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Abstract—Market timing is the issue of deciding when to buy
or sell a given asset on a financial market. As one of the core issues
of algorithmic trading systems, designers of such systems have
turned to computational intelligence methods to aid them in this
task. In our previous work, we introduced a number of Particle
Swarm Optimization (PSO) algorithms to compose strategies for
market timing using a novel training and testing methodology
that reduced the likelihood of overfitting and tackled market
timing as a multiobjective optimization problem. In this paper,
we provide a detailed analysis of these multiobjective PSO
algorithms and address two limitations in the results presented
previously. The first limitation is that the PSO algorithms have
not been compared to well-known algorithms or market timing
techniques. This is addressed by comparing the results obtained
against NSGA-II and MACD, a technique commonly used in
market timing strategies. The second limitation is that we have
no insight regarding diversity of the Pareto sets returned by
the algorithms. We address this by using RadViz to visualize the
Pareto sets returned by all the algorithms, including NSGA-II and
MACD. The results show that the multiobjective PSO algorithms
return statistically significantly better results than NSGA-II and
MACD. We also observe that the multiobjective PSOSP algorithm
consistently displayed the best spread in its returned Pareto sets
despite not having any explicit diversity promoting measures.

Index Terms—particle swarm optimization, multiobjective op-
timization, market timing, algorithmic trading

I. INTRODUCTION

Market timing is the issue of deciding when to buy or
sell a given asset on a financial market. A market timing
strategy can be composed of a set of components that digest
current and past market context and return a recommendation
on the action to take. In a strategy containing more than one
component, the components have a weight associated with
them, and the final action taken is based on the aggregate of
the individual recommendations multiplied by their respective
weights. Previous approaches on using computational intelli-
gence to aid the formation of market timing strategies were
vastly dominated by GA based on the volume of publications
[1] [2]. These approaches either attempted to optimize the
parameters of a preset selection of components or select a
subset from a set of components with predefined parameters.
None of the surveyed approaches attempted to perform both
functions simultaneously. This limits the designer of a market
timing strategy to committing computational resources to only
one of those functions at a time, curtailing the flexibility in
choice of components and parameters for consideration. When

it came to training and testing, all of the surveyed approaches
followed a protocol known as Step Forward testing. In Step
Forward testing, a stream of financial data is split arbitrarily
into two sections: the earlier section of the stream to be used
for training while the latter was used for testing. One of
the main criticisms for the use of Step Forward testing is
that algorithms have the liability of overfitting to only the
trends observed in the data and hence suffering a significant
degradation in performance when encountering unseen trends
during live training. The majority of literature observed on the
use of computational intelligence for market timing tackled it
as a single objective optimization problem. When dealing with
market timing strategies deployed in live trading scenarios,
users of such strategies would gauge performance using a
number of financial metrics that represent various aspects of
profits, losses and exposure to risk. Modeling a market timing
strategy as a single objective optimization problem limits its
utility for live trading, as it constrains optimization to only
one of the aforementioned aspects. Although a number of
approaches modeled market timing as multiobjective optimiza-
tion problems, such as [3], [4], they are limited in scope
and pale in comparison to those that modeled it as a single
objective optimization problem in terms of volume.

In [5], we proposed the use of Particle Swarm Optimization
(PSO) to tackle market timing as a single objective optimiza-
tion problem but in such a fashion that considers both the
selection of components and the tuning of their parameters
simultaneously. This is further developed in [6] with the
introduction of a novel training and testing methodology called
Trend Representative Testing. In Trend Representative Testing
the strategies are explicitly exposed to a variety of market
conditions both during training and testing. This reduces the
likelihood of overfitting to particular market conditions, which
has been a common criticism of Step Forward testing [7]. We
also introduced a GA benchmark in [6] in order to be able
to better evaluate the performance of our PSO algorithms.
Finally, we evolved our approach to tackling market timing
from a single objective optimization problem to considering
it as a multiobjective one, and adapting the PSO and GA
algorithms introduced in [5] and [6] accordingly. The perfor-
mance of the multiobjective PSO algorithms was evaluated
by measuring the hypervolume [8], [9] obtained against five
financial objectives. Although the results showed that a mul-



tiobjective PSO variant attained statistical significance under
certain market conditions, the evaluative context was limited as
the PSO algorithms were only compared to a multiobjective
GA benchmark which was introduced within the work. The
results also do not provide insight into the diversity of the
solutions returned by the algorithms.

In this paper, we provide a deeper insight into the algorithms
introduced in [10], and address the limitations in the results
there. We will provide a better evaluative context in regards to
performance by comparing the results of the algorithms against
NSGA-II, a well established multiobjective optimization GA
algorithm, and MACD, a component widely used in market
timing strategies to generate recommendations for action to
take. We will also look into the diversity and spread of the
solutions in the Pareto sets returned by the algorithms in [10],
and compare them with NSGA-II and MACD by visualizing
the results using RadViz [11].

The remainder of this paper is structured as follows: Firstly,
We will begin by taking a deeper look at the algorithms
introduced in [10], and contrasting their structure with known
multiobjective PSO algorithms. Secondly, we will compare the
performance of the algorithms against NSGA-II and MACD,
as well as their single objective optimization counterparts from
[6]. Thirdly, we will look into the diversity of the Pareto sets
returned by the algorithms and compare them with NSGA-II
and MACD. Finally, we conclude by providing a summary of
our findings and suggestions for future research.

