 corrects this by introducing quiescence symbols into predicate transformers. Qui-
escence symbols capture the intuition that—in the untaken branch of a conditional—the value of a
read from 𝑥 can only be used if the most recent local write to 𝑥 is included in the execution. Quies-
cence symbols are eliminated from formulae by the closest preceding write (w4). With quiescence,
the precondition of (††) becomes the following:

𝜙 ′ ≡ (Q𝑦 ⇒ 1=𝑟 ∨ 𝑦=𝑟) ⇒ (𝑟=0 ∧ ((Q𝑥 [ff/Q𝑥] ⇒ 1=𝑠) ⇒ 𝑠≠0))
∧ (𝑟≠0 ∧ ((Q𝑥 [1=1/Q𝑥] ⇒ 1=𝑠) ⇒ 𝑠≠0))

Adding initializing writes, Q𝑦 becomes tt at top-level. Regardless, 𝜙 ′ is non-tautological: in the top
conjunct, we have lost the ability to use 1=𝑠 to prove 𝑠≠0. Intuitively, Q𝑥 is true when the local
state of 𝑥 is up to date, and false when it is stale. In order to read 𝑥 , Q𝑥 requires that the most
recent prior write to 𝑥 must be in the pomset.

We also include quiescence symbols directly in preconditions of reads (R3). This guarantees
initialization in complete pomsets: every (R𝑥) must have a sequentially preceding (W𝑥) in order
to eliminate the precondition Q𝑥 .

We end this subsection by noting that value range analysis of mRd [Paviotti et al. 2020] is overly
conservative. Consider the following execution:

𝑥 := 0; (𝑟 :=𝑥; if(𝑟 ⩽ 1){𝑥 := 2;𝑦 := 1} ‖ 𝑥 :=𝑦)

W𝑥 0 R𝑥 1 W𝑥 2 W𝑦1 R𝑦1 W𝑥 1

PwT correctly allows this execution; mRd forbids it by requiring (R𝑥 1) (W𝑦1). The co-product
mechanism in mRd seeks an isomorphic justification under the (R𝑥 2) branch of the read in the
event structure, and—failing to find such a justification—leaves the dependency in place.

3.9 The Burdens of Associativity

Many of the design choices in PwT are motivated by Lemma 3.5—in particular, the need for se-
quential composition to be associative. In this subsection, we give three examples.

First, the predicate transformers we have chosen for R4a and R4b are different from the ones
used traditionally, which are written using substitution. Attempting to write R4a and R4b in this
style we would have (as in [Jagadeesan et al. 2020]):

(R4a′) if 𝑒 ∈ 𝐸 ∩ 𝐷 then 𝜏𝐷 (𝜓) ≡ 𝜓 [𝑣/𝑟],
(R4b′) if 𝑒 ∈ 𝐸 \ 𝐷 then 𝜏𝐷 (𝜓) ≡ 𝜓 [𝑣/𝑟] ∧𝜓 [𝑥/𝑟].

R4b′ does not distribute through disjunction (x2), and therefore is not a predicate transformer.This
is not merely a theoretical inconvenience: adopting R4b′ would also break associativity. Consider
the following example, where “!” represents logical negation:

𝑟 :=𝑦

R𝑦1𝜓 [1/𝑟] ∧𝜓 [𝑦/𝑟]

𝑥 :=!𝑟

𝑟=0
�

�

� W𝑥 1

𝑥 :=!!𝑟

𝑟≠0
�

�

� W𝑥 1

Associating to the right, we coalesce the writes then prepend the read:

𝑟 :=𝑦

R𝑦1𝜓 [1/𝑟] ∧𝜓 [𝑦/𝑟]

𝑥 :=!𝑟;𝑥 :=!!𝑟

𝑟=0 ∨ 𝑟≠0
�

�

� W𝑥 1

𝑟 :=𝑦; (𝑥 :=!𝑟;𝑥 :=!!𝑟)

R𝑦1 𝜙
�

�

� W𝑥 1

The precondition 𝜙 is (1=0 ∨ 𝑦=0) ∧ (1≠0 ∨ 𝑦≠0), which is a tautology.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:16 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

Associating to the left, instead, we prepend the read then coalesce the writes:

𝑟 :=𝑦;𝑥 :=!𝑟

R𝑦1 1=0 ∧ 𝑦=0
�

�

� W𝑥 1𝜓 [1/𝑟] ∧𝜓 [𝑦/𝑟]

𝑥 :=!!𝑟

𝑟≠0
�

�

� W𝑥 1

(𝑟 :=𝑦;𝑥 :=!𝑟);𝑥 :=!!𝑟

R𝑦1 𝜙 ′
�

�

� W𝑥 1

The precondition 𝜙 ′ is (1=0 ∧ 𝑦=0) ∨ (1≠0 ∧ 𝑦≠0), which is not a tautology.
Our solution is to Skolemize, replacing substitution by implication, with uniquely chosen reg-

isters. Using Skolemization, Fig. 1 computes 𝜙 ′ ≡ ((1=𝑟 ∨ 𝑦=𝑟) ⇒ 𝑟=0) ∨ ((1=𝑟 ∨ 𝑦=𝑟) ⇒ 𝑟≠0),
which is equivalent to 𝜙 ≡ (1=𝑟 ∨ 𝑦=𝑟) ⇒ (𝑟=0 ∨ 𝑟≠0). Both are tautologies.

Second, Jagadeesan et al. impose consistency, which requires that for every pomset 𝑃 ,
∧

𝑒 𝜅 (𝑒) is
satisfiable. Associativity requires that we allow inconsistent preconditions. To see this, note that

(

if(𝑀){𝑥 := 1}; if(!𝑀){𝑥 := 1}
)

;
(

if(𝑀){𝑦 := 1}; if(!𝑀){𝑦 := 1}
)

has a complete pomset that writes 𝑥 and 𝑦, regardless of 𝑀 . In order to match this in

if(𝑀){𝑥 := 1} ;
(

if(!𝑀){𝑥 := 1}; if(𝑀){𝑦 := 1}
)

; if(!𝑀){𝑦 := 1},

the middle pomset must include the inconsistent actions (𝑀=0 | W𝑥 1) and (𝑀≠0 | W𝑦1).
Finally, we drop Jagadeesan et al.’s causal strengthening for the same reason. Consider:

if(𝑀){𝑟 :=𝑥};𝑦 := 𝑟; if(!𝑀){𝑠:=𝑥}

Associating to the right, this program has a complete pomset containing (W𝑦1). Associating to
the left, with causal strengthening, it does not.

4 PwT-MCA: POMSETS WITH PREDICATE TRANSFORMERS FOR MCA

In this section, we develop a model of concurrent computation by adding reads-from to Fig. 1. To
model coherence and synchronization, we add delay to the rule for sequential composition. For
mca architectures, it is sufficient to encode delay in the pomset order. The resulting model, PwT-
mca1, supports optimal lowering for relaxed access on Arm8, but requires extra synchronization
for acquiring reads. (Lowering is the translation of language-level operators to machine instruc-
tions. A lowering is optimal if it provides the most efficient execution possible.)

A variant, PwT-mca2, supports optimal lowering for all access modes on Arm8. To achieve this,
PwT-mca2 drops the global requirement that reads-from implies pomset order (m7c). The models
are the same, except for internal reads, where a thread reads its own write. We show an example at
the beginning of §4.2. The lowering proofs can be found in the supplementary material. The proofs
use recent alternative characterizations of Arm8 [Alglave et al. 2021].

4.1 PwT-MCA1

We define PwT-mca1 by extending Def. 3.4 and Fig. 1. The definition uses several relations over
actions—matches, blocks and delays—as well a distinguished set of read actions; see §3.2.

Definition 4.1. The definition of PwT-mca1 extends that of PwT with a relation rf such that

(m7) rf ⊆ 𝐸 × 𝐸 is an injective relation capturing reads-from, such that
(m7a) if 𝑑 rf 𝑒 then 𝜆(𝑑) matches 𝜆(𝑒),
(m7b) if 𝑑 rf 𝑒 and 𝜆(𝑐) blocks 𝜆(𝑒) then either 𝑐 ≤ 𝑑 or 𝑒 ≤ 𝑐 ,
(m7c) if 𝑑 rf 𝑒 then 𝑑 < 𝑒 .

The definition of completeness extends Def. 3.4 as follows:
(c7) if 𝜆(𝑒) is a read then there is some 𝑑 rf 𝑒 .

The semantic function extends Fig. 1 as follows:
(s6a) if 𝜆1 (𝑑) delays 𝜆2 (𝑒) then 𝑑 ≤ 𝑒 , (p7) (s7) (i7) rf respects rf1 and rf2.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:17

In complete pomsets, reads-from (rf) must pair every read with a matching write (c7). The re-
quirements m7a, m7b, and m7c guarantee that reads are fulfilled, as in [Jagadeesan et al. 2020, §2.7].
Parallel composition, sequential composition, and the conditional respect reads-from (p7, s7, i7).

