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Abstract

We develop and study change point detection and estimation procedures for the covariance kernel of functional data
based on the norms of a generally weighted process of partial sample estimates. It is shown under mild weak depen-
dence and moment conditions on the data that in the absence of a change point a detector based on integrating such
a process over the partial sample parameter is asymptotically distributed as the norm of a Gaussian process, which
furnishes a consistent change point detection procedure. We further derive consistency and local asymptotic results for
this detector in the presence of a change in the covariance function. The corresponding change point estimator based
on such a process is also shown to be rate optimal for estimating an existing change point, and further is asymptoti-
cally distributed as the argument maximum of a Gaussian process under a local asymptotic framework. We study the
detector and change point estimator in a small simulation study to detect changes in the covariance of functional au-
toregressive and generalized conditionally heteroscedastic processes, which demonstrate that the use of the weighted
CUSUM statistics in this context generally improves performance over existing methods. These new statistics are
demonstrated in an application to detecting changes in the volatility of high resolution intraday asset price curves
derived from oil futures prices.

Keywords: approximation of partial sums of functions; Bernoulli shift; change point detection; functional data;
2010 MSC: Primary 62H12, Secondary 62F12

1. Introduction

Functional data analysis has emerged as a vibrant area of research in statistics over the past several decades, owing
to the multitude of data now collected, often at a high resolution, over a continuum. Such data can be viewed as
discrete observations from functional data objects taking values in a function space. In a number of examples of
interest, functional data objects are obtained sequentially as functional time series. We refer the reader to [22, 29, 39]
and [43] for textbook length treatments of functional data analysis, and [19] for a survey of modern research topics.
Seminal work on functional time series analysis is summarized in [17], and further reviewed in [38, 44]

In the setting of functional time series, one often encounters series of curves exhibiting nonstationarity that appears
as “shocks” or structural changes in the data generating mechanism. A simple model for such data is a change point
model in which various features of the series are allowed to change at unknown points over the observation period; see
[32] for a survey of change point analysis. Inference for change points in the level or mean function with functional
data have been avidly studied recently. [5, 6, 14, 23] consider mean change point analysis of serially independent
functional data, and many of these methods were extended to cover potential serial dependence in [4, 10, 46]. [12]
develops a test for changes in the mean of a functional time series evolving according to heteroscedastic functional
factor model.

Many change points appear though as changes to the underlying variance or covariance structure, rather than
level shifts in the mean. Change point analysis for the variance and covariance matrices of scalar or vector valued
observations enjoys an enormous literature going back to at least [33] in the scalar case, and more recent references
for change point analysis of the covariance matrix include [8, 13, 24, 49, 50]. The problem of conducting change
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point analysis for the covariance function or operator describing the second order behaviour of functional data has
been comparatively less explored. [34] is apparently the first to consider the change point detection problem for the
covariance operator of independent functional data, and their approach is based on an initial dimension reduction
step using functional principal component analysis. [48] generalized these detection methods as well as several other
dimension reduction based approaches to allow for general forms of serial dependence. [11, 20] consider change point
inference under similar weak dependence conditions for the spectrum and eigenfunctions, respectively, of covariance
operators. Evaluating potential changes in the covariance operator is of particular interest in functional data analysis,
since the covariance operator is central to a wide range of dimension reduction approaches for functional data, as
described in the prior surveys [1, 26].

Most closely related to the present paper are [47], who develop change point detection methods for the covariance
operator based on norms of a suitably constructed functional cumulative sum (CUSUM) process under general weak
dependence conditions. The recent preprint [35] considers change point detection as well as estimation using similar
norm-based techniques and conditions to [47], with applications to functional data objects derived from rat brain
studies. A notable feature of each of these procedures is that they are based on norms of the standard CUSUM
process. As is well known in general with change point analysis, detection and estimation can be improved when
change points are located away from the middle of the sample by applying weights to the standard CUSUM process in
order to make the “variance” of the process more comparable at each potential change point; see e.g. [31] for a detailed
discussion. Although it is conceptually simple to apply such weights, the application in this context encounters some
technical challenges in that suitable weighted approximations for the CUSUM process of random elements in general
infinite dimensional Hilbert space are not available.

In this paper, we develop and study change point detection and estimation procedures for the covariance oper-
ator based on the norms of weighted functional CUSUM processes. In the absence of a change point we establish
the asymptotic distribution of a change point detector based on integrating such processes across the partial sample
parameter under general weak dependence conditions similar to those considered in [47, 48], and we further derive
consistency and local asymptotic results for this detector in the presence of a change in the covariance function. Ad-
ditionally, we show that the natural change point estimator based on such processes is rate optimal for estimating
an existing change point, and further is asymptotically distributed as the argument maximum of a Gaussian process
under a local asymptotic framework. In place of suitable weighted approximations, we establish Hájek–Rényi style
inequalities for the norms of partial sample estimates of the covariance function, which underpin these results. We
study the detector and change point estimator in a small simulation study to detect changes in the covariance of func-
tional autoregressive and generalized conditionally heteroscedastic processes, which demonstrate that the use of the
weighted CUSUM statistics in this context generally improves performance over existing methods. These new statis-
tics are demonstrated in an application to detecting changes in the volatility of high resolution intraday asset price
curves derived from oil futures prices.

The rest of the paper is organized as follows. In Section 2 we introduce the change point model and assumptions,
define the weighted CUSUM change point detector, and detail its asymptotic behaviour. Section 3 details some specific
examples, functional linear processes, in which changes in the covariance function arise and can be quantified based
on changes in the model parameters. We define and present the asymptotic properties of the change point estimator in
Section 4. The results of the Monte Carlo simulation study and analysis of intraday asset price curves are contained in
Sections 5 and 6, respectively. All technical details and some concluding remarks follow these sections.

2. Detecting changes in the covariance function

We consider real valued functional observations X1(t), . . . , XN(t), t ∈ [0, 1]. Here each functional observation Xi

is treated as a stochastic process with sample path in L2([0, 1]), where L2([0, 1]) denotes the space of (measurable)
real valued square integrable functions defined on [0, 1]. These results could be cast for functional observations in
general, separable Hilbert space, but in order to maintain similarity to the literature introduced above, and in view of
the data analysis that we consider below, we focus on this example. All random functions considered are assumed to
be defined over a common probability space (Ω,F , P). We assume that these observations are generated by the model,
for t ∈ [0, 1],

Xi(t) =

 µ(t) + εi(t), 1 ≤ i ≤ k∗,

µ(t) + εi,A(t), k∗ + 1 ≤ i ≤ N,
(1)
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where µ(t) is the common mean, Eεi(t) = Eεi,A(t) = 0 for all t ∈ [0, 1], and k∗ ∈ {1, ...,N} denotes the unknown
potential time of change. Implicitly under this model we make the simplifying assumption that the mean is constant
with respect to i (although the mean function µ(t) may not be constant). This could be a reasonable assumption when
considering for instance data constructed from financial asset returns, or in general suitably differenced or transformed
time series data, as in our data example on intra-day asset price returns below. If this assumption is in question the
mean might be estimated initially by applying a mean segmentation procedure as described for example in [10]. It is
assumed that the covariance function

C(t, s) = Eεi(t)εi(s), 1 ≤ i ≤ k∗,

may change after k∗. Let
CA(t, s) = Eεk,A(t)εk,A(s), k∗ ≤ k ≤ N,

denote the covariance function after the change. We use the notation C∆(t, s) = C(t, s)−CA(t, s) to denote the difference
between the covariance kernels before and after the change point. We are then interested in testing the null hypothesis
that there is no change in the covariance function, versus the alternative of the presence of such a change:

H0 : ‖C∆‖ = 0, versus HA : ‖C∆‖ > 0.

We assume that the error functions might be serially dependent in that they evolve as decomposable Bernoulli shifts.
Let ‖ · ‖2 denote the norm induced by the inner product 〈·, ·〉2 in the Hilbert space L2([0, 1]p), the dimension p being
clear based on the input function.

Assumption 1. (1) The sets {εi,−∞ < i < ∞} and {εi,A,−∞ < i < ∞} form Bernoulli shifts, i.e., εi = g(ηi, ηi−1, . . .)
and εi,A = gN(ηi, ηi−1, . . .) for some non random measurable functions g,gN : S∞ → L2([0, 1]), where {η j,−∞ < j < ∞}
are independent and identically distributed elements of a measurable space S. (2) For each i, εi and εi,A are jointly
measurable on Ω × [0, 1]. (3) Eεi(t) = 0, Eεi,A(t) = 0, E‖εi‖

ν
2 < ∞, E‖εi,A‖

ν
2 < ∞ with some ν > 4 , and for some α > 2

and a positive constant c, (
E‖ε0 − ε0,`‖

ν
2

)1/ν
≤ ck−α,

(
E‖ε0,A − ε0,`,A‖

ν
2

)1/ν
≤ ck−α,

where εi,` = g(ηi, . . . , ηi−`+1, η
∗
i−`, η

∗
i−`−1, . . .), εi,`,A = gN(ηi, . . . , ηi−`+1, η

∗
i−`, η

∗
i−`−1, . . .), and {η∗` ,−∞ < ` < ∞} are

independent and identically distributed as η0, and independent of {η`,−∞ < ` < ∞}.

