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ORIGINAL ARTICLE

TESTS FOR CONDITIONAL HETEROSCEDASTICITY OF FUNCTIONAL
DATA

GREGORY RICE,a TONY WIRJANTOa AND YUQIAN ZHAOb*

a Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
b Essex Business School, University of Essex, Essex, UK

Functional data objects derived from high-frequency financial data often exhibit volatility clustering. Versions of functional
generalized autoregressive conditionally heteroscedastic (FGARCH) models have recently been proposed to describe such
data, however so far basic diagnostic tests for these models are not available. We propose two portmanteau type tests to measure
conditional heteroscedasticity in the squares of asset return curves. A complete asymptotic theory is provided for each test. We
also show how such tests can be adapted and applied to model residuals to evaluate adequacy, and inform order selection, of
FGARCH models. Simulation results show that both tests have good size and power to detect conditional heteroscedasticity and
model mis-specification in finite samples. In an application, the tests show that intra-day asset return curves exhibit conditional
heteroscedasticity. This conditional heteroscedasticity cannot be explained by the magnitude of inter-daily returns alone, but
it can be adequately modeled by an FGARCH(1,1) model.
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1. INTRODUCTION

Since the seminal work of Engle (1982) and Bollerslev (1986), generalized autoregressive conditionally het-
eroscedastic (GARCH) models and their numerous generalizations have become a cornerstone of financial time
series modeling, and are frequently used as a model for the volatility of financial asset returns. As the name sug-
gests, the main feature that these models account for is conditional heteroscedasticity, which for an uncorrelated
financial time series can be detected by checking for the presence of serial correlation in the series of squared
returns of the asset. This basic observation leads to several ways of testing for the presence of conditional het-
eroscedasticity in a given time series or series of model residuals by applying portmanteau tests to the squared
series. Such tests have been developed by McLeod and Li (1983) and Li and Mak (1994) to test for conditional
heteroscedasticity and perform model selection for GARCH models as well as autoregressive moving average
models with GARCH errors. Diagnostic tests of this type are summarized in Li (2003), Shumway and Stoffer
(2017), and with a special focus on GARCH models in Francq and Zakoïan (2010). Many of these methods have
also been extended to multivariate time series of a relatively small dimension; see also Francq and Zakoïan (2010),
Tse and Tsui (1999), Tse (2002), Duchesne and Lalancette (2003), Kroner and Ng (1998), Bauwens et al. (2006),
and Catani et al. (2017).

In many applications, dense intra-day price data of financial assets are available in addition to the daily asset
returns. One way to view such data is as daily observations of high dimensional vectors (consisting of hundreds
or thousands of coordinates) that may be thought of as discrete observations of an underlying noisy intra-day
price curve or function. We illustrate with the data that motivate our work and will be further studied below.
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On consecutive days i ∈ {1,… ,N}, observations of the price of an asset, for instance the index of Standard &
Poor’s 500 (S&P 500), are available at intra-day times u, measured at a 1-minute (or finer) resolution. These data
may then be represented by a sequence of discretely observed functions

{
Pi(u) ∶ 1 ≤ i ≤ T , u ∈ [0, S]

}
, with S

denoting the length of the trading day. Transformations of these functions toward stationarity that are of interest
include the cumulative returns, Ri(u) = log Pi(u) − log Pi(0), where Pi(0) is the opening price on day i. On any
given trading day i, we thus observe a high-dimensional multivariate vector that can be viewed as a curve. The
collection of these curves can therefore be suitably studied as a functional time series. Studying such data through
the lens of a functional data analysis has received considerable attention in recent years. The basic idea of viewing
transformations of densely observed asset price data as sequentially observed stochastic processes appears in
studies such as Kokoszka and Reimherr (2013) and Constantinou et al. (2018), among others. We refer the reader
to Ramsay and Silverman (2006) and Bosq (2000) for a review of functional data analysis and linear functional
time series.

Curves produced as described above exhibit a nonlinear dependence structure and volatility clustering reminis-
cent of GARCH-type time series. Recently functional GARCH (FGARCH) models have been put forward as a
model for curves derived from dense intra-day price data, beginning with Hörmann et al. (2013), who proposed an
FARCH(1) model, which was generalized to FGARCH(1,1) and FGARCH(p, q) models by Aue et al. (2017), and
Cerovecki et al. (2019) respectively. An important determination an investigator may wish to make before employ-
ing such a model is whether or not the observed functional time series exhibits substantial evidence of conditional
heteroscedasticity. While tests for the presence of conditional heteroscedasticity have been extensively studied
for scalar and vector-valued time series, as of yet no formal statistical test is available to measure for conditional
heteroscedasticity in sequentially observed functional data. Additionally, if an FGARCH model is employed, it is
desirable to know how well it fits the data, and whether or not the orders p and q selected for the model should be
adjusted. This can be addressed by testing for remaining conditional heteroscedasticity in the residuals of fitted
models.

In this article, we develop functional portmanteau tests for the purpose of identifying conditional heteroscedas-
ticity in functional time series. Additionally, we consider applications of the proposed tests to the model residuals
from a fitted FGARCH model that can be used to evaluate the model’s adequacy and aid in order selection. The
development of this later application entails deriving joint asymptotic results between the autocovariance of the
FGARCH innovations and the model parameter estimators that may be of independent interest. Simulation studies
presented in this article confirm that the proposed tests have good size and are effective in identifying functional
conditional heteroscedasticity as well as mis-specification of FGARCH-type models. In an application to intra-day
return curves derived from dense stock price data, our tests suggest that the FGARCH models are adequate for
modeling the observed conditional heteroscedasticity across curves.

This work builds on a number of recent contributions related to portmanteau and goodness-of-fit tests for func-
tional data. Gabrys and Kokoszka (2007) were the first to consider white noise tests for functional time series, and
their initial approach was based on portmanteau statistics applied to finite-dimensional projections of functional
observations. Horváth et al. (2012) develop general white noise tests based on the squared norms of the autoco-
variance operators, and general weak white noise tests that are robust to potential conditional heteroscedasticity
were developed in Zhang (2016) and Kokoszka et al. (2017).

The remainder of the article is organized as follows. In Section 2 we frame testing for conditional het-
eroscedasticity as a hypothesis testing problem, and introduce test statistics for this purpose. We further present
the asymptotic properties of the proposed statistics, and show how to apply them to the model residuals of the
FGARCH models for the purpose of model validation/selection. Some details regarding the practical implemen-
tation of the proposed tests and a simulation study evaluating their performance in finite samples are presented in
Section 4. An application to intra-day return curves is detailed in Section 5, and concluding remarks are made in
Section 6. Proofs of the asymptotic results are collected in appendices following these main sections.

We use the following notation below. We let L2[0, 1]d denote the space of real-valued square inte-
grable functions defined on unit hypercube [0, 1]d with norm ‖⋅‖ induced by the inner product ⟨x, y⟩ =

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 41: 733–758 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12532
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∫ 1
0 · · · ∫ 1

0 x(t1,… , td)y(t1,… , td)dt1 … dtd for x, y ∈ L2[0, 1]d, the dimension of the domain being clear based on

the input function. Henceforth we write ∫ instead of ∫ 1
0 . We often consider kernel integral operators of the form

g(x)(t) = ∫ g(t, s)x(s)ds for x ∈ L2[0, 1], where the kernel function g is an element of L2[0, 1]2. We use g(k)(x)(t)
to denote the k-fold convolution of the operator g. The filtration i is used to denote the sigma algebra generated
by the random elements {Xj, j ≤ i}. We let C[0, 1] denote the space of continuous real-valued functions on [0, 1],
with norm defined for x ∈ C[0, 1] as ‖x‖∞ = supy∈[0,1] |x(y)|. We let 𝜒2

K denote a chi-square random variable with
K degrees of freedom, and use 𝜒2

K,q to denote its q’th quantile. ‖ ⋅ ‖E denotes the standard Euclidean norm of a
vector in ℝd. We use {xi} to denote the sequence {xi}i∈ℕ, or {xi}i∈ℤ, with the specific usage of which being clear
in context.

2. TESTS FOR FUNCTIONAL CONDITIONAL HETEROSCEDASTICITY

Consider a stretch of a functional time series of length N, X1(t),… ,XN(t), which is assumed to have been observed
from a strictly stationary sequence {Xi(t), i ∈ ℤ, t ∈ [0, 1]} of stochastic processes with sample paths in L2[0, 1].
For example, in the application below Xi(t) denotes the intra-day cumulative log returns derived from densely
observed stock prices on day i at intraday time t, where t is normalized to be in the unit interval.

As described in Ding and Engle (2001), conditional heteroscedasticity or the presence of ‘GARCH effects’ in a
multivariate time series is generally characterized by serial correlation in the squares of the component series, or
lagged cross-correlation between the squared component series. This leads one to consider the following definition
of conditional heteroscedasticity for functional observations:

Definition 2.1 (Functional conditional heteroscedasticity). We say that a sequence {Xi} is conditionally het-
eroscedastic in L2[0, 1] if it is strictly stationary, E[Xi(t)|i−1] = 0, and

cov(X2
i (t),X

2
i+h(s)) ≠ 0,

for some h ≥ 1, where the equality above is understood to be in the L2[0, 1]2 sense.

Recently, several models have been proposed to model series of curves exhibiting conditional heteroscedasticity.
The functional ARCH(1) and GARCH(1,1) processes were put forward by Hörmann et al. (2013) and Aue et al.
(2017) respectively, and take the form

Xi(t) = 𝜎i(t)𝜀i(t), t ∈ [0, 1], (2.1)

where 𝜀i(t) are i.i.d. random functions with E𝜀2
i (t) = 1. In the FARCH(1) formulation, the volatility process 𝜎2

i (t)
follows

𝜎2
i (t) = 𝜔(t) + 𝜶(X2

i−1)(t) = 𝜔(t) + ∫ 𝛼(t, s)X2
i−1(s)ds, (2.2)

while in the FGARCH(1, 1) formulation,

𝜎2
i (t) = 𝜔(t) + 𝜶(X2

i−1)(t) + 𝜷(𝜎2
i−1)(t) = 𝜔(t) + ∫ 𝛼(t, s)X2

i−1(s)ds + ∫ 𝛽(t, s)𝜎2
i−1(s)ds.

Here 𝜔(t) is a non-negative intercept function, and 𝛼(t, s) and 𝛽(t, s) are non-negative kernel functions. General
FGARCH(p, q) models are discussed in Cerovecki et al. (2019), in which they also provide natural conditions
under which these models admit strictly stationary and non-anticipative solutions.

We frame testing for conditional heteroscedasticity as a hypothesis testing problem of

J. Time Ser. Anal. 41: 733–758 (2020) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12532 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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0: The sequence {Xi} is i.i.d., vs.A: The sequence of {Xi} is conditionally heteroscedastic.