From Def. 3.1, recall that 𝑎 delays 𝑏 if 𝑎 ⊲⊳co 𝑏 or 𝑎 ⋉sync 𝑏 or 𝑎 ⊲⊳sc 𝑏. s6a guarantees that
sequential order is enforced between conflicting accesses of the same location (⊲⊳co), into a release
and out of an acquire (⋉sync), and between SC accesses (⊲⊳sc). Combined with the fulfillment re-
quirements (m7a, m7b, m7c), these ensure coherence, publication, subscription and other idioms.
For example, consider the following:6

𝑥 := 0;𝑥 := 1;𝑦rel:= 1 ‖ 𝑟 :=𝑦acq; 𝑠:=𝑥

W𝑥 0 W𝑥 1 Wrel𝑦1 Racq𝑦1 R𝑥 0
(pub)

The execution is disallowed due to the cycle. All of the order shown is required at top-level: The
intra-thread order comes from s6a: (W𝑥 0) (W𝑥 1) is required by ⊲⊳co. (W𝑥 1) (Wrel𝑦1)
and (Racq𝑦1) (R𝑥 0) are required by ⋉sync. The cross-thread order is required by fulfillment: c7

requires that all top-level reads are in the image of rf . m7a ensures that (Wrel𝑦1) rf (Racq𝑦1),
and m7c subsequently ensures that (Wrel𝑦1) < (Racq𝑦1). The antidependency (R𝑥 0) (W𝑥 1) is
required by m7b. (Alternatively, we could have (W𝑥 1) (W𝑥 0), again resulting in a cycle.)

The semantics gives the expected results for store buffering and load buffering, as well as lit-
mus tests involving fences and SC access. The model of coherence is weaker than C11, in order
to support common subexpression elimination, and stronger than Java, in order to support local
reasoning about data races. For further examples, see [Jagadeesan et al. 2020, §3.1].

Lemmas 3.5 and 3.6 hold for PwT-mca1. We discuss 3.6g further in §10.

4.2 PwT-MCA2

Lowering PwT-mca1 to Arm8 requires a full fence before every acquiring read.7 To see why, con-
sider the following attempted execution, where the final values of both 𝑥 and 𝑦 are 2.

𝑥 := 2; 𝑟 :=𝑥acq;𝑦 := 𝑟−1 ‖ 𝑦 := 2;𝑥 rel:= 1

W𝑥 2 Racq𝑥 2 W𝑦1 W𝑦2 Wrel𝑥 1
(inteRnal-acq)

The execution is allowed by Arm8, but disallowed by PwT-mca1, due to the cycle.
Arm8 allows the execution because the read of 𝑥 is internal to the thread. This aspect of Arm8

semantics is difficult to model locally. To capture this, we found it necessary to drop m7c and relax
s6a, adding local constraints on rf to PAR, SEQ and IF . (For parallelism, we explicitly specify the
domain of 𝑑 and 𝑒 in s6a′.)

Definition 4.2. The definition of PwT-mca2 is derived from that of PwT-mca1 by removing m7c
and s6a and adding the following:
(p6a) if 𝑑 ∈ 𝐸1, 𝑒 ∈ 𝐸2 and 𝑑 rf 𝑒 then 𝑑 < 𝑒 ,
(p6b) if 𝑑 ∈ 𝐸1, 𝑒 ∈ 𝐸2 and 𝑒 rf 𝑑 then 𝑒 < 𝑑 ,
(s6a′) if 𝑑 ∈ 𝐸1, 𝑒 ∈ 𝐸2 and 𝜆1 (𝑑) delays 𝜆2 (𝑒) then either 𝑑 rf 𝑒 or 𝑑 ≤ 𝑒 ,

6We use different colors for arrows representing order:

• 𝑑 𝑒 arises from ⊲⊳co (s6a),

• 𝑑 𝑒 arises from ⋉sync or ⊲⊳sc (s6a),

• 𝑑 𝑒 arises from control/data/address dependency (s3, definition of 𝜅′
2
(𝑑)),

• 𝑑 𝑒 arises from reads-from (m7a),

• 𝑑 𝑒 arises from blocking (m7b).

In PwT-mca2, it is possible for rf to contradict <. In this case, we use a dotted arrow for rf: 𝑑 𝑒 indicates that 𝑒 < 𝑑 .
7Jagadeesan et al. [2020] erroneously elide the required synchronization on acquiring reads.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:18 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

p6a and p6b ensure that 𝑑 rf 𝑒 implies 𝑑 < 𝑒 when the actions come from different threads.
However, we may have 𝑑 rf 𝑒 and 𝑒 < 𝑑 within a thread, as between (W𝑥 2) to (Racq𝑥 2) in
inteRnal-acq, thus allowing this execution. m7b and s6a′ are sufficient to stop stale reads within
a thread. For example, it prevents a read of 1 in 𝑥 := 1;𝑥 := 2; 𝑟 :=𝑥 .

With theweakening of s6a, wemust be careful not to allow spurious pairs to be added to the rf re-
lation. For example, Jif(𝑏){𝑟 :=𝑥 ‖ 𝑥 := 1} else {𝑟 :=𝑥;𝑥 := 1}K should not include R𝑥 1 W𝑥 1 ,
taking rf from the left and < from the right. The use of “respects” in i6 and i7 ensures this.

As a consequence of dropping m7c, sequential rf must be validated during pomset construction,
rather than post-hoc. In §6, we show how to construct program order (po) for complete pomsets us-
ing phantom events (𝜋). Using this construction, the following lemma gives a post-hoc verification
technique for rf . Let 𝜋−1 be the inverse of 𝜋 .

Lemma 4.3. If 𝑃 ∈ J𝑆Kmca2 is complete, then for every 𝑑 rf 𝑒 either

• external fulfillment: 𝑑 < 𝑒 and if 𝜆(𝑐) blocks 𝜆(𝑒) then either 𝑐 ≤ 𝑑 or 𝑒 ≤ 𝑐 , or
• internal fulfillment: (∃𝑑 ′ ∈ 𝜋−1 (𝑑)) (∃𝑒′ ∈ 𝜋−1 (𝑒))

𝑑 ′
po

𝑒′ and (�𝑐) 𝜆(𝑐) blocks 𝜆(𝑒) and 𝑑 ′
po

𝑐
po

𝑒′ .

These mimic the external consistency requirements of Arm8 [Alglave et al. 2021].

5 PwT-MCA RESULTS

Prop. 6.1 of Jagadeesan et al. [2020] establishes a compositional principle for proving that programs
validate formula in past-time temporal logic. The principal is based entirely on the pomset order
relation. Its proof, and all of the no-thin-air examples in [Jagadeesan et al. 2020, §6] hold equally
for the models described here.

In the supplementary material, we show that PwT-mca1 supports the optimal lowering of re-
laxed accesses to Arm8 and that PwT-mca2 supports the optimal lowering of all accesses to Arm8.
The proofs are based on two recent characterizations of Arm8 [Alglave et al. 2021]. For PwT-mca1,
we use External Global Consistency. For PwT-mca2, we use External Consistency.

In the supplementary material, we also sketch a proof of sequential consistency for local-data-
race-free programs. The proof uses program order, which we construct for C11 in §6. The same
construction works for PwT-mca. (This proof sketch assumes there are no Rmw operations.)

The semantics validates many peephole optimizations, such as reorderings on relaxed access:

J𝑟 :=𝑥; 𝑠:=𝑦K = J𝑠:=𝑦; 𝑟 :=𝑥 K if 𝑟 ≠ 𝑠

J𝑥:=𝑀;𝑦:=𝑁 K = J𝑦:=𝑁;𝑥:=𝑀K if 𝑥 ≠ 𝑦

J𝑥:=𝑀; 𝑠:=𝑦K = J𝑠:=𝑦;𝑥:=𝑀K if 𝑥 ≠ 𝑦 and 𝑠 ∉ id(𝑀)

Here id(𝑀) is the set of locations and registers that occur in 𝑀 . Using augmentation closure, the
semantics also validates roach-motel reorderings [Sevčík 2008]. For example, on read/write pairs:

J𝑥𝜇:=𝑀; 𝑠:=𝑦K ⊇ J𝑠:=𝑦;𝑥𝜇:=𝑀K if 𝑥 ≠ 𝑦 and 𝑠 ∉ id(𝑀)

J𝑥:=𝑀; 𝑠:=𝑦𝜇K ⊇ J𝑠:=𝑦𝜇;𝑥:=𝑀K if 𝑥 ≠ 𝑦 and 𝑠 ∉ id(𝑀)

Notably, the semantics does not validate read-introduction. When combined with if-introduction
(§8.3), read-introduction can break temporal reasoning.This combination is allowed by speculative
operational models. See §9 for a discussion.

