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Combination Forecasting of Energy Demand in the UK
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Yuqian Zhao †

Abstract

In more deregulated markets such as the UK, demand forecasting is vital for the electric
industry as it is used to set electricity generation and purchasing, establishing electricity prices,
load switching and demand response. In this paper we produce improved short-term forecasts
of the demand for energy produced from five different sources in the UK averaging from a set of
6 univariate and multivariate models. The forecasts are averaged using six different weighting
functions including Simple Model Averaging (SMA), Granger-Ramanathan Model Averaging
(GRMA), Bayesian Model Averaging (BMA), Smoothing Akaike (SAIC), Mallows Weights
(MMA) and Jackknife (JMA). Our results show that model averaging gives always a lower
Mean Square Forecast Error (MSFE) than the best/optimal models within each class however
selected. For example, for Coal, Wind and Hydro generated Electricity forecasts generated
with model averaging, we report a MSFE about 12% lower than that obtained using the best
selected individual models. Among these, the best individual forecasting models are the Non-
Linear Artificial Neural Networks and the Vector Autoregression and that models selected by
the Jackknife have often superior performance. However, MMA averaged forecasts almost
always beat the predictions obtained from any of the individual models however selected, and
those generated by other model averaging techniques.
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1 Introduction

Accurate and rigorous electricity demand modelling and forecasting is extremely important for en-
ergy suppliers, Independent System Operators (ISOs), financial institutions, and other participants
in electric energy generation, transmission, distribution, and markets. Forecasting the demand for
energy is crucial for planning periodical operations and facility expansion in the electricity sector
at the various levels. For example, models for electric power load forecasting are essential to the
operation and planning of a utility company. At this level, load/demand forecasting would help an
electric utility to make important decisions including purchasing and generating electric power, load
switching, and infrastructure development. On a broader and different level, models and forecasts
of a country’s energy demand may provide useful information for the implementation of specifically
targeted energy policies. However, obtaining an appropriate forecasting model for electricity net-
works is far from being an easy task. In fact, although many modelling and forecasting methods
have been developed, none can be generalized for all demand patterns. This becomes an even
more pressing issue in deregulated markets such as that of the United Kingdom (UK hereafter)
where demand patterns have become even more complex. Depending on the available data, their
frequency, the desired nature and detail of forecasting, methodologies to obtain forecasts of the de-
mand for energy can be broadly classified into short-term models, which use traditional time series,
similar day/machine learning approaches and long-term models, which include, end-use, structural
econometric models and time series models with lower frequency data.

In this paper we aim to contribute to the literature on energy demand forecasting by detailing a
pseudo out-of-sample combination forecast design which uses high frequency time series data to
obtain improved short-term forecast (up to 1 day) of the demand for energy produced from five
different sources in the UK, averaging from a set of 6 univariate and multivariate models. With
the growing deregulation of the energy industries, obtaining more accurate forecasts, has gained
increasing appeal. The reason is that, since supply and demand experience wider fluctuations and
energy prices may increase by a factor of ten or more during peak situations, correct and well timed
demand forecasting has become vitally important for utilities. Short-term demand forecasts help to
estimate load flows and to make decisions that can prevent overloading. Timely implementations of
such decisions would lead to the improvement of network reliability and to the reduced occurrences
of equipment failures and blackouts. On the other hand, demand forecasting is also important for
contract evaluations and evaluations of various sophisticated financial products on energy pricing
offered by the market.

Short-term forecasting models, which are usually from one hour to one week, use historical data
and play a very important role in the operation of power systems’ operating functions such energy
transaction, unit commitment, security analysis, fuel scheduling and load switching. The techniques
most commonly used include:

• Univariate time series models (Box-Jenkins ARIMA), Holt-Winters exponential smoothing,
time series regressions and multivariate time series models such as Vector autoregressions
(VARs), Bayesian VARs (BVAR) and Factor Augmented VARs (FAVAR)

• Similar day and machine learning approaches including Artificial Neural Networks (ANN),
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Non-linear Autoregressive Neural Networks (NLANN), Fuzzy Logic, Support Vector Ma-
chines.

Long-term forecasting models play an important role in policy formulation and supply capacity
expansion (incorporate consumer behaviour and characteristics, technology, etc). They include:

• Time series methods with Lower frequency data. These include both univariate time series
models such as the traditional Box-Jenkins ARIMA, but also Seasonal ARIMA and models
which include fractionally integration such as ARFIMA and also the above mentioned mul-
tivariate time series models (VAR, BVAR, FAVAR) also including cointegrated vector error
correction models (VECM).

• End-use methods (electricity demand is derived from users’ demand for individual require-
ments):

• Non-intrusive Load Monitoring Models

• Structural econometric models (Seek to establish the relationship between energy consump-
tion and the factors that influence it) include:

• Conditional Demand Analysis (Multivariate Regressions, Stochastic Markov Chains)

Earlier attempts of short-term forecasting include Hagan and Behr (1987), Fan and McDonald
(1994), Amjady (2001) and Nogales et al. (2002), who used time series regressions including tem-
perature, humidity and past energy consumption to obtain demand projections. More recently,
Filik et al. (2011) predicted yearly, weekly and hourly electric energy demand through a three
stage model, showing how short-term predictions are usually more accurate and of immediate ap-
plication than medium and long-term ones.

Within the literature on the UK energy system, we find several studies mostly focussed on long-
term modelling and forecasting. Hunt et al. (2003) applied time series models to forecast the UK
energy demand on a sectoral basis. However, pure time series models have often been criticised for
not considering other important macroeconomic variables as predictors of long-run energy demand.
To overcome this issue, Haas and Schipper (1998) use price elasticities, income elasticities and
technical efficiency as explanatory variables to forecast energy demand in the UK and other OECD
countries. Similarly, in order to forecast oil, gas, coal and total energy demand in the UK and
Germany, McAvinchey and Yannopoulos (2003) constructed an econometric model incorporating
variables including the price of electricity and technological progress. Cointegration models have
also been used to model or forecast energy demand in the long-run. Among them, Fouquet et al.
(1997) uses a cointegrated VAR to investigate the long run relationship among fuel demand, the
real price level and economic activity and Sadorsky (2009) adopted panel cointegration techniques
to model the long run relationship among GDP per-capita, Co2 per-capita and the demand for
renewable energy in the G7 countries.

Previous studies on energy demand forecasting can be also classified on the basis of their param-
eterisation, that is, whether they employed univariate and/or multivariate (time series) models.
The most widely used univariate forecasting set of models is the ARMA, which can be extended to
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ARIMA to account for non-stationarity, SARMA to consider seasonality and ARFIMA to consider
fractional integration. Ediger et al. (2006) and Ediger and Akar (2007) employed ARIMA and
SARIMA to forecast fossil fuel in Turkey, using goodness-of-fit and information criteria to select
the best forecasting models. However, Sumer et al. (2009) focussed on the importance of capturing
the seasonal effects contained in energy demand and used ARIMA, SARIMA and various regression
models, and found that the regression model with seasonal latent variables provides more accurate
forecast than the class of ARMA models.

In the earlier literature, exponential smoothing also showed reasonable forecasting ability. Badri
et al. (1997) adopted several time-series models including exponential smoothing to forecast elec-
tricity peak-load in the UAE. As an extension of the simple exponential smoothing technique, Hong
(2013) claimed that Holt-Winter smoothing method shows better performance. More recently, with
the introduction of Artificial Neural Networks (ANN) and its application in forecasting, many stud-
ies have used ANN-type of models to forecast energy demand, also considering a number of input
variables, such as macroeconomic and environmental variables (Chow and Leung (1996), Markham
and Rakes (1998), Sözen et al. (2005), Ermis et al. (2007)). However, Maia et al. (2006) showed
that a hybrid model of ARMA and ANN model shows better prediction ability of energy forecast.
Similar models have also have been applied by Pao (2006) and Kurban and Filik (2009), who used
Non-linear Autoregressive Neural Networks –(NARNN) to forecast electricity demand in Taiwan
and Turkey, respectively. Geem and Roper (2009) employed the NARNN model to forecast energy
demand for South Korea, and they indicated that NARNN produce more accurate predictions than
linear regressions and exponential smoothing.

