
CHANGE POINT DETECTION IN THE CONDITIONAL
CORRELATION STRUCTURE OF MULTIVARIATE

VOLATILITY MODELS

MARCO BARASSI, LAJOS HORVÁTH, AND YUQIAN ZHAO

Abstract. We propose semi-parametric CUSUM tests to detect a change

point in the correlation structures of non–linear multivariate models with dy-

namically evolving volatilities. The asymptotic distributions of the proposed

statistics are derived under mild conditions. We discuss the applicability of

our method to the most often used models, including constant conditional

correlation (CCC), dynamic conditional correlation (DCC), BEKK, corrected

DCC and factor models. Our simulations show that, our tests have good

size and power properties. Also, even though the near–unit root property

distorts the size and power of tests, de–volatizing the data by means of appro-

priate multivariate volatility models can correct such distortions. We apply

the semi–parametric CUSUM tests in the attempt to date the occurrence of

financial contagion from the U.S. to emerging markets worldwide during the

great recession.
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1. Introduction

Multivariate models are widely used in financial applications. The development of

technology and the increased computational ability, together with the availability

of data at higher frequencies, have made more feasible modeling and estimating
1
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systems of larger dimensions. The second moment dynamics of multivariate pro-

cesses play a crucial role in the understanding of the relationship between eco-

nomic and especially financial observations. Hence the literature on multivariate

volatilities, especially on GARCH-type models has become rich. The BEKK

model (Engle and Kroner, 1995), and generalizations of the constant conditional

correlation–CCC model of Bollerslev (1990), including the dynamic conditional

correlation–DCC model (Engle, 2002), and their extensions (cf. Cappiello et al.,

2006; Aielli, 2013), are often used in econometrics. For reviews refer to Bauwens

et al. (2006), Engle (2009), Silvennoinen and Teräsvirta (2009) and Francq and

Zakoian (2010).

However, all these popular models, like every empirical model in econometrics,

must account for changes in their parameters which might arise as a result of sud-

den shocks occurring in the economy, such as, market crashes, financial crises or

intervention of policy markers. As a result, both parametric and non–parametric

tests for change point detection have been developed to test the stability of the

mean of independent observations and their asymptotic distributions have been

derived (cf. Csörgő and Horváth, 1997). Aue and Horváth (2013) and Horváth

and Rice (2014) reviewed several methods on how to derive asymptotic proper-

ties of popular methods when dependence between the observations cannot be

neglected and the data structure is high dimensional. From the statistical point

of view, likelihood–based parametric tests have been widely used due to their

optimality properties. Nonetheless, non-parametric, especially CUSUM–based

approaches have become popular since they are easy to apply and usually robust

to model specifications.



CHANGE POINT DETECTION IN TIME–VARYING CORRELATION STRUCTURE 3

Indeed, non–parametric methods have been developed in the literature and found

their natural application to financial time series. Inclan and Tiao (1994) made the

first attempt on change point detection in the variance of independent observa-

tions using the cumulative sum of the squares of the residuals. De Pooter and Van

Dijk (2004) used a CUSUM test to detect a permanent change in the variance of a

heteroscedastic process. Lee et al. (2003) also used the CUSUM statistics to test

for changes in the variances of non-stationary AR(q) sequences. In the context of

financial data, second moments are usually modeled by ARCH or GARCH–type

models. Kokoszka and Leipus (2000) and Ling (2007) examined the behavior of

change point tests in processes with dependent volatility. Their findings showed

that CUSUM tests are valid when applied to short memory ARCH/GARCH

model making feasible to detect changes within certain types of ARCH models in

financial data (cf. also Andreou and Ghysels, 2002; Fryzlewicz and Rao, 2011).

Andreou and Ghysels (2002) applied the test of Kokoszka and Leipus (2000)

to detect multiple changes in the volatility of high frequency stock and foreign

exchange data, where the conditional variance is captured by a GARCH model.

Change points detection in the second moment is not limited to univariate cases,

but it can be extended to the covariance and correlation structure of multivari-

ate models. For an example of parametric likelihood ratio type tests applied to

a context similar to ours, see Qu and Perron (2007). Early studies on change

points detection in the covariance structure were focused on using model selec-

tion criteria and standard stability tests on the parameters of GARCH models.

For example, Lavielle and Teyssiere (2006) proposed a penalized contrast func-

tion to detect simultaneous multiple changes in covariance structures. Andreou
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and Ghysels (2003) modeled multivariate data by DCC model and then detected

parameter changes through the test of Bai and Perron (1998). More recently,

Aue et al. (2009), constructed CUSUM statistics for detecting changes in the

covariance structure of multivariate stationary sequences, e.g. CCC sequences,

and derived their asymptotics. Their tests were designed to examine the stabil-

ity of cross-volatilities, however, studying just the pure correlation relationships

sometimes is an issue to assets or other financial variables. To this end, Wied

et al. (2012) extended the work of Aue et al. (2009) to study the stability of the

correlation matrix.

The present paper aims to contribute to the literature by proposing semi–parametric

tests for the stability of the conditional correlations in multivariate GARCH mod-

els. Compared with the existing works, we show that the asymptotics of non-

parametric CUSUM tests in Aue et al. (2009) and Wied et al. (2012) are still valid

in multivariate GARCH models with dynamically evolving conditional correla-

tions, such as the BEKK (Engle and Kroner, 1995) and corrected DCC (Aielli,

2013) processes, and that therefore, the tests can be applied to detect correlation

change–points in the pervasive framework often used in financial econometrics.

