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Abstract

Background. Automated segmentation methods are developed to help with the segmentation
of different brain areas. However, their reliability has yet to be fully investigated. To have a
more comprehensive understanding of the distribution of changes in Alzheimer’s disease (AD),
as well as investigating the reliability of different segmentation methods, in this study we
compared volumes of cortical and subcortical brain segments, using HIPS, volBrain, CAT and
BrainSuite automated segmentation methods between AD, mild cognitive impairment (MCI)
and healthy controls (HC).

Methods. A total of 182 MRI images were taken from the minimal interval resonance imaging
in Alzheimer's disease (MIRIAD; 22 AD and 22 HC) and the Alzheimer’s disease
neuroimaging initiative database (ADNI; 43 AD, 50 MCI and 45 HC) datasets. Statistical
methods were used to compare different groups as well as the correlation between different

methods.

Results. The two methods of volBrain and CAT showed a strong correlation (p’s<0.035
Bonferroni corrected for multiple comparisons). The two methods, however, showed no
significant correlation with BrainSuite (p’s>0.820 Bonferroni corrected). Furthermore,
BrainSuite did not follow the same trend as the other three methods and only HIPS, volBrain
and CAT showed strong conformity with the past literature with strong correlation with mini
mental state examination (MMSE) scores.

Conclusion. Our results showed that automated segmentation methods HIPS, volBrain and
CAT can be used in the classification of HC, AD and MCI. This is an indication that such
methods can be used to inform researchers and clinicians of underlying mechanisms and

progression of AD.

Keywords: volumetric T1-MRI; atrophy; automatic segmentation; dementia; volBrain; CAT,;
BrainSuite; HIPS



1 Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disease, contributing to 60-70%
of dementia cases . One important characteristic of AD is a significant loss of neurons and
synapses, resulting in brain shrinkage and atrophy. Structural changes have been shown to be
one of the earliest biomarkers that can be used in the diagnosis of AD, and mild cognitive
impairment (MCI). Much effort has been devoted to find patterns of changes in the structure

of different brain areas that can be reliably used for diagnosis of AD and MCI.

Earlier investigations relied mostly on manual segmentation of brain areas requiring a great
deal of expertise and time. Therefore, the majority of the focus has been devoted to changes in
the hippocampus due to its distinct structure. It has been shown that a loss in hippocampal
volume can be an indication of AD. Further investigations have looked at subfields of the
hippocampus, showing a nonuniform rate of neuroplasticity due to their specialisation 3. For
example, it has been shown that NFT begin in the medial temporal region and exhibit a
characteristic distribution pattern across subfields, starting in the CAl and later spreading to
subiculum, CA2, CA3 and CA4/Dentate Gyrus *.

With the development of semi- and fully-automated segmentation methods, however, it has
now become easier and faster to segment not only the hippocampal area, but also other brain
areas °>°. HIPpocampus subfield Segmentation (HIPS) *°, volBrain !, Computational Anatomy
Toolbox (CAT) 213 BrainSuite 14 and FreeSurfer ¢ are some of the commonly used semi-
and fully-automated methods. These methods, however, are still under development 7. For
example, CA1 segmentation in the FreeSurfer v5.3 was partially included in the subiculum 8
potentially explaining why the CAL field was reported to be insensitive to AD pathology in
some *° but not all %. Similar findings have recently raised questions and concerns regarding
the accuracy and consistency of these methods 2*. Therefore, it is important to investigate the

accuracy of these methods further 22,

Benefiting from the computational power of automated methods, analysis of a large number of
brain images has become more feasible. Large datasets of brain scans such as Minimal Interval
Resonance Imaging in Alzheimer's Disease (MIRIAD) 23, and the Alzheimer’s disease
neuroimaging initiative database (ADNI) 22 public databases of Alzheimer's magnetic
resonance imaging (MRI), offer a great opportunity to have a more comprehensive approach
to the underlying mechanism and progression of AD. It also facilitates multisite studies to form

a more accurate understanding of the disease.



Mini mental state examination (MMSE) is one of the commonly accepted measurements of
cognitive ability, in particular in clinical settings. This measure has been widely used in
classification of AD. For example, MIRIAD classifies participants with score between 12 and
26/30 as AD and those higher than 26/30 as healthy control. There is huge body of literature

showing correlation between MMSE score and brain atrophy 2°.