Among multivariate time series models, vector autoregressions (VAR) are the probably the most
popular for forecasting purposes. Garćıa-Ascanio and Maté (2010) used a VAR to forecast electric
power demand, but they argued that VARs just shows poor predictive ability compared with more
advanced multivariate models. Bayesian VARs –BVAR have often been found to improve the
forecast accuracy of the basic VAR also overcoming the problem of over-fitting. Crompton and
Wu (2005) forecast coal, oil, gas and hydro energy demand in China through a BVAR; Francis
et al. (2007) used the BVAR to study the relationship between real gross domestic product per
capita and energy demand in Caribbean countries, and obtained forecasts for energy demand in
those countries. Recently, VAR models have been further developed so to include factors extracted
from a set of potentially numerous predictors so to obtain a factor augmented vector autoregressive
model –FAVAR (see (Chudik and Pesaran, 2011) among others). Baumeister et al. (2016) used
a FAVAR model to forecast gasoline price for the US, showing that their predictions are more
accurate than those of standard VARs.

Clearly, there is a wide variety of models and parameterisations among which to choose for the
purpose of obtaining energy demand forecasts, and thus, the choice of which criterion to use in
order to select the optimal forecasting model becomes another important issue (see Pao (2006) and
Garćıa-Ascanio and Maté (2010) for comparative studies). Lai et al. (2008) used the mean squared
error –MSE, the mean absolute percentage error –MAPE and the mean squared percentage error
–MSPE to compare the accuracy of rival forecasting models. Moreover, models can be selected
by minimisation of information criteria obtained in-sample for each individual estimated model
(i.e. Akaike Information Criterion - AIC, and Bayesian Information Criterion - BIC ). Within this
stream of literature, Hansen (2007) and Hansen (2008) showed that Mallows’ information criteria
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may often select models that providing more precise forecasts, and later Hansen and Racine (2012)
and Hansen (2014) proposed a cross-validation criteria for model selection based on the Jackknife.

Since the seminal article of Bates and Granger (1969) model averaging has been widely used to
produce more accurate forecasts than the individual optimal models. Hendry and Clements (2004)
and Timmermann (2006) showed that simple combinations often give better performance than more
sophisticated approaches. Further, using a frequentist approach, Granger and Ramanathan (1984)
proposed the use of coefficient regression methods to determine the magnitude of the weights of
individual models in the averaging process. However, the most popular average method is Bayesian
model averaging (Madigan and Raftery, 1994), where the averaging weights are calculated based
on empirical data and uses the Bayesian Information Criterion of the individual models as weight
in the averaging function. Anderson and Burnham (2002), suggested to use AIC criteria to replace
BIC criteria in model averaging, while Hansen (2007) and Hansen (2008) have continued this line
of research showing that model combination based on Mallows’ criterion, asymptotically leads
to forecasts with the smallest possible mean squared error. Guidolin and Timmermann (2007)
proposed a different time varying weight combination scheme where weights have regime switching
dynamics. More recently, Hansen and Racine (2012) proposed a “jackknife model averaging” (JMA)
estimator which selects the weights by minimizing a cross-validation criterion showing that their
method is asymptotically optimal.

In this paper, in order to overcome some of the methodological issues above and produce im-
proved forecasts of the demand for energy in the UK, we use a forecasting approach based on
model averaging of several popular linear or non-linear, univariate and multivariate forecast mod-
els. Specifically, we first obtain the forecasts from sets of ARMA, Holt-Winters Smoothing (HWS),
Non Linear Autoregressive Neural Networks (NLANN), Vector Autoregressions (VAR), Bayesian
VAR (BVAR), and Factor Augmented VAR (FAVAR) models. Forecasts are generated from each
of these sets of models and within each set they are then compared and selected using rankings
based on four different information criteria (AIC, BIC, Mallows’ and Jackknife). The best models
as selected by each of the different information criteria within the individual model set and are
averaged using six different combination weight metrics including Simple Model Averaging (SMA),
Granger-Ramanathan Model Averaging (GRMA), Bayesian Model Averaging (BMA), Smoothing
Akaike (SAIC), Mallows Weights (MMA) and Jackknife (JMA).

The paper is structured as follows: the next section presents the data and explains the pre-analysis
necessary to transform the raw series into workable variables. Section three outlines the individual
forecast models used and the metrics used for selection and weighting purposes. Comparisons of the
performance of individual models, forecasting methods, information criteria, averaging functions
are discussed in section four. Section five reports the forecasts of the levels demand for energy in
the UK, a summary concludes.
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2 Data and Pre-analysis

2.1 Data

We collected 30 minutes data from National Gridwatch website 1 ranging from 00:00:00 of the 21
December 2013 to 00:00:00 of the 21 March 2016, for a total of 39287 observations for each energy
demand process. The data relate to energy demand for the entire UK plus import, minus export
less un-metered sources. Here, we shall assume that supply matches demand at all times. The UK
gridwatch provides energy demand data disaggregated by different types of energy sources, and in
this paper, we will concentrate on the most important five types of sources including coal, nuclear,
combined cycle gas turbines (CCGT hereafter), wind and hydro-power.

Note that, energy providers in the UK differ quite substantially between them for the choice of fuel
sources used to provide energy as can be seen from the table below which list most of the utilities
in the UK.

Source: http://electricityinfo.org/fuel-mix-of-uk-domestic-electricity-suppliers/

Note that, beside the strong deregulation, given the differences in fuel mix used by energy suppliers
in the UK, accurate short-term forecasting of the demand for energy produced from the different
sources becomes even more appealing as it has an important impact on the prices charged, the
choice of production and not least general demand management and load switching.

In this paper, using the data described above, we obtain 30-minutes to one-day predictions of the
demand for energy as produced from these five energy sources, that is we obtain forecasts for the
22 March 2016, at the following times 00:30, 01:00, 02:00, 04:00, 06:00, 08:00, 16:00 and 24:00.

Insert Figure [2] about Here

Figure 2 plots the levels of the demand for energy generated from each of the five sources. It
is noticeable how demand for CCGT and wind sourced energy are relatively more volatile, while
nuclear is more steady. The main reason is that CCGT, though is an efficient way to use gas and
turbines are fast to get online, they use relatively expensive fuel. Thus, these cycling plants will
ramp up and down during the day, and are usually used more during peak hours. As for the wind
turbines, they are expensive but wind is cheap, however, the strength of wind is not constant and
it varies from zero to storm force. This means that wind turbines cannot not produce the same
amount of electricity all the time and there are be times when they produce no electricity at all.
On the other hand, once on, nuclear power stations run flat out, the cost of fuel is insignificant and
this explains the much lower volatility in its demand.

Still, regardless of the source, there exist strong“seasonal” components in the data. These peri-
odicities vary in frequency as seasons, ”day-of-the-week” and ”hour-of-the-day”. Therefore, it is
necessary to remove these periodic effects prior to analyse the data and obtain the forecasts for
each model of the model sets.