Our Monte Carlo simulations show that the proposed semi–parametric tests are

reasonably sized and display good power even in relatively small samples. We also

apply the proposed test to detect the occurrence of financial contagion (Forbes

and Rigobon, 2002), from the U.S. to emerging markets worldwide. Specifically,

using data on Latin American, Central East European and East Asian stock mar-

kets, we find evidence of contagion from U.S. to these three regions during the
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Great Recession. However, the transmission from U.S. to the East Asian markets

is not as strong as that found towards the two other regions.

This paper is structured as follows. Section 2 introduces the semi–parametric

CUSUM tests and their properties. Section 3 provides examples of models for

which the assumptions of our theoretical framework are satisfied. In Section 4, we

assess the finite sample performances of the proposed tests. Section 5 provides

an empirical application in the context of tests for global financial contagion,

and some concluding remarks are offered in Section 6. More discussions on the

verification of regularity conditions are documented in the online supplementary

material. Further examples of the models and Monte Carlo simulations are pro-

vided in the Online Supplement.

2. Test for the stability of time–varying correlation structures

In this section, we modify the test of Aue et al. (2009) and extend it to the

cases where the correlation structure of observations evolves according to pop-

ular specifications of multivariate GARCH models. To detect changes in the

correlation structure, this paper uses de–volatilized data to remove the influ-

ence from volatilities. Let y1,y2, . . . ,yT denote the observations, and write

yt = (yt(1), yt(2), . . . , yt(d))>. The conditional variance of yt(j) given the past is

denoted by τ 2
t (j), i.e. τ 2

t (j) = E(y2
t (j)|Ft−1), where the σ–algebra Ft−1 is gener-

ated by {ys, s ≤ t− 1}. The de–volatilized observations are denoted by

y∗t = (y∗t (1), y∗t (2), . . . , y∗t (d))> with y∗t (j) =
yt(j)

τt(j)
, 1 ≤ t ≤ T, 1 ≤ j ≤ d.
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Our paper follows the methodology of the most often used multivariate volatility

models

yt = Σ
1/2
t et,(2.1)

where the following conditions hold:

Assumption 2.1. {et,−∞ < t <∞} are independent and identically distributed

random vectors in Rd with Eet = 0 and Eete
>
t = Id, where Id is the d×d identity

matrix,

Assumption 2.2. Σt ∈ Ft−1 and {Σt,−∞ < t < ∞} is a stationary and

ergodic sequence.

Hence the conditional covariance matrix of yt with respect to its past is E(yty
>
t |Ft−1) =

Σt. To avoid degenerate cases we assume that

Assumption 2.3. There exists a positive definite lower bound matrix Σ0 such

that Σt −Σ0 is non–negative definite for all t.

If Σt = {σt(k, j), 1 ≤ k, j ≤ d}, then τt(j) = σ
1/2
t (j, j). It follows from Assump-

tion 2.3 that there is a positive constant τ0 such that τt(j) ≥ τ0 for all t and

1 ≤ j ≤ d. It is an immediate consequence of Assumptions 2.1 and 2.2 that yt

is a stationary and ergodic sequence. The next condition is on the dependence

structure of the observations. Let ‖ · ‖ denote the Euclidean norm of vectors and

matrices.

Assumption 2.4. E‖yt‖r with some r > 4 and {yt,−∞ < t <∞} is β–mixing

with rate t−δ−r/(r−2) with some δ > 0.
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The mixing condition is very mild since in the examples we discuss in this paper,

the rate of mixing is exponential. We note that Assumption 2.4 can be replaced

with the conditions that E‖et‖r <∞, E‖Σt‖r/2 <∞ and {Σt,−∞ < t <∞} is

β–mixing.

Let ρt(i, j) = Ey∗t (i)y
∗
t (j), 1 ≤ t ≤ T, 1 ≤ i, j ≤ d be the covariance of the de–

volatized observations y∗t (i) and y∗t (j). The objective of this paper is to test the

null hypothesis that

H0 : ρ1(i, j) = ρ2(i, j) = . . . = ρT (i, j) for all 1 ≤ i, j ≤ d

against the alternative

HA : there are 1 < t∗ < T and 1 ≤ i∗, j∗ ≤ d such that

ρ1(i∗, j∗) = ρ2(i∗, j∗) = . . . = ρt∗(i∗, j∗) 6= ρt∗+1(i∗, j∗) = . . . = ρT (i∗, j∗).

Under the null hypothesis the covariance matrix of the vector (y∗t (1), y∗t (2), . . . , y∗t (d))>

does not depend on the time t while under the alternative at least one of the el-

ements of the covariance matrix changes at an unknown time t∗.

Let vech be the operator which stacks the columns of a symmetric matrix starting

with the diagonals into a vector. Our procedure is based on two functionals of

the CUSUM of the vectors rt = vech (y∗t (i)y
∗
t (j), 1 ≤ i, j ≤ d) , r0 = 0. Define the

partial sum process

s(t) =
t∑

s=1

rs, and s(0) = 0.
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Assuming that H0 holds, i.e. the data are stationary we define the long run

covariance matrix

D =
∞∑

s=−∞

Er0r
>
s .