II. ALGORITHMS

In this section, we take a detailed look at the PSO and GA
algorithms introduced in [10]. In order to avoid confusion dur-
ing comparisons, the multiobjective variants of the algorithms
from [10] will be prefixed with the Greek letter Lambda,
resulting in the multiobjective algorithms being labeled as λ-
PSO, λ-PSOSP and λ-GA.1

As mentioned in [10], the algorithms underwent a number
of modifications to adapt them to multiobjective optimization.
The two common adaptations that were applied to all three
algorithms are the use of a non-dominated archive and the
shift to using of a dominance based fitness approach based
on the five optimized financial objectives. The non-dominated
archive is used to keep track of the non-dominated solutions
discovered by the algorithms during their run. The pseudocode
for the non-dominated archive can be seen in Algorithm 1. The
admittance of new solutions into the archive are maintained
by the central function ADD (line 4). In order for a solution
to be admitted into the archive it is compared with the current
occupants in the archive and its level of dominance is deter-
mined (lines 7 to 17). The level of dominance between two
solutions is ascertained using the utility function d(x, y), also

1The reason Lambda was chosen as a prefix is due to its relation to the
hypervolume calculation. The hypervolume calculation was used to assess
the performance of the multiobjective algorithms in [10] and is based on the
Lebesgue measure. The symbol used to represent this measure is the Greek
letter Lambda, and we borrow this symbol to demarcate the multiobjective
optimization algorithms.

known as the dominance score (line 1). Given two solutions, x
and y, to be evaluated for dominance based on five objectives,
a d(x, y) of three would indicate that solution x is better than
solution y in three of the five objectives. A potential solution
is only allowed into the archive if it gets a dominance score
of at least one against any of the current occupants. Also, if
while scanning against the current occupants, the incoming
solution achieves a dominance score of five (i.e. achieving
strong dominance), the occupant is marked for deletion and
removed from the archive (lines 18 to 20). The archive is
unbounded and is not limited to maintaining only a limited
number of non-dominated solutions. The only other function
performed by the archive is the SELECT function, which
returns a random member from the current occupants of the
archive to be used by the algorithms in various operations as
we will see shortly (lines 23 to 25).

The λ-GA algorithm maintains a non-dominated archive to
keep track of the non-dominated solutions as the algorithm
runs, and the contents are returned as the discovered Pareto
set at the end of the run. The algorithm begins with a
population of N randomly generated solutions, and they all
initially admitted to the archive. Then, the algorithm repeats
two basic operations across the current generation of solu-
tions: mutation and crossover. For mutation, if the value of a
randomly generated value is less than the mutation threshold
M , then a solution is picked from the current generation using
tournament selection and that solution undergoes mutation and
is added to the next generation of solutions. The mutation
process replaces a random component with a given solution
with a fresh randomly generated copy. A crossover event is
also triggered in a fashion similar to mutation by checking if
a value of random variable is less than the crossover threshold
C. Tournament selection is performed twice to select parents
from the current generation and the offspring are added to
the next generation. As the components in the solutions are
atomic in nature, a crossover point is selected at random such
that it falls on the border of components, not within them, in
order to generate valid offspring. After performing mutation
and crossover, a random candidate is selected from the non-
dominated archive and added to the next generation in order
to maintain pressure to discover non-dominated areas in the
search space in an elitist fashion. The next generation at this
point replaces the current one and the fitness of the current
generation is calculated; this process is repeated until the
stopping criteria for the algorithm are met, and the contents of
the non-dominated archive at the end of the run are returned
as the discovered Pareto set.

As with λ-GA, multiobjective PSO algorithms—λ-PSO,
λ-PSOS and λ-PSOSP—employ the use of a non-dominated
archive to keep track of non-dominated solutions as they
are discovered. The λ-PSO algorithm begins by initializing a
swarm of N particles and then iterates over all the particles in
swarm, calculating each particle’s new velocity and use that to
update its respective state. Each particle’s velocity is calculate
by adding three components: bias, cognitive component and
social component. Bias multiplies a particle’s previous velocity



by an exponentially decreasing factor. The use of bias in the
velocity update depends on the clamping mechanism, which
will be discussed shortly. The cognitive component is the
traditionally the difference between a given particle’s best dis-
covered solution so far and its current state. Since solutions in
this multiobjective optimization context are evaluated based on
dominance, each particle maintains a personal non-dominated
archive. A candidate is selected at random from the particle’s
personal non-dominated archive in order to calculate the value
for the cognitive component of the velocity update. As for
the social component, a temporary non-dominated archive is
formed to contain the non-dominated neighbors of a given
particle, a candidate is selected at random from that archive
to represent a neighbor and calculate the value for the social
component of the velocity update. In order to prevent the
particles from escaping the search space, the user is given
a choice of a velocity clamping mechanism: either Clerc’s
Constriction [12] or multiplying the entire velocity update
by a fixed factor. After arriving at the a particle’s velocity
update array, it is used to update the current velocity, and
subsequently the particle’s state. Fitnesses for the particles
are then calculated, each particle updates its personal non-
dominated archive and the algorithm’s non-dominated archive
is updated using the current states in the swarm. At the end
of algorithm’s run, the non-dominated archive is return as
the discovered Pareto set. The λ-PSOS and λ-PSOSP extend
the λ-PSO algorithm with a Stochastic State Update and
Pruning mechanisms [6], [13]. When pruning is enabled, the
resultant algorithm is labeled λ-PSOSP, otherwise the resultant
algorithm is labeled λ-PSOS.

III. COMPARISON AGAINST NSGA-II AND MACD

The results presented in [10] were limited in two primary
ways. The first limitation is that the results of the PSO
algorithms are only compared to a GA benchmark that was in-
troduced in the same paper. In order to address this limitation,
we compare the performance of these algorithms against a
more established, well-researched multiobjective optimization
algorithm and a widely used technique for market timing. The
second limitation is that we have no insight on the quality
of the Pareto sets returned by the algorithms in terms of
diversity. Ideally, we would prefer sets that cover a larger area
of the Pareto front on the objective space and not sets that
are clustered around a few point points on the Pareto front.
We address this second limitation by visualizing the returned
Pareto sets from all algorithms, including those discussed in
this section, using RadViz [11] and inspecting the spread of
these sets as will be seen in the next section.