[7, 39] provide numerous examples where Assumption 1 holds, which include the stationary solutions to most
functional time series models under standard regularity conditions.

In order to test H0 it is natural to consider functionals of the CUSUM process of the sample covariance function:

ZN(u, t, s) = N−1/2
(bNuc∑

i=1

[Xi(t) − X̄N(t)][Xi(s) − X̄N(s)] −
bNuc

N

N∑
i=1

[Xi(t) − X̄N(t)][Xi(s) − X̄N(s)]
)
,

where X̄N(t) = (1/N)
∑N

i=1 Xi(t). is the sample mean. The asymptotic behaviour of the process ZN(u, t, s) depends on
the long run covariance function

D(t, t′, s, s′) =

∞∑
`=−∞

E[(ε0(t)ε0(s) − C(t, s))(ε`(t′)ε`(s′) − C(t′, s′))]. (2)

It follows from Assumption 1 that the infinite sum defining D(t, t′, s, s′) is absolutely convergent in L2([0, 1]4).
Throughout this paper we use

∫
for

∫ 1
0 .

Theorem 1. If H0 and Assumption 1 hold, then we can define a sequence of Gaussian processes {ΓN(u, t, s), 0 ≤
u, t, s ≤ 1}, N ≥ 1, such that

sup
0<u<1

∫∫
(ZN(u, t, s) − ΓN(u, t, s))2 dtds = oP(1),

with EΓN(u, t, s) = 0 and EΓN(u, t, s)ΓN(u′, t′, s′) = (min(u, u′) − uu′)D(t, t′, s, s′).
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The test statistics considered in [47] and [35] coincide with

TN =

∫ ∫ ∫
Z2

N(u, t, s)dudtds, and S N = sup
0≤u≤1

∫ ∫
Z2

N(u, t, s)dudtds.

It has been observed that reweighting the CUSUM process can increase the power of CUSUM based change point
detectors, and improve the efficiency of corresponding change point estimators in the presence of multiple change
points or change points occurring near the end points of the sample. We use the weight function wκ(u) = [u(1 − u)]κ,
where κ ∈ [0, 1/2]. We then have the following approximation similar to Theorem 1 with ZN reweighted by wκ.

Theorem 2. If H0, Assumption 1 hold and 0 ≤ κ < 1/2, then with the Gaussian processes {ΓN(u, t, s), 0 ≤ u, t, s ≤ 1}
of Theorem 1 we have

sup
1/(N+1)<u<1−1/(N+1)

1
w2
κ(u)

∫∫
(ZN(u, t, s) − ΓN(u, t, s))2 dtds = oP(1).

This result may be used to evaluate the asymptotic properties of weighted functionals of ZN . Before doing so, we
first investigate the behaviour of functionals of the weighted CUSUM process ZN under the alternative. We write the
time of change in the form of k∗ = bNθNc, θN ∈ (0, 1). We allow that the size of the change described by C∆(t, s)
depends on N but it cannot converge to infinity.

Theorem 3. We assume that HA holds, Assumption 1 is satisfied, 0 ≤ κ < 1/2 and

lim sup
N→∞

‖C∆‖2 < ∞.

(i) If N(θN(1 − θN))2−2κ‖C∆‖
2
2 → ∞, then

1
N(θN(1 − θN))2−2κ‖C∆‖

2
2

sup
0<u<1

1
w2
κ(u)

∫∫
Z2

N(u, t, s)dtds
P
→ 1. (3)

(ii) If N(θ(1 − θN))3−2κ‖C∆‖
2
2 → ∞, then

1
N(θN(1 − θN))3−2κ‖C∆‖

2
2

∫∫∫
1

w2
κ(u)

Z2
N(u, t, s)dtdsdu

P
→ c0, (4)

for some c0 > 0.

According to Theorems 1 and 3, a consistent test of H0 versus HA is obtained by rejecting H0 if

TN(κ) =

∫ ∫ ∫ Z2
N(u, t, s)
w2
κ(u)

dudtds (5)

is large. Now we discuss how to obtain asymptotically valid critical values for TN(κ) under H0 based on Theorem
2. Let {Γ(u, t, s), 0 ≤ u, t, s ≤ 1} be a Gaussian process with zero mean and EΓ(u, t, s)Γ(u′, t′, s′) = (min(u, u′) −
uu′)D(t, t′, s, s′), where D is defined in (2). We note that the distribution of the process Γ coincides for each N with
ΓN defined in Theorems 1 and 2. Noticing that the covariance function of Γ separates into a product of D and the
function min(u, u′)−uu′, which is the covariance function of a Brownian bridge, we obtain using the Karhunen-Loéve
expansion of Γ that ∫ ∫ ∫

Γ2(u, t, s)dudtds D=
∞∑

k,`=1

λ`

(πk)2N
2
k,`,

where {Nk,`, 1 ≤ k, ` < ∞} are independent, identically distributed standard normal random variables and λ1 ≥ λ2 ≥ . . .
satisfy

λiφi(t, s) =

∫ ∫
D(t, t′, s, s′)φi(t′, s′)dt′ds′, 1 ≤ i < ∞, 〈φi, φ j〉2 = 1{i = j}. (6)

The (long run) covariance D is of course generally unknown, but we can estimate it from the sample. We define the
residuals

ε̂i(t) = Xi(t) − X̄N(t), 1 ≤ i ≤ N. (7)
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Let

zi(t, s) = ε̂i(t)ε̂i(s), 1 ≤ i ≤ N, and z̄N(t, s) =
1
N

N∑
i=1

zi(t, s). (8)

We suggest using the long run kernel covariance estimator

D̂N(t, s, t′s′) =

N−1∑
`=−(N−1)

K
(
`

h

)
γ̂`(t, s, t′, s′) (9)

where K is symmetric about zero Lipschitz continuous window function with bounded support such that K(0) = 1,
h = h(N) is the window (smoothing parameter) satisfying 1/h + N/h→ 0 as N → ∞, and

γ̂`(t, s, t′, s′) =



N−∑̀
i=1

(zi(t, s) − z̄N(t, s))(zi+`(t′, s′) − z̄N(t′, s′)), ` ≥ 0,

1
N − |`|

N∑
i=−(`−1)

(zi(t, s) − z̄N(t, s))(zi+`(t′, s′) − z̄N(t′, s′)), ` < 0.

If λ̂1 ≥ λ̂2 ≥ · · · denote the empirical eigenvalues of D̂N , i.e.,

λ̂iφ̂i(t, s) =

∫ ∫
D̂N(t, t′, s, s′)φ̂i(t′, s′)dt′ds′, 1 ≤ i ≤ N, 〈φ̂i, φ̂ j〉2 = 1{i = j}. (10)

We use cN(α) the solution of the equation with a suitably large constant d,

P

 d∑
`=1

∞∑
k=1

λ̂`

(πk)2N
2
k,` > cN(α)

 = α

to approximate the 1 − α critical value for TN(0) under H0. It follows similarly as in [16] that under these conditions
and Assumption 1

‖D − D̂N‖2
P
→ 0, (11)

if H0 and Assumption 1 hold. We obtain from (11) using Lemma 2.2 in [29] that for any d ≥ 1,

max
1≤i≤d

|λi − λ̂i|
P
→ 0.

Theorem 1 now implies that under H0

lim
d→∞

lim
N→∞

P{TN(0) > cN(α)} = α.

Under the alternative HA might not hold. Let

∆N(t, s, t′, s′) = C∆(t, s)C∆(t′, s′).

Under the alternative, it may be established, as in the proof of Theorem 3.2 of [30], that∫∫∫∫ (
1
h
D̂N(t, s, t′, s′) − θN(1 − θN)∆N(t, s, t′, s′)

∫ c

−c
K(u)du

)2

dtdsdt′ds′ = oP(1). (12)

Using again Lemma 2.2 in [29] we now conclude that under alternative

λ̂1 = OP

(
hθN(1 − θN)‖C∆‖

2
2

)
.

If
N(θ(1 − θN))2‖C∆‖

2
2 → ∞,

N
h
θN(1 − θN)→ ∞,

5



hold, then under the alternative, for any d ≥ 1,

lim
d→∞

lim
N→∞

P{TN(0) > cN(α)} = 1.

Hence the test based on TN(0) has approximately correct, for large d, asymptotic size, and is consistent under HA.
If the statistic TN(κ), κ ∈ (0, 1/2), is used, then the above formula may be modified by defining the eigenvalues
ζ1,κ ≥ ζ2,κ ≥ · · · ≥ 0 satisfying

ζi,κψi,κ(u) =

∫
min(u, v) − uv

wκ(u)wκ(v)
ψi,κ(v)dv, 1 ≤ i < ∞, 〈ψi,κ, ψ j,κ〉2 = 1{i = j}.

According to the Karhunen–Loéve representation,∫ ∫ ∫
Γ2(u, t, s)

w2
κ(u)

dudtds =

∞∑
k,`=1

λ`ζ j,κN
2
j,`, (13)

where {N j,`, 1 ≤ j, ` < ∞} are independent, identically distributed standard normal random variables and λ1 ≥ λ2 ≥ · · ·

are defined in (6). We can use the previous arguments to estimate λ` and obtain asymptotic critical values for TN(κ)
by estimating the distribution on the right hand side of (13) using simulation.