1http://www.gridwatch.templar.co.uk/
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2.2 Removing the Deterministic Components

Table 1: Fuel Mix of UK Energy Suppliers

Supplier Coal Gas Nuclear Renewable Other CO2 Nuclear Waste
British Gas 2 30 34 33 0.7 0.137 0.0024
Bulb 0 0 0 100 0 0 0
Co-operative Energy 36.6 34.2 13.4 9.8 6 0.493 0.00094
E.On 18.7 32.4 12.8 29 7.1 0.328 0.001
Ecotricity 0 0 0 100 0 0 0
EDF Energy 14.5 8.6 64.3 12.3 0.3 0.167 0.0045
Extra Energy 19 33 13 28 7 0.339 0.0009
First:Utility 18.9 32.7 12.9 28.3 7.2 0.33 0.0009
Flow Energy 18.9 32.7 12.9 28.3 7.2 0.331 0.0009
GnERGY 34 25.6 21.6 16.7 2.1 0.418 0.00151
Good Energy 0 0 0 100 0 0 0
Green Energy UK 0 70.6 0 29.4 0 0.134 0
Green Star Energy 0.1 0.1 0 99.8 0 0.002 0.00001
iSupplyEnergy 38.7 36.2 14.2 4.6 6.3 0.528 0.001
LoCO2 Energy 0 0 0 100 0 0 0
Npower/RWE 16 66 1 16 1 0.408 0.00008
Octopus Energy 1 1 1 97 0 0.013 0.00004
OVO Energy 0 46.9 0 53.1 0 0.183 0
Scottish Power 34 36 3 26 1 0.46 0.0002
So Energy 18.9 32.7 12.9 28.3 7.2 0.331 0.0009
Spark Energy 46.8 27.1 8.4 11.9 5.8 0.579 0.0007
SSE 25 35 7 29 4 0.38 0.00047
Utilita 19 33 13 28 7 0.332 0.00091
UK Average 17 32.3 23.7 24.3 2.5 0.29 0.0017

2.2 Removing the Deterministic Components

As highlighted above, energy demand data always contains significant periodic patterns in both the
short and long-term. In this subsection, we describe the three methods that we shall use to remove
these periodic patterns in turn. In what follows we will first fit an up to 5th degree Chebyshev
polynomial to remove the season of the year component, a moving average based technique to
remove the day of the week effect and finally a 48th order differencing to eliminate a day/night
peak/off-peak hour effect.

Cuestas and Gil-Alana (2016), recently showed the ability of Chebyshev polynomials to fit long-
term cyclical patterns. Chebyshev polynomials are based on orthogonal cosine functions of time,
such that a linear combination of these functions can flexibly approximate most cyclical patterns.
The higher the order of the polynomial, the more non-linear is the cyclical pattern that can be
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2.2 Removing the Deterministic Components

approximated. Following Cuestas and Gil-Alana (2016) we define the polynomial as,

Pi,n(t) =
√

2cos(iπ(t− 0.5)/n), t = 1, 2, . . . , n; i = 1, 2, . . . , (1)

where i is the order of Chebyshev polynomial. Specifically, when i equals to 0, it gives a linear
constant function with P0,n(t) = 1. Since any empirical process yt can be decomposed between
a deterministic and a stochastic part, and if the deterministic term approximated by Chebyshev
polynomials, then we can have,

yt =
m∑
i=0

θiPi,n(t) + xt, t = 1, 2, 3, . . . , (2)

where xt is assumed to be the stochastic part of the model, and the order of Chebyshev polynomials
is determined by the significance of parameters θi. The parameter θi can be estimated by,

θ̂ = (
n∑
t=1

Pn(t)Pn(t)′)−1(
n∑
t=1

Pn(t)yt), (3)

Finally the de-seasonalised process y∗t is,

y∗t = yt −
m∑
i=0

θ̂iPi,n(t), (4)

Because our data set span over 2 years and 3 months, it should contain two complete season cycles
in the demand for each energy source. Figure 3 illustrates the seasonal patterns removed from the
demand of energy obtained from the five sources. From these plots, we can see that all energy
sources reach their peaks during winter period and fall down during summer except for CCGT.
Once the seasonal long-term cyclical pattern has been removed, it is necessary to remove shorter
term periodic patterns.

Insert Figure [3] about here

In the short-run, there are two more periodic elements which need to be filtered out: week-day, and
peak/off-peak (or day-night) effects. The week-day element can be removed by adopting a specific
moving average method. Since the data frequency is 30 minutes, following Weron (2007), we set the
moving average length l equal to 336, which are the number of half-hours in one week. To obtain the
moving average of each point in the series, we need to make sure that data in front and behind any
given data point which we obtain, is of the same length. Hence, we consider l+1 = 337 observations
for each moving average window. The moving average component is calculated through,

m̂t = 1
l + 1(

l/2∑
i=1

y∗t−i + y∗t +
l/2∑
i=1

y∗t+i), (5)

where mt is the moving average term and y∗t is the de-seasonalised series obtained in the first step.
Hence, the deviation from the moving average is given as,

wk = yk+l,j − m̂k+l,j , (6)
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where k is the index in one moving average window, and j is the number of moving average windows.
Thus, the day-of-the-week cyclical component can be obtained as,

ŝk = wk −
1
l

l∑
i=1

wi, (7)

Therefore, the day-of-the-week filtered data is defined as,

y∗t,l = y∗t − ŝt, (8)

Figure 4 illustrates the fitted weekly component of the demand for energy obtained for each source.
From the plots, it is apparent that some energy sources have a more pronounced day-of-the-week
effect compared to others. Specifically, the demand for coal, nuclear and CCGT produced energy are
relatively higher in weekdays as compared with weekend. This pattern, instead, does not appear so
clearly in the demand for energy produced from wind and hydro sources. This is probably because
the first three energy are the main sources of electricity used in industrial processes and businesses,
and also, the other two are more strongly dependent on weather conditions and cannot necessarily
provide energy in a steady manner. Apart from the week-day effect, it is reasonable to expect that
a peak/off-peak or day/night effect exists too in the energy demand series and this will also be
dealt with in what follows.

Insert Figure [4] about Here

After removing the season-of-year and week-day components, we remove the peak/off-peak and
day/night effect by taking the sth = 48 order difference of each of the demand for energy of each ω
source:

y∗ω,t,s = y∗ω,t,l − y∗ω,t−s,l, (9)

After this preliminary analysis, we move forward to the second step of our forecast procedure where
the obtained (now purely stochastic) energy demand series y∗ω,t,s for each source ω will be modelled
and forecast by univariate and multivariate time series as well as neural networks models, as briefly
described in next section.

Insert Figure [5] about Here

3 Methodology

In this section, we will briefly outline the methodology that we shall use to obtain the forecasts of
the demand for all the energy sources. Firstly, we will describe the six types of forecast models
going from univariate to multivariate ones; secondly, we will present the four types of criteria used
to select optimal forecasting model within each of the model sets (or )classes). Lastly, we discuss
the model averaging techniques and show they are used to produce improved forecasts.
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3.1 Forecast Models

3.1 Forecast Models

In this subsection, we will introduce the six classes of models which we use to fit and forecast
the filtered series. The univariate models are autoregressive moving average (ARMA), Holt Winter
Smoothing (HWS), Non-linear Autoregressive Neural Network (NARNN) model, and the multivari-
ate models are Vector autoregression (VAR), Bayesian VAR and Factor Augmented VAR models.
Recall that ω denotes the type of fuel used as a source of energy.

1. ARMA
The first forecasting model is the traditional stationary ARMA model. It is the most commonly
used forecast model also in the energy field and usually constitutes a benchmark against which
other forecasting techniques are compared. Among others, Ediger et al. (2006) and Ediger and
Akar (2007) used ARIMA models to forecast Turkish fossil fuel demand. Also, Sumer et al. (2009)
employed the ARMA class of models to predict electricity demand. In this paper, since the periodic
components and non-stationarity have been removed, we use the following simple ARMA(p,q)
parameterisation:

yω,t+h−1 = α+
p∑
i=1

βiyω,t−i +
q∑
j=1

γjεω,t−j + εω,t+h−1, (10)

where h is the period forecast ahead. The model is estimated by ordinary least squares and the
optimal lag length p and q are determined by information criteria. Once the model has been
estimated, we can use it to predict

fω,t+h−1 = α̂+
p∑
i=1

β̂iyω,t−i +
q∑
j=1

γ̂jεω,t−j , (11)

The optimal forecasting model is selected from the set of ARMA(p,q) with p and q = 1, . . . , 12
giving a total of 144 models estimated for each energy source.