For our choice of a well established multiobjective op-
timization algorithm, we have selected the Nondominates
Sorting Genetic Algorithm (NSGA-II) [14]. The NSGA-II
algorithm was first introduced in 2002, and is now amongst the
most widely used and cited algorithms within the domain of
multiobjective optimization. Early multiobjective optimization
algorithms suffered from a number of limitations, including
adopting a non-elitist approach, the need for specifying one

Algorithm 1 Archive used to maintain non-dominated solu-
tions.

1: d(x, y): dominance score – the number of objectives
where solution x is better than solution y

2: N : number of objectives being optimized.
3: archive← {}
4: procedure ADD(x)
5: remove← {}
6: add solution← False
7: for every si in archive do
8: if d(x, si) > 0 then
9: add solution← add solution OR True

10: end if
11: if d(x, si) = N then
12: remove← remove ∪ si
13: end if
14: end for
15: if add solution = True then
16: archive← archive ∪ x
17: end if
18: for every solution ri in remove do
19: delete ri from archive
20: end for
21: end procedure
22:
23: function SELECT( )
24: return random member from archive
25: end function

or more parameters for the algorithm to run and suffering high
complexity on the order of O(MN3), where M is the number
of objectives and N is the population size. NSGA-II introduces
a number of measures to directly address these limitations.
Since its introduction, NSGA-II has been widely adopted in
a number of domains, including being the benchmark in a
number of market timing applications such as [4]. As for
our selection of a technical analysis indicator that is widely
used market timing applications, we opted to used the Moving
Average Converge Diverge (MACD) indicator [15]. MACD
depends on studying the exponential moving averages of the
price data in an attempt to identify the momentum behind
the underlying trend in the price. The MACD indicator uses
two exponential moving averages, a fast one and another slow
one, and the period of both being user-defined parameters. By
subtracting the fast moving average from its slow counterpart,
we arrive at a new series called the MACD series. We then
further smooth the MACD series by a user defined parameter
to generate what is known as the Signal line. Crossover points
between the Signal line and the MACD series indicate an
imminent change in momentum and a subsequent change in
the direction of the current price trend. Depending on the
direction of the crossover, we either buy (when the signal
crosses up) or sell (when the signal line crosses down).

In order to perform the comparison, NSGA-II and the
MACD indicator utilized the same experimental setup and



TABLE I: IRace discovered configurations for NSGA-II and
MACD.

NSGA-II MACD

Parameter Value Parameter Value
Population Size 47 Short EMA Period 12
Generations 72 Long EMA Period 26
Mutation Probability 0.0462 Signal Period 9
Crossover Probability 0.5559

dataset as the λ-PSOSP, λ-PSO and λ-GA algorithms in the
previous set of experiments. NSGA-II underwent hyperparam-
eter optimization using IRace with the same budget as the
other algorithms. The final configuration selected by IRace
for NSGA-II can be seen in Table I. From Table I, we can
see that although the population size was comparable to our
GA benchmark, the number of generations needed was three
times that our GA benchmark at 72 compared to the GA’s
24. The mutation and crossover probabilities discovered are
relatively low compared to typical values used for genetic
algorithms, and even our own GA benchmark. There are
no values for tournament selection as it is fixed at two as
part of the NSGA-II specification. Since MACD also has a
set of parameters, we experimented with three versions: one
using industry standard default values, one optimized using
IRace with the same budget as the other algorithms and one
optimized using IRace with three times the budget available
to the other algorithms. During experimentation though, the
MACD variants using parameter values from both IRace runs
did not produce any transactions in any of our training and
testing sets. The only configuration that did result in some
transactions was the one with industry default values for the
parameters, and hence all further references to MACD will be
to the one using those values. The values used for the MACD
parameters can also be seen in Table I.

Table II shows the hypervolume results for all algorithms
including NSGA-II and MACD. As can be seen from Table
II, NSGA-II and MACD did not achieve any wins in terms
of mean hypervolume when compared to λ-PSOSP, λ-PSO
and λ-GA. The λ-PSOSP algorithm maintains a considerable
lead with 21 wins, followed by GA with 6 wins and finally
PSO with 3 wins. In some instances, λ-PSOSP showed a mean
hypervolume an order of magnitude higher than NSGA-II as
can be seen when triplets 6 and 7 were used in testing. On the
other hand, MACD on its own failed to produce transactions
under certain testing strands, indicated by achieving zero
hypervolume. In cases where it did produce transactions, the
mean hypervolume is still significantly lower than the best
performing algorithm’s mean hypervolume for that strand.

Table III shows the best performance achieved per objec-
tive optimized, including solutions from both NSGA-II and
MACD. Here we identify the algorithm and strand where
the best performing solution was observed in terms of the
objective at hand, and compare it with the best performing
solutions obtained by the remaining algorithms. Again, in case
of more than one solution being non-dominated, we follow
a lexicographical approach in our comparison based on the

Fig. 1: Violin plot comparing AROR performance for all
multiobjective algorithms, along with NSGA-II and MACD,
across all testing strands. We can see that the medians and the
bulk of their solution distributions for all algorithms are close
to each other. Only λ-PSOSP has shown a tail achieving higher
AROR values than the other algorithms in the comparison.