Clearly it is not the case in general that rejecting 0 would directly lead to A, because {Xi} might instead be
serially correlated but not conditionally heteroscedastic. This concern can be alleviated though if we test serial
correlation in the sequence of squared curves as described in Definition 2.1.

In particular, we might then test 0 vs. A by measuring the serial correlation in the time series‖X1‖2,… , ‖XN‖2, or in the sequence of curves X2
1(t),… ,X2

N(t). Testing for serial correlation in the time series‖Xi‖2 can be viewed as measuring to what extent large in magnitude curves increase/decrease the likelihood of
subsequent curves being large in magnitude, whereas testing for serial correlation in the curves X2

i (t) aims to more
directly evaluate whether the data follow Definition 2.1. For some positive integer K, we then consider portmanteau
statistics of the form

VN,K = N
K∑

h=1

𝜌̂2
h, and MN,K = N

K∑
h=1

‖‖𝛾̂h
‖‖2
, (2.3)

where 𝜌̂h is the sample autocorrelation of the time series ‖X1‖2,… , ‖XN‖2, and 𝛾̂h(t, s) ∈ L2[0, 1]2 is the estimated
autocovariance kernel of the functional time series X2

i (t) at lag h , defined as

𝛾̂h(t, s) =
1
N

N−h∑
i=1

(X2
i (t) − X̄(2)(t))(X2

i+h(s) − X̄(2)(s)),

with X̄(2)(t)) = (1∕N)
∑N

i=1 X2
i (t). The test statistic VN,K is essentially the Box–Ljung–Pierce test statistic (Ljung

and Box, 1978) derived from the scalar time series of squared norms, whereas the test statistic MN,K is the same
as the portmanteau statistic defined in Kokoszka et al. (2017) applied to the squared functions.

Under A, we expect the statistics VN,K and MN,K to be large, and hence a consistent test can be obtained
by rejecting 0 whenever they exceed a threshold calibrated according to their limiting distributions under the
null hypothesis. To establish the asymptotic distributions of each portmanteau statistic under 0, we impose the
following moment condition.

Assumption 2.1. E ‖‖Xi
‖‖8
< ∞, i ∈ ℤ.

Under this assumption, the asymptotic distribution of MN,K depends on the eigenvalues 𝜆i, i ≥ 1 of the kernel
integral operator with kernel cov(X2

i (t),X
2
i (s)), namely

𝜆i𝜑i(t) = ∫ cov(X2
i (t),X

2
i (s))𝜑i(s)ds, (2.4)

where {𝜑i} is an orthonormal sequence of eigenfunctions in L2[0, 1]. Assumption 2.1 guarantees that the
eigenvalues {𝜆i} satisfy the condition that

∑∞
i=1 𝜆i <∞.

Theorem 2.1. If 0 and Assumption 2.1 are satisfied, then we have

VN,K


→ 𝜒2

K , as N → ∞, (2.5)

and

MN,K


→

K∑
h=1

∞∑
l,k=1

𝜆l𝜆k𝜒
2
1 (h,𝓁, k), as N → ∞, (2.6)

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 41: 733–758 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12532
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where {𝜒2
1 (h,𝓁, k), 1 ≤ h ≤ K, 1 ≤ 𝓁, k < ∞} are i.i.d. 𝜒2

1 random variables.

Theorem 2.1 shows that an approximate test of H0 of size q is to reject if VN,K > 𝜒
2
K,1−q or if MN,K exceeds the

qth quantile of the distribution on the right-hand side of (2.6). The latter can be approximated in several ways, and
in Section 4 we describe a Welch–Satterthwaite style 𝜒2 approximation to achieve this.

The eighth-order moment condition in Assumption 2.1 needed for this result is evidently quite strong, although
this is a typical assumption in the literature on this topic to ensure consistency of the required higher-order moment
estimates. Consequently one may wish to consider robust versions of such portmanteau tests. A nice discussion
of this issue in the scalar case is given Aguilar and Hill (2015), and some approaches that may be used are to
consider other transformations of the data to evaluate for volatility, for example measuring for serial dependence
in the series |Xi(t)| rather than X2

i (t), or trimming the large in norm observations by discarding those that exceed
a specified, high sample quantile of the observed norms.

The value of the parameter K must be chosen by the practitioner. Intuitively small values of K will increase the
power of the test to detect GARCH effects that occur at small lags, but may miss effects occurring at longer lags,
and taking a larger value of K may detect such effects at long lags, but decreases the power for detecting effects
at short lags. In general we recommend applying the test for a range of values of K, as a default between 1 and
20, as is recommended when applying the Ljung–Box portmanteau test to scalar series in Shumway and Stoffer
(2017), see p. 150. We demonstrate this in an application to functional time series derived from asset price data.

2.1. Consistency of the Proposed Tests

We now turn to the consistency of each test under A. In particular, we consider the asymptotic behavior of VN,K

and MN,K for sequences {Xi} such that either: (i) they form a general weakly dependent sequences in L2[0, 1] that
are conditionally heteroscedastic as described by Definition 2.1, or (ii) they follow a FARCH(1) model as described
in (2.2). We use the notion of Lp-m-approximability defined in Hörmann and Kokoszka (2010) to describe general
weakly dependent sequences. A time series {Xi}i∈ℤ in L2[0, 1] is called Lp-m-approximable for some p > 0 if

(i) There exists a measurable function g∶ S∞ → L2([0, 1]), where S is a measurable space, and i.i.d. innovations
{𝜖i}i∈ℤ taking values in S such that Xi = g(𝜖i, 𝜖i−1,…) for i ∈ ℤ;

(ii) Let {𝜖′i}i∈ℤ be an independent copy of {𝜖i}i∈ℤ, and define
Xi,m = g(𝜖i,… , 𝜖i−m+1, 𝜖

′
i−m, 𝜖

′
i−m−1,…). Then,

∞∑
m=0

(
𝔼[‖Xi − Xi,m‖p]

)1∕p
< ∞.

Under suitable moment and stationarity conditions, the solutions {Xi} to functional GARCH models are
Lp-m-approximable; see Hörmann et al. (2013), Aue etal. (2017), and Cerovecki et al. (2019).

Theorem 2.2. If {Xi} is L8-m-approximable and A holds where h in Definition 2.1 satisfies 1 ≤ h ≤ K, then

MN,K

p
→ ∞, N → ∞. (2.7)

If in addition ∫∫ cov(X2
i (t),X

2
i+h(s))dtds ≠ 0, then

VN,K

p
→ ∞, N → ∞. (2.8)

Under the FARCH(1) model we can develop more precise results on the rate of divergence of VN,K and MN,K .
The following assumption ensures that a stationary and causal sequence satisfying (2.1) and (2.2) exists in L2[0, 1]:

J. Time Ser. Anal. 41: 733–758 (2020) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12532 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Assumption 2.2. The sequence {𝜀i} in (2.1) is i.i.d., and the kernel 𝛼(t, s) in (2.2) is non-negative, ‖𝛼‖ < 1 ,
and satisfies that there exists a constant 𝜏 > 0 so that

E

(
∫∫ 𝛼2(t, s)𝜀2

0(s)dtds

)𝜏∕2

< 1.

In the statement of the result below, we recall the definition of a weak white noise in L2[0, 1] from p. 72 of Bosq
(2000).

Theorem 2.3. Suppose that {Xi} is the strictly stationary solution to the FARCH(1) equations under Assumption
2.2 so that Assumption 2.1 holds, and let Yi(t) = X2

i (t) − 𝜎2
i (t). Then Yi(t) is a mean zero weak white noise in

L2[0, 1],

VN,K

N

p
→

K∑
h=1

(∫∫ ∑∞
j=0 E𝜶(j)(Yj)(t)𝜶(j+h)(Yj)(s)dtds

)2

(∫∫ ∑∞
j=0 E𝜶(j)(Yj)(t)𝜶(j)(Yj)(s)dtds

)2
, (2.9)

and

MN,K

N

p
→

K∑
h=1

‖‖‖‖‖‖
∞∑

j=0

E𝜶(j)(Yj)(t)𝜶(j+h)(Yj)(s)
‖‖‖‖‖‖

2

. (2.10)

The right-hand side of (2.10) is guaranteed to be strictly positive if ∫∫ 𝛼(t, s)E𝜔(t)(𝜀2
0(t)−1)𝜔(s)(𝜀2

0(s)−1)dtds ≠ 0.

Remark 2.1. Theorem 2.3 shows that under an FARCH(1) model, the rate of divergence of VN,K and MN,K

depend essentially on the size of the function 𝛼(t, s) as well as how this kernel projects onto the intercept term
in the conditional variance 𝜔(t) and the covariance of the squared error 𝜀2

0(t). If for example ∫∫ 𝛼(t, s)E(𝜀2
0(t) −

1)(𝜀2
0(s) − 1)dtds = 0, then we do not expect the tests to be consistent.

3. DIAGNOSTIC CHECKING FOR FUNCTIONAL GARCH MODELS

The conditional heteroscedasticity tests proposed above can also be used to test for the adequacy of the estimated
functional ARCH and GARCH models, and can aid in the order selection of these models. We introduce this
approach in the context of testing the adequacy of the FGARCH(1,1) model, although one could more generally
consider the same procedure applied to the FGARCH(p, q) models using the estimation procedures in Cerovecki
et al. (2019). To this end, suppose that Xi(t), 1 ≤ i ≤ N follows an FGARCH(1,1) model. To estimate 𝜔(t), and the
kernel functions 𝛼(t, s) and 𝛽(t, s), following Aue et al. (2017) and Cerovecki et al. (2019), we suppose that they
have finite L-dimensional representations determined by a set of basis functions ΦL = {𝜙1, 𝜙2,… , 𝜙L} in L2[0, 1]
so that

𝜔(t) =
L∑

j=1

dj𝜙j(t), 𝛼(t, s) =
L∑

j,j′=1

aj,j′𝜙j(t)𝜙j′ (s), 𝛽(t, s) =
L∑

j,j′=1

bj,j′𝜙j(t)𝜙j′ (s). (3.1)

Under this assumption, estimating these functions amounts to estimating the coefficients in their finite dimensional
representations, which can be achieved by using, for example, quasi-maximum likelihood estimation (QMLE) or

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 41: 733–758 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12532



HETEROSCEDASTICITY AND GOODNESS-OF-FIT TESTS 739

least squares estimation, as is typically employed in multivariate GARCH models. To see this, under (3.1) we can
re-express the FGARCH(1,1) model in terms of the coefficients as

𝔰2
i = D + Ax2

i−1 + B𝔰2
i−1 (3.2)

where x2
i = [

⟨
X2

i , 𝜙1

⟩
,… ,

⟨
X2

i , 𝜙L

⟩
]⊤, 𝔰2

i = [
⟨
𝜎2

i , 𝜙1

⟩
,… ,

⟨
𝜎2

i , 𝜙L

⟩
]⊤, the coefficient vector D =

[d1,… , dL]⊤ ∈ ℝL, and the coefficient matrices A and B are ℝL×L with (j, j′) entries defined by aj,j′ and bj,j′ respec-
tively. To estimate the vector of parameters 𝜃0 = (D⊤, vec(A)⊤, vec(B)⊤)⊤, Aue et al. (2017) propose a least squares
type estimator satisfying

𝜃̂N = arg min
𝜃∈Θ

{
N∑

i=2

(x2
i − 𝔰2

i (𝜃))
⊤(x2

i − 𝔰2
i (𝜃))

}
,

where Θ is a compact subset of ℝL+2L2
. Under certain regularity conditions, detailed at the beginning of Appendix

B, it can be shown that 𝜃̂N is a consistent estimator of 𝜃0, and in fact
√

N(𝜃̂N −𝜃0) satisfies the central limit theorem.
This yields estimated parameter functions given by

𝜔̂(t) =
L∑

j=1

d̂j𝜙j(t), 𝛼̂(t, s) =
L∑

j,j′=1

âj,j′𝜙j(t)𝜙j′ (s), 𝛽(t, s) =
L∑

jj′=1

b̂j,j′𝜙j(t)𝜙j′ (s).