6 PwT-C11: POMSETS WITH PREDICATE TRANSFORMERS FOR C11

PwT can be used to generate semantic dependencies to prohibit thin-air executions of C11, while
preserving optimal lowering for relaxed access. We follow the approach of Paviotti et al. [2020],

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:19

using our semantics to generate C11 candidate executions with a dependency relation, then apply-
ing the axioms of RC11 [Lahav et al. 2017]. The No-Thin-Air axiom of RC11 is overly restrictive,
requiring that (rf∪po) be acyclic. Instead, we require that (rf∪<) is acyclic. This is a more precise
categorization of thin-air behavior, and it allows aggressive compiler optimizations that would be
erroneously forbidden by RC11’s original No-Thin-Air axiom.

The chief difficulty is instrumenting our semantics to generate program order, for use in the
various axioms of C11. Using the obvious construction (described in the proof of Lemma 6.2),
program order (po) is a pre-order, which may include cycles due to coalescing. For example:

if(𝑟){𝑥 := 1;𝑦 := 1} else {𝑦 := 1;𝑥 := 1} W𝑥 1 W𝑦1

We solve this by adding phantom events. The function 𝜋 maps phantom events to real events. For
this program, we have the following PwT-po. (We visualize po using a dotted arrow , and 𝜋

using a double arrow .)

𝑟≠0
�

�

� W𝑥 1 𝑟≠0
�

�

� W𝑦1 𝑟=0
�

�

� W𝑥 1 𝑟=0
�

�

� W𝑦1

W𝑥 1 W𝑦1

Once the pomset is completed, 𝑟 will be known, causing all the preconditions to be either tau-
tological or unsatisfiable. We can then extract program order by restricting phantom events to
have tautological preconditions (Def. 6.3). Thus, our strategy for C11 is to first construct a com-
plete PwT-po, then extract top-level program order, then apply the axioms of RC11. We refer to a
PwT-po that survives this filtering as a PwT-C11.

Definition 6.1. A PwT-po is a PwT (Def. 3.4) equipped with relations 𝜋 and po such that

(m8) 𝜋 : (𝐸 → 𝐸) is an idempotent function capturing merging, such that

let 𝑅 = {𝑒 | 𝜋 (𝑒)=𝑒} be real events, let 𝑅 = (𝐸 \ 𝑅) be phantom events,

let 𝑆 = {𝑒 | ∀𝑑. 𝜋 (𝑑)=𝑒 ⇒ 𝑑=𝑒} be simple events, let 𝑆 = (𝐸 \ 𝑆) be compound events,
(m8a) 𝜆(𝑒) = 𝜆(𝜋 (𝑒)), (m8b) if 𝑒 ∈ 𝑆 then 𝜅 (𝑒) ⊨

∨

{𝑐∈𝑅 |𝜋 (𝑐)=𝑒 }𝜅 (𝑐) .
(m9) po ⊆ (𝑆 × 𝑆) is a partial order capturing program order.

A PwT-po is complete if
(c3) if 𝑒 ∈ 𝑅 then 𝜅 (𝑒) is a tautology, (c5) ✓ is a tautology.

A complete PwT-po is a PwT-C11 if it additionally satisfies the axioms of RC11.

Since 𝜋 is idempotent, we have 𝜋 (𝜋 (𝑒)) = 𝜋 (𝑒). Equivalently, we could require 𝜋 (𝑒) ∈ 𝑅.
We use 𝜋 to partition events 𝐸 in two ways: we distinguish real events 𝑅 from phantom events

𝑅; we distinguish simple events 𝑆 from compound events 𝑆 . From idempotency, it follows that all

phantom events are simple (𝑅 ⊆ 𝑆) and all compound events are real (𝑆 ⊆ 𝑅). In addition, all

phantom events map to compound events (if 𝑒 ∈ 𝑅 then 𝜋 (𝑒) ∈ 𝑆).

Lemma 6.2. If 𝑃 is a PwT then there is a PwT-po 𝑃 ′′ that conservatively extends it.

PRoof. The proof strategy is as follows: We extend the semantics of Fig. 1 with po. The obvious
definition gives us a preorder rather than a partial order. To get a partial order, we replay the
semantics without merging to get an unmerged pomset 𝑃 ′; the construction also produces the
map 𝜋 . We then construct 𝑃 ′′ as the union of 𝑃 and 𝑃 ′, using the dependency relation from 𝑃 .

We extend the semantics with po as follows. For pomsets with at most one event, po is the
identity. For sequential composition, po = po1 ∪ po2 ∪ 𝐸1 × 𝐸2. For parallel composition and the
conditional, po = po1 ∪ po2. As noted at the beginning of this section, po may contain cycles. To
find an acyclic po′, we replay the construction of 𝑃 to get 𝑃 ′. When building 𝑃 ′, we require disjoint
union in s1 and i1: 𝐸′

= 𝐸′
1
⊎𝐸′

2
. If and event is unmerged in 𝑃 (𝑒 ∈ 𝐸1⊎𝐸2) then we choose the same

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:20 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

event name for 𝑃 ′. If an event is merged in 𝑃 (𝑒 ∈ 𝐸1 ∩ 𝐸2) then we choose fresh event names—𝑒′
1

and 𝑒′
2
—and extend 𝜋 accordingly: 𝜋 (𝑒′

1
) = 𝜋 (𝑒′

2
) = 𝑒 . In 𝑃 ′, we take ≤′

= po′.
To arrive at 𝑃 ′′, we take (1) 𝐸′′

= 𝐸 ∪ 𝐸′, (2) 𝜆′′ = 𝜆 ∪ 𝜆′, (3a) if 𝑒 ∈ 𝐸 then 𝜅′′ (𝑒) = 𝜅 (𝑒),

(3b) if 𝑒 ∈ 𝐸′ \ 𝐸 then 𝜅′′ (𝑒) = 𝜅′ (𝑒), (4) 𝜏 ′′𝐷 = 𝜏 (𝜋
−1 (𝐷)) , (5) ✓′′

= ✓, (6) 𝑑 <
′′ 𝑒 exactly when

𝜋 (𝑑) < 𝜋 (𝑒), (7) po′′ = po′, and (8) 𝜋 ′′ is the constructed merge function. □

Definition 6.3. For a PwT-po, let extract(𝑃) be the projection of 𝑃 onto the set {𝑒 ∈ 𝐸1 |
𝑒 is simple and 𝜅1 (𝑒) is a tautology}.

By definition, extract(𝑃) includes the simple events of 𝑃 whose preconditions are tautologies.
These are already in program order, as per item 7 of the proof. The dependency order is derived
from the real events using 𝜋 , as per item 6.

The following lemma (immediate from m8b) shows that if 𝑃 is complete, then extract(𝑃) includes
at least one simple event for every compound event in 𝑃 .

Lemma 6.4. If 𝑃 is a complete PwT-po with compound event 𝑒 , then there is a phantom event
𝑐 ∈ 𝜋−1 (𝑒) such that 𝜅 (𝑐) is a tautology.

A pomset in the image of extract is a C11 candidate execution. As an example, consider Java
Causality Test Case 6 [Pugh 2004]. Taking𝑤 = 0 and 𝑣 = 1, the PwT-po on the left below produces
the candidate execution on the right.

𝑦 :=𝑤; 𝑟 :=𝑦; if(𝑟=0){𝑥 := 1}; if(𝑟=1){𝑥 := 1}

(𝑣=𝑟 ∨ 𝑤=𝑟) ⇒ (𝑟=0 ∨ 𝑟=1)
�

�

� W𝑥 1R𝑦𝑣

𝑣=𝑟 ⇒ 𝑟=0
�

�

� W𝑥 1 𝑣=𝑟 ⇒ 𝑟=1
�

�

� W𝑥 1

W𝑦𝑤

𝑦 := 0; 𝑟 :=𝑦; if(𝑟=0){𝑥 := 1}; if(𝑟=1){𝑥 := 1}

W𝑥 1R𝑦1W𝑦0

We write J·Kpo for the semantic function defined by applying the construction of Lemma 6.2 to
the base semantics of 1.

The dependency calculation of J·Kpo is sufficient for C11; however, it ignores synchronization
and coherence completely. For example, consider:

if(𝑟){𝑥 := 1}; if(𝑠){𝑥 := 2}; if(!𝑟){𝑥 := 1}

𝑟≠0
�

�

� W𝑥 1 𝑠≠0
�

�

� W𝑥 2 𝑒 𝑟=0
�

�

� W𝑥 1

𝑟≠0 ∨ 𝑟=0
�

�

� W𝑥 1
𝑑

(‡)

Adding a pair of reads to complete the pomset, we can extract the following candidate executions.