The normalization in our procedures requires

Assumption 2.5. D is a nonsingular matrix.

Following Aue et al. (2009) and Wied et al. (2012) we define two statistics

M
(1)
T =

1

T
max

1≤t≤T

(
s(t)− t

T
s(T )

)>
D−1

(
s(t)− t

T
s(T )

)
and

M
(2)
T =

1

T 2

T∑
t=1

(
s(t)− t

T
s(T )

)>
D−1

(
s(t)− t

T
s(T )

)
.

Theorem 2.1. If H0 and Assumptions 2.1–2.5 hold, then

(2.2) M
(1)
T

D→ M (1) and M
(2)
T

D→ M (2),

where

M (1) = sup
0≤u≤1

d̄∑
i=1

B2
i (u) and M (2) =

d̄∑
i=1

∫ 1

0

B2
i (u)du with d̄ = d(d+ 1)/2,

and B1, B2, . . . , Bd̄ denote independent Brownian bridges.

The proof is given in Appendix A. The limiting random variables M (1) and M (2)

already appeared in Aue et al. (2009), where selected critical values and approxi-

mations for moderate and large values of d̄ can also be found. The applicability of

Theorem 2.1 requires the estimation of D which will be discussed before Theorem

2.2.
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The conditional covariance matrices Σt can be written as functionals of the ran-

dom vectors ys, s ≤ t−1. However, since we can observe only y1,y2, . . . ,yT , first

we replace τt(i) with τ̄t(i), where τ̄t(i) is a function of y1,y2, . . . ,yt−1 only. In

parametric models, τt(i) as well as τ̄t(i) depend on unknown parameters which

will be denoted by θ ∈ Rp. We require that τ̄t(i;θ) and τt(i;θ) are close, if t

is large. This requirement is standard in the estimation of GARCH and similar

volatility processes (cf. Francq and Zakoian, 2010):

Assumption 2.6. There is a ball Θ0 ⊂ Rp with center θ0 and a sequence a(t)

satisfying t · a(t)→ 0 (t→∞) such that max1≤i≤d supθ∈Θ0
|τt(i;θ)− τ̄t(i;θ)| =

O(a(t)) a.s. as t→∞.

Assumption 2.6 means that the difference between the stationary τt(i;θ) and

the nonstationary τ̄t(i;θ) is small, i.e. there is a negligible effect that either the

estimation is based on information y1,y2, . . . ,yt−1 or {ys, s ≤ t − 1} when t is

large. We estimate θ0 with θ̂T which is consistent with rate T−1/2:

Assumption 2.7. ‖θ̂T − θ0‖ = OP (T−1/2), where θ0 denotes the value of the

parameter under H0.

The random functions τt(i) = τt(i;θ), 1 ≤ i ≤ p, are smooth functions of θ in a

neighbourhood of θ0:

Assumption 2.8. There is a ball Θ0 ⊂ Rp with center θ0 such that

∥∥τt(i;θ)− τt(i;θ0)− g>t (i)(θ − θ0)
∥∥ ≤ ḡt ‖θ − θ0‖2
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for all θ ∈ Θ0, where {gt(i), 1 ≤ i ≤ p, ḡt,−∞ < t < ∞} is a stationary and

ergodic sequence with E‖g0(i)‖2 <∞ and E|ḡ0|2 <∞.

The quasi maximum likelihood method (QMLE hereafter) is the most often used

technique to estimate the parameters of a multivariate GARCH model. In the

examples discussed in this paper, the QMLE satisfies Assumptions 2.6–2.8. Now

the de–volatized variables

ŷt(i) =
yt(i)

τ̄t(i; θ̂T )

can be computed from the sample. Let r̂s = vech(ŷs(i)ŷs(j), 1 ≤ i, j ≤ d).

The long run covariance matrix D is estimated from the sample by D̂T which

satisfies

Assumption 2.9. ‖D̂T −D‖ = oP (1).

We propose the kernel estimators

D̂T =
T∑

`=−T

K

(
`

h

)
γ̂`,

where

γ̂` =



1

T

T−∑̀
t=1

(r̂t − r̄T )(r̂t+` − r̄T )>, if 0 ≤ ` < T

1

T

T∑
t=−`+1

(r̂t − r̄T )(r̂t+` − r̄T )>, if − T < ` < 0.

where

r̄T =
1

T

T∑
s=1

r̂s.

There are several choices for the kernel K, including the Bartlett, truncated,

Parzen, Tukey–Hanning and quadratic spectral kernels (cf. Andrews, 1991 for a
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review of the properties of kernel functions). The window (smoothing parameter)

satisfies h = h(T ), h/T →∞ and h/T → 0. Following Wu and Zaffaroni (2018),

Assumption 2.9 can be established.

Similarly to M
(1)
T and M

(2)
T we define

M̂
(1)
T =

1

T
max

1≤t≤T

(
ŝ(t)− t

T
ŝ(T )

)>
D̂−1
T

(
ŝ(t)− t

T
ŝ(T )

)

and

M̂
(2)
T =

1

T 2

T∑
t=1

(
ŝ(t)− t

T
ŝ(T )

)>
D̂−1
T

(
ŝ(t)− t

T
ŝ(T )

)
,

where

ŝ(t) =
t∑

s=1

r̂s.