With regards to the choice of d, there are a number of sensible methods to do this, including using the total
variation explained criterion common in functional principal component analysis. Noting that the quantiles of the
random variable on the right hand side of (13) are increasing as a function of d, below we use the conservative
approach of selecting d as the number of positive eigenvalues estimated according to (10).

3. Functional Time Series Models with Covariance Change Points

As is the case of scalar and vector valued observations, the estimator for the time of change has nice asymptotic
properties if the size of the change converges to zero when the sample sizes goes to ∞. Hence, before we start
discussing the estimation of the time of the change, we consider some examples in that describe such small changes
in the covariance function. We show that changes in the parameters of popular functional time series models lead to
changes in the covariance function of the observations. These examples were also considered in the simulation study
presented in Section 5.

Example 1. We consider functional AR(1) models. We assume that εi, i ∈ Z is the stationary solution of

εi(t) =

∫
K(t, s)εi−1(s)ds + ηi(t), (14)

where K is an autoregressive kernel function. It is well known (see for example, [17] that the equation in (14) has a
unique, non anticipative stationary solution if

‖K‖2 < 1, (15)

and

{ηi(t), 0 ≤ t ≤ 1,−∞ < i < ∞} (16)

are independent and identically distributed random functions with Eη0(t) = 0 and E‖η0(t)‖ν2 < ∞ with some ν > 4. In
this example, comparing to (1) we assume the random functions εi,A, i ∈ Z are the unique, non anticipative stationary
solution of

εi,A(t) =

∫
KN(t, s)εi−1,A(s)ds + ηi(t), (17)

with
KN(t, s) = K(t, s) + aNk (t, s),

where, in addition to (14) (15) and (16), aN > 0 is small enough so that

‖K‖2 + aN‖k ‖2 < 1.

6



Let

K (`)(x1, xn+1) =

∫
· · ·

∫
K(x1, x2)K(x2, x3) · · · K(xn, xn+1)

n∏
i=2

dxi

and the associated operator be

K (`)[ f ](t) =

∫
K (`)(t, s) f (s)ds, ` ≥ 1, K (0)[ f ](t) = f (t).

It may be shown under these assumptions that the stationary solutions satisfy

εi(t) =

∞∑
`=0

K (`)[ηi](t), εi,A(t) =

∞∑
`=0

K
(`)
N [ηi](t).

It is clear that Assumption 1 holds for these variables due to the explicit forms of the solutions of (14) and (17). Let

L(`)(x1, x`+1) =
∑̀
k=1

∫
· · ·

∫ k−1∏
i=1

K(xi, xi+1)k (xk, xk+1)
∏̀
j=k+1

K(x j, x j+1)
∏̀
m=2

dxm,

with
∏

i∈∅ = 1. The corresponding operator is

L(`)[ f ](t) =

∫
L(`)(t, s) f (s)ds, ` ≥ 1, L(0)[ f ](t) = f (t).

Elementary arguments give

εi,A(t) − εi(t) = aNδi(t) + a2
NRi,N(t), with δi(t) =

∞∑
`=0

L(`)[ηi−`](t), and lim sup
N→∞

E‖R0,N‖
ν
2 < ∞.

From this it follows by simple calculation that

‖C∆ − aN(Eε0 ⊗ δ0 + Eδ0 ⊗ ε0)‖2 = O(a2
N),

where here for functions f , g ∈ L2([0, 1]), f ⊗ g is the function in L2([0, 1]2) defined by f ⊗ g(t, s) = f (t)g(s). In this
example therefore a small change on the order of aN to the functional autoregressive operator defined by K induces
a change of the same magnitude in the covariance kernels. This example may also be extended to general functional
linear processes.

The second example we consider is concerned with nonlinear functional time series processes.

Example 2. Following [9, 18, 41] we define the functional GARCH(1,1) (FGARCH(1,1)) process

εi(t) = σi(t)ηi(t),

where Eηi(t) = 0, Eη2
i (t) = 1, and

σ2
i (t) = ω(t) +

∫
α(t, s)ε2

i−1(s)ds +

∫
β(t, s)σ2

i−1(s)ds, (18)

and the non-negative parameter functions ω(t), α and β satisfy the regularity conditions of Theorem 1 of [9], which
imply that a stationary solution εi satisfying (18) exists in the function space C[0, 1] of continuous functions defined on
the unit interval. One of these conditions in particular is that inf0≤t≤1 ω(t) > 0. A change in the variance of the process
may be modelled by changes in these parameter functions. For example, a “level shift” in the pointwise variance of
the functional observations is induced in (1) by setting εi,A(t) = σi,A(t)ηi(t), with

σ2
i,A(t) = ω(t) + aNc(t) +

∫
α(t, s)ε2

i−1(s)ds +

∫
β(t, s)σ2

i−1(t, s)ds,

7



and the function c is taken to satisfy inf0≤t≤1 c(t) > 0. Since the stationary solution σ0 of (18) is independent of η0, we
get

C∆(t, s) =
(
Eσi,A(t)σi,A(s) − Eσi(t)σi(s)

)
Eη0(t)η0(s),

and by the mean-value theorem

E
∥∥∥∥∥σi,A − σi −

aNc
2σi

∥∥∥∥∥2

2
= O(a4

N).

From this it may be shown that∫ ∫ (
C∆(t, s) −

1
2

{
E

(
σ0(s)
σ0(t)

)
c(t) + E

(
σ0(t)
σ0(s)

)
c(s)

}
aN

)2

dtds = O(a4
N).

Therefore a change of magnitude aN to the level of the conditional variance process induces a change of the same
magnitude in the covariance functions. A similar change arises when any of the other parameter functions are changed,
and it may be shown as above that if

σ2
A,i(t) = ω +

∫
(α(t, s) + aNδ1(t, s))ε2

i−1(s)ds +

∫
(β(t, s) + aNδ2(t, s))σ2

i−1(s)ds,

then as aN tends to zero there exists a nonzero kernelA so that ‖C∆ − aNA‖2 = O(a2
N).

4. Estimation of k∗

The weighted CUSUM process can also be used to define an estimator for the time of change. We let

k̂N(κ) = min
{

k :
(

N
k(N − k)

)κ∫ ∫
Z2

N

(
k
N
, t, s

)
dtds = max

1≤ j<N

(
N

j(N − j)

)κ∫ ∫
Z2

N

( j
N
, t, s

)
dtds

}
.

We investigate the asymptotic behaviour of this estimator when the time of change is proportional to the sample
size:

Assumption 2. k∗ = bNθc with some 0 < θ < 1.

Again here we characterize the size of the change in the covariance by C∆(t, s) = C(t, s)−CA(t, s).We only consider
the case of a local alternative in which the size of the change is shrinking as a function of N. In this case the limit
distribution of the time of change has a simple, easily computable form depending on only a small number of nuisance
parameters.

Assumption 3. ‖C∆‖2 → 0 and N‖C∆‖
2
2 → ∞.

We also assume that the change between the distributions of the εi and εi,A vanishes as N increases.

Assumption 4. With some ν > 4
E

∥∥∥εi − εi,A

∥∥∥ν
2 → 0, as N → ∞.

The examples detailed in Section 3 satisfy Assumptions 3 and 4 when the parameter aN decreases at a suitable
rate. Under Assumption 4 the covariance function CA is close to C, if the sample size N is large. We also assume that
the standardized difference has a quantifiable limit:

Assumption 5. There is C∗ ∈ L2([0, 1] × [0, 1]) such that∫ ∫ (
C∆(t, s)
‖C∆‖2

− C∗(t, s)
)2

dtds = o(1).
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Let

τ2 =

∞∑
`=−∞

cov
(∫ ∫

ε0(t, s)C∗(t, s)dtds,
∫ ∫

ε`(t, s)C∗(t, s)
)

dtds, (19)

which appears in the normalization of the difference between k̂N and k∗. In order to define the limit distribution of
k̂N − k∗, we also define

mκ(t) =


(1 − κ)(1 − θ) + κθ, if t < 0,

0, if t = 0,

(1 − κ)θ + κ(1 − θ), if t > 0,

(20)

and

W(t) =

 W1(−t), if t < 0,

W2(t), if t ≥ 0,
(21)

where {W1(t), t ≥ 1} and {W2(t), t ≥ 1} are independent Wiener processes. The process {W(t),−∞ < t < ∞} is
sometimes called a two sided Wiener process. There is an almost surely unique random variable ξ(κ) defined as

ξ(κ) = argmaxt∈R {W(t) − |t|mκ(t)} . (22)

We note that the random variable ξ(0) appeared in [21] and ξ(κ), 0 ≤ κ ≤ 1/2 in [2, 3].

Theorem 4. We assume that HA and Assumptions 1–5 are satisfied.
(i) If 0 ≤ κ < 1/2, then

‖C∆‖
2
2

τ2

(
k̂N(κ) − k∗

) D
→ ξ(κ).

(ii) If in addition
N1/2‖C∆‖2(log N)−2/ν → ∞

holds, then
‖C∆‖

2
2

τ2

(
k̂N(1/2) − k∗

) D
→ ξ(1/2),

where ν is from Assumption 1 and ξ(κ) is defined in (22).