𝑟 :=𝑦; 𝑠:= 𝑧; if(𝑟){𝑥 := 1}; if(𝑠){𝑥 := 2}; if(!𝑟){𝑥 := 1}

R𝑦1 R𝑧1 W𝑥 1 W𝑥 2 R𝑦0 R𝑧1 W𝑥 2 W𝑥 1

It is somewhat surprising that the writes are independent of both reads!
In PwT-mca, delay stops the merge in (‡).

if(𝑟){𝑥 := 1}; if(𝑠){𝑥 := 2}; if(!𝑟){𝑥 := 1}

𝑟≠0
�

�

� W𝑥 1 𝑠≠0
�

�

� W𝑥 2 𝑟=0
�

�

� W𝑥 1

It is possible to mimic this in PwT-C11, without introducing extra dependencies: one can filter
executions post-hoc using the relation ⊑, defined as follows:

𝜋 (𝑑) ⊑ 𝜋 (𝑒) if 𝑑
po

𝑒 and 𝜆(𝑑) delays 𝜆(𝑒).

In (‡), we have both 𝑑 ⊑ 𝑒 and 𝑒 ⊑ 𝑑 . To rule out (‡), it suffices to require that ⊑ is a partial order.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:21

Table 1. Tool results for supported Java Causality Test Cases [Pugh 2004]. ⊥ indicates the tool failed to run

for this test due to a memory overflow. Tests run on an Intel i9-9980HK with 64 GB of memory. For context,

results for the mRd, mRdimm, and mRdc11 are also included [Paviotti et al. 2020].

Test PwT-C11 mRd mRdimm mRdc11

TC1 ✔ ✔ ✔ ✔

TC2 ✔ ✔ ✔ ✔

TC3 ✔ ✔ ✔ ✔

TC4 ✔ ✔ ✔ ✔

TC5 ✔ ✔ ✔ ✔

TC6 ✔ ✔ ✔ ✔

TC7 ✔ ✔ ✔ ✔

TC8 ✔ ✔ ✔ ✔

Test PwT-C11 mRd mRdimm mRdc11

TC9 ✔ ✔ ✔ ✔

TC10 ✔ ✔ ✔ ✔

TC11 ⊥ ✔ ✔ ✔

TC12 ⊥ – – –
TC13 ✔ ✔ ✔ ✔

TC17 ✔ ✘ ✔ ✘

TC18 ✔ ✘ ✔ ✘

Program (‡) shows that the definition of semantic dependency is up for debate in C11. The
International Standard Organization’s C++ concurrency subgroup acknowledges that semantic
dependency (sdep) would address the Out-of-Thin-Air problem: “Prohibiting executions that have
cycles in (rf ∪ sdep) can therefore be expected to prohibit Out-of-Thin-Air behaviors” [McKenney
et al. 2016]. PwT-C11 resolves program structure into a dependency relation—not a complex state—
that is precise and easily adjusted. As refinements are made to C11, PwT-C11 can accommodate
these and test them automatically.

7 PwTer: AUTOMATIC LITMUS TEST EVALUATOR

PwTeR automatically and exhaustively calculates the allowed outcomes of litmus tests for the PwT,
PwT-po, and PwT-C11 models, obviating the need for error-prone hand evaluation. It is built in
OCaml, using Z3 [de Moura and Bjørner 2008] to judge the truth of predicates.

PwTeR allows several modes of evaluation: it can evaluate the rules of Fig. 1, implementing PwT;
it can generate program order according to §6, implementing PwT-po; and similar to mRd [Paviotti
et al. 2020], it can construct C11-style pre-executions and filter them according to the rules of RC11
as described in §6, implementing PwT-C11. Finally, PwTeR also allows us to toggle the complete
check of Def. 3.4, providing an interface for understanding how fragments of code might compose
by exposing preconditions and termination conditions that are not yet tautologies.

We have run PwTeR over the Java Causality Tests [Pugh 2004] supported in the input syntax,
and tabulated the results in Table 1. For context, we have included the results of mRd for the Java
Causality tests [Paviotti et al. 2020]. Note that mRd and mRdc11 do not give the correct outcome on
TC17–18—the reason is that local invariant reasoning in mRd is too constrained (see §3.8).

For larger test cases, the tool takes exponentially longer to compute, and for the largest tests the
memory footprint is too large for even a well-equipped computer. The compositional nature of the
semantics makes tool building practical, but it is not enough to make it scalable for large tests. In
combination with the rules for reads and writes, the definitions of SEQ(P1, P2) and IF (𝜙, P1, P2)
have exponential complexity.This is compounded by the hidden complexity of calculating the pos-
sible merges between pomsets through union in rules s1 and i1. Significant effort has been put into
throwing away spurious merges early in PwTeR, so that executing the tool remains manageable
for small examples. Some further optimizations may be possible within the tool to improve the situ-
ation further, such as killing “dead-end” pomsets at each sequence operator, or by doing a directed
search for particular execution outcomes. PwTeR is available in the supplementary material.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:22 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

8 REFINEMENTS AND ADDITIONAL FEATURES

In the paper so far, we have assumed that registers are assigned at most once. We have done this
primarily for readability. In the first subsection below, we drop this assumption, instead using
substitution to rename registers. We use a set of registers indexed by event identifier: SE = {s𝑒 |
𝑒 ∈ E}. By assumption (§3.1), these registers do not appear in programs: 𝑆 [𝑁 /s𝑒] = 𝑆 .The resulting
semantics satisfies redundant read elimination.

In the remainder of this section we consider several mostly-orthogonal features: address calcu-
lation, if-introduction, and read-modify-write operations. Address calculation and if-introduction
do have some interaction, and we spell out the combined semantics in §8.5.

It is worth pointing out that address calculation and if-introduction only affect the semantics of
read and write. Rmws introduce new infrastructure in order to ensure atomicity while supporting
Arm’s load-exclusive and store-exclusive operations.

These extensions preserve all of the program transformation discussed thus far, and apply equally
to the various semantics we have discussed: PwT, PwT-mca1, PwT-mca2, and PwT-C11. The re-
sults discussed in §5 also apply equally, with the exception of Rmws, which are excluded from the
proof of dRf-sc and from the proof of lowering to Arm8.

8.1 Register Recycling and Redundant Read Elimination

jmm Test Case 2 [Pugh 2004] states the following execution should be allowed “since redundant
read elimination could result in simplification of 𝑟=𝑠 to true, allowing 𝑦 := 1 to be moved early.”

𝑟 :=𝑥; 𝑠:=𝑥; if(𝑟=𝑠){𝑦 := 1} ‖ 𝑥 :=𝑦

R𝑥 1
𝑑

W𝑦1
𝑒

R𝑦1 W𝑥 1
(tc2)

Under the semantics of Fig. 1, the precondition of 𝑒 in the independent case is

(1=𝑟 ∨ 𝑥=𝑟) ⇒ (1=𝑠 ∨ 𝑟=𝑠) ⇒ (𝑟=𝑠), (∗)

which is equivalent to (𝑥=𝑟) ⇒ (1=𝑠) ⇒ (𝑟=𝑠), which is not a tautology, and thus Fig. 1 requires
order from 𝑑 to 𝑒 in order to complete the pomset.

This execution is allowed, however, if we rename registers using a map from event names to
register names. By using this renaming, coalesced events must choose the same register name. In
the above example, the precondition of 𝑒 in the independent case becomes

(1=s𝑒 ∨ 𝑥=s𝑒) ⇒ (1=s𝑒 ∨ s𝑒=s𝑒) ⇒ (s𝑒=s𝑒), (∗∗)

which is a tautology. In (∗∗), the first read resolves the nondeterminism in both the first and the
second read. Given the choice of event names, the outcome of the second read is predetermined!
In (∗), the second read remains nondeterministic, even if the events are destined to coalesce.

Test Cases 17–18 [Pugh 2004] also require coalescing of reads. Contrary to the claim, the seman-
tics of Jagadeesan et al. validates neither redundant load elimination nor these test cases.

Definition 8.1. Let J·K be defined as in Fig. 1, changing R4 of READ:
(R4a) if 𝑒 ∈ 𝐸 ∩ 𝐷 then 𝜏𝐷 (𝜓) ≡ (𝜅 (𝑒) ⇒ 𝑣=s𝑒) ⇒𝜓 [s𝑒/𝑟],
(R4b) if 𝑒 ∈ 𝐸 \ 𝐷 then 𝜏𝐷 (𝜓) ≡ (𝜅 (𝑒) ⇒ (𝑣=s𝑒 ∨ 𝑥=s𝑒)) ⇒𝜓 [s𝑒/𝑟],
(R4c) if 𝐸 = ∅ then 𝜏𝐷 (𝜓) ≡ (∀𝑠) 𝜓 [𝑠/𝑟] .