Theorem 2.2. If H0 and Assumptions 2.1–2.9 hold, then

(2.3) M̂
(1)
T

D→ M (1) and M̂
(2)
T

D→ M (2),

where M (1) and M (2) are defined in Theorem 2.1.

The proof is given in Appendix A. It follows from (2.1) and Assumptions 2.1 and

2.2 that Eyt = 0. If the mean of the observations is not 0, i.e. yt = µ + Σ
1/2
t et,

the results in Theorems 2.1 and 2.2 remained valid when µ is removed, i.e. the

analysis is based on yt−ŷT with ŷT =
∑T

t=1 yt/T . It has been observed for a long

time in the literature that demeaning does not change the asymptotic distribution

of residual based tests (cf., for example, Kulperger and Yu, 2005 and Demetrescu

and Wied, 2016 for de–meaning in time series). Besides, if the conditional mean

is introduced and which is removed by suitable estimators, this will change the
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asymptotic distribution and the test statistic will depend on the values of some

unknown parameters.

3. Examples of time dependent conditional volatilities

Here we briefly describe how our test is valid when applied to two typical ex-

amples of multivariate GARCH models, as they are of interest for practitioners.

More examples with other parameterizations such as the CCC, DCC and Factor-

GARCH are discussed in the online supplement.

Example 3.1. (BEKK model) Baba, Engle, Kraft and Kroner (cf. Engle and

Kroner, 1995) introduced the model where the conditional covariance matrix

satisfies the recursion

Σt = C +

q∑
j=1

Ajyt−j(Ajyt−j)
> +

p∑
k=1

BkΣt−kB
>
k ,(3.1)

where C, Aj, 1 ≤ j ≤ q, and Bk, 1 ≤ k ≤ p, are d × d matrices, and C

is positive definite. The parameters of the BEKK sequences can be estimated

by the QMLE and the variance targeting QMLE (cf. Comte and Lieberman,

2003, Hafner and Preminger, 2009, Pedersen and Rahbek, 2014 and Francq et

al., 2016). In the Online Supplement we discuss the BEKK models and how the

QML type estimators satisfy the conditions of Theorem 2.2. For further details

on the BEKK model, we refer to Francq and Zakoian (2010).

Example 3.2. (Corrected dynamic conditional correlation) Following Aielli (2013)

we introduce the corrected DCC (cDCC) model:

(3.2) Σt = DtRtDt,
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where Dt is a diagonal matrix, Dt = diag(τt(1), τt(2), . . . , τt(d)). It is assumed

that yt(i) is modeled as a univariate GARCH process, τ 2
t (i) = hi(ζi, yt−1(i), yt−2(i), . . .),

i = 1, 2, . . . , d, where hi is a known function and ζi, 1 ≤ i ≤ d are unknown pa-

rameters. The conditional correlation of yt satisfies

(3.3) Rt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2,

and

Qt = θ1C+θ2[(diag(Qt−1))1/2y∗t−1(y∗t−1)>(diag(Qt−1))1/2] + θ3Qt−1,(3.4)

where C is a positive definite matrix, θ1 > 0, θi ≥ 0, i = 2, 3 satisfy θ1+θ2+θ3 = 1.

The parameters of the process are ζ1, . . . , ζd, θ2, θ3 and C. In principle, the

QMLE method could be used, but due to the large number of parameters it

is infeasible. To overcome the problem, Aielli (2013) suggested a three–step

procedure. Following Aielli (2013), we show in the Online Supplement that the

conditions of Theorem 2.2 hold. Since there are several univariate asymmetric

GARCH models (cf. Francq and Zakoian, 2010), the cDCC model accounts for

possible asymmetry of the returns.

4. The Monte Carlo simulations

To assess the performance of the statistics M̂
(1)
T and M̂

(2)
T under the conditions

of Examples 3.1 and 3.2, we conduct a Monte Carlo simulation to study the

rejection rates under the null and alternative hypotheses in finite samples. We

only report our findings for M̂
(2)
T since the results for M̂

(1)
T are essentially the

same. We first consider bivariate observations yt = (yt(1), yt(2))>. In the data
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generating process (DGP) et is a bivariate standard normal vector and Σ
1/2
t of

(2.1) is in Cholesky form. For each model, we set the initial value Σ0 to be the

2 × 2 identity matrix and simple iterations give Σt for the specified parameter

values. The Bartlett kernel KB(x) = (1 − |x|)I {|x| ≤ 1} and the Newey–West

optimal window (smoothing parameter) are used in the definition of D̂T . The

observations are first demeaned, i.e. the sample mean is removed from the ob-

servations. Assuming that a change occurred, we estimate the time of change

with t̂T = argmax {ŝ(t)− (t/T )ŝ(T ), 1 ≤ t ≤ T}. In our simulations the time of

change is t∗ = T/2. In each experiment, we set T = 300 for a small sample,

roughly the number of trading days in 14 months, and T = 1000 for a large

sample, trading days in four years. Each simulation is replicated 5000 times.

The warming up parameter is 0.2, so the simulation will burn 200 observations

if sample size is 1000.

We generate bivariate full–BEKK sequences of Example 3.1 (p = q = 1) with

coefficient matrices

C =

1 δ

δ 1

 A1 =

a11 a12

a21 a22

 , B1 =

b11 b12

b21 b22

 .