The aim of this study was to investigate the reliability of four automated segmentation methods
of volBrain, CAT and BrainSuite for segmentation of the whole brain, and HIPS for
segmentation of subfields of hippocampus, which belongs to the same analysis tool as volBrain.
We used images belonging to MIRIAD. Correlation of the volume of each brain area with
MMSE scores are also investigated. To investigate the reliability of the three methods volBrain,

CAT and BrainSuite, the correlation of their common brain areas is also reported.

2 Material and Methods

2.1 Subjects

Our data analysis is based on data from 182 participants from two databases of Minimal
Interval Resonance Imaging in Alzheimer's Disease (MIRIAD)
(https://www.ucl.ac.uk/drc/research/research-methods/minimal-interval-resonance-imaging-
alzheimers-disease-miriad) 2, and the Alzheimer’s disease neuroimaging initiative database
(ADNI) (http://adni.loni.usc.edu) 24?°. For details of the demographics please see
Supplementary Table 1.

2.2 Magnetic Resonance Imaging (MRI)

Data was extracted from MIRIAD, and ADNI databases. All of the MIRIAD subjects
underwent MRI scanning on a 1.5 T Signa scanner (GE Medical Systems, Milwaukee, WI,
USA). T1-weighted volumetric images were obtained using an inversion recovery prepared
fast spoiled gradient echo sequence with acquisition parameters time to repetition = 15 ms,
time to echo = 5.4 ms, flip angle = 15°, Tl = 650 ms, a 24-cm field of view and a 256 x 256
matrix, to provide 124 contiguous 1.5-mm thick slices in the coronal plane (voxels 0.9735 x
0.9735 x 1.5 mmq) 23, Brain structural T1-weighted MRI data with 256x256x170 voxels and
1x1x1 mm? voxel size were extracted for ADNI subjects. ADNI data were obtained using an

echo-planar imaging sequence on a 3T Philips MRI scanner.


https://www.ucl.ac.uk/drc/research/research-methods/minimal-interval-resonance-imaging-alzheimers-disease-miriad
https://www.ucl.ac.uk/drc/research/research-methods/minimal-interval-resonance-imaging-alzheimers-disease-miriad
http://adni.loni.usc.edu/

2.3 Methods

HIPS and volBrain; The volumes of Cerebrospinal fluid (CSF), white matter (WM), grey
matter (GM), brain hemispheres, cerebellum and brainstem were obtained using volBrain
pipeline 1. This method is based on an advanced pipeline providing automatic segmentation
of different brain structures from T1 weighted MRI, Supplementary Figure 1. The
preprocessing is based on the following procedure: (1) a denoising step with an adaptive non-
local mean filter, (2) an affine registration in the Montreal Neurological Institute (MNI) space,
(3) a correction of the image inhomogeneities, and (4) an intensity normalisation. (5)
Afterwards, MRI images are segmented in the MNI space using non-local patch-based multi-
atlas method. Images were corrected for intensity inhomogeneity, and the images were
segmented into brain/non-brain using a semi-automated technique (MIDAS). The non-local
means filter was applied to each pixel of the image by computing a weighted average of
surrounding pixels using a robust similarity measure that takes into account the neighbouring
pixels surrounding the pixel being compared. This segmentation method is based on the idea
of non-local patch-based label fusion technique, where patches of the brain image to be
segmented are compared with those of the training library, looking for similar patterns within
a defined search volume to assign the proper label. HIPS and volBrain are used for
segmentation of the hippocampus subfields and the rest of the brain, respectively °.

CAT; Computational Anatomy Toolbox (CAT) is a powerful package for brain T1-MRI data
segmentation, Supplementary Figure 2. It is a voxel base estimation method. The CAT
preprocessing steps are as follows: (1) spatial registration to a template, (2) tissue segmentation
into grey, white matter and CSF, and (3) bias correction of intensity non-uniformities. (4)
Finally, segments are extracted by scaling the amount of volume changes based on spatial
registration, so that the total volume of grey matter in the modulated image remains the same
as the original image. For correction of the orientation and size of the brain, non-linear
registration methods are applied to the image. Projection-based thickness (PBT) method is used
for calculation of the cortical thickness and central surface. Spatial-adaptive non-local means
(SANLM) and classical Markov random field (MRF) were used for image denoising. Adaptive

Maximum a Posterior (AMAP) method was used for segmentation.