The asymptotic distribution of k̂N(0) − k∗ was obtained by [35] when ‖C∆‖2 is a constant. Theorem 4 can be used
to produce asymptotically conservative confidence intervals for k∗. Although we do not study the empirical properties
of such intervals here, producing them requires the estimation of τ2 in (19), which we describe. τ2 may be viewed as
the long run variance of the stationary sequence

e j =

∫ ∫
ε j(t)ε j(s)C∗(t, s)dtds.

The series e j is not observed, but can be estimated from the sample by replacing ε j(t)ε j(s) with the residuals defined
in (7). We note that

τ2 =

∫
· · ·

∫
C
∗(t, s)D(t, t′, s, s′)C∗(t′, s′)dtdt′dsds′.

The estimator for the covariance function before the change may be defined as,

ĈN,1(t, s) =
1

k̂N

k̂N∑
i=1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s))

and similarly after the change as

ĈN,2(t, s) =
1

N − k̂N

N∑
i=k̂N +1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s)).

9



C∗(t, s) may be estimated with

Ĉ
∗
N(t, s) =

ĈN,1(t, s) − ĈN,2(t, s)

‖ĈN,1 − ĈN,2‖2
.

We already discussed the estimation of D in (9), but this must be modified in the presence of a change point. Let

D̄N(t, s, t′s′) =

N−1∑
`=−(N−1)

K
(
`

h

)
γ̄`(t, s, t′, s′)

where again K is window function, and h = h(N) is the window (smoothing parameter) and

γ̄`(t, s, t′, s′) =



1
N − `

N−∑̀
i=1

vi(t, s)vi(t′, s′), ` ≥ 0,

1
N − |`|

N∑
i=−(`−1)

vi(t, s)vi(t′, s′), ` < 0,

with

vi(t, s) =

 ε̂i(t)ε̂i(s) − ĈN,1(t, s), 1 ≤ i ≤ k̂N ,

ε̂i(t)ε̂i(s) − ĈN,2(t, s), k̂N + 1 ≤ i ≤ N.

Similarly to (11) one can show that ‖D̄ − D‖2
P
→ 0. Combining Theorem 4 and the ergodic theorem we conclude

‖C − ĈN,1‖2
P
→ 0 and ‖CA − ĈN,2‖2

P
→ 0. Hence τ̂2

N
P
→ τ2, where

τ̂2 =

∫
· · ·

∫
Ĉ
∗
N(t, s)D̄N(t, t′, s, s′)Ĉ∗N(t′, s′)dtdt′dsds′.

Remark 1. Under H0 and the conditions of Theorem 2, it may be shown using the argmax continuous mapping
theorem as in [37], that for 0 ≤ κ < 1/2 the break fraction k̂N(κ)/N satisfies

k̂N(κ)
N

D
→ arg sup

0<u<1

1
w2
κ(u)

∫ ∫
Γ2(u, t, s)dtds.

The distribution on the right hand side has mode at 1/2 for each value of κ, but becomes more uniform over the unit
interval as κ approaches 1/2.

5. Simulation Results

In this section we present the results of a Monte Carlo simulation study that we used to assess the empirical size
and power of the proposed change point tests, and evaluate the advantages and drawbacks of using weighted CUSUM
test statistics compared to existing methods. We generated data from the functional AR(1) and GARCH(1,1) change
point models defined in Examples 1 and 2. In both data generating processes (DGPs), we take the innovation terms to
follow a time-homogeneous Ornstein–Uhlenbeck process,

ηi(t) = e−t/2Wi(et), t ∈ [0, 1],

where {Wi(t), t ≥ 0} are independent and identically distributed standard Brownian motions. Each such curve is
evaluated on a grid of equally space points on [0, 1] of size 50.

We take the kernel K in Example 1 to be K(t, s) = 12t(1 − t)s(1 − s), which is changed after the change point k∗

to K(t, s) + a jt(1 − t)s(1 − s), where a0 = 0, giving a setting under H0, and a1 = 6, a2 = 9, a3 = 12, giving settings
under HA.

We set the parameter functions α, β, and ω in Example 2 to α(t, s) = 2t(1 − t)s(1 − s), β(t, s) = 10t(1 − t)s(1 − s)
and ω(t) = 0.1t(1 − t) + 10−9. We considered two types of change points in such FGARCH models: one of which we
denote FGARCH(ω), where the function ω changes after k∗ to ω(t) + a jc(t) = [0.1 + a j]t(1 − t) + 10−9, with a0 = 0,
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Table 1: Empirical size based on 1000 independent simulations using the FAR and FGARCH data generating processes, based on the statistics TN ,
TN (1/4), and TN (2/5) as given in (5).

TN TN(1/4) TN(2/5)

Nominal Level N= 100 250 500 100 250 500 100 250 500
90% 0.10 0.12 0.11 0.13 0.12 0.11 0.11 0.12 0.11

FAR 95% 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.05
99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
90% 0.14 0.14 0.13 0.13 0.14 0.13 0.14 0.15 0.14

FGARCH 95% 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07
99% 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02

a1 = 0.1, a2 = 0.2, and a3 = 0.3, and another that we denote FGARCH(α, β), in which the functions α and β change
after k∗ to α(t, s) + a jδ1(t, s) = [2 + a j]t(1 − t)s(1 − s) and β(t, s) + a jδ2(t, s) = [10 + a j]t(1 − t)s(1 − s) where a0 = 0,
a1 = 2, a2 = 4, and a3 = 6.

We considered three potential change point locations, which we call an early change, k∗ = b0.2Nc, a central change,
k∗ = b0.5Nc, and a late change, k∗ = b0.9Nc. We considered the sample sizes N = 100, 250, and 500. To each sample
we applied the above described tests of H0 using both the unweighted CUSUM test statistic TN = TN(0), as well as
the weighted statistics TN(1/4) and TN(2/5) to detect potential change points. In order to compute the critical and
p-values of these tests, we followed the basic outline in Section 2, and estimated the long–run covariance kernel D
with the Bartlett window function and bandwidth h = N1/5. Estimating the eigenvalues satisfying 10 was conducted by
estimating the eigenvalues of a discretized 4-way tensor approximation of the kernel D, which can be computationally
intensive if the resolution of this discretization is large. For example, letting Ju denote the points at which the functional
data are observed, the intra–day return curves derived from 5–minute frequency equity price data that we consider
below are observed on points in the set Ju, where Ju are equally spaced points on the unit interval with|Ju| = 67, where
|A| is the cardinality of the set A, and calculating the resulting 4-way tensor eigenvalues leads to a computation akin
to estimating the leading eigenvalues of a square, dense matrix of approximate dimension 4500×4500. In order to
reduce this computational burden, we employ standard Monte Carlo integration with a trapezoid rule to numerically
approximate the integral in 10, where the grid Ju × Ju × Ju × Ju in the computation of the long–run covariance is
exchanged with a grid Jmc×Jmc×Jmc×Jmc, where Jmc are uniformly randomly sampled points from Ju, and |Jmc| < |Ju|.
In the simulations and data analysis, we set |Jmc| = 20, and found that this leads to reliable results and relatively fast
computation in the examples we considered.

Each simulation was repeated independently 1000 times, and the number of rejections of H0 at several nominal
levels are collected in Table 1, which shows results on the empirical size, and Fig. 1, which display power curves
when the change point is located at k∗ = b0.2Nc, respectively.

In summary, we observed that the application of weights did not have much of an effect on the size of the tests
for the examples considered, which were close to the nominal levels for all sample sizes and weighting functions
considered. In terms of power, we saw in simulations that are reported in the supplement to this article that applying
weights has little effect, good or bad, in terms of detecting changes in the covariance function that occur near the
middle of the sample. However, in Fig. 1 one may observe that the power of the test improves for detecting changes
closer to the end point of the sample by incorporating larger weights. This improvement is observed most starkly
for small sample sizes, in which in some cases as much as a 50% increase in power was observed when the weight
function w2/5(u) was used compared to no weights, but this improvement was evident at each sample size considered.

6. Detecting covariance changes in Crude oil intra-day return curves

In this section, we illustrate the use of the weighted CUSUM covariance change point detector and estimator in a
data application to detect changes in the covariance of intra-day return curves derived from crude oil futures prices.
Crude oil futures are believed to be sensitive to the overall sentiment of the market, and their variability is affected by
major macroeconomic events (see [28, 42, 47]). As such, analysing and forecasting oil futures volatility is an important
and oft studied topic, and evaluating whether there are structural breaks in the covariance structure in futures prices
series is an important step in doing so.
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Fig. 1: Power functions, which display the percentage of rejections of H0 based on 1000 independent simulations as a function of the size of the
change point, using the statistics TN , TN (1/4), and TN (2/5). The nominal level is set at 5% with k∗ = b0.2Nc, and the data was generated according
to the FAR and FGARCH data generating processes.