The functions 𝜙j can be chosen in a number of ways, including using a deterministic basis system such as poly-
nomials, b-splines, or the Fourier basis, as well as using a functional principal component basis; see for example,
Chapter 6 of Ramsay and Silverman (2006). Cerovecki et al. (2019) and Aue et al. (2017) suggest using the prin-
cipal component basis determined by the squared processes X2

i (t), which we also consider below. Given these
function estimates, we can estimate 𝜎̂2

i (t) recursively, see (B4) in Appendix B for specific details.
To test the adequacy of the FGARCH(1,1) model, we utilize the fact that if the model is well specified then the

sequence of model residuals 𝜀̂i(t), 1 ≤ i ≤ N, should be approximately i.i.d., where

𝜀̂i(t) =
Xi(t)
𝜎̂i(t)

. (3.3)

This suggests that we consider the portmanteau statistics constructed from the residuals

VN,K,𝜀 = N
K∑

h=1

𝜌̂𝜀,h, and MN,K,𝜀 = N
K∑

h=1

‖‖𝛾̂𝜀,h‖‖2
,

where 𝜌̂𝜀,h is the sample autocorrelation of the scalar time series ‖𝜀̂1‖2,… , ‖𝜀̂N‖2, and

𝛾̂𝜀,h(t, s) =
1
N

N−h∑
i=1

(
𝜀̂2

i (t) − 1
) (
𝜀̂2

i+h(s) − 1
)
. (3.4)

A test of model adequacy of size q is to reject if VN,K,𝜀 > 𝜒2
K,1−q or if MN,K,𝜀 exceeds the 1 − qth quantile of

the distribution on the right-hand side of (2.6), where again this distribution must be estimated from the squared
residuals 𝜀̂2

i (t). We abbreviate these tests below as being based on Vheuristic
N,K,𝜀 and Mheuristic

N,K,𝜀 , since even under the
assumption that that the model is correctly specified the residuals 𝜀̂i are evidently not i.i.d. due to their common
dependence on the estimated parameters 𝜃̂N .
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3.1. Accounting for the Effect of Parameter Estimation

The approximate goodness-of-fit tests proposed above provide a heuristic method to evaluate the model fit of a
specified functional GARCH type model, however we now aim at more precisely describing how the asymptotic
distribution of MN,K,𝜀 based on the model residuals 𝜀̂i(t) depends on the joint asymptotics of the innovation process
and the estimated parameters 𝜃̂N . In this subsection, we focus on quantifying this effect for the fully functional
statistic MN,K,𝜀, since this statistic showed generally better finite sample performance relative to VN,K,𝜀 in Section
4, and also because this statistic is more amenable to such an asymptotic analysis due to the fact that it is based
directly on the norms of the autocovariance kernels. Furthermore, we assume that the parameter estimate 𝜃̂N is
obtained by the least squares method proposed in Aue et al. (2017), although this could easily be adapted to the
QMLE parameter estimate as well.

Towards this, we define the terms J0, H0, and Q0 respectively as

J0 = E{[x2
0 − 𝔰2

0][x
2
0 − 𝔰2

0]
⊤}, H0 = E

{
𝜕𝔰̃2

0(𝜃)
𝜕𝜃

}
, Q0 = E

⎧⎪⎨⎪⎩
[
𝜕𝔰̃2

0(𝜃)
𝜕𝜃

]⊤ [
𝜕𝔰̃2

0(𝜃)
𝜕𝜃

]⎫⎪⎬⎪⎭ .
Given the regularity conditions stated Appendix B, it follows that√

N(𝜃̂N − 𝜃0)
d
→ L+2L2(0,Q−1

0 H⊤

0 J0H0Q−1
0 ), (3.5)

where p(0,Σ) denotes a p dimensional normal random vector with mean zero and covariance matrix Σ. We use
the notation 𝜎2

i (t, 𝜃) and 𝔰2
i (𝜃) to indicate how each of these terms depends on the vector of parameters defined in

(3.1). Let Gh ∶ [0, 1]2 → ℝL+2L2
be defined by

Gh(t, s) = −E

{
1

𝜎2
i+h(s, 𝜃0)

×
𝜕𝜎2

i+h(s, 𝜃0)
𝜕𝜃

× (𝜀2
i (t, 𝜃0) − 1)

}
. (3.6)

We further define the covariance kernels

C𝜀(t, s, u, v) = E{(𝜀2
i (t) − 1)(𝜀2

i (s) − 1)}E{(𝜀2
i (u) − 1)(𝜀2

i (v) − 1)},

and

C𝜀,𝜃

h,g(t, s, u, v) = E

{
(𝜀2

−h(t) − 1)(𝜀2
0(s) − 1)G⊤

g (u, v)Q
−1
0 (
𝜕𝔰2

0(𝜃0)
𝜕𝜃

)⊤(x2
0 − 𝔰2

0)

}
.

Theorem 3.1. Suppose that {Xi} follows an FGARCH(1,1) model. Under the assumptions detailed in Appendix
B, there exists a sequence of non-negative coefficients {𝜉(𝜀,𝜃)i,K , i ≥ 1} such that

MN,K,𝜀


→

∞∑
i=1

𝜉
(𝜀,𝜃)
i,K 𝜒2

1 (i), (3.7)

where 𝜒2
1 (i), i ≥ 1 are i.i.d. 𝜒2 random variables with one degree of freedom. The coefficients 𝜉(𝜀,𝜃)i,K are the

eigenvalues of a covariance operator Ψ(𝜀,𝜃)
K , defined in (B1), that is constructed from kernels of the form

𝜓
(𝜀,𝜃)
K,h,g(t, s,u, v) = C𝜀(t, s, u, v) + C𝜀,𝜃

h,g(t, s, u, v) (3.8)

+ C𝜀,𝜃

g,h(u, v, t, s) + G⊤

h (t, s)Q
−1
0 H⊤

0 J0H0Q−1
0 Gg(u, v), 1 ≤ h, g ≤ K.
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Theorem 3.1 precisely describes the asymptotics for MN,K,𝜀, which in this case depend jointly on the autoco-
variance of the FGARCH innovations as well as the parameter estimates. The specific definition of the covariance
operator Ψ(𝜀,𝜃)

K along with the necessary assumptions on the FGARCH model are detailed in Appendix B. These
assumptions basically imply that (3.5) holds, and that the solution {Xi} of the FGARCH equations exists in C[0, 1]
with sufficient moments. The proof relies on a functional delta method for partial sums of random variables tak-
ing values in C[0, 1] and depending on a vector of parameters that might be of independent interest. These results
may also be easily generalized to FGARCH models of other orders, for instance, the FARCH(1) model, which we
study in the simulation section below and also detail in Appendix B.

4. IMPLEMENTATION OF THE TESTS AND A SIMULATION STUDY

This section gives details on implementation of the proposed tests and evaluates the performance of the proposed
tests in finite samples. Several synthetic data examples are considered for this purpose. A simulation study on
diagnostic checking for the FGARCH model is also provided in the last subsection.

4.1. Computation of Test Statistics and Asymptotic Critical Values

In practice we only observe each functional data object Xi(t) at a discrete collection of time points. Often in
financial applications these time points can be taken to be regularly spaced and represented as J = {tj = j∕J, j =
1,… , J} ⊂ (0, 1]. Given the observations of the function Xi(tj), tj ∈ J , we can estimate, for example, the squared
norm ‖Xi‖2 by a simple Riemann sum,

‖Xi‖2 = 1
J

J∑
j=1

X2
i (tj).

Other norms arising in the definitions of VN,K and MN,K can be approximated similarly. For data observed at
different frequencies, such as tick-by-tick, the norms and inner-products can be estimated with Riemann sums or
alternate integration methods as the data allows. In all of the simulations below we generate functional observations
on J = 50 equally spaced points in the interval [0, 1].

The critical values of the null limiting distribution of VN,K can easily be obtained, but estimating the limiting
null distribution of MN,K defined in (2.6) requires a further elaboration. To achieve this one could implement a
covariance block bootstrap approach as described in Zhang (2016) and Pilavakis et al. (2019), but for the sake
of computational speed, and due to its satisfactory performance, we instead propose to estimate the limiting dis-
tribution directly. This could be done by estimating the eigenvalues of the kernel integral operator with kernel
cov(X2

i (t),X
2
i (s)) via estimates of the kernel, or alternatively using a Welch–Satterthwaite style approximation, the

later of which we pursue; see for example, Zhang (2013). The basic idea of this method is to approximate the lim-
iting distribution in (2.6) by a random variable RK ∼ 𝛽𝜒2

𝜈
, where 𝛽 and 𝜈 are estimated so that the distribution of

RK has the same first two moments as the limiting distribution on the right-hand side of (2.6). If MK denotes the
random variable on the right-hand side of (2.6), 𝜇K = E(MK), and 𝜎2

K = var(MK), then in order that the first two
moments of RK match those of MK we take

𝛽 =
𝜎2

K

2𝜇K

and 𝜈 =
2𝜇2

K

𝜎2
K

. (4.1)

We verify below that

𝜇K = K

(
∫ cov(X2

0(t),X
2
0(t))dt

)2

,

𝜎2
K = 2K

(
∫∫ cov(X2

0(t),X
2
0(s))dtds

)2

.