With this semantics, it is straightforward to see that redundant load elimination is sound:

J𝑟 :=𝑥𝜇; 𝑠:=𝑥𝜇K ⊇ J𝑟 :=𝑥𝜇; 𝑠:= 𝑟K

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:23

As a further example, consider Fig. 5 of Sevčík and Aspinall [2008], referenced by Paviotti et al.
[2020, §6.4]. Consider the case where the reads are merged, both seeing 1:

𝑟 :=𝑦; if(𝑟=1){𝑠:=𝑦;𝑥 := 𝑠} else {𝑥 := 1} R𝑦1 𝜙
�

�

� W𝑥 1

In order to be independent of both reads, we take the precondition 𝜙 to be:

(1=𝑟 ∨ 𝑦=𝑟) ⇒ [𝑟=1 ∧
(

(1=𝑠 ∨ 𝑦=𝑠) ⇒ 𝑠=1
)

] ∨ [𝑟≠1]

Then collapsing 𝑟 and 𝑠 and substituting the initial value of 𝑦 (say 0), we have a tautology:

(1=𝑟 ∨ 0=𝑟) ⇒ [𝑟=1 ∧
(

(1=𝑟 ∨ 0=𝑟) ⇒ 𝑟=1
)

] ∨ [𝑟≠1]

Support for register recycling requires predicate transformers, which allow substitution, rather
than simple postconditions.

8.2 Read-Modify-Write Operations

To support Rmws, we extend the syntax:

𝑆 ::= · · · | 𝑟 := CAS𝜇,𝜈([𝐿], 𝑀, 𝑁) | 𝑟 := FADD𝜇,𝜈([𝐿], 𝑀) | 𝑟 := EXCHG𝜇,𝜈([𝐿], 𝑀)

We require that 𝑟 does not occur in 𝐿. Semantically, we add a relation rmw ⊆ 𝐸 × 𝐸 that relates
the read of a successful Rmw to the succeeding write.

Definition 8.2. Extend the definition of a pomset as follows.

(m10) rmw : 𝐸 → 𝐸 is a partial function capturing read-modify-write atomicity, such that
(m10a) if 𝑑 rmw 𝑒 then 𝜆(𝑒) blocks 𝜆(𝑑),
(m10b) if 𝑑 rmw 𝑒 then 𝑑 < 𝑒 ,
(m10c) if 𝜆(𝑐) overlaps 𝜆(𝑑) and 𝑑 rmw 𝑒 then 𝑐 < 𝑒 implies 𝑐 ≤ 𝑑 and 𝑑 < 𝑐 implies 𝑒 ≤ 𝑐 .

Extend the definition of SEQ, IF and PAR to include:

(s10) (i10) (p10) rmw = (rmw1 ∪ rmw2),

Let READ′ be defined as for READ, adding the constraint:

(R4d) if (𝐸 ∩ 𝐷) = ∅ then 𝜏𝐷 (𝜓) ≡ 𝜓 .

If 𝑃 ∈ CAS(𝑟, 𝑥, 𝑀, 𝑁, 𝜇, 𝜈) then 𝑃 ∈ SEQ(READ′ (𝑟, 𝑥, 𝜇), IF (𝑟=𝑀, WRITE(𝑥, 𝑁 , 𝜈), SKIP)) and

(u10) if 𝜆(𝑒) is a write then there is a read 𝜆(𝑑) such that 𝜅 (𝑒) ⊨ 𝜅 (𝑑) and 𝑑 rmw 𝑒 .

J𝑟 := CAS𝜇,𝜈(𝑥,𝑀, 𝑁)K = CAS(𝑟, 𝑥, 𝑀, 𝑁, 𝜇, 𝜈)

FADD and EXCHG are similar. These definitions ensure atomicity and support lowering to Arm
load/store exclusive operations. See Jagadeesan et al. [2020] for examples.

One subtlety of the definition is that we use READ′ rather than READ: for Rmws, the independent
case for a read is the same as the empty case. To seewhy this should be, consider the relaxed variant
of the cdRf example from Lee et al. [2020], using READ rather than READ′.

𝑥 := 0; (𝑟 := FADDrlx,rlx(𝑥, 1); if(!𝑟){if(𝑦){𝑥 := 0}} ‖ 𝑟 := FADDrlx,rlx(𝑥, 1); if(!𝑟){𝑦 := 1})

W𝑥 0 R𝑥 0 W𝑥 1 R𝑦1 W𝑥 0 R𝑥 0 W𝑥 1 W𝑦1
rmwrmw

A write should only be visible to one FADD instruction, but here the write of 0 is visible to two!
This is allowed because, using READ instead of READ′, no order is required from (R𝑥 0) to (W𝑦1)
in the last thread.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:24 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

To see why, consider the independent transformers of the last thread and initializer:

𝑥 := 0

W𝑥 0𝜓 [0/𝑥]

𝑟 := FADDrlx,rlx (𝑥, 1)

R𝑥 0 W𝑥 1
rmw

(0=𝑟 ∨ 𝑥=𝑟) ⇒𝜓 [1/𝑥]

if(!𝑟){𝑦 := 1}

𝑟=0
�

�

� W𝑦1𝜓 [1/𝑦]

After sequencing, the precondition of (W𝑦1) is a tautology: (0=𝑟 ∨ 0=𝑟) ⇒ 𝑟=0.
By including R4d, READ′ constrains the independent predicate transformer of the FADD:

𝑥 := 0

W𝑥 0𝜓 [0/𝑥]

𝑟 := FADDrlx,rlx (𝑥, 1)

R𝑥 0 W𝑥 1
rmw

𝜓 [1/𝑥]

if(!𝑟){𝑦 := 1}

𝑟=0
�

�

� W𝑦1𝜓 [1/𝑦]

After sequencing, the precondition of (W𝑦1) is 𝑟=0, which is not a tautology. This forces any
top-level pomset to include dependency order from (R𝑥 0) to (W𝑦1).

8.3 If-Introduction (aka Case Analysis)

In order tomodel sequential composition, wemust allow inconsistent predicates in a single pomset,
unlike PwP [Jagadeesan et al. 2020]. For example, if 𝑆 = (𝑥 := 1), then the semantics Fig. 1 does
not allow:

if(𝑀){𝑥 := 1}; 𝑆; if(¬𝑀){𝑥 := 1}

W𝑥 1 W𝑥 1

However, if 𝑆 = (if(¬𝑀){𝑥 := 1}; if(𝑀){𝑥 := 1}), then it does allow the execution. Looking at
the initial program:

if(𝑀){𝑥 := 1}

𝑀
�

�

� W𝑥 1

𝑥 := 1

W𝑥 1

if(¬𝑀){𝑥 := 1}

¬𝑀
�

�

� W𝑥 1

The difficulty is that the middle action can coalesce either with the right action, or the left, but
not both. Thus, we are stuck with some non-tautological precondition. Our solution is to allow a
pomset to containmany events for a single action, as long as the events have disjoint preconditions.

Def. 8.3 allows the execution, by splitting the middle command:

if(𝑀){𝑥 := 1}

𝑀
�

�

� W𝑥 1
𝑑

𝑥 := 1

¬𝑀
�

�

� W𝑥 1
𝑑

𝑀
�

�

� W𝑥 1
𝑒

if(¬𝑀){𝑥 := 1}

¬𝑀
�

�

� W𝑥 1
𝑒

Coalescing events gives the desired result.
This is not simply a theoretical question; it is observable. For example, the semantics of Fig. 1

does not allow the following, since it must add order in the first thread from the read of 𝑦 to one
of the writes to 𝑥 .

𝑟 :=𝑦; if(𝑟){𝑥 := 1};𝑥 := 1; if(¬𝑟){𝑥 := 1}; 𝑧 := 𝑟

‖ if(𝑥){𝑥 := 0; if(𝑥){𝑦 := 1}}

W𝑥 1 W𝑥 1R𝑦1 W𝑧1

R𝑥 1 W𝑥 0 R𝑥 1 W𝑦1

We show the rules for write and read.8 The rule for fences requires similar treatment.

8The Coq development uses ⊨ rather than ≡ in w3 and R3. Given the quantification over 𝜙 , these are equivalent.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:25

Definition 8.3. If 𝑃 ∈ WRITE(𝑥, 𝑀, 𝜇) then (∃𝑣 : 𝐸 →V) (∃𝜙 : 𝐸 → Φ)
(w1) if 𝜅 (𝑑) ∧ 𝜅 (𝑒) is satisfiable then 𝑑 = 𝑒 ,
(w2) 𝜆(𝑒) = W𝜇𝑥𝑣𝑒 ,
(w3) 𝜅 (𝑒) ≡ 𝜙𝑒 ∧𝑀=𝑣𝑒 ,

(w4) 𝜏𝐷 (𝜓) ≡ 𝜓 [𝑀/𝑥] [K(𝐸)/Q𝑥],
(w5) ✓ ≡ K(𝐸),
(w6) 𝜙𝑒 [𝑁 /s𝑑] = 𝜙𝑒 .