BrainSuite; BrainSuite is an open-source software tool that enables largely automated cortical
surface extraction from MRI of the brain, Supplementary Figure 3. BrainSuite includes

automatic cortical surface extraction, bias field correlation, cerebrum labelling, and surface



generation features. Also, this toolbox is used in tractography and connectivity matrix

calculation in diffusion imaging data 4.

2.4  Statistical Analysis

Independent-sample t-tests are run to compare the volume of different brain areas between the
AD and HC, AD and MCI, and MCI and HC groups for volBrain, CAT and BrainSuite for the
whole brain, and HIPS for the hippocampus subfields. Bivariate-correlation analyses are also
run to investigate the relationship between volume and MMSE scores for all four segmentation
methods. Correlational analyses are run between the common brain areas in volBrain, CAT
and BrainSuite to investigate the relationship between the three methods. Bonferroni correction

is applied to account for multiple comparison by reduction of the p threshold.

3 Results

Using three automatic segmentation methods CAT, volBrain and BrainSuite, we segmented
the whole brain, and using HIPS we segmented the hippocampus. For details of the values for
each of the segmentation methods, see Supplementary Data for ADNI and MIRIAD databases.
Using independent-sample t-tests we compared the volumetric data for AD and HC, AD and
MCI, and MCI and HC for each segment. Supplementary Figures 4-7 show sample output
images for one AD patient and one HC participant. Furthermore, we investigated the
correlation of volumetric data with MMSE scores in AD and HC, AD and MCI, and MCI and
HC groups.

CAT segmentation method returned data for 63 distinct brain areas. This method highlighted
many brain areas that are significantly different between the AD and HC, AD and MCI, and
MCI and HC groups, Table 1. In particular fusiform gyrus, parahippocampal gyrus,
hippocampus, entorhinal cortex, amygdala, temporal gyri, thalamus, nucleus accumbens,
insula, caudate and precuneus were significantly different. Importantly, the size of all these
brain areas showed a strong correlation with MMSE scores. For further details see

Supplementary Figures 8-10.
=== Table 1 ===

volBrain segmentation method returned data for eight distinct brain areas. In particular the
amygdala, hippocampus, nucleus accumbens, thalamus and caudate were significantly
different between the AD and HC, AD and MCI, and MCI and HC groups, Table 2. Again, the



size of all these brain areas showed a strong correlation with MMSE scores. For further details

see Supplementary Figure 11-13.
=== Table 2 ===

BrainSuite segmentation method returned data for 50 distinct brain areas. In contrast to CAT
and volBrain, this method highlighted only six brain areas that are significantly different
between the AD and HC, AD and MCI, and MCI and HC groups, Table 3. These brain areas
included temporal gyri, third ventricle, supramarginal gyrus and angular gyrus. Similar to
previous segmentation methods, all these brain areas showed strong correlation with MMSE

scores. For further details see Supplementary Figures 14-16.
=== Table 3 ===

HIPS segmentation method returned data for the whole hippocampus and five of its subfields:
CAl, CA2-CA3, CA4/Dentate Gyrus, Subiculum and strata radiatum/lacunosum/moleculare
(SR-SL-SM). All these areas showed a significant difference between the AD and HC, AD and
MCI, and MCI and HC groups, Table 4. The size of hippocampus and all its subfields showed
strong correlation with MMSE scores. For further details see Supplementary Figure 17-19.

=== Table 4 ===

To investigate the relationship between the three whole-brain segmentation methods CAT,
volBrain and BrainSuite, we ran correlational analysis, Table 5. Seven brain areas were
common between these methods: nucleus accumbens, amygdala, caudate, globus pallidus,
hippocampus, putamen and thalamus. CAT and volBrain showed strong correlation for nucleus
accumbens, amygdala, caudate, hippocampus and thalamus. Two brain areas globus pallidus
and putamen were not significantly correlated. These brain areas did not show significant
difference between the AD and HC, AD and MCI, and MCI and HC groups either. BrainSuite,
however, showed no significant correlation with either of the other two segmentation methods.