We consider two benchmark assets in the international crude oil pricing system: West Texas Intermediate (WTI)
and Brent crude oil futures. The raw data that we consider were obtained from www.backtestmarket.com, and
are comprised of 5-minute frequency front-month prices of WTI and Brent futures, from 9:00 am to 2:30 pm, each
trading day from 12 May, 2018 to 30 Apr, 2020, which totals 502 days. As such there are 67 discrete observations of
the price within each day, which we linearly interpolated to produce intra-day price curves of the form pi(t) for each
asset. Visualizations of these price curves for WTI are shown in Fig. 2. Visualizations of the Brent prices curves are
available in the supplement to this article.

We take as a goal of this analysis to evaluate whether the variability of the curves modelled by their covariance
kernel undergoes structural breaks during the observation period. In order to study this series as a mean stationary
functional time series, we transform them to cumulative intra-day return curves (CIDRs) via the transformation

ri(t) = log(pi(t)) − log(pi(0)), (23)

where pi(0) is the opening price at 9:00 am on day i. Fig. 3 shows the CIDR curves constructed from the WTI
asset price curves. We applied a series of hypothesis tests to evaluate the stationarity, normality, and serial correlation
structure of these CIDR curves (see [27, 30, 40, 45]), the results of which suggested that both series of crude oil CIDR
curves evolve as approximately mean stationary, non-Gaussian, serially uncorrelated and conditionally heteroscedastic
functional time series.

We applied a test of H0 to each series based on TN(1/4) to detect potential changes in the covariance of both
curve sequences. Following the settings used in the simulation study, we used the Bartlett window function and the
bandwidth h = N1/5 in the calculation of the long–run covariance operator. The p-values of these tests for each asset
was 0, suggesting the presence of a change point, and the change point estimates k̂N(1/4) for the series corresponded
to the dates March 5th, 2020 for WTI and February 28, 2020 for Brent. We segmented each series based on these esti-
mates and performed tests of H0 again within each segment in order to detect additional change points. One additional
change point was detected at significance level 0.05 in the first segment of each series, and these were estimated at the
locations December 28th, 2020, and December 29th, 2020, for the WTI and Brent series respectively (approximate p-
values of 0.041 and 0.048, respectively). No further change points were detected of notable significance. The location
of these change points are illustrated in Fig. 3 for the WTI series. We note that we did not take into account multiple
testing when producing these p-values, and an application of for example the Holm-Bonferroni method would suggest
that the second two estimated change points are not significant at the level 0.05.

It is noteworthy that the change point in covariance estimates for the WTI and Brent series are very similar. The
first break estimate coincides with the begining of the COVID–19 pandemic in the US. The second detected change
for each series at the end of December 2018 coincides with the largest drop in oil-prices that had been observed in the
previous three years, which followed an already long decline that began in November of that year.
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Fig. 2: Daily price curves from 12 May, 2018 to 30 Apr, 2020 of WTI commodity futures. Each curve is constructed from 5-minute frequency
front-month prices of WTI futures, from 9:00 am to 2:30 pm, each trading day, which totals 502 days. There are 67 discrete observations of the
price within each day, which are linearly interpolated to produce intra-day price curves.

Fig. 3: Daily cumulative intra–day return (CIDR) curves constructed from the WTI commodity futures prices curves illustrated in Fig. 2, using
(23). Estimates for change points in the covariance function obtained using binary segmentation are also displayed.
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7. Proof of Theorems 1–3

Lemma 1. If Assumption 1 holds, then (
E‖εi ⊗ εi − εi,` ⊗ εi,`‖

ν/2
2

)2/ν
≤ c2ν`−α,

where {εi,`(t),−∞ < i, ` < ∞} are defined in Assumption 1.

Proof. Since εi(t)εi(s) − εi,`(t)εi,`(s) = εi(t)(εi(s) − εi,`(t)) + εi,`(t)(εi(s) − εi,`(s)), by the Cauchy–Schwartz inequality
we have

E‖εi ⊗ εi − εi,` ⊗ εi,`‖
ν/2
2 ≤ 2ν/2

(
E[‖εi‖

ν/2
2 ‖εi − εi,`‖

ν/2
2 ] + E[‖εi,`‖

ν/2
2 ‖εi − εi,`‖

ν/2
2 ]

)
≤ 2ν/2

(
(E[‖εi‖

ν
2])1/2(E[‖εi − εi,`‖

ν
2])1/2 + (E‖εi,`‖

ν
2)1/2(E‖εi − εi,`‖

ν
2)1/2

)
Now Assumption 1 implies the result.

Proof of Theorem 1. Under the null hypothesis we have

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s)) −
bNuc

N

N∑
i=1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s))

= εi(t)εi(s) + (µ(t) − X̄N(t))εi(s) + (µ(s) − X̄N(s))εi(t) + (µ(t) − X̄N(t))(µ(s) − X̄N(s)).

It follows from Theorem 1.1 of [15] (e.g., see [36]) that

sup
0≤u≤1

∫ N−1/2
bNuc∑
i=1

εi(t)


2

dt = OP(1),

which yields

sup
0<u<1

∫ ∫ bNuc∑
i=1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s)) −
bNuc∑
i=1

εi(t)εi(s)


2

dtds = OP(1).

Thus we conclude

sup
0<u<1

∫ ∫ (
ZN(u, t, s) − Z∗N(u, t, s)

)2 dtds = oP(1),

where

Z∗N(u, t, s) = N−1/2

bNuc∑
i=1

εi(t)εi(s) −
bNuc

N

N∑
i=1

εi(t)εi(s)

 . (24)

Using again Theorem 1.1 of [15] (cf. also [36]), we can define a sequence of Gaussian processes {Γ̄N(u, t, s), 0 ≤
u, t, s ≤ 1} such that

sup
0<u<1

∫ ∫ N−1/2
bNuc∑
i=1

(εi(t)εi(s) − C(t, s)) − Γ̄N(u, t, s)


2

dtds = oP(1) (25)

with EΓ̄N(u, t, s) = 0 and EΓ̄N(u, t, s)Γ̄N(u′, t′, s′) = min(u, u′)D(t, t′, s, s′). Defining ΓN(u, t, s) = Γ̄(u, t, s)− uΓ̄(1, t, s),
the result follows from (25).

The proof of Theorem 2 requires a Hájek–Rényi type inequality for partial sums of weakly dependent random
functions, which is described by the following Lemma.

14



Lemma 2. If Assumption 1 holds and 0 ≤ κ < 1/2, then

max
1≤k≤N

N−1/2+κ

kκ

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
2

= OP(1), max
1≤k≤N

N−1/2+κ

kκ

∥∥∥∥∥∥∥
k∑

i=1

(εi ⊗ εi − C)

∥∥∥∥∥∥∥
2

= OP(1), (26)

max
1≤k<N

N−1/2+κ

(N − k)κ

∥∥∥∥∥∥∥
N∑

i=k+1

εi

∥∥∥∥∥∥∥
2

= OP(1), max
1≤k<N

N−1/2+κ

(N − k)κ

∥∥∥∥∥∥∥
N∑

i=k+1

(εi ⊗ εi − C)

∥∥∥∥∥∥∥
2

= OP(1). (27)

Proof. We write

max
1≤k≤N

1
kκ

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
2

≤ max
1≤ j≤log N

e−( j−1)κ max
e j−1≤k≤e j

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
2

.

[15]. Theorem 3.2 shows that Assumption 1 implies

E

 max
1≤k≤M

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
ν

2

 ≤ c1Mν/2.

Hence by Markov’s inequality we obtain

P

 max
1≤k≤N

N−1/2+κ

kκ

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
2

≥ x

 ≤ P

 max
1≤ j≤log N

e−( j−1)κ max
e j−1≤k≤e j

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
2

≥ xN1/2−κ


≤

log N∑
j=1

P

 max
e j−1≤k≤e j

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
2

≥ xe( j−1)κN1/2−κ

 ≤ log N∑
j=1

x−νe−ν( j−1)κN−ν/2+νκE

 max
e j−1≤k≤e j

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
ν

2

 ≤ c2

xν
,

completing the proof of the first half of (26). The same arguments gives the second half of (26), and with minor
modification give (27).

Proof of Theorem 2. First we prove that

sup
1/(N+1)<u≤1/2

1
u2κ

∫ ∫ bNuc∑
i=1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s)) −
bNuc∑
i=1

εi(t)εi(s)


2

dtds = OP(1). (28)

By Lemma 2 and the Cauchy-Schwarz inequality we have

max
1≤k≤N

N−1+2κ

k2κ

∫ ∫
|µ(t) − X̄N(t)|

∣∣∣∣∣∣∣
k∑

i=1

εi(s)

∣∣∣∣∣∣∣ dts ≤ ‖µ − X̄N‖2N−1/2+κ max
1≤k≤N

N−1/2+κ

kκ

∥∥∥∥∥∥∥
k∑

i=1

εi

∥∥∥∥∥∥∥
2

= OP

(
N−1+κ

)
and

max
1≤k≤N

N−1+2κ

k2κ

∫ ∫
|µ(t) − X̄N(t)||µ(s) − X̄N(s)|dtds = OP

(
N−2+2κ

)
,

completing the proof of (28). Minor modifications of the proof of (28) give

sup
1/2≤u<1− 1

(N+1)

1
(1 − u)2κ

∫ ∫ bNuc∑
i=1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s)) −
bNuc∑
i=1

εi(t)εi(s)


2

dtds = OP(1).