(4.2)
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These can be consistently estimated by

𝜇̂K = K

(
∫

1
N

N∑
i=1

(X2
i (t) − X̄(2)(t))2dt

)2

, and

𝜎̂2
K = 2K

(
∫

1
N

N∑
i=1

(X2
i (t) − X̄(2)(t))(X2

i (s) − X̄(2)(s))dtds

)2

,

where X̄(2)(t) = (1∕N)
∑N

i=1 X2
i (t). A test of 0 with an approximate size of q is to reject if MN,K exceeds the 1 − q

quantile of the distribution of RK ∼ 𝛽𝜒2
𝜈̂
.

Similarly, to estimate the asymptotic critical values of MN,K,𝜀 under the FGARCH model adequacy described in
Theorem 3.1, we obtain the parameters 𝛽 and 𝜈 of approximated distribution by estimating,

𝜇K = Trace(Ψ(𝜀,𝜃)
K ),

𝜎2
K = 2Trace([Ψ(𝜀,𝜃)

K ]2).
(4.3)

We can consistently estimate these terms using estimators of the form,

𝜇̂K =
K∑

h=1
∫∫ 𝜓̂

(𝜀,𝜃)
K,h,h(t, s, t, s)dtds, and

𝜎̂2
K =

K∑
h,g=1

2∫∫∫∫ [𝜓̂ (𝜀,𝜃)
K,h,g(t, s, u, v)]

2dvdudsdt,

where 𝜓̂ (𝜀,𝜃)
K,h,g are consistent estimators of the kernels 𝜓 (𝜀,𝜃)

K,h,g in (3.8), which we define in the last subsection of
Appendix B.

Calculating and storing such kernels, which can be thought of as four-dimensional tensors, is computationally
intractable if J is large, which is commonly the case when considering high-frequency financial data. For exam-
ple, J = 390 when using 1-minute resolution US stock market data. To solve this problem, we use a Monte Carlo
integration to calculate the integrals above based on a randomly sparsified sample, with the sparse J∗ points deter-
mined by drawing from a uniform distribution on [0, 1]. Below we use J∗ = 20 points to estimate these integrals,
which seems to work well in practice.

4.2. Simulation Study of FGARCH Goodness-of-Fit Tests

We have conducted numerous simulation experiments with several different data generating processes (DGPs)
to evaluate the finite sample performance of the functional conditional heteroscedasticity tests introduced in
Section 2. The results of these showed generally that those tests performed well in terms of empirical size and
power, and to shorten the exposition we have relegated the presentation of those results to an online supplement
to this article.

We consider a simulation study of the proposed test statistics applied to diagnostic checking of FGARCH mod-
els as described in Section 3. In particular, we generate data from the following three DGPs: the FARCH(1),
FARCH(2), and FGARCH(1,1). Specifically, with {Wi(t), t ∈ [0, 1], i ∈ ℤ} denoting i.i.d. sequences of standard
Brownian motions defined on the unit interval, we consider the DGPs

(i) FARCH(1): Xi(t) satisfies the FARCH(1) specification, with

𝜶(x)(t) = ∫ 12t(1 − t)s(1 − s)x(s)ds,

wileyonlinelibrary.com/journal/jtsa © 2020 The Authors. J. Time Ser. Anal. 41: 733–758 (2020)
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and𝜔 = 0.01 (a constant function), and the innovation sequence 𝜀i(t) follows an Ornstein–Uhlenbeck process,
namely

𝜀i(t) = e−t∕2Wi(et), t ∈ [0, 1]. (4.4)

(ii) FGARCH(1,1): Xi(t) satisfies the FGARCH(1,1) specification, with

𝜶(x)(t) = ∫ 12t(1 − t)s(1 − s)x(s)ds, 𝜷(x)(t) = ∫ 12t(1 − t)s(1 − s)x(s)ds,

𝜔 = 0.01 (a constant function), and 𝜀i(t) follows (4.4).
(iii) FARCH(2): Xi(t) = 𝜎i(t)𝜀i(t), where 𝜀i(t) follows (4.4) and,

𝜎2
i (t) = 𝜔(t) + ∫ 12(t(1 − t))(s(1 − s))X2

i−1(s)ds + ∫ 12(t(1 − t))(s(1 − s))X2
i−2(s)ds.

For each simulated sample we then test for the model adequacy of the FARCH(1) model. When the data follows
the FARCH(1) specification, we expect the test to reject the adequacy of the FARCH(1) model at only the specified
significance level, while we expect that the adequacy of the FARCH(1) model is rejected at a high rate for data
generated according to the FARCH(2) and FGARCH(1,1) models. To estimate these models, we set L = 1 in
(3.1). In practice the number L can be selected in several ways, including using the ‘total variance explained’
approach common in principal component analysis, see Cerovecki et al. (2019), or using the tests that we propose
to evaluate whether a given choice of L suitably whitens the model residuals. We take L = 1 here since the kernels
defining each FGARCH process are rank one, and to more easily study the effect of estimating the basis used to
approximate these kernels.

Also, to investigate whether using the estimates of the principal components of the squared process affects the
rejection rates, we adopt two types of basis functions: 𝜙̂1(t) is derived from the empirical principal components,
or the ‘oracle’ basis function

𝜙1(t) = t(1 − t)∕ ‖t(1 − t)‖ ,
is used. Using the ‘oracle’ function to reduce the dimension of the operators to be estimated is ideal in our setting
since for the processes that we consider the operators defining them are rank one with a range spanned by 𝜙1.

Panel A of Table I displays the rejection rates of each model using the test statistics Vheuristic
N,K,𝜀 , Mheuristic

N,K,𝜀 and MN,K,𝜀

with increasing values of N and K when the empirical principal component is used. Both heuristic tests are shown
to have reasonable size for the fitted residuals, although the test based on Mheuristic

N,K,𝜀 test was somewhat over-sized
in large samples. Both tests perform well in detecting mis-specified models, displaying an increasingly better
performance for larger sample sizes. We note that similar to the results obtained in the last subsection, the Vheuristic

N,K,𝜀

test is comparably less powerful than the Mheuristic
N,K,𝜀 test. As a comparison to Mheuristic

N,K,𝜀 test, the asymptotic MN,K,𝜀 test
exhibits improved size when K = 1 and 5 under 0, and displays a slightly lower power under A, and this was
in accordance with our expectation given that the asymptotic results are sharper for the latter statistic.

Another observation worthy of a remark is that the rejection rates of the adequacy of the FARCH(1) model tend
to be low for all DGPs when K = 1. This is evidently because fitting an FARCH(1) model effectively removes
serial correlation from the squared process at lag one. Hence it is advisable when using this test for the purpose of
model diagnostic checking to incorporate several lags beyond the order of the applied model.

The rejection rates of the adequacy of each model with the modification of using the ‘oracle’ function are
displayed in Panel B of Table I, which shows that both the size and the power are in general improved for all tests.
This suggests in part that the discrepancy in the empirical size for the MN,K,𝜀 test for large N can be attributed to
poor estimation of the dimension reduction basis. This also suggests that we can improve the estimation of the
FGARCH models by changing the basis used for dimension reduction, although it is in general not clear how to
improve on the FPCA method; doing so is beyond the scope of the current article, and is something we hope to
investigate further in future work.
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Table I. Rejection rates from 1000 independent simulations of the model adequacy of the FARCH(1) model when applied to
FARCH(1), FARCH(2), and FGARCH(1,1) data using Vheuristic

N,K,𝜀 , Mheuristic
N,K,𝜀 , and MN,K,𝜀 at 95% significance level

DGP FARCH(1) FARCH(2) FGARCH(1,1)

Statistics Vheuristic
N,K,𝜀 Mheuristic

N,K,𝜀 MN,K,𝜀 Vheuristic
N,K,𝜀 Mheuristic

N,K,𝜀 MN,K,𝜀 Vheuristic
N,K,𝜀 Mheuristic

N,K,𝜀 MN,K,𝜀

Panel A: The basis function used for dimension reduction – empirical principal component
K = 1

N = 125 0.03 0.03 0.03 0.04 0.05 0.06 0.04 0.04 0.06
N = 250 0.05 0.06 0.05 0.05 0.07 0.08 0.05 0.07 0.09
N = 500 0.10 0.11 0.08 0.11 0.10 0.09 0.11 0.11 0.10

K = 5
N = 125 0.03 0.04 0.04 0.55 0.60 0.50 0.30 0.35 0.34
N = 250 0.04 0.05 0.04 0.84 0.86 0.82 0.64 0.67 0.65
N = 500 0.08 0.08 0.06 0.99 0.99 0.97 0.89 0.90 0.89

K = 10
N = 125 0.03 0.03 0.05 0.41 0.45 0.44 0.27 0.31 0.28
N = 250 0.04 0.06 0.06 0.76 0.79 0.72 0.54 0.57 0.57
N = 500 0.06 0.07 0.08 0.98 0.98 0.97 0.87 0.88 0.87

K = 20
N = 125 0.02 0.02 0.06 0.35 0.33 0.34 0.18 0.18 0.21
N = 250 0.04 0.03 0.08 0.66 0.66 0.70 0.43 0.44 0.45
N = 500 0.05 0.06 0.08 0.94 0.94 0.93 0.76 0.78 0.75

Panel B: The basis function used for dimension reduction – the ‘oracle’ basis element 𝜙1
K = 1

N = 125 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04
N = 250 0.06 0.07 0.04 0.05 0.05 0.05 0.06 0.07 0.05
N = 500 0.10 0.11 0.06 0.10 0.10 0.09 0.10 0.10 0.08

K = 5
N = 125 0.04 0.04 0.04 0.52 0.56 0.56 0.33 0.37 0.33
N = 250 0.07 0.08 0.05 0.86 0.87 0.81 0.59 0.65 0.62
N = 500 0.08 0.09 0.07 0.99 0.99 0.98 0.87 0.89 0.87

K = 10
N = 125 0.04 0.04 0.04 0.43 0.45 0.45 0.27 0.32 0.31
N = 250 0.04 0.06 0.06 0.78 0.80 0.74 0.56 0.61 0.59
N = 500 0.07 0.08 0.07 0.98 0.98 0.97 0.85 0.87 0.87

K = 20
N = 125 0.03 0.03 0.06 0.34 0.33 0.35 0.19 0.20 0.24
N = 250 0.04 0.04 0.07 0.71 0.72 0.72 0.44 0.46 0.46
N = 500 0.06 0.06 0.08 0.94 0.94 0.93 0.75 0.76 0.75

5. APPLICATION TO DENSE INTRA-DAY ASSET PRICE DATA

A natural example of functional financial time series data are those derived from densely recorded asset price
data, such as intraday stock price data. Recently there has been a great deal of research focusing on analyzing the
information contained in the curves constructed from such data. Price curves associated with popular companies
are routinely displayed for public review. The objectives of this section are to (i) test whether functional financial
time series derived from the dense intraday price data exhibit conditional heteroscedasticity, and (ii) evaluate the
adequacy of FGARCH models for such series.