For further details see Supplementary Figures 20-22.

=== Table 5 ===

4 Discussion

We used HIPS automated method to segment the subfields of hippocampus, and CAT, volBrain
and BrainSuite automated methods to segment the whole brain using T1 weighted MRI data.

Our results showed that all subfields of hippocampus in the Alzheimer’s Disease (AD) and



mild cognitive impairment (MCI) groups were significantly smaller than those of the healthy
control (HC) group. The atrophy of all subcomponents of hippocampus were correlated with
the MMSE measure. Quite a large portion of cortical and subcortical areas in the brain were
also smaller in the AD, and MCI groups as compared to the control group, as evident from
CAT and volBrain segmentation results. The shrinkage in these brain areas mostly showed a
strong correlation with MMSE measure. BrainSuite failed to discriminate between the two
groups. While CAT and volBrain shows a strong correlation, BrainSuite did not show any
significant correlation with CAT and volBrain.

With the advancement of computational methods, fine-grain analysis of the brain areas is more
feasible. Earlier methods relied heavily on manual segmentation of the brain areas, which was
extremely time demanding and also required a great level of expertise. Therefore, the majority
of the analysis was limited to brain areas with more distinct structure, such as the hippocampus.
Many semi- and fully-automated segmentation methods have been developed. While these
methods have been used more commonly in recent years, the reliability and accuracy of these
methods was yet to be fully studied. We used four pipelines of HIPS 1, volBrain !, CAT 1213
and BrainSuite 4. In this study we evaluated their reliability by looking at their ability to
discriminate between AD and HC, AD and MCI, and MCI and HC groups with ADNI and
MIRIAD databases, whether a correlation existed between them, their correlation with MMSE
scores, and comparing their results with past literature. Our results showed strong reliability of
HIPS, volBrain and CAT. These methods have been successfully applied to brain images from
those with AD and MCI %,

BrainSuite, however, underperformed greatly. For example, it failed to accurately segment the
hippocampus, thalamus and amygdala to show a significant difference between the two groups.
While this automatic segmentation method has been used frequently in past research %, its
application has been mostly limited to the processing of brains with no atrophy 2°, as well as
detection of gross segments such as tumours *°. Given that early AD is so difficult to recognise,
being able to detect atrophy represents a crucial aspect to diagnosing AD earlier and
consequently providing such subjects with better preventative measures, thus helping to ensure
an extended period of higher quality of life for these individuals. This highlights the importance
of validation studies such as ours to gain a greater understanding of the applications and
limitations of different methods 3!, especially considering the greater accuracy and speed

identified with our method.



The volume of the hippocampus is considered as an important biomarker for AD and has been
included in recently proposed research diagnostic criteria. It has been shown that the
hippocampal atrophy estimated on anatomical T1 weighted MRI can help in classifying the
different stages of AD. Confirming past literature, our results showed that the hippocampus
volume significantly differed between AD and the HC, MCI and HC.

Histological studies have shown that lesions are not uniformly distributed within the
hippocampus. Neuronal loss results in a reduction of the thickness of the layers richer in
neuronal bodies, while the loss of synapses results in the reduction of the layers poorer in
neuronal bodies and these changes are stage-dependent 2. Our results, however, failed to
differentiate the contribution of these subfields in AD; they all showed significant reduction in
size, compared to the control group. This effect could be because our AD group consisted of
those with later stages of AD. The contribution of different subfields of the hippocampus is

more visible in those with MCI 22,

While the contribution of atrophy in the hippocampus has been widely studied, the role of
atrophy in the rest of the brain in AD is less clear 1’. An important contributing factor is that
the boundaries of the hippocampus are easier for human operators or automated algorithms to
recognise than other brain areas such as the amygdala, entorhinal cortex or thalamus 1’. Due to
methodological advances, however, it is now possible to measure atrophy across the entire
cortex with good precision. Our results from CAT and volBrain methods showed strongly
significant differences between many brain areas such as the amygdala, thalamus, nucleus
accumbens, insula and caudate. These findings are in-line with past literature showing similar

differences in these brain areas *’.