If 𝑃 ∈ READ(𝑟, 𝑥, 𝜇) then (∃𝑣 : 𝐸 →V) (∃𝜙 : 𝐸 → Φ)
(R1) if 𝜙𝑑 ∧ 𝜙𝑒 is satisfiable then 𝑑 = 𝑒 ,
(R2) 𝜆(𝑒) = R𝜇𝑥𝑣𝑒
(R3) 𝜅 (𝑒) ≡ 𝜙𝑒 ∧ Q𝑥 ,

(R4) 𝜏𝐷 (𝜓) ≡
∧

𝑒∈𝐸∩𝐷 𝜙𝑒 ⇒ (𝜅 (𝑒) ⇒ 𝑣𝑒=s𝑒) ⇒𝜓 [s𝑒/𝑟]

∧
∧

𝑒∈𝐸\𝐷 𝜙𝑒 ⇒ (𝜅 (𝑒) ⇒ (𝑣𝑒=s𝑒 ∨ 𝑥=s𝑒)) ⇒𝜓 [s𝑒/𝑟]

∧(
∧

𝑒∈𝐸 ¬𝜙𝑒) ⇒ (∀𝑠) 𝜓 [𝑠/𝑟]

(R5a) if 𝜇 ⊑ rlx then ✓ ≡ tt,
(R5b) if 𝜇 ⊒ acq then ✓ ≡ K(𝐸),
(R6) 𝜙𝑒 [𝑁 /s𝑑] = 𝜙𝑒 .

The definition allows multiple events to represent a single action, with disjoint preconditions. The
predicate transformers are derived from those defined for the conditional. w6 and R6 require that
the predicates do not mention registers in SE .

This modification validates Lemma 3.6e, f, and d as equations.
We show how to combine address calculation and if-introduction in §8.5.

8.4 Address Calculation

Inevitably, address calculation complicates the definitions ofWRITE and READ. In this section, we
develop a flat memory model, which does not deal with provenance [Lee et al. 2018].

Definition 8.4. Within a pomset 𝑃 , let K(𝑥) =
∨

{𝜅 (𝑒) | 𝑒 ∈ 𝐸 ∧ 𝜆(𝑒) = W𝑥}.
If 𝑃 ∈ WRITE(𝐿, 𝑀, 𝜇) then (∃ℓ ∈ V) (∃𝑣 ∈ V)
(w1) if |𝐸 | ⩽ 1,
(w2) 𝜆(𝑒) = W𝜇[ℓ]𝑣 ,
(w3) 𝜅 (𝑒) ≡ 𝐿=ℓ ∧𝑀=𝑣 ,

(w4) 𝜏𝐷 (𝜓) ≡
∧

𝑘∈V 𝐿=𝑘 ⇒𝜓 [𝑀/[𝑘]] [K([𝑘])/Q[𝑘]],
(w5) ✓ ≡ K(𝐸).

If 𝑃 ∈ READ(𝑟, 𝐿, 𝜇) then (∃ℓ ∈ V) (∃𝑣 ∈ V)
(R1) if |𝐸 | ⩽ 1,
(R2) 𝜆(𝑒) = R𝜇[ℓ]𝑣

(R3) 𝜅 (𝑒) ≡ 𝐿=ℓ ∧ Q[ℓ],
(R4a) if 𝑒 ∈ 𝐸 ∩ 𝐷 then 𝜏𝐷 (𝜓) ≡ (𝜅 (𝑒) ⇒ 𝑣=s𝑒) ⇒𝜓 [s𝑒/𝑟],
(R4b) if 𝑒 ∈ 𝐸 \ 𝐷 then 𝜏𝐷 (𝜓) ≡ (𝜅 (𝑒) ⇒ (𝑣=s𝑒 ∨ [ℓ]=s𝑒)) ⇒𝜓 [s𝑒/𝑟],

(R4c) if 𝐸 = ∅ then 𝜏𝐷 (𝜓) ≡ (∀𝑠) 𝜓 [𝑠/𝑟],
(R5a) if 𝜇 ⊑ rlx then ✓ ≡ tt,
(R5b) if 𝜇 ⊒ acq then ✓ ≡ K(𝐸).

The combination of read-read independency (§3.7) and address calculation is somewhat delicate.
Consider the following program, from Jagadeesan et al. [2020, §5], where initially 𝑥=0, 𝑦=0, [0]=0,
[1]=2, and [2]=1. It should only be possible to read 0, disallowing the attempted execution below:

𝑟 :=𝑥; 𝑠:= [𝑟];𝑦 := 𝑠 ‖ 𝑟 :=𝑦; 𝑠:= [𝑟];𝑥 := 𝑠

R𝑥 1 R[1]2 W𝑦2 R𝑦2 R[2]1 W𝑥 1 (addR1)

This executionwould become possible, however, if wewere to remove (𝐿=ℓ) from R4—it is included
in 𝜅. In this case, (R𝑦2) would not necessarily be dependency ordered before (W𝑥 1).

8.5 Combining Address Calculation and If-Introduction

Def. 8.4 is naive with respect to merging events. Consider the following example:

[𝑟]:= 0; [0]:=!𝑟

𝑟=1
�

�

� W[1]0
𝑐

𝑟=1
�

�

� W[0]0
𝑑

[𝑟]:= 0; [0]:=!𝑟

𝑟=0
�

�

� W[0]0
𝑑

𝑟=0
�

�

� W[0]1
𝑒

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:26 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

Merging, we have:

if(𝑀){[𝑟]:= 0; [0]:=!𝑟} else {[𝑟]:= 0; [0]:=!𝑟}

𝑟=1
�

�

� W[1]0
𝑐

𝑟=0 ∨ 𝑟=1
�

�

� W[0]0
𝑑

𝑟=0
�

�

� W[0]1
𝑒

Theprecondition ofW[0]0 is a tautology; however, this is not possible for ([𝑟]:= 0; [0]:=!𝑟) alone.
Def. 8.5 enables this execution using if-introduction. Under this semantics, we have:

[𝑟]:= 0

𝑟=1
�

�

� W[1]0
𝑐

𝑟=0
�

�

� W[0]0
𝑑

[0]:=!𝑟

𝑟=1
�

�

� W[0]0
𝑑

𝑟=0
�

�

� W[0]1
𝑒

Sequencing and merging:

[𝑟]:= 0; [0]:=!𝑟

𝑟=1
�

�

� W[1]0
𝑐

𝑟=0 ∨ 𝑟=1
�

�

� W[0]0
𝑑

𝑟=0
�

�

� W[0]1
𝑒

The precondition of (W[0]0) is a tautology, as required.
Def. 8.5 is a mash-up of the Def. 8.3 and Def. 8.4.

Definition 8.5. If 𝑃 ∈ WRITE(𝐿, 𝑀, 𝜇) then (∃ℓ : 𝐸 →V) (∃𝑣 : 𝐸 →V) (∃𝜙 : 𝐸 → Φ)
(w1) if 𝜅 (𝑑) ∧ 𝜅 (𝑒) is satisfiable then 𝑑 = 𝑒 ,
(w2) 𝜆(𝑒) = W𝜇[ℓ𝑒]𝑣𝑒 ,
(w3) 𝜅 (𝑒) ≡ 𝜙𝑒 ∧ 𝐿=ℓ𝑒 ∧𝑀=𝑣𝑒 ,

(w4) 𝜏𝐷 (𝜓) ≡
∧

𝑘∈V 𝐿=𝑘 ⇒𝜓 [𝑀/𝑘] [K([𝑘])/Q[𝑘]],
(w5) ✓ ≡ K(𝐸),
(w6) 𝜙𝑒 [𝑁 /s𝑑] = 𝜙𝑒 .

If 𝑃 ∈ READ(𝑟, 𝐿, 𝜇) then (∃ℓ : 𝐸 →V) (∃𝑣 : 𝐸 →V) (∃𝜙 : 𝐸 → Φ)
(R1) if 𝜅 (𝑑) ∧ 𝜅 (𝑒) is satisfiable then 𝑑 = 𝑒 ,
(R2) 𝜆(𝑒) = R𝜇[ℓ𝑒]𝑣𝑒
(R3) 𝜅 (𝑒) ≡ 𝜙𝑒 ∧ 𝐿=ℓ𝑒 ∧ Q[ℓ𝑒],

(R4) 𝜏𝐷 (𝜓) ≡
∧

𝑒∈𝐸∩𝐷 𝜙𝑒 ⇒ (𝜅 (𝑒) ⇒ 𝑣𝑒=s𝑒) ⇒𝜓 [s𝑒/𝑟]

∧
∧

𝑒∈𝐸\𝐷 𝜙𝑒 ⇒ (𝜅 (𝑒) ⇒ (𝑣𝑒=s𝑒 ∨ [ℓ𝑒]=s𝑒)) ⇒𝜓 [s𝑒/𝑟]

∧(
∧

𝑒∈𝐸 ¬𝜙𝑒) ⇒ (∀𝑠) 𝜓 [𝑠/𝑟],

(R5a) if 𝜇 ⊑ rlx then ✓ ≡ tt,
(R5b) if 𝜇 ⊒ acq then ✓ ≡ K(𝐸),
(R6) 𝜙𝑒 [𝑁 /s𝑑] = 𝜙𝑒 .