Keeping financial applications in mind, we choose a11 = a22 = a = 0.1 or 0.2

standing for relatively lower or higher ARCH effect, respectively. Coefficients

b11 = b22 = b = 0.8 or 0.9 for relatively lower or higher persistence. We always

set a12 = a21 = b12 = b21 = 0.001.

We also simulate bivariate cDCC sequences of Example 3.2, where C is the same

as above. We set θ2 = 0.005 or 0.01 (relatively lower and higher ARCH effect in



CHANGE POINT DETECTION IN TIME–VARYING CORRELATION STRUCTURE 15

quasi conditional correlation process), θ3 = 0.9 or 0.95 (relatively low and high

persistence). The variances follow univariate GJR(1,1,1) with intercept 0.01,

ARCH and GARCH coefficients 0.01 and 0.94, and the coefficient for the asym-

metric term 0.01, respectively. The model is estimated by the 3–step estimation

procedure (cf. Aielli, 2013).

We compute the empirical rejection rates for the BEKK and cDCC when δ of C

changes from 0 to δ = 0.2, 0.4, 0.6 and 0.8 at t∗ = T/2 (δ = 0 corresponds to the

empirical rejection under the null hypothesis). Figure 4.1 shows the empirical

rejections for M̂
(2)
T under Examples 3.1 and 3.2 for both small and large samples.

Similar results can be obtained if δ is negative. Empirical and asymptotic critical

values are given in the online supplement. Both tests are well sized under the

null hypothesis. The powers are close to 1 when δ = 0.2 in large samples and

δ = 0.4 in small samples. We also note that high ARCH and persistence show

limited impact on the empirical size and power of our tests. Table 4.1 summarizes

the results for the estimation of t∗. The results show that along with the change

magnitude increasing, the standard deviations or the differences between two

quantiles of the change point estimators are decreasing, thereby producing more

accurate estimators.
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Figure 4.1. Graphs of the power functions of M̂
(2)
T in the BEKK

(left panel) and cDCC (right panel) models in case of d = 2, T =

1000 (∗’s) and T = 300 (lines) at 95% significance level
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Table 4.1. Empirical performance of t∗T , the estimator for t∗ =

T/2, when d = 2

BEKK(a = 0.2&b = 0.9) cDCC (θ2 = 0.01&θ3 = 0.95)

T=300 T=1000 T=300 T=1000

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Median 0.50 0.50 0.49 0.50 0.50 0.50 0.50 0.50 0.51 0.49 0.49 0.49 0.50 0.50 0.50 0.50

Quantile 0.1 0.31 0.39 0.44 0.46 0.38 0.46 0.48 0.49 0.31 0.38 0.43 0.46 0.37 0.45 0.48 0.49

Quantile 0.9 0.71 0.58 0.53 0.50 0.60 0.52 0.51 0.50 0.72 0.61 0.54 0.51 0.62 0.53 0.51 0.50
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Figure 4.2. Graphs of the power functions of M̂
(2)
T in the BEKK

(left panel) and cDCC (right panel) models in case of d = 9, T =

1000 (∗’s) and T = 300 (lines) at 95% significance level
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Next, in order to assess the validity of our tests in a higher dimensional envi-

ronment, we simulate data with dimension d = 9 in concordance with the data

set used in the application section. With regard to the BEKK model, we set

coefficient matrices A1 and B1 with elements a11 = a22 = · · · = a99 = a = 0.2,

b11 = b22 = · · · = b99 = b = 0.9, and all other off-diagonal elements are 0.001.

In the cDCC model, we set parameters θ2 = 0.01 and θ3 = 0.95. Other settings

are the same with those studied in the bivariate case except for the replications,

which are reduced to 2000. Figure 4.2 plots the empirical rejection rates of M̂
(2)
T

for small and large samples. There are two nontrivial observations. First, the

test gains more powers even in small samples. This makes sense as the order of

CUSUM statistics depends on d̄ according to Remark 2.1 in Aue et al. (2009).

Consequently, Table 4.2 reports the more accurate estimation of t∗. Second, the

test looks slightly over–sized. We attribute this distortion to the finite sample

bias of the Gaussian QMLE estimator in multivariate GARCH models. Note that

the consistency of Gaussian QMLE works under strict stationarity condition, the
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near–integrate higher dimensional processes generated in our simulations might

produce more outliers. Hence the QMLE estimators might not be accurate for

small sample sizes. A similar issue has been discussed in Boudt and Croux (2010).

Table 4.2. Empirical performance of t∗T , the estimator for t∗ =

T/2, when d = 9

BEKK(a = 0.2&b = 0.9) cDCC (θ2 = 0.01&θ3 = 0.95)

T=300 T=1000 T=300 T=1000

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Median 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Quantile 0.1 0.43 0.48 0.49 0.49 0.49 0.50 0.50 0.50 0.43 0.46 0.48 0.49 0.48 0.50 0.50 0.50

Quantile 0.9 0.56 0.51 0.50 0.50 0.52 0.50 0.50 0.50 0.57 0.51 0.50 0.50 0.52 0.51 0.50 0.50

5. An empirical application: testing for financial contagion

Forbes and Rigobon (2002) indicated that a financial contagion effect occurs if

the inter–linkages across markets experienced a significant increase after some

market events. Actual change dates in conditional correlations are unknown and

need to be detected through statistical methods (cf. Dimitriou et al. 2013, Blatt

et al. 2015 and Dungey et al. 2015).