Fig. 2: Violin plot comparing Annualized Portfolio Risk per-
formance for all multiobjective algorithms, along with NSGA-
II and MACD, across all testing strands. With the exception
of MACD, all multiobjective algorithms have their medians
and the bulk of their solution distributions are close to each
other. MACD, on the other hand displays a higher median and
a long tail stretching into higher values of risk, indicating a
worse performance when compared to the other algorithms.

following ordering: AROR, Portfolio Risk, VaR, Transactions
Count and Solution Length. As can be seen in Table III, λ-
PSOSP retained its edge over all other algorithms including
the two new benchmarks: NSGA-II and MACD. The fact that
MACD was able to achieve a value of 2.016 for AROR without
any transactions when looking for the best performing solution
for VaR is not a mistake but instead a limitation of how the
AROR value is calculated. It is in such situations that it is
important to consider the number of transactions and, hence,
our confidence in the strategy. A transaction count of zero
would result in the lowest confidence possible in a candidate
market timing strategy, and therefore the candidate presented
by MACD for the JBLU1 strand is an unworthy one. We



TABLE II: Hypervolume results for each algorithm over the ten datasets including NSGA-II and MACD as benchmarks. The
minimum, mean and max values are obtained by running each algorithm ten times on each dataset. Best mean results are
highlighted in bold.

λ-PSOSP λ-GA λ-PSO NSGA-II MACD
# Trend Strand Min Mean Max Min Mean Max Min Mean Max Min Mean Max

0 ↑ IAG1 0.00E+00 2.07E+12 2.07E+13 0.00E+00 3.14E+13 1.57E+14 7.50E+14 1.08E+15 1.28E+15 0.00E+00 0.00E+00 0.00E+00 0.00E+00
↔ MGA4 7.59E+15 8.68E+15 9.47E+15 5.27E+15 7.46E+15 8.30E+15 4.15E+15 5.15E+15 5.65E+15 2.18E+14 8.83E+14 2.23E+15 3.33E+14
↓ IAG2 3.79E+15 4.28E+15 4.80E+15 1.03E+15 1.93E+15 2.28E+15 7.45E+14 1.16E+15 1.30E+15 3.10E+13 2.06E+14 5.70E+14 1.44E+15

1 ↑ BSX1 3.00E+13 9.91E+14 1.47E+15 1.01E+13 1.81E+15 3.03E+15 1.96E+15 2.26E+15 3.14E+15 0.00E+00 2.90E+14 1.29E+15 0.00E+00
↔ LUV1 0.00E+00 2.49E+13 2.49E+14 0.00E+00 1.86E+14 4.65E+14 0.00E+00 1.95E+14 4.46E+14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
↓ KFY1 8.82E+15 9.43E+15 9.59E+15 2.43E+15 5.13E+15 5.71E+15 2.18E+15 2.78E+15 2.99E+15 5.40E+14 1.36E+15 2.47E+15 0.00E+00

2 ↑ EXC1 8.61E+15 9.40E+15 1.03E+16 3.00E+15 4.47E+15 5.54E+15 1.69E+15 2.37E+15 3.00E+15 3.12E+13 6.36E+14 1.73E+15 5.30E+14
↔ LUV2 9.90E+15 1.03E+16 1.05E+16 5.44E+15 6.74E+15 7.75E+15 3.16E+15 3.71E+15 4.46E+15 1.86E+14 1.05E+15 2.30E+15 1.27E+15
↓ KFY2 1.09E+16 1.20E+16 1.24E+16 4.88E+15 6.84E+15 8.08E+15 4.41E+15 4.94E+15 5.55E+15 2.52E+14 1.01E+15 1.86E+15 0.00E+00

3 ↑ AVNW1 2.89E+13 4.05E+14 7.16E+14 2.29E+15 2.51E+15 2.63E+15 1.92E+15 2.02E+15 2.13E+15 0.00E+00 3.30E+13 1.46E+14 0.00E+00
↔ PUK1 0.00E+00 2.82E+14 3.93E+14 7.83E+14 6.63E+15 1.11E+16 2.74E+15 4.13E+15 5.26E+15 0.00E+00 2.00E+14 8.40E+14 4.67E+14
↓ LUV3 7.14E+15 7.86E+15 8.22E+15 1.58E+15 2.86E+15 3.70E+15 1.82E+15 2.49E+15 2.66E+15 1.24E+14 6.30E+14 1.19E+15 5.08E+12

4 ↑ KFY3 5.96E+15 7.30E+15 8.07E+15 1.93E+15 3.57E+15 4.70E+15 2.08E+15 2.66E+15 2.90E+15 0.00E+00 8.35E+14 1.72E+15 0.00E+00
↔ EXC2 2.48E+16 2.69E+16 2.89E+16 1.20E+16 1.52E+16 1.66E+16 1.04E+16 1.17E+16 1.25E+16 0.00E+00 2.05E+15 6.19E+15 0.00E+00
↓ LUV4 1.06E+16 1.16E+16 1.24E+16 5.54E+14 3.70E+15 6.77E+15 1.67E+15 2.38E+15 2.78E+15 0.00E+00 9.08E+14 1.75E+15 2.98E+15

5 ↑ EXC3 8.83E+15 9.78E+15 1.07E+16 4.63E+15 6.14E+15 6.95E+15 3.55E+15 4.12E+15 4.30E+15 3.70E+14 9.18E+14 1.76E+15 9.38E+13
↔ PUK2 3.26E+15 4.66E+15 6.31E+15 7.38E+15 1.33E+16 1.71E+16 9.46E+15 1.06E+16 1.13E+16 4.66E+14 1.66E+15 3.90E+15 8.41E+14
↓ MGA1 2.13E+16 2.57E+16 2.69E+16 3.58E+15 4.68E+15 5.23E+15 1.89E+15 3.23E+15 3.93E+15 2.62E+14 7.06E+14 1.52E+15 3.86E+14

6 ↑ ED1 6.40E+15 6.86E+15 7.19E+15 2.31E+15 3.36E+15 3.92E+15 1.46E+15 2.04E+15 2.39E+15 7.19E+13 3.83E+14 1.35E+15 0.00E+00
↔ EXC4 3.04E+16 3.27E+16 3.38E+16 9.92E+15 1.37E+16 1.59E+16 9.40E+15 1.06E+16 1.14E+16 1.16E+14 1.08E+15 3.65E+15 2.57E+14
↓ PUK3 4.86E+15 5.73E+15 6.10E+15 5.92E+14 1.61E+15 2.20E+15 5.31E+14 1.16E+15 1.48E+15 3.29E+13 1.22E+14 3.59E+14 1.05E+15