9 RELATEDWORK

Marino et al. [2015] argue that the “silently shifting semicolon” is sufficiently problematic for pro-
grammers that concurrent languages should guarantee sequential abstraction, despite the perfor-
mance penalties (see also Liu et al. [2021]). In this paper, we take the opposite approach. We have
attempted to find the most intellectually tractable model that encompasses all of the messiness of
relaxed memory.

There are two prior studies of relaxed memory that include precise calculation of semantic
dependencies—neither gives the semantics of sequential composition in direct style. First, Paviotti
et al. [2020] defined mRd, which calculates dependencies using event structures rather than logic.
This strategy is brittler than ours, leading to false positives (§3.8). Second, Jagadeesan et al. [2020]
defined PwP, using logical entailment to define dependency. Although PwT is based on PwP, there
aremany differences. Some of these aremotivated by requirements unique to PwT (see §3.9). Other
differences are stylistic: For example, we use termination conditions rather than termination ac-
tions—our formulation fixes an error in Jagadeesan et al.’s definition of parallel composition. We
also fix an error in their treatment of redundant read elimination (§8.1).

Kavanagh and Brookes [2018] define a semantics using pomsets without preconditions. Instead,
their model uses syntactic dependencies, thus invalidatingmany compiler optimizations.They also
require a fence after every relaxed read on Arm8. Pichon-Pharabod and Sewell [2016] use event
structures to calculate dependencies, combined with an operational semantics that incorporates
program transformations. This approach seems to require whole-program analysis.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

The Leaky Semicolon 54:27

Other studies of relaxed memory can be categorized by their approach to dependency calcula-
tion. Hardware models use syntactic dependencies [Alglave et al. 2014]. Many software models
do not bother with dependencies at all [Batty et al. 2011; Cox 2016; Watt et al. 2020, 2019]. Oth-
ers have strong dependencies that disallow compiler optimizations and efficient implementation,
typically requiring fences for every relaxed read on Arm8 [Boehm and Demsky 2014; Dolan et al.
2018; Jeffrey and Riely 2016; Lahav et al. 2017; Lamport 1979]. Many of the most prominent models
are operational models based on speculative execution [Chakraborty and Vafeiadis 2019; Cho et al.
2021; Jagadeesan et al. 2010; Kang et al. 2017; Lee et al. 2020; Manson et al. 2005].

Morally, PwT fits between the strong models and the speculative ones. Looking at the details,
however, PwT-mca is incomparable to both RC11 [Lahav et al. 2017] and the promising semantics
[Kang et al. 2017], to take two examples. RC11 allows non-mca behaviors that PwT-mca disallows.
PwT-mca has a weaker notion of coherence than the promising semantics.

Jagadeesan et al. [2020] argue that the speculative models allow too many executions, result-
ing in a failure of temporal reasoning and potentially jeopardizing type safety and other security
properties. In a similar vein, Cho et al. [2021] argue that local dRf guarantees are violated when
read-introduction is followed by if-introduction, branching on the read just introduced. These op-
timizations are validated by the speculative models—Cho et al. manage to avoid the problem by
adopting a sub-optimal lowering for Rmws. PwT does not suffer from this problem, since PwT does
not validate read-introduction.There appears to be a genuine tension between temporal reasoning,
as supported by PwT, and read-introduction, as supported by the speculative models.

Other work in relaxed memory has shown that tooling is especially useful to researchers, ar-
chitects, and language specifiers, enabling them to build intuitions experimentally [Alglave et al.
2014; Batty et al. 2011; Cooksey et al. 2019; Paviotti et al. 2020]. Unfortunately, it is not obvious
that tools can be built for all thin-air-free models: the calculation of Pichon-Pharabod and Sewell
[2016] does not have a termination proof for an arbitrary input; the enormous state space for the
operational models of Kang et al. [2017] and Chakraborty and Vafeiadis [2019] is daunting for a
tool builder—and as yet no tool exists for automatically evaluating these models. We described a
tool for automatically evaluating PwT in §7.

10 LIMITATIONS AND FUTURE WORK

This paper is the first to present a direct denotational semantics for sequential composition that
can be efficiently compiled to modern cpus. We defined two models: PwT-C11 solves the out-of-
thin-air problem for C11, and PwT-mca solves it for safe languages such as Java and Javascript.

Our work has several limitations, providing opportunities for future work:
PwT-C11 can be lowered efficiently to any architecture supported by C11, but inherits the top-

level axioms of RC11, compromising compositionality. PwT-mca is as a compositional as a model
of concurrent imperative programming can be, but is limited to mca architectures for optimal
lowering. It would be interesting to explore the middle ground to find a fully compositional model
that supports optimal lowering to all modern architectures.

As mentioned in §9, some safety guarantees may be violated when read-introduction is followed
by if-introduction, branching on the read just introduced. Nonetheless, read-introduction is ubiq-
uitous in some compilers [Lee et al. 2017]. It would be interesting to know the cost of restricting
this optimization. In a similar vein, PwT-mca1 is a simpler model than PwT-mca2, but requires
fences on acquiring reads for Arm8. It would be illuminating to find out what the performance
penalty is for these fences.

We have defined the soundness of compiler optimizations in themodel, rather than contextually:
𝑆 ′ is a sound refinement of 𝑆 if J𝑆 ′K ⊆ J𝑆K. This approach has several advantages—for example, it
is immediate that a sound optimization is sound in any context. It also has a disadvantage: some

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

54:28 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

optimizations complicate the semantics. For example, PwT-mca does not validate access elimi-
nation, such as store-forwarding and dead-write-removal—consider that complete executions of
J𝑥 := 1; 𝑟 :=𝑥 K must include a read action and that complete executions of J𝑥 := 1;𝑥 := 2K must
include two write actions. As another example, PwT-mca does not validate the reverse inclusions
for Lemma 3.6g—consider that Jif(𝑟){𝑥 := 1} else {𝑥 := 2}K has an augmented (Lemma 3.7) ex-
ecution with (𝑟=0 | W𝑥 2) (𝑟≠0 | W𝑥 1), whereas Jif(𝑟){𝑥 := 1}; if(!𝑟){𝑥 := 2}}K has no
such execution. We expect that these optimizations can be validated, at the cost of complicating
the semantics. For access elimination, it is likely sufficient to allow events with different actions
to merge. For Lemma 3.6g, it is likely sufficient to encode delay in the logic—the problem in the
execution above is that delay introduces order even when the preconditions are disjoint.

We have not treated loops, although we expect that the usual approach of showing continuity
for all the semantic operations with respect to set inclusion would go through. Paviotti et al. [2020]
use step-indexing to account for loops; perhaps this approach could be adapted.

While we have mechanized some proofs, most of our proofs are informal. In particular, we have
only a pen-and-paper proof showing that PwT-mca supports optimal lowering to Arm8.The same
is true for local data race-freedom (ldRf-sc)—additionally, our proof sketch for ldRf-sc elides
Rmws, which have caused complications in other models [Cho et al. 2021].

Supplementary material for this paper is available at https://weakmemory.github.io/pwt.

Acknowledgements

This paper has been greatly improved by the comments of the anonymous reviewers. James Riely
was supported by the National Science Foundation under grant No. CCR-1617175. Mark Batty and
Simon Cooksey were supported by the EPSRC under grant Nos. EP/V000470/1 and EP/R032971/1,
and by VeTSS. Anton Podkopaev was supported by JetBrains Research.