We collect three groups of emerging stock market price indexes in three regions:

six Latin American markets including Argentina (Argentina MERVAL), Brazil

(Brazil BOVESPA), Chile (Chile Santiago SE General), Mexico (Mexico IPC),

Colombia (Colombia IGBC), Peru (BVL General); seven Central East European

(CEE hereafter) markets including Czech (Prague SEPX), Estonia (OMX Tallin),
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Hungary (Budapest), Poland (Warsaw General), Romania (Romania BET), Slo-

vakia (Slovakia SAX 16), Slovenia (Slovenian blue chip); nine East Asian mar-

kets including Hong Kong (Hang Seng), Indonesia (IDX composite), South Korea

(Korea SE composite), Malaysia (Malaysia KLCI), Philippines (Philippine SE),

Singapore (Straits Times), Taiwan (Taiwan SE weighted), Thailand (Bangkok

S.E.T), China (Shanghai S.E. A share). The S&P 500 index of the United States

is used as the eye of the storm for each group. The Germany index (DAX 40) and

the Japan index (Nikki 225) are also collected due to their important influence

on CEE and East Asian countries, respectively. The data are taken from the

Datastream database and cover the period going from the 1st of September 2006

to the 1st of September 2010. We calculate log returns for each index to achieve

the mean stationarity.

To find changes in the correlation structures of these three data sets, we use

M̂
(2)
T in the BEKK as well as in the cDCC models. If a change is detected, we

estimate the time of change and split the data into two subsets at the estimated

time of change. Then we look for changes in both subsets (binary segmenta-

tion). Thus we segment the data into 6 homogeneous subsets. The change–point

detection results are displayed in Figure 5.1. Overall, both models show consis-

tent patterns. The correlation structures initially changed around February 2007

(Chinese stock bubble) and then changed around August 2007 (ceasing activities

in the U.S. mortgage debt market), the third change happened close to Septem-

ber 2008 (the bankruptcy of Lehman Brothers), and the fourth and fifth changes

occurred in the second half of 2009 (bailout decision made by G20 summit) and

April 2010 (European debt crisis), respectively. Basically, these five dates split
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the whole sample into six periods: boom, panic, bubble, bust, recovery and new

crisis. The reactions to crises are faster in the Latin American region because of

the higher level of integration with U.S. The capital flow from the U.S. has less

impact on CEE markets due to the regional economic dominance by Germany.

The banking systems in the CEE countries are largely dominated by U.S. and

Western European banks/financial institutions, mainly German banks. Beside

the direct falling in their capital flows with U.S. banks, the German authority,

as a regional dominance, would implement appropriate policies to resist market

risks during the crisis, thereby providing an indirect buffer zone to CEE coun-

tries. East Asian markets are relatively less connected with the U.S. and tend to

have higher resistance, which might be explained with their closer relation with

the large economies in the area, such as Japan and China.

For each of the six segments we compute δ̄, the level of regional integration and

δ̄US, regional correlation with U.S. market. We measure δ̄ and δ̄US by averag-

ing off diagonal elements and U.S. related elements in the (empirical) correlation

matrix, respectively, where the correlation matrix is computed via the estimated

parameters of the underlying volatility model. Table 5 reports the results. Al-

though the BEKK model gives relatively lower correlations, both models present

similar features. Firstly, in case of regional integration level, the Latin American

and East Asian regions are more integrated than the CEE regions. Secondly,

the U.S. market has less impact on the CEE and least impact on the East Asian

region. Finally, the integration levels in all regions keep increasing with some

fluctuations, and the regional linkages with U.S. climb to a high point after Sep-

tember 2008, then decrease slightly and reboot to the peak again during the
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European debt crisis. These results imply that contagion effects are significant in

all data sets, resulting a higher integrated but more fragile global capital market.

Figure 5.1. Plots of the conditional correlations between the U.S.

and Latin American (left column), CEE (middle column), Asian

(right column) in the BEKK (first row) and cDCC (second row)

models. The vertical lines are the estimated times of changes.
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Table 5.1. The regional correlation levels and correlation levels

with the U.S. market between 2006 and 2010

Latin American Markets
Central East

European Markets

East Asian Markets

BEKK cDCC BEKK cDCC BEKK cDCC

δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US

Phase 1 0.26 0.21 0.38 0.42 0.15 0.17 0.21 0.28 0.20 0.03 0.34 0.16

Phase 2 0.28 0.28 0.52 0.65 0.15 0.04 0.28 0.21 0.20 0.01 0.44 0.04

Phase 3 0.28 0.23 0.46 0.47 0.19 0.13 0.25 0.16 0.19 0.05 0.32 0.05

Phase 4 0.33 0.36 0.64 0.65 0.20 0.24 0.34 0.33 0.19 0.07 0.46 0.20

Phase 5 0.33 0.31 0.55 0.61 0.18 0.15 0.26 0.28 0.21 0.02 0.40 0.14

Phase 6 0.41 0.39 0.61 0.70 0.17 0.17 0.40 0.35 0.23 0.09 0.43 0.23

6. Conclusion

In this paper, we suggested a semi-parametric CUSUM type test to detect a

change point in the correlation structure of non–linear multivariate dynamically

evolving volatility models, e.g. the BEKK and cDCC models, where the regularity

conditions are satisfied. Simulations showed that the limit results work well for

finite samples. We apply the test to date global financial contagion from the

U.S market to three regions, including Latin American, Central East European

and East Asian markets, between 1 September, 2006 and 1 September, 2010.