There is a growing body of literature showing a correlation between cognitive decline and brain
atrophy. For example, it has been shown that basal forebrain changes are correlated with
cognitive decline in MCI and AD patients, as measured with recall task and MMSE, as well as
healthy participants that later progressed to AD. Atrophy of other brain areas such as lateral
and medial parietal cortex, as well as lateral temporal cortex have also been shown to have a
correlation with cognitive decline **. Our results showed a strong correlation between brain
atrophy and cognitive decline as measured by MMSE. All brain areas that were significantly
different between the AD and the control group showed a significant correlation with MMSE,
except for the caudate (CAT p = 0.001155, volBrain p = 0.005091, Bonferroni corrected
statistic not significant). While the effect of shrinkage of the caudate in AD is not very clear,

there is some evidence that caudate volume has a correlation with MMSE measures, although



not as strongly as other brain areas such as the thalamus %. An important consideration is that
atrophy in the left caudate has a stronger role in AD, as compared to the right caudate . Our
analysis combined both the left and right caudate, which may have led to this inconsistency

between our results and previous literature.

Although AD commonly presents as an amnestic syndrome, there is significant heterogeneity
across individuals, which is accompanied by different atrophy patterns 6. For example, while
those with more language difficulties might exhibit greater atrophy in temporal or parietal
regions, those with more visual difficulties might have greater atrophy in posterior cortical
regions %’. Availability of the automated systems offers many opportunities, such as the ability
to analyse a large number of brain images with reasonable time and expertise. This is in
particular very appealing, considering the increased number of large datasets such as MIRIAD
and ADNI. Automated systems can go through the collection and aggregate data from a wide
range of participants, healthy and patients to gain a greater understanding of AD. Methods with
advanced accuracy and speed can analyse such banks with accuracy such that their applicability
to clinical settings is inevitable with ongoing technological and practical advancements. This
is important considering the heterogeneity of the disease and its progression.

Another application of automated systems is in clinical settings. By the time of diagnosis, rapid
ongoing atrophy is already far advanced. Early diagnosis of AD in MCI stage can help with
deceleration of the progression of the disease. This is particularly important as there are
modifiable factors that can help with brain health. Therefore, a massive effort has been devoted
to the development of diagnostic methods to enable researchers and clinicians to detect AD
and MCI and cases with potential progression to AD, as early as possible. For the development
of preventive strategies, it is important to predict future brain atrophy, as this may aid in
identifying which individuals with normal cognition are more susceptible of progressing to
later stages of AD 3. Clinician’s reliance on their own expertise and subjective judgements
arises from caution held over automated systems due to their lower performance. However,
with recent developments and methods, automated systems can provide additional information
to clinicians, enabling them to have a greater understanding of the progression of the atrophy
39 Some of these methods have already received approval from different licensing bodies such
as CE (European conformity) and FDA (food and drug administration, USA) approval. These
methods, however, come with some limitations such as speed of processing, expensive
licences, or requirement of other specialised software. This study is another step to evaluate

freely available analytical tools to achieve an ideal analysis pipeline, suitable for researchers



and clinicians. Ultimately, such work serves to aid clinicians in their diagnoses of future MCI
and thus AD, as well as to help improve the preventative measures taken to help secure a greater
quality of life for subjects with AD. Clinicians still rely heavily on subjective judgement, which
requires great expertise. Agreeing with the reviewer, clinicians use automated segmentation
methods very cautiously due to their poor performance. Therefore, development of methods
such as the one suggested in this study can pave the way for further application of automated

methods in clinical settings.

Availability of the reliable automated segmentation methods enables researchers and clinicians
to have a greater understanding of the underlying mechanisms and the progression of the AD.
This will allow them to attempt to prevent or decelerate the progression of the disease more
effectively. This rate can be helpful to have a more informed understanding whether an
individual with MCI will later progress to AD or not. The output of automated segmentation
methods can also be used in training of intelligent classification methods such as those using

artificial neural networks and support vector machines, which has shown promising results °

The purpose of this article was not to identify the superiority of any particular automatic
segmentation method over another, but to solely highlight possible limitations and applications
of four commonly used segmentation methods. We proposed that CAT, volBrain and HIPS are
methods that can robustly operate on brain images with significant atrophy and can be used in
research and clinical settings. BrainSuite, however, should be used with caution for brain

images with atrophy.
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