REFERENCES

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. 2021. Armed Cats: Formal

Concurrency Modelling at Arm. ACM Trans. Program. Lang. Syst. 43, 2, Article 8 (July 2021), 54 pages. https:

//doi.org/10.1145/3458926

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

forWeakMemory. ACMTrans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of Pro-

gramming Language Concurrency Semantics. In Programming Languages and Systems - 24th European Symposium on

Programming, ESOP 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9032), Jan

Vitek (Ed.). Springer, 283–307. https://doi.org/10.1007/978-3-662-46669-8_12

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In Pro-

ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas,

USA) (POPL ’11). ACM, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-thin-air Results. In Proceedings of the Work-

shop on Memory Systems Performance and Correctness (Edinburgh, United Kingdom) (MSPC ’14). ACM, New York, NY,

USA, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134

Stephen D. Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Inf. Comput. 127, 2 (1996), 145–163.

https://doi.org/10.1006/inco.1996.0056

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air reads with event structures. PACMPL 3, POPL (2019),

70:1–70:28. https://doi.org/10.1145/3290383

Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Modular data-race-freedom guarantees in the promis-

ing semantics. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Im-

plementation, Virtual Event, Canada, June 20-25, 20211, Stephen N. Freund and Eran Yahav (Eds.). ACM, 867–882.

https://doi.org/10.1145/3453483.3454082

Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore, and Mikolás Janota. 2019. PrideMM: Second Order Model Check-

ing for Memory Consistency Models. In Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11,

2019, Revised Selected Papers, Part II (Lecture Notes in Computer Science, Vol. 12233), Emil Sekerinski, Nelma Moreira,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://weakmemory.github.io/pwt
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3453483.3454082

The Leaky Semicolon 54:29

José N. Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Campos, Troy

Astarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, PedroMonteiro, and David Delmas

(Eds.). Springer, 507–525. https://doi.org/10.1007/978-3-030-54997-8_31

Russ Cox. 2016. Go’s Memory Model. http://nil.csail.mit.edu/6.824/2016/notes/gomem.pdf.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for

the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Euro-

pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-

ings (Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340.

https://doi.org/10.1007/978-3-540-78800-3_24

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18,

8 (1975), 453–457. https://doi.org/10.1145/360933.360975

Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding Data Races in Space and Time. In Pro-

ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia, PA,

USA) (PLDI 2018). ACM, New York, NY, USA, 242–255. https://doi.org/10.1145/3192366.3192421

William Ferreira,MatthewHennessy, andAlan Jeffrey. 1996. ATheory ofWeak Bisimulation for Core CML. In Proceedings of

the 1996 ACM SIGPLAN International Conference on Functional Programming, ICFP 1996, Philadelphia, Pennsylvania, USA,

May 24-26, 1996, Robert Harper and Richard L. Wexelblat (Eds.). ACM, 201–212. https://doi.org/10.1145/232627.232649

Jay L. Gischer. 1988. The equational theory of pomsets. Theoretical Computer Science 61, 2 (1988), 199–224. https://doi.org/

10.1016/0304-3975(88)90124-7

C.A.R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576–580. https:

//doi.org/10.1145/363235.363259

Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with preconditions: a simple model of relaxed memory.

Proc. ACM Program. Lang. 4, OOPSLA (2020), 194:1–194:30. https://doi.org/10.1145/3428262

Radha Jagadeesan, Corin Pitcher, and James Riely. 2010. Generative Operational Semantics for Relaxed Memory Models.

In Programming Languages and Systems, 19th European Symposium on Programming, ESOP 2010, Paphos, Cyprus, March

20-28, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6012), Andrew D. Gordon (Ed.). Springer, 307–326. https:

//doi.org/10.1007/978-3-642-11957-6_17

Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures Model of Relaxed Memory. In Proceed-

ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016,

M. Grohe, E. Koskinen, and N. Shankar (Eds.). ACM, 759–767. https://doi.org/10.1145/2933575.2934536

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-

memory concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 175–189. http:

//dl.acm.org/citation.cfm?id=3009850

Ryan Kavanagh and Stephen Brookes. 2018. A denotational account of C11-style memory. CoRR abs/1804.04214 (2018),

13 pages. arXiv:1804.04214 http://arxiv.org/abs/1804.04214

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in

C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618–632. https://doi.

org/10.1145/3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE

Trans. Comput. 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling high-level

optimizations and low-level code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA (2018), 125:1–125:28. https://doi.org/

10.1145/3276495

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.

Lopes. 2017. Taming undefined behavior in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev

(Eds.). ACM, 633–647. https://doi.org/10.1145/3062341.3062343

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.

2020. Promising 2.0: global optimizations in relaxed memory concurrency. In Proceedings of the 41st ACM SIGPLAN

International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020,

Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 362–376. https://doi.org/10.1145/3385412.3386010

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2019. Accelerating Sequential Consistency for Java with Speculative

Compilation. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 16–30. https://doi.org/10.1145/3314221.3314611

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://doi.org/10.1007/978-3-030-54997-8_31
http://nil.csail.mit.edu/6.824/2016/notes/gomem.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/232627.232649
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-11957-6_17
https://doi.org/10.1007/978-3-642-11957-6_17
https://doi.org/10.1145/2933575.2934536
http://dl.acm.org/citation.cfm?id=3009850
http://dl.acm.org/citation.cfm?id=3009850
https://arxiv.org/abs/1804.04214
http://arxiv.org/abs/1804.04214
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3314221.3314611

54:30 Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev

Lun Liu, ToddMillstein, andMadanlalMusuvathi. 2021. Safe-by-Default Concurrency forModern Programming Languages.

ACM Trans. Program. Lang. Syst. 43, 3, Article 10 (Sept. 2021), 50 pages. https://doi.org/10.1145/3462206

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. SIGPLAN Not. 40, 1 (Jan. 2005), 378–391.

https://doi.org/10.1145/1047659.1040336

Daniel Marino, Todd D. Millstein, Madanlal Musuvathi, Satish Narayanasamy, and Abhayendra Singh. 2015. The Silently

Shifting Semicolon. In 1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar, Califor-

nia, USA (LIPIcs, Vol. 32), Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 177–189. https://doi.org/10.4230/LIPIcs.SNAPL.2015.177

Ian A. Mason and Carolyn L. Talcott. 1992. References, Local Variables and Operational Reasoning. In Proceedings of the

Seventh Annual Symposium on Logic in Computer Science (LICS ’92), Santa Cruz, California, USA, June 22-25, 1992. IEEE

Computer Society, 186–197. https://doi.org/10.1109/LICS.1992.185532

Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. 2016. Out-of-Thin-Air Execution is vacuous. http://wg21.link/

p0422.

Robin Milner. 1977. Fully Abstract Models of Typed lambda-Calculi. Theor. Comput. Sci. 4, 1 (1977), 1–22. https://doi.org/

10.1016/0304-3975(77)90053-6

Peter O’Hearn. 2007. Resources, Concurrency, and Local Reasoning. Theor. Comput. Sci. 375, 1-3 (April 2007), 271–307.

https://doi.org/10.1016/j.tcs.2006.12.035

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed

Dependencies in Weak Memory Concurrency. In Programming Languages and Systems - 29th European Symposium on

Programming, ESOP 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),

Peter Müller (Ed.). Springer, 599–625. https://doi.org/10.1007/978-3-030-44914-8_22

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation

and Avoids Thin-air Executions. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA, 622–633. https://doi.org/10.

1145/2837614.2837616

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223–255. https:

//doi.org/10.1016/0304-3975(77)90044-5

Vaughan R. Pratt. 1985. Some Constructions for Order-Theoretic Models of Concurrency. In Logics of Programs, Conference,

Brooklyn College, New York, NY, USA, June 17-19, 1985, Proceedings (Lecture Notes in Computer Science, Vol. 193), Rohit

Parikh (Ed.). Springer, 269–283. https://doi.org/10.1007/3-540-15648-8_22

William Pugh. 2004. Causality Test Cases. https://perma.cc/PJT9-XS8Z

Jaroslav Sevčík. 2008. Program Transformations in Weak Memory Models. PhD thesis. Laboratory for Foundations of

Computer Science, University of Edinburgh.

Jaroslav Sevčík and David Aspinall. 2008. On Validity of Program Transformations in the Java Memory Model. In ECOOP

2008 - Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings (Lecture

Notes in Computer Science, Vol. 5142), Jan Vitek (Ed.). Springer, 27–51. https://doi.org/10.1007/978-3-540-70592-5_3

Joel Spolsky. 2002. The Law of Leaky Abstractions. https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-

abstractions/.

Viktor Vafeiadis and ChinmayNarayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In Proceedings

of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications,

OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, Antony L. Hosking, Patrick Th. Eugster,

and Cristina V. Lopes (Eds.). ACM, 867–884. https://doi.org/10.1145/2509136.2509532

ConradWatt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod,

and Shu-yu Guo. 2020. Repairing and mechanising the JavaScript relaxed memory model. In Proceedings of the 41st ACM

SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June

15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 346–361. https://doi.org/10.1145/3385412.3385973

Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. 2019. Weakening WebAssembly. Proc. ACM Program. Lang. 3,

OOPSLA (2019), 133:1–133:28. https://doi.org/10.1145/3360559

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 54. Publication date: January 2022.

https://doi.org/10.1145/3462206
https://doi.org/10.1145/1047659.1040336
https://doi.org/10.4230/LIPIcs.SNAPL.2015.177
https://doi.org/10.1109/LICS.1992.185532
http://wg21.link/p0422
http://wg21.link/p0422
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1007/3-540-15648-8_22
https://perma.cc/PJT9-XS8Z
https://doi.org/10.1007/978-3-540-70592-5_3
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3360559