2. Holt-Winter Smoothing (HWS)
The HWS belongs to the class of exponentially weighted moving average methods. The model fits
the target process using its past smoothed values and gives more weight to the most recent ones
such that it can be expressed as,

sω,t = αaω,t + (1− α)(sω,t−1 + bω,t−1), (12)

such that at time t, the actual value of the process is denotes by aω,t, the smoothed estimate is
denoted by sω,t and bω,t is the trend. In turn, the trend is formulated as,

bω,t = β(sω,t − sω,t−1) + (1− β)bω,t−1, (13)

where the parameter β is the trend smoothing parameter. Therefore, the predicted value is obtained
from,

fω,t = sω,t + ibω,t, (14)

Here we select the smoothing parameter α from [0.7, 0.8, 0.9] while β is selected from [0.1, 0.2, 0.3]
(see Hong (2013)). Hence, we consider 9 types of HWS models.
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3.1 Forecast Models

3. Non-linear Auto-Regressive Neural Networks (NARNN)
The restrictions imposed by linear forecast models such as ARMA and HWS, are usually overcome
by adopting more general non-linear forecast models (De Gooijer and Kumar, 1992). Artificial
neural networks are a commonly used type of such non-linear models (see Sözen et al. (2005), Pao
(2006) and Kurban and Filik (2009), amongst others), and have been widely used for the purpose
of univariate series forecasting. Although it suffers from the criticism of not-so-much underlying
economic foundation, the NARNN model (Chow and Leung (1996) and Markham and Rakes (1998),
amongst others) often provides better forecasting accuracy because it is able to approximate plenty
of functions (Zhang, 2003).

In brief, the NARNN model is a dynamic neural network model which is built on a linear autore-
gressive model with feedbacks on several layers. The model regresses current dependent output
signal on previous output signals, so that the model equation is defined as follows:

yω,t+h−1 = f(yω,t−1 + yω,t−2 + · · ·+ yω,t−p), (15)

where f is a non-linear function, and p is the earliest value of signals considered. Once the model
has completed training and validation, it can be used to forecast in the same fashion:

ŷω,t+h = f̂(yω,t + yω,t−1 + · · ·+ yω,t−p+1), (16)

An example of the architecture of the NARNN model is showed in Figure 1. In our case, we set to
10 the number of neurons in the hidden part, and apply a back-propagation method for training
as in Geem and Roper (2009).

Figure 1: The Architecture of a NARNN model

The source: http://uk.mathworks.com/help/nnet/ref/narnet.html

The lag length considered in NARNN ranges from 1 to 12, so that there are 12 models for each
energy source.

4. Vector Autoregression VAR
The models introduced above are self-forecast models, where the predicted value is mainly based
on the serial correlation of historical data. From the fourth model onward, we forecast the energy
demand processes according to causal relationships. In these models, the energy demand processes
are modelled as a system, such that the predictions for each process would be obtained from the
entire system. The first causal forecast model is the standard VAR. Garćıa-Ascanio and Maté
(2010) used a VAR model to forecast electric power demand in Spain.
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3.1 Forecast Models

A system of yt composed by endogenous variables y1,t, y2,t, . . . , yk,t, where k refers to the demand
for energy from each fuel source such that here k = 5. Thus, the VAR model with lag length p can
be formulated as,

yt+h−1 =
p∑
i=1

Φiyt−i + εt, (17)

where each Φi is a K ×K coefficient matrix, and εt is a K-dimensional vector of errors terms with
mean vector zero and diagonal variance covariance matrix Σ. We estimate each VAR by maximum
likelihood (MLE). Then, we use the in-sample estimation results and iterate forward to obtain the
out-of-sample predictions.

ft+h =
p−1∑
i=0

Φ̂iyt−i, (18)

Compared with univariate forecast models, the advantage of VAR models (same for all VAR-type
of models which will follow) is that they provide predictions not only based on historical fitting
of individual process but also by means of lags of other endogenous variables in the system. Note
that, in our in-sample estimation and model selection, the maximum lag length considered will be
p = 12.

5. Bayesian Vector Autoregression (BVAR)
While it is common to use VARs to obtain forecasts, it has also been argued that VARs estimated by
Bayesian methods would provide better forecast with more parsimonious models because standard
VARs often incur in over-fitting problems (Spencer, 1993). Compared with standard estimation, the
BVAR2 treats model’s parameters as random variables, and applies Bayesian estimation imposing
restrictions on the dynamics of the parameters according to a specific type of prior. Based on this
assumption, the coefficients on longer lagged variables are more likely to be near zeros, resulting a
more parsimonious estimation. Indeed, we still use the model showed in Equation (17), however,
with the prior adopted being the Minnesota Prior (Del Negro and Schorfheide, 2004). In the VAR
system, there are K equations, and each one can be expressed as,

yi,t+h−1 =
p∑
i=1

K∑
j=1

φi,j · yj,t−i + εi,t, (19)

In this case, the prior about coefficients are captured in the prior density function g(φi,j). Then,
using Bayesian theory, the estimators are obtained by the posterior density functions g(φi,j |yi,t).

g(φi,j |yi,t) = g(yi,t|φi,j)g(φi,j)
g(yi,t)

, (20)

and the predictions of yi,t can be obtained from following,

fi,t+h =
p−1∑
i=0

K∑
j=1

φ̂i,j · yj,t−i, (21)

2For an application see Crompton and Wu (2005) who applied BVAR model to predict energy consumption
in China.
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3.1 Forecast Models

where again, the maximum lag length considered will be p = 12.

6. Factor Augmented Vector Autoregression (FAVAR)
Last, we use a factor augmented VAR. The FAVAR model has been widely applied to large data
especially in macroeconomics (Bernanke and Boivin (2003) and Bernanke et al. (2004)). Chudik
and Pesaran (2011) claim that a less parameterised VAR model augmented with factors will not
lose any relevant information and would often produce better forecasts than standard VARs. In
the energy related literature, among others, Baumeister et al. (2016) have adopted VAR, BVAR
and FAVAR models to predict gasoline price in US market.

The FAVAR aim at modelling a system xt with N variables and assume a subset y of xt which
contains M variables, and the dynamics of y are driven by unobservable forces in xt. These
unobservable forces are factors extracted from xt, containing most of the relevant information. The
system can thus be formulated as follows:

xt = Λf · F + Λy · yt + εt, (22)

where Λf is N ×K coefficient matrix for K factors, Λy is a N ×M coefficient matrix, and εt is a
N × 1 vector of error terms.

In this paper, we classify the energy demand processes into two groups, one group is the objective
observed process for a specific source yt, while the other group is made up of the energy processes
obtained by other sources from which one factor is extracted. We denote this groups data as xt.
The FAVAR model can be written in state-space form comprising two equations: the observation
equation and the state equation. In the observation equation, the number K of factors Ft, where
K = 1 in this paper, can be extracted from the variables in xt through principal components.
Thus, the state equation is,

zω,t+h−1 =
p∑
i=1

Φizω,t−i + εω,t+h−1, (23)

where zω,t+h−1 =
[
Fω,t+h−1
yω,t+h−1

]
. Again, Φi is a coefficient matrix, the dimension of which depends on

the number of factors extracted from xt, and if there is only one factor, the coefficient matrix will
be 2× 2. Therefore, the objective process yt can be predicted by one Φi that has been estimated,

ẑω,t+h =
p−1∑
i=0

Φ̂izω,t−i, (24)

where ẑω,t+h =
[
F̂ω,t+h
fω,t+h

]
. For each objective process, the predictions are obtained through the

causal relationship with factors extracted from the remaining processes. In this paper, we extract
one factor from remaining four energy series. For each energy source, the optimal model is selected
by considering lag length k from 1 to 12.
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3.2 IMS and DMS forecast methods

3.2 IMS and DMS forecast methods

For all the models in each class, we construct forecasts of the demand for energy using both
iterated multi-step (IMS) and direct multiple steps (DMS) methods. The IMS method provides h
steps ahead predictions through a one step ahead predictor f1 = ŷt+1 iterated forward h times. In
each iteration, we estimate the Equation 25 below using the training sample, and then forecast one
period ahead for the out-of-sample through Equation 26.

yt+1 = Θ1(Mi)yt + εt+1, i = 1, . . . , 6, (25)

f1 = ŷt+1 = Θ̂1(Mi)yt, (26)

where Mi is the ith model, and Θ1 is a set of parameters in ith model.