7 ↑ BSX2 1.65E+16 1.72E+16 1.75E+16 6.87E+15 9.81E+15 1.17E+16 4.63E+15 5.74E+15 6.20E+15 4.44E+14 1.27E+15 2.16E+15 3.15E+14
↔ ED2 1.25E+16 1.28E+16 1.36E+16 7.41E+15 8.86E+15 9.19E+15 4.23E+15 4.82E+15 5.24E+15 3.78E+14 1.37E+15 2.43E+15 3.31E+15
↓ JBLU1 7.44E+15 8.45E+15 8.89E+15 5.27E+15 7.34E+15 8.37E+15 2.71E+15 3.50E+15 4.19E+15 7.95E+13 7.08E+14 2.02E+15 0.00E+00

8 ↑ MGA2 0.00E+00 1.86E+14 2.49E+14 4.68E+14 2.37E+15 3.55E+15 9.83E+14 1.55E+15 2.52E+15 0.00E+00 4.20E+13 2.11E+14 0.00E+00
↔ MGA3 2.00E+15 5.01E+15 7.30E+15 4.66E+15 7.07E+15 1.15E+16 4.64E+15 5.61E+15 6.39E+15 0.00E+00 4.02E+14 1.32E+15 0.00E+00
↓ ATRO1 1.15E+16 1.37E+16 1.53E+16 7.63E+14 6.86E+15 8.59E+15 5.85E+15 6.78E+15 7.17E+15 0.00E+00 2.51E+14 6.95E+14 5.56E+14

9 ↑ AVNW2 8.00E+15 8.80E+15 9.57E+15 3.61E+15 5.24E+15 6.11E+15 4.13E+15 4.58E+15 4.82E+15 1.77E+14 9.44E+14 1.92E+15 0.00E+00
↔ EXC5 1.00E+16 2.19E+16 2.63E+16 7.02E+15 2.81E+16 3.67E+16 2.02E+16 2.29E+16 2.50E+16 0.00E+00 2.87E+15 1.34E+16 7.96+14
↓ AVNW3 9.10+15 1.03E+16 1.16E+16 3.52E+15 6.13E+15 7.61E+15 3.36E+15 3.86E+15 4.20E+15 1.66E+14 1.27E+15 2.35E+15 0.00E+00

can also see that while optimizing for Solution Length, λ-
PSOSP was able to achieve a higher AROR and Transactions
Count that MACD, albeit with a higher risk profile, while
also utilizing a single technical indicator. The indicator that
λ-PSOSP ended up utilizing was the Hammer Candlestick
pattern with a trending period of 24 and a smoothing period
of 10. Another interesting phenomenon is that λ-PSOSP was
able to achieve the highest AROR while optimizing for that
particular metric by using only two technical indicators. With
the exception of MACD, this is an order of magnitude lower
in length when compared with λ-PSO, λ-GA and NSGA-II.
The strategy proposed by λ-PSOSP in that scenario depends
on the Harami Cross and Rickshaw Man Candlestick patterns
with the following parameters:

• Harami Cross: Trend Period: 21, Smoothing Period: 5,
Weight: 0.97

• Rickshaw Man: Trend Period: 29, Smoothing Period: 12,
Weight: 0.03

Table IV shows the comparison of all the multiobjective
optimization algorithms mentioned thus far with their sin-
gle objective counterparts from [6], including the additional
benchmarks of MACD and NSGA-II. In Table IV we highlight
the highest achiever across all the algorithms per testing
strand. The reason behind including this comparison is to

see whether following a Pareto dominance-based approach to
market timing improved the quality of the solutions generated
even if just considering the single objective AROR. The
rankings of the algorithms based on the number of wins via
attaining maximum AROR per testing strand are as follows:
λ-PSOSP (13), λ-PSO (8), MACD (6), λ-GA (3), NSGA-II
(1), PSOS (0), GA (0) and PSO (0). We can see that the
multiobjective optimization variants of PSO dominate the rest
of the algorithms and hold the top two positions. This is
followed by MACD, then the multiobjective variants of GA,
although NSGA-II was only able to achieve a singular win.
The single objective variants of our algorithms fared the worst,
scoring no wins when compared with their multiobjective
counterparts. This indicates that pursuing a multiobjective
optimization approach improves the overall quality of the
market timing strategies generated when compared to a single
objective optimization approach.

In order to provide an overall picture comparing the per-
formance of the multiobjective algorithms, relative to each
other and to the benchmarks, we plot the solutions returned
per financial metric and aggregated across all testing strands
using violin plots [16]. A violin plot extends Tukey’s Box and
Whisker plots by displaying a kernel density estimation of the
data points along with the summary statistics using a Gaussian



TABLE III: Best Performance Per Objective including both NSGA-II and MACD. For every optimized objective, we find the
best performing instance. The test strand where this is observed is in brackets next to the primary objective name. The best
discovered solution per algorithm observed within the strand and objective at hand is then listed. The top performing solution
is highlighted in bold. In case of a tie, we consider the objectives in a lexicographical approach using the following order:
AROR, Portfolio Risk, VaR, Transactions Count and Solution Length.