The specific data that we consider consists of 5 minute resolution closing prices of S&P 500 market index,
so that there are J = 78 observations of the closing price each day. For the purpose of applying a Monte Carlo
integration to the asymptotic diagnostic test MN,K,𝜀, we employ a sparse grid of J∗ = 39 out of the 78 points. Then,
we let Pi(t) denote the price of either asset on day i at intraday time t, where t is normalized to the unit interval. We
consider time series of curves from these data of length N = 502 taken from the dates between 31/December/2015
to 02/January/2018. There are several ways to define curves that are approximately stationary based on the raw
price curves Pi(t). We consider the following two cases:

1. Cumulative intra-day log returns (CIDRs)

Xi(t) = log Pi(t) − log Pi(0)
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Figure 1. Plots of cumulative and overnight cumulative intra-day log return curves of S&P 500 from 21 December 2017 to 2
January 2018 [Color figure can be viewed at wileyonlinelibrary.com]

2. Overnight cumulative intra-day log returns (OCIDRs)

Xi(t) = log Pi(t) − log Pi−1(1)

Curves of the former type have been studied extensively in the literature, see for example Kokoszka and
Reimherr (2013) and Kokoszka et al. (2014), as their trajectories encode the cumulative asset price changes over
the course of the day. The OCIDR cures have exactly the same shape as the CIDR curves, but also capture the
overnight price change. A similar overnight return has been used in Koopman et al. (2005). Figure 1 shows these
two types of intra-day curves across seven days. We used 30 cubic B-spline functions to interpolate the raw price
information and estimate functional principal components of the squared process, as implemented in the fda
package in R, see Ramsay et al. (2009). We recomputed the analysis below for several different values of the num-
ber of splines, and the results reported below appeared to be stable to this choice. The stationarity of both return
curves was examined by using the stationarity test proposed by Horváth et al. (2014). The results suggest that all
intra-day return series are reasonably stationary.

We begin by testing for functional conditional heteroscedasticity in the functional time series of each curve
type. The results of these tests are given in Table II, and are not particularly surprising in that they suggest that
each sample of curves exhibit strong conditional heteroscedasticity.

A natural next step is to posit and evaluate models to capture this conditional heteroscedasticity. For this we
consider two models: standard scalar GARCH models and FGARCH models. The motivation for considering
standard scalar GARCH models for this purpose is that we might at first expect that the volatility in each of these
curves can be adequately accounted for by scaling each curve by the conditional standard deviation estimated by
a scalar GARCH model fitted to the end-of-day returns, that is, a large magnitude of the return on the previous
day spells high volatility for the entire intraday price on the following day. We compute the daily log returns as
xi = log(Pi(1))−log(Pi−1(1)), 1 ≤ i ≤ 500, to which we fit a scalar GARCH(p,q) model by using a quasi maximum
likelihood estimation approach. The orders {p, q} are selected as the minimum orders for which the estimated
residuals 𝜀̂i = xi∕𝜎̂i are plausibly a strong white noise as measured by the Li–Mak test; see Li and Mak (1994),
resulting in the selection of a GARCH(1,1) model, as shown in Panel A in Table III.

We then apply the proposed tests for conditional heteroscedasticity to the fitted residuals functions of intra-day
returns

𝜀̃i(t) = Xi(t)∕𝜎̂i.
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Table II. Heteroscedasticity tests using VN,K and MN,K on the intra-day returns of S&P 500 with the lags K varying among 1, 5,
10, and 20

K = 1 K = 5 K = 10 K = 20

Stats P value Stats P value Stats P value Stats P value

OCIDRs VN,K 6.94 0.01 52.69 0.00 73.70 0.00 76.20 0.00
MN,K 1.19 0.00 8.44 0.00 12.08 0.00 12.82 0.00

CIDRs VN,K 8.73 0.00 36.11 0.00 37.76 0.00 49.35 0.00
MN,K 0.06 0.00 0.26 0.00 0.29 0.00 0.42 0.00

Table III. Heteroscedasticity tests of de-volatized daily return 𝜀̂i and intra-day curves 𝜀̃i(t) from an optimal selected GARCH(p,q)
model, using Li–Mak test for scalar observations and VN,K and MN,K for functional observations respectively

K = 1 K = 5 K = 10 K = 20

Model Stats P value Stats P value Stats P value Stats P value

Panel A: Li–Mak Test on 𝜀̂i

GARCH(1,1) 0.07 0.79 2.50 0.77 10.91 0.36 26.94 0.13
Panel B: VN,K and MN,K Test on 𝜀̃i(t)

OCIDRs
VN,K 4.82 0.03 38.26 0.00 72.89 0.00 75.18 0.00
MN,K 2.5e+17 0.01 1.7e+18 0.00 3.5e+18 0.00 4.3e+18 0.00

CIDRs
VN,K 5.99 0.01 25.86 0.00 28.78 0.00 38.28 0.01
MN,K 1.51e+16 0.01 7.59e+16 0.00 1.01e+17 0.00 1.71e+17 0.00
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Figure 2. Plots of the estimated kernels of 𝜔(t), 𝛼(t, s) and 𝛽(t, s) in (3.1) for the FGARCH(1,1) model for the S&P 500
intra-day return curves
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Figure 3. Plots of de-volatized S&P 500 intra-day return curves based on an FGARCH(1,1) Model from 21 December 2017
to 2 January 2018 [Color figure can be viewed at wileyonlinelibrary.com]

The results of these tests are given in Panel B in Table III, which show that these curves still exhibit a substantial
amount of conditional heteroscedasticity.

Next, we consider the FARCH(1) and FGARCH(1,1) models for these curves. We fit each model with L = 1
in (3.1) to be consistent with the methods studied in the simulation section, and evaluate the adequacy of each
model as proposed above. Figure 2 shows plots of w(t) and wire-frame plots of the kernels 𝛼(t, s) and 𝛽(t, s) for
the FGARCH(1,1) model for both type of intra-day return curves. We then estimate 𝜎̂i(t) recursively with the
initial values of ŵ(t), and the de-volatized intra-day return 𝜀̂i(t) is fitted per 3.3. Figure 3 exhibits the de-volatized
intra-day returns over seven days by using the FGARCH(1,1) model.

Table IV reports the P-values from the diagnostic checks of the FGARCH(1,1) and FARCH(1) models applied
to the de-volatized intra-day returns. All of the three diagnostic tests show consistent results at the specified sig-
nificance levels. The FARCH(1) model is generally deemed to be inadequate for both types, although this model
performs as we expected to adequately model conditional heteroscedasticity at lag 1. By contrast, the P values in
Panel B of Table IV suggest that the FGARCH(1,1) model is acceptable for modeling the conditional heteroscedas-
ticity of both curve types. Figure 4 shows the P values of these tests as a function of K in the case of the OCIDR
curves (the results for the CIDR curves were similar), which show that this conclusion is apparently independent
of the choice of K.

In conjunction with the above results showing that these curves cannot be adequately de-volatized simply by
scaling with the conditional standard deviation estimates from GARCH models for the scalar returns, we draw the
following tentative conclusions from this analysis: (i) the magnitude of the return cannot fully explain the volatility
of intraday prices observed on subsequent days; instead we should consider the entire path of the price curve on
previous days to adequately model future intra-day conditional heteroscedasticity, and (ii) the FGARCH class of
models seems to be effective for modeling intra-day conditional heteroscedasticity.

6. CONCLUSION

We proposed two portmanteau-type conditional heteroscedasticity tests for functional time series. By applying the
test statistics to model residuals from the fitted functional GARCH models, our tests also provide two heuristic and
one asymptotically valid goodness-of-fit test for such models. Simulation results presented in this article show that
both tests have good size and power to detect conditional heteroscedasticity in functional financial time series and
assess the goodness-of-fit of the FGARCH models in finite samples. In an application to the dense intraday price

J. Time Ser. Anal. 41: 733–758 (2020) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
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Table IV. Diagnostic tests of FGARCH(1,1) and FARCH(1) models using Vheuristic
N,K,𝜀 , Mheuristic

N,K,𝜀 , and MN,K,𝜀 applied to the S&P
500 return curves

K = 1 K = 5 K = 10 K = 20

Stats P value Stats P value Stats P value Stats P value

Panel A: FARCH(1)

OCIDRs
Vheuristic

N,K,𝜀 0.25 0.62 33.86 0.00 50.07 0.00 52.53 0.00
Mheuristic

N,K,𝜀 5.79 0.53 216.08 0.00 324.45 0.00 358.37 0.00
MN,K,𝜀 5.79 0.41 216.08 0.01 324.45 0.01 358.37 0.10

CIDRs
Vheuristic

N,K,𝜀 2.54 0.11 33.11 0.00 36.59 0.00 52.32 0.00
Mheuristic

N,K,𝜀 68.32 0.04 586.09 0.00 737.63 0.00 1264.67 0.00
MN,K,𝜀 68.32 0.08 586.09 0.00 737.63 0.00 1264.67 0.00

Panel B: FGARCH(1,1)

OCIDRs
Vheuristic

N,K,𝜀 0.11 0.74 2.15 0.83 5.80 0.83 8.88 0.98
Mheuristic

N,K,𝜀 5.11 0.59 27.36 0.84 65.30 0.85 106.47 0.99
MN,K,𝜀 5.11 0.33 27.36 0.67 65.30 0.66 106.47 0.90

CIDRs
Vheuristic

N,K,𝜀 0.17 0.68 4.00 0.55 8.55 0.58 18.40 0.56
Mheuristic

N,K,𝜀 25.01 0.87 232.20 0.59 469.33 0.61 923.36 0.72
MN,K,𝜀 25.01 0.07 232.20 0.29 469.33 0.42 923.36 0.53
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Figure 4. P-values of white noise and goodness of fit tests for the FARCH(1) and FGARCH(1,1) models applied to the OCIDR
curves derived from the S&P 500 index based on MN,K,𝜀 as a function of K, K = 1,… , 20. The horizontal red line is at the level
of 5%. The plot generally suggests the adequacy of the FGARCH(1,1) model [Color figure can be viewed at wileyonlinelibrary.

com]

data, we investigated the conditional heteroscedasticity of three types of the intra-day return curves, including
the overnight cumulative intra-day returns, the cumulative intra-day returns and the intra-day log returns from
two assets. Our results suggested that these curves exhibit substantial evidence of conditional heteroscedasticity
that cannot be accounted for simply by rescaling the curves by using measurements of the conditional standard
deviation based on the magnitude of the scalar returns. However, the functional conditional volatility models
often appeared to be adequate for modeling this observed functional conditional heteroscedasticity in financial
data.
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APPENDIX A. PROOFS OF RESULTS IN SECTION 2

Proofs of Theorem 2.1. First we show (2.5). Under 0 and Assumption 2.1 the random variables Y1,i = ‖Xi‖2 are
i.i.d., and satisfy EY4

1,i < ∞. (2.5) now follows Theorem 7.2.1 and problem 2.19 of Brockwell and Davis (1991).
To show (2.6), we recall some notation and the statement of Lemma 5 in Kokoszka et al. (2017). Let K be a positive
integer as in the definition of MN,K . Consider the space 1 of functions f ∶ [0, 1]2 → ℝK , mapping the unit square
to the space of K-dimensional column vectors with real entries, satisfying

∫∫ {f (t, s)}⊤ f (t, s)dtds <∞.