The DMS method predicts h steps ahead through forecasting fh = ŷt+h directly. This is achieved
by using the estimated Equation 27 using the training sample, and then using Equation 28 to
predict fh for the out-of-sample.

yt+h = Θh(Mi)yt + εt+h, i = 1, . . . , 6, (27)

fh = ŷt+h = Θ̂h(Mi)yt, (28)

where Θh is a set of parameters in ith model for DMS.

According to Marcellino et al. (2006), the IMS method should provide lower forecast error once the
one-period ahead model is well specified. However, the DMS method is relatively more robust to
misspecification in the forecast model. Thus, in general, DMS has been often preferred to IMS in
empirical studies. As there is no strong evidence to support a clear cut choice between IMS and
DMS, we shall obtain forecasts with both methods and will compare their respective forecasting
ability.

3.3 Model Selection

For each model discussed above, we will consider different parameter settings and lag lengths,
and assume that the best forecasting model exists among those considered here. The optimal
or best model will be chosen in-sample by means of different information criteria including Akaike
Information Criterion (AIC), Beyesian Information Criterion (BIC), Mallows’ Information Criterion
(MIC) (Hansen (2007) and Hansen (2008)) and the Jackknife (JKC), a cross-validation criterion
suggested by Hansen and Racine (2012) and Hansen (2014). Each information criterion is computed
using the in-sample fitted error ε̂t(m) = yt−ŷt(m). Hence, the estimated fitted error variance equals
to σ̂2(m) = 1

n

∑n
i=1 ε̂

2(m), where n is the number of observations in-sample.

The AIC and BIC information criteria reward for lower fitted errors but penalize for higher number
of parameters estimated, so that σ̂2(m) is the estimated error variance of model m, and the number
of parameters in each estimated model is denoted as k(m). The AIC and BIC can be respectively
expressed as:
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3.4 Model Averaging

AIC = n · ln(σ̂2(m)) + 2k(m), (29)

BIC = n · ln(σ̂2(m)) + k(m) · ln(n), (30)

where n is the total number of observations in-sample.

The Mallows’ information criterion uses the estimated mean squared errors,

MIC = (yt − ŷt(m))′(yt − ŷt(m)) + 2 · σ̂2(m) · k(m), (31)

where ŷt(m) is the fitted value of yt from model m and σ̂2(m) and k(m) are defined as above. Last,
we use the Jackknife, a cross-validation criteria. To use this cross-validation method, we obtain a
leave-one-out estimator for each in-sample point for every model, and then obtain a cross-validation
fitted error ε̃t through the following equation.

ẽm,i = yi − ŷ−i,m, (32)

where ŷ−i,m is the leave-one-out one step estimate of yi based on the estimated parameters from
the remaining observations. Then, the expression for the Jackknife (JKC) can be formulated as,

JKC = 1
n
·
n∑
i=1

ε̃2m,i, (33)

Note that, for each of the criterion used, the optimal/best forecasting model will be the one which
in each class/set of models minimizes the information criterion. In case of equal value of the
information criterion for two different models within the same class, the more parsimonious model
will be preferred.

3.4 Model Averaging

In this subsection, we briefly outline the model averaging methods which we shall use to improve
the accuracy of our forecasts. We denote the prediction from ith model as ft(i) for 1 ≤ i ≤ J , and
the average prediction ft is defined as

ft =
J∑
1
wift(i), (34)

where ft(i) is obtained from the forecasting model class/set Mi, and wi is the weight attached
to the individual ft(i) obtained from the J candidate forecasts. At this point, the major issue in
model averaging becomes how to specify the weights wi as different weighting functions are likely
to provide different levels of forecasting accuracy.
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3.4 Model Averaging

3.4.1 Simple Model Averaging (SMA)

The simple model averaging provides an equally weighted average of the predictions of all the best
forecast models in each class, such that the weights in simple model averaging are just wi = 1

J .
The SMA forecast is,

ft =
J∑
i=1

1
J
ft(i), (35)

Note that SMA is known to improve the accuracy of forecasts as long as the model candidates
are well specified. However, once some of the candidates are not well specified, the accuracy of
averaged prediction will significantly decrease.

3.4.2 Granger-Ramanathan Model Averaging (GRMA)

Granger and Ramanathan (1984) proposed a model average weighting based on coefficients of the
regression model. The regression is made of an average forecast ft regressed on the candidate
predictions ft(i) and is formulated as:

ft = β0 +
J∑
i

βift(i) + εt

Granger and Ramanathan (1984) impose three constraints on the coefficients of this regression.
First, the intercept coefficient is equal to zero, β0 = 0; second, the coefficients on each candidate
prediction should be non-negative, βi ≥ 0 for all i; last, the sum of coefficients of the regression
must be equal to one,

∑J
1 βi = 1. Having specified these constraints, they used the estimated

coefficients as the weights for averaging, that is wi = β̂i.

ft =
J∑
i

βift(i), (36)

3.4.3 Bayesian Model Averaging (BMA)

Bayesian model averaging assumes that there always exists at least one well-specified model among
all candidate models and therefore one should give more weight to well or better specified candidates
while less weight is attached to the rest of the models. The probability of candidate models to be
well-specified is giving as a prior, and then the Bayesian posterior probability can be calculated
conditional on real data. These Bayesian posterior probabilities for each candidate model are
the weights for averaging all potential models. As the prior probability that any model is a well
specified model is not known for each candidate model, the weights can be approximated by using
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3.4 Model Averaging

the Bayesian information criteria.

wbm =
exp(−1

2(BICm))∑M
j=1 exp(−1

2BICj)

Thus, the averaged forecast is given by:

ft =
J∑
1
wbift(i), (37)

3.4.4 Other Model Averaging Functions

Anderson and Burnham (2002), proposed to replace BIC in the weighting function with AIC, this
resulting into smoothed AIC (SAIC) weighting function. In this case the weights wam will be:

wam =
exp(−1

2(AICm))∑M
j=1 exp(−1

2AICj)

and the SAIC model averaging (AMA) forecasts are given by:

ft =
J∑
1
wai ft(i), (38)

Similarly, as suggested by Hansen (2007), Hansen (2008) and (Hansen and Racine (2012), Hansen
(2014) we can use Mallows’ information criteria (MIC) or the Jackknife cross-validation criteria
(JKC) to replace the BIC, thus obtaining weights wmm and wJm. such that the two weighting
functions will respectively be,

wmm =
exp(−1

2(MICm))∑M
j=1 exp(−1

2MICj)

with the Mallows’ model averaging (MMA) forecast being,

ft =
J∑
1
wmi ft(i), (39)

and
wjm =

exp(−1
2(JKCm))∑M

j=1 exp(−1
2JKCj)

while the Jackknife model averaging (JMA) forecast is,

ft =
J∑
1
wji ft(i), (40)
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4 Results and Comparison of the Forecasts

In this section, we provide our results and a comparison between forecast of different time horizons
according to the various criteria. Because of the heavy computational burden, we shall consider
static forecasts obtained with both IMS and DMS methods. Our forecast methods can be extended
to a dynamic type by constructing recursive or rolling out-of-sample forecasts iteratively, however,
this would be made at the expense of an even heavier computation burden and it is not done here.

In the following, we report results of, and comparisons between different forecast models, forecast
methods, forecast model selection criteria and eventually model averaging methods. The accuracy
of these predictors is measured by Mean Squared Forecast Error (MSFE hereafter), and model
averaging predictions are statistically tested by using tests provided by Diebold and Mariano (1995).
We predict demand for each energy source with forecast horizons of 30 minutes, 1 hour, 2 hours, 4
hours, 8 hours, 12 hours, 18 hours and 24 hours.