Primary Objective λ-PSOSP λ-GA λ-PSO NSGA-II MACD

AROR (ATRO1) ▶ AROR 2.5162E+01 1.6296E+01 1.8093E+01 1.3302E+01 1.5705E+00
Portfolio Risk 3.3176E+06 2.0895E+06 2.5298E+06 2.0316E+06 4.1877E+05
VaR 3.9490E+05 2.6933E+05 1.8831E+05 2.0658E+05 1.7218E+04
Transactions Count 7.8000E+01 7.0000E+01 6.8000E+01 6.4000E+01 1.0000E+01
Solution Length 2.0000E+00 5.7000E+01 3.6000E+01 3.2000E+01 1.0000E+00

Portfolio Risk (MGA1) AROR 2.9173E+00 2.8743E+00 2.8743E+00 2.8000E+00 2.6536E+00
▶ Portfolio Risk 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.1339E+05

VaR 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Transactions Count 2.0000E+00 2.0000E+00 2.0000E+00 0.0000E+00 4.0000E+00
Solution Length 1.0000E+00 3.8000E+01 3.8000E+01 1.2000E+01 1.0000E+00

VaR (JBLU1) AROR 1.4984E+01 1.2095E+01 1.3313E+01 1.1953E+01 2.0160E+00
Portfolio Risk 1.0970E+06 1.0717E+06 1.0115E+06 1.1022E+06 0.0000E+00

▶ VaR 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Transactions Count 1.0200E+02 6.8000E+01 7.6000E+01 6.6000E+01 0.0000E+00
Solution Length 3.8000E+01 3.5000E+01 5.8000E+01 3.3000E+01 1.0000E+00

Transactions Count (LUV1) AROR -5.1663E-02 -9.9755E-02 -8.5752E-02 -9.9213E-02 6.2546E-01
Portfolio Risk 4.6062E+05 4.7781E+05 4.3228E+05 6.1172E+05 1.1358E+06
VaR 5.8006E+04 6.5248E+04 6.0277E+04 8.3613E+04 3.1387E+04
Transactions Count 6.3400E+02 6.1600E+02 6.1800E+02 6.2800E+02 9.2000E+01

▶ Solution Length 5.1000E+01 1.0000E+01 4.4000E+01 5.0000E+00 1.0000E+00

Solution Length (ATRO1) AROR 1.8919E+01 3.6600E+00 1.2000E+01 9.7551E-01 1.5705E+00
Portfolio Risk 2.5523E+06 1.0528E+06 1.5216E+06 9.9237E+05 4.1877E+05
VaR 2.9994E+05 9.1406E+04 1.4375E+05 1.2718E+05 1.7218E+04
Transactions Count 7.8000E+01 6.6000E+01 6.0000E+01 8.0000E+01 1.0000E+01

▶ Solution Length 1.0000E+00 2.0000E+00 2.6000E+01 7.0000E+00 1.0000E+00

Fig. 3: Violin plot comparing VaR performance for all multi-
objective algorithms, along with NSGA-II and MACD, across
all testing strands. We can see that the medians and the bulk of
their solution distributions for all algorithms are close to each
other. λ-PSO displays an exceptionally long tail stretching
into higher values of VaR indicating a higher potential for
losses when compared to the other algorithms albeit at a lower
probability.

kernel. The kernel density estimation is presented visually as
the contours of the shape rendered for every category in the
plot, while the summary statistics are represented by three
lines rendered within the body of the shape. The dotted middle
line represents the median, while the bottom and top dotted
lines represent the first and third quartiles of the interquartile

Fig. 4: Violin plot comparing transactions count for all multi-
objective algorithms, along with NSGA-II and MACD, across
all testing strands. The highest median observed was that of
λ-PSOSP, followed by NSGA-II, λ-PSO, λ-GA and finally
MACD. With the exception of MACD, all algorithms have
tails extending into higher transaction counts. Based on these
observations, we can conclude that solutions returned by λ-
PSOSP are relatively the most stable and have the lowest sam-
ple error. MACD solutions, on the other hand, are relatively
the least stable and have the highest sample error compared
to the solutions returned by the other algorithms.

range. Figures 1 to 5 show the violin plots of all algorithms for
AROR, Portfolio Risk, VaR, Transactions Count and Solution
Length. From the AROR violin plot, Figure 1, we can observe



TABLE IV: A comparison of the AROR values between the
single objective and multiobjective optimization algorithms
including NSGA-II and MACD benchmarks. The single ob-
jective algorithm results are obtained from [6]. The maximum
values obtained in the experiments are used since AROR is an
objective that is maximized. The highest value per Test Strand
is highlighted in bold.

Algorithm
# Test Strand PSOS λ-PSOSP GA λ-GA PSO λ-PSO NSGA-II MACD

0 ↑ IAG1 -3.42 0.04 -1.39 0.06 -3.04 0.97 -0.04 3.04
↔ MGA4 1.70 2.08 1.60 2.14 2.09 2.30 1.87 2.07
↓ IAG2 2.17 2.90 2.16 2.92 2.17 2.95 2.42 2.43

1 ↑ BSX1 -0.11 0.63 -0.13 0.73 -0.02 1.27 1.13 1.57
↔ LUV1 -0.08 0.07 -0.01 0.03 -0.04 0.07 -0.02 0.63
↓ KFY1 2.17 3.39 2.67 2.81 2.66 3.02 3.16 2.55

2 ↑ EXC1 2.92 3.44 2.90 3.08 2.80 3.05 2.98 2.89
↔ LUV2 2.46 2.79 2.64 2.92 2.62 2.88 2.86 2.53
↓ KFY2 2.85 6.52 2.05 3.80 3.61 3.89 3.42 1.87

3 ↑ AVNW1 1.22 0.77 1.29 1.83 1.26 2.08 2.07 2.77
↔ PUK1 0.38 0.06 0.00 0.76 0.00 0.64 0.40 0.33
↓ LUV3 6.12 6.16 4.63 6.00 4.70 7.13 4.67 1.83

4 ↑ KFY3 2.94 3.08 2.67 2.91 2.80 3.30 2.91 2.93
↔ EXC2 1.62 5.14 1.55 2.08 1.60 2.49 2.48 1.39
↓ LUV4 2.95 4.89 2.96 3.75 2.80 3.74 3.68 2.53