Our tests allowed us to obtain the dates when contagion from the U.S. hit three

sets of markets and noted that these dates are consistent with the dates when
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particular events took place in the U.S.. The findings indicated that there were

global contagion effects and resulted a more fragile global capital market.

It is worth noticing that, although our test is valid for models which asymmetry

in the dynamics of conditional variance such as the cDCC model, a generalization

to all asymmetric multivariate GARCH processes is not made here, but it will

definitely be an object of future research. The main issue to overcome is that

so far, there are only few theoretical results available on the consistency of esti-

mators for stationary asymmetric multivariate GARCH processes. The general

methods in Meyn and Tweedie (1993) can be in theory used, but it is clear from

Boussama et al. (2011) and Fermanian and Malongo (2017) that the calculations

will be lengthy using methods and results from probability theory and algebraic

geometry. The parameters could be estimated by the QMLE. If dimension d

is large, then a large number of parameters need to be estimated, however the

variance targeting estimators could help to overcome numerical issues. As in Aue

et al. (2009), the limits in Theorem 2.2 might be approximated well in case of

moderate and large d. Also, detecting change points in conditional correlation

structure with the non-zero conditional mean might be another subject of further

research.

Appendix A. Proofs of Theorems 2.1 and 2.2

We start with the weak convergence of the process s(t), 0 ≤ t ≤ T .

Lemma A.1. If H0 and Assumptions 2.1–2.5 are satisfied, then we have

T−1/2(s(Tu)− Es(Tu))
Dd̄[0,1]−→ WD(u),
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where WD(u), 0 ≤ u ≤ 1 is a Brownian motion in Rd̄ with covariance matrix D,

i.e. W(u) is Gaussian with EW(u) = 0 and EWD(u)W>
D(v) = min(u, v)D.

Proof. It follows from Assumptions 2.1–2.4 that y∗t (i)y
∗(j) is also stationary and

β–mixing with the same rate as of yt. Also, since Assumption 2.3 implies that

τt(i) ≥ τ0 we get that

E|y∗t (i)y∗t (j)|r/2 ≤
1

τ 2
0

(E|y∗t (i)|rE|y∗t (j)|r)1/2 <∞

via the Cauchy–Schwartz inequality and the moment condition in Assumption

2.4. Hence the result of Ibragimov (1962) (cf. also Rio, 2000) implies the lemma.

�

Proof of Theorem 2.1. Lemma A.1 implies that

(A.1) T−1/2

(
s(Tu)− bTuc

T
s(T )

)
Dd̄[0,1]−→ WD(u)− uWD(1).

Checking the covariance structure, one can easily verify that

{
D−1/2 (WD(u)− uWD(1)) , 0 ≤ u ≤ 1

}
(A.2)

D
= {(B1(u), B2(u), . . . , Bd̄(u)) , 0 ≤ u ≤ 1} ,

where B1, B2, . . . , Bd̄ are independent Brownian bridges. Hence Theorem 2.1

follows from (A.1) and (A.2) via the continuous mapping theorem. �

Proof of Theorem 2.2. It follows from the definition of ŷt(i) that

ŷt(i)ŷt(j)− y∗t (i)y∗t (j) = at,1(i, j) + . . .+ . . .+ at,8(i, j),
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at,1(i, j) = yt(i)yt(j)

(
1

τ̄t(i; θ̂T )
− 1

τt(i; θ̂T )

)(
1

τ̄t(j; θ̂T )
− 1

τt(j; θ̂T )

)
,

at,2(i, j) = yt(i)yt(j)

(
1

τ̄t(i, θ̂T )
− 1

τt(i, θ̂T )

)(
1

τt(j; θ̂T )
− 1

τt(j;θ0)

)
,

at,3(i, j) = yt(i)

(
1

τ̄t(i, θ̂T )
− 1

τt(i, θ̂T )

)
yt(j)

τt(i)
,

at,4(i, j) = yt(i)yt(j)

(
1

τt(i; θ̂T )
− 1

τt(i;θ0)

)(
1

τ̄t(j; θ̂T )
− 1

τt(j; θ̂T )

)
,

at,5(i, j) = yt(i)yt(j)

(
1

τt(i; θ̂T )
− 1

τt(i;θ0)

)(
1

τt(j; θ̂T )
− 1

τt(j;θ0)

)
,

at,6(i, j) =
yt(i)

τt(i)
yt(j)

(
1

τ̄t(j; θ̂T )
− 1

τt(j; θ̂T )

)
,

at,7(i, j) = yt(i)

(
1

τt(i; θ̂T )
− 1

τt(i;θ0)

)
yt(j)

τt(j)
,

at,8(i, j) =
yt(i)

τt(i)
yt(j)

(
1

τt(j; θ̂T )
− 1

τt(j;θ0)

)
.

Since τ̄t(i, θ̂T )τ0 > 0, by Assumptions 2.7 and 2.6 we have on account of the mean

value theorem that

T−1/2 max
1≤t≤T

t∑
s=1

|as,1| = OP (1)T−1/2

T∑
t=1

|yt(i)yt(j)|a2(t).

We can assume without loss of generality that a(t) is non increasing as t → ∞.