4.1 Comparison based on Forecast Error

For any forecast model i, if ft(i) is the predicted value of objective yt, and the forecast error ε̂t(i)
is expressed as,

ε̂t(i) = yt − ft(i), (41)

Thus, the estimated forecast error variance is,

σ̂2(i) = 1
m

m∑
i=1

ε̂i(i)2, (42)

where m is the number of out-of-sample predicted points. This paper uses the MSFE to measure
the accuracy of predictions.

MSFE(m) = E[yt − ft(m)]2, (43)

Table 2 displays the MSFE of an average between IMS and DMS forecasts of the best model of
each model class. There are several points to note. In terms of the model selection criteria, we
notice that the best/optimal models suggested by the JKC tends to often produce more precise
forecasts in terms of lower forecast error. Comparing different classes of models, NARNN and VAR
appear to forecast better than the others model classes. Within the five energy sources, we can
see that it is easier to obtain accurate predictions of the demand for nuclear energy. This result is
fairly expected as nuclear plants once on-line run flat-out and also confirms the preliminary analysis
above which showed less noise in nuclear energy demand process. On the contrary, CCGT and wind
energy demands are relatively more difficult to predict, and display larger values of the MSFE.

Table 3 reports the MSFE of the different model averaging forecasts. Although the DMS method
reports lower MSFE in 16 out of the 30 cases, it is still hard to conclude whether IMS beats DMS
or the reverse, because each method dominates the other depending on the source of energy for
which demand is forecast. Among the six types of model averaging methods, generally the BMA,
MMA are superior to the others. Lastly but most importantly, from Table 3, we can see that there
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4.2 IMS vs DMS

always exists a model averaging method which gives a lower MSFE than the best/optimal model
from any class as from Table 2.

Insert Table [2] and Table [3] about Here

4.2 IMS vs DMS

In this subsection, we specifically compare the forecasting ability of IMS and DMS. Figure 6 shows
the plots of the MSFEs obtained from the two forecasting methods. Generally, it seems preferable
to use DMS, particularly if using ARMA and FAVAR models to forecast a longer horizon. An
exception is the case of BVAR for which the IMS beats the DMS in generating forecasts of the
demand for energy produced by coal, ccgt, wind and hydro-power.

In more detail, the ARMA model with DMS method produces better forecasts for coal, nuclear
and hydro-power. With regard to CCGT and wind sources, the FAVAR shows better forecasting
ability, but with IMS in one instance and with DMS in another. Also, as a general result, we observe
that the predictions are more accurate in the beginning and at the end of the forecast horizon, as
shown by the MSFE, which is always low in forecasting 30 minutes, 1 hour and 1 day ahead, but
grows to higher levels in the mid-term, indicating that serial correlation or cross-serial correlation
(in multivariate models) is stronger in the short and long-term but weaker in the medium term
(relative to the frequency of the data). Therefore, for empirical purposes, forecasting with DMS is
advised for short and longer terms.

Insert Figure [6] about Here

4.3 The Comparison of Information Criteria

In section 3.3 we outlined four types of information criteria used to selecting the optimal in-sample
forecast model. Here we compare their performance out-of-sample, computing the MSFE of the
up-to-one-day forecasts of the demand for energy produced from the best models of each set as
selected by each information criteria. Figure 7 illustrates he MSFE of the optimal forecast models
in each class as selected by AIC, BIC, MIC and JKC respectively.

In brief, BIC and MIC consistently suggest the same optimal forecast model, while the AIC and JKC
are more likely to indicate similar forecast model. For all energy sources, the MSFE obtained from
the forecasting model suggested by AIC and JKC almost never underperform to the counterpart
suggested by BIC and MIC. Particularly in each sector, the optimal models suggested by these
four information criteria are more or less the same for HW, NARNN, VAR and BVAR models,
and the only exception is the BVAR model for wind-produced energy. In term of ARMA and
FAVAR models, the AIC and JKC select better out-of-sample forecasting model, except for the
short horizon forecasts generated by ARMA model in the coal-produced energy demand series,
and relatively longer horizons by ARMA for hydro-power. Now, since each combination method is
averaging the optimal models from six types of forecasting candidates, the fact that AIC and JKC
are selecting models that give lower MSFE, it is reasonable to expect that using these criteria in
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4.4 Comparison of Model Averaging Methods

weighting function for model averaging will also give more accurate predictions. Below we examine
the issue in more detail.

Insert Figure [7] about Here

4.4 Comparison of Model Averaging Methods

In this sub-section, we compare the forecasting performance of the different model averaging meth-
ods, namely: SMA, GRMA, AMA, BMA, MMA and JMA. Figure 8 displays the MSFEs obtained
out-of-sample for the various model averaging methods. The multi-steps predictions are computed
with both IMS and DMS. Consistent with the results displayed in Table 3 and Figure 6 and already
discussed, the DMS method provides slightly more accurate forecasts than the IMS.

Within the IMS-based forecasts, we find that, overall, SMA and AMA produce more accurate
predictions for nuclear, CCGT and wind for most of the forecast horizons, while MMA is superior
in generating predictions for coal and hydro. In more detail, the AMA, BMA and MMA methods
produce good forecasts albeit none of them clearly dominated the others. Also, the JMA generates
better forecasts for coal but loses efficiency as the forecast horizon approaches the 24 hours; the
BMA method produces better predictive ability for nuclear and CCGT, while MMA is best for
hydro-power sourced energy; the AMA provides better forecasts for the demand of wind-sourced
energy. On another hand, if one used DMS, the AMA, BMA, MMA and JMA show very similar
forecast abilities with slightly differences for the demand produced by nuclear, CCGT and hydro-
power sources. Although the performance of the model averaging methods in forecasting the
demand for energy obtained using coal and hydro-power are not much different regardless of the
weighting functions used, the MMA and AMA produce slightly better predictions for the demand
of energy sourced from coal and wind, respectively.

In more depth, in the case of coal-based energy, the GRMA predictors obtain lower forecast error
in the beginning of the predicted period and at its end, while JMA often predictions are superior in
the middle of the forecast period. For nuclear-sourced energy, the BMA consistently outperform to
other model averaging methods in the accuracy of its prediction. For CCGT, all model averaging
techniques perform more or less the same, and again, BMA is the one that slightly more accurate
than the others. Regarding the demand for wind-sourced energy, the MMA provides the most ac-
curate predictions in forecasting the longer term (one-day ahead), but AMA generally outperforms
the others. Lastly, considering hydro-power produced energy, using IMS, the MMA shows the best
forecasting ability while GRMA performs poorly. However, using DMS, both MMA and GRMA
produce more accurate forecasts compared with rest of the model averaging methods.

Insert Figure [8] about Here

Next, we use the Diebold-Mariano (DM) and the Wilcoxon’s sign-ranked (Sign) tests by (Diebold
and Mariano, 1995) to test the prediction equivalence of AMA, BMA, MMA and JMA (given the
relatively poorer performance of SMA and GRMA). Table 4 displays the pair-wise results of both
tests for IMS and DMS, respectively. Generally, both the DM and the Sign test provide similar
results, expect for a few cases which concern the predictions obtained by IMS. On Table4, for a pair
of ordered forecasts obtained by weight functions x and y, a positive (negative) and statistically
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significant value of the statistic would imply superiority (inferiority) of the predictions obtained
with weighting function y over those obtained if using weighting function x. The results can be
roughly summarized as: AMA and BMA provide statistically equivalent forecasts for all energy
sectors regardless of whether the forecasts are obtained by means of IMS or DMS methods. When
using IMS, the MMA forecasts are, in general, found statistically superior to the AMA/BMA
except for Nuclear Energy where contrasting results are found. Also, JMA-produced forecasts,
although often equivalent to AMA and BMA, are found in a few cases to be even slightly superior
to them. For DMS forecasts, the MMA again outperforms all others methods while the JMA loses
its slight superiority compared to the AMA and BMA forecasts and it is actually outperformed
when producing forecasts for coal, nuclear and hydro generated energy. Finally, for both the IMS
and DMS methods, MMA obtained forecasts are found consistently superior to those given by the
JMA weight function.