This space is a separable Hilbert space when equipped with the inner product

⟨f , g⟩,1 = ∫∫ {f (t, s)}⊤ g(t, s)dtds.

Let ‖ ⋅ ‖,1 denote the norm induced by this inner product. Let ⟨⋅, ⋅⟩𝔽 denote the matrix Frobenius inner product,
and let ‖ ⋅ ‖𝔽 denote the corresponding norm; see Chapter 5 of Meyer (2000). Further let 2 denote the space of
functions f ∶ [0, 1]4 → ℝK×K , equipped with the inner product

⟨f , g⟩,2 = ∫∫∫∫ ⟨f (t, s, u, v), g(t, s, u, v)⟩𝔽dtdsdudv.

for which ⟨f , f ⟩,2 < ∞. 2 is also a separable Hilbert space when equipped with this inner product.
Let 𝜓K ∶ [0, 1]4 → ℝK×K be a matrix valued kernel where the 1 ≤ i, j ≤ K component is denoted by 𝜓K,i,j(t, s, u, v).
We then define 𝜓K by

𝜓K,i,j(t, s, u, v) =

{
cov(X2

0(t),X
2
0(u))cov(X2

0(s),X
2
0(v)), 1 ≤ i = j ≤ K,

0, 1 ≤ i ≠ j ≤ K.
(A1)

The kernel 𝜓K defines a linear operator ΨK ∶ 1 → 1 by

ΨK(f )(t, s) = ∫∫ 𝜓K(t, s, u, v)f (u, v)dudv, (A2)

where the integration is carried out coordinate-wise. Following the preamble to the proof of Lemma 5 of Kokoszka
et al. (2017), it follows that the operator ΨK is compact, symmetric, and positive definite. Due to these three
properties, we have by the spectral theorem for positive definite, self-adjoint, compact operators, for example,
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Chapter 6.2 of Riesz and Nagy (1990), that ΨK defines a nonnegative and decreasing sequence of eigenvalues and
a corresponding orthonormal basis of eigenfunctions 𝜑i,K(t, s), 1 ≤ i <∞, satisfying

ΨK(𝜑i,K)(t, s) = 𝜉i,K𝜑i,K(t, s), with
∞∑

i=1

𝜉i,K < ∞. (A3)

With this notation, we now define Γ̂N,K(t, s) =
√

N
{
𝛾̂1(t, s),… , 𝛾̂K(t, s)

}⊤ ∈ 1.Under0 and Assumption 2.1, the

sequence {X2
i (t)} satisfies the conditions of Lemma 5 of Kokoszka et al. (2017), which implies that Γ̂N,K(t, s)

(1)
→

ΓK(t, s), where ΓK(t, s) is a Gaussian process with covariance operator ΨK , and
(1)
→ denotes weak convergence in

1. It now follows from the Karhunen–Loéve representation and continuous mapping theorem that

MN,K = ‖Γ̂N,K‖2 
→ ‖ΓK‖2 

=
∞∑

i=1

𝜉i,K𝜒
2
1 (i).

A simple calculation based on (A1) shows that the eigenvalues of ΨK are products of the eigenvalues defined by
(2.4), {𝜆i𝜆j, 1 ≤ i, j < ∞}, with each eigenvalue having multiplicity K, giving the form of the limit distribution
in (2.6).

Justification of (4.2). Using proposition 5.10.16 of Bogachev (1998), we have that

E(‖ΓK‖2,1) = tr(ΨK) = K

(
∫ cov(X2

0(t),X
2
0(t))dt

)2

,

and

var(‖ΓK‖2,1) = 2 tr(Ψ2
K) = 2K

(
∫∫ cov(X2

0(t),X
2
0(s))dtds

)2

.

Proof of Theorem 2.2. We only show (2.7) as (2.8) follows similarly from it. Let Ch(t, s) = cov(X2
i (t),X

2
i+h(s)) ≠ 0.

It follows from the assumed L8-m-approximability of Xi that X2
i is L4-m-approximable, from which we can show

that ‖𝛾̂h(t, s) − Ch(t, s)‖ = OP(1∕
√

N). Now MN,K ≥ N‖𝛾̂h(t, s)‖2, and ‖𝛾̂h(t, s)‖2 = ‖𝛾̂h − Ch‖2 + 2⟨𝛾̂h − Ch,Ch⟩+‖Ch‖2. It follows that N[‖𝛾̂h − Ch‖2 + 2⟨𝛾̂h − Ch,Ch⟩] = OP(
√

N), and N‖Ch‖2 diverges to positive infinity at rate
N, yielding the desired result.

Proof of Theorem 2.3. Again we only prove (2.10) as (2.9) follows from it by a similar argument. By squaring
both sides of of (2.1) and iterating (2.2), we obtain that

X2
i (t) = 𝜔𝛼(t) +

∞∑
𝓁=0

𝜶(𝓁)(Yi−𝓁)(t),

where the series on the right-hand side of the above equation converges in L2[0, 1] with probability one, and

𝜔𝛼(t) =
∞∑
𝓁=0

𝜶(𝓁)(𝜔)(t).

J. Time Ser. Anal. 41: 733–758 (2020) © 2020 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12532 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



752 G. RICE ET AL.

Therefore, X2
i (t) is a linear process in L2[0, 1] with mean 𝜔𝛼(t) generated by the weak functional white noise

innovations Yi as defined in Bosq (2000). It now follows from Assumption 2.1 and the ergodic theorem that

‖‖‖‖‖‖𝛾̂h(t, s) −
∞∑

j=0

E𝜶(j)(Yj)(t)𝜶(j+h)(Yj)(s)
‖‖‖‖‖‖ = oP(1).

It follows from this and the reverse triangle inequality that

MN,K

N
=

K∑
h=1

‖𝛾̂h‖2 p
→

K∑
h=1

‖‖‖‖‖‖
∞∑

j=0

E𝜶(j)(Yj)(t)𝜶(j+h)(Yj)(s)
‖‖‖‖‖‖

2

,

as desired.

APPENDIX B. PROOF OF THEOREM 3.1 AND ESTIMATION OF PARAMETERS/KERNELS IN
SECTION 3.1

We first develop some notation and detail the assumptions that we use to establish Theorem 3.1. Recall
from (3.2) that the FGARCH equations along with (3.1) imply that 𝔰2

i = D + Ax2
i−1 + B𝔰2

i−1, where x2
i =

[
⟨

X2
i , 𝜙1

⟩
,… ,

⟨
X2

i , 𝜙L

⟩
]⊤, 𝔰2

i = [
⟨
𝜎2

i , 𝜙1

⟩
,… ,

⟨
𝜎2

i , 𝜙L

⟩
]⊤, the coefficient vector D = [d1,… , dL]⊤ ∈ ℝL,

and the coefficient matrices A and B are ℝL×L with (j, j′) entries by aj,j′ and bj,j′ respectively. Let Γ0(t, s) =
𝛼(t, s)𝜀2

0(s) + 𝛽(t, s). We make the following assumptions:

Assumption B.1. E ‖‖∫ Γ0(⋅, s)ds‖‖2
∞ < 1, and 𝜔 ∈ C[0, 1].

Assumption B.2. Q0 is nonsingular.

Assumption B.3. x2
0 is not measurable with respect to 0.

Assumption B.4. inf𝜃∈Θ |det(A)| > 0 and sup𝜃∈Θ ‖B‖op < 1, where ‖ ⋅ ‖op is the matrix operator norm of B.

Assumption B.5. E‖𝜀4
0‖∞ < ∞

Assumption B.6. There exists a constant 𝛿 so that inf𝜃∈Θ inft∈[0,1] 𝜔(t) ≥ 𝛿 > 0.

Assumptions B.1–B.4 come directly from Aue et al. (2017), and imply both that there exists a strictly stationary
and causal solution to the FGARCH equations in C[0, 1], and that 𝜃̂N is a strongly consistent estimator of 𝜃0 that
also satisfies the central limit theorem. Assumption B.5 is a somewhat stronger assumption than those of Theorem
3.2 of Aue et al (2017). It is used in the proofs below mainly to establish uniform integrability of terms of the
form ‖Xi∕𝜎i‖∞. Assumption B.6 is implied by the conditions of Cerovecki et al. (2019) that the functions 𝜙i

are strictly positive and that D ∈ ΘD ⊂ (0,∞)L, where ΘD is compact, but also may hold under more general
conditions.

Theorem B.1 (Restatement of Theorem 3.1). Let Γ(𝜀,𝜃)
N,K = (

√
N𝛾̂𝜀,1,… ,

√
N𝛾̂𝜀,K)⊤ ∈ 1. Then under Assumption

B.1–B.6,

Γ(𝜀,𝜃)
N,K

(1)
→ Γ𝜀,𝜃,
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where Γ𝜀,𝜃 is a mean zero Gaussian process in 1 with covariance operators Ψ(𝜀,𝜃)
K defined by

Ψ(𝜀,𝜃)
K (f )(t, s) = ∫∫ 𝜓

(𝜀,𝜃)
K (t, s, u, v)f (u, v)dudv, (B1)

where 𝜓 (𝜀,𝜃)
K (t, s, u, v) is a matrix valued kernel defined by (3.8). In addition,

MN,K,𝜀


→

∞∑
i=1

𝜉i,K𝜒
2
1 (i),

where 𝜉i,K i ≥ 1 are the eigenvalues of Ψ(𝜀,𝜃)
K .