Hence we need to prove only that

sup
1/(N+1)<u<1−1/(N+1)

1
w2
κ(u)

∫∫ (
Z∗N(u, t, s) − ΓN(u, t, s)

)2 dtds = oP(1),
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where Z∗N is defined in (24). It follows from Theorem 1 that, for all 0 < δ < 1/2,

sup
δ≤u≤1−δ

1
w2
κ(u)

∫∫ (
Z∗N(u, t, s) − ΓN(u, t, s)

)2 dtds = oP(1).

Let ν̄ = ν/2. According to the proof of Lemma 2, for x > 0

P

 max
1≤k≤bNδc

N−1/2+κ

kκ

∥∥∥∥∥∥∥
k∑

i=1

(εi ⊗ εi − C)

∥∥∥∥∥∥∥
2

≥ x

 ≤ c3

xν
N−ν̄/2+κν̄

logbNδc∑
j=1

e− jν̄κ+ jν̄/2 ≤ c4δ
ν(1/2−κ)

and therefore, for all x > 0,

lim
δ→0

lim sup
N→∞

P

 max
1≤k≤bNδc

N−1/2+κ

kκ

∥∥∥∥∥∥∥
k∑

i=1

(εi ⊗ εi − C)

∥∥∥∥∥∥∥
2

≥ x

 = 0.

The distribution of Γ̄N(u, t, s) does not depend on N and let Γ̄(u, t, s) be a Gaussian process distributed as Γ̄N(t, s). It is
easy to see that

sup
0<u≤δ

u
uκ

(∫ ∫
Γ̄2(1, t, s)dtds

)1/2

→ 0 a.s., δ→ 0.

Let λ1 ≥ λ2 ≥ · · · and φ1(t, s), φ2(t, s), . . . be the corresponding eigenvalues and eigenfunctions of D(t, s, t′, s′) as in
(6). Checking the covariance function one can verify that

{Γ̄(u, t, s), 0 ≤ u, t, s ≤ 1} D=
∞∑

i=1

λ1/2
i Wi(u)φi(t, s),

where {W1(u), 0 ≤ u ≤}, {W2(u), 0 ≤ u ≤}, . . . are independent Wiener processes. Using the orthonormality of the
eigenfunctions we have ∫ ∫

Γ2(u, t, s)dtds D=
∞∑

i=1

λiW2
i (u).

According to [25], there are independent and identically distributed random variables {Ξi, i ≥ 1} with finite moments
such that

|Wi(u)| ≤ Ξiu1/2(log(1/u))1/2, 0 ≤ s ≤ 1,

and therefore

E sup
0<u≤δ

1
u2κ

∞∑
i=1

λiW2
i (u) ≤ c5δ

1−2κ log(1/δ).

Thus we get

sup
0<u≤δ

1
u2κ

∫ ∫
Γ̄2(u, t, s)dtds

P
→0, δ→ 0,

resulting in

sup
0<u≤δ

1
u2κ

∫ ∫
Γ2

N(u, t, s)dtds
P
→0, δ→ 0,

for each N, on account of

{ΓN(u, t, s), 0 ≤ u, t, s ≤ 1} D= {Γ̄(t, t, s) − uΓ̄(1, t, s), 0 ≤ u, t, s ≤ 1}.

Similar arguments give for each N

sup
1−δ≤u<1

1
(1 − u)κ

∫ ∫
Γ2

N(u, t, s)dtds
P
→0, as δ→ 0,

completing the proof. of (3). Similar arguments give (4) and therefore the details are omitted.
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Proof of Theorem 3. First we note that by the proofs of Theorems 1 and 2, the result in (3) is proven if we show

1
N(θN(1 − θN))2−2κ‖C∆‖

2
2

× max
1≤k<N

N−1+4κ

(k(N − k))2κ

∥∥∥∥∥∥∥
k∑

i=1

X̂i ⊗ X̂i −
k
N

N∑
i=1

X̂i ⊗ X̂i

∥∥∥∥∥∥∥
2

2

P
→ 1, (29)

with X̂i(t) = Xi(t) − µ(t). We have under the alternative hypothesis

k∑
i=1

X̂i(t)X̂i(s) =



k∑
i=1

εi(t)εi(s), 1 ≤ k ≤ k∗,

k∗∑
i=1

εi(t)εi(s) +

k∑
k∗+1

εi,A(t)εi,A(s), k∗ + 1 ≤ k ≤ N,

and therefore
k∑

i=1

X̂i(t)X̂i(s) −
k
N

N∑
i=1

X̂i(t)X̂i(s) = Rk(t, s) + gk(t, s)

with

Rk(t, s) =



k∑
i=1

(εi(t)εi(s) − C(t, s)) −
k
N

 k∗∑
i=1

(εi(t)εi(s) − C(t, s)) +

N∑
i=k∗+1

(εi,A(t)εi,A(s) − CA(t, s))

 , 1 ≤ k ≤ k∗,

k∗∑
i=1

(εi(t)εi(s) − C(t, s)) +

k∑
i=k∗+1

(εi,A(t)εi,A(s) − CA(t, s) −
k
N

( k∗∑
i=1

(εi(t)εi(s) − C(t, s))

+

N∑
i=k∗+1

(εi,A(t)εi,A(s) − CA(t, s))
)
, k∗ + 1 ≤ k ≤ N,

and

gk(t, s) =


k
N

(N − k∗)C∆(t, s), 1 ≤ k ≤ k∗,

k∗

N
(N − k)C∆(t, s), k∗ + 1 ≤ k ≤ N.

(30)

It follows from [15], as in the proof of Theorem 2,

max
1≤k<N

N−1+4κ

(k(N − k))2κ ‖Rk‖
2
2 = OP(1).

Elementary algebra gives

max
1≤k≤N

N−1+4κ

(k(N − k))2κ ‖gk‖
2
2 = N(θN(1 − θN))2−2κ‖C∆‖

2
2(1 + o(1)),

completing the proof of (29). Similar arguments give (4) and therefore the proof is omitted.

8. Proof of Theorem 4

Theorems 1 and 2 imply the order of the weighted partial sums of the εi(t)εi(s)’s when 0 ≤ κ < 1/2. Next we get a
bound when κ = 1/2 and obtain the same results for the weighted sums of the εi,A(t)εi,A(s)’s.

Lemma 3. If Assumptions 1 and 4 hold, then

max
1≤k<N

N1/2

(k(N − k))1/2

∥∥∥∥∥∥∥
k∑

i=1

(εi ⊗ εi − C) −
k
N

N∑
i=k+1

(εi ⊗ εi − C)

∥∥∥∥∥∥∥
2

= OP((log N)2/ν), (31)
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max
1≤k<N

N−1/2+2κ

(k(N − k))κ

∥∥∥∥∥∥∥
k∑

i=1

(εi,A ⊗ εi,A − CA) −
k
N

N∑
i=k+1

(εi,A ⊗ εi,A − CA)

∥∥∥∥∥∥∥
2

= OP(1), (32)

max
1≤k<N

N1/2

(k(N − k))1/2

∥∥∥∥∥∥∥
k∑

i=1

(εi,A ⊗ εi,A − CA) −
k
N

N∑
i=k+1

(εi,A ⊗ εi,A − CA)

∥∥∥∥∥∥∥
2

= OP((log N)2/ν). (33)

If M > a > 1, then for all x > 0,

P

 max
1≤k≤M−a

1
M − k

∥∥∥∥∥∥∥
M∑

i=k+1

(εi ⊗ εi − C)

∥∥∥∥∥∥∥
2

> xa−1/2

 ≤ c1

xν/2
, (34)

and

P

 max
1≤k≤M−a

1
M − k

∥∥∥∥∥∥∥
M∑

i=k+1

(εi,A ⊗ εi,A − CA)

∥∥∥∥∥∥∥
2

> xa−1/2

 ≤ c2

xν/2
, (35)

with some constant c1 and c2.

Proof. Let

ζi(t, s) = εi(t)εi(s) − C(t, s) ζi,A(t, s) = εi,A(t)εi,A(s) − CA(t, s). (36)

We write

max
1≤k≤N

1
k1/2

∥∥∥∥∥∥∥
k∑

i=1

ζi

∥∥∥∥∥∥∥
2

≤ max
1≤ j≤N

max
e j−1≤k≤e j

1
k1/2

∥∥∥∥∥∥∥
k∑

i=1

ζi

∥∥∥∥∥∥∥
2

≤ max
1≤ j≤N

max
e j−1≤k≤e j

e−( j−1)/2

∥∥∥∥∥∥∥
k∑

i=1

ζi

∥∥∥∥∥∥∥
2

.

It is shown in [15] that

max
1≤k≤m

∥∥∥∥∥∥∥
k∑

i=1

ζi(t, s)

∥∥∥∥∥∥∥
ν/2

2

≤ c3mν/4 (37)

and therefore

P

 max
1≤k≤N

1
k1/2

∥∥∥∥∥∥∥
k∑

i=1

ζi

∥∥∥∥∥∥∥
2

≥ x(log N)2/ν

 ≤ c3

xν/2 log N

log N∑
j=1

e−ν( j−1)/4eν j/4 ≤
c4

xν/2
(38)

resulting in

max
1≤k≤N

1
k1/2

∥∥∥∥∥∥∥
k∑

i=1

ζi

∥∥∥∥∥∥∥
2

= OP

(
(log N)2/ν

)
.