Insert Table [4] about Here

5 Forecasting the Demand for Energy in Levels

In this section, we finally obtain forecast of the levels of the energy demand for the five energy
sources on 22 March 2016. Specifically, we re-combine the IMS and DMS predictions obtained
through all the model averaging methods, with the deterministic/periodic terms captured by Equa-
tions 4, 8 and 9, therefore obtaining forecasts for the level of the UK demand for energy produced
by the five sources considered. Figure 9 illustrate the predicted and actual values for coal, nuclear,
CCGT, wind and hydro-power, respectively. Treating the forecasts from the individual forecast
models as bench-marks, the figures compare the predictions obtained from model averaging to that
of the individual forecasting models obtained by means of both IMS and DMS.

Among six bench-mark forecast models, the HWS model is the worst performing one, and the
NARNN is the best and actually shows a performances close to that of model averaging methods.
However, it is important to re-iterate that there always exists a model averaging forecast that can
beat the forecasts obtained from a bench-mark model. Another notable fact is that the predic-
tion become more accurate as the forecast horizon approaches the 24 hours, and also that DMS
outperform IMS in longer-term forecasting.

In more detail, the model averaging predictions for coal, CCGT, wind and hydro-power, remain
relatively accurate after adding the periodic and deterministic components. This is not the case
for the demand for energy nuclear-sourced, where in fact, forecasts of the level is less accurate due
to the inaccuracy in fitting the deterministics.

Using the IMS method, predictions become more and more accurate reaching the 1 day horizon.
For the coal-sourced energy, to predict the shorter-term (30 minutes - 4 hours), the GRMA method
produces the most precise forecasts, while MMA becomes superior in forecasting the longer horizon
(6 - 24 hours). For nuclear energy, MMA and JMA allow us to obtain better predictions than
others. All model averaging methods give similar forecasting of the CCGT-sourced energy. AMA
predictions outperform the other forecasting methods for the the demand of wind-fuelled energy,
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and lastly, in the hydro-power sector, the MMA method again shows best forecasting ability than
other model averaging methods.

Insert Figure [9] about Here

6 Conclusions

In this paper we have produced more accurate short-term forecasts of the demand for energy in
the UK using a forecasting approach based on model averaging of several popular linear or non-
linear, univariate and multivariate forecast models. Specifically, we used an algorithm that once
obtained the forecasts from sets of ARMA, Holt-Winters, Non Linear Autoregressive Neural Net-
works, Vector Autoregressions, Bayesian VAR and Factor Augmented VAR models selects the best
forecasting model from each model-set according to four different information criteria (AIC, BIC,
Mallows’ and Jackknife). The best models as selected by each of the different information criteria
within each model set are then averaged using six different combination weight metrics includ-
ing Simple Model Averaging, Granger-Ramanathan Model Averaging, Bayesian Model Averaging,
Akaike Model Averaging, Mallows Weights and the Jackknife.

Our results confirm the merits of combination forecasting as a superior forecasting strategy. Among
the single forecasting models, NARNN and VAR forecast are superior in terms of lower MSFE whilst
HWS perform worst. Unexpectedly, DMS forecasts outperforms those obtained by IMS in terms of
accuracy. For all energy sources, the MSFE obtained from the forecasting model selected by AIC
and JKC almost never underperform compared to their counterparts suggested by BIC and MIC.
Among the six types of model averaging methods, generally the BMA, MMA are superior to the
others. Lastly but most importantly, there always exists a model averaging method which gives a
lower MSFE than the best/optimal models within each class however selected.

As highlighted above, accurate forecasts are a precious resource for demand response, and/or
load management. With timely and accurate prediction of demand, load management programs
facilitate system load balancing by avoiding peak occurrences. On the other hand, they can also
be crucial for demand response, which has been gaining prominence in recent years as an effective
and inexpensive tool for reducing overall utility peak demand while improving system-wide energy
efficiency. Through the curtailment of electricity consumed by end-users during periods of high
demand or electricity grid instability, demand response technology addresses unexpected variances
in electricity supply and demand levels. When wholesale electricity market prices are high or
when overall grid system reliability is compromised, demand response programs offer incentives to
end-users in order to affect time of use, instantaneous demand level, and/or aggregate electricity
consumption.

Given accurate forecasts with low error such as those we obtained using model averaging, it is
theoretically possible for network management to, for example, temporarily curtail a portion of the
network load in some areas of a city whenever approaching a predetermined peak in demand in
others areas. It is thus necessary for the network management to determine an acceptable peak
demand load maximum for the various areas. The real-time energy monitoring system provided
by smart metering together with the model averaging forecast signals an upcoming breach of the
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predetermined peak demand load maximum. Thus, curtailment policy shreds unnecessary loads
during these events in order to control overall peak loading and prevent an unwanted peak demand
occurrence. Clearly, accurate model averaging forecasts would be particularly useful for efficient and
cost-effective peak demand energy management across city municipalities and other large energy
end-users. In this case there would be added benefit not only to the electric utility provider but
also to the environment through efficient and reduced power generation capacity. Such reduction
and efficient usage of power generation would undoubtedly contribute to the energy sustainability
of local municipalities and their communities.
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A Appendix: Prediction Equivalent Tests

Diebold and Mariano (1995) proposed statistical tests to compare the forecasting errors from pair-
wise models. In the present paper, we introduce two types of tests: Diebold and Mariano asymptotic
test and Wilcoxon’s signed-rank test. These two tests are aiming to distinguish the null that

H0 : E[g(ei,t)] = E[g(ej,t)]

versus,
H1 : E[g(ei,t)] 6= E[g(ej,t)]

where g(ei,t) is a forecasting loss function on model i. Also, define that the loss differential series
dt ≡ [g(ei,t)− g(ej,t)] for model i and j. Thus, hypothesis can also be understood as E[dt] = 0.

The first test used is Diebold and Mariano asymptotic test, which is under mild assumption that
dt is a covariance stationary and short memory series. Then, we have,

S1 = d̄
√2πf̂d(0)

T

a∼ N(0, 1) (44)

where d̄ = 1
T

∑T
t=1[g(ei,t)− g(ej,t)], and the variance term,

2πf̂d(0) =
(T−1)∑

τ=−(T−1)
I( τ

S(T ))γ̂d(τ)

where I( τ
S(T )) is the lag window and S(T ) is the truncation lag. Noted that I( τ

S(T )) = 0 for
|τ | > h− 1 as the h-step-ahead forecast errors are h− 1 dependent at most.

γ̂d(τ) = 1
T

r∑
t=|τ |+1

(dt − d̄)(dt−|τ | − d̄)

As the Diebold and Mariano Test is a two-side test, it not only tests the equivalence, but also pro-
vides superior and inferior comparisons. A case that the statistic S1 falls outside of the right(left)-
hand confidence interval implies the forecasting error ei,t (ej,t) is greater than ej,t (ei,t) with a
measurable function g(·), thus, the predictor fi,t (fj,t) is less accurate than fj,t (fi,t).

The second test introduced is Wilcoxon’s signed-rank test. The test statistics follows a standard
normal distribution under the assumption that loss differential series dt is independent identically
distributed (i.i.d). Since we compare predictors for different forecasting horizons, the dt is reason-
able to be i.i.d.

S2 =
S1a − T (T+1)

4
√T (T+1)(2T+1)
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a∼ N(0, 1) (45)

where

S2a =
T∑
t=1

I+(dt)rank(|dt|)
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where I+(dt) = 1 if dt > 0 and it equals to 0 otherwise. The rank(·) is the Wilcoxon’s rank operator.
Wilcoxon’s signed-rank test can also compare the superiority-inferiority through the sign.