Before proving this result, we introduce further notation. We write 𝜎2
i (t, 𝜃) to indicate the dependence of 𝜎2

i (t) on
the vector of parameters 𝜃, and similarly write
𝔰2

i (𝜃) = [
⟨
𝜎2

i (⋅, 𝜃), 𝜙1

⟩
,… ,

⟨
𝜎2

i (⋅, 𝜃), 𝜙L

⟩
]⊤. It follows that with 𝚽(t) = (𝜙1(t),… , 𝜙L(t))⊤, 𝜎2

i (t, 𝜃) = 𝔰2
i (𝜃)

⊤𝚽(t).
Iterating (3.2), we see using Assumption (B.4) that

𝜎2
i (t, 𝜃) =

( ∞∑
𝓁=0

B𝓁¸i−𝓁

)⊤

fl(t), where ¸i−𝓁 = D + Ax2
i−1−𝓁 . (B2)

We define

𝜎̃2
i (t, 𝜃) =

(
i−1∑
𝓁=0

B𝓁¸𝓁

)⊤

𝚽(t), (B3)

which allows us to define

𝜎̂2
i (t) = 𝜎̃2

i (t, 𝜃̂N). (B4)

In addition to 𝛾̂𝜀,h defined in (3.4), we also define

𝛾̃𝜀,h(t, s, 𝜃) =
1
N

N−h∑
i=1

(
X2

i (t)
𝜎̃2

i (t, 𝜃)
− 1

)(
X2

i+h(s)
𝜎̃2

i+h(s, 𝜃)
− 1

)
. (B5)

and

𝛾⋆
𝜀,h(t, s, 𝜃) =

1
N

N−h∑
i=1

(
X2

i (t)
𝜎2

i (t, 𝜃)
− 1

)(
X2

i+h(s)
𝜎2

i+h(s, 𝜃)
− 1

)
, (B6)

so that 𝛾̂𝜀,h(t, s) = 𝛾̃𝜀,h(t, s, 𝜃̂N). Below we let 𝜃(j) denote the j′th coordinate of 𝜃.

Lemma B.1. Under Assumptions B.1–B.6, for all h such that 1 ≤ h ≤ K,

sup
𝜃∈Θ

√
N‖𝛾̃𝜀,h(⋅, ⋅, 𝜃) − 𝛾⋆𝜀,h(⋅, ⋅, 𝜃)‖ = oP(1), (B7)
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and

max
j∈{1,…,L+2L2}

sup
𝜃∈Θ

‖‖‖‖‖𝜕𝛾̃𝜀,h(⋅, ⋅, 𝜃)𝜕𝜃(j)
−
𝜕𝛾⋆

𝜀,h(⋅, ⋅, 𝜃)
𝜕𝜃(j)

‖‖‖‖‖ = oP(1). (B8)

Proof. It follows from equation (2.4) of Aue et al. (2017) that there exists a constant c1 > 0 so that almost surely

sup
𝜃∈Θ
‖𝜎2

i (⋅, 𝜃) − 𝜎̃
2(⋅, 𝜃)‖∞ ≤ c1𝜌

i, and sup
𝜃∈Θ
‖𝜎2

i (⋅, 𝜃) − 𝜎̃
2(⋅, 𝜃)‖ ≤ c1𝜌

i, (B9)

for some 0 < 𝜌 < 1. We then have by adding and subtracting(
X2

i (t)
𝜎̃2

i (t, 𝜃)
− 1

)(
X2

i+h(s)
𝜎2

i+h(s, 𝜃)
− 1

)

in the summands defining the difference 𝛾̃𝜀,h − 𝛾⋆𝜀,h that this difference can be expressed as

𝛾̃𝜀,h(t, s, 𝜃) − 𝛾⋆𝜀,h(t, s, 𝜃) = R1,N(t, s, 𝜃) + R2,N(t, s, 𝜃),

where

R1,N(t, s, 𝜃) =
1
n

n−h∑
i=1

[
X2

i (t)
𝜎̃2

i (t, 𝜃)
− 1

][
X2

i+h(s)
𝜎̃2

i+h(s, 𝜃)
− 1

]
−

[
X2

i (t)
𝜎̃2

i (t, 𝜃)
− 1

][
X2

i+h(s)
𝜎2

i+h(s, 𝜃)
− 1

]

and

R2,N(t, s, 𝜃) =
1
n

n−h∑
i=1

[
X2

i (t)
𝜎̃2

i (t, 𝜃)
− 1

][
X2

i+h(s)
𝜎2

i+h(s, 𝜃)
− 1

]
−

[
X2

i (t)
𝜎2

i (t, 𝜃)
− 1

][
X2

i+h(s)
𝜎2

i+h(s, 𝜃)
− 1

]
.

We note that Assumption B.6 implies that 𝜎̃2
i (t, 𝜃) > 𝛿 and 𝜎2

i (t, 𝜃) > 𝛿 uniformly in t and 𝜃 ∈ Θ, hence with this,
the triangle inequality, and simple arithmetic yields that

|R1,N(t, s, 𝜃)| ≤ 1
n

n−h∑
i=1

||||| X2
i (t)

𝜎̃2
i (t, 𝜃)

− 1
||||| |X2

i+h(s)| |||||
𝜎̃2

i+h(s, 𝜃) − 𝜎
2
i+h(s, 𝜃)

𝜎̃2
i+h(s, 𝜃)𝜎

2
i+h(s, 𝜃)

|||||
≤ 1

n

n−h∑
i=1

||||||
(

X2
i (t)

𝜎̃2
i (t, 𝜃)

− 1

)
X2

i+h(s)
||||||
|||||
𝜎̃2

i+h(s, 𝜃) − 𝜎
2
i+h(s, 𝜃)

𝜎̃2
i+h(s, 𝜃)𝜎

2
i+h(s, 𝜃)

|||||
≤ 1

n

n−h∑
i=1

|||||
X2

i (t)X
2
i+h(s)
𝛿

− X2
i+h(s)

|||||
|||||
𝜎̃2

i+h(s, 𝜃) − 𝜎
2
i+h(s, 𝜃)

𝛿2

|||||
≤ 1

n

n−h∑
i=1

|||||
X2

i (t)X
2
i+h(s)
𝛿

− X2
i+h(s)

|||||
‖𝜎̃2

i+h(⋅, 𝜃) − 𝜎
2
i+h(⋅, 𝜃)‖∞

𝛿2

≤ 1
n

n−h∑
i=1

|||||
X2

i (t)X
2
i+h(s)
𝛿

− X2
i+h(s)

||||| c1𝜌
i+h

𝛿2
, a.s..
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It follows from Assumption B.1 and the proof of Theorem 2.1 in Aue et al. (2017) that E‖𝜎2
i (⋅, 𝜃0)‖2 < ∞. Now

using the Cauchy-Schwarz inequality, the stationarity of the solution Xi, the fact that 𝜎2
i is measurable with respect

to i−1, and Assumption B.5, we have that

E‖X2
i (⋅)X

2
i+h(⋅)‖ = E‖X2

i ‖‖X2
i+h‖ ≤ E‖X2

i ‖2 = E ∫ 𝜎4
i (t)𝜀

4
i (t)dt ≤ E‖𝜀4

0‖∞E‖𝜎2
i ‖2 < ∞.

From this it follows that E‖X2
i (⋅)X

2
i+h(⋅)∕𝛿 − X2

i+h(⋅)‖ < c2, for a positive constant c2, and hence

sup
𝜃∈Θ

√
NE‖R1,N(⋅, ⋅, 𝜃)‖ ≤ 1√

N

n−h∑
i=1

c1c2

𝛿3
𝜌i+h = o(1).

We therefore have by Markov’s inequality that sup𝜃∈Θ
√

N‖R1,N(⋅, ⋅, 𝜃)‖ = oP(1). It follows similarly that

sup𝜃∈Θ
√

N‖R2,N(⋅, ⋅, 𝜃)‖ = oP(1), which establishes (B7). To show (B8), we first note that by simply differenti-
ating (B2) that with 𝟙(j) denoting an L vector of zeros with a single 1 in the j′th position, and 𝟙(j,k) being a L × L
matrix of zeroes with a single 1 in the (j,𝓁)′th position, that for 1 ≤ j, k ≤ L,

𝜕𝜎2
i (t, 𝜃)
dj

=

( ∞∑
𝓁=0

B𝓁𝟙(j)
)⊤

𝚽(t),
𝜕𝜎2

i (t, 𝜃)
aj,k

=

( ∞∑
𝓁=0

B𝓁𝟙(j,k)xi−1−𝓁

)⊤

𝚽(t),

and

𝜕𝜎2
i (t, 𝜃)
bj,k

=

( ∞∑
𝓁=0

{
𝓁∑

r=1

Br−1𝟙(j,k)B𝓁−r

}
𝜉i

)⊤

𝚽(t).

Similarly

𝜕𝜎̃2
i (t, 𝜃)
dj

=

(
i−1∑
𝓁=0

B𝓁𝟙(j)
)⊤

𝚽(t),
𝜕𝜎̃2

i (t, 𝜃)
aj,k

=

(
i−1∑
𝓁=0

B𝓁𝟙(j,k)xi−1−𝓁

)⊤

𝚽(t), (B10)

and

𝜕𝜎̃2
i (t, 𝜃)
bj,k

=

(
i−1∑
𝓁=0

{
𝓁∑

r=1

Br−1𝟙(j,k)B𝓁−r

}
𝜉i

)⊤

𝚽(t). (B11)

By Assumption B.4 it follows similarly as (B9) that

max
j∈{1,…,L+2L2}

sup
𝜃∈Θ

‖‖‖‖‖𝜕𝜎̃
2
i (⋅, 𝜃)
𝜕𝜃(j)

−
𝜕𝜎2

i(⋅, 𝜃)
𝜕𝜃(j)

‖‖‖‖‖∞ ≤ c4𝜌
i,

for a 0 < 𝜌 < 1. From this (B8) follows similarly as (B7), and so we omit the details.
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Proof of Theorem 3.1. Noting that 𝛾̂𝜀,h(t, s) = 𝛾̃𝜀,h(t, s, 𝜃̂N), we get by applying a one term Taylor’s expansion
centered at 𝜃0 that for all t, s ∈ [0, 1] and 1 ≤ h ≤ K,

√
N𝛾̂𝜀,h(t, s) =

√
N𝛾̃𝜀,h(t, s, 𝜃0) +

𝜕𝛾̃𝜀,h(t, s, 𝜃∗)
𝜕𝜃

√
N(𝜃̂N − 𝜃0), (B12)

where 𝜃∗ is contained in the L + 2L2 dimensional rectangle in ℝL+2L2
between 𝜃0 and 𝜃̂N . By Lemma B.1, there

exists a function R3,N(t, s) satisfying that ‖R3,N(⋅, ⋅)‖ = oP(1), and

√
N𝛾̃𝜀,h(t, s, 𝜃0) +

𝜕𝛾̃𝜀,h(t, s, 𝜃∗)
𝜕𝜃

√
N(𝜃̂N − 𝜃0) =

√
N𝛾⋆

𝜀,h(t, s, 𝜃0)+
𝜕𝛾⋆

𝜀,h(t, s, 𝜃
∗)

𝜕𝜃

√
N(𝜃̂N − 𝜃0)

+ R3,N(t, s).