Using again Assumption 2.6 we can find a sequence aT such that T−1/2aT → 0
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and T 1/2a(aT )→ 0 and therefore

T−1/2

T∑
t=1

|yt(i)yt(j)|a2(t)(A.3)

≤ T−1/2

aT∑
t=1

|yt(i)yt(j)|a2(t) + T−1/2

T∑
t=aT +1

|yt(i)yt(j)|a2(t)

= OP (T−1/2aT + T 1/2a2(aT )) = oP (1),

where we used the ergodic theorem that

1

L

L∑
t=1

|yt(i)yt(j)| → E|y0(i)y0(j)| a.s. (L→∞),

since by Assumption 2.4 E|y0(i)y0(j)| ≤ (Ey2
0(i)Ey2

0(j))1/2 < ∞. Putting to-

gether Assumptions 2.6–2.8 we conclude via two term Taylor expansion and the

mean value theorem that

T−1/2 max
1≤t≤T

t∑
s=1

|as,2| = OP (T−1/2)
T∑
t=1

|yt(i)yt(j)|a(t)
[
‖gt(j)‖‖θ̂T − θ‖+ ḡt‖θ̂T − θ0‖2

]
.

Following the proof of (A.3) one can show that

T−1/2

T∑
t=1

|yt(i)yt(j)|a(t)‖gt(j)‖‖θ̂T − θ0‖ = OP (1)
1

T

T∑
t=1

|yt(i)yt(j)|a(t)‖gt(j)‖ = oP (1),

since E|yt(i)yt(j)|‖gt(j)‖ ≤ (E|yt(i)yt(j)|2E‖gt(j)‖2)1/2 ≤ (Ey4
t (i)Ey

4
t (j))

1/4(E‖gt(j)‖2)1/2 <

∞. The same arguments give

T−1/2

T∑
t=1

|yt(i)yt(j)|a(t)ḡt‖θ̂T − θ0‖2 = OP (1)
1

T 3/2

T∑
t=1

|yt(i)yt(j)|a(t)ḡt

= OP (1)

(
1

T 1/2
max

1≤t≤T
ḡt

)
1

T

T∑
t=1

|yt(i)yt(j)|a(t) = oP (1),
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since Eḡ2
0 <∞ implies max1≤t≤T ḡt = oP (T 1/2). Similarly,

T−1/2 max
1≤t≤T

t∑
s=1

|as,3| = OP (1)T−1/2

T∑
t=1

|yt(i)yt(j)|a(t) = oP (1)

and by symmetry, T−1/2 max1≤t≤T
∑t

s=1 |as,`| = oP (1), ` = 4, 5, 6. Assumption 2.8

implies that

T−1/2 max
1≤t≤T

∣∣∣∣∣
t∑

s=1

as,7 −
t∑

s=1

yt(i)

τ 2
t (i)

yt(j)

τt(j)
gs(i)

>(θ0 − θ̂T )

∣∣∣∣∣
= OP (1)T−1/2

T∑
s=1

|yt(i)yt(j)|ḡt‖θ0 − θ̂T‖2 = OP (1)

(
T−1/2 max

1≤t≤T
ḡt

)
1

T

T∑
s=1

|yt(i)yt(j)| = oP (1).

Using again the ergodic theorem and Assumption 2.4, we conclude

T−1/2 max
1≤t≤T

∣∣∣∣∣∣
(

t∑
s=1

ys(i)

τ 2
s (i)

ys(j)

τs(j)
gs(i)−

t

T

T∑
s=1

ys(i)

τ 2
s (i)

ys(j)

τs(j)
gs(i)

)>
(θ0 − θ̂T )

∣∣∣∣∣∣
= OP (1)

1

T
max

1≤t≤T

∥∥∥∥∥
t∑

s=1

ys(i)

τ 2
s (i)

ys(j)

τs(j)
gs(i)−

t

T

T∑
s=1

ys(i)

τ 2
s (i)

ys(j)

τs(j)
gs(i)

∥∥∥∥∥ = oP (1)

since E|y0(i)y0(j)|‖g0(i)‖ <∞. Hence we obtain that

T−1/2 max
1≤t≤T

∣∣∣∣∣
t∑

s=1

as,7 −
t

T

T∑
s=1

as,7

∣∣∣∣∣ = oP (1)

and by the same arguments

T−1/2 max
1≤t≤T

∣∣∣∣∣
t∑

s=1

as,8 −
t

T

T∑
s=1

as,8

∣∣∣∣∣ = oP (1).

Thus we proved that

T−1/2 max
1≤t≤T

∣∣∣∣∣
(

t∑
s=1

ŷs(i)ŷs(j)−
btc
T

T∑
s=1

ŷs(i)ŷs(j)

)

−

(
t∑

s=1

y∗s(i)y
∗
s(j)−

t

T

T∑
s=1

y∗s(i)y
∗
s(j)

)∣∣∣∣∣= oP (1),

and therefore the result follows from Theorem 2.1. �
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Supplementary Materials. The supplemental appendix contains the verifica-

tions of the conditions of the main theorem for our examples, additional examples

and further Monte Carlo simulations.
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Lajos Horváth, Department of Mathematics, University of Utah, Salt Lake

City, UT 84112–0090 USA

Yuqian Zhao, Department of Statistics and Actuarial Science, University of

Waterloo, N2L 3G1, Canada