Similar arguments give

max
1≤k<N

1
(N − k)1/2

∥∥∥∥∥∥∥
N∑

i=k+1

ζi

∥∥∥∥∥∥∥
2

= OP

(
(log N)2/ν

)
.

Hence (31) is proven. Assumption 4 and (37) yield as before that

max
1≤k≤m

∥∥∥∥∥∥∥
k∑

i=1

ζi,A

∥∥∥∥∥∥∥
ν/2

2

≤ c5mν/4. (39)

Repeating the proof of (31), one can establish (32) and (33), we only need to replace (37) with (39).
Proceeding along the lines of (38)

P

 max
1≤k≤M−a

1
M − k

∥∥∥∥∥∥∥
M∑

i=k+1

ζi

∥∥∥∥∥∥∥
2

> xa−1/2

 = P

 max
a≤`≤M−1

1
`

∥∥∥∥∥∥∥
M∑

i=M−`

ζi

∥∥∥∥∥∥∥
2

> xa−1/2

 ≤ c1

xν/2
,

and therefore (34) holds. The same argument gives (35).
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Proof of Theorem 4. We use the decomposition

k∑
i=1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s)) −
k
N

N∑
i=1

(Xi(t) − X̄N(t))(Xi(s) − X̄N(s))

= Vk,1(t, s) − Vk,2(t)(X̄N(s) − µ(s)) − Vk,2(s)(X̄N(t) − µ(t)) + gk(t, s),

where

Vk,1(t, s) =



k∑
i=1

ζi(t, s) −
k
N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)

 , if 1 ≤ k ≤ k∗,

−

N∑
i=k+1

ζi,A(t, s) +

(
1 −

k
N

) ( k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)
)
, if k∗ + 1 ≤ k ≤ N,

Vk,2(t) =



k∑
i=1

εi(t) −
k
N

 k∗∑
i=1

εi(t) +

N∑
i=k∗+1

εi,A(t)

 , if 1 ≤ k ≤ k∗,

−

N∑
i=k∗+1

εi,A(t) +

(
1 −

k
N

)  k∗∑
i=1

εi(t) +

N∑
i=k∗+1

εi,A(t)

 , if k∗ + 1 ≤ k ≤ N,

with gk(t, s), ζi(t, s) and ζA,i(t, s) defined in (30) and (36). We assume that 0 ≤ κ < 1/2. It follows from Assumption 3
that (k(N − k))−κ‖gk‖2 reaches its largest value at k∗ and for all 0 < α < θ < β < 1,

1
N1/2 min

Nα≤k≤Nβ
‖gk‖2 → ∞. (40)

The proof of Theorem 2 (e.g., see Lemma 2) yields

max
1≤k<N

(
N2

k(N − k)

)κ ∥∥∥∥∥∥∥
k∑

i=1

ζi −
k
N

N∑
i=1

ζi

∥∥∥∥∥∥∥
2

= OP(N1/2), (41)

and Lemma 3 implies

max
1≤k<N

(
N2

k(N − k)

)κ ∥∥∥∥∥∥∥
k∑

i=1

ζi,A −
k
N

N∑
i=1

ζi,A

∥∥∥∥∥∥∥
2

= OP(N1/2). (42)

Similar arguments give

max
1≤k<N

(
N2

k(N − k)

)κ ∥∥∥∥∥∥∥
k∑

i=1

εi −
k
N

N∑
i=1

εi

∥∥∥∥∥∥∥
2

= OP(N1/2) (43)

and

max
1≤k<N

(
N2

k(N − k)

)κ ∥∥∥∥∥∥∥
k∑

i=1

εi,A −
k
N

N∑
i=1

εi,A

∥∥∥∥∥∥∥
2

= OP(N1/2). (44)

Putting together (41)–(44) we conclude:

max
1≤k<N

(
N2

k(N − k)

)κ ∥∥∥Vk,1 − Vk,2 ⊗ (X̄N − µ) − Vk,2 ⊗ (X̄N − µ)
∥∥∥

2 = OP(N1/2)

and therefore (40) implies

|k̂N(κ) − k∗| = oP(N). (45)

19



Next we show

‖C∆‖
2
2

∣∣∣k̂N − k∗
∣∣∣ = oP(N). (46)

To do this we require a more detailed decomposition. We note that

k̂N(κ) = argmax1≤k≤N

∫ ∫
Qk(t, s)dtds,

where

Qk(t, s) =

(
N

k(N − k)

)2κ (
Vk,1(t, s) − Vk,2(t)(X̄N(s) − µ(s)) − Vk,2(s)(X̄N(t) − µ(t)) + gk(t, s)

)2

−

(
N

k∗(N − k∗)

)2κ (
Vk∗,1(t, s) − Vk∗,2(t)(X̄N(s) − µ(s)) − Vk∗,2(s)(X̄N(t) − µ(t)) +gk∗ (t, s))2 = Qk,1(t, s) + · · · + Qk,8(t, s)

with

Qk,1(t, s) =

(
N

k(N − k)

)2κ

(Vk,1(t, s) + gk(t, s))2 −

(
N

k∗(N − k∗)

)2κ

(Vk∗,1(t, s) + gk∗ (t, s))2,

Qk,2(t, s) =

(
N

k(N − k)

)2κ

V2
k,2(t)(X̄N(s) − µ(s))2 −

(
N

k∗(N − k∗)

)2κ

V2
k∗,2(t)(X̄N(s) − µ(s))2,Qk,3(t, s) = Qk,2(s, t),

Qk,4(t, s) = −2
(

N
k(N − k)

)2κ

Vk,1(t, s)Vk,2(t)(X̄N(s) − µ(s)) + 2
(

N
k∗(N − k∗)

)2κ

Vk∗,1(t, s)Vk∗,2(t)(X̄N(s) − µ(s)),

Qk,5(t, s) = Qk,4(s, t),

Qk,6(t, s) = 2
(

N
k(N − k)

)2κ

Vk,2(t)(X̄N(s) − µ(s))Vk,2(s)(X̄N(t) − µ(t))

−

(
N

k∗(N − k∗)

)2κ

2Vk∗,2(t)(X̄N(s) − µ(s))Vk∗,2(s)(X̄N(t) − µ(t)),

Qk,7(t, s) = −2
(

N
k(N − k)

)2κ

Vk,2(t)(X̄N(s) − µ(s))gk(t, s) + 2
(

N
k∗(N − k∗)

)2κ

Vk∗,2(t)(X̄N(s) − µ(s))gk∗ (t, s),

Qk,8(t, s) = Qk,7(s, t).

We provide details for 1 ≤ k ≤ k∗. Using (44), we only need to investigate when Nα ≤ k ≤ k∗ − a, where 0 < α < θ
and a = C/‖C∆‖

2
2. We start with Qk,1(t, s). We write Qk,1(t, s) as Qk,1(t, s) = Qk,1,1(t, s) + · · · + Qk,1,8(t, s), where

Qk,1,1(t, s) =


(

N
k(N − k)

)2κ

−

(
N

k∗(N − k∗)

)2κ

 k∑

i=1

ζi(t, s) −
k
N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)

2

,

Qk,1,2(t, s) = −2
(

N
k∗(N − k∗)

)2κ
 k∗∑

i=k+1

ζi(t, s)


 k∑

i=1

ζi(t, s) −
k
N

 k∗∑
i=1

ζi(t, s)

+

N∑
i=k∗+1

ζi,A(t, s)

 +

k∗∑
i=1

ζi(t, s) −
k∗

N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)


 ,

Qk,1,3(t, s) = 2
(

N
k∗(N − k∗)

)2κ k∗ − k
N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)


 k∑

i=1

ζi(t, s)

−
k
N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)

 +

k∗∑
i=1

ζi(t, s) −
k∗

N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)


 ,
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Qk,1,4(t, s) = −2
(

N
k∗(N − k∗)

)2κ

(gk(t, s) − gk∗ (t, s))

Qk,1,5(t, s) = −


(

N
k(N − k)

)2κ

−

(
N

k∗(N − k∗)

)2κ

 k∗∑

i=1

ζi(t, s) −
k∗

N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)

 × gk∗ (t, s),

Qk,1,6(t, s) = 2
(

N
k∗(N − k∗)

)2κ k − k∗

N

 k∗∑
i=1

ζi(t, s) +

N∑
i=k∗+1

ζi,A(t, s)

 gk∗ (t, s),

Qk,1,7(t, s) = −2
(

N
k∗(N − k∗)

)2κ
 k∑

i=1

ζi(t, s) −
k∗∑

i=1

ζi(t, s)

 ,Qk,1,8(t, s) =

(
N

k(N − k)

)2κ

g2
k(t, s) −

(
N

k∗(N − k∗)

)2κ

g2
k∗ (t, s).