5 ↑ EXC3 2.39 2.35 2.14 2.31 2.38 2.55 2.31 2.11
↔ PUK2 0.76 2.04 0.51 2.40 1.07 3.16 3.09 0.99
↓ MGA1 3.80 7.85 3.15 3.37 2.80 4.35 3.70 2.65

6 ↑ ED1 2.32 2.58 1.98 2.75 2.44 2.84 2.59 2.95
↔ EXC4 3.96 14.27 3.72 5.88 3.47 6.91 4.87 2.08
↓ PUK3 3.66 4.53 3.66 3.95 2.80 3.64 3.24 3.22

7 ↑ BSX2 3.76 4.33 4.03 4.15 3.32 4.33 3.92 2.54
↔ ED2 2.67 2.82 2.70 2.71 2.63 2.75 2.75 2.24
↓ JBLU1 13.09 14.98 12.06 12.63 11.95 13.43 11.95 2.01

8 ↑ MGA2 0.00 0.09 -3.39 0.44 -0.04 0.68 0.20 1.93
↔ MGA3 1.34 1.79 0.51 0.79 0.48 1.60 0.81 0.91
↓ ATRO1 11.51 25.16 16.08 16.30 11.31 18.09 13.30 1.57

9 ↑ AVNW2 5.67 12.02 5.65 8.60 3.99 10.88 11.48 1.60
↔ EXC5 0.56 3.54 0.96 3.85 0.87 3.42 3.17 0.69
↓ AVNW3 2.20 4.79 2.14 4.74 2.10 3.33 3.54 1.75

that the medians and main bulk of the solution distributions
for all algorithms are close to each other. The PSO algorithms
display interesting behavior in having long tails extending well
beyond those of their counterparts: λ-PSOSP having a tail
extending higher than rest showing the potential of achieving
higher returns and λ-PSO extending significantly lower than
its counterparts showing a higher potential of negative returns
albeit at a lower probability. The Portfolio Risk violin plot,
Figure 2, shows that all the algorithms in the comparison
have the bulk of their distribution and medians around the
same level. This is with the exception of MACD that has
a higher interquartile range and a long tail stretching into
higher values of risk, indicating a worse performance than
the other algorithms in the comparison. As for VaR, we can
see from the associated plot, Figure 3, that all algorithms have
their medians and the main bulk of their distributions close to
each other. Only λ-PSO displays a long tail stretching into
higher values of VaR indicating a higher potential for losses
albeit at a low probability. Figure 4 shows the violin plot
for transactions count and from that we can observe that the

Fig. 5: Violin plot comparing solution length for all multiob-
jective algorithms, along with NSGA-II and MACD, across all
testing strands. When comparing λ-PSO to λ-PSOSP, we can
see that the pruning procedure has resulted in comparatively
shorter solutions based on the lower median and the main body
of the solution distribution manifesting significantly lower than
λ-PSO. When considering the other algorithms, we can see
that λ-PSOSP has achieved shorter solutions and are directly
comparable to the MACD solution which had a fixed length
of one component.

highest median was achieved by λ-PSOSP, followed by NSGA-
II, λ-PSO, λ-GA and MACD. All algorithms, bar MACD,
have tails that extend higher into transaction counts. Based
on the observations, we can surmise that λ-PSOSP returns
the most stable solutions and MACD returns the least stable.
Finally, Figure 4 shows the violin plot for solution length. By
comparing λ-PSO to λ-PSOSP, we can see that the pruning
procedure has resulted in comparatively shorter solutions as
evident by the lower interquartile range of λ-PSOSP and the
manifestation of its main body of its solution distribution at a
significantly lower level than λ-PSO. We can also observe that
λ-PSOSP has achieved shorter solutions to its counterparts and
is comparable to MACD which had a fixed solution length of
one component.

As with the previous set of experiments, we reconducted
the Friedman non-parametric test with the Holm correction
on the mean hypervolumes to check if there are statistical
significance differences. The results can be seen in Table V.
From Table V, we can see that NSGA-II and MACD have
performed worse than all other multiobjective optimization
algorithms across all trend types. In particular, both NSGA-
II and MACD performed statistically significantly worse than
the control algorithm across all trend types. This suggests that
our algorithms are better suited than NSGA-II and MACD
when tackling market timing as a multiobjective optimization
problem. We can see that λ-PSOSP and our multiobjective GA
have consistently ranked in the top two across each trend type,
and shows a slight edge in ranking when considering all trends,
albeit in a statistically non-significant manner.



TABLE V: Average rankings of each algorithm according to
the Friedman non-parametric test with the Holm post-hoc test
over the mean hypervolume. Although λ-PSOSP lost its edge
over λ-GA when compared in a wider context containing both
NSGA-II and MACD, it retains a statistically significant edge
over PSO and the two additional benchmarks. NSGA-II and
MACD have performed worse than all other algorithms under
various trend conditions in a statistically significant manner.