Let

ĜN,h(t, s, 𝜃) =
𝜕𝛾⋆

𝜀,h(t, s, 𝜃)
𝜕𝜃

,

so for each fixed 𝜃, Ĝn,h ∶ [0, 1]2 → ℝL+2L2
. Calculating the derivative for each t, s ∈ [0, 1] yields that

ĜN,h(t, s, 𝜃) = − 1
N

N−h∑
i=1

(
X2

i (t)
𝜎4

i (t, 𝜃)
𝜕𝜎2

i (t, 𝜃)
𝜕𝜃

)(
X2

i+h(s)
𝜎2

i+h(s, 𝜃)
− 1

)
(B13)

− 1
N

N−h∑
i=1

(
X2

i (t)
𝜎2

i (t, 𝜃)
− 1

)(
X2

i+h(s)
𝜎4

i (s, 𝜃)
𝜕𝜎2

i+h(s, 𝜃)
𝜕𝜃

)
.

Applying another Taylor’s expansion to ĜN,h centered at 𝜃0 gives that

ĜN,h(t, s, 𝜃∗) = ĜN,h(t, s, 𝜃0) +
𝜕ĜN,h(t, s, 𝜃∗∗)

𝜕𝜃
(𝜃∗ − 𝜃0),

where 𝜃∗∗ is between 𝜃∗ and 𝜃0. It follows as in the proof of Lemma B.1 that

max
j∈{1,…,L+2L2}

sup
𝜃∈Θ

E
‖‖‖‖‖𝜕ĜN,h(⋅, ⋅, 𝜃)

𝜕𝜃(j)

‖‖‖‖‖ < ∞,

and hence using the strong consistency of 𝜃̂N we obtain that ‖ĜN,h(t, s, 𝜃∗) − ĜN,h(t, s, 𝜃0)‖ = oP(1). From (B13),
we see that

ĜN,h(t, s, 𝜃0) = − 1
N

N−h∑
i=1

(
𝜀2

i (t)
𝜎2

i (t, 𝜃)
𝜕𝜎2

i (t, 𝜃)
𝜕𝜃

)(
𝜀2

i+h(s) − 1
)

− 1
N

N−h∑
i=1

(
𝜀2

i (t) − 1
)( 𝜀2

i+h(s)
𝜎2

i (s, 𝜃)
𝜕𝜎2

i+h(s, 𝜃)
𝜕𝜃

)
.
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Since 𝜎2
i is i−1 measurable and E𝜀2

i+h(s) = 1, the expectation of the first term is zero so that, EĜN,h(t, s, 𝜃0) =
[(N − h)∕N]Gh(t, s). Furthermore, since 𝜎2

i is ergodic, we have by the ergodic theorem in Hilbert space, see for
example, Bosq (2000), that

max
j∈{1,…,L+2L2}

‖Ĝ(j)
N,h(⋅, ⋅, 𝜃0) − G(j)

h ‖ = oP(1).

Combining these results with (B12), we see that√
N𝛾̂𝜀,h(t, s) =

√
N𝛾⋆

𝜀,h(t, s, 𝜃0) + Gh(t, s)
√

N(𝜃̂N − 𝜃0) + R4,N(t, s), (B14)

where ‖R4,N‖ = oP(1). We note that

√
N𝛾⋆

𝜀,h(t, s, 𝜃0) =
1√
N

N−h∑
i=1

(𝜀2
i (t) − 1)(𝜀2

i+h(s) − 1),

depends solely on the error process: in particular it is
√

N times the estimated autocovariance of the squared error
processes that was considered in Appendix A. Let
Γ(𝜀)

N,K = (
√

N𝛾⋆
𝜀,h(⋅, ⋅, 𝜃0),… ,

√
N𝛾⋆

𝜀,K(⋅, ⋅, 𝜃0))⊤ and

Γ(𝜃)
N,K = (G1(⋅, ⋅)

√
N(𝜃̂N − 𝜃0),… ,Gh(⋅, ⋅)

√
N(𝜃̂N − 𝜃0))⊤. It follows then from (B14) that

‖Γ(𝜀,𝜃)
N,K − (Γ(𝜀)

N,K + Γ(𝜃)
N,K)‖,1 = oP(1).

We now aim at establishing the weak limit of Γ(𝜀)
N,K +Γ(𝜃)

N,K in 1. Γ(𝜀)
N,K is tight in 1 as was established in Appendix

A, and Γ(𝜃)
N,K is tight in 1 since ℝL+2L2

is sigma-compact, hence Γ(𝜀)
N,K +Γ(𝜃)

N,K is tight in 1. According to the proof of
Theorem 4 on p. 19 of Aue et al. (2017), in particular their equations (5.15)–(5.22), we have under Assumptions
B.1–B.6 that

‖‖‖‖‖‖
√

N(𝜃̂N − 𝜃0) −
Q−1

0√
N

N∑
i=1

𝜕𝔰2
i (𝜃0)⊤

𝜕𝜃
[x2

i − 𝔰2
i (𝜃0)]

‖‖‖‖‖‖E

= oP(1).

Therefore if z ∈ 1,

⟨Γ(𝜀)
N,K + Γ(𝜃)

N,K , z⟩,1 = 1√
N

{ N∑
i=1

[ K∑
h=1

(⟨(𝜀2
i (⋅) − 1)⊗ (𝜀2

i+h(⋅) − 1), z(h)⟩ (B15)

+ ⟨Gh, z
(h)⟩∗Q−1

0

𝜕𝔰2
i (𝜃0)⊤

𝜕𝜃
[x2

i − 𝔰2
i (𝜃0)]

)]}
=∶ 1√

N

N∑
i=1

𝜈i(z),

where ⟨Gh, z
(h)⟩∗ is used to denote that the inner-product is carried out coordinate-wise, so that ⟨Gh, z

(h)⟩∗ ∈ ℝL+2L2
.

Noting that 1) 𝔰2
i is i−1 measurable, and 2) E[xi − 𝔰i(𝜃0)|i−1] = 0, we see that 𝜈i(z) form a martingale difference
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sequence. Moreover, 𝜈i(z), i ∈ ℤ is a stationary sequence since (𝜀2
i , 𝔰

2
i , x

2
i ) is stationary. Using the Cauchy Schwarz

inequality, it follows readily that for a positive constant c5

E𝜈2
i (z) ≤ c5

⎧⎪⎨⎪⎩‖z‖,1E‖𝜀2
i ‖2 + max

1≤h≤K
E

(⟨Gh, z⟩∗Q−1
0

𝜕𝔰2
i (𝜃0)⊤

𝜕𝜃
[x2

i − 𝔰2
i (𝜃0)]

)2⎫⎪⎬⎪⎭ < ∞,

using Assumption B.5. Hence by the martingale central limit theorem, see for example Corrollary A.1 in Francq

and Zakoïan (2010), ⟨Γ(𝜀)
N,K + Γ(𝜃)

N,K , z⟩,1 
→ N(0,Var(𝜈0(z))). Straightforward calculation shows that Var(𝜈0(z)) =⟨ΨK,𝜀,𝜃(z), z⟩,1, which establishes the first half of the Theorem. The asymptotic distribution of the MN,K,𝜀 follows

immediately from the continuous mapping theorem and the Karhunen–Loéve representation of the process Γ𝜀,𝜃 .

B.1. Estimation of Ψ(𝜀,𝜃)
K,h,g

Estimating the covariance kernel Ψ(𝜀,𝜃)
K,h,g for 1 ≤ h ≤ K, 1 ≤ g ≤ K is nontrivial given its dimensionality and its

complicated composition. We describe here how to numerically estimate the key components in Ψ̂(𝜀,𝜃)
K,h,g.

Recalling (3.8), we focus on the estimation of last three terms because C𝜀(t, s, u, v) can be estimated straightfor-
wardly. In particular, it is not hard to see that to estimate C𝜀,𝜃

h,g(t, s, u, v) and G⊤
h (t, s)Q

−1
0 H⊤

0 J0H0Q−1
0 Gg(u, v), we

need to estimate Gh(t, s) and 𝜕𝔰2
0(𝜃0)∕𝜕𝜃. To estimate Gh(t, s), we consider the partial derivative

𝜕𝜎̂2
i+h(s, 𝜃̂N)
𝜕𝜃

=
𝜕
∑L

j 𝔰̂
2
i+h,j(𝜃̂N)𝜙̂j(s)
𝜕𝜃

=
[
𝜕𝔰̂2

i+h(𝜃̂N)
𝜕d1

𝜙̂1(s),… ,
𝜕𝔰̂2

i+h(𝜃̂N)
𝜕dL

𝜙̂L(s),
𝜕𝔰̂2

i+h(𝜃̂N)
𝜕a1,1

𝜙̂1(s)𝜙̂1(t)

… ,
𝜕𝔰̂2

i+h(𝜃̂N)
𝜕aL,L

𝜙̂L(s)𝜙̂L(t),
𝜕𝔰̂2

i+h(𝜃̂N)
𝜕b1,1

𝜙̂1(s)𝜙̂1(t),… ,
𝜕𝔰̂2

i+h(𝜃̂N)
𝜕bL,L

𝜙̂L(s)𝜙̂L(t)
]⊤
.

where 𝜙̂1,… , 𝜙̂L are the estimated principal components. Considering that (3.2) can be written as 𝔰2
i =

∑∞
l=0 Bl(D+

Ax2
i−l−1), we use (B10) and (B11) to obtain,

𝜕𝔰̂2
i (𝜃̂N)
𝜕dj

=
∞∑
𝓁=0

B̂𝓁𝟙(j),
𝜕𝔰̂2

i (𝜃̂N)
𝜕aj,k

=
∞∑
𝓁=0

B̂𝓁𝟙(j,k)x̂2
i−𝓁−1,

𝜕𝔰̂2
i (𝜃̂N)
𝜕bj,k

=
∞∑
𝓁=1

[
𝓁∑

i=1

B̂i−1𝓁(j,k)B̂𝓁−i

]
(D̂ + Âx̂2

i−𝓁−1), 1 ≤ j ≤ L, 1 ≤ k ≤ L.

(B16)

We choose the initial value of x0 = D̂. As B̂𝓁 decays geometrically under the condition of stationarity, we only
consider 0 ≤ 𝓁 ≤ 5 in the implementation for computational efficiency, and further lags beyond 5 are ignored.
Since 𝜕𝜎̂2

i (s, 𝜃̂N)∕𝜕𝜃 is a (L + 2L2) × 1 vector, we consider the column sums on each individual partial derivative.
Similarly to (B16), we are able to estimate 𝜕𝔰2

i (𝜃0)∕𝜕𝜃, from which H0 and Q0 can be estimated by simple averages.
Lastly, we discuss how to adapt the above estimation technique for the FARCH(1) model. The number of param-
eters in the FARCH(1) model is L + L2 because the GARCH coefficient matrix B vanish in this case. Thus, we
have 𝔰2

i = D + Ax2
i−1, and the derivatives in (B16) only need to be taken with respect to D and A.
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