Using the mean value theorem we get

max
Nα≤k≤k∗

1
k∗ − k

∣∣∣∣∣∣∣
(

N
k(N − k)

)2κ

−

(
N

k∗(N − k∗)

)2κ
∣∣∣∣∣∣∣ = O(N−1−2κ)

and therefore by Theorem 2 and (32)

max
Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,1(t, s)|dtds = OP

 N−1−2κN
N1−2κ‖C∆‖

2
2

 = OP

 1
N‖C∆‖

2
2

 = oP(1). (47)

By the Cauchy–Schwartz inequality for integrals and Lemma 3 we have

max
Nα≤k≤k∗−a

1
k∗ − k

∫ ∫
|Qk,1,2(t, s)|dtds = OP

(
N−2κ−1/2

)
max

Nα≤k≤k∗−a

1
k∗ − k

∥∥∥∥∥∥∥
k∗∑

i=k+1

ζi

∥∥∥∥∥∥∥
2

.

So by (34) we get

max
Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,2(t, s)|dtds = OP

 N−2κ+1/2

N1−2κ‖C∆‖
2
2

‖C∆‖2

 = oP(1). (48)

Lemma 3 implies

max
Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,3(t, s)|dtds = OP

 1
N‖C∆‖

2
2

 = oP(1). (49)

Similarly to (47)

max
Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,4(t, s)|dtds = OP

(
1

N1/2‖C∆‖2

)
= oP(1), (50)

max
Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,5(t, s)|dtds = OP

(
1

N1/2‖C∆‖2

)
= oP(1) (51)

and

max
Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,6(t, s)|dtds = OP

(
1

N1/2‖C∆‖2

)
= oP(1). (52)

Using (34) and the definition of a we get that

max
Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,7(t, s)|dtds =

1
C1/2 OP(1).

and therefore, for any x > 0,

lim
C→∞

lim sup
N→∞

P
 max

Nα≤k≤k∗

1
N1−2κ‖C∆‖

2
2(k − k∗)

∫
|Qk,1,7(t, s)|dtds > x

 = 0. (53)
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Elementary algebra yields that with some c1 > 0 and c2 > 0, if Nα ≤ k ≤ k∗

−c1N1−2κ‖C∆‖
2
2(k∗ − k) ≤

∫ ∫
Qk,1,8(t, s)dtds ≤ −c2N1−2κ‖C∆‖

2
2(k∗ − k), (54)

We then write Qk,2(t, s) = Qk,2,1(t, s) + Qk,2,2(t, s), where

Qk,2,1(t, s) =


(

N
k(N − k)

)2κ

−

(
N

k∗(N − k∗)

)2κ
 V2

k,2(t)(X̄N(s) − µ(s))2

and

Qk,2,2(t, s) =

(
N

k∗(N − k∗)

)2κ [
V2

k,2(t)(X̄N(s) − µ(s))2 − V2
k∗,2(t)(X̄N(s) − µ(s))2

]
.

Assumption 1 implies with Theorem 3.2 of [15] (see also [36]) that

max
1≤k≤N

‖Vk,2‖2 = OP(N1/2), max
1≤k≤N

‖X̄N − µ‖2 = OP(N−1/2), (55)

so the mean value theorem gives

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫ ∫
|Qk,2,1(t, s)|dtds = OP

 1
N‖C∆‖

2
2

 = oP(1).

Elementary algebra yields

Qk,2,2(t, s) =

(
N

k∗(N − k∗)

)2κ [
Vk,2(t) − Vk∗,2(t)

] [
Vk,2(t) + Vk∗,2(t)

]
(X̄N(s) − µ(s))2

and therefore

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫ ∫
|Qk,2,2(t, s)|dtds = OP

 1
N3/2‖C∆‖

2
2

 max
Nα≤k≤k∗−a

1
k∗ − k

∥∥∥∥∥∥∥
k∗∑

i=k+1

ζi

∥∥∥∥∥∥∥
2

.

Hence Lemma 3 implies maxNα≤k≤k∗−a[N1−2κ(k∗ − k)‖C∆‖
2
2]−1

∫∫
|Qk,2,2(t, s)|dtds = oP(1), and thus

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫ ∫
|Qk,2(t, s)|dtds = oP(1). (56)

Repeating the proof of (56), one can verify

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫ ∫
|Qk,i(t, s)|dtds = oP(1), i = 3, 4, 5. (57)

We may also write Qk,6(t, s) = 2Qk,6,1(t, s) + 2Qk,6,2(t, s) + 2Qk,6,3(t, s), where

Qk,6,1(t, s) =


(

N
k(N − k)

)2κ

−

(
N

k∗(N − k∗)

)2κ
 Vk,2(t)(X̄N(s) − µ(s))Vk,2(s)(X̄N(t) − µ(t)),

Qk,6,2(t, s) =

(
N

k∗(N − k∗)

)2κ

(Vk,2(t) − Vk∗,2(t))(X̄N(s) − µ(s))Vk,2(s)(X̄N(t) − µ(t))

and Qk,6,3(t, s) = Qk,6,2(s, t). Similarly to (55) max1≤k≤N ‖Vk,2(t)‖2 = OP(N1/2), and hence by the mean value theorem
we have

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫∫
|Qk,6,1(t, s)|dtds = oP(1).
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This and Lemma 3 yield

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫∫
|Qk,6,2(t, s)|dtds = OP

(
1

N1/2‖C∆‖2

)
= oP(1).

Thus we conclude

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫∫
|Qk,6(t, s)|dtds = oP(1). (58)

Using the same arguments as above one can show that

max
Nα≤k≤k∗−a

1
N1−2κ(k∗ − k)‖C∆‖

2
2

∫∫
|Qk,i(t, s)|dtds = oP(1), i = 7, 8. (59)

Putting together (47)–(59) for all K < 0 we have

lim
C→∞

lim sup
N→∞

P

 max
Nα≤k≤k∗−C/‖C∆‖

2
2

∫∫  8∑
`=1

Qk,`(t, s)

 dtds > K

 = 0,

By symmetry, for all K < 0 and θ < β

lim
C→∞

lim sup
N→∞

P

 max
k∗−C/‖C∆‖

2
2≤k≤Nβ

∫∫  8∑
`=1

Qk,`(t, s)

 dtds > K

 = 0,

which completes the proof of (46).

With minor modifications of the arguments used in (47)–(59), one can prove that for all C > 0

max
|k∗−k|≤C/‖C∆‖

2
2

1
N1−2κ

∫ ∫
8∑
`=2

|Qk,`(t, s)|dtds = oP(1) (60)

and

max
|k∗−k|≤C/‖C∆‖

2
2

1
N1−2κ

∫ ∫
6∑
`=1

|Qk,1,`(t, s)|dtds = oP(1). (61)

Thus we proved that it is enough to investigate the properties of Qk,1,7(t, s) and Qk,1,8(t, s), when |k− k∗| = O(1/‖C∆‖
2
2).

According to the definitions of Qk,1,7(t, s) and Qk,1,8(t, s)

1
N1−2κ

∫∫
Qk,1,7(t, s)ds =



−2
(

k∗(N − k∗)
N2

)1−2κ

‖C∆‖2

k∗∑
i=k+1

∫ ∫
ζi(t, s)C∗N(t, s)dtds, if k < k∗,

0, if k = k∗,

2
(

k∗(N − k∗)
N2

)1−2κ

‖C∆‖2

k∑
i=k∗+1

∫∫
ζi,A(t, s)C∗N(t, s)dtds, if k > k∗,

with C∗N(t, s) = C∆(t, s)/‖C∆‖2, and

Qk,1,8(t, s) =

(
N

k(N − k)

)κ
g2

k(t, s) −
(

N
k∗(N − k∗)

)κ
g2

k∗ (t, s).

Using Assumptions 4, 5 and (42) we get for all C > 0

sup
0≤u≤C

‖C∆‖2

∣∣∣∣∣∣∣∣
k∗+uτ2/‖C∆‖2∑

i=k∗+1

∫∫
(ζi,A(t, s) − ζi(t, s))C∗N(t, s)dtds

∣∣∣∣∣∣∣∣ = oP(1).
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Due to Assumptions 1 and 4 it is straightforward to show that{
1

N1−2κ

∫∫
Qk∗+uτ2/‖C∆‖

2
2,1,7

(t, s)dtds, u < 0
}

and
{

1
N1−2κ

∫∫
Qk∗+uτ2/‖C∆‖

2
2,1,7

(t, s)dtds, u ≥ 0
}
,

are asymptotically independent. Thus we have for all C > 0

1
N1−2κ

∫∫
Qk∗+uτ2/‖C∆‖

2
2,1,7

(t, s)dtds
D[−C,C]
−→ 2(θ(1 − θ))1−2κτ2W(u), (62)

where {W(u),−∞ < u < ∞} is the two sided Wiener process of (21), and
D[−C,C]
−→ denotes weak convergence in the

Skorokhod topology on [−C,C]. Elementary arguments give

sup
|u|≤C

∣∣∣∣∣ 1
N1−2κ

∫∫
Qk∗+uτ2/‖C∆‖

2
2,1,8

(t, s)dtds + 2(θ(1 − θ))1−2κτ2mκ(u)
∣∣∣∣∣ = o(1), (63)

where mκ(u) is defined in (20). Since we can take C as large as we wish, Theorem 4 is proven when 0 ≤ κ < 1/2.
The second part of Theorem 4 is based on (31) and (33). Replacing (41)–(44) with (31) and (33), one can verify that
(45) holds when κ = 1/2. The rest of the proof remains the same.
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