Trend Algorithm Ranking p-value Holm

Uptrend λ-GA (control) 1.8 – –
λ-PSOSP 1.8 1.0 0.05
λ-PSO 2.4 0.39614 0.025
NSGA-II 4.05 0.00156 0.0167
MACD 4.95 8.3982E-6 0.0125

Sideways λ-GA (control) 1.5 – –
λ-PSOSP 2.1 0.3961 0.05
λ-PSO 2.5 0.1573 0.025
NSGA-II 4.35 5.5656E-5 0.0167
MACD 4.55 1.608E-5 0.0125

Downtrend λ-PSOSP (control) 1.0 – –
λ-GA 2.0 0.1573 0.05
λ-PSO 3.2 0.0019 0.025
NSGA-II 4.4 1.522E-6 0.0167
MACD 4.4 1.522E-6 0.0125

All λ-PSOSP (control) 1.3 – –
λ-GA 1.8 0.4795 0.05
λ-PSO 2.9 0.0237 0.025
NSGA-II 4.2 4.1098E-5 0.0167
MACD 4.8 7.431E-7 0.0125

IV. DIVERSITY OF THE PARETO FRONT

In the previous section, we addressed the first limitation
in the results obtained by our multiobjective optimization
algorithms by comparing them with NSGA-II and MACD as
benchmarks. In this section, we address the second limitation
which was lack of insight into the diversity of the solutions in
the returned Pareto sets and how they are spread across their
respective Pareto fronts. The more diversity in the solutions
contained within a given Pareto set, the more spread they are
across their respective Pareto front giving the end user more
choice to select solutions that better suit their needs. In order
to get insight into the diversity of the Pareto sets returned
by the multiobjective optimization algorithms, we plot their
results against each test strand using RadViz [11]. RadViz is a
method of adapting a scatter plot to display multivariate data
containing more than two dimensions. The various dimensions
being plotted in a RadViz diagram are rendered as anchors dis-
tributed equally across the circumference of a circle containing
points representing the dataset being visualized. Each point in
the dataset is rendered as a point in this circle tethered to each
of the dimensional anchors on the circumference on the plot
area. The amount of tension in each tether is commensurate

Fig. 6: RadViz Interpretation

to the normalized value each point has to a given dimensional
anchor and the points are rendered within the plot area, where
they reach an equilibrium across all the tensions contained
within the tethers. In our case, we have five dimensional
anchors: AROR, Portfolio Risk, VaR, Transactions Count and
Solution Length. As Portfolio Risk, VaR and Solutions Length
are metrics that are minimized, we are interested in points
that are situated far from the anchors associated with those
metrics. The opposite is true for AROR and Transactions
Count, where we are interested in points that are rendered
close to those dimensional anchors. An example of a RadViz
diagram and how we can interpret it can be seen in Figure 6.
By observing the RadViz plots, we can visually identify which
algorithms attained better diversity by looking at the spread
of their corresponding Pareto sets. We use RadViz to plot the
Pareto sets returned by λ-PSOSP, λ-PSO, λ-GA, NSGA-II and
MACD for each testing strand, and a selection of plots can be
seen in Figure 7.

From the RadViz plots, we can see that the λ-PSOSP

algorithm consistently achieves the largest spread across the
plot area, covering all areas covered by the other multiob-
jective optimization algorithms. This is despite the fact that
no explicit measures where taken to promote diversity, such
as the crowding distance measure used in NSGA-II. When
present, MACD has consistently existed outside the main body



Fig. 7: A sample of RadViz plots.

occupied by the Pareto sets of the other algorithms, in an
area to the upper right of the plotting area. This implies that
the solution presented by MACD can achieve good values
of AROR but at the expense of high risk (attraction to the
Portfolio Risk and VaR anchors) and low confidence (repulsion
from the Transactions Count anchor). The NSGA-II Pareto
sets are smaller in size when compared to the ones generated
by the other algorithms, with the exception of BSX1 (↑),
where the NSGA-II Pareto set always lies to the right of
the PSO Pareto sets and to the left of both λ-GA and λ-
PSOSP. This implies that the λ-GA and λ-PSOSP have a higher
probability of landing in the desired quadrant of solutions with
high profitability, low risk and high confidence – the quadrant
indicated by gray shading in the plots. The algorithm that
shows the least diversity is the PSO algorithm, resulting in

Pareto sets that are relatively tightly clustered near the center
of the plotting area. Based on the RadViz visualizations of the
algorithms and the observations seen in the results earlier, we
can observe that the multiobjective λ-PSOSP algorithm returns
Pareto sets with a high level of diversity and those Pareto
sets contain competent solutions across all the metrics being
considered. This is followed closely by λ-GA, then by λ-PSO,
NSGA-II and MACD, respectively.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have expanded on the work introduced in
[10] by providing a deeper insight into the PSO algorithms
there and addressing two limitations of the results: a limited
comparative context for the PSO algorithms and lack of insight
into the diversity of the Pareto sets returned by the algorithms.



In order to provide a better comparative context for the
algorithms, we compared their performance against NSGA-
II (a well established multiobjective optimization algorithm)
and MACD (a widely used technical indicator in market
timing applications). Results from the comparison showed
that NSGA-II and MACD performed statistically significantly
worse than λ-PSO, λ-GA and λ-PSOSP across all of the
three trend types based on mean hypervolume. The Pareto
sets returned by the algorithms for each testing strand was
visualized using RadViz in order to gain insight about the
diversity of those Pareto sets. The RadViz plots show that
λ-PSOSP displayed the most diversity and its solutions were
present in all areas of the plot that the Pareto sets of the other
algorithms occupied. The least diverse algorithm was λ-PSO,
consistently producing Pareto sets that occupied the center of
the plotting area in one contiguous body.

The research presented here can be extended in two ways:
approaches where we extend the capabilities of the algorithms
or approaches where we expand the scope of how market tim-
ing is tackled. Examples of approaches extending the capabili-
ties of the algorithms discussed in this paper include expanding
the set of financial metrics being optimized, considering the
diversity of the returned Pareto sets as a first class objective
to be optimized along with the rest of the objectives under
consideration, considering optimization for each trend type
(akin to a niching approach) and using fundamental analysis
components along with the technical analysis ones used in
this research. As for exppanding the scope of how market
timing is algorithmically tackled, examples of approaches
would include the application of other algorithms besides PSO
and then use Meta-learning to arrive at an ensemble approach,
including other aspects of algorithmic trading to optimized by
the algorithms (such as portfolio optimization and execution
optimization) and to consider dynamic optimization whereby
the algorithms are capable of detecting degradation in perfor-
mance and adapting accordingly.
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