B Tables

Table 2: MSFE of Individual Models

This table reports the mean square forecast error of the best individual forecast models according to
different information criteria. The MSFE averages those of IMS and DMS predictions from all forecast

horizons.
ARMA HW NARNN VAR BVAR FAVAR

Coal

AIC 0.0428 1.3233 0.0284 0.0304 0.0438 0.0274
BIC 0.0428 1.3233 0.0284 0.0305 0.0436 0.0334
MIC 0.0428 1.3706 0.0284 0.0327 0.0429 0.0397
JKC 0.0289 1.3233 0.0295 0.0304 0.0438 0.0274

Nuclear

AIC 0.0239 0.0005 0.0005 0.0004 0.0013 0.0007
BIC 0.0239 0.0005 0.0004 0.0004 0.0012 0.0016
MIC 0.0239 0.0005 0.0005 0.0004 0.0012 0.0007
JKC 0.0004 0.0005 0.0005 0.0004 0.0013 0.0007

CCGT

AIC 0.1278 0.1527 0.0971 0.0935 0.1378 0.1017
BIC 0.1278 0.1527 0.0963 0.0954 0.1404 0.1013
MIC 0.1278 0.1565 0.1032 0.0955 0.1480 0.0962
JKC 0.1083 0.1527 0.0971 0.0935 0.1378 0.1017

Wind

AIC 0.1564 0.1201 0.0442 0.0909 0.1254 0.0835
BIC 0.1742 0.1201 0.0545 0.0866 0.1384 0.4522
MIC 0.1564 0.0843 0.0442 0.0860 0.1898 0.0835
JKC 0.1097 0.1201 0.0442 0.0909 0.1254 0.0835

Hydro-
Power

AIC 0.0508 0.7546 0.0591 0.0574 0.0483 0.0576
BIC 0.0508 0.7546 0.0571 0.0553 0.0490 0.0586
MIC 0.0487 0.6072 0.0591 0.0547 0.0523 0.0588
JKC 0.1790 0.7546 0.0591 0.0574 0.0573 0.0576
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Table 3: MSFE of Model Averaging Methods

This table documents the mean square forecast error of the model average methods. The MSFE averages
predictors from all forecast horizons.

SMA GRMA AMA BMA MMA JMA

Coal IMS 0.0440 0.0440 0.0297 0.0297 0.0231 0.0340
DMS 0.0496 0.0330 0.0268 0.0268 0.0255 0.0430

Nuclear IMS 0.0013 0.00022 0.0005 0.0004 0.00022 0.0007
DMS 0.00038 0.00063 0.00043 0.00047 0.00036 0.00036

CCGT IMS 0.1004 0.1275 0.0932 0.0927 0.0988 0.0996
DMS 0.1113 0.1191 0.1017 0.1004 0.1175 0.1086

Wind IMS 0.0805 0.2896 0.0429 0.0457 0.0821 0.0679
DMS 0.0508 0.1366 0.0390 0.0423 0.0536 0.0584

Hydro-
Power

IMS 0.0606 0.0958 0.0500 0.0474 0.0449 0.0543
DMS 0.0635 0.0426 0.0508 0.0508 0.0483 0.0556

Table 4: Prediction Equivalent Tests on Model Average Predictors

This table reports the prediction equivalence results for pair-wise model averaging methods which are using
the IMS and DMS. DM test refers to the Diebold and Mariano test, and Sign test refers to the Wilcoxon’s

signed-rank test. Both tests use the critical values of standard normal distributions.
IMS

Coal Nuclear CCGT Wind Hydro
DM test Sign test DM test Sign test DM test Sign test DM test Sign test DM test Sign test

AMA vs BMA -0.78(0.42) -0.42(0.67) -0.83(0.34) -1.40(0.18) 1.42(0.16) 2.10(0.04) 0.76(0.42) 1.52(0.14) -0.93(0.35) 1.12(0.26)
AMA vs MMA 3.62(0.00) 2.52(0.01) -0.48(0.63) 1.68(0.09) 1.35(0.18) 2.10(0.04) 1.56(0.12) 2.10(0.04) 1.93(0.05) 2.10(0.04)
AMA vs JMA -1.65(0.10) 1.12(0.26) 1.74(0.08) 2.52(0.01) -0.33(0.74) 1.68(0.09) 0.50(0.62) 2.10(0.04) -0.97(0.33) 1.12(0.26)
BMA vs MMA 3.63(0.00) 2.52(0.01) -0.27(0.78) 2.38(0.02) -0.56(0.58) 1.68(0.09) -1.21(0.23) 1.12(0.26) 5.36(0.00) 2.52(0.01)
BMA vs JMA -1.65(0.10) 1.12(0.26) 2.76(0.01) 2.52(0.01) -1.00(0.32) 1.12(0.26) -1.89(0.06) 0.42(0.67) -0.91(0.36) 1.12(0.26)
MMA vs JMA -2.77(0.01) -2.52(0.01) 0.71(0.48) 1.12(0.26) -1.91(0.06) -0.42(0.68) -1.35(0.18) 0.42(0.67) -1.20(0.23) 1.12(0.26)

DMS
Coal Nuclear CCGT Wind Hydro

AMA vs BMA -0.38(0.70) 2.10(0.04) 0.59(0.55) 0.42(0.67) -0.59(0.55) 0.42(0.67) 1.57(0.12) 2.10(0.04) -0.53(0.59) 1.12(0.26)
AMA vs MMA 6.12(0.00) 2.52(0.01) -2.22(0.03) -0.42(0.67) 2.54(0.01) 2.10(0.04) 2.31(0.02) 2.38(0.02) 0.91(0.36) 2.10(0.04)
AMA vs JMA -2.01(0.04) -0.42(0.67) -2.15(0.03) -1.40(0.18) -0.74(0.46) 1.12(0.26) 2.94(0.00) 2.52(0.01) -2.33(0.02) -0.42(0.67)
BMA vs MMA 6.13(0.00) 2.52(0.01) -2.20(0.03) 0.42(0.67) 2.57(0.01) 2.10(0.04) 1.99(0.05) 2.38(0.02) 1.84(0.07) 2.38(0.02)
BMA vs JMA -2.01(0.04) -0.42(0.67) -2.07(0.04) -1.40(0.18) -0.57(0.57) 1.68(0.09) 2.83(0.00) 2.38(0.02) -2.35(0.02) -0.42(0.67)
MMA vs JMA -4.03(0.00) -2.52(0.01) -0.91(0.36) 1.12(0.26) -3.46(0.00) -1.40(0.18) -0.88(0.38) 1.12(0.26) -2.79(0.01) -0.42(0.67)
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C Figures

Figure 2: The levels of energy demand in UK

This figure plots the level of demand for each energy source.
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Figure 3: The seasonal component in the demand for energy

This figure plots deterministic seasonal trend fitted by Chebyshev polynomials with order 5 for each energy
source.

Figure 4: The day of the week component in the demand for energy

This figure plots deterministic weekly trend fitted by Weron (2007)’s moving average method with cyclical
length equals to 336. Thus, the weekly trend contains 336 observations, which indicates the cyclical patterns
for one week.
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Figure 5: The Stochastic Component of Demand for Energy

This figure plots stochastic term after remove deterministic non-linear patterns for each energy source.

Figure 6: MSFE of IMS and DMS

The figure compares IMS and DMS forecasts precision for six classes of forecast models. The y axis is the
value of MSFE, and the x axis is the forward prediction steps.

(a) IMS (b) DMS
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Figure 7: Comparison among Information Criteria

The figure compares model selection information criteria for six classes of forecast models. The y axis is the
value of MSFE, and the x axis is the forward prediction steps.

(a) Coal (b) Nuclear

(c) CCGT (d) Wind

(e) Hydro-power
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Figure 8: Comparison among Model Averaging Methods

The figure compares six types of forecast model averaging methods within six types of forecast models. The
y axis is the value of MSFE, and the x axis is the forward prediction steps.

(a) Coal (b) Nuclear

(c) CCGT (d) Wind

(e) Hydro-power
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Figure 9: The Model Averaging vs Benchmark Models

The figure reports six types of model averaging forecasts from six sets of forecast models. The y axis is the
value, and the x axis is the forward prediction steps. We do not plot the results of HW model considering
its poor performances.

(a) Coal (b) Nuclear

(c) CCGT (d) Wind

(e) Hydro-